[PATCH] Get rid of FIO_INST_PREFIX
[fio.git] / fio.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <signal.h>
28#include <time.h>
29#include <assert.h>
30#include <sys/stat.h>
31#include <sys/wait.h>
32#include <sys/ipc.h>
33#include <sys/shm.h>
34#include <sys/ioctl.h>
35#include <sys/mman.h>
36
37#include "fio.h"
38#include "os.h"
39
40#define MASK (4095)
41
42#define ALIGN(buf) (char *) (((unsigned long) (buf) + MASK) & ~(MASK))
43
44int groupid = 0;
45int thread_number = 0;
46int shm_id = 0;
47int temp_stall_ts;
48
49static volatile int startup_sem;
50
51#define TERMINATE_ALL (-1)
52#define JOB_START_TIMEOUT (5 * 1000)
53
54static void terminate_threads(int group_id)
55{
56 struct thread_data *td;
57 int i;
58
59 for_each_td(td, i) {
60 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
61 td->terminate = 1;
62 td->start_delay = 0;
63 }
64 }
65}
66
67static void sig_handler(int sig)
68{
69 switch (sig) {
70 case SIGALRM:
71 update_io_ticks();
72 disk_util_timer_arm();
73 print_thread_status();
74 break;
75 default:
76 printf("\nfio: terminating on signal\n");
77 fflush(stdout);
78 terminate_threads(TERMINATE_ALL);
79 break;
80 }
81}
82
83/*
84 * Check if we are above the minimum rate given.
85 */
86static int check_min_rate(struct thread_data *td, struct timeval *now)
87{
88 unsigned long spent;
89 unsigned long rate;
90 int ddir = td->ddir;
91
92 /*
93 * allow a 2 second settle period in the beginning
94 */
95 if (mtime_since(&td->start, now) < 2000)
96 return 0;
97
98 /*
99 * if rate blocks is set, sample is running
100 */
101 if (td->rate_bytes) {
102 spent = mtime_since(&td->lastrate, now);
103 if (spent < td->ratecycle)
104 return 0;
105
106 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
107 if (rate < td->ratemin) {
108 fprintf(f_out, "%s: min rate %d not met, got %ldKiB/sec\n", td->name, td->ratemin, rate);
109 return 1;
110 }
111 }
112
113 td->rate_bytes = td->this_io_bytes[ddir];
114 memcpy(&td->lastrate, now, sizeof(*now));
115 return 0;
116}
117
118static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
119{
120 if (!td->timeout)
121 return 0;
122 if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
123 return 1;
124
125 return 0;
126}
127
128static inline void td_set_runstate(struct thread_data *td, int runstate)
129{
130 td->runstate = runstate;
131}
132
133static struct fio_file *get_next_file(struct thread_data *td)
134{
135 unsigned int old_next_file = td->next_file;
136 struct fio_file *f;
137
138 do {
139 f = &td->files[td->next_file];
140
141 td->next_file++;
142 if (td->next_file >= td->nr_files)
143 td->next_file = 0;
144
145 if (f->fd != -1)
146 break;
147
148 f = NULL;
149 } while (td->next_file != old_next_file);
150
151 return f;
152}
153
154/*
155 * When job exits, we can cancel the in-flight IO if we are using async
156 * io. Attempt to do so.
157 */
158static void cleanup_pending_aio(struct thread_data *td)
159{
160 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
161 struct list_head *entry, *n;
162 struct io_completion_data icd;
163 struct io_u *io_u;
164 int r;
165
166 /*
167 * get immediately available events, if any
168 */
169 r = td_io_getevents(td, 0, td->cur_depth, &ts);
170 if (r > 0) {
171 icd.nr = r;
172 ios_completed(td, &icd);
173 }
174
175 /*
176 * now cancel remaining active events
177 */
178 if (td->io_ops->cancel) {
179 list_for_each_safe(entry, n, &td->io_u_busylist) {
180 io_u = list_entry(entry, struct io_u, list);
181
182 r = td->io_ops->cancel(td, io_u);
183 if (!r)
184 put_io_u(td, io_u);
185 }
186 }
187
188 if (td->cur_depth) {
189 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
190 if (r > 0) {
191 icd.nr = r;
192 ios_completed(td, &icd);
193 }
194 }
195}
196
197/*
198 * Helper to handle the final sync of a file. Works just like the normal
199 * io path, just does everything sync.
200 */
201static int fio_io_sync(struct thread_data *td, struct fio_file *f)
202{
203 struct io_u *io_u = __get_io_u(td);
204 struct io_completion_data icd;
205 int ret;
206
207 if (!io_u)
208 return 1;
209
210 io_u->ddir = DDIR_SYNC;
211 io_u->file = f;
212
213 if (td_io_prep(td, io_u)) {
214 put_io_u(td, io_u);
215 return 1;
216 }
217
218 ret = td_io_queue(td, io_u);
219 if (ret) {
220 td_verror(td, io_u->error);
221 put_io_u(td, io_u);
222 return 1;
223 }
224
225 ret = td_io_getevents(td, 1, td->cur_depth, NULL);
226 if (ret < 0) {
227 td_verror(td, ret);
228 return 1;
229 }
230
231 icd.nr = ret;
232 ios_completed(td, &icd);
233 if (icd.error) {
234 td_verror(td, icd.error);
235 return 1;
236 }
237
238 return 0;
239}
240
241/*
242 * The main verify engine. Runs over the writes we previusly submitted,
243 * reads the blocks back in, and checks the crc/md5 of the data.
244 */
245void do_verify(struct thread_data *td)
246{
247 struct timeval t;
248 struct io_u *io_u, *v_io_u = NULL;
249 struct io_completion_data icd;
250 struct fio_file *f;
251 int ret, i;
252
253 /*
254 * sync io first and invalidate cache, to make sure we really
255 * read from disk.
256 */
257 for_each_file(td, f, i) {
258 fio_io_sync(td, f);
259 file_invalidate_cache(td, f);
260 }
261
262 td_set_runstate(td, TD_VERIFYING);
263
264 do {
265 if (td->terminate)
266 break;
267
268 gettimeofday(&t, NULL);
269 if (runtime_exceeded(td, &t))
270 break;
271
272 io_u = __get_io_u(td);
273 if (!io_u)
274 break;
275
276 if (get_next_verify(td, io_u)) {
277 put_io_u(td, io_u);
278 break;
279 }
280
281 f = get_next_file(td);
282 if (!f)
283 break;
284
285 io_u->file = f;
286
287 if (td_io_prep(td, io_u)) {
288 put_io_u(td, io_u);
289 break;
290 }
291
292 ret = td_io_queue(td, io_u);
293 if (ret) {
294 td_verror(td, io_u->error);
295 put_io_u(td, io_u);
296 break;
297 }
298
299 /*
300 * we have one pending to verify, do that while
301 * we are doing io on the next one
302 */
303 if (do_io_u_verify(td, &v_io_u))
304 break;
305
306 ret = td_io_getevents(td, 1, 1, NULL);
307 if (ret != 1) {
308 if (ret < 0)
309 td_verror(td, ret);
310 break;
311 }
312
313 v_io_u = td->io_ops->event(td, 0);
314 icd.nr = 1;
315 icd.error = 0;
316 io_completed(td, v_io_u, &icd);
317
318 if (icd.error) {
319 td_verror(td, icd.error);
320 put_io_u(td, v_io_u);
321 v_io_u = NULL;
322 break;
323 }
324
325 /*
326 * if we can't submit more io, we need to verify now
327 */
328 if (queue_full(td) && do_io_u_verify(td, &v_io_u))
329 break;
330
331 } while (1);
332
333 do_io_u_verify(td, &v_io_u);
334
335 if (td->cur_depth)
336 cleanup_pending_aio(td);
337
338 td_set_runstate(td, TD_RUNNING);
339}
340
341/*
342 * Not really an io thread, all it does is burn CPU cycles in the specified
343 * manner.
344 */
345static void do_cpuio(struct thread_data *td)
346{
347 struct timeval e;
348 int split = 100 / td->cpuload;
349 int i = 0;
350
351 while (!td->terminate) {
352 gettimeofday(&e, NULL);
353
354 if (runtime_exceeded(td, &e))
355 break;
356
357 if (!(i % split))
358 __usec_sleep(10000);
359 else
360 usec_sleep(td, 10000);
361
362 i++;
363 }
364}
365
366/*
367 * Main IO worker function. It retrieves io_u's to process and queues
368 * and reaps them, checking for rate and errors along the way.
369 */
370static void do_io(struct thread_data *td)
371{
372 struct io_completion_data icd;
373 struct timeval s, e;
374 unsigned long usec;
375 struct fio_file *f;
376 int i, ret = 0;
377
378 td_set_runstate(td, TD_RUNNING);
379
380 while (td->this_io_bytes[td->ddir] < td->io_size) {
381 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
382 struct timespec *timeout;
383 int min_evts = 0;
384 struct io_u *io_u;
385
386 if (td->terminate)
387 break;
388
389 f = get_next_file(td);
390 if (!f)
391 break;
392
393 io_u = get_io_u(td, f);
394 if (!io_u)
395 break;
396
397 memcpy(&s, &io_u->start_time, sizeof(s));
398
399 ret = td_io_queue(td, io_u);
400 if (ret) {
401 td_verror(td, io_u->error);
402 put_io_u(td, io_u);
403 break;
404 }
405
406 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
407
408 if (td->cur_depth < td->iodepth) {
409 timeout = &ts;
410 min_evts = 0;
411 } else {
412 timeout = NULL;
413 min_evts = 1;
414 }
415
416 ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
417 if (ret < 0) {
418 td_verror(td, ret);
419 break;
420 } else if (!ret)
421 continue;
422
423 icd.nr = ret;
424 ios_completed(td, &icd);
425 if (icd.error) {
426 td_verror(td, icd.error);
427 break;
428 }
429
430 /*
431 * the rate is batched for now, it should work for batches
432 * of completions except the very first one which may look
433 * a little bursty
434 */
435 gettimeofday(&e, NULL);
436 usec = utime_since(&s, &e);
437
438 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
439
440 if (check_min_rate(td, &e)) {
441 if (exitall_on_terminate)
442 terminate_threads(td->groupid);
443 td_verror(td, ENOMEM);
444 break;
445 }
446
447 if (runtime_exceeded(td, &e))
448 break;
449
450 if (td->thinktime)
451 usec_sleep(td, td->thinktime);
452 }
453
454 if (!td->error) {
455 if (td->cur_depth)
456 cleanup_pending_aio(td);
457
458 if (should_fsync(td) && td->end_fsync) {
459 td_set_runstate(td, TD_FSYNCING);
460 for_each_file(td, f, i)
461 fio_io_sync(td, f);
462 }
463 }
464}
465
466static void cleanup_io_u(struct thread_data *td)
467{
468 struct list_head *entry, *n;
469 struct io_u *io_u;
470
471 list_for_each_safe(entry, n, &td->io_u_freelist) {
472 io_u = list_entry(entry, struct io_u, list);
473
474 list_del(&io_u->list);
475 free(io_u);
476 }
477
478 free_io_mem(td);
479}
480
481/*
482 * "randomly" fill the buffer contents
483 */
484static void fill_rand_buf(struct io_u *io_u, int max_bs)
485{
486 int *ptr = io_u->buf;
487
488 while ((void *) ptr - io_u->buf < max_bs) {
489 *ptr = rand() * 0x9e370001;
490 ptr++;
491 }
492}
493
494static int init_io_u(struct thread_data *td)
495{
496 struct io_u *io_u;
497 unsigned int max_bs;
498 int i, max_units;
499 char *p;
500
501 if (td->io_ops->flags & FIO_CPUIO)
502 return 0;
503
504 if (td->io_ops->flags & FIO_SYNCIO)
505 max_units = 1;
506 else
507 max_units = td->iodepth;
508
509 max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
510 td->orig_buffer_size = max_bs * max_units + MASK;
511
512 if (allocate_io_mem(td))
513 return 1;
514
515 p = ALIGN(td->orig_buffer);
516 for (i = 0; i < max_units; i++) {
517 io_u = malloc(sizeof(*io_u));
518 memset(io_u, 0, sizeof(*io_u));
519 INIT_LIST_HEAD(&io_u->list);
520
521 io_u->buf = p + max_bs * i;
522 if (td_write(td) || td_rw(td))
523 fill_rand_buf(io_u, max_bs);
524
525 io_u->index = i;
526 list_add(&io_u->list, &td->io_u_freelist);
527 }
528
529 return 0;
530}
531
532static int switch_ioscheduler(struct thread_data *td)
533{
534 char tmp[256], tmp2[128];
535 FILE *f;
536 int ret;
537
538 if (td->io_ops->flags & FIO_CPUIO)
539 return 0;
540
541 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
542
543 f = fopen(tmp, "r+");
544 if (!f) {
545 td_verror(td, errno);
546 return 1;
547 }
548
549 /*
550 * Set io scheduler.
551 */
552 ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
553 if (ferror(f) || ret != 1) {
554 td_verror(td, errno);
555 fclose(f);
556 return 1;
557 }
558
559 rewind(f);
560
561 /*
562 * Read back and check that the selected scheduler is now the default.
563 */
564 ret = fread(tmp, 1, sizeof(tmp), f);
565 if (ferror(f) || ret < 0) {
566 td_verror(td, errno);
567 fclose(f);
568 return 1;
569 }
570
571 sprintf(tmp2, "[%s]", td->ioscheduler);
572 if (!strstr(tmp, tmp2)) {
573 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
574 td_verror(td, EINVAL);
575 fclose(f);
576 return 1;
577 }
578
579 fclose(f);
580 return 0;
581}
582
583static void clear_io_state(struct thread_data *td)
584{
585 struct fio_file *f;
586 int i;
587
588 td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
589 td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
590 td->zone_bytes = 0;
591
592 for_each_file(td, f, i) {
593 f->last_pos = 0;
594 if (td->io_ops->flags & FIO_SYNCIO)
595 lseek(f->fd, SEEK_SET, 0);
596
597 if (f->file_map)
598 memset(f->file_map, 0, f->num_maps * sizeof(long));
599 }
600}
601
602/*
603 * Entry point for the thread based jobs. The process based jobs end up
604 * here as well, after a little setup.
605 */
606static void *thread_main(void *data)
607{
608 struct thread_data *td = data;
609
610 if (!td->use_thread)
611 setsid();
612
613 td->pid = getpid();
614
615 INIT_LIST_HEAD(&td->io_u_freelist);
616 INIT_LIST_HEAD(&td->io_u_busylist);
617 INIT_LIST_HEAD(&td->io_hist_list);
618 INIT_LIST_HEAD(&td->io_log_list);
619
620 if (init_io_u(td))
621 goto err;
622
623 if (fio_setaffinity(td) == -1) {
624 td_verror(td, errno);
625 goto err;
626 }
627
628 if (td_io_init(td))
629 goto err;
630
631 if (init_iolog(td))
632 goto err;
633
634 if (td->ioprio) {
635 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
636 td_verror(td, errno);
637 goto err;
638 }
639 }
640
641 if (nice(td->nice) == -1) {
642 td_verror(td, errno);
643 goto err;
644 }
645
646 if (init_random_state(td))
647 goto err;
648
649 if (td->ioscheduler && switch_ioscheduler(td))
650 goto err;
651
652 td_set_runstate(td, TD_INITIALIZED);
653 fio_sem_up(&startup_sem);
654 fio_sem_down(&td->mutex);
655
656 if (!td->create_serialize && setup_files(td))
657 goto err;
658 if (open_files(td))
659 goto err;
660
661 gettimeofday(&td->epoch, NULL);
662
663 if (td->exec_prerun)
664 system(td->exec_prerun);
665
666 while (td->loops--) {
667 getrusage(RUSAGE_SELF, &td->ru_start);
668 gettimeofday(&td->start, NULL);
669 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
670
671 if (td->ratemin)
672 memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
673
674 clear_io_state(td);
675 prune_io_piece_log(td);
676
677 if (td->io_ops->flags & FIO_CPUIO)
678 do_cpuio(td);
679 else
680 do_io(td);
681
682 td->runtime[td->ddir] += mtime_since_now(&td->start);
683 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
684 td->runtime[td->ddir ^ 1] = td->runtime[td->ddir];
685
686 update_rusage_stat(td);
687
688 if (td->error || td->terminate)
689 break;
690
691 if (td->verify == VERIFY_NONE)
692 continue;
693
694 clear_io_state(td);
695 gettimeofday(&td->start, NULL);
696
697 do_verify(td);
698
699 td->runtime[DDIR_READ] += mtime_since_now(&td->start);
700
701 if (td->error || td->terminate)
702 break;
703 }
704
705 if (td->bw_log)
706 finish_log(td, td->bw_log, "bw");
707 if (td->slat_log)
708 finish_log(td, td->slat_log, "slat");
709 if (td->clat_log)
710 finish_log(td, td->clat_log, "clat");
711 if (td->write_iolog_file)
712 write_iolog_close(td);
713 if (td->exec_postrun)
714 system(td->exec_postrun);
715
716 if (exitall_on_terminate)
717 terminate_threads(td->groupid);
718
719err:
720 close_files(td);
721 close_ioengine(td);
722 cleanup_io_u(td);
723 td_set_runstate(td, TD_EXITED);
724 return NULL;
725
726}
727
728/*
729 * We cannot pass the td data into a forked process, so attach the td and
730 * pass it to the thread worker.
731 */
732static void *fork_main(int shmid, int offset)
733{
734 struct thread_data *td;
735 void *data;
736
737 data = shmat(shmid, NULL, 0);
738 if (data == (void *) -1) {
739 perror("shmat");
740 return NULL;
741 }
742
743 td = data + offset * sizeof(struct thread_data);
744 thread_main(td);
745 shmdt(data);
746 return NULL;
747}
748
749/*
750 * Run over the job map and reap the threads that have exited, if any.
751 */
752static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
753{
754 struct thread_data *td;
755 int i, cputhreads, pending;
756
757 /*
758 * reap exited threads (TD_EXITED -> TD_REAPED)
759 */
760 pending = cputhreads = 0;
761 for_each_td(td, i) {
762 /*
763 * ->io_ops is NULL for a thread that has closed its
764 * io engine
765 */
766 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
767 cputhreads++;
768
769 if (td->runstate != TD_EXITED) {
770 if (td->runstate < TD_RUNNING)
771 pending++;
772
773 continue;
774 }
775
776 td_set_runstate(td, TD_REAPED);
777
778 if (td->use_thread) {
779 long ret;
780
781 if (pthread_join(td->thread, (void *) &ret))
782 perror("thread_join");
783 } else
784 waitpid(td->pid, NULL, 0);
785
786 (*nr_running)--;
787 (*m_rate) -= td->ratemin;
788 (*t_rate) -= td->rate;
789 }
790
791 if (*nr_running == cputhreads && !pending)
792 terminate_threads(TERMINATE_ALL);
793}
794
795/*
796 * Main function for kicking off and reaping jobs, as needed.
797 */
798static void run_threads(void)
799{
800 struct thread_data *td;
801 unsigned long spent;
802 int i, todo, nr_running, m_rate, t_rate, nr_started;
803
804 if (fio_pin_memory())
805 return;
806
807 if (!terse_output) {
808 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
809 fflush(stdout);
810 }
811
812 signal(SIGINT, sig_handler);
813 signal(SIGALRM, sig_handler);
814
815 todo = thread_number;
816 nr_running = 0;
817 nr_started = 0;
818 m_rate = t_rate = 0;
819
820 for_each_td(td, i) {
821 print_status_init(td->thread_number - 1);
822
823 init_disk_util(td);
824
825 if (!td->create_serialize)
826 continue;
827
828 /*
829 * do file setup here so it happens sequentially,
830 * we don't want X number of threads getting their
831 * client data interspersed on disk
832 */
833 if (setup_files(td)) {
834 td_set_runstate(td, TD_REAPED);
835 todo--;
836 }
837 }
838
839 time_init();
840
841 while (todo) {
842 struct thread_data *map[MAX_JOBS];
843 struct timeval this_start;
844 int this_jobs = 0, left;
845
846 /*
847 * create threads (TD_NOT_CREATED -> TD_CREATED)
848 */
849 for_each_td(td, i) {
850 if (td->runstate != TD_NOT_CREATED)
851 continue;
852
853 /*
854 * never got a chance to start, killed by other
855 * thread for some reason
856 */
857 if (td->terminate) {
858 todo--;
859 continue;
860 }
861
862 if (td->start_delay) {
863 spent = mtime_since_genesis();
864
865 if (td->start_delay * 1000 > spent)
866 continue;
867 }
868
869 if (td->stonewall && (nr_started || nr_running))
870 break;
871
872 /*
873 * Set state to created. Thread will transition
874 * to TD_INITIALIZED when it's done setting up.
875 */
876 td_set_runstate(td, TD_CREATED);
877 map[this_jobs++] = td;
878 fio_sem_init(&startup_sem, 1);
879 nr_started++;
880
881 if (td->use_thread) {
882 if (pthread_create(&td->thread, NULL, thread_main, td)) {
883 perror("thread_create");
884 nr_started--;
885 }
886 } else {
887 if (fork())
888 fio_sem_down(&startup_sem);
889 else {
890 fork_main(shm_id, i);
891 exit(0);
892 }
893 }
894 }
895
896 /*
897 * Wait for the started threads to transition to
898 * TD_INITIALIZED.
899 */
900 gettimeofday(&this_start, NULL);
901 left = this_jobs;
902 while (left) {
903 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
904 break;
905
906 usleep(100000);
907
908 for (i = 0; i < this_jobs; i++) {
909 td = map[i];
910 if (!td)
911 continue;
912 if (td->runstate == TD_INITIALIZED) {
913 map[i] = NULL;
914 left--;
915 } else if (td->runstate >= TD_EXITED) {
916 map[i] = NULL;
917 left--;
918 todo--;
919 nr_running++; /* work-around... */
920 }
921 }
922 }
923
924 if (left) {
925 log_err("fio: %d jobs failed to start\n", left);
926 for (i = 0; i < this_jobs; i++) {
927 td = map[i];
928 if (!td)
929 continue;
930 kill(td->pid, SIGTERM);
931 }
932 break;
933 }
934
935 /*
936 * start created threads (TD_INITIALIZED -> TD_RUNNING).
937 */
938 for_each_td(td, i) {
939 if (td->runstate != TD_INITIALIZED)
940 continue;
941
942 td_set_runstate(td, TD_RUNNING);
943 nr_running++;
944 nr_started--;
945 m_rate += td->ratemin;
946 t_rate += td->rate;
947 todo--;
948 fio_sem_up(&td->mutex);
949 }
950
951 reap_threads(&nr_running, &t_rate, &m_rate);
952
953 if (todo)
954 usleep(100000);
955 }
956
957 while (nr_running) {
958 reap_threads(&nr_running, &t_rate, &m_rate);
959 usleep(10000);
960 }
961
962 update_io_ticks();
963 fio_unpin_memory();
964}
965
966int main(int argc, char *argv[])
967{
968 if (parse_options(argc, argv))
969 return 1;
970
971 if (!thread_number) {
972 log_err("Nothing to do\n");
973 return 1;
974 }
975
976 disk_util_timer_arm();
977
978 run_threads();
979 show_run_stats();
980
981 return 0;
982}