stats: fix io_u_plat out-of-bound accesses (round 2)
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <sys/stat.h>
34#include <sys/wait.h>
35#include <sys/ipc.h>
36#include <sys/shm.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#include "hash.h"
41#include "smalloc.h"
42#include "verify.h"
43#include "trim.h"
44#include "diskutil.h"
45#include "cgroup.h"
46#include "profile.h"
47#include "lib/rand.h"
48#include "memalign.h"
49
50unsigned long page_mask;
51unsigned long page_size;
52
53#define PAGE_ALIGN(buf) \
54 (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
55
56int groupid = 0;
57int thread_number = 0;
58int nr_process = 0;
59int nr_thread = 0;
60int shm_id = 0;
61int temp_stall_ts;
62unsigned long done_secs = 0;
63
64static struct fio_mutex *startup_mutex;
65static struct fio_mutex *writeout_mutex;
66static volatile int fio_abort;
67static int exit_value;
68static pthread_t gtod_thread;
69static pthread_t disk_util_thread;
70static struct flist_head *cgroup_list;
71static char *cgroup_mnt;
72
73struct io_log *agg_io_log[2];
74
75#define TERMINATE_ALL (-1)
76#define JOB_START_TIMEOUT (5 * 1000)
77
78void td_set_runstate(struct thread_data *td, int runstate)
79{
80 if (td->runstate == runstate)
81 return;
82
83 dprint(FD_PROCESS, "pid=%d: runstate %d -> %d\n", (int) td->pid,
84 td->runstate, runstate);
85 td->runstate = runstate;
86}
87
88static void terminate_threads(int group_id)
89{
90 struct thread_data *td;
91 int i;
92
93 dprint(FD_PROCESS, "terminate group_id=%d\n", group_id);
94
95 for_each_td(td, i) {
96 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
97 dprint(FD_PROCESS, "setting terminate on %s/%d\n",
98 td->o.name, (int) td->pid);
99 td->terminate = 1;
100 td->o.start_delay = 0;
101
102 /*
103 * if the thread is running, just let it exit
104 */
105 if (!td->pid)
106 continue;
107 else if (td->runstate < TD_RAMP)
108 kill(td->pid, SIGTERM);
109 else {
110 struct ioengine_ops *ops = td->io_ops;
111
112 if (ops && (ops->flags & FIO_SIGTERM))
113 kill(td->pid, SIGTERM);
114 }
115 }
116 }
117}
118
119static void sig_int(int sig)
120{
121 if (threads) {
122 log_info("\nfio: terminating on signal %d\n", sig);
123 fflush(stdout);
124 exit_value = 128;
125 terminate_threads(TERMINATE_ALL);
126 }
127}
128
129static void *disk_thread_main(void *data)
130{
131 fio_mutex_up(startup_mutex);
132
133 while (threads) {
134 usleep(DISK_UTIL_MSEC * 1000);
135 if (!threads)
136 break;
137 update_io_ticks();
138 print_thread_status();
139 }
140
141 return NULL;
142}
143
144static int create_disk_util_thread(void)
145{
146 int ret;
147
148 ret = pthread_create(&disk_util_thread, NULL, disk_thread_main, NULL);
149 if (ret) {
150 log_err("Can't create disk util thread: %s\n", strerror(ret));
151 return 1;
152 }
153
154 ret = pthread_detach(disk_util_thread);
155 if (ret) {
156 log_err("Can't detatch disk util thread: %s\n", strerror(ret));
157 return 1;
158 }
159
160 dprint(FD_MUTEX, "wait on startup_mutex\n");
161 fio_mutex_down(startup_mutex);
162 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
163 return 0;
164}
165
166static void set_sig_handlers(void)
167{
168 struct sigaction act;
169
170 memset(&act, 0, sizeof(act));
171 act.sa_handler = sig_int;
172 act.sa_flags = SA_RESTART;
173 sigaction(SIGINT, &act, NULL);
174
175 memset(&act, 0, sizeof(act));
176 act.sa_handler = sig_int;
177 act.sa_flags = SA_RESTART;
178 sigaction(SIGTERM, &act, NULL);
179}
180
181/*
182 * Check if we are above the minimum rate given.
183 */
184static int __check_min_rate(struct thread_data *td, struct timeval *now,
185 enum fio_ddir ddir)
186{
187 unsigned long long bytes = 0;
188 unsigned long iops = 0;
189 unsigned long spent;
190 unsigned long rate;
191 unsigned int ratemin = 0;
192 unsigned int rate_iops = 0;
193 unsigned int rate_iops_min = 0;
194
195 assert(ddir_rw(ddir));
196
197 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
198 return 0;
199
200 /*
201 * allow a 2 second settle period in the beginning
202 */
203 if (mtime_since(&td->start, now) < 2000)
204 return 0;
205
206 iops += td->io_blocks[ddir];
207 bytes += td->this_io_bytes[ddir];
208 ratemin += td->o.ratemin[ddir];
209 rate_iops += td->o.rate_iops[ddir];
210 rate_iops_min += td->o.rate_iops_min[ddir];
211
212 /*
213 * if rate blocks is set, sample is running
214 */
215 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
216 spent = mtime_since(&td->lastrate[ddir], now);
217 if (spent < td->o.ratecycle)
218 return 0;
219
220 if (td->o.rate[ddir]) {
221 /*
222 * check bandwidth specified rate
223 */
224 if (bytes < td->rate_bytes[ddir]) {
225 log_err("%s: min rate %u not met\n", td->o.name,
226 ratemin);
227 return 1;
228 } else {
229 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
230 if (rate < ratemin ||
231 bytes < td->rate_bytes[ddir]) {
232 log_err("%s: min rate %u not met, got"
233 " %luKB/sec\n", td->o.name,
234 ratemin, rate);
235 return 1;
236 }
237 }
238 } else {
239 /*
240 * checks iops specified rate
241 */
242 if (iops < rate_iops) {
243 log_err("%s: min iops rate %u not met\n",
244 td->o.name, rate_iops);
245 return 1;
246 } else {
247 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
248 if (rate < rate_iops_min ||
249 iops < td->rate_blocks[ddir]) {
250 log_err("%s: min iops rate %u not met,"
251 " got %lu\n", td->o.name,
252 rate_iops_min, rate);
253 }
254 }
255 }
256 }
257
258 td->rate_bytes[ddir] = bytes;
259 td->rate_blocks[ddir] = iops;
260 memcpy(&td->lastrate[ddir], now, sizeof(*now));
261 return 0;
262}
263
264static int check_min_rate(struct thread_data *td, struct timeval *now,
265 unsigned long *bytes_done)
266{
267 int ret = 0;
268
269 if (bytes_done[0])
270 ret |= __check_min_rate(td, now, 0);
271 if (bytes_done[1])
272 ret |= __check_min_rate(td, now, 1);
273
274 return ret;
275}
276
277static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
278{
279 if (!td->o.timeout)
280 return 0;
281 if (mtime_since(&td->epoch, t) >= td->o.timeout * 1000)
282 return 1;
283
284 return 0;
285}
286
287/*
288 * When job exits, we can cancel the in-flight IO if we are using async
289 * io. Attempt to do so.
290 */
291static void cleanup_pending_aio(struct thread_data *td)
292{
293 struct flist_head *entry, *n;
294 struct io_u *io_u;
295 int r;
296
297 /*
298 * get immediately available events, if any
299 */
300 r = io_u_queued_complete(td, 0, NULL);
301 if (r < 0)
302 return;
303
304 /*
305 * now cancel remaining active events
306 */
307 if (td->io_ops->cancel) {
308 flist_for_each_safe(entry, n, &td->io_u_busylist) {
309 io_u = flist_entry(entry, struct io_u, list);
310
311 /*
312 * if the io_u isn't in flight, then that generally
313 * means someone leaked an io_u. complain but fix
314 * it up, so we don't stall here.
315 */
316 if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
317 log_err("fio: non-busy IO on busy list\n");
318 put_io_u(td, io_u);
319 } else {
320 r = td->io_ops->cancel(td, io_u);
321 if (!r)
322 put_io_u(td, io_u);
323 }
324 }
325 }
326
327 if (td->cur_depth)
328 r = io_u_queued_complete(td, td->cur_depth, NULL);
329}
330
331/*
332 * Helper to handle the final sync of a file. Works just like the normal
333 * io path, just does everything sync.
334 */
335static int fio_io_sync(struct thread_data *td, struct fio_file *f)
336{
337 struct io_u *io_u = __get_io_u(td);
338 int ret;
339
340 if (!io_u)
341 return 1;
342
343 io_u->ddir = DDIR_SYNC;
344 io_u->file = f;
345
346 if (td_io_prep(td, io_u)) {
347 put_io_u(td, io_u);
348 return 1;
349 }
350
351requeue:
352 ret = td_io_queue(td, io_u);
353 if (ret < 0) {
354 td_verror(td, io_u->error, "td_io_queue");
355 put_io_u(td, io_u);
356 return 1;
357 } else if (ret == FIO_Q_QUEUED) {
358 if (io_u_queued_complete(td, 1, NULL) < 0)
359 return 1;
360 } else if (ret == FIO_Q_COMPLETED) {
361 if (io_u->error) {
362 td_verror(td, io_u->error, "td_io_queue");
363 return 1;
364 }
365
366 if (io_u_sync_complete(td, io_u, NULL) < 0)
367 return 1;
368 } else if (ret == FIO_Q_BUSY) {
369 if (td_io_commit(td))
370 return 1;
371 goto requeue;
372 }
373
374 return 0;
375}
376
377static inline void __update_tv_cache(struct thread_data *td)
378{
379 fio_gettime(&td->tv_cache, NULL);
380}
381
382static inline void update_tv_cache(struct thread_data *td)
383{
384 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
385 __update_tv_cache(td);
386}
387
388static int break_on_this_error(struct thread_data *td, int *retptr)
389{
390 int ret = *retptr;
391
392 if (ret < 0 || td->error) {
393 int err;
394
395 if (!td->o.continue_on_error)
396 return 1;
397
398 if (ret < 0)
399 err = -ret;
400 else
401 err = td->error;
402
403 if (td_non_fatal_error(err)) {
404 /*
405 * Continue with the I/Os in case of
406 * a non fatal error.
407 */
408 update_error_count(td, err);
409 td_clear_error(td);
410 *retptr = 0;
411 return 0;
412 } else if (td->o.fill_device && err == ENOSPC) {
413 /*
414 * We expect to hit this error if
415 * fill_device option is set.
416 */
417 td_clear_error(td);
418 td->terminate = 1;
419 return 1;
420 } else {
421 /*
422 * Stop the I/O in case of a fatal
423 * error.
424 */
425 update_error_count(td, err);
426 return 1;
427 }
428 }
429
430 return 0;
431}
432
433/*
434 * The main verify engine. Runs over the writes we previously submitted,
435 * reads the blocks back in, and checks the crc/md5 of the data.
436 */
437static void do_verify(struct thread_data *td)
438{
439 struct fio_file *f;
440 struct io_u *io_u;
441 int ret, min_events;
442 unsigned int i;
443
444 dprint(FD_VERIFY, "starting loop\n");
445
446 /*
447 * sync io first and invalidate cache, to make sure we really
448 * read from disk.
449 */
450 for_each_file(td, f, i) {
451 if (!fio_file_open(f))
452 continue;
453 if (fio_io_sync(td, f))
454 break;
455 if (file_invalidate_cache(td, f))
456 break;
457 }
458
459 if (td->error)
460 return;
461
462 td_set_runstate(td, TD_VERIFYING);
463
464 io_u = NULL;
465 while (!td->terminate) {
466 int ret2, full;
467
468 update_tv_cache(td);
469
470 if (runtime_exceeded(td, &td->tv_cache)) {
471 __update_tv_cache(td);
472 if (runtime_exceeded(td, &td->tv_cache)) {
473 td->terminate = 1;
474 break;
475 }
476 }
477
478 io_u = __get_io_u(td);
479 if (!io_u)
480 break;
481
482 if (get_next_verify(td, io_u)) {
483 put_io_u(td, io_u);
484 break;
485 }
486
487 if (td_io_prep(td, io_u)) {
488 put_io_u(td, io_u);
489 break;
490 }
491
492 if (td->o.verify_async)
493 io_u->end_io = verify_io_u_async;
494 else
495 io_u->end_io = verify_io_u;
496
497 ret = td_io_queue(td, io_u);
498 switch (ret) {
499 case FIO_Q_COMPLETED:
500 if (io_u->error) {
501 ret = -io_u->error;
502 clear_io_u(td, io_u);
503 } else if (io_u->resid) {
504 int bytes = io_u->xfer_buflen - io_u->resid;
505
506 /*
507 * zero read, fail
508 */
509 if (!bytes) {
510 td_verror(td, EIO, "full resid");
511 put_io_u(td, io_u);
512 break;
513 }
514
515 io_u->xfer_buflen = io_u->resid;
516 io_u->xfer_buf += bytes;
517 io_u->offset += bytes;
518
519 if (ddir_rw(io_u->ddir))
520 td->ts.short_io_u[io_u->ddir]++;
521
522 f = io_u->file;
523 if (io_u->offset == f->real_file_size)
524 goto sync_done;
525
526 requeue_io_u(td, &io_u);
527 } else {
528sync_done:
529 ret = io_u_sync_complete(td, io_u, NULL);
530 if (ret < 0)
531 break;
532 }
533 continue;
534 case FIO_Q_QUEUED:
535 break;
536 case FIO_Q_BUSY:
537 requeue_io_u(td, &io_u);
538 ret2 = td_io_commit(td);
539 if (ret2 < 0)
540 ret = ret2;
541 break;
542 default:
543 assert(ret < 0);
544 td_verror(td, -ret, "td_io_queue");
545 break;
546 }
547
548 if (break_on_this_error(td, &ret))
549 break;
550
551 /*
552 * if we can queue more, do so. but check if there are
553 * completed io_u's first. Note that we can get BUSY even
554 * without IO queued, if the system is resource starved.
555 */
556 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
557 if (full || !td->o.iodepth_batch_complete) {
558 min_events = min(td->o.iodepth_batch_complete,
559 td->cur_depth);
560 if (full && !min_events && td->o.iodepth_batch_complete != 0)
561 min_events = 1;
562
563 do {
564 /*
565 * Reap required number of io units, if any,
566 * and do the verification on them through
567 * the callback handler
568 */
569 if (io_u_queued_complete(td, min_events, NULL) < 0) {
570 ret = -1;
571 break;
572 }
573 } while (full && (td->cur_depth > td->o.iodepth_low));
574 }
575 if (ret < 0)
576 break;
577 }
578
579 if (!td->error) {
580 min_events = td->cur_depth;
581
582 if (min_events)
583 ret = io_u_queued_complete(td, min_events, NULL);
584 } else
585 cleanup_pending_aio(td);
586
587 td_set_runstate(td, TD_RUNNING);
588
589 dprint(FD_VERIFY, "exiting loop\n");
590}
591
592/*
593 * Main IO worker function. It retrieves io_u's to process and queues
594 * and reaps them, checking for rate and errors along the way.
595 */
596static void do_io(struct thread_data *td)
597{
598 unsigned int i;
599 int ret = 0;
600
601 if (in_ramp_time(td))
602 td_set_runstate(td, TD_RAMP);
603 else
604 td_set_runstate(td, TD_RUNNING);
605
606 while ( (td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
607 (!flist_empty(&td->trim_list)) ||
608 ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->o.size) ) {
609 struct timeval comp_time;
610 unsigned long bytes_done[2] = { 0, 0 };
611 int min_evts = 0;
612 struct io_u *io_u;
613 int ret2, full;
614
615 if (td->terminate)
616 break;
617
618 update_tv_cache(td);
619
620 if (runtime_exceeded(td, &td->tv_cache)) {
621 __update_tv_cache(td);
622 if (runtime_exceeded(td, &td->tv_cache)) {
623 td->terminate = 1;
624 break;
625 }
626 }
627
628 io_u = get_io_u(td);
629 if (!io_u)
630 break;
631
632 /*
633 * Add verification end_io handler, if asked to verify
634 * a previously written file.
635 */
636 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
637 !td_rw(td)) {
638 if (td->o.verify_async)
639 io_u->end_io = verify_io_u_async;
640 else
641 io_u->end_io = verify_io_u;
642 td_set_runstate(td, TD_VERIFYING);
643 } else if (in_ramp_time(td))
644 td_set_runstate(td, TD_RAMP);
645 else
646 td_set_runstate(td, TD_RUNNING);
647
648 ret = td_io_queue(td, io_u);
649 switch (ret) {
650 case FIO_Q_COMPLETED:
651 if (io_u->error) {
652 ret = -io_u->error;
653 clear_io_u(td, io_u);
654 } else if (io_u->resid) {
655 int bytes = io_u->xfer_buflen - io_u->resid;
656 struct fio_file *f = io_u->file;
657
658 /*
659 * zero read, fail
660 */
661 if (!bytes) {
662 td_verror(td, EIO, "full resid");
663 put_io_u(td, io_u);
664 break;
665 }
666
667 io_u->xfer_buflen = io_u->resid;
668 io_u->xfer_buf += bytes;
669 io_u->offset += bytes;
670
671 if (ddir_rw(io_u->ddir))
672 td->ts.short_io_u[io_u->ddir]++;
673
674 if (io_u->offset == f->real_file_size)
675 goto sync_done;
676
677 requeue_io_u(td, &io_u);
678 } else {
679sync_done:
680 if (__should_check_rate(td, 0) ||
681 __should_check_rate(td, 1))
682 fio_gettime(&comp_time, NULL);
683
684 ret = io_u_sync_complete(td, io_u, bytes_done);
685 if (ret < 0)
686 break;
687 }
688 break;
689 case FIO_Q_QUEUED:
690 /*
691 * if the engine doesn't have a commit hook,
692 * the io_u is really queued. if it does have such
693 * a hook, it has to call io_u_queued() itself.
694 */
695 if (td->io_ops->commit == NULL)
696 io_u_queued(td, io_u);
697 break;
698 case FIO_Q_BUSY:
699 requeue_io_u(td, &io_u);
700 ret2 = td_io_commit(td);
701 if (ret2 < 0)
702 ret = ret2;
703 break;
704 default:
705 assert(ret < 0);
706 put_io_u(td, io_u);
707 break;
708 }
709
710 if (break_on_this_error(td, &ret))
711 break;
712
713 /*
714 * See if we need to complete some commands. Note that we
715 * can get BUSY even without IO queued, if the system is
716 * resource starved.
717 */
718 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
719 if (full || !td->o.iodepth_batch_complete) {
720 min_evts = min(td->o.iodepth_batch_complete,
721 td->cur_depth);
722 if (full && !min_evts && td->o.iodepth_batch_complete != 0)
723 min_evts = 1;
724
725 if (__should_check_rate(td, 0) ||
726 __should_check_rate(td, 1))
727 fio_gettime(&comp_time, NULL);
728
729 do {
730 ret = io_u_queued_complete(td, min_evts, bytes_done);
731 if (ret < 0)
732 break;
733
734 } while (full && (td->cur_depth > td->o.iodepth_low));
735 }
736
737 if (ret < 0)
738 break;
739 if (!(bytes_done[0] + bytes_done[1]))
740 continue;
741
742 if (!in_ramp_time(td) && should_check_rate(td, bytes_done)) {
743 if (check_min_rate(td, &comp_time, bytes_done)) {
744 if (exitall_on_terminate)
745 terminate_threads(td->groupid);
746 td_verror(td, EIO, "check_min_rate");
747 break;
748 }
749 }
750
751 if (td->o.thinktime) {
752 unsigned long long b;
753
754 b = td->io_blocks[0] + td->io_blocks[1];
755 if (!(b % td->o.thinktime_blocks)) {
756 int left;
757
758 if (td->o.thinktime_spin)
759 usec_spin(td->o.thinktime_spin);
760
761 left = td->o.thinktime - td->o.thinktime_spin;
762 if (left)
763 usec_sleep(td, left);
764 }
765 }
766 }
767
768 if (td->trim_entries)
769 printf("trim entries %ld\n", td->trim_entries);
770
771 if (td->o.fill_device && td->error == ENOSPC) {
772 td->error = 0;
773 td->terminate = 1;
774 }
775 if (!td->error) {
776 struct fio_file *f;
777
778 i = td->cur_depth;
779 if (i) {
780 ret = io_u_queued_complete(td, i, NULL);
781 if (td->o.fill_device && td->error == ENOSPC)
782 td->error = 0;
783 }
784
785 if (should_fsync(td) && td->o.end_fsync) {
786 td_set_runstate(td, TD_FSYNCING);
787
788 for_each_file(td, f, i) {
789 if (!fio_file_open(f))
790 continue;
791 fio_io_sync(td, f);
792 }
793 }
794 } else
795 cleanup_pending_aio(td);
796
797 /*
798 * stop job if we failed doing any IO
799 */
800 if ((td->this_io_bytes[0] + td->this_io_bytes[1]) == 0)
801 td->done = 1;
802}
803
804static void cleanup_io_u(struct thread_data *td)
805{
806 struct flist_head *entry, *n;
807 struct io_u *io_u;
808
809 flist_for_each_safe(entry, n, &td->io_u_freelist) {
810 io_u = flist_entry(entry, struct io_u, list);
811
812 flist_del(&io_u->list);
813 fio_memfree(io_u, sizeof(*io_u));
814 }
815
816 free_io_mem(td);
817}
818
819static int init_io_u(struct thread_data *td)
820{
821 struct io_u *io_u;
822 unsigned int max_bs;
823 int cl_align, i, max_units;
824 char *p;
825
826 max_units = td->o.iodepth;
827 max_bs = max(td->o.max_bs[DDIR_READ], td->o.max_bs[DDIR_WRITE]);
828 td->orig_buffer_size = (unsigned long long) max_bs
829 * (unsigned long long) max_units;
830
831 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
832 unsigned long bs;
833
834 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
835 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
836 }
837
838 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
839 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
840 return 1;
841 }
842
843 if (allocate_io_mem(td))
844 return 1;
845
846 if (td->o.odirect || td->o.mem_align ||
847 (td->io_ops->flags & FIO_RAWIO))
848 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
849 else
850 p = td->orig_buffer;
851
852 cl_align = os_cache_line_size();
853
854 for (i = 0; i < max_units; i++) {
855 void *ptr;
856
857 if (td->terminate)
858 return 1;
859
860 ptr = fio_memalign(cl_align, sizeof(*io_u));
861 if (!ptr) {
862 log_err("fio: unable to allocate aligned memory\n");
863 break;
864 }
865
866 io_u = ptr;
867 memset(io_u, 0, sizeof(*io_u));
868 INIT_FLIST_HEAD(&io_u->list);
869 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
870
871 if (!(td->io_ops->flags & FIO_NOIO)) {
872 io_u->buf = p + max_bs * i;
873 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
874
875 if (td_write(td) && !td->o.refill_buffers)
876 io_u_fill_buffer(td, io_u, max_bs);
877 else if (td_write(td) && td->o.verify_pattern_bytes) {
878 /*
879 * Fill the buffer with the pattern if we are
880 * going to be doing writes.
881 */
882 fill_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
883 }
884 }
885
886 io_u->index = i;
887 io_u->flags = IO_U_F_FREE;
888 flist_add(&io_u->list, &td->io_u_freelist);
889 }
890
891 return 0;
892}
893
894static int switch_ioscheduler(struct thread_data *td)
895{
896 char tmp[256], tmp2[128];
897 FILE *f;
898 int ret;
899
900 if (td->io_ops->flags & FIO_DISKLESSIO)
901 return 0;
902
903 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
904
905 f = fopen(tmp, "r+");
906 if (!f) {
907 if (errno == ENOENT) {
908 log_err("fio: os or kernel doesn't support IO scheduler"
909 " switching\n");
910 return 0;
911 }
912 td_verror(td, errno, "fopen iosched");
913 return 1;
914 }
915
916 /*
917 * Set io scheduler.
918 */
919 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
920 if (ferror(f) || ret != 1) {
921 td_verror(td, errno, "fwrite");
922 fclose(f);
923 return 1;
924 }
925
926 rewind(f);
927
928 /*
929 * Read back and check that the selected scheduler is now the default.
930 */
931 ret = fread(tmp, 1, sizeof(tmp), f);
932 if (ferror(f) || ret < 0) {
933 td_verror(td, errno, "fread");
934 fclose(f);
935 return 1;
936 }
937
938 sprintf(tmp2, "[%s]", td->o.ioscheduler);
939 if (!strstr(tmp, tmp2)) {
940 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
941 td_verror(td, EINVAL, "iosched_switch");
942 fclose(f);
943 return 1;
944 }
945
946 fclose(f);
947 return 0;
948}
949
950static int keep_running(struct thread_data *td)
951{
952 unsigned long long io_done;
953
954 if (td->done)
955 return 0;
956 if (td->o.time_based)
957 return 1;
958 if (td->o.loops) {
959 td->o.loops--;
960 return 1;
961 }
962
963 io_done = td->io_bytes[DDIR_READ] + td->io_bytes[DDIR_WRITE]
964 + td->io_skip_bytes;
965 if (io_done < td->o.size)
966 return 1;
967
968 return 0;
969}
970
971static void reset_io_counters(struct thread_data *td)
972{
973 td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
974 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
975 td->zone_bytes = 0;
976 td->rate_bytes[0] = td->rate_bytes[1] = 0;
977 td->rate_blocks[0] = td->rate_blocks[1] = 0;
978
979 td->last_was_sync = 0;
980
981 /*
982 * reset file done count if we are to start over
983 */
984 if (td->o.time_based || td->o.loops)
985 td->nr_done_files = 0;
986}
987
988void reset_all_stats(struct thread_data *td)
989{
990 struct timeval tv;
991 int i;
992
993 reset_io_counters(td);
994
995 for (i = 0; i < 2; i++) {
996 td->io_bytes[i] = 0;
997 td->io_blocks[i] = 0;
998 td->io_issues[i] = 0;
999 td->ts.total_io_u[i] = 0;
1000 }
1001
1002 fio_gettime(&tv, NULL);
1003 td->ts.runtime[0] = 0;
1004 td->ts.runtime[1] = 0;
1005 memcpy(&td->epoch, &tv, sizeof(tv));
1006 memcpy(&td->start, &tv, sizeof(tv));
1007}
1008
1009static void clear_io_state(struct thread_data *td)
1010{
1011 struct fio_file *f;
1012 unsigned int i;
1013
1014 reset_io_counters(td);
1015
1016 close_files(td);
1017 for_each_file(td, f, i)
1018 fio_file_clear_done(f);
1019
1020 /*
1021 * Set the same seed to get repeatable runs
1022 */
1023 td_fill_rand_seeds(td);
1024}
1025
1026static int exec_string(const char *string)
1027{
1028 int ret, newlen = strlen(string) + 1 + 8;
1029 char *str;
1030
1031 str = malloc(newlen);
1032 sprintf(str, "sh -c %s", string);
1033
1034 ret = system(str);
1035 if (ret == -1)
1036 log_err("fio: exec of cmd <%s> failed\n", str);
1037
1038 free(str);
1039 return ret;
1040}
1041
1042/*
1043 * Entry point for the thread based jobs. The process based jobs end up
1044 * here as well, after a little setup.
1045 */
1046static void *thread_main(void *data)
1047{
1048 unsigned long long elapsed;
1049 struct thread_data *td = data;
1050 pthread_condattr_t attr;
1051 int clear_state;
1052
1053 if (!td->o.use_thread) {
1054 setsid();
1055 td->pid = getpid();
1056 } else
1057 td->pid = gettid();
1058
1059 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1060
1061 INIT_FLIST_HEAD(&td->io_u_freelist);
1062 INIT_FLIST_HEAD(&td->io_u_busylist);
1063 INIT_FLIST_HEAD(&td->io_u_requeues);
1064 INIT_FLIST_HEAD(&td->io_log_list);
1065 INIT_FLIST_HEAD(&td->io_hist_list);
1066 INIT_FLIST_HEAD(&td->verify_list);
1067 INIT_FLIST_HEAD(&td->trim_list);
1068 pthread_mutex_init(&td->io_u_lock, NULL);
1069 td->io_hist_tree = RB_ROOT;
1070
1071 pthread_condattr_init(&attr);
1072 pthread_cond_init(&td->verify_cond, &attr);
1073 pthread_cond_init(&td->free_cond, &attr);
1074
1075 td_set_runstate(td, TD_INITIALIZED);
1076 dprint(FD_MUTEX, "up startup_mutex\n");
1077 fio_mutex_up(startup_mutex);
1078 dprint(FD_MUTEX, "wait on td->mutex\n");
1079 fio_mutex_down(td->mutex);
1080 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1081
1082 /*
1083 * the ->mutex mutex is now no longer used, close it to avoid
1084 * eating a file descriptor
1085 */
1086 fio_mutex_remove(td->mutex);
1087
1088 /*
1089 * A new gid requires privilege, so we need to do this before setting
1090 * the uid.
1091 */
1092 if (td->o.gid != -1U && setgid(td->o.gid)) {
1093 td_verror(td, errno, "setgid");
1094 goto err;
1095 }
1096 if (td->o.uid != -1U && setuid(td->o.uid)) {
1097 td_verror(td, errno, "setuid");
1098 goto err;
1099 }
1100
1101 /*
1102 * If we have a gettimeofday() thread, make sure we exclude that
1103 * thread from this job
1104 */
1105 if (td->o.gtod_cpu)
1106 fio_cpu_clear(&td->o.cpumask, td->o.gtod_cpu);
1107
1108 /*
1109 * Set affinity first, in case it has an impact on the memory
1110 * allocations.
1111 */
1112 if (td->o.cpumask_set && fio_setaffinity(td->pid, td->o.cpumask) == -1) {
1113 td_verror(td, errno, "cpu_set_affinity");
1114 goto err;
1115 }
1116
1117 /*
1118 * May alter parameters that init_io_u() will use, so we need to
1119 * do this first.
1120 */
1121 if (init_iolog(td))
1122 goto err;
1123
1124 if (init_io_u(td))
1125 goto err;
1126
1127 if (td->o.verify_async && verify_async_init(td))
1128 goto err;
1129
1130 if (td->ioprio_set) {
1131 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
1132 td_verror(td, errno, "ioprio_set");
1133 goto err;
1134 }
1135 }
1136
1137 if (td->o.cgroup_weight && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1138 goto err;
1139
1140 if (nice(td->o.nice) == -1) {
1141 td_verror(td, errno, "nice");
1142 goto err;
1143 }
1144
1145 if (td->o.ioscheduler && switch_ioscheduler(td))
1146 goto err;
1147
1148 if (!td->o.create_serialize && setup_files(td))
1149 goto err;
1150
1151 if (td_io_init(td))
1152 goto err;
1153
1154 if (init_random_map(td))
1155 goto err;
1156
1157 if (td->o.exec_prerun) {
1158 if (exec_string(td->o.exec_prerun))
1159 goto err;
1160 }
1161
1162 if (td->o.pre_read) {
1163 if (pre_read_files(td) < 0)
1164 goto err;
1165 }
1166
1167 fio_gettime(&td->epoch, NULL);
1168 getrusage(RUSAGE_SELF, &td->ts.ru_start);
1169
1170 clear_state = 0;
1171 while (keep_running(td)) {
1172 fio_gettime(&td->start, NULL);
1173 memcpy(&td->ts.stat_sample_time[0], &td->start,
1174 sizeof(td->start));
1175 memcpy(&td->ts.stat_sample_time[1], &td->start,
1176 sizeof(td->start));
1177 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1178
1179 if (td->o.ratemin[0] || td->o.ratemin[1])
1180 memcpy(&td->lastrate, &td->ts.stat_sample_time,
1181 sizeof(td->lastrate));
1182
1183 if (clear_state)
1184 clear_io_state(td);
1185
1186 prune_io_piece_log(td);
1187
1188 do_io(td);
1189
1190 clear_state = 1;
1191
1192 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1193 elapsed = utime_since_now(&td->start);
1194 td->ts.runtime[DDIR_READ] += elapsed;
1195 }
1196 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1197 elapsed = utime_since_now(&td->start);
1198 td->ts.runtime[DDIR_WRITE] += elapsed;
1199 }
1200
1201 if (td->error || td->terminate)
1202 break;
1203
1204 if (!td->o.do_verify ||
1205 td->o.verify == VERIFY_NONE ||
1206 (td->io_ops->flags & FIO_UNIDIR))
1207 continue;
1208
1209 clear_io_state(td);
1210
1211 fio_gettime(&td->start, NULL);
1212
1213 do_verify(td);
1214
1215 td->ts.runtime[DDIR_READ] += utime_since_now(&td->start);
1216
1217 if (td->error || td->terminate)
1218 break;
1219 }
1220
1221 update_rusage_stat(td);
1222 td->ts.runtime[0] = (td->ts.runtime[0] + 999) / 1000;
1223 td->ts.runtime[1] = (td->ts.runtime[1] + 999) / 1000;
1224 td->ts.total_run_time = mtime_since_now(&td->epoch);
1225 td->ts.io_bytes[0] = td->io_bytes[0];
1226 td->ts.io_bytes[1] = td->io_bytes[1];
1227
1228 fio_mutex_down(writeout_mutex);
1229 if (td->ts.bw_log) {
1230 if (td->o.bw_log_file) {
1231 finish_log_named(td, td->ts.bw_log,
1232 td->o.bw_log_file, "bw");
1233 } else
1234 finish_log(td, td->ts.bw_log, "bw");
1235 }
1236 if (td->ts.lat_log) {
1237 if (td->o.lat_log_file) {
1238 finish_log_named(td, td->ts.lat_log,
1239 td->o.lat_log_file, "lat");
1240 } else
1241 finish_log(td, td->ts.lat_log, "lat");
1242 }
1243 if (td->ts.slat_log) {
1244 if (td->o.lat_log_file) {
1245 finish_log_named(td, td->ts.slat_log,
1246 td->o.lat_log_file, "slat");
1247 } else
1248 finish_log(td, td->ts.slat_log, "slat");
1249 }
1250 if (td->ts.clat_log) {
1251 if (td->o.lat_log_file) {
1252 finish_log_named(td, td->ts.clat_log,
1253 td->o.lat_log_file, "clat");
1254 } else
1255 finish_log(td, td->ts.clat_log, "clat");
1256 }
1257 fio_mutex_up(writeout_mutex);
1258 if (td->o.exec_postrun)
1259 exec_string(td->o.exec_postrun);
1260
1261 if (exitall_on_terminate)
1262 terminate_threads(td->groupid);
1263
1264err:
1265 if (td->error)
1266 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1267 td->verror);
1268
1269 if (td->o.verify_async)
1270 verify_async_exit(td);
1271
1272 close_and_free_files(td);
1273 close_ioengine(td);
1274 cleanup_io_u(td);
1275 cgroup_shutdown(td, &cgroup_mnt);
1276
1277 if (td->o.cpumask_set) {
1278 int ret = fio_cpuset_exit(&td->o.cpumask);
1279
1280 td_verror(td, ret, "fio_cpuset_exit");
1281 }
1282
1283 /*
1284 * do this very late, it will log file closing as well
1285 */
1286 if (td->o.write_iolog_file)
1287 write_iolog_close(td);
1288
1289 options_mem_free(td);
1290 td_set_runstate(td, TD_EXITED);
1291 return (void *) (unsigned long) td->error;
1292}
1293
1294/*
1295 * We cannot pass the td data into a forked process, so attach the td and
1296 * pass it to the thread worker.
1297 */
1298static int fork_main(int shmid, int offset)
1299{
1300 struct thread_data *td;
1301 void *data, *ret;
1302
1303#ifndef __hpux
1304 data = shmat(shmid, NULL, 0);
1305 if (data == (void *) -1) {
1306 int __err = errno;
1307
1308 perror("shmat");
1309 return __err;
1310 }
1311#else
1312 /*
1313 * HP-UX inherits shm mappings?
1314 */
1315 data = threads;
1316#endif
1317
1318 td = data + offset * sizeof(struct thread_data);
1319 ret = thread_main(td);
1320 shmdt(data);
1321 return (int) (unsigned long) ret;
1322}
1323
1324/*
1325 * Run over the job map and reap the threads that have exited, if any.
1326 */
1327static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
1328{
1329 struct thread_data *td;
1330 int i, cputhreads, realthreads, pending, status, ret;
1331
1332 /*
1333 * reap exited threads (TD_EXITED -> TD_REAPED)
1334 */
1335 realthreads = pending = cputhreads = 0;
1336 for_each_td(td, i) {
1337 int flags = 0;
1338
1339 /*
1340 * ->io_ops is NULL for a thread that has closed its
1341 * io engine
1342 */
1343 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1344 cputhreads++;
1345 else
1346 realthreads++;
1347
1348 if (!td->pid) {
1349 pending++;
1350 continue;
1351 }
1352 if (td->runstate == TD_REAPED)
1353 continue;
1354 if (td->o.use_thread) {
1355 if (td->runstate == TD_EXITED) {
1356 td_set_runstate(td, TD_REAPED);
1357 goto reaped;
1358 }
1359 continue;
1360 }
1361
1362 flags = WNOHANG;
1363 if (td->runstate == TD_EXITED)
1364 flags = 0;
1365
1366 /*
1367 * check if someone quit or got killed in an unusual way
1368 */
1369 ret = waitpid(td->pid, &status, flags);
1370 if (ret < 0) {
1371 if (errno == ECHILD) {
1372 log_err("fio: pid=%d disappeared %d\n",
1373 (int) td->pid, td->runstate);
1374 td_set_runstate(td, TD_REAPED);
1375 goto reaped;
1376 }
1377 perror("waitpid");
1378 } else if (ret == td->pid) {
1379 if (WIFSIGNALED(status)) {
1380 int sig = WTERMSIG(status);
1381
1382 if (sig != SIGTERM)
1383 log_err("fio: pid=%d, got signal=%d\n",
1384 (int) td->pid, sig);
1385 td_set_runstate(td, TD_REAPED);
1386 goto reaped;
1387 }
1388 if (WIFEXITED(status)) {
1389 if (WEXITSTATUS(status) && !td->error)
1390 td->error = WEXITSTATUS(status);
1391
1392 td_set_runstate(td, TD_REAPED);
1393 goto reaped;
1394 }
1395 }
1396
1397 /*
1398 * thread is not dead, continue
1399 */
1400 pending++;
1401 continue;
1402reaped:
1403 (*nr_running)--;
1404 (*m_rate) -= (td->o.ratemin[0] + td->o.ratemin[1]);
1405 (*t_rate) -= (td->o.rate[0] + td->o.rate[1]);
1406 if (!td->pid)
1407 pending--;
1408
1409 if (td->error)
1410 exit_value++;
1411
1412 done_secs += mtime_since_now(&td->epoch) / 1000;
1413 }
1414
1415 if (*nr_running == cputhreads && !pending && realthreads)
1416 terminate_threads(TERMINATE_ALL);
1417}
1418
1419static void *gtod_thread_main(void *data)
1420{
1421 fio_mutex_up(startup_mutex);
1422
1423 /*
1424 * As long as we have jobs around, update the clock. It would be nice
1425 * to have some way of NOT hammering that CPU with gettimeofday(),
1426 * but I'm not sure what to use outside of a simple CPU nop to relax
1427 * it - we don't want to lose precision.
1428 */
1429 while (threads) {
1430 fio_gtod_update();
1431 nop;
1432 }
1433
1434 return NULL;
1435}
1436
1437static int fio_start_gtod_thread(void)
1438{
1439 pthread_attr_t attr;
1440 int ret;
1441
1442 pthread_attr_init(&attr);
1443 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1444 ret = pthread_create(&gtod_thread, &attr, gtod_thread_main, NULL);
1445 pthread_attr_destroy(&attr);
1446 if (ret) {
1447 log_err("Can't create gtod thread: %s\n", strerror(ret));
1448 return 1;
1449 }
1450
1451 ret = pthread_detach(gtod_thread);
1452 if (ret) {
1453 log_err("Can't detatch gtod thread: %s\n", strerror(ret));
1454 return 1;
1455 }
1456
1457 dprint(FD_MUTEX, "wait on startup_mutex\n");
1458 fio_mutex_down(startup_mutex);
1459 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1460 return 0;
1461}
1462
1463/*
1464 * Main function for kicking off and reaping jobs, as needed.
1465 */
1466static void run_threads(void)
1467{
1468 struct thread_data *td;
1469 unsigned long spent;
1470 int i, todo, nr_running, m_rate, t_rate, nr_started;
1471
1472 if (fio_pin_memory())
1473 return;
1474
1475 if (fio_gtod_offload && fio_start_gtod_thread())
1476 return;
1477
1478 if (!terse_output) {
1479 log_info("Starting ");
1480 if (nr_thread)
1481 log_info("%d thread%s", nr_thread,
1482 nr_thread > 1 ? "s" : "");
1483 if (nr_process) {
1484 if (nr_thread)
1485 printf(" and ");
1486 log_info("%d process%s", nr_process,
1487 nr_process > 1 ? "es" : "");
1488 }
1489 log_info("\n");
1490 fflush(stdout);
1491 }
1492
1493 set_sig_handlers();
1494
1495 todo = thread_number;
1496 nr_running = 0;
1497 nr_started = 0;
1498 m_rate = t_rate = 0;
1499
1500 for_each_td(td, i) {
1501 print_status_init(td->thread_number - 1);
1502
1503 if (!td->o.create_serialize) {
1504 init_disk_util(td);
1505 continue;
1506 }
1507
1508 /*
1509 * do file setup here so it happens sequentially,
1510 * we don't want X number of threads getting their
1511 * client data interspersed on disk
1512 */
1513 if (setup_files(td)) {
1514 exit_value++;
1515 if (td->error)
1516 log_err("fio: pid=%d, err=%d/%s\n",
1517 (int) td->pid, td->error, td->verror);
1518 td_set_runstate(td, TD_REAPED);
1519 todo--;
1520 } else {
1521 struct fio_file *f;
1522 unsigned int j;
1523
1524 /*
1525 * for sharing to work, each job must always open
1526 * its own files. so close them, if we opened them
1527 * for creation
1528 */
1529 for_each_file(td, f, j) {
1530 if (fio_file_open(f))
1531 td_io_close_file(td, f);
1532 }
1533 }
1534
1535 init_disk_util(td);
1536 }
1537
1538 set_genesis_time();
1539
1540 while (todo) {
1541 struct thread_data *map[REAL_MAX_JOBS];
1542 struct timeval this_start;
1543 int this_jobs = 0, left;
1544
1545 /*
1546 * create threads (TD_NOT_CREATED -> TD_CREATED)
1547 */
1548 for_each_td(td, i) {
1549 if (td->runstate != TD_NOT_CREATED)
1550 continue;
1551
1552 /*
1553 * never got a chance to start, killed by other
1554 * thread for some reason
1555 */
1556 if (td->terminate) {
1557 todo--;
1558 continue;
1559 }
1560
1561 if (td->o.start_delay) {
1562 spent = mtime_since_genesis();
1563
1564 if (td->o.start_delay * 1000 > spent)
1565 continue;
1566 }
1567
1568 if (td->o.stonewall && (nr_started || nr_running)) {
1569 dprint(FD_PROCESS, "%s: stonewall wait\n",
1570 td->o.name);
1571 break;
1572 }
1573
1574 /*
1575 * Set state to created. Thread will transition
1576 * to TD_INITIALIZED when it's done setting up.
1577 */
1578 td_set_runstate(td, TD_CREATED);
1579 map[this_jobs++] = td;
1580 nr_started++;
1581
1582 if (td->o.use_thread) {
1583 int ret;
1584
1585 dprint(FD_PROCESS, "will pthread_create\n");
1586 ret = pthread_create(&td->thread, NULL,
1587 thread_main, td);
1588 if (ret) {
1589 log_err("pthread_create: %s\n",
1590 strerror(ret));
1591 nr_started--;
1592 break;
1593 }
1594 ret = pthread_detach(td->thread);
1595 if (ret)
1596 log_err("pthread_detach: %s",
1597 strerror(ret));
1598 } else {
1599 pid_t pid;
1600 dprint(FD_PROCESS, "will fork\n");
1601 pid = fork();
1602 if (!pid) {
1603 int ret = fork_main(shm_id, i);
1604
1605 _exit(ret);
1606 } else if (i == fio_debug_jobno)
1607 *fio_debug_jobp = pid;
1608 }
1609 dprint(FD_MUTEX, "wait on startup_mutex\n");
1610 if (fio_mutex_down_timeout(startup_mutex, 10)) {
1611 log_err("fio: job startup hung? exiting.\n");
1612 terminate_threads(TERMINATE_ALL);
1613 fio_abort = 1;
1614 nr_started--;
1615 break;
1616 }
1617 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
1618 }
1619
1620 /*
1621 * Wait for the started threads to transition to
1622 * TD_INITIALIZED.
1623 */
1624 fio_gettime(&this_start, NULL);
1625 left = this_jobs;
1626 while (left && !fio_abort) {
1627 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1628 break;
1629
1630 usleep(100000);
1631
1632 for (i = 0; i < this_jobs; i++) {
1633 td = map[i];
1634 if (!td)
1635 continue;
1636 if (td->runstate == TD_INITIALIZED) {
1637 map[i] = NULL;
1638 left--;
1639 } else if (td->runstate >= TD_EXITED) {
1640 map[i] = NULL;
1641 left--;
1642 todo--;
1643 nr_running++; /* work-around... */
1644 }
1645 }
1646 }
1647
1648 if (left) {
1649 log_err("fio: %d jobs failed to start\n", left);
1650 for (i = 0; i < this_jobs; i++) {
1651 td = map[i];
1652 if (!td)
1653 continue;
1654 kill(td->pid, SIGTERM);
1655 }
1656 break;
1657 }
1658
1659 /*
1660 * start created threads (TD_INITIALIZED -> TD_RUNNING).
1661 */
1662 for_each_td(td, i) {
1663 if (td->runstate != TD_INITIALIZED)
1664 continue;
1665
1666 if (in_ramp_time(td))
1667 td_set_runstate(td, TD_RAMP);
1668 else
1669 td_set_runstate(td, TD_RUNNING);
1670 nr_running++;
1671 nr_started--;
1672 m_rate += td->o.ratemin[0] + td->o.ratemin[1];
1673 t_rate += td->o.rate[0] + td->o.rate[1];
1674 todo--;
1675 fio_mutex_up(td->mutex);
1676 }
1677
1678 reap_threads(&nr_running, &t_rate, &m_rate);
1679
1680 if (todo)
1681 usleep(100000);
1682 }
1683
1684 while (nr_running) {
1685 reap_threads(&nr_running, &t_rate, &m_rate);
1686 usleep(10000);
1687 }
1688
1689 update_io_ticks();
1690 fio_unpin_memory();
1691}
1692
1693int main(int argc, char *argv[])
1694{
1695 long ps;
1696
1697 sinit();
1698 init_rand(&__fio_rand_state);
1699
1700 /*
1701 * We need locale for number printing, if it isn't set then just
1702 * go with the US format.
1703 */
1704 if (!getenv("LC_NUMERIC"))
1705 setlocale(LC_NUMERIC, "en_US");
1706
1707 ps = sysconf(_SC_PAGESIZE);
1708 if (ps < 0) {
1709 log_err("Failed to get page size\n");
1710 return 1;
1711 }
1712
1713 page_size = ps;
1714 page_mask = ps - 1;
1715
1716 fio_keywords_init();
1717
1718 if (parse_options(argc, argv))
1719 return 1;
1720
1721 if (exec_profile && load_profile(exec_profile))
1722 return 1;
1723
1724 if (!thread_number)
1725 return 0;
1726
1727 if (write_bw_log) {
1728 setup_log(&agg_io_log[DDIR_READ]);
1729 setup_log(&agg_io_log[DDIR_WRITE]);
1730 }
1731
1732 startup_mutex = fio_mutex_init(0);
1733 if (startup_mutex == NULL)
1734 return 1;
1735 writeout_mutex = fio_mutex_init(1);
1736 if (writeout_mutex == NULL)
1737 return 1;
1738
1739 set_genesis_time();
1740 create_disk_util_thread();
1741
1742 cgroup_list = smalloc(sizeof(*cgroup_list));
1743 INIT_FLIST_HEAD(cgroup_list);
1744
1745 run_threads();
1746
1747 if (!fio_abort) {
1748 show_run_stats();
1749 if (write_bw_log) {
1750 __finish_log(agg_io_log[DDIR_READ], "agg-read_bw.log");
1751 __finish_log(agg_io_log[DDIR_WRITE],
1752 "agg-write_bw.log");
1753 }
1754 }
1755
1756 cgroup_kill(cgroup_list);
1757 sfree(cgroup_list);
1758 sfree(cgroup_mnt);
1759
1760 fio_mutex_remove(startup_mutex);
1761 fio_mutex_remove(writeout_mutex);
1762 return exit_value;
1763}