Merge branch 'eta_display' of https://github.com/sitsofe/fio
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timespec time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.min_bs[io_u->ddir];
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 * -> not for now since there is code assuming it could go either.
66 */
67 max_size = f->io_size;
68 if (max_size > f->real_file_size)
69 max_size = f->real_file_size;
70
71 if (td->o.zone_range)
72 max_size = td->o.zone_range;
73
74 if (td->o.min_bs[ddir] > td->o.ba[ddir])
75 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
76
77 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
78 if (!max_blocks)
79 return 0;
80
81 return max_blocks;
82}
83
84struct rand_off {
85 struct flist_head list;
86 uint64_t off;
87};
88
89static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
90 enum fio_ddir ddir, uint64_t *b,
91 uint64_t lastb)
92{
93 uint64_t r;
94
95 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
96 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
97
98 r = __rand(&td->random_state);
99
100 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101
102 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
103 } else {
104 uint64_t off = 0;
105
106 assert(fio_file_lfsr(f));
107
108 if (lfsr_next(&f->lfsr, &off))
109 return 1;
110
111 *b = off;
112 }
113
114 /*
115 * if we are not maintaining a random map, we are done.
116 */
117 if (!file_randommap(td, f))
118 goto ret;
119
120 /*
121 * calculate map offset and check if it's free
122 */
123 if (random_map_free(f, *b))
124 goto ret;
125
126 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127 (unsigned long long) *b);
128
129 *b = axmap_next_free(f->io_axmap, *b);
130 if (*b == (uint64_t) -1ULL)
131 return 1;
132ret:
133 return 0;
134}
135
136static int __get_next_rand_offset_zipf(struct thread_data *td,
137 struct fio_file *f, enum fio_ddir ddir,
138 uint64_t *b)
139{
140 *b = zipf_next(&f->zipf);
141 return 0;
142}
143
144static int __get_next_rand_offset_pareto(struct thread_data *td,
145 struct fio_file *f, enum fio_ddir ddir,
146 uint64_t *b)
147{
148 *b = pareto_next(&f->zipf);
149 return 0;
150}
151
152static int __get_next_rand_offset_gauss(struct thread_data *td,
153 struct fio_file *f, enum fio_ddir ddir,
154 uint64_t *b)
155{
156 *b = gauss_next(&f->gauss);
157 return 0;
158}
159
160static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
161 struct fio_file *f,
162 enum fio_ddir ddir, uint64_t *b)
163{
164 struct zone_split_index *zsi;
165 uint64_t lastb, send, stotal;
166 static int warned;
167 unsigned int v;
168
169 lastb = last_block(td, f, ddir);
170 if (!lastb)
171 return 1;
172
173 if (!td->o.zone_split_nr[ddir]) {
174bail:
175 return __get_next_rand_offset(td, f, ddir, b, lastb);
176 }
177
178 /*
179 * Generate a value, v, between 1 and 100, both inclusive
180 */
181 v = rand32_between(&td->zone_state, 1, 100);
182
183 /*
184 * Find our generated table. 'send' is the end block of this zone,
185 * 'stotal' is our start offset.
186 */
187 zsi = &td->zone_state_index[ddir][v - 1];
188 stotal = zsi->size_prev / td->o.ba[ddir];
189 send = zsi->size / td->o.ba[ddir];
190
191 /*
192 * Should never happen
193 */
194 if (send == -1U) {
195 if (!warned) {
196 log_err("fio: bug in zoned generation\n");
197 warned = 1;
198 }
199 goto bail;
200 } else if (send > lastb) {
201 /*
202 * This happens if the user specifies ranges that exceed
203 * the file/device size. We can't handle that gracefully,
204 * so error and exit.
205 */
206 log_err("fio: zoned_abs sizes exceed file size\n");
207 return 1;
208 }
209
210 /*
211 * Generate index from 0..send-stotal
212 */
213 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
214 return 1;
215
216 *b += stotal;
217 return 0;
218}
219
220static int __get_next_rand_offset_zoned(struct thread_data *td,
221 struct fio_file *f, enum fio_ddir ddir,
222 uint64_t *b)
223{
224 unsigned int v, send, stotal;
225 uint64_t offset, lastb;
226 static int warned;
227 struct zone_split_index *zsi;
228
229 lastb = last_block(td, f, ddir);
230 if (!lastb)
231 return 1;
232
233 if (!td->o.zone_split_nr[ddir]) {
234bail:
235 return __get_next_rand_offset(td, f, ddir, b, lastb);
236 }
237
238 /*
239 * Generate a value, v, between 1 and 100, both inclusive
240 */
241 v = rand32_between(&td->zone_state, 1, 100);
242
243 zsi = &td->zone_state_index[ddir][v - 1];
244 stotal = zsi->size_perc_prev;
245 send = zsi->size_perc;
246
247 /*
248 * Should never happen
249 */
250 if (send == -1U) {
251 if (!warned) {
252 log_err("fio: bug in zoned generation\n");
253 warned = 1;
254 }
255 goto bail;
256 }
257
258 /*
259 * 'send' is some percentage below or equal to 100 that
260 * marks the end of the current IO range. 'stotal' marks
261 * the start, in percent.
262 */
263 if (stotal)
264 offset = stotal * lastb / 100ULL;
265 else
266 offset = 0;
267
268 lastb = lastb * (send - stotal) / 100ULL;
269
270 /*
271 * Generate index from 0..send-of-lastb
272 */
273 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
274 return 1;
275
276 /*
277 * Add our start offset, if any
278 */
279 if (offset)
280 *b += offset;
281
282 return 0;
283}
284
285static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
286{
287 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
288 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
289
290 return r1->off - r2->off;
291}
292
293static int get_off_from_method(struct thread_data *td, struct fio_file *f,
294 enum fio_ddir ddir, uint64_t *b)
295{
296 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
297 uint64_t lastb;
298
299 lastb = last_block(td, f, ddir);
300 if (!lastb)
301 return 1;
302
303 return __get_next_rand_offset(td, f, ddir, b, lastb);
304 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
305 return __get_next_rand_offset_zipf(td, f, ddir, b);
306 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
307 return __get_next_rand_offset_pareto(td, f, ddir, b);
308 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
309 return __get_next_rand_offset_gauss(td, f, ddir, b);
310 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
311 return __get_next_rand_offset_zoned(td, f, ddir, b);
312 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
313 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
314
315 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
316 return 1;
317}
318
319/*
320 * Sort the reads for a verify phase in batches of verifysort_nr, if
321 * specified.
322 */
323static inline bool should_sort_io(struct thread_data *td)
324{
325 if (!td->o.verifysort_nr || !td->o.do_verify)
326 return false;
327 if (!td_random(td))
328 return false;
329 if (td->runstate != TD_VERIFYING)
330 return false;
331 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
332 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
333 return false;
334
335 return true;
336}
337
338static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
339{
340 unsigned int v;
341
342 if (td->o.perc_rand[ddir] == 100)
343 return true;
344
345 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
346
347 return v <= td->o.perc_rand[ddir];
348}
349
350static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
351 enum fio_ddir ddir, uint64_t *b)
352{
353 struct rand_off *r;
354 int i, ret = 1;
355
356 if (!should_sort_io(td))
357 return get_off_from_method(td, f, ddir, b);
358
359 if (!flist_empty(&td->next_rand_list)) {
360fetch:
361 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
362 flist_del(&r->list);
363 *b = r->off;
364 free(r);
365 return 0;
366 }
367
368 for (i = 0; i < td->o.verifysort_nr; i++) {
369 r = malloc(sizeof(*r));
370
371 ret = get_off_from_method(td, f, ddir, &r->off);
372 if (ret) {
373 free(r);
374 break;
375 }
376
377 flist_add(&r->list, &td->next_rand_list);
378 }
379
380 if (ret && !i)
381 return ret;
382
383 assert(!flist_empty(&td->next_rand_list));
384 flist_sort(NULL, &td->next_rand_list, flist_cmp);
385 goto fetch;
386}
387
388static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
389{
390 struct thread_options *o = &td->o;
391
392 if (o->invalidate_cache && !o->odirect) {
393 int fio_unused ret;
394
395 ret = file_invalidate_cache(td, f);
396 }
397}
398
399static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
400 enum fio_ddir ddir, uint64_t *b)
401{
402 if (!get_next_rand_offset(td, f, ddir, b))
403 return 0;
404
405 if (td->o.time_based ||
406 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
407 fio_file_reset(td, f);
408 if (!get_next_rand_offset(td, f, ddir, b))
409 return 0;
410 loop_cache_invalidate(td, f);
411 }
412
413 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
414 f->file_name, (unsigned long long) f->last_pos[ddir],
415 (unsigned long long) f->real_file_size);
416 return 1;
417}
418
419static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
420 enum fio_ddir ddir, uint64_t *offset)
421{
422 struct thread_options *o = &td->o;
423
424 assert(ddir_rw(ddir));
425
426 /*
427 * If we reach the end for a time based run, reset us back to 0
428 * and invalidate the cache, if we need to.
429 */
430 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
431 o->time_based) {
432 f->last_pos[ddir] = f->file_offset;
433 loop_cache_invalidate(td, f);
434 }
435
436 if (f->last_pos[ddir] < f->real_file_size) {
437 uint64_t pos;
438
439 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
440 if (f->real_file_size > f->io_size)
441 f->last_pos[ddir] = f->io_size;
442 else
443 f->last_pos[ddir] = f->real_file_size;
444 }
445
446 pos = f->last_pos[ddir] - f->file_offset;
447 if (pos && o->ddir_seq_add) {
448 pos += o->ddir_seq_add;
449
450 /*
451 * If we reach beyond the end of the file
452 * with holed IO, wrap around to the
453 * beginning again. If we're doing backwards IO,
454 * wrap to the end.
455 */
456 if (pos >= f->real_file_size) {
457 if (o->ddir_seq_add > 0)
458 pos = f->file_offset;
459 else {
460 if (f->real_file_size > f->io_size)
461 pos = f->io_size;
462 else
463 pos = f->real_file_size;
464
465 pos += o->ddir_seq_add;
466 }
467 }
468 }
469
470 *offset = pos;
471 return 0;
472 }
473
474 return 1;
475}
476
477static int get_next_block(struct thread_data *td, struct io_u *io_u,
478 enum fio_ddir ddir, int rw_seq,
479 unsigned int *is_random)
480{
481 struct fio_file *f = io_u->file;
482 uint64_t b, offset;
483 int ret;
484
485 assert(ddir_rw(ddir));
486
487 b = offset = -1ULL;
488
489 if (rw_seq) {
490 if (td_random(td)) {
491 if (should_do_random(td, ddir)) {
492 ret = get_next_rand_block(td, f, ddir, &b);
493 *is_random = 1;
494 } else {
495 *is_random = 0;
496 io_u_set(td, io_u, IO_U_F_BUSY_OK);
497 ret = get_next_seq_offset(td, f, ddir, &offset);
498 if (ret)
499 ret = get_next_rand_block(td, f, ddir, &b);
500 }
501 } else {
502 *is_random = 0;
503 ret = get_next_seq_offset(td, f, ddir, &offset);
504 }
505 } else {
506 io_u_set(td, io_u, IO_U_F_BUSY_OK);
507 *is_random = 0;
508
509 if (td->o.rw_seq == RW_SEQ_SEQ) {
510 ret = get_next_seq_offset(td, f, ddir, &offset);
511 if (ret) {
512 ret = get_next_rand_block(td, f, ddir, &b);
513 *is_random = 0;
514 }
515 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
516 if (f->last_start[ddir] != -1ULL)
517 offset = f->last_start[ddir] - f->file_offset;
518 else
519 offset = 0;
520 ret = 0;
521 } else {
522 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
523 ret = 1;
524 }
525 }
526
527 if (!ret) {
528 if (offset != -1ULL)
529 io_u->offset = offset;
530 else if (b != -1ULL)
531 io_u->offset = b * td->o.ba[ddir];
532 else {
533 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
534 ret = 1;
535 }
536 }
537
538 return ret;
539}
540
541/*
542 * For random io, generate a random new block and see if it's used. Repeat
543 * until we find a free one. For sequential io, just return the end of
544 * the last io issued.
545 */
546static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
547 unsigned int *is_random)
548{
549 struct fio_file *f = io_u->file;
550 enum fio_ddir ddir = io_u->ddir;
551 int rw_seq_hit = 0;
552
553 assert(ddir_rw(ddir));
554
555 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
556 rw_seq_hit = 1;
557 td->ddir_seq_nr = td->o.ddir_seq_nr;
558 }
559
560 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
561 return 1;
562
563 if (io_u->offset >= f->io_size) {
564 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
565 (unsigned long long) io_u->offset,
566 (unsigned long long) f->io_size);
567 return 1;
568 }
569
570 io_u->offset += f->file_offset;
571 if (io_u->offset >= f->real_file_size) {
572 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
573 (unsigned long long) io_u->offset,
574 (unsigned long long) f->real_file_size);
575 return 1;
576 }
577
578 return 0;
579}
580
581static int get_next_offset(struct thread_data *td, struct io_u *io_u,
582 unsigned int *is_random)
583{
584 if (td->flags & TD_F_PROFILE_OPS) {
585 struct prof_io_ops *ops = &td->prof_io_ops;
586
587 if (ops->fill_io_u_off)
588 return ops->fill_io_u_off(td, io_u, is_random);
589 }
590
591 return __get_next_offset(td, io_u, is_random);
592}
593
594static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
595 unsigned int buflen)
596{
597 struct fio_file *f = io_u->file;
598
599 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
600}
601
602static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
603 unsigned int is_random)
604{
605 int ddir = io_u->ddir;
606 unsigned int buflen = 0;
607 unsigned int minbs, maxbs;
608 uint64_t frand_max, r;
609 bool power_2;
610
611 assert(ddir_rw(ddir));
612
613 if (td->o.bs_is_seq_rand)
614 ddir = is_random ? DDIR_WRITE: DDIR_READ;
615
616 minbs = td->o.min_bs[ddir];
617 maxbs = td->o.max_bs[ddir];
618
619 if (minbs == maxbs)
620 return minbs;
621
622 /*
623 * If we can't satisfy the min block size from here, then fail
624 */
625 if (!io_u_fits(td, io_u, minbs))
626 return 0;
627
628 frand_max = rand_max(&td->bsrange_state[ddir]);
629 do {
630 r = __rand(&td->bsrange_state[ddir]);
631
632 if (!td->o.bssplit_nr[ddir]) {
633 buflen = 1 + (unsigned int) ((double) maxbs *
634 (r / (frand_max + 1.0)));
635 if (buflen < minbs)
636 buflen = minbs;
637 } else {
638 long long perc = 0;
639 unsigned int i;
640
641 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
642 struct bssplit *bsp = &td->o.bssplit[ddir][i];
643
644 buflen = bsp->bs;
645 perc += bsp->perc;
646 if (!perc)
647 break;
648 if ((r / perc <= frand_max / 100ULL) &&
649 io_u_fits(td, io_u, buflen))
650 break;
651 }
652 }
653
654 power_2 = is_power_of_2(minbs);
655 if (!td->o.bs_unaligned && power_2)
656 buflen &= ~(minbs - 1);
657 else if (!td->o.bs_unaligned && !power_2)
658 buflen -= buflen % minbs;
659 } while (!io_u_fits(td, io_u, buflen));
660
661 return buflen;
662}
663
664static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
665 unsigned int is_random)
666{
667 if (td->flags & TD_F_PROFILE_OPS) {
668 struct prof_io_ops *ops = &td->prof_io_ops;
669
670 if (ops->fill_io_u_size)
671 return ops->fill_io_u_size(td, io_u, is_random);
672 }
673
674 return __get_next_buflen(td, io_u, is_random);
675}
676
677static void set_rwmix_bytes(struct thread_data *td)
678{
679 unsigned int diff;
680
681 /*
682 * we do time or byte based switch. this is needed because
683 * buffered writes may issue a lot quicker than they complete,
684 * whereas reads do not.
685 */
686 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
687 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
688}
689
690static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
691{
692 unsigned int v;
693
694 v = rand32_between(&td->rwmix_state, 1, 100);
695
696 if (v <= td->o.rwmix[DDIR_READ])
697 return DDIR_READ;
698
699 return DDIR_WRITE;
700}
701
702int io_u_quiesce(struct thread_data *td)
703{
704 int completed = 0;
705
706 /*
707 * We are going to sleep, ensure that we flush anything pending as
708 * not to skew our latency numbers.
709 *
710 * Changed to only monitor 'in flight' requests here instead of the
711 * td->cur_depth, b/c td->cur_depth does not accurately represent
712 * io's that have been actually submitted to an async engine,
713 * and cur_depth is meaningless for sync engines.
714 */
715 if (td->io_u_queued || td->cur_depth) {
716 int fio_unused ret;
717
718 ret = td_io_commit(td);
719 }
720
721 while (td->io_u_in_flight) {
722 int ret;
723
724 ret = io_u_queued_complete(td, 1);
725 if (ret > 0)
726 completed += ret;
727 }
728
729 if (td->flags & TD_F_REGROW_LOGS)
730 regrow_logs(td);
731
732 return completed;
733}
734
735static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
736{
737 enum fio_ddir odir = ddir ^ 1;
738 uint64_t usec;
739 uint64_t now;
740
741 assert(ddir_rw(ddir));
742 now = utime_since_now(&td->start);
743
744 /*
745 * if rate_next_io_time is in the past, need to catch up to rate
746 */
747 if (td->rate_next_io_time[ddir] <= now)
748 return ddir;
749
750 /*
751 * We are ahead of rate in this direction. See if we
752 * should switch.
753 */
754 if (td_rw(td) && td->o.rwmix[odir]) {
755 /*
756 * Other direction is behind rate, switch
757 */
758 if (td->rate_next_io_time[odir] <= now)
759 return odir;
760
761 /*
762 * Both directions are ahead of rate. sleep the min,
763 * switch if necessary
764 */
765 if (td->rate_next_io_time[ddir] <=
766 td->rate_next_io_time[odir]) {
767 usec = td->rate_next_io_time[ddir] - now;
768 } else {
769 usec = td->rate_next_io_time[odir] - now;
770 ddir = odir;
771 }
772 } else
773 usec = td->rate_next_io_time[ddir] - now;
774
775 if (td->o.io_submit_mode == IO_MODE_INLINE)
776 io_u_quiesce(td);
777
778 usec_sleep(td, usec);
779 return ddir;
780}
781
782/*
783 * Return the data direction for the next io_u. If the job is a
784 * mixed read/write workload, check the rwmix cycle and switch if
785 * necessary.
786 */
787static enum fio_ddir get_rw_ddir(struct thread_data *td)
788{
789 enum fio_ddir ddir;
790
791 /*
792 * See if it's time to fsync/fdatasync/sync_file_range first,
793 * and if not then move on to check regular I/Os.
794 */
795 if (should_fsync(td)) {
796 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
797 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
798 return DDIR_SYNC;
799
800 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
801 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
802 return DDIR_DATASYNC;
803
804 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
805 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
806 return DDIR_SYNC_FILE_RANGE;
807 }
808
809 if (td_rw(td)) {
810 /*
811 * Check if it's time to seed a new data direction.
812 */
813 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
814 /*
815 * Put a top limit on how many bytes we do for
816 * one data direction, to avoid overflowing the
817 * ranges too much
818 */
819 ddir = get_rand_ddir(td);
820
821 if (ddir != td->rwmix_ddir)
822 set_rwmix_bytes(td);
823
824 td->rwmix_ddir = ddir;
825 }
826 ddir = td->rwmix_ddir;
827 } else if (td_read(td))
828 ddir = DDIR_READ;
829 else if (td_write(td))
830 ddir = DDIR_WRITE;
831 else if (td_trim(td))
832 ddir = DDIR_TRIM;
833 else
834 ddir = DDIR_INVAL;
835
836 td->rwmix_ddir = rate_ddir(td, ddir);
837 return td->rwmix_ddir;
838}
839
840static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
841{
842 enum fio_ddir ddir = get_rw_ddir(td);
843
844 if (td_trimwrite(td)) {
845 struct fio_file *f = io_u->file;
846 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
847 ddir = DDIR_TRIM;
848 else
849 ddir = DDIR_WRITE;
850 }
851
852 io_u->ddir = io_u->acct_ddir = ddir;
853
854 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
855 td->o.barrier_blocks &&
856 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
857 td->io_issues[DDIR_WRITE])
858 io_u_set(td, io_u, IO_U_F_BARRIER);
859}
860
861void put_file_log(struct thread_data *td, struct fio_file *f)
862{
863 unsigned int ret = put_file(td, f);
864
865 if (ret)
866 td_verror(td, ret, "file close");
867}
868
869void put_io_u(struct thread_data *td, struct io_u *io_u)
870{
871 if (td->parent)
872 td = td->parent;
873
874 td_io_u_lock(td);
875
876 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
877 put_file_log(td, io_u->file);
878
879 io_u->file = NULL;
880 io_u_set(td, io_u, IO_U_F_FREE);
881
882 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
883 td->cur_depth--;
884 assert(!(td->flags & TD_F_CHILD));
885 }
886 io_u_qpush(&td->io_u_freelist, io_u);
887 td_io_u_unlock(td);
888 td_io_u_free_notify(td);
889}
890
891void clear_io_u(struct thread_data *td, struct io_u *io_u)
892{
893 io_u_clear(td, io_u, IO_U_F_FLIGHT);
894 put_io_u(td, io_u);
895}
896
897void requeue_io_u(struct thread_data *td, struct io_u **io_u)
898{
899 struct io_u *__io_u = *io_u;
900 enum fio_ddir ddir = acct_ddir(__io_u);
901
902 dprint(FD_IO, "requeue %p\n", __io_u);
903
904 if (td->parent)
905 td = td->parent;
906
907 td_io_u_lock(td);
908
909 io_u_set(td, __io_u, IO_U_F_FREE);
910 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
911 td->io_issues[ddir]--;
912
913 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
914 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
915 td->cur_depth--;
916 assert(!(td->flags & TD_F_CHILD));
917 }
918
919 io_u_rpush(&td->io_u_requeues, __io_u);
920 td_io_u_unlock(td);
921 td_io_u_free_notify(td);
922 *io_u = NULL;
923}
924
925static int fill_io_u(struct thread_data *td, struct io_u *io_u)
926{
927 unsigned int is_random;
928
929 if (td_ioengine_flagged(td, FIO_NOIO))
930 goto out;
931
932 set_rw_ddir(td, io_u);
933
934 /*
935 * fsync() or fdatasync() or trim etc, we are done
936 */
937 if (!ddir_rw(io_u->ddir))
938 goto out;
939
940 /*
941 * See if it's time to switch to a new zone
942 */
943 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
944 struct fio_file *f = io_u->file;
945
946 td->zone_bytes = 0;
947 f->file_offset += td->o.zone_range + td->o.zone_skip;
948
949 /*
950 * Wrap from the beginning, if we exceed the file size
951 */
952 if (f->file_offset >= f->real_file_size)
953 f->file_offset = f->real_file_size - f->file_offset;
954 f->last_pos[io_u->ddir] = f->file_offset;
955 td->io_skip_bytes += td->o.zone_skip;
956 }
957
958 /*
959 * No log, let the seq/rand engine retrieve the next buflen and
960 * position.
961 */
962 if (get_next_offset(td, io_u, &is_random)) {
963 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
964 return 1;
965 }
966
967 io_u->buflen = get_next_buflen(td, io_u, is_random);
968 if (!io_u->buflen) {
969 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
970 return 1;
971 }
972
973 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
974 dprint(FD_IO, "io_u %p, offset + buflen exceeds file size\n",
975 io_u);
976 dprint(FD_IO, " offset=%llu/buflen=%lu > %llu\n",
977 (unsigned long long) io_u->offset, io_u->buflen,
978 (unsigned long long) io_u->file->real_file_size);
979 return 1;
980 }
981
982 /*
983 * mark entry before potentially trimming io_u
984 */
985 if (td_random(td) && file_randommap(td, io_u->file))
986 mark_random_map(td, io_u);
987
988out:
989 dprint_io_u(io_u, "fill_io_u");
990 td->zone_bytes += io_u->buflen;
991 return 0;
992}
993
994static void __io_u_mark_map(unsigned int *map, unsigned int nr)
995{
996 int idx = 0;
997
998 switch (nr) {
999 default:
1000 idx = 6;
1001 break;
1002 case 33 ... 64:
1003 idx = 5;
1004 break;
1005 case 17 ... 32:
1006 idx = 4;
1007 break;
1008 case 9 ... 16:
1009 idx = 3;
1010 break;
1011 case 5 ... 8:
1012 idx = 2;
1013 break;
1014 case 1 ... 4:
1015 idx = 1;
1016 case 0:
1017 break;
1018 }
1019
1020 map[idx]++;
1021}
1022
1023void io_u_mark_submit(struct thread_data *td, unsigned int nr)
1024{
1025 __io_u_mark_map(td->ts.io_u_submit, nr);
1026 td->ts.total_submit++;
1027}
1028
1029void io_u_mark_complete(struct thread_data *td, unsigned int nr)
1030{
1031 __io_u_mark_map(td->ts.io_u_complete, nr);
1032 td->ts.total_complete++;
1033}
1034
1035void io_u_mark_depth(struct thread_data *td, unsigned int nr)
1036{
1037 int idx = 0;
1038
1039 switch (td->cur_depth) {
1040 default:
1041 idx = 6;
1042 break;
1043 case 32 ... 63:
1044 idx = 5;
1045 break;
1046 case 16 ... 31:
1047 idx = 4;
1048 break;
1049 case 8 ... 15:
1050 idx = 3;
1051 break;
1052 case 4 ... 7:
1053 idx = 2;
1054 break;
1055 case 2 ... 3:
1056 idx = 1;
1057 case 1:
1058 break;
1059 }
1060
1061 td->ts.io_u_map[idx] += nr;
1062}
1063
1064static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
1065{
1066 int idx = 0;
1067
1068 assert(nsec < 1000);
1069
1070 switch (nsec) {
1071 case 750 ... 999:
1072 idx = 9;
1073 break;
1074 case 500 ... 749:
1075 idx = 8;
1076 break;
1077 case 250 ... 499:
1078 idx = 7;
1079 break;
1080 case 100 ... 249:
1081 idx = 6;
1082 break;
1083 case 50 ... 99:
1084 idx = 5;
1085 break;
1086 case 20 ... 49:
1087 idx = 4;
1088 break;
1089 case 10 ... 19:
1090 idx = 3;
1091 break;
1092 case 4 ... 9:
1093 idx = 2;
1094 break;
1095 case 2 ... 3:
1096 idx = 1;
1097 case 0 ... 1:
1098 break;
1099 }
1100
1101 assert(idx < FIO_IO_U_LAT_N_NR);
1102 td->ts.io_u_lat_n[idx]++;
1103}
1104
1105static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1106{
1107 int idx = 0;
1108
1109 assert(usec < 1000 && usec >= 1);
1110
1111 switch (usec) {
1112 case 750 ... 999:
1113 idx = 9;
1114 break;
1115 case 500 ... 749:
1116 idx = 8;
1117 break;
1118 case 250 ... 499:
1119 idx = 7;
1120 break;
1121 case 100 ... 249:
1122 idx = 6;
1123 break;
1124 case 50 ... 99:
1125 idx = 5;
1126 break;
1127 case 20 ... 49:
1128 idx = 4;
1129 break;
1130 case 10 ... 19:
1131 idx = 3;
1132 break;
1133 case 4 ... 9:
1134 idx = 2;
1135 break;
1136 case 2 ... 3:
1137 idx = 1;
1138 case 0 ... 1:
1139 break;
1140 }
1141
1142 assert(idx < FIO_IO_U_LAT_U_NR);
1143 td->ts.io_u_lat_u[idx]++;
1144}
1145
1146static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1147{
1148 int idx = 0;
1149
1150 assert(msec >= 1);
1151
1152 switch (msec) {
1153 default:
1154 idx = 11;
1155 break;
1156 case 1000 ... 1999:
1157 idx = 10;
1158 break;
1159 case 750 ... 999:
1160 idx = 9;
1161 break;
1162 case 500 ... 749:
1163 idx = 8;
1164 break;
1165 case 250 ... 499:
1166 idx = 7;
1167 break;
1168 case 100 ... 249:
1169 idx = 6;
1170 break;
1171 case 50 ... 99:
1172 idx = 5;
1173 break;
1174 case 20 ... 49:
1175 idx = 4;
1176 break;
1177 case 10 ... 19:
1178 idx = 3;
1179 break;
1180 case 4 ... 9:
1181 idx = 2;
1182 break;
1183 case 2 ... 3:
1184 idx = 1;
1185 case 0 ... 1:
1186 break;
1187 }
1188
1189 assert(idx < FIO_IO_U_LAT_M_NR);
1190 td->ts.io_u_lat_m[idx]++;
1191}
1192
1193static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1194{
1195 if (nsec < 1000)
1196 io_u_mark_lat_nsec(td, nsec);
1197 else if (nsec < 1000000)
1198 io_u_mark_lat_usec(td, nsec / 1000);
1199 else
1200 io_u_mark_lat_msec(td, nsec / 1000000);
1201}
1202
1203static unsigned int __get_next_fileno_rand(struct thread_data *td)
1204{
1205 unsigned long fileno;
1206
1207 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1208 uint64_t frand_max = rand_max(&td->next_file_state);
1209 unsigned long r;
1210
1211 r = __rand(&td->next_file_state);
1212 return (unsigned int) ((double) td->o.nr_files
1213 * (r / (frand_max + 1.0)));
1214 }
1215
1216 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1217 fileno = zipf_next(&td->next_file_zipf);
1218 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1219 fileno = pareto_next(&td->next_file_zipf);
1220 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1221 fileno = gauss_next(&td->next_file_gauss);
1222 else {
1223 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1224 assert(0);
1225 return 0;
1226 }
1227
1228 return fileno >> FIO_FSERVICE_SHIFT;
1229}
1230
1231/*
1232 * Get next file to service by choosing one at random
1233 */
1234static struct fio_file *get_next_file_rand(struct thread_data *td,
1235 enum fio_file_flags goodf,
1236 enum fio_file_flags badf)
1237{
1238 struct fio_file *f;
1239 int fno;
1240
1241 do {
1242 int opened = 0;
1243
1244 fno = __get_next_fileno_rand(td);
1245
1246 f = td->files[fno];
1247 if (fio_file_done(f))
1248 continue;
1249
1250 if (!fio_file_open(f)) {
1251 int err;
1252
1253 if (td->nr_open_files >= td->o.open_files)
1254 return ERR_PTR(-EBUSY);
1255
1256 err = td_io_open_file(td, f);
1257 if (err)
1258 continue;
1259 opened = 1;
1260 }
1261
1262 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1263 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1264 return f;
1265 }
1266 if (opened)
1267 td_io_close_file(td, f);
1268 } while (1);
1269}
1270
1271/*
1272 * Get next file to service by doing round robin between all available ones
1273 */
1274static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1275 int badf)
1276{
1277 unsigned int old_next_file = td->next_file;
1278 struct fio_file *f;
1279
1280 do {
1281 int opened = 0;
1282
1283 f = td->files[td->next_file];
1284
1285 td->next_file++;
1286 if (td->next_file >= td->o.nr_files)
1287 td->next_file = 0;
1288
1289 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1290 if (fio_file_done(f)) {
1291 f = NULL;
1292 continue;
1293 }
1294
1295 if (!fio_file_open(f)) {
1296 int err;
1297
1298 if (td->nr_open_files >= td->o.open_files)
1299 return ERR_PTR(-EBUSY);
1300
1301 err = td_io_open_file(td, f);
1302 if (err) {
1303 dprint(FD_FILE, "error %d on open of %s\n",
1304 err, f->file_name);
1305 f = NULL;
1306 continue;
1307 }
1308 opened = 1;
1309 }
1310
1311 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1312 f->flags);
1313 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1314 break;
1315
1316 if (opened)
1317 td_io_close_file(td, f);
1318
1319 f = NULL;
1320 } while (td->next_file != old_next_file);
1321
1322 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1323 return f;
1324}
1325
1326static struct fio_file *__get_next_file(struct thread_data *td)
1327{
1328 struct fio_file *f;
1329
1330 assert(td->o.nr_files <= td->files_index);
1331
1332 if (td->nr_done_files >= td->o.nr_files) {
1333 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1334 " nr_files=%d\n", td->nr_open_files,
1335 td->nr_done_files,
1336 td->o.nr_files);
1337 return NULL;
1338 }
1339
1340 f = td->file_service_file;
1341 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1342 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1343 goto out;
1344 if (td->file_service_left--)
1345 goto out;
1346 }
1347
1348 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1349 td->o.file_service_type == FIO_FSERVICE_SEQ)
1350 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1351 else
1352 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1353
1354 if (IS_ERR(f))
1355 return f;
1356
1357 td->file_service_file = f;
1358 td->file_service_left = td->file_service_nr - 1;
1359out:
1360 if (f)
1361 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1362 else
1363 dprint(FD_FILE, "get_next_file: NULL\n");
1364 return f;
1365}
1366
1367static struct fio_file *get_next_file(struct thread_data *td)
1368{
1369 if (td->flags & TD_F_PROFILE_OPS) {
1370 struct prof_io_ops *ops = &td->prof_io_ops;
1371
1372 if (ops->get_next_file)
1373 return ops->get_next_file(td);
1374 }
1375
1376 return __get_next_file(td);
1377}
1378
1379static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1380{
1381 struct fio_file *f;
1382
1383 do {
1384 f = get_next_file(td);
1385 if (IS_ERR_OR_NULL(f))
1386 return PTR_ERR(f);
1387
1388 io_u->file = f;
1389 get_file(f);
1390
1391 if (!fill_io_u(td, io_u))
1392 break;
1393
1394 put_file_log(td, f);
1395 td_io_close_file(td, f);
1396 io_u->file = NULL;
1397 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1398 fio_file_reset(td, f);
1399 else {
1400 fio_file_set_done(f);
1401 td->nr_done_files++;
1402 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1403 td->nr_done_files, td->o.nr_files);
1404 }
1405 } while (1);
1406
1407 return 0;
1408}
1409
1410static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1411 unsigned long long tnsec, unsigned long long max_nsec)
1412{
1413 if (!td->error)
1414 log_err("fio: latency of %llu nsec exceeds specified max (%llu nsec)\n", tnsec, max_nsec);
1415 td_verror(td, ETIMEDOUT, "max latency exceeded");
1416 icd->error = ETIMEDOUT;
1417}
1418
1419static void lat_new_cycle(struct thread_data *td)
1420{
1421 fio_gettime(&td->latency_ts, NULL);
1422 td->latency_ios = ddir_rw_sum(td->io_blocks);
1423 td->latency_failed = 0;
1424}
1425
1426/*
1427 * We had an IO outside the latency target. Reduce the queue depth. If we
1428 * are at QD=1, then it's time to give up.
1429 */
1430static bool __lat_target_failed(struct thread_data *td)
1431{
1432 if (td->latency_qd == 1)
1433 return true;
1434
1435 td->latency_qd_high = td->latency_qd;
1436
1437 if (td->latency_qd == td->latency_qd_low)
1438 td->latency_qd_low--;
1439
1440 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1441
1442 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1443
1444 /*
1445 * When we ramp QD down, quiesce existing IO to prevent
1446 * a storm of ramp downs due to pending higher depth.
1447 */
1448 io_u_quiesce(td);
1449 lat_new_cycle(td);
1450 return false;
1451}
1452
1453static bool lat_target_failed(struct thread_data *td)
1454{
1455 if (td->o.latency_percentile.u.f == 100.0)
1456 return __lat_target_failed(td);
1457
1458 td->latency_failed++;
1459 return false;
1460}
1461
1462void lat_target_init(struct thread_data *td)
1463{
1464 td->latency_end_run = 0;
1465
1466 if (td->o.latency_target) {
1467 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1468 fio_gettime(&td->latency_ts, NULL);
1469 td->latency_qd = 1;
1470 td->latency_qd_high = td->o.iodepth;
1471 td->latency_qd_low = 1;
1472 td->latency_ios = ddir_rw_sum(td->io_blocks);
1473 } else
1474 td->latency_qd = td->o.iodepth;
1475}
1476
1477void lat_target_reset(struct thread_data *td)
1478{
1479 if (!td->latency_end_run)
1480 lat_target_init(td);
1481}
1482
1483static void lat_target_success(struct thread_data *td)
1484{
1485 const unsigned int qd = td->latency_qd;
1486 struct thread_options *o = &td->o;
1487
1488 td->latency_qd_low = td->latency_qd;
1489
1490 /*
1491 * If we haven't failed yet, we double up to a failing value instead
1492 * of bisecting from highest possible queue depth. If we have set
1493 * a limit other than td->o.iodepth, bisect between that.
1494 */
1495 if (td->latency_qd_high != o->iodepth)
1496 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1497 else
1498 td->latency_qd *= 2;
1499
1500 if (td->latency_qd > o->iodepth)
1501 td->latency_qd = o->iodepth;
1502
1503 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1504
1505 /*
1506 * Same as last one, we are done. Let it run a latency cycle, so
1507 * we get only the results from the targeted depth.
1508 */
1509 if (td->latency_qd == qd) {
1510 if (td->latency_end_run) {
1511 dprint(FD_RATE, "We are done\n");
1512 td->done = 1;
1513 } else {
1514 dprint(FD_RATE, "Quiesce and final run\n");
1515 io_u_quiesce(td);
1516 td->latency_end_run = 1;
1517 reset_all_stats(td);
1518 reset_io_stats(td);
1519 }
1520 }
1521
1522 lat_new_cycle(td);
1523}
1524
1525/*
1526 * Check if we can bump the queue depth
1527 */
1528void lat_target_check(struct thread_data *td)
1529{
1530 uint64_t usec_window;
1531 uint64_t ios;
1532 double success_ios;
1533
1534 usec_window = utime_since_now(&td->latency_ts);
1535 if (usec_window < td->o.latency_window)
1536 return;
1537
1538 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1539 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1540 success_ios *= 100.0;
1541
1542 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1543
1544 if (success_ios >= td->o.latency_percentile.u.f)
1545 lat_target_success(td);
1546 else
1547 __lat_target_failed(td);
1548}
1549
1550/*
1551 * If latency target is enabled, we might be ramping up or down and not
1552 * using the full queue depth available.
1553 */
1554bool queue_full(const struct thread_data *td)
1555{
1556 const int qempty = io_u_qempty(&td->io_u_freelist);
1557
1558 if (qempty)
1559 return true;
1560 if (!td->o.latency_target)
1561 return false;
1562
1563 return td->cur_depth >= td->latency_qd;
1564}
1565
1566struct io_u *__get_io_u(struct thread_data *td)
1567{
1568 struct io_u *io_u = NULL;
1569
1570 if (td->stop_io)
1571 return NULL;
1572
1573 td_io_u_lock(td);
1574
1575again:
1576 if (!io_u_rempty(&td->io_u_requeues))
1577 io_u = io_u_rpop(&td->io_u_requeues);
1578 else if (!queue_full(td)) {
1579 io_u = io_u_qpop(&td->io_u_freelist);
1580
1581 io_u->file = NULL;
1582 io_u->buflen = 0;
1583 io_u->resid = 0;
1584 io_u->end_io = NULL;
1585 }
1586
1587 if (io_u) {
1588 assert(io_u->flags & IO_U_F_FREE);
1589 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1590 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1591 IO_U_F_VER_LIST);
1592
1593 io_u->error = 0;
1594 io_u->acct_ddir = -1;
1595 td->cur_depth++;
1596 assert(!(td->flags & TD_F_CHILD));
1597 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1598 io_u->ipo = NULL;
1599 } else if (td_async_processing(td)) {
1600 /*
1601 * We ran out, wait for async verify threads to finish and
1602 * return one
1603 */
1604 assert(!(td->flags & TD_F_CHILD));
1605 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1606 goto again;
1607 }
1608
1609 td_io_u_unlock(td);
1610 return io_u;
1611}
1612
1613static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1614{
1615 if (!(td->flags & TD_F_TRIM_BACKLOG))
1616 return false;
1617 if (!td->trim_entries)
1618 return false;
1619
1620 if (td->trim_batch) {
1621 td->trim_batch--;
1622 if (get_next_trim(td, io_u))
1623 return true;
1624 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1625 td->last_ddir != DDIR_READ) {
1626 td->trim_batch = td->o.trim_batch;
1627 if (!td->trim_batch)
1628 td->trim_batch = td->o.trim_backlog;
1629 if (get_next_trim(td, io_u))
1630 return true;
1631 }
1632
1633 return false;
1634}
1635
1636static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1637{
1638 if (!(td->flags & TD_F_VER_BACKLOG))
1639 return false;
1640
1641 if (td->io_hist_len) {
1642 int get_verify = 0;
1643
1644 if (td->verify_batch)
1645 get_verify = 1;
1646 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1647 td->last_ddir != DDIR_READ) {
1648 td->verify_batch = td->o.verify_batch;
1649 if (!td->verify_batch)
1650 td->verify_batch = td->o.verify_backlog;
1651 get_verify = 1;
1652 }
1653
1654 if (get_verify && !get_next_verify(td, io_u)) {
1655 td->verify_batch--;
1656 return true;
1657 }
1658 }
1659
1660 return false;
1661}
1662
1663/*
1664 * Fill offset and start time into the buffer content, to prevent too
1665 * easy compressible data for simple de-dupe attempts. Do this for every
1666 * 512b block in the range, since that should be the smallest block size
1667 * we can expect from a device.
1668 */
1669static void small_content_scramble(struct io_u *io_u)
1670{
1671 unsigned int i, nr_blocks = io_u->buflen >> 9;
1672 unsigned int offset;
1673 uint64_t boffset, *iptr;
1674 char *p;
1675
1676 if (!nr_blocks)
1677 return;
1678
1679 p = io_u->xfer_buf;
1680 boffset = io_u->offset;
1681
1682 if (io_u->buf_filled_len)
1683 io_u->buf_filled_len = 0;
1684
1685 /*
1686 * Generate random index between 0..7. We do chunks of 512b, if
1687 * we assume a cacheline is 64 bytes, then we have 8 of those.
1688 * Scramble content within the blocks in the same cacheline to
1689 * speed things up.
1690 */
1691 offset = (io_u->start_time.tv_nsec ^ boffset) & 7;
1692
1693 for (i = 0; i < nr_blocks; i++) {
1694 /*
1695 * Fill offset into start of cacheline, time into end
1696 * of cacheline
1697 */
1698 iptr = (void *) p + (offset << 6);
1699 *iptr = boffset;
1700
1701 iptr = (void *) p + 64 - 2 * sizeof(uint64_t);
1702 iptr[0] = io_u->start_time.tv_sec;
1703 iptr[1] = io_u->start_time.tv_nsec;
1704
1705 p += 512;
1706 boffset += 512;
1707 }
1708}
1709
1710/*
1711 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1712 * etc. The returned io_u is fully ready to be prepped and submitted.
1713 */
1714struct io_u *get_io_u(struct thread_data *td)
1715{
1716 struct fio_file *f;
1717 struct io_u *io_u;
1718 int do_scramble = 0;
1719 long ret = 0;
1720
1721 io_u = __get_io_u(td);
1722 if (!io_u) {
1723 dprint(FD_IO, "__get_io_u failed\n");
1724 return NULL;
1725 }
1726
1727 if (check_get_verify(td, io_u))
1728 goto out;
1729 if (check_get_trim(td, io_u))
1730 goto out;
1731
1732 /*
1733 * from a requeue, io_u already setup
1734 */
1735 if (io_u->file)
1736 goto out;
1737
1738 /*
1739 * If using an iolog, grab next piece if any available.
1740 */
1741 if (td->flags & TD_F_READ_IOLOG) {
1742 if (read_iolog_get(td, io_u))
1743 goto err_put;
1744 } else if (set_io_u_file(td, io_u)) {
1745 ret = -EBUSY;
1746 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1747 goto err_put;
1748 }
1749
1750 f = io_u->file;
1751 if (!f) {
1752 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1753 goto err_put;
1754 }
1755
1756 assert(fio_file_open(f));
1757
1758 if (ddir_rw(io_u->ddir)) {
1759 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1760 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1761 goto err_put;
1762 }
1763
1764 f->last_start[io_u->ddir] = io_u->offset;
1765 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1766
1767 if (io_u->ddir == DDIR_WRITE) {
1768 if (td->flags & TD_F_REFILL_BUFFERS) {
1769 io_u_fill_buffer(td, io_u,
1770 td->o.min_bs[DDIR_WRITE],
1771 io_u->buflen);
1772 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1773 !(td->flags & TD_F_COMPRESS))
1774 do_scramble = 1;
1775 if (td->flags & TD_F_VER_NONE) {
1776 populate_verify_io_u(td, io_u);
1777 do_scramble = 0;
1778 }
1779 } else if (io_u->ddir == DDIR_READ) {
1780 /*
1781 * Reset the buf_filled parameters so next time if the
1782 * buffer is used for writes it is refilled.
1783 */
1784 io_u->buf_filled_len = 0;
1785 }
1786 }
1787
1788 /*
1789 * Set io data pointers.
1790 */
1791 io_u->xfer_buf = io_u->buf;
1792 io_u->xfer_buflen = io_u->buflen;
1793
1794out:
1795 assert(io_u->file);
1796 if (!td_io_prep(td, io_u)) {
1797 if (!td->o.disable_lat)
1798 fio_gettime(&io_u->start_time, NULL);
1799
1800 if (do_scramble)
1801 small_content_scramble(io_u);
1802
1803 return io_u;
1804 }
1805err_put:
1806 dprint(FD_IO, "get_io_u failed\n");
1807 put_io_u(td, io_u);
1808 return ERR_PTR(ret);
1809}
1810
1811static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1812{
1813 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1814
1815 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1816 return;
1817
1818 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1819 io_u->file ? " on file " : "",
1820 io_u->file ? io_u->file->file_name : "",
1821 strerror(io_u->error),
1822 io_ddir_name(io_u->ddir),
1823 io_u->offset, io_u->xfer_buflen);
1824
1825 if (td->io_ops->errdetails) {
1826 char *err = td->io_ops->errdetails(io_u);
1827
1828 log_err("fio: %s\n", err);
1829 free(err);
1830 }
1831
1832 if (!td->error)
1833 td_verror(td, io_u->error, "io_u error");
1834}
1835
1836void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1837{
1838 __io_u_log_error(td, io_u);
1839 if (td->parent)
1840 __io_u_log_error(td->parent, io_u);
1841}
1842
1843static inline bool gtod_reduce(struct thread_data *td)
1844{
1845 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1846 || td->o.gtod_reduce;
1847}
1848
1849static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1850 struct io_completion_data *icd,
1851 const enum fio_ddir idx, unsigned int bytes)
1852{
1853 const int no_reduce = !gtod_reduce(td);
1854 unsigned long long llnsec = 0;
1855
1856 if (td->parent)
1857 td = td->parent;
1858
1859 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1860 return;
1861
1862 if (no_reduce)
1863 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1864
1865 if (!td->o.disable_lat) {
1866 unsigned long long tnsec;
1867
1868 tnsec = ntime_since(&io_u->start_time, &icd->time);
1869 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1870
1871 if (td->flags & TD_F_PROFILE_OPS) {
1872 struct prof_io_ops *ops = &td->prof_io_ops;
1873
1874 if (ops->io_u_lat)
1875 icd->error = ops->io_u_lat(td, tnsec);
1876 }
1877
1878 if (td->o.max_latency && tnsec > td->o.max_latency)
1879 lat_fatal(td, icd, tnsec, td->o.max_latency);
1880 if (td->o.latency_target && tnsec > td->o.latency_target) {
1881 if (lat_target_failed(td))
1882 lat_fatal(td, icd, tnsec, td->o.latency_target);
1883 }
1884 }
1885
1886 if (ddir_rw(idx)) {
1887 if (!td->o.disable_clat) {
1888 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1889 io_u_mark_latency(td, llnsec);
1890 }
1891
1892 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1893 add_bw_sample(td, io_u, bytes, llnsec);
1894
1895 if (no_reduce && per_unit_log(td->iops_log))
1896 add_iops_sample(td, io_u, bytes);
1897 }
1898
1899 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1900 uint32_t *info = io_u_block_info(td, io_u);
1901 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1902 if (io_u->ddir == DDIR_TRIM) {
1903 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1904 BLOCK_INFO_TRIMS(*info) + 1);
1905 } else if (io_u->ddir == DDIR_WRITE) {
1906 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1907 *info);
1908 }
1909 }
1910 }
1911}
1912
1913static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1914 uint64_t offset, unsigned int bytes)
1915{
1916 int idx;
1917
1918 if (!f)
1919 return;
1920
1921 if (f->first_write == -1ULL || offset < f->first_write)
1922 f->first_write = offset;
1923 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1924 f->last_write = offset + bytes;
1925
1926 if (!f->last_write_comp)
1927 return;
1928
1929 idx = f->last_write_idx++;
1930 f->last_write_comp[idx] = offset;
1931 if (f->last_write_idx == td->o.iodepth)
1932 f->last_write_idx = 0;
1933}
1934
1935static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1936 struct io_completion_data *icd)
1937{
1938 struct io_u *io_u = *io_u_ptr;
1939 enum fio_ddir ddir = io_u->ddir;
1940 struct fio_file *f = io_u->file;
1941
1942 dprint_io_u(io_u, "io complete");
1943
1944 assert(io_u->flags & IO_U_F_FLIGHT);
1945 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1946
1947 /*
1948 * Mark IO ok to verify
1949 */
1950 if (io_u->ipo) {
1951 /*
1952 * Remove errored entry from the verification list
1953 */
1954 if (io_u->error)
1955 unlog_io_piece(td, io_u);
1956 else {
1957 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1958 write_barrier();
1959 }
1960 }
1961
1962 if (ddir_sync(ddir)) {
1963 td->last_was_sync = 1;
1964 if (f) {
1965 f->first_write = -1ULL;
1966 f->last_write = -1ULL;
1967 }
1968 return;
1969 }
1970
1971 td->last_was_sync = 0;
1972 td->last_ddir = ddir;
1973
1974 if (!io_u->error && ddir_rw(ddir)) {
1975 unsigned int bytes = io_u->buflen - io_u->resid;
1976 int ret;
1977
1978 td->io_blocks[ddir]++;
1979 td->io_bytes[ddir] += bytes;
1980
1981 if (!(io_u->flags & IO_U_F_VER_LIST)) {
1982 td->this_io_blocks[ddir]++;
1983 td->this_io_bytes[ddir] += bytes;
1984 }
1985
1986 if (ddir == DDIR_WRITE)
1987 file_log_write_comp(td, f, io_u->offset, bytes);
1988
1989 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1990 td->runstate == TD_VERIFYING))
1991 account_io_completion(td, io_u, icd, ddir, bytes);
1992
1993 icd->bytes_done[ddir] += bytes;
1994
1995 if (io_u->end_io) {
1996 ret = io_u->end_io(td, io_u_ptr);
1997 io_u = *io_u_ptr;
1998 if (ret && !icd->error)
1999 icd->error = ret;
2000 }
2001 } else if (io_u->error) {
2002 icd->error = io_u->error;
2003 io_u_log_error(td, io_u);
2004 }
2005 if (icd->error) {
2006 enum error_type_bit eb = td_error_type(ddir, icd->error);
2007
2008 if (!td_non_fatal_error(td, eb, icd->error))
2009 return;
2010
2011 /*
2012 * If there is a non_fatal error, then add to the error count
2013 * and clear all the errors.
2014 */
2015 update_error_count(td, icd->error);
2016 td_clear_error(td);
2017 icd->error = 0;
2018 if (io_u)
2019 io_u->error = 0;
2020 }
2021}
2022
2023static void init_icd(struct thread_data *td, struct io_completion_data *icd,
2024 int nr)
2025{
2026 int ddir;
2027
2028 if (!gtod_reduce(td))
2029 fio_gettime(&icd->time, NULL);
2030
2031 icd->nr = nr;
2032
2033 icd->error = 0;
2034 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2035 icd->bytes_done[ddir] = 0;
2036}
2037
2038static void ios_completed(struct thread_data *td,
2039 struct io_completion_data *icd)
2040{
2041 struct io_u *io_u;
2042 int i;
2043
2044 for (i = 0; i < icd->nr; i++) {
2045 io_u = td->io_ops->event(td, i);
2046
2047 io_completed(td, &io_u, icd);
2048
2049 if (io_u)
2050 put_io_u(td, io_u);
2051 }
2052}
2053
2054/*
2055 * Complete a single io_u for the sync engines.
2056 */
2057int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
2058{
2059 struct io_completion_data icd;
2060 int ddir;
2061
2062 init_icd(td, &icd, 1);
2063 io_completed(td, &io_u, &icd);
2064
2065 if (io_u)
2066 put_io_u(td, io_u);
2067
2068 if (icd.error) {
2069 td_verror(td, icd.error, "io_u_sync_complete");
2070 return -1;
2071 }
2072
2073 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2074 td->bytes_done[ddir] += icd.bytes_done[ddir];
2075
2076 return 0;
2077}
2078
2079/*
2080 * Called to complete min_events number of io for the async engines.
2081 */
2082int io_u_queued_complete(struct thread_data *td, int min_evts)
2083{
2084 struct io_completion_data icd;
2085 struct timespec *tvp = NULL;
2086 int ret, ddir;
2087 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2088
2089 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2090
2091 if (!min_evts)
2092 tvp = &ts;
2093 else if (min_evts > td->cur_depth)
2094 min_evts = td->cur_depth;
2095
2096 /* No worries, td_io_getevents fixes min and max if they are
2097 * set incorrectly */
2098 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2099 if (ret < 0) {
2100 td_verror(td, -ret, "td_io_getevents");
2101 return ret;
2102 } else if (!ret)
2103 return ret;
2104
2105 init_icd(td, &icd, ret);
2106 ios_completed(td, &icd);
2107 if (icd.error) {
2108 td_verror(td, icd.error, "io_u_queued_complete");
2109 return -1;
2110 }
2111
2112 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2113 td->bytes_done[ddir] += icd.bytes_done[ddir];
2114
2115 return ret;
2116}
2117
2118/*
2119 * Call when io_u is really queued, to update the submission latency.
2120 */
2121void io_u_queued(struct thread_data *td, struct io_u *io_u)
2122{
2123 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2124 unsigned long slat_time;
2125
2126 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2127
2128 if (td->parent)
2129 td = td->parent;
2130
2131 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2132 io_u->offset);
2133 }
2134}
2135
2136/*
2137 * See if we should reuse the last seed, if dedupe is enabled
2138 */
2139static struct frand_state *get_buf_state(struct thread_data *td)
2140{
2141 unsigned int v;
2142
2143 if (!td->o.dedupe_percentage)
2144 return &td->buf_state;
2145 else if (td->o.dedupe_percentage == 100) {
2146 frand_copy(&td->buf_state_prev, &td->buf_state);
2147 return &td->buf_state;
2148 }
2149
2150 v = rand32_between(&td->dedupe_state, 1, 100);
2151
2152 if (v <= td->o.dedupe_percentage)
2153 return &td->buf_state_prev;
2154
2155 return &td->buf_state;
2156}
2157
2158static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2159{
2160 if (td->o.dedupe_percentage == 100)
2161 frand_copy(rs, &td->buf_state_prev);
2162 else if (rs == &td->buf_state)
2163 frand_copy(&td->buf_state_prev, rs);
2164}
2165
2166void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2167 unsigned int max_bs)
2168{
2169 struct thread_options *o = &td->o;
2170
2171 if (o->mem_type == MEM_CUDA_MALLOC)
2172 return;
2173
2174 if (o->compress_percentage || o->dedupe_percentage) {
2175 unsigned int perc = td->o.compress_percentage;
2176 struct frand_state *rs;
2177 unsigned int left = max_bs;
2178 unsigned int this_write;
2179
2180 do {
2181 rs = get_buf_state(td);
2182
2183 min_write = min(min_write, left);
2184
2185 if (perc) {
2186 this_write = min_not_zero(min_write,
2187 td->o.compress_chunk);
2188
2189 fill_random_buf_percentage(rs, buf, perc,
2190 this_write, this_write,
2191 o->buffer_pattern,
2192 o->buffer_pattern_bytes);
2193 } else {
2194 fill_random_buf(rs, buf, min_write);
2195 this_write = min_write;
2196 }
2197
2198 buf += this_write;
2199 left -= this_write;
2200 save_buf_state(td, rs);
2201 } while (left);
2202 } else if (o->buffer_pattern_bytes)
2203 fill_buffer_pattern(td, buf, max_bs);
2204 else if (o->zero_buffers)
2205 memset(buf, 0, max_bs);
2206 else
2207 fill_random_buf(get_buf_state(td), buf, max_bs);
2208}
2209
2210/*
2211 * "randomly" fill the buffer contents
2212 */
2213void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2214 unsigned int min_write, unsigned int max_bs)
2215{
2216 io_u->buf_filled_len = 0;
2217 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2218}
2219
2220static int do_sync_file_range(const struct thread_data *td,
2221 struct fio_file *f)
2222{
2223 off64_t offset, nbytes;
2224
2225 offset = f->first_write;
2226 nbytes = f->last_write - f->first_write;
2227
2228 if (!nbytes)
2229 return 0;
2230
2231 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2232}
2233
2234int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2235{
2236 int ret;
2237
2238 if (io_u->ddir == DDIR_SYNC) {
2239 ret = fsync(io_u->file->fd);
2240 } else if (io_u->ddir == DDIR_DATASYNC) {
2241#ifdef CONFIG_FDATASYNC
2242 ret = fdatasync(io_u->file->fd);
2243#else
2244 ret = io_u->xfer_buflen;
2245 io_u->error = EINVAL;
2246#endif
2247 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2248 ret = do_sync_file_range(td, io_u->file);
2249 else {
2250 ret = io_u->xfer_buflen;
2251 io_u->error = EINVAL;
2252 }
2253
2254 if (ret < 0)
2255 io_u->error = errno;
2256
2257 return ret;
2258}
2259
2260int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2261{
2262#ifndef FIO_HAVE_TRIM
2263 io_u->error = EINVAL;
2264 return 0;
2265#else
2266 struct fio_file *f = io_u->file;
2267 int ret;
2268
2269 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2270 if (!ret)
2271 return io_u->xfer_buflen;
2272
2273 io_u->error = ret;
2274 return 0;
2275#endif
2276}