Fix race on io_u->flags
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <locale.h>
30#include <assert.h>
31#include <sys/stat.h>
32#include <sys/wait.h>
33#include <sys/ipc.h>
34#include <sys/shm.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "hash.h"
39#include "smalloc.h"
40#include "verify.h"
41#include "diskutil.h"
42
43unsigned long page_mask;
44unsigned long page_size;
45
46#define PAGE_ALIGN(buf) \
47 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
48
49int groupid = 0;
50int thread_number = 0;
51int nr_process = 0;
52int nr_thread = 0;
53int shm_id = 0;
54int temp_stall_ts;
55unsigned long done_secs = 0;
56
57static struct fio_mutex *startup_mutex;
58static struct fio_mutex *writeout_mutex;
59static volatile int fio_abort;
60static int exit_value;
61static struct itimerval itimer;
62static pthread_t gtod_thread;
63
64struct io_log *agg_io_log[2];
65
66#define TERMINATE_ALL (-1)
67#define JOB_START_TIMEOUT (5 * 1000)
68
69void td_set_runstate(struct thread_data *td, int runstate)
70{
71 if (td->runstate == runstate)
72 return;
73
74 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
75 td->runstate, runstate);
76 td->runstate = runstate;
77}
78
79static void terminate_threads(int group_id)
80{
81 struct thread_data *td;
82 int i;
83
84 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
85
86 for_each_td(td, i) {
87 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
88 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
89 td->o.name, (int) td->pid);
90 td->terminate = 1;
91 td->o.start_delay = 0;
92
93 /*
94 * if the thread is running, just let it exit
95 */
96 if (td->runstate < TD_RUNNING)
97 kill(td->pid, SIGQUIT);
98 else {
99 struct ioengine_ops *ops = td->io_ops;
100
101 if (ops && (ops->flags & FIO_SIGQUIT))
102 kill(td->pid, SIGQUIT);
103 }
104 }
105 }
106}
107
108static void status_timer_arm(void)
109{
110 itimer.it_value.tv_sec = 0;
111 itimer.it_value.tv_usec = DISK_UTIL_MSEC * 1000;
112 setitimer(ITIMER_REAL, &itimer, NULL);
113}
114
115static void sig_alrm(int fio_unused sig)
116{
117 if (threads) {
118 update_io_ticks();
119 print_thread_status();
120 status_timer_arm();
121 }
122}
123
124/*
125 * Happens on thread runs with ctrl-c, ignore our own SIGQUIT
126 */
127static void sig_quit(int sig)
128{
129}
130
131static void sig_int(int sig)
132{
133 if (threads) {
134 printf("\nfio: terminating on signal %d\n", sig);
135 fflush(stdout);
136 terminate_threads(TERMINATE_ALL);
137 }
138}
139
140static void sig_ill(int fio_unused sig)
141{
142 if (!threads)
143 return;
144
145 log_err("fio: illegal instruction. your cpu does not support "
146 "the sse4.2 instruction for crc32c\n");
147 terminate_threads(TERMINATE_ALL);
148 exit(4);
149}
150
151static void set_sig_handlers(void)
152{
153 struct sigaction act;
154
155 memset(&act, 0, sizeof(act));
156 act.sa_handler = sig_alrm;
157 act.sa_flags = SA_RESTART;
158 sigaction(SIGALRM, &act, NULL);
159
160 memset(&act, 0, sizeof(act));
161 act.sa_handler = sig_int;
162 act.sa_flags = SA_RESTART;
163 sigaction(SIGINT, &act, NULL);
164
165 memset(&act, 0, sizeof(act));
166 act.sa_handler = sig_ill;
167 act.sa_flags = SA_RESTART;
168 sigaction(SIGILL, &act, NULL);
169
170 memset(&act, 0, sizeof(act));
171 act.sa_handler = sig_quit;
172 act.sa_flags = SA_RESTART;
173 sigaction(SIGQUIT, &act, NULL);
174}
175
176/*
177 * Check if we are above the minimum rate given.
178 */
179static int __check_min_rate(struct thread_data *td, struct timeval *now,
180 enum td_ddir ddir)
181{
182 unsigned long long bytes = 0;
183 unsigned long iops = 0;
184 unsigned long spent;
185 unsigned long rate;
186 unsigned int ratemin = 0;
187 unsigned int rate_iops = 0;
188 unsigned int rate_iops_min = 0;
189
190 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
191 return 0;
192
193 /*
194 * allow a 2 second settle period in the beginning
195 */
196 if (mtime_since(&td->start, now) < 2000)
197 return 0;
198
199 iops += td->io_blocks[ddir];
200 bytes += td->this_io_bytes[ddir];
201 ratemin += td->o.ratemin[ddir];
202 rate_iops += td->o.rate_iops[ddir];
203 rate_iops_min += td->o.rate_iops_min[ddir];
204
205 /*
206 * if rate blocks is set, sample is running
207 */
208 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
209 spent = mtime_since(&td->lastrate[ddir], now);
210 if (spent < td->o.ratecycle)
211 return 0;
212
213 if (td->o.rate[ddir]) {
214 /*
215 * check bandwidth specified rate
216 */
217 if (bytes < td->rate_bytes[ddir]) {
218 log_err("%s: min rate %u not met\n", td->o.name,
219 ratemin);
220 return 1;
221 } else {
222 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
223 if (rate < ratemin ||
224 bytes < td->rate_bytes[ddir]) {
225 log_err("%s: min rate %u not met, got"
226 " %luKB/sec\n", td->o.name,
227 ratemin, rate);
228 return 1;
229 }
230 }
231 } else {
232 /*
233 * checks iops specified rate
234 */
235 if (iops < rate_iops) {
236 log_err("%s: min iops rate %u not met\n",
237 td->o.name, rate_iops);
238 return 1;
239 } else {
240 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
241 if (rate < rate_iops_min ||
242 iops < td->rate_blocks[ddir]) {
243 log_err("%s: min iops rate %u not met,"
244 " got %lu\n", td->o.name,
245 rate_iops_min, rate);
246 }
247 }
248 }
249 }
250
251 td->rate_bytes[ddir] = bytes;
252 td->rate_blocks[ddir] = iops;
253 memcpy(&td->lastrate[ddir], now, sizeof(*now));
254 return 0;
255}
256
257static int check_min_rate(struct thread_data *td, struct timeval *now,
258 unsigned long *bytes_done)
259{
260 int ret = 0;
261
262 if (bytes_done[0])
263 ret |= __check_min_rate(td, now, 0);
264 if (bytes_done[1])
265 ret |= __check_min_rate(td, now, 1);
266
267 return ret;
268}
269
270static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
271{
272 if (!td->o.timeout)
273 return 0;
274 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
275 return 1;
276
277 return 0;
278}
279
280/*
281 * When job exits, we can cancel the in-flight IO if we are using async
282 * io. Attempt to do so.
283 */
284static void cleanup_pending_aio(struct thread_data *td)
285{
286 struct flist_head *entry, *n;
287 struct io_u *io_u;
288 int r;
289
290 /*
291 * get immediately available events, if any
292 */
293 r = io_u_queued_complete(td, 0, NULL);
294 if (r < 0)
295 return;
296
297 /*
298 * now cancel remaining active events
299 */
300 if (td->io_ops->cancel) {
301 flist_for_each_safe(entry, n, &td->io_u_busylist) {
302 io_u = flist_entry(entry, struct io_u, list);
303
304 /*
305 * if the io_u isn't in flight, then that generally
306 * means someone leaked an io_u. complain but fix
307 * it up, so we don't stall here.
308 */
309 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
310 log_err("fio: non-busy IO on busy list\n");
311 put_io_u(td, io_u);
312 } else {
313 r = td->io_ops->cancel(td, io_u);
314 if (!r)
315 put_io_u(td, io_u);
316 }
317 }
318 }
319
320 if (td->cur_depth)
321 r = io_u_queued_complete(td, td->cur_depth, NULL);
322}
323
324/*
325 * Helper to handle the final sync of a file. Works just like the normal
326 * io path, just does everything sync.
327 */
328static int fio_io_sync(struct thread_data *td, struct fio_file *f)
329{
330 struct io_u *io_u = __get_io_u(td);
331 int ret;
332
333 if (!io_u)
334 return 1;
335
336 io_u->ddir = DDIR_SYNC;
337 io_u->file = f;
338
339 if (td_io_prep(td, io_u)) {
340 put_io_u(td, io_u);
341 return 1;
342 }
343
344requeue:
345 ret = td_io_queue(td, io_u);
346 if (ret < 0) {
347 td_verror(td, io_u->error, "td_io_queue");
348 put_io_u(td, io_u);
349 return 1;
350 } else if (ret == FIO_Q_QUEUED) {
351 if (io_u_queued_complete(td, 1, NULL) < 0)
352 return 1;
353 } else if (ret == FIO_Q_COMPLETED) {
354 if (io_u->error) {
355 td_verror(td, io_u->error, "td_io_queue");
356 return 1;
357 }
358
359 if (io_u_sync_complete(td, io_u, NULL) < 0)
360 return 1;
361 } else if (ret == FIO_Q_BUSY) {
362 if (td_io_commit(td))
363 return 1;
364 goto requeue;
365 }
366
367 return 0;
368}
369
370static inline void update_tv_cache(struct thread_data *td)
371{
372 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
373 fio_gettime(&td->tv_cache, NULL);
374}
375
376static int break_on_this_error(struct thread_data *td, int *retptr)
377{
378 int ret = *retptr;
379
380 if (ret < 0 || td->error) {
381 int err;
382
383 if (!td->o.continue_on_error)
384 return 1;
385
386 if (ret < 0)
387 err = -ret;
388 else
389 err = td->error;
390
391 if (td_non_fatal_error(err)) {
392 /*
393 * Continue with the I/Os in case of
394 * a non fatal error.
395 */
396 update_error_count(td, err);
397 td_clear_error(td);
398 *retptr = 0;
399 return 0;
400 } else if (td->o.fill_device && err == ENOSPC) {
401 /*
402 * We expect to hit this error if
403 * fill_device option is set.
404 */
405 td_clear_error(td);
406 td->terminate = 1;
407 return 1;
408 } else {
409 /*
410 * Stop the I/O in case of a fatal
411 * error.
412 */
413 update_error_count(td, err);
414 return 1;
415 }
416 }
417
418 return 0;
419}
420
421/*
422 * The main verify engine. Runs over the writes we previously submitted,
423 * reads the blocks back in, and checks the crc/md5 of the data.
424 */
425static void do_verify(struct thread_data *td)
426{
427 struct fio_file *f;
428 struct io_u *io_u;
429 int ret, min_events;
430 unsigned int i;
431
432 /*
433 * sync io first and invalidate cache, to make sure we really
434 * read from disk.
435 */
436 for_each_file(td, f, i) {
437 if (!fio_file_open(f))
438 continue;
439 if (fio_io_sync(td, f))
440 break;
441 if (file_invalidate_cache(td, f))
442 break;
443 }
444
445 if (td->error)
446 return;
447
448 td_set_runstate(td, TD_VERIFYING);
449
450 io_u = NULL;
451 while (!td->terminate) {
452 int ret2, full;
453
454 update_tv_cache(td);
455
456 if (runtime_exceeded(td, &td->tv_cache)) {
457 td->terminate = 1;
458 break;
459 }
460
461 io_u = __get_io_u(td);
462 if (!io_u)
463 break;
464
465 if (get_next_verify(td, io_u)) {
466 put_io_u(td, io_u);
467 break;
468 }
469
470 if (td_io_prep(td, io_u)) {
471 put_io_u(td, io_u);
472 break;
473 }
474
475 if (td->o.verify_async)
476 io_u->end_io = verify_io_u_async;
477 else
478 io_u->end_io = verify_io_u;
479
480 ret = td_io_queue(td, io_u);
481 switch (ret) {
482 case FIO_Q_COMPLETED:
483 if (io_u->error) {
484 ret = -io_u->error;
485 clear_io_u(td, io_u);
486 } else if (io_u->resid) {
487 int bytes = io_u->xfer_buflen - io_u->resid;
488 struct fio_file *f = io_u->file;
489
490 /*
491 * zero read, fail
492 */
493 if (!bytes) {
494 td_verror(td, EIO, "full resid");
495 put_io_u(td, io_u);
496 break;
497 }
498
499 io_u->xfer_buflen = io_u->resid;
500 io_u->xfer_buf += bytes;
501 io_u->offset += bytes;
502
503 td->ts.short_io_u[io_u->ddir]++;
504
505 if (io_u->offset == f->real_file_size)
506 goto sync_done;
507
508 requeue_io_u(td, &io_u);
509 } else {
510sync_done:
511 ret = io_u_sync_complete(td, io_u, NULL);
512 if (ret < 0)
513 break;
514 }
515 continue;
516 case FIO_Q_QUEUED:
517 break;
518 case FIO_Q_BUSY:
519 requeue_io_u(td, &io_u);
520 ret2 = td_io_commit(td);
521 if (ret2 < 0)
522 ret = ret2;
523 break;
524 default:
525 assert(ret < 0);
526 td_verror(td, -ret, "td_io_queue");
527 break;
528 }
529
530 if (break_on_this_error(td, &ret))
531 break;
532
533 /*
534 * if we can queue more, do so. but check if there are
535 * completed io_u's first.
536 */
537 full = queue_full(td) || ret == FIO_Q_BUSY;
538 if (full || !td->o.iodepth_batch_complete) {
539 min_events = td->o.iodepth_batch_complete;
540 if (full && !min_events)
541 min_events = 1;
542
543 do {
544 /*
545 * Reap required number of io units, if any,
546 * and do the verification on them through
547 * the callback handler
548 */
549 if (io_u_queued_complete(td, min_events, NULL) < 0) {
550 ret = -1;
551 break;
552 }
553 } while (full && (td->cur_depth > td->o.iodepth_low));
554 }
555 if (ret < 0)
556 break;
557 }
558
559 if (!td->error) {
560 min_events = td->cur_depth;
561
562 if (min_events)
563 ret = io_u_queued_complete(td, min_events, NULL);
564 } else
565 cleanup_pending_aio(td);
566
567 td_set_runstate(td, TD_RUNNING);
568}
569
570/*
571 * Main IO worker function. It retrieves io_u's to process and queues
572 * and reaps them, checking for rate and errors along the way.
573 */
574static void do_io(struct thread_data *td)
575{
576 unsigned int i;
577 int ret = 0;
578
579 if (in_ramp_time(td))
580 td_set_runstate(td, TD_RAMP);
581 else
582 td_set_runstate(td, TD_RUNNING);
583
584 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
585 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
586 struct timeval comp_time;
587 unsigned long bytes_done[2] = { 0, 0 };
588 int min_evts = 0;
589 struct io_u *io_u;
590 int ret2, full;
591
592 if (td->terminate)
593 break;
594
595 update_tv_cache(td);
596
597 if (runtime_exceeded(td, &td->tv_cache)) {
598 td->terminate = 1;
599 break;
600 }
601
602 io_u = get_io_u(td);
603 if (!io_u)
604 break;
605
606 /*
607 * Add verification end_io handler, if asked to verify
608 * a previously written file.
609 */
610 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
611 !td_rw(td)) {
612 if (td->o.verify_async)
613 io_u->end_io = verify_io_u_async;
614 else
615 io_u->end_io = verify_io_u;
616 td_set_runstate(td, TD_VERIFYING);
617 } else if (in_ramp_time(td))
618 td_set_runstate(td, TD_RAMP);
619 else
620 td_set_runstate(td, TD_RUNNING);
621
622 ret = td_io_queue(td, io_u);
623 switch (ret) {
624 case FIO_Q_COMPLETED:
625 if (io_u->error) {
626 ret = -io_u->error;
627 clear_io_u(td, io_u);
628 } else if (io_u->resid) {
629 int bytes = io_u->xfer_buflen - io_u->resid;
630 struct fio_file *f = io_u->file;
631
632 /*
633 * zero read, fail
634 */
635 if (!bytes) {
636 td_verror(td, EIO, "full resid");
637 put_io_u(td, io_u);
638 break;
639 }
640
641 io_u->xfer_buflen = io_u->resid;
642 io_u->xfer_buf += bytes;
643 io_u->offset += bytes;
644
645 td->ts.short_io_u[io_u->ddir]++;
646
647 if (io_u->offset == f->real_file_size)
648 goto sync_done;
649
650 requeue_io_u(td, &io_u);
651 } else {
652sync_done:
653 if (__should_check_rate(td, 0) ||
654 __should_check_rate(td, 1))
655 fio_gettime(&comp_time, NULL);
656
657 ret = io_u_sync_complete(td, io_u, bytes_done);
658 if (ret < 0)
659 break;
660 }
661 break;
662 case FIO_Q_QUEUED:
663 /*
664 * if the engine doesn't have a commit hook,
665 * the io_u is really queued. if it does have such
666 * a hook, it has to call io_u_queued() itself.
667 */
668 if (td->io_ops->commit == NULL)
669 io_u_queued(td, io_u);
670 break;
671 case FIO_Q_BUSY:
672 requeue_io_u(td, &io_u);
673 ret2 = td_io_commit(td);
674 if (ret2 < 0)
675 ret = ret2;
676 break;
677 default:
678 assert(ret < 0);
679 put_io_u(td, io_u);
680 break;
681 }
682
683 if (break_on_this_error(td, &ret))
684 break;
685
686 /*
687 * See if we need to complete some commands
688 */
689 full = queue_full(td) || ret == FIO_Q_BUSY;
690 if (full || !td->o.iodepth_batch_complete) {
691 min_evts = td->o.iodepth_batch_complete;
692 if (full && !min_evts)
693 min_evts = 1;
694
695 if (__should_check_rate(td, 0) ||
696 __should_check_rate(td, 1))
697 fio_gettime(&comp_time, NULL);
698
699 do {
700 ret = io_u_queued_complete(td, min_evts, bytes_done);
701 if (ret < 0)
702 break;
703
704 } while (full && (td->cur_depth > td->o.iodepth_low));
705 }
706
707 if (ret < 0)
708 break;
709 if (!(bytes_done[0] + bytes_done[1]))
710 continue;
711
712 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
713 if (check_min_rate(td, &comp_time, bytes_done)) {
714 if (exitall_on_terminate)
715 terminate_threads(td->groupid);
716 td_verror(td, EIO, "check_min_rate");
717 break;
718 }
719 }
720
721 if (td->o.thinktime) {
722 unsigned long long b;
723
724 b = td->io_blocks[0] + td->io_blocks[1];
725 if (!(b % td->o.thinktime_blocks)) {
726 int left;
727
728 if (td->o.thinktime_spin)
729 usec_spin(td->o.thinktime_spin);
730
731 left = td->o.thinktime - td->o.thinktime_spin;
732 if (left)
733 usec_sleep(td, left);
734 }
735 }
736 }
737
738 if (td->o.fill_device && td->error == ENOSPC) {
739 td->error = 0;
740 td->terminate = 1;
741 }
742 if (!td->error) {
743 struct fio_file *f;
744
745 i = td->cur_depth;
746 if (i)
747 ret = io_u_queued_complete(td, i, NULL);
748
749 if (should_fsync(td) && td->o.end_fsync) {
750 td_set_runstate(td, TD_FSYNCING);
751
752 for_each_file(td, f, i) {
753 if (!fio_file_open(f))
754 continue;
755 fio_io_sync(td, f);
756 }
757 }
758 } else
759 cleanup_pending_aio(td);
760
761 /*
762 * stop job if we failed doing any IO
763 */
764 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
765 td->done = 1;
766}
767
768static void cleanup_io_u(struct thread_data *td)
769{
770 struct flist_head *entry, *n;
771 struct io_u *io_u;
772
773 flist_for_each_safe(entry, n, &td->io_u_freelist) {
774 io_u = flist_entry(entry, struct io_u, list);
775
776 flist_del(&io_u->list);
777 free(io_u);
778 }
779
780 free_io_mem(td);
781}
782
783static int init_io_u(struct thread_data *td)
784{
785 struct io_u *io_u;
786 unsigned int max_bs;
787 int cl_align, i, max_units;
788 char *p;
789
790 max_units = td->o.iodepth;
791 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
792 td->orig_buffer_size = (unsigned long long) max_bs
793 * (unsigned long long) max_units;
794
795 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
796 unsigned long bs;
797
798 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
799 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
800 }
801
802 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
803 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
804 return 1;
805 }
806
807 if (allocate_io_mem(td))
808 return 1;
809
810 if (td->o.odirect || td->o.mem_align)
811 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
812 else
813 p = td->orig_buffer;
814
815 cl_align = os_cache_line_size();
816
817 for (i = 0; i < max_units; i++) {
818 void *ptr;
819
820 if (td->terminate)
821 return 1;
822
823 if (posix_memalign(&ptr, cl_align, sizeof(*io_u))) {
824 log_err("fio: posix_memalign=%s\n", strerror(errno));
825 break;
826 }
827
828 io_u = ptr;
829 memset(io_u, 0, sizeof(*io_u));
830 INIT_FLIST_HEAD(&io_u->list);
831 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
832
833 if (!(td->io_ops->flags & FIO_NOIO)) {
834 io_u->buf = p + max_bs * i;
835 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
836
837 if (td_write(td) && !td->o.refill_buffers)
838 io_u_fill_buffer(td, io_u, max_bs);
839 }
840
841 io_u->index = i;
842 io_u->flags = IO_U_F_FREE;
843 flist_add(&io_u->list, &td->io_u_freelist);
844 }
845
846 return 0;
847}
848
849static int switch_ioscheduler(struct thread_data *td)
850{
851 char tmp[256], tmp2[128];
852 FILE *f;
853 int ret;
854
855 if (td->io_ops->flags & FIO_DISKLESSIO)
856 return 0;
857
858 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
859
860 f = fopen(tmp, "r+");
861 if (!f) {
862 if (errno == ENOENT) {
863 log_err("fio: os or kernel doesn't support IO scheduler"
864 " switching\n");
865 return 0;
866 }
867 td_verror(td, errno, "fopen iosched");
868 return 1;
869 }
870
871 /*
872 * Set io scheduler.
873 */
874 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
875 if (ferror(f) || ret != 1) {
876 td_verror(td, errno, "fwrite");
877 fclose(f);
878 return 1;
879 }
880
881 rewind(f);
882
883 /*
884 * Read back and check that the selected scheduler is now the default.
885 */
886 ret = fread(tmp, 1, sizeof(tmp), f);
887 if (ferror(f) || ret < 0) {
888 td_verror(td, errno, "fread");
889 fclose(f);
890 return 1;
891 }
892
893 sprintf(tmp2, "[%s]", td->o.ioscheduler);
894 if (!strstr(tmp, tmp2)) {
895 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
896 td_verror(td, EINVAL, "iosched_switch");
897 fclose(f);
898 return 1;
899 }
900
901 fclose(f);
902 return 0;
903}
904
905static int keep_running(struct thread_data *td)
906{
907 unsigned long long io_done;
908
909 if (td->done)
910 return 0;
911 if (td->o.time_based)
912 return 1;
913 if (td->o.loops) {
914 td->o.loops--;
915 return 1;
916 }
917
918 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
919 + td->io_skip_bytes;
920 if (io_done < td->o.size)
921 return 1;
922
923 return 0;
924}
925
926static void reset_io_counters(struct thread_data *td)
927{
928 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
929 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
930 td->zone_bytes = 0;
931 td->rate_bytes[0] = td->rate_bytes[1] = 0;
932 td->rate_blocks[0] = td->rate_blocks[1] = 0;
933
934 td->last_was_sync = 0;
935
936 /*
937 * reset file done count if we are to start over
938 */
939 if (td->o.time_based || td->o.loops)
940 td->nr_done_files = 0;
941
942 /*
943 * Set the same seed to get repeatable runs
944 */
945 td_fill_rand_seeds(td);
946}
947
948void reset_all_stats(struct thread_data *td)
949{
950 struct timeval tv;
951 int i;
952
953 reset_io_counters(td);
954
955 for (i = 0; i < 2; i++) {
956 td->io_bytes[i] = 0;
957 td->io_blocks[i] = 0;
958 td->io_issues[i] = 0;
959 td->ts.total_io_u[i] = 0;
960 }
961
962 fio_gettime(&tv, NULL);
963 memcpy(&td->epoch, &tv, sizeof(tv));
964 memcpy(&td->start, &tv, sizeof(tv));
965}
966
967static void clear_io_state(struct thread_data *td)
968{
969 struct fio_file *f;
970 unsigned int i;
971
972 reset_io_counters(td);
973
974 close_files(td);
975 for_each_file(td, f, i)
976 fio_file_clear_done(f);
977}
978
979static int exec_string(const char *string)
980{
981 int ret, newlen = strlen(string) + 1 + 8;
982 char *str;
983
984 str = malloc(newlen);
985 sprintf(str, "sh -c %s", string);
986
987 ret = system(str);
988 if (ret == -1)
989 log_err("fio: exec of cmd <%s> failed\n", str);
990
991 free(str);
992 return ret;
993}
994
995/*
996 * Entry point for the thread based jobs. The process based jobs end up
997 * here as well, after a little setup.
998 */
999static void *thread_main(void *data)
1000{
1001 unsigned long long runtime[2], elapsed;
1002 struct thread_data *td = data;
1003 pthread_condattr_t attr;
1004 int clear_state;
1005
1006 if (!td->o.use_thread)
1007 setsid();
1008
1009 td->pid = getpid();
1010
1011 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1012
1013 INIT_FLIST_HEAD(&td->io_u_freelist);
1014 INIT_FLIST_HEAD(&td->io_u_busylist);
1015 INIT_FLIST_HEAD(&td->io_u_requeues);
1016 INIT_FLIST_HEAD(&td->io_log_list);
1017 INIT_FLIST_HEAD(&td->io_hist_list);
1018 INIT_FLIST_HEAD(&td->verify_list);
1019 pthread_mutex_init(&td->io_u_lock, NULL);
1020 td->io_hist_tree = RB_ROOT;
1021
1022 pthread_condattr_init(&attr);
1023 pthread_cond_init(&td->verify_cond, &attr);
1024 pthread_cond_init(&td->free_cond, &attr);
1025
1026 td_set_runstate(td, TD_INITIALIZED);
1027 dprint(FD_MUTEX, "up startup_mutex\n");
1028 fio_mutex_up(startup_mutex);
1029 dprint(FD_MUTEX, "wait on td->mutex\n");
1030 fio_mutex_down(td->mutex);
1031 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1032
1033 /*
1034 * the ->mutex mutex is now no longer used, close it to avoid
1035 * eating a file descriptor
1036 */
1037 fio_mutex_remove(td->mutex);
1038
1039 /*
1040 * May alter parameters that init_io_u() will use, so we need to
1041 * do this first.
1042 */
1043 if (init_iolog(td))
1044 goto err;
1045
1046 if (init_io_u(td))
1047 goto err;
1048
1049 if (td->o.verify_async && verify_async_init(td))
1050 goto err;
1051
1052 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1053 td_verror(td, errno, "cpu_set_affinity");
1054 goto err;
1055 }
1056
1057 /*
1058 * If we have a gettimeofday() thread, make sure we exclude that
1059 * thread from this job
1060 */
1061 if (td->o.gtod_cpu) {
1062 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1063 if (fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1064 td_verror(td, errno, "cpu_set_affinity");
1065 goto err;
1066 }
1067 }
1068
1069 if (td->ioprio_set) {
1070 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1071 td_verror(td, errno, "ioprio_set");
1072 goto err;
1073 }
1074 }
1075
1076 if (nice(td->o.nice) == -1) {
1077 td_verror(td, errno, "nice");
1078 goto err;
1079 }
1080
1081 if (td->o.ioscheduler && switch_ioscheduler(td))
1082 goto err;
1083
1084 if (!td->o.create_serialize && setup_files(td))
1085 goto err;
1086
1087 if (td_io_init(td))
1088 goto err;
1089
1090 if (init_random_map(td))
1091 goto err;
1092
1093 if (td->o.exec_prerun) {
1094 if (exec_string(td->o.exec_prerun))
1095 goto err;
1096 }
1097
1098 if (td->o.pre_read) {
1099 if (pre_read_files(td) < 0)
1100 goto err;
1101 }
1102
1103 fio_gettime(&td->epoch, NULL);
1104 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1105
1106 runtime[0] = runtime[1] = 0;
1107 clear_state = 0;
1108 while (keep_running(td)) {
1109 fio_gettime(&td->start, NULL);
1110 memcpy(&td->ts.stat_sample_time[0], &td->start,
1111 sizeof(td->start));
1112 memcpy(&td->ts.stat_sample_time[1], &td->start,
1113 sizeof(td->start));
1114 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1115
1116 if (td->o.ratemin[0] || td->o.ratemin[1])
1117 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1118 sizeof(td->lastrate));
1119
1120 if (clear_state)
1121 clear_io_state(td);
1122
1123 prune_io_piece_log(td);
1124
1125 do_io(td);
1126
1127 clear_state = 1;
1128
1129 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1130 elapsed = utime_since_now(&td->start);
1131 runtime[DDIR_READ] += elapsed;
1132 }
1133 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1134 elapsed = utime_since_now(&td->start);
1135 runtime[DDIR_WRITE] += elapsed;
1136 }
1137
1138 if (td->error || td->terminate)
1139 break;
1140
1141 if (!td->o.do_verify ||
1142 td->o.verify == VERIFY_NONE ||
1143 (td->io_ops->flags & FIO_UNIDIR))
1144 continue;
1145
1146 clear_io_state(td);
1147
1148 fio_gettime(&td->start, NULL);
1149
1150 do_verify(td);
1151
1152 runtime[DDIR_READ] += utime_since_now(&td->start);
1153
1154 if (td->error || td->terminate)
1155 break;
1156 }
1157
1158 update_rusage_stat(td);
1159 td->ts.runtime[0] = (runtime[0] + 999) / 1000;
1160 td->ts.runtime[1] = (runtime[1] + 999) / 1000;
1161 td->ts.total_run_time = mtime_since_now(&td->epoch);
1162 td->ts.io_bytes[0] = td->io_bytes[0];
1163 td->ts.io_bytes[1] = td->io_bytes[1];
1164
1165 fio_mutex_down(writeout_mutex);
1166 if (td->ts.bw_log) {
1167 if (td->o.bw_log_file) {
1168 finish_log_named(td, td->ts.bw_log,
1169 td->o.bw_log_file, "bw");
1170 } else
1171 finish_log(td, td->ts.bw_log, "bw");
1172 }
1173 if (td->ts.slat_log) {
1174 if (td->o.lat_log_file) {
1175 finish_log_named(td, td->ts.slat_log,
1176 td->o.lat_log_file, "slat");
1177 } else
1178 finish_log(td, td->ts.slat_log, "slat");
1179 }
1180 if (td->ts.clat_log) {
1181 if (td->o.lat_log_file) {
1182 finish_log_named(td, td->ts.clat_log,
1183 td->o.lat_log_file, "clat");
1184 } else
1185 finish_log(td, td->ts.clat_log, "clat");
1186 }
1187 fio_mutex_up(writeout_mutex);
1188 if (td->o.exec_postrun)
1189 exec_string(td->o.exec_postrun);
1190
1191 if (exitall_on_terminate)
1192 terminate_threads(td->groupid);
1193
1194err:
1195 if (td->error)
1196 printf("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1197 td->verror);
1198
1199 if (td->o.verify_async)
1200 verify_async_exit(td);
1201
1202 close_and_free_files(td);
1203 close_ioengine(td);
1204 cleanup_io_u(td);
1205
1206 if (td->o.cpumask_set) {
1207 int ret = fio_cpuset_exit(&td->o.cpumask);
1208
1209 td_verror(td, ret, "fio_cpuset_exit");
1210 }
1211
1212 /*
1213 * do this very late, it will log file closing as well
1214 */
1215 if (td->o.write_iolog_file)
1216 write_iolog_close(td);
1217
1218 options_mem_free(td);
1219 td_set_runstate(td, TD_EXITED);
1220 return (void *) (unsigned long) td->error;
1221}
1222
1223/*
1224 * We cannot pass the td data into a forked process, so attach the td and
1225 * pass it to the thread worker.
1226 */
1227static int fork_main(int shmid, int offset)
1228{
1229 struct thread_data *td;
1230 void *data, *ret;
1231
1232 data = shmat(shmid, NULL, 0);
1233 if (data == (void *) -1) {
1234 int __err = errno;
1235
1236 perror("shmat");
1237 return __err;
1238 }
1239
1240 td = data + offset * sizeof(struct thread_data);
1241 ret = thread_main(td);
1242 shmdt(data);
1243 return (int) (unsigned long) ret;
1244}
1245
1246/*
1247 * Run over the job map and reap the threads that have exited, if any.
1248 */
1249static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1250{
1251 struct thread_data *td;
1252 int i, cputhreads, realthreads, pending, status, ret;
1253
1254 /*
1255 * reap exited threads (TD_EXITED -> TD_REAPED)
1256 */
1257 realthreads = pending = cputhreads = 0;
1258 for_each_td(td, i) {
1259 int flags = 0;
1260
1261 /*
1262 * ->io_ops is NULL for a thread that has closed its
1263 * io engine
1264 */
1265 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1266 cputhreads++;
1267 else
1268 realthreads++;
1269
1270 if (!td->pid) {
1271 pending++;
1272 continue;
1273 }
1274 if (td->runstate == TD_REAPED)
1275 continue;
1276 if (td->o.use_thread) {
1277 if (td->runstate == TD_EXITED) {
1278 td_set_runstate(td, TD_REAPED);
1279 goto reaped;
1280 }
1281 continue;
1282 }
1283
1284 flags = WNOHANG;
1285 if (td->runstate == TD_EXITED)
1286 flags = 0;
1287
1288 /*
1289 * check if someone quit or got killed in an unusual way
1290 */
1291 ret = waitpid(td->pid, &status, flags);
1292 if (ret < 0) {
1293 if (errno == ECHILD) {
1294 log_err("fio: pid=%d disappeared %d\n",
1295 (int) td->pid, td->runstate);
1296 td_set_runstate(td, TD_REAPED);
1297 goto reaped;
1298 }
1299 perror("waitpid");
1300 } else if (ret == td->pid) {
1301 if (WIFSIGNALED(status)) {
1302 int sig = WTERMSIG(status);
1303
1304 if (sig != SIGQUIT)
1305 log_err("fio: pid=%d, got signal=%d\n",
1306 (int) td->pid, sig);
1307 td_set_runstate(td, TD_REAPED);
1308 goto reaped;
1309 }
1310 if (WIFEXITED(status)) {
1311 if (WEXITSTATUS(status) && !td->error)
1312 td->error = WEXITSTATUS(status);
1313
1314 td_set_runstate(td, TD_REAPED);
1315 goto reaped;
1316 }
1317 }
1318
1319 /*
1320 * thread is not dead, continue
1321 */
1322 pending++;
1323 continue;
1324reaped:
1325 (*nr_running)--;
1326 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1327 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1328 if (!td->pid)
1329 pending--;
1330
1331 if (td->error)
1332 exit_value++;
1333
1334 done_secs += mtime_since_now(&td->epoch) / 1000;
1335 }
1336
1337 if (*nr_running == cputhreads && !pending && realthreads)
1338 terminate_threads(TERMINATE_ALL);
1339}
1340
1341static void *gtod_thread_main(void *data)
1342{
1343 fio_mutex_up(startup_mutex);
1344
1345 /*
1346 * As long as we have jobs around, update the clock. It would be nice
1347 * to have some way of NOT hammering that CPU with gettimeofday(),
1348 * but I'm not sure what to use outside of a simple CPU nop to relax
1349 * it - we don't want to lose precision.
1350 */
1351 while (threads) {
1352 fio_gtod_update();
1353 nop;
1354 }
1355
1356 return NULL;
1357}
1358
1359static int fio_start_gtod_thread(void)
1360{
1361 int ret;
1362
1363 ret = pthread_create(&gtod_thread, NULL, gtod_thread_main, NULL);
1364 if (ret) {
1365 log_err("Can't create gtod thread: %s\n", strerror(ret));
1366 return 1;
1367 }
1368
1369 ret = pthread_detach(gtod_thread);
1370 if (ret) {
1371 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1372 return 1;
1373 }
1374
1375 dprint(FD_MUTEX, "wait on startup_mutex\n");
1376 fio_mutex_down(startup_mutex);
1377 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1378 return 0;
1379}
1380
1381/*
1382 * Main function for kicking off and reaping jobs, as needed.
1383 */
1384static void run_threads(void)
1385{
1386 struct thread_data *td;
1387 unsigned long spent;
1388 int i, todo, nr_running, m_rate, t_rate, nr_started;
1389
1390 if (fio_pin_memory())
1391 return;
1392
1393 if (fio_gtod_offload && fio_start_gtod_thread())
1394 return;
1395
1396 if (!terse_output) {
1397 printf("Starting ");
1398 if (nr_thread)
1399 printf("%d thread%s", nr_thread,
1400 nr_thread > 1 ? "s" : "");
1401 if (nr_process) {
1402 if (nr_thread)
1403 printf(" and ");
1404 printf("%d process%s", nr_process,
1405 nr_process > 1 ? "es" : "");
1406 }
1407 printf("\n");
1408 fflush(stdout);
1409 }
1410
1411 set_sig_handlers();
1412
1413 todo = thread_number;
1414 nr_running = 0;
1415 nr_started = 0;
1416 m_rate = t_rate = 0;
1417
1418 for_each_td(td, i) {
1419 print_status_init(td->thread_number - 1);
1420
1421 if (!td->o.create_serialize) {
1422 init_disk_util(td);
1423 continue;
1424 }
1425
1426 /*
1427 * do file setup here so it happens sequentially,
1428 * we don't want X number of threads getting their
1429 * client data interspersed on disk
1430 */
1431 if (setup_files(td)) {
1432 exit_value++;
1433 if (td->error)
1434 log_err("fio: pid=%d, err=%d/%s\n",
1435 (int) td->pid, td->error, td->verror);
1436 td_set_runstate(td, TD_REAPED);
1437 todo--;
1438 } else {
1439 struct fio_file *f;
1440 unsigned int i;
1441
1442 /*
1443 * for sharing to work, each job must always open
1444 * its own files. so close them, if we opened them
1445 * for creation
1446 */
1447 for_each_file(td, f, i) {
1448 if (fio_file_open(f))
1449 td_io_close_file(td, f);
1450 }
1451 }
1452
1453 init_disk_util(td);
1454 }
1455
1456 set_genesis_time();
1457
1458 while (todo) {
1459 struct thread_data *map[MAX_JOBS];
1460 struct timeval this_start;
1461 int this_jobs = 0, left;
1462
1463 /*
1464 * create threads (TD_NOT_CREATED -> TD_CREATED)
1465 */
1466 for_each_td(td, i) {
1467 if (td->runstate != TD_NOT_CREATED)
1468 continue;
1469
1470 /*
1471 * never got a chance to start, killed by other
1472 * thread for some reason
1473 */
1474 if (td->terminate) {
1475 todo--;
1476 continue;
1477 }
1478
1479 if (td->o.start_delay) {
1480 spent = mtime_since_genesis();
1481
1482 if (td->o.start_delay * 1000 > spent)
1483 continue;
1484 }
1485
1486 if (td->o.stonewall && (nr_started || nr_running)) {
1487 dprint(FD_PROCESS, "%s: stonewall wait\n",
1488 td->o.name);
1489 break;
1490 }
1491
1492 /*
1493 * Set state to created. Thread will transition
1494 * to TD_INITIALIZED when it's done setting up.
1495 */
1496 td_set_runstate(td, TD_CREATED);
1497 map[this_jobs++] = td;
1498 nr_started++;
1499
1500 if (td->o.use_thread) {
1501 int ret;
1502
1503 dprint(FD_PROCESS, "will pthread_create\n");
1504 ret = pthread_create(&td->thread, NULL,
1505 thread_main, td);
1506 if (ret) {
1507 log_err("pthread_create: %s\n",
1508 strerror(ret));
1509 nr_started--;
1510 break;
1511 }
1512 ret = pthread_detach(td->thread);
1513 if (ret)
1514 log_err("pthread_detach: %s",
1515 strerror(ret));
1516 } else {
1517 pid_t pid;
1518 dprint(FD_PROCESS, "will fork\n");
1519 pid = fork();
1520 if (!pid) {
1521 int ret = fork_main(shm_id, i);
1522
1523 _exit(ret);
1524 } else if (i == fio_debug_jobno)
1525 *fio_debug_jobp = pid;
1526 }
1527 dprint(FD_MUTEX, "wait on startup_mutex\n");
1528 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1529 log_err("fio: job startup hung? exiting.\n");
1530 terminate_threads(TERMINATE_ALL);
1531 fio_abort = 1;
1532 nr_started--;
1533 break;
1534 }
1535 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1536 }
1537
1538 /*
1539 * Wait for the started threads to transition to
1540 * TD_INITIALIZED.
1541 */
1542 fio_gettime(&this_start, NULL);
1543 left = this_jobs;
1544 while (left && !fio_abort) {
1545 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1546 break;
1547
1548 usleep(100000);
1549
1550 for (i = 0; i < this_jobs; i++) {
1551 td = map[i];
1552 if (!td)
1553 continue;
1554 if (td->runstate == TD_INITIALIZED) {
1555 map[i] = NULL;
1556 left--;
1557 } else if (td->runstate >= TD_EXITED) {
1558 map[i] = NULL;
1559 left--;
1560 todo--;
1561 nr_running++; /* work-around... */
1562 }
1563 }
1564 }
1565
1566 if (left) {
1567 log_err("fio: %d jobs failed to start\n", left);
1568 for (i = 0; i < this_jobs; i++) {
1569 td = map[i];
1570 if (!td)
1571 continue;
1572 kill(td->pid, SIGTERM);
1573 }
1574 break;
1575 }
1576
1577 /*
1578 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1579 */
1580 for_each_td(td, i) {
1581 if (td->runstate != TD_INITIALIZED)
1582 continue;
1583
1584 if (in_ramp_time(td))
1585 td_set_runstate(td, TD_RAMP);
1586 else
1587 td_set_runstate(td, TD_RUNNING);
1588 nr_running++;
1589 nr_started--;
1590 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1591 t_rate += td->o.rate[0] + td->o.rate[1];
1592 todo--;
1593 fio_mutex_up(td->mutex);
1594 }
1595
1596 reap_threads(&nr_running, &t_rate, &m_rate);
1597
1598 if (todo)
1599 usleep(100000);
1600 }
1601
1602 while (nr_running) {
1603 reap_threads(&nr_running, &t_rate, &m_rate);
1604 usleep(10000);
1605 }
1606
1607 update_io_ticks();
1608 fio_unpin_memory();
1609}
1610
1611int main(int argc, char *argv[])
1612{
1613 long ps;
1614
1615 sinit();
1616
1617 /*
1618 * We need locale for number printing, if it isn't set then just
1619 * go with the US format.
1620 */
1621 if (!getenv("LC_NUMERIC"))
1622 setlocale(LC_NUMERIC, "en_US");
1623
1624 ps = sysconf(_SC_PAGESIZE);
1625 if (ps < 0) {
1626 log_err("Failed to get page size\n");
1627 return 1;
1628 }
1629
1630 page_size = ps;
1631 page_mask = ps - 1;
1632
1633 fio_keywords_init();
1634
1635 if (parse_options(argc, argv))
1636 return 1;
1637
1638 if (!thread_number)
1639 return 0;
1640
1641 if (write_bw_log) {
1642 setup_log(&agg_io_log[DDIR_READ]);
1643 setup_log(&agg_io_log[DDIR_WRITE]);
1644 }
1645
1646 startup_mutex = fio_mutex_init(0);
1647 writeout_mutex = fio_mutex_init(1);
1648
1649 set_genesis_time();
1650
1651 status_timer_arm();
1652
1653 run_threads();
1654
1655 if (!fio_abort) {
1656 show_run_stats();
1657 if (write_bw_log) {
1658 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1659 __finish_log(agg_io_log[DDIR_WRITE],
1660 "agg-write_bw.log");
1661 }
1662 }
1663
1664 fio_mutex_remove(startup_mutex);
1665 fio_mutex_remove(writeout_mutex);
1666 return exit_value;
1667}