Add iodepth_batch setting
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40static unsigned long page_mask;
41#define ALIGN(buf) \
42 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50static volatile int fio_abort;
51static int exit_value;
52
53struct io_log *agg_io_log[2];
54
55#define TERMINATE_ALL (-1)
56#define JOB_START_TIMEOUT (5 * 1000)
57
58static inline void td_set_runstate(struct thread_data *td, int runstate)
59{
60 td->runstate = runstate;
61}
62
63static void terminate_threads(int group_id, int forced_kill)
64{
65 struct thread_data *td;
66 int i;
67
68 for_each_td(td, i) {
69 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70 td->terminate = 1;
71 td->start_delay = 0;
72 if (forced_kill)
73 td_set_runstate(td, TD_EXITED);
74 }
75 }
76}
77
78static void sig_handler(int sig)
79{
80 switch (sig) {
81 case SIGALRM:
82 update_io_ticks();
83 disk_util_timer_arm();
84 print_thread_status();
85 break;
86 default:
87 printf("\nfio: terminating on signal %d\n", sig);
88 fflush(stdout);
89 terminate_threads(TERMINATE_ALL, 0);
90 break;
91 }
92}
93
94/*
95 * Check if we are above the minimum rate given.
96 */
97static int check_min_rate(struct thread_data *td, struct timeval *now)
98{
99 unsigned long long bytes = 0;
100 unsigned long spent;
101 unsigned long rate;
102
103 /*
104 * allow a 2 second settle period in the beginning
105 */
106 if (mtime_since(&td->start, now) < 2000)
107 return 0;
108
109 if (td_read(td))
110 bytes += td->this_io_bytes[DDIR_READ];
111 if (td_write(td))
112 bytes += td->this_io_bytes[DDIR_WRITE];
113
114 /*
115 * if rate blocks is set, sample is running
116 */
117 if (td->rate_bytes) {
118 spent = mtime_since(&td->lastrate, now);
119 if (spent < td->ratecycle)
120 return 0;
121
122 if (bytes < td->rate_bytes) {
123 fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
124 return 1;
125 } else {
126 rate = (bytes - td->rate_bytes) / spent;
127 if (rate < td->ratemin || bytes < td->rate_bytes) {
128 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
129 return 1;
130 }
131 }
132 }
133
134 td->rate_bytes = bytes;
135 memcpy(&td->lastrate, now, sizeof(*now));
136 return 0;
137}
138
139static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
140{
141 if (!td->timeout)
142 return 0;
143 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
144 return 1;
145
146 return 0;
147}
148
149/*
150 * When job exits, we can cancel the in-flight IO if we are using async
151 * io. Attempt to do so.
152 */
153static void cleanup_pending_aio(struct thread_data *td)
154{
155 struct list_head *entry, *n;
156 struct io_u *io_u;
157 int r;
158
159 /*
160 * get immediately available events, if any
161 */
162 r = io_u_queued_complete(td, 0);
163 if (r < 0)
164 return;
165
166 /*
167 * now cancel remaining active events
168 */
169 if (td->io_ops->cancel) {
170 list_for_each_safe(entry, n, &td->io_u_busylist) {
171 io_u = list_entry(entry, struct io_u, list);
172
173 /*
174 * if the io_u isn't in flight, then that generally
175 * means someone leaked an io_u. complain but fix
176 * it up, so we don't stall here.
177 */
178 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
179 log_err("fio: non-busy IO on busy list\n");
180 put_io_u(td, io_u);
181 } else {
182 r = td->io_ops->cancel(td, io_u);
183 if (!r)
184 put_io_u(td, io_u);
185 }
186 }
187 }
188
189 if (td->cur_depth)
190 r = io_u_queued_complete(td, td->cur_depth);
191}
192
193/*
194 * Helper to handle the final sync of a file. Works just like the normal
195 * io path, just does everything sync.
196 */
197static int fio_io_sync(struct thread_data *td, struct fio_file *f)
198{
199 struct io_u *io_u = __get_io_u(td);
200 int ret;
201
202 if (!io_u)
203 return 1;
204
205 io_u->ddir = DDIR_SYNC;
206 io_u->file = f;
207
208 if (td_io_prep(td, io_u)) {
209 put_io_u(td, io_u);
210 return 1;
211 }
212
213requeue:
214 ret = td_io_queue(td, io_u);
215 if (ret < 0) {
216 td_verror(td, io_u->error, "td_io_queue");
217 put_io_u(td, io_u);
218 return 1;
219 } else if (ret == FIO_Q_QUEUED) {
220 if (io_u_queued_complete(td, 1) < 0)
221 return 1;
222 } else if (ret == FIO_Q_COMPLETED) {
223 if (io_u->error) {
224 td_verror(td, io_u->error, "td_io_queue");
225 return 1;
226 }
227
228 if (io_u_sync_complete(td, io_u) < 0)
229 return 1;
230 } else if (ret == FIO_Q_BUSY) {
231 if (td_io_commit(td))
232 return 1;
233 goto requeue;
234 }
235
236 return 0;
237}
238
239/*
240 * The main verify engine. Runs over the writes we previusly submitted,
241 * reads the blocks back in, and checks the crc/md5 of the data.
242 */
243static void do_verify(struct thread_data *td)
244{
245 struct fio_file *f;
246 struct io_u *io_u;
247 int ret, i, min_events;
248
249 /*
250 * sync io first and invalidate cache, to make sure we really
251 * read from disk.
252 */
253 for_each_file(td, f, i) {
254 if (fio_io_sync(td, f))
255 break;
256 if (file_invalidate_cache(td, f))
257 break;
258 }
259
260 if (td->error)
261 return;
262
263 td_set_runstate(td, TD_VERIFYING);
264
265 io_u = NULL;
266 while (!td->terminate) {
267 io_u = __get_io_u(td);
268 if (!io_u)
269 break;
270
271 if (runtime_exceeded(td, &io_u->start_time)) {
272 put_io_u(td, io_u);
273 break;
274 }
275
276 if (get_next_verify(td, io_u)) {
277 put_io_u(td, io_u);
278 break;
279 }
280
281 if (td_io_prep(td, io_u)) {
282 put_io_u(td, io_u);
283 break;
284 }
285
286 io_u->end_io = verify_io_u;
287requeue:
288 ret = td_io_queue(td, io_u);
289
290 switch (ret) {
291 case FIO_Q_COMPLETED:
292 if (io_u->error)
293 ret = -io_u->error;
294 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
295 int bytes = io_u->xfer_buflen - io_u->resid;
296
297 io_u->xfer_buflen = io_u->resid;
298 io_u->xfer_buf += bytes;
299 goto requeue;
300 }
301 ret = io_u_sync_complete(td, io_u);
302 if (ret < 0)
303 break;
304 continue;
305 case FIO_Q_QUEUED:
306 break;
307 case FIO_Q_BUSY:
308 requeue_io_u(td, &io_u);
309 ret = td_io_commit(td);
310 break;
311 default:
312 assert(ret < 0);
313 td_verror(td, -ret, "td_io_queue");
314 break;
315 }
316
317 if (ret < 0 || td->error)
318 break;
319
320 /*
321 * if we can queue more, do so. but check if there are
322 * completed io_u's first.
323 */
324 min_events = 0;
325 if (queue_full(td) || ret == FIO_Q_BUSY) {
326 min_events = 1;
327
328 if (td->cur_depth > td->iodepth_low)
329 min_events = td->cur_depth - td->iodepth_low;
330 }
331
332 /*
333 * Reap required number of io units, if any, and do the
334 * verification on them through the callback handler
335 */
336 if (io_u_queued_complete(td, min_events) < 0)
337 break;
338 }
339
340 if (!td->error) {
341 min_events = td->cur_depth;
342
343 if (min_events)
344 ret = io_u_queued_complete(td, min_events);
345 } else
346 cleanup_pending_aio(td);
347
348 td_set_runstate(td, TD_RUNNING);
349}
350
351/*
352 * Not really an io thread, all it does is burn CPU cycles in the specified
353 * manner.
354 */
355static void do_cpuio(struct thread_data *td)
356{
357 struct timeval e;
358 int split = 100 / td->cpuload;
359 int i = 0;
360
361 while (!td->terminate) {
362 fio_gettime(&e, NULL);
363
364 if (runtime_exceeded(td, &e))
365 break;
366
367 if (!(i % split))
368 __usec_sleep(10000);
369 else
370 usec_sleep(td, 10000);
371
372 i++;
373 }
374}
375
376/*
377 * Main IO worker function. It retrieves io_u's to process and queues
378 * and reaps them, checking for rate and errors along the way.
379 */
380static void do_io(struct thread_data *td)
381{
382 struct timeval s;
383 unsigned long usec;
384 int i, ret = 0;
385
386 td_set_runstate(td, TD_RUNNING);
387
388 while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
389 struct timeval comp_time;
390 long bytes_done = 0;
391 int min_evts = 0;
392 struct io_u *io_u;
393
394 if (td->terminate)
395 break;
396
397 io_u = get_io_u(td);
398 if (!io_u)
399 break;
400
401 memcpy(&s, &io_u->start_time, sizeof(s));
402
403 if (runtime_exceeded(td, &s)) {
404 put_io_u(td, io_u);
405 break;
406 }
407requeue:
408 ret = td_io_queue(td, io_u);
409
410 switch (ret) {
411 case FIO_Q_COMPLETED:
412 if (io_u->error) {
413 ret = io_u->error;
414 break;
415 }
416 if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
417 int bytes = io_u->xfer_buflen - io_u->resid;
418
419 io_u->xfer_buflen = io_u->resid;
420 io_u->xfer_buf += bytes;
421 goto requeue;
422 }
423 fio_gettime(&comp_time, NULL);
424 bytes_done = io_u_sync_complete(td, io_u);
425 if (bytes_done < 0)
426 ret = bytes_done;
427 break;
428 case FIO_Q_QUEUED:
429 /*
430 * if the engine doesn't have a commit hook,
431 * the io_u is really queued. if it does have such
432 * a hook, it has to call io_u_queued() itself.
433 */
434 if (td->io_ops->commit == NULL)
435 io_u_queued(td, io_u);
436 else if (td->io_u_queued >= td->iodepth_batch)
437 ret = td_io_commit(td);
438 break;
439 case FIO_Q_BUSY:
440 requeue_io_u(td, &io_u);
441 ret = td_io_commit(td);
442 break;
443 default:
444 assert(ret < 0);
445 put_io_u(td, io_u);
446 break;
447 }
448
449 if (ret < 0 || td->error)
450 break;
451
452 /*
453 * See if we need to complete some commands
454 */
455 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
456 min_evts = 0;
457 if (queue_full(td) || ret == FIO_Q_BUSY) {
458 min_evts = 1;
459
460 if (td->cur_depth > td->iodepth_low)
461 min_evts = td->cur_depth - td->iodepth_low;
462 }
463
464 fio_gettime(&comp_time, NULL);
465 bytes_done = io_u_queued_complete(td, min_evts);
466 if (bytes_done < 0)
467 break;
468 }
469
470 if (!bytes_done)
471 continue;
472
473 /*
474 * the rate is batched for now, it should work for batches
475 * of completions except the very first one which may look
476 * a little bursty
477 */
478 usec = utime_since(&s, &comp_time);
479
480 rate_throttle(td, usec, bytes_done);
481
482 if (check_min_rate(td, &comp_time)) {
483 if (exitall_on_terminate)
484 terminate_threads(td->groupid, 0);
485 td_verror(td, ENODATA, "check_min_rate");
486 break;
487 }
488
489 if (td->thinktime) {
490 unsigned long long b;
491
492 b = td->io_blocks[0] + td->io_blocks[1];
493 if (!(b % td->thinktime_blocks)) {
494 int left;
495
496 if (td->thinktime_spin)
497 __usec_sleep(td->thinktime_spin);
498
499 left = td->thinktime - td->thinktime_spin;
500 if (left)
501 usec_sleep(td, left);
502 }
503 }
504 }
505
506 if (!td->error) {
507 struct fio_file *f;
508
509 i = td->cur_depth;
510 if (i)
511 ret = io_u_queued_complete(td, i);
512
513 if (should_fsync(td) && td->end_fsync) {
514 td_set_runstate(td, TD_FSYNCING);
515 for_each_file(td, f, i)
516 fio_io_sync(td, f);
517 }
518 } else
519 cleanup_pending_aio(td);
520}
521
522static void cleanup_io_u(struct thread_data *td)
523{
524 struct list_head *entry, *n;
525 struct io_u *io_u;
526
527 list_for_each_safe(entry, n, &td->io_u_freelist) {
528 io_u = list_entry(entry, struct io_u, list);
529
530 list_del(&io_u->list);
531 free(io_u);
532 }
533
534 free_io_mem(td);
535}
536
537/*
538 * "randomly" fill the buffer contents
539 */
540static void fill_rand_buf(struct io_u *io_u, int max_bs)
541{
542 int *ptr = io_u->buf;
543
544 while ((void *) ptr - io_u->buf < max_bs) {
545 *ptr = rand() * 0x9e370001;
546 ptr++;
547 }
548}
549
550static int init_io_u(struct thread_data *td)
551{
552 struct io_u *io_u;
553 unsigned int max_bs;
554 int i, max_units;
555 char *p;
556
557 if (td->io_ops->flags & FIO_CPUIO)
558 return 0;
559
560 if (td->io_ops->flags & FIO_SYNCIO)
561 max_units = 1;
562 else
563 max_units = td->iodepth;
564
565 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
566 td->orig_buffer_size = max_bs * max_units;
567
568 if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
569 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
570 else
571 td->orig_buffer_size += page_mask;
572
573 if (allocate_io_mem(td))
574 return 1;
575
576 p = ALIGN(td->orig_buffer);
577 for (i = 0; i < max_units; i++) {
578 io_u = malloc(sizeof(*io_u));
579 memset(io_u, 0, sizeof(*io_u));
580 INIT_LIST_HEAD(&io_u->list);
581
582 io_u->buf = p + max_bs * i;
583 if (td_write(td) || td_rw(td))
584 fill_rand_buf(io_u, max_bs);
585
586 io_u->index = i;
587 io_u->flags = IO_U_F_FREE;
588 list_add(&io_u->list, &td->io_u_freelist);
589 }
590
591 io_u_init_timeout();
592
593 return 0;
594}
595
596static int switch_ioscheduler(struct thread_data *td)
597{
598 char tmp[256], tmp2[128];
599 FILE *f;
600 int ret;
601
602 if (td->io_ops->flags & FIO_CPUIO)
603 return 0;
604
605 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
606
607 f = fopen(tmp, "r+");
608 if (!f) {
609 td_verror(td, errno, "fopen");
610 return 1;
611 }
612
613 /*
614 * Set io scheduler.
615 */
616 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
617 if (ferror(f) || ret != 1) {
618 td_verror(td, errno, "fwrite");
619 fclose(f);
620 return 1;
621 }
622
623 rewind(f);
624
625 /*
626 * Read back and check that the selected scheduler is now the default.
627 */
628 ret = fread(tmp, 1, sizeof(tmp), f);
629 if (ferror(f) || ret < 0) {
630 td_verror(td, errno, "fread");
631 fclose(f);
632 return 1;
633 }
634
635 sprintf(tmp2, "[%s]", td->ioscheduler);
636 if (!strstr(tmp, tmp2)) {
637 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
638 td_verror(td, EINVAL, "iosched_switch");
639 fclose(f);
640 return 1;
641 }
642
643 fclose(f);
644 return 0;
645}
646
647static void clear_io_state(struct thread_data *td)
648{
649 struct fio_file *f;
650 int i;
651
652 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
653 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
654 td->zone_bytes = 0;
655
656 td->last_was_sync = 0;
657
658 for_each_file(td, f, i) {
659 f->last_completed_pos = 0;
660
661 f->last_pos = 0;
662 if (td->io_ops->flags & FIO_SYNCIO)
663 lseek(f->fd, SEEK_SET, 0);
664
665 if (f->file_map)
666 memset(f->file_map, 0, f->num_maps * sizeof(long));
667 }
668}
669
670/*
671 * Entry point for the thread based jobs. The process based jobs end up
672 * here as well, after a little setup.
673 */
674static void *thread_main(void *data)
675{
676 unsigned long long runtime[2];
677 struct thread_data *td = data;
678
679 if (!td->use_thread)
680 setsid();
681
682 td->pid = getpid();
683
684 INIT_LIST_HEAD(&td->io_u_freelist);
685 INIT_LIST_HEAD(&td->io_u_busylist);
686 INIT_LIST_HEAD(&td->io_u_requeues);
687 INIT_LIST_HEAD(&td->io_hist_list);
688 INIT_LIST_HEAD(&td->io_log_list);
689
690 if (init_io_u(td))
691 goto err;
692
693 if (fio_setaffinity(td) == -1) {
694 td_verror(td, errno, "cpu_set_affinity");
695 goto err;
696 }
697
698 if (init_iolog(td))
699 goto err;
700
701 if (td->ioprio) {
702 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
703 td_verror(td, errno, "ioprio_set");
704 goto err;
705 }
706 }
707
708 if (nice(td->nice) == -1) {
709 td_verror(td, errno, "nice");
710 goto err;
711 }
712
713 if (init_random_state(td))
714 goto err;
715
716 if (td->ioscheduler && switch_ioscheduler(td))
717 goto err;
718
719 td_set_runstate(td, TD_INITIALIZED);
720 fio_sem_up(&startup_sem);
721 fio_sem_down(&td->mutex);
722
723 if (!td->create_serialize && setup_files(td))
724 goto err;
725 if (open_files(td))
726 goto err;
727
728 /*
729 * Do this late, as some IO engines would like to have the
730 * files setup prior to initializing structures.
731 */
732 if (td_io_init(td))
733 goto err;
734
735 if (td->exec_prerun) {
736 if (system(td->exec_prerun) < 0)
737 goto err;
738 }
739
740 fio_gettime(&td->epoch, NULL);
741 memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
742 getrusage(RUSAGE_SELF, &td->ts.ru_start);
743
744 runtime[0] = runtime[1] = 0;
745 while (td->loops--) {
746 fio_gettime(&td->start, NULL);
747 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
748
749 if (td->ratemin)
750 memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
751
752 clear_io_state(td);
753 prune_io_piece_log(td);
754
755 if (td->io_ops->flags & FIO_CPUIO)
756 do_cpuio(td);
757 else
758 do_io(td);
759
760 if (td_read(td) && td->io_bytes[DDIR_READ])
761 runtime[DDIR_READ] += utime_since_now(&td->start);
762 if (td_write(td) && td->io_bytes[DDIR_WRITE])
763 runtime[DDIR_WRITE] += utime_since_now(&td->start);
764
765 if (td->error || td->terminate)
766 break;
767
768 if (td->verify == VERIFY_NONE)
769 continue;
770
771 clear_io_state(td);
772 fio_gettime(&td->start, NULL);
773
774 do_verify(td);
775
776 runtime[DDIR_READ] += utime_since_now(&td->start);
777
778 if (td->error || td->terminate)
779 break;
780 }
781
782 update_rusage_stat(td);
783 fio_gettime(&td->end_time, NULL);
784 td->runtime[0] = runtime[0] / 1000;
785 td->runtime[1] = runtime[1] / 1000;
786
787 if (td->ts.bw_log)
788 finish_log(td, td->ts.bw_log, "bw");
789 if (td->ts.slat_log)
790 finish_log(td, td->ts.slat_log, "slat");
791 if (td->ts.clat_log)
792 finish_log(td, td->ts.clat_log, "clat");
793 if (td->write_iolog_file)
794 write_iolog_close(td);
795 if (td->exec_postrun) {
796 if (system(td->exec_postrun) < 0)
797 log_err("fio: postrun %s failed\n", td->exec_postrun);
798 }
799
800 if (exitall_on_terminate)
801 terminate_threads(td->groupid, 0);
802
803err:
804 if (td->error)
805 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
806 close_files(td);
807 close_ioengine(td);
808 cleanup_io_u(td);
809 td_set_runstate(td, TD_EXITED);
810 return (void *) (unsigned long) td->error;
811}
812
813/*
814 * We cannot pass the td data into a forked process, so attach the td and
815 * pass it to the thread worker.
816 */
817static int fork_main(int shmid, int offset)
818{
819 struct thread_data *td;
820 void *data, *ret;
821
822 data = shmat(shmid, NULL, 0);
823 if (data == (void *) -1) {
824 int __err = errno;
825
826 perror("shmat");
827 return __err;
828 }
829
830 td = data + offset * sizeof(struct thread_data);
831 ret = thread_main(td);
832 shmdt(data);
833 return (int) (unsigned long) ret;
834}
835
836/*
837 * Run over the job map and reap the threads that have exited, if any.
838 */
839static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
840{
841 struct thread_data *td;
842 int i, cputhreads, pending, status, ret;
843
844 /*
845 * reap exited threads (TD_EXITED -> TD_REAPED)
846 */
847 pending = cputhreads = 0;
848 for_each_td(td, i) {
849 int flags = 0;
850
851 /*
852 * ->io_ops is NULL for a thread that has closed its
853 * io engine
854 */
855 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
856 cputhreads++;
857
858 if (!td->pid || td->runstate == TD_REAPED)
859 continue;
860 if (td->use_thread) {
861 if (td->runstate == TD_EXITED) {
862 td_set_runstate(td, TD_REAPED);
863 goto reaped;
864 }
865 continue;
866 }
867
868 flags = WNOHANG;
869 if (td->runstate == TD_EXITED)
870 flags = 0;
871
872 /*
873 * check if someone quit or got killed in an unusual way
874 */
875 ret = waitpid(td->pid, &status, flags);
876 if (ret < 0) {
877 if (errno == ECHILD) {
878 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
879 td_set_runstate(td, TD_REAPED);
880 goto reaped;
881 }
882 perror("waitpid");
883 } else if (ret == td->pid) {
884 if (WIFSIGNALED(status)) {
885 int sig = WTERMSIG(status);
886
887 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
888 td_set_runstate(td, TD_REAPED);
889 goto reaped;
890 }
891 if (WIFEXITED(status)) {
892 if (WEXITSTATUS(status) && !td->error)
893 td->error = WEXITSTATUS(status);
894
895 td_set_runstate(td, TD_REAPED);
896 goto reaped;
897 }
898 }
899
900 /*
901 * thread is not dead, continue
902 */
903 continue;
904reaped:
905 if (td->use_thread) {
906 long ret;
907
908 if (pthread_join(td->thread, (void *) &ret))
909 perror("pthread_join");
910 }
911
912 (*nr_running)--;
913 (*m_rate) -= td->ratemin;
914 (*t_rate) -= td->rate;
915
916 if (td->error)
917 exit_value++;
918 }
919
920 if (*nr_running == cputhreads && !pending)
921 terminate_threads(TERMINATE_ALL, 0);
922}
923
924/*
925 * Main function for kicking off and reaping jobs, as needed.
926 */
927static void run_threads(void)
928{
929 struct thread_data *td;
930 unsigned long spent;
931 int i, todo, nr_running, m_rate, t_rate, nr_started;
932
933 if (fio_pin_memory())
934 return;
935
936 if (!terse_output) {
937 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
938 fflush(stdout);
939 }
940
941 signal(SIGINT, sig_handler);
942 signal(SIGALRM, sig_handler);
943
944 todo = thread_number;
945 nr_running = 0;
946 nr_started = 0;
947 m_rate = t_rate = 0;
948
949 for_each_td(td, i) {
950 print_status_init(td->thread_number - 1);
951
952 if (!td->create_serialize) {
953 init_disk_util(td);
954 continue;
955 }
956
957 /*
958 * do file setup here so it happens sequentially,
959 * we don't want X number of threads getting their
960 * client data interspersed on disk
961 */
962 if (setup_files(td)) {
963 exit_value++;
964 if (td->error)
965 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
966 td_set_runstate(td, TD_REAPED);
967 todo--;
968 }
969
970 init_disk_util(td);
971 }
972
973 set_genesis_time();
974
975 while (todo) {
976 struct thread_data *map[MAX_JOBS];
977 struct timeval this_start;
978 int this_jobs = 0, left;
979
980 /*
981 * create threads (TD_NOT_CREATED -> TD_CREATED)
982 */
983 for_each_td(td, i) {
984 if (td->runstate != TD_NOT_CREATED)
985 continue;
986
987 /*
988 * never got a chance to start, killed by other
989 * thread for some reason
990 */
991 if (td->terminate) {
992 todo--;
993 continue;
994 }
995
996 if (td->start_delay) {
997 spent = mtime_since_genesis();
998
999 if (td->start_delay * 1000 > spent)
1000 continue;
1001 }
1002
1003 if (td->stonewall && (nr_started || nr_running))
1004 break;
1005
1006 /*
1007 * Set state to created. Thread will transition
1008 * to TD_INITIALIZED when it's done setting up.
1009 */
1010 td_set_runstate(td, TD_CREATED);
1011 map[this_jobs++] = td;
1012 fio_sem_init(&startup_sem, 1);
1013 nr_started++;
1014
1015 if (td->use_thread) {
1016 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1017 perror("thread_create");
1018 nr_started--;
1019 }
1020 } else {
1021 if (fork())
1022 fio_sem_down(&startup_sem);
1023 else {
1024 int ret = fork_main(shm_id, i);
1025
1026 exit(ret);
1027 }
1028 }
1029 }
1030
1031 /*
1032 * Wait for the started threads to transition to
1033 * TD_INITIALIZED.
1034 */
1035 fio_gettime(&this_start, NULL);
1036 left = this_jobs;
1037 while (left && !fio_abort) {
1038 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1039 break;
1040
1041 usleep(100000);
1042
1043 for (i = 0; i < this_jobs; i++) {
1044 td = map[i];
1045 if (!td)
1046 continue;
1047 if (td->runstate == TD_INITIALIZED) {
1048 map[i] = NULL;
1049 left--;
1050 } else if (td->runstate >= TD_EXITED) {
1051 map[i] = NULL;
1052 left--;
1053 todo--;
1054 nr_running++; /* work-around... */
1055 }
1056 }
1057 }
1058
1059 if (left) {
1060 log_err("fio: %d jobs failed to start\n", left);
1061 for (i = 0; i < this_jobs; i++) {
1062 td = map[i];
1063 if (!td)
1064 continue;
1065 kill(td->pid, SIGTERM);
1066 }
1067 break;
1068 }
1069
1070 /*
1071 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1072 */
1073 for_each_td(td, i) {
1074 if (td->runstate != TD_INITIALIZED)
1075 continue;
1076
1077 td_set_runstate(td, TD_RUNNING);
1078 nr_running++;
1079 nr_started--;
1080 m_rate += td->ratemin;
1081 t_rate += td->rate;
1082 todo--;
1083 fio_sem_up(&td->mutex);
1084 }
1085
1086 reap_threads(&nr_running, &t_rate, &m_rate);
1087
1088 if (todo)
1089 usleep(100000);
1090 }
1091
1092 while (nr_running) {
1093 reap_threads(&nr_running, &t_rate, &m_rate);
1094 usleep(10000);
1095 }
1096
1097 update_io_ticks();
1098 fio_unpin_memory();
1099}
1100
1101int main(int argc, char *argv[])
1102{
1103 long ps;
1104
1105 /*
1106 * We need locale for number printing, if it isn't set then just
1107 * go with the US format.
1108 */
1109 if (!getenv("LC_NUMERIC"))
1110 setlocale(LC_NUMERIC, "en_US");
1111
1112 if (parse_options(argc, argv))
1113 return 1;
1114
1115 if (!thread_number) {
1116 log_err("Nothing to do\n");
1117 return 1;
1118 }
1119
1120 ps = sysconf(_SC_PAGESIZE);
1121 if (ps < 0) {
1122 log_err("Failed to get page size\n");
1123 return 1;
1124 }
1125
1126 page_mask = ps - 1;
1127
1128 if (write_bw_log) {
1129 setup_log(&agg_io_log[DDIR_READ]);
1130 setup_log(&agg_io_log[DDIR_WRITE]);
1131 }
1132
1133 set_genesis_time();
1134
1135 disk_util_timer_arm();
1136
1137 run_threads();
1138
1139 if (!fio_abort) {
1140 show_run_stats();
1141 if (write_bw_log) {
1142 __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1143 __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1144 }
1145 }
1146
1147 return exit_value;
1148}