nanosecond: initial commit changing timeval to timespec
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define JOB_START_TIMEOUT (5 * 1000)
80
81static void sig_int(int sig)
82{
83 if (threads) {
84 if (is_backend)
85 fio_server_got_signal(sig);
86 else {
87 log_info("\nfio: terminating on signal %d\n", sig);
88 log_info_flush();
89 exit_value = 128;
90 }
91
92 fio_terminate_threads(TERMINATE_ALL);
93 }
94}
95
96void sig_show_status(int sig)
97{
98 show_running_run_stats();
99}
100
101static void set_sig_handlers(void)
102{
103 struct sigaction act;
104
105 memset(&act, 0, sizeof(act));
106 act.sa_handler = sig_int;
107 act.sa_flags = SA_RESTART;
108 sigaction(SIGINT, &act, NULL);
109
110 memset(&act, 0, sizeof(act));
111 act.sa_handler = sig_int;
112 act.sa_flags = SA_RESTART;
113 sigaction(SIGTERM, &act, NULL);
114
115/* Windows uses SIGBREAK as a quit signal from other applications */
116#ifdef WIN32
117 memset(&act, 0, sizeof(act));
118 act.sa_handler = sig_int;
119 act.sa_flags = SA_RESTART;
120 sigaction(SIGBREAK, &act, NULL);
121#endif
122
123 memset(&act, 0, sizeof(act));
124 act.sa_handler = sig_show_status;
125 act.sa_flags = SA_RESTART;
126 sigaction(SIGUSR1, &act, NULL);
127
128 if (is_backend) {
129 memset(&act, 0, sizeof(act));
130 act.sa_handler = sig_int;
131 act.sa_flags = SA_RESTART;
132 sigaction(SIGPIPE, &act, NULL);
133 }
134}
135
136/*
137 * Check if we are above the minimum rate given.
138 */
139static bool __check_min_rate(struct thread_data *td, struct timespec *now,
140 enum fio_ddir ddir)
141{
142 unsigned long long bytes = 0;
143 unsigned long iops = 0;
144 unsigned long spent;
145 unsigned long rate;
146 unsigned int ratemin = 0;
147 unsigned int rate_iops = 0;
148 unsigned int rate_iops_min = 0;
149
150 assert(ddir_rw(ddir));
151
152 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
153 return false;
154
155 /*
156 * allow a 2 second settle period in the beginning
157 */
158 if (mtime_since(&td->start, now) < 2000)
159 return false;
160
161 iops += td->this_io_blocks[ddir];
162 bytes += td->this_io_bytes[ddir];
163 ratemin += td->o.ratemin[ddir];
164 rate_iops += td->o.rate_iops[ddir];
165 rate_iops_min += td->o.rate_iops_min[ddir];
166
167 /*
168 * if rate blocks is set, sample is running
169 */
170 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
171 spent = mtime_since(&td->lastrate[ddir], now);
172 if (spent < td->o.ratecycle)
173 return false;
174
175 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
176 /*
177 * check bandwidth specified rate
178 */
179 if (bytes < td->rate_bytes[ddir]) {
180 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
181 td->o.name, ratemin, bytes);
182 return true;
183 } else {
184 if (spent)
185 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
186 else
187 rate = 0;
188
189 if (rate < ratemin ||
190 bytes < td->rate_bytes[ddir]) {
191 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
192 td->o.name, ratemin, rate);
193 return true;
194 }
195 }
196 } else {
197 /*
198 * checks iops specified rate
199 */
200 if (iops < rate_iops) {
201 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
202 td->o.name, rate_iops, iops);
203 return true;
204 } else {
205 if (spent)
206 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
207 else
208 rate = 0;
209
210 if (rate < rate_iops_min ||
211 iops < td->rate_blocks[ddir]) {
212 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
213 td->o.name, rate_iops_min, rate);
214 return true;
215 }
216 }
217 }
218 }
219
220 td->rate_bytes[ddir] = bytes;
221 td->rate_blocks[ddir] = iops;
222 memcpy(&td->lastrate[ddir], now, sizeof(*now));
223 return false;
224}
225
226static bool check_min_rate(struct thread_data *td, struct timespec *now)
227{
228 bool ret = false;
229
230 if (td->bytes_done[DDIR_READ])
231 ret |= __check_min_rate(td, now, DDIR_READ);
232 if (td->bytes_done[DDIR_WRITE])
233 ret |= __check_min_rate(td, now, DDIR_WRITE);
234 if (td->bytes_done[DDIR_TRIM])
235 ret |= __check_min_rate(td, now, DDIR_TRIM);
236
237 return ret;
238}
239
240/*
241 * When job exits, we can cancel the in-flight IO if we are using async
242 * io. Attempt to do so.
243 */
244static void cleanup_pending_aio(struct thread_data *td)
245{
246 int r;
247
248 /*
249 * get immediately available events, if any
250 */
251 r = io_u_queued_complete(td, 0);
252 if (r < 0)
253 return;
254
255 /*
256 * now cancel remaining active events
257 */
258 if (td->io_ops->cancel) {
259 struct io_u *io_u;
260 int i;
261
262 io_u_qiter(&td->io_u_all, io_u, i) {
263 if (io_u->flags & IO_U_F_FLIGHT) {
264 r = td->io_ops->cancel(td, io_u);
265 if (!r)
266 put_io_u(td, io_u);
267 }
268 }
269 }
270
271 if (td->cur_depth)
272 r = io_u_queued_complete(td, td->cur_depth);
273}
274
275/*
276 * Helper to handle the final sync of a file. Works just like the normal
277 * io path, just does everything sync.
278 */
279static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
280{
281 struct io_u *io_u = __get_io_u(td);
282 int ret;
283
284 if (!io_u)
285 return true;
286
287 io_u->ddir = DDIR_SYNC;
288 io_u->file = f;
289
290 if (td_io_prep(td, io_u)) {
291 put_io_u(td, io_u);
292 return true;
293 }
294
295requeue:
296 ret = td_io_queue(td, io_u);
297 if (ret < 0) {
298 td_verror(td, io_u->error, "td_io_queue");
299 put_io_u(td, io_u);
300 return true;
301 } else if (ret == FIO_Q_QUEUED) {
302 if (td_io_commit(td))
303 return true;
304 if (io_u_queued_complete(td, 1) < 0)
305 return true;
306 } else if (ret == FIO_Q_COMPLETED) {
307 if (io_u->error) {
308 td_verror(td, io_u->error, "td_io_queue");
309 return true;
310 }
311
312 if (io_u_sync_complete(td, io_u) < 0)
313 return true;
314 } else if (ret == FIO_Q_BUSY) {
315 if (td_io_commit(td))
316 return true;
317 goto requeue;
318 }
319
320 return false;
321}
322
323static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
324{
325 int ret;
326
327 if (fio_file_open(f))
328 return fio_io_sync(td, f);
329
330 if (td_io_open_file(td, f))
331 return 1;
332
333 ret = fio_io_sync(td, f);
334 td_io_close_file(td, f);
335 return ret;
336}
337
338static inline void __update_ts_cache(struct thread_data *td)
339{
340 fio_gettime(&td->ts_cache, NULL);
341}
342
343static inline void update_ts_cache(struct thread_data *td)
344{
345 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
346 __update_ts_cache(td);
347}
348
349static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
350{
351 if (in_ramp_time(td))
352 return false;
353 if (!td->o.timeout)
354 return false;
355 if (utime_since(&td->epoch, t) >= td->o.timeout)
356 return true;
357
358 return false;
359}
360
361/*
362 * We need to update the runtime consistently in ms, but keep a running
363 * tally of the current elapsed time in microseconds for sub millisecond
364 * updates.
365 */
366static inline void update_runtime(struct thread_data *td,
367 unsigned long long *elapsed_us,
368 const enum fio_ddir ddir)
369{
370 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
371 return;
372
373 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
374 elapsed_us[ddir] += utime_since_now(&td->start);
375 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
376}
377
378static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
379 int *retptr)
380{
381 int ret = *retptr;
382
383 if (ret < 0 || td->error) {
384 int err = td->error;
385 enum error_type_bit eb;
386
387 if (ret < 0)
388 err = -ret;
389
390 eb = td_error_type(ddir, err);
391 if (!(td->o.continue_on_error & (1 << eb)))
392 return true;
393
394 if (td_non_fatal_error(td, eb, err)) {
395 /*
396 * Continue with the I/Os in case of
397 * a non fatal error.
398 */
399 update_error_count(td, err);
400 td_clear_error(td);
401 *retptr = 0;
402 return false;
403 } else if (td->o.fill_device && err == ENOSPC) {
404 /*
405 * We expect to hit this error if
406 * fill_device option is set.
407 */
408 td_clear_error(td);
409 fio_mark_td_terminate(td);
410 return true;
411 } else {
412 /*
413 * Stop the I/O in case of a fatal
414 * error.
415 */
416 update_error_count(td, err);
417 return true;
418 }
419 }
420
421 return false;
422}
423
424static void check_update_rusage(struct thread_data *td)
425{
426 if (td->update_rusage) {
427 td->update_rusage = 0;
428 update_rusage_stat(td);
429 fio_mutex_up(td->rusage_sem);
430 }
431}
432
433static int wait_for_completions(struct thread_data *td, struct timespec *time)
434{
435 const int full = queue_full(td);
436 int min_evts = 0;
437 int ret;
438
439 if (td->flags & TD_F_REGROW_LOGS)
440 return io_u_quiesce(td);
441
442 /*
443 * if the queue is full, we MUST reap at least 1 event
444 */
445 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
446 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
447 min_evts = 1;
448
449 if (time && (__should_check_rate(td, DDIR_READ) ||
450 __should_check_rate(td, DDIR_WRITE) ||
451 __should_check_rate(td, DDIR_TRIM)))
452 fio_gettime(time, NULL);
453
454 do {
455 ret = io_u_queued_complete(td, min_evts);
456 if (ret < 0)
457 break;
458 } while (full && (td->cur_depth > td->o.iodepth_low));
459
460 return ret;
461}
462
463int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
464 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
465 struct timespec *comp_time)
466{
467 int ret2;
468
469 switch (*ret) {
470 case FIO_Q_COMPLETED:
471 if (io_u->error) {
472 *ret = -io_u->error;
473 clear_io_u(td, io_u);
474 } else if (io_u->resid) {
475 int bytes = io_u->xfer_buflen - io_u->resid;
476 struct fio_file *f = io_u->file;
477
478 if (bytes_issued)
479 *bytes_issued += bytes;
480
481 if (!from_verify)
482 trim_io_piece(td, io_u);
483
484 /*
485 * zero read, fail
486 */
487 if (!bytes) {
488 if (!from_verify)
489 unlog_io_piece(td, io_u);
490 td_verror(td, EIO, "full resid");
491 put_io_u(td, io_u);
492 break;
493 }
494
495 io_u->xfer_buflen = io_u->resid;
496 io_u->xfer_buf += bytes;
497 io_u->offset += bytes;
498
499 if (ddir_rw(io_u->ddir))
500 td->ts.short_io_u[io_u->ddir]++;
501
502 f = io_u->file;
503 if (io_u->offset == f->real_file_size)
504 goto sync_done;
505
506 requeue_io_u(td, &io_u);
507 } else {
508sync_done:
509 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
510 __should_check_rate(td, DDIR_WRITE) ||
511 __should_check_rate(td, DDIR_TRIM)))
512 fio_gettime(comp_time, NULL);
513
514 *ret = io_u_sync_complete(td, io_u);
515 if (*ret < 0)
516 break;
517 }
518
519 if (td->flags & TD_F_REGROW_LOGS)
520 regrow_logs(td);
521
522 /*
523 * when doing I/O (not when verifying),
524 * check for any errors that are to be ignored
525 */
526 if (!from_verify)
527 break;
528
529 return 0;
530 case FIO_Q_QUEUED:
531 /*
532 * if the engine doesn't have a commit hook,
533 * the io_u is really queued. if it does have such
534 * a hook, it has to call io_u_queued() itself.
535 */
536 if (td->io_ops->commit == NULL)
537 io_u_queued(td, io_u);
538 if (bytes_issued)
539 *bytes_issued += io_u->xfer_buflen;
540 break;
541 case FIO_Q_BUSY:
542 if (!from_verify)
543 unlog_io_piece(td, io_u);
544 requeue_io_u(td, &io_u);
545 ret2 = td_io_commit(td);
546 if (ret2 < 0)
547 *ret = ret2;
548 break;
549 default:
550 assert(*ret < 0);
551 td_verror(td, -(*ret), "td_io_queue");
552 break;
553 }
554
555 if (break_on_this_error(td, ddir, ret))
556 return 1;
557
558 return 0;
559}
560
561static inline bool io_in_polling(struct thread_data *td)
562{
563 return !td->o.iodepth_batch_complete_min &&
564 !td->o.iodepth_batch_complete_max;
565}
566/*
567 * Unlinks files from thread data fio_file structure
568 */
569static int unlink_all_files(struct thread_data *td)
570{
571 struct fio_file *f;
572 unsigned int i;
573 int ret = 0;
574
575 for_each_file(td, f, i) {
576 if (f->filetype != FIO_TYPE_FILE)
577 continue;
578 ret = td_io_unlink_file(td, f);
579 if (ret)
580 break;
581 }
582
583 if (ret)
584 td_verror(td, ret, "unlink_all_files");
585
586 return ret;
587}
588
589/*
590 * The main verify engine. Runs over the writes we previously submitted,
591 * reads the blocks back in, and checks the crc/md5 of the data.
592 */
593static void do_verify(struct thread_data *td, uint64_t verify_bytes)
594{
595 struct fio_file *f;
596 struct io_u *io_u;
597 int ret, min_events;
598 unsigned int i;
599
600 dprint(FD_VERIFY, "starting loop\n");
601
602 /*
603 * sync io first and invalidate cache, to make sure we really
604 * read from disk.
605 */
606 for_each_file(td, f, i) {
607 if (!fio_file_open(f))
608 continue;
609 if (fio_io_sync(td, f))
610 break;
611 if (file_invalidate_cache(td, f))
612 break;
613 }
614
615 check_update_rusage(td);
616
617 if (td->error)
618 return;
619
620 /*
621 * verify_state needs to be reset before verification
622 * proceeds so that expected random seeds match actual
623 * random seeds in headers. The main loop will reset
624 * all random number generators if randrepeat is set.
625 */
626 if (!td->o.rand_repeatable)
627 td_fill_verify_state_seed(td);
628
629 td_set_runstate(td, TD_VERIFYING);
630
631 io_u = NULL;
632 while (!td->terminate) {
633 enum fio_ddir ddir;
634 int full;
635
636 update_ts_cache(td);
637 check_update_rusage(td);
638
639 if (runtime_exceeded(td, &td->ts_cache)) {
640 __update_ts_cache(td);
641 if (runtime_exceeded(td, &td->ts_cache)) {
642 fio_mark_td_terminate(td);
643 break;
644 }
645 }
646
647 if (flow_threshold_exceeded(td))
648 continue;
649
650 if (!td->o.experimental_verify) {
651 io_u = __get_io_u(td);
652 if (!io_u)
653 break;
654
655 if (get_next_verify(td, io_u)) {
656 put_io_u(td, io_u);
657 break;
658 }
659
660 if (td_io_prep(td, io_u)) {
661 put_io_u(td, io_u);
662 break;
663 }
664 } else {
665 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
666 break;
667
668 while ((io_u = get_io_u(td)) != NULL) {
669 if (IS_ERR_OR_NULL(io_u)) {
670 io_u = NULL;
671 ret = FIO_Q_BUSY;
672 goto reap;
673 }
674
675 /*
676 * We are only interested in the places where
677 * we wrote or trimmed IOs. Turn those into
678 * reads for verification purposes.
679 */
680 if (io_u->ddir == DDIR_READ) {
681 /*
682 * Pretend we issued it for rwmix
683 * accounting
684 */
685 td->io_issues[DDIR_READ]++;
686 put_io_u(td, io_u);
687 continue;
688 } else if (io_u->ddir == DDIR_TRIM) {
689 io_u->ddir = DDIR_READ;
690 io_u_set(td, io_u, IO_U_F_TRIMMED);
691 break;
692 } else if (io_u->ddir == DDIR_WRITE) {
693 io_u->ddir = DDIR_READ;
694 break;
695 } else {
696 put_io_u(td, io_u);
697 continue;
698 }
699 }
700
701 if (!io_u)
702 break;
703 }
704
705 if (verify_state_should_stop(td, io_u)) {
706 put_io_u(td, io_u);
707 break;
708 }
709
710 if (td->o.verify_async)
711 io_u->end_io = verify_io_u_async;
712 else
713 io_u->end_io = verify_io_u;
714
715 ddir = io_u->ddir;
716 if (!td->o.disable_slat)
717 fio_gettime(&io_u->start_time, NULL);
718
719 ret = td_io_queue(td, io_u);
720
721 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
722 break;
723
724 /*
725 * if we can queue more, do so. but check if there are
726 * completed io_u's first. Note that we can get BUSY even
727 * without IO queued, if the system is resource starved.
728 */
729reap:
730 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
731 if (full || io_in_polling(td))
732 ret = wait_for_completions(td, NULL);
733
734 if (ret < 0)
735 break;
736 }
737
738 check_update_rusage(td);
739
740 if (!td->error) {
741 min_events = td->cur_depth;
742
743 if (min_events)
744 ret = io_u_queued_complete(td, min_events);
745 } else
746 cleanup_pending_aio(td);
747
748 td_set_runstate(td, TD_RUNNING);
749
750 dprint(FD_VERIFY, "exiting loop\n");
751}
752
753static bool exceeds_number_ios(struct thread_data *td)
754{
755 unsigned long long number_ios;
756
757 if (!td->o.number_ios)
758 return false;
759
760 number_ios = ddir_rw_sum(td->io_blocks);
761 number_ios += td->io_u_queued + td->io_u_in_flight;
762
763 return number_ios >= (td->o.number_ios * td->loops);
764}
765
766static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
767{
768 unsigned long long bytes, limit;
769
770 if (td_rw(td))
771 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
772 else if (td_write(td))
773 bytes = this_bytes[DDIR_WRITE];
774 else if (td_read(td))
775 bytes = this_bytes[DDIR_READ];
776 else
777 bytes = this_bytes[DDIR_TRIM];
778
779 if (td->o.io_size)
780 limit = td->o.io_size;
781 else
782 limit = td->o.size;
783
784 limit *= td->loops;
785 return bytes >= limit || exceeds_number_ios(td);
786}
787
788static bool io_issue_bytes_exceeded(struct thread_data *td)
789{
790 return io_bytes_exceeded(td, td->io_issue_bytes);
791}
792
793static bool io_complete_bytes_exceeded(struct thread_data *td)
794{
795 return io_bytes_exceeded(td, td->this_io_bytes);
796}
797
798/*
799 * used to calculate the next io time for rate control
800 *
801 */
802static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
803{
804 uint64_t secs, remainder, bps, bytes, iops;
805
806 assert(!(td->flags & TD_F_CHILD));
807 bytes = td->rate_io_issue_bytes[ddir];
808 bps = td->rate_bps[ddir];
809
810 if (td->o.rate_process == RATE_PROCESS_POISSON) {
811 uint64_t val;
812 iops = bps / td->o.bs[ddir];
813 val = (int64_t) (1000000 / iops) *
814 -logf(__rand_0_1(&td->poisson_state[ddir]));
815 if (val) {
816 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
817 (unsigned long long) 1000000 / val,
818 ddir);
819 }
820 td->last_usec[ddir] += val;
821 return td->last_usec[ddir];
822 } else if (bps) {
823 secs = bytes / bps;
824 remainder = bytes % bps;
825 return remainder * 1000000 / bps + secs * 1000000;
826 }
827
828 return 0;
829}
830
831/*
832 * Main IO worker function. It retrieves io_u's to process and queues
833 * and reaps them, checking for rate and errors along the way.
834 *
835 * Returns number of bytes written and trimmed.
836 */
837static void do_io(struct thread_data *td, uint64_t *bytes_done)
838{
839 unsigned int i;
840 int ret = 0;
841 uint64_t total_bytes, bytes_issued = 0;
842
843 for (i = 0; i < DDIR_RWDIR_CNT; i++)
844 bytes_done[i] = td->bytes_done[i];
845
846 if (in_ramp_time(td))
847 td_set_runstate(td, TD_RAMP);
848 else
849 td_set_runstate(td, TD_RUNNING);
850
851 lat_target_init(td);
852
853 total_bytes = td->o.size;
854 /*
855 * Allow random overwrite workloads to write up to io_size
856 * before starting verification phase as 'size' doesn't apply.
857 */
858 if (td_write(td) && td_random(td) && td->o.norandommap)
859 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
860 /*
861 * If verify_backlog is enabled, we'll run the verify in this
862 * handler as well. For that case, we may need up to twice the
863 * amount of bytes.
864 */
865 if (td->o.verify != VERIFY_NONE &&
866 (td_write(td) && td->o.verify_backlog))
867 total_bytes += td->o.size;
868
869 /* In trimwrite mode, each byte is trimmed and then written, so
870 * allow total_bytes to be twice as big */
871 if (td_trimwrite(td))
872 total_bytes += td->total_io_size;
873
874 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
875 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
876 td->o.time_based) {
877 struct timespec comp_time;
878 struct io_u *io_u;
879 int full;
880 enum fio_ddir ddir;
881
882 check_update_rusage(td);
883
884 if (td->terminate || td->done)
885 break;
886
887 update_ts_cache(td);
888
889 if (runtime_exceeded(td, &td->ts_cache)) {
890 __update_ts_cache(td);
891 if (runtime_exceeded(td, &td->ts_cache)) {
892 fio_mark_td_terminate(td);
893 break;
894 }
895 }
896
897 if (flow_threshold_exceeded(td))
898 continue;
899
900 /*
901 * Break if we exceeded the bytes. The exception is time
902 * based runs, but we still need to break out of the loop
903 * for those to run verification, if enabled.
904 */
905 if (bytes_issued >= total_bytes &&
906 (!td->o.time_based ||
907 (td->o.time_based && td->o.verify != VERIFY_NONE)))
908 break;
909
910 io_u = get_io_u(td);
911 if (IS_ERR_OR_NULL(io_u)) {
912 int err = PTR_ERR(io_u);
913
914 io_u = NULL;
915 if (err == -EBUSY) {
916 ret = FIO_Q_BUSY;
917 goto reap;
918 }
919 if (td->o.latency_target)
920 goto reap;
921 break;
922 }
923
924 ddir = io_u->ddir;
925
926 /*
927 * Add verification end_io handler if:
928 * - Asked to verify (!td_rw(td))
929 * - Or the io_u is from our verify list (mixed write/ver)
930 */
931 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
932 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
933
934 if (!td->o.verify_pattern_bytes) {
935 io_u->rand_seed = __rand(&td->verify_state);
936 if (sizeof(int) != sizeof(long *))
937 io_u->rand_seed *= __rand(&td->verify_state);
938 }
939
940 if (verify_state_should_stop(td, io_u)) {
941 put_io_u(td, io_u);
942 break;
943 }
944
945 if (td->o.verify_async)
946 io_u->end_io = verify_io_u_async;
947 else
948 io_u->end_io = verify_io_u;
949 td_set_runstate(td, TD_VERIFYING);
950 } else if (in_ramp_time(td))
951 td_set_runstate(td, TD_RAMP);
952 else
953 td_set_runstate(td, TD_RUNNING);
954
955 /*
956 * Always log IO before it's issued, so we know the specific
957 * order of it. The logged unit will track when the IO has
958 * completed.
959 */
960 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
961 td->o.do_verify &&
962 td->o.verify != VERIFY_NONE &&
963 !td->o.experimental_verify)
964 log_io_piece(td, io_u);
965
966 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
967 const unsigned long blen = io_u->xfer_buflen;
968 const enum fio_ddir ddir = acct_ddir(io_u);
969
970 if (td->error)
971 break;
972
973 workqueue_enqueue(&td->io_wq, &io_u->work);
974 ret = FIO_Q_QUEUED;
975
976 if (ddir_rw(ddir)) {
977 td->io_issues[ddir]++;
978 td->io_issue_bytes[ddir] += blen;
979 td->rate_io_issue_bytes[ddir] += blen;
980 }
981
982 if (should_check_rate(td))
983 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
984
985 } else {
986 ret = td_io_queue(td, io_u);
987
988 if (should_check_rate(td))
989 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
990
991 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
992 break;
993
994 /*
995 * See if we need to complete some commands. Note that
996 * we can get BUSY even without IO queued, if the
997 * system is resource starved.
998 */
999reap:
1000 full = queue_full(td) ||
1001 (ret == FIO_Q_BUSY && td->cur_depth);
1002 if (full || io_in_polling(td))
1003 ret = wait_for_completions(td, &comp_time);
1004 }
1005 if (ret < 0)
1006 break;
1007 if (!ddir_rw_sum(td->bytes_done) &&
1008 !td_ioengine_flagged(td, FIO_NOIO))
1009 continue;
1010
1011 if (!in_ramp_time(td) && should_check_rate(td)) {
1012 if (check_min_rate(td, &comp_time)) {
1013 if (exitall_on_terminate || td->o.exitall_error)
1014 fio_terminate_threads(td->groupid);
1015 td_verror(td, EIO, "check_min_rate");
1016 break;
1017 }
1018 }
1019 if (!in_ramp_time(td) && td->o.latency_target)
1020 lat_target_check(td);
1021
1022 if (td->o.thinktime) {
1023 unsigned long long b;
1024
1025 b = ddir_rw_sum(td->io_blocks);
1026 if (!(b % td->o.thinktime_blocks)) {
1027 int left;
1028
1029 io_u_quiesce(td);
1030
1031 if (td->o.thinktime_spin)
1032 usec_spin(td->o.thinktime_spin);
1033
1034 left = td->o.thinktime - td->o.thinktime_spin;
1035 if (left)
1036 usec_sleep(td, left);
1037 }
1038 }
1039 }
1040
1041 check_update_rusage(td);
1042
1043 if (td->trim_entries)
1044 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1045
1046 if (td->o.fill_device && td->error == ENOSPC) {
1047 td->error = 0;
1048 fio_mark_td_terminate(td);
1049 }
1050 if (!td->error) {
1051 struct fio_file *f;
1052
1053 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1054 workqueue_flush(&td->io_wq);
1055 i = 0;
1056 } else
1057 i = td->cur_depth;
1058
1059 if (i) {
1060 ret = io_u_queued_complete(td, i);
1061 if (td->o.fill_device && td->error == ENOSPC)
1062 td->error = 0;
1063 }
1064
1065 if (should_fsync(td) && td->o.end_fsync) {
1066 td_set_runstate(td, TD_FSYNCING);
1067
1068 for_each_file(td, f, i) {
1069 if (!fio_file_fsync(td, f))
1070 continue;
1071
1072 log_err("fio: end_fsync failed for file %s\n",
1073 f->file_name);
1074 }
1075 }
1076 } else
1077 cleanup_pending_aio(td);
1078
1079 /*
1080 * stop job if we failed doing any IO
1081 */
1082 if (!ddir_rw_sum(td->this_io_bytes))
1083 td->done = 1;
1084
1085 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1086 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1087}
1088
1089static void free_file_completion_logging(struct thread_data *td)
1090{
1091 struct fio_file *f;
1092 unsigned int i;
1093
1094 for_each_file(td, f, i) {
1095 if (!f->last_write_comp)
1096 break;
1097 sfree(f->last_write_comp);
1098 }
1099}
1100
1101static int init_file_completion_logging(struct thread_data *td,
1102 unsigned int depth)
1103{
1104 struct fio_file *f;
1105 unsigned int i;
1106
1107 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1108 return 0;
1109
1110 for_each_file(td, f, i) {
1111 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1112 if (!f->last_write_comp)
1113 goto cleanup;
1114 }
1115
1116 return 0;
1117
1118cleanup:
1119 free_file_completion_logging(td);
1120 log_err("fio: failed to alloc write comp data\n");
1121 return 1;
1122}
1123
1124static void cleanup_io_u(struct thread_data *td)
1125{
1126 struct io_u *io_u;
1127
1128 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1129
1130 if (td->io_ops->io_u_free)
1131 td->io_ops->io_u_free(td, io_u);
1132
1133 fio_memfree(io_u, sizeof(*io_u));
1134 }
1135
1136 free_io_mem(td);
1137
1138 io_u_rexit(&td->io_u_requeues);
1139 io_u_qexit(&td->io_u_freelist);
1140 io_u_qexit(&td->io_u_all);
1141
1142 free_file_completion_logging(td);
1143}
1144
1145static int init_io_u(struct thread_data *td)
1146{
1147 struct io_u *io_u;
1148 unsigned int max_bs, min_write;
1149 int cl_align, i, max_units;
1150 int data_xfer = 1, err;
1151 char *p;
1152
1153 max_units = td->o.iodepth;
1154 max_bs = td_max_bs(td);
1155 min_write = td->o.min_bs[DDIR_WRITE];
1156 td->orig_buffer_size = (unsigned long long) max_bs
1157 * (unsigned long long) max_units;
1158
1159 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1160 data_xfer = 0;
1161
1162 err = 0;
1163 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1164 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1165 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1166
1167 if (err) {
1168 log_err("fio: failed setting up IO queues\n");
1169 return 1;
1170 }
1171
1172 /*
1173 * if we may later need to do address alignment, then add any
1174 * possible adjustment here so that we don't cause a buffer
1175 * overflow later. this adjustment may be too much if we get
1176 * lucky and the allocator gives us an aligned address.
1177 */
1178 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1179 td_ioengine_flagged(td, FIO_RAWIO))
1180 td->orig_buffer_size += page_mask + td->o.mem_align;
1181
1182 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1183 unsigned long bs;
1184
1185 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1186 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1187 }
1188
1189 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1190 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1191 return 1;
1192 }
1193
1194 if (data_xfer && allocate_io_mem(td))
1195 return 1;
1196
1197 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1198 td_ioengine_flagged(td, FIO_RAWIO))
1199 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1200 else
1201 p = td->orig_buffer;
1202
1203 cl_align = os_cache_line_size();
1204
1205 for (i = 0; i < max_units; i++) {
1206 void *ptr;
1207
1208 if (td->terminate)
1209 return 1;
1210
1211 ptr = fio_memalign(cl_align, sizeof(*io_u));
1212 if (!ptr) {
1213 log_err("fio: unable to allocate aligned memory\n");
1214 break;
1215 }
1216
1217 io_u = ptr;
1218 memset(io_u, 0, sizeof(*io_u));
1219 INIT_FLIST_HEAD(&io_u->verify_list);
1220 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1221
1222 if (data_xfer) {
1223 io_u->buf = p;
1224 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1225
1226 if (td_write(td))
1227 io_u_fill_buffer(td, io_u, min_write, max_bs);
1228 if (td_write(td) && td->o.verify_pattern_bytes) {
1229 /*
1230 * Fill the buffer with the pattern if we are
1231 * going to be doing writes.
1232 */
1233 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1234 }
1235 }
1236
1237 io_u->index = i;
1238 io_u->flags = IO_U_F_FREE;
1239 io_u_qpush(&td->io_u_freelist, io_u);
1240
1241 /*
1242 * io_u never leaves this stack, used for iteration of all
1243 * io_u buffers.
1244 */
1245 io_u_qpush(&td->io_u_all, io_u);
1246
1247 if (td->io_ops->io_u_init) {
1248 int ret = td->io_ops->io_u_init(td, io_u);
1249
1250 if (ret) {
1251 log_err("fio: failed to init engine data: %d\n", ret);
1252 return 1;
1253 }
1254 }
1255
1256 p += max_bs;
1257 }
1258
1259 if (init_file_completion_logging(td, max_units))
1260 return 1;
1261
1262 return 0;
1263}
1264
1265/*
1266 * This function is Linux specific.
1267 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1268 */
1269static int switch_ioscheduler(struct thread_data *td)
1270{
1271#ifdef FIO_HAVE_IOSCHED_SWITCH
1272 char tmp[256], tmp2[128];
1273 FILE *f;
1274 int ret;
1275
1276 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1277 return 0;
1278
1279 assert(td->files && td->files[0]);
1280 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1281
1282 f = fopen(tmp, "r+");
1283 if (!f) {
1284 if (errno == ENOENT) {
1285 log_err("fio: os or kernel doesn't support IO scheduler"
1286 " switching\n");
1287 return 0;
1288 }
1289 td_verror(td, errno, "fopen iosched");
1290 return 1;
1291 }
1292
1293 /*
1294 * Set io scheduler.
1295 */
1296 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1297 if (ferror(f) || ret != 1) {
1298 td_verror(td, errno, "fwrite");
1299 fclose(f);
1300 return 1;
1301 }
1302
1303 rewind(f);
1304
1305 /*
1306 * Read back and check that the selected scheduler is now the default.
1307 */
1308 memset(tmp, 0, sizeof(tmp));
1309 ret = fread(tmp, sizeof(tmp), 1, f);
1310 if (ferror(f) || ret < 0) {
1311 td_verror(td, errno, "fread");
1312 fclose(f);
1313 return 1;
1314 }
1315 /*
1316 * either a list of io schedulers or "none\n" is expected.
1317 */
1318 tmp[strlen(tmp) - 1] = '\0';
1319
1320 /*
1321 * Write to "none" entry doesn't fail, so check the result here.
1322 */
1323 if (!strcmp(tmp, "none")) {
1324 log_err("fio: io scheduler is not tunable\n");
1325 fclose(f);
1326 return 0;
1327 }
1328
1329 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1330 if (!strstr(tmp, tmp2)) {
1331 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1332 td_verror(td, EINVAL, "iosched_switch");
1333 fclose(f);
1334 return 1;
1335 }
1336
1337 fclose(f);
1338 return 0;
1339#else
1340 return 0;
1341#endif
1342}
1343
1344static bool keep_running(struct thread_data *td)
1345{
1346 unsigned long long limit;
1347
1348 if (td->done)
1349 return false;
1350 if (td->o.time_based)
1351 return true;
1352 if (td->o.loops) {
1353 td->o.loops--;
1354 return true;
1355 }
1356 if (exceeds_number_ios(td))
1357 return false;
1358
1359 if (td->o.io_size)
1360 limit = td->o.io_size;
1361 else
1362 limit = td->o.size;
1363
1364 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1365 uint64_t diff;
1366
1367 /*
1368 * If the difference is less than the maximum IO size, we
1369 * are done.
1370 */
1371 diff = limit - ddir_rw_sum(td->io_bytes);
1372 if (diff < td_max_bs(td))
1373 return false;
1374
1375 if (fio_files_done(td) && !td->o.io_size)
1376 return false;
1377
1378 return true;
1379 }
1380
1381 return false;
1382}
1383
1384static int exec_string(struct thread_options *o, const char *string, const char *mode)
1385{
1386 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1387 int ret;
1388 char *str;
1389
1390 str = malloc(newlen);
1391 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1392
1393 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1394 ret = system(str);
1395 if (ret == -1)
1396 log_err("fio: exec of cmd <%s> failed\n", str);
1397
1398 free(str);
1399 return ret;
1400}
1401
1402/*
1403 * Dry run to compute correct state of numberio for verification.
1404 */
1405static uint64_t do_dry_run(struct thread_data *td)
1406{
1407 td_set_runstate(td, TD_RUNNING);
1408
1409 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1410 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1411 struct io_u *io_u;
1412 int ret;
1413
1414 if (td->terminate || td->done)
1415 break;
1416
1417 io_u = get_io_u(td);
1418 if (IS_ERR_OR_NULL(io_u))
1419 break;
1420
1421 io_u_set(td, io_u, IO_U_F_FLIGHT);
1422 io_u->error = 0;
1423 io_u->resid = 0;
1424 if (ddir_rw(acct_ddir(io_u)))
1425 td->io_issues[acct_ddir(io_u)]++;
1426 if (ddir_rw(io_u->ddir)) {
1427 io_u_mark_depth(td, 1);
1428 td->ts.total_io_u[io_u->ddir]++;
1429 }
1430
1431 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1432 td->o.do_verify &&
1433 td->o.verify != VERIFY_NONE &&
1434 !td->o.experimental_verify)
1435 log_io_piece(td, io_u);
1436
1437 ret = io_u_sync_complete(td, io_u);
1438 (void) ret;
1439 }
1440
1441 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1442}
1443
1444struct fork_data {
1445 struct thread_data *td;
1446 struct sk_out *sk_out;
1447};
1448
1449/*
1450 * Entry point for the thread based jobs. The process based jobs end up
1451 * here as well, after a little setup.
1452 */
1453static void *thread_main(void *data)
1454{
1455 struct fork_data *fd = data;
1456 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1457 struct thread_data *td = fd->td;
1458 struct thread_options *o = &td->o;
1459 struct sk_out *sk_out = fd->sk_out;
1460 uint64_t bytes_done[DDIR_RWDIR_CNT];
1461 int deadlock_loop_cnt;
1462 int clear_state;
1463 int ret;
1464
1465 sk_out_assign(sk_out);
1466 free(fd);
1467
1468 if (!o->use_thread) {
1469 setsid();
1470 td->pid = getpid();
1471 } else
1472 td->pid = gettid();
1473
1474 fio_local_clock_init(o->use_thread);
1475
1476 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1477
1478 if (is_backend)
1479 fio_server_send_start(td);
1480
1481 INIT_FLIST_HEAD(&td->io_log_list);
1482 INIT_FLIST_HEAD(&td->io_hist_list);
1483 INIT_FLIST_HEAD(&td->verify_list);
1484 INIT_FLIST_HEAD(&td->trim_list);
1485 INIT_FLIST_HEAD(&td->next_rand_list);
1486 td->io_hist_tree = RB_ROOT;
1487
1488 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1489 if (ret) {
1490 td_verror(td, ret, "mutex_cond_init_pshared");
1491 goto err;
1492 }
1493 ret = cond_init_pshared(&td->verify_cond);
1494 if (ret) {
1495 td_verror(td, ret, "mutex_cond_pshared");
1496 goto err;
1497 }
1498
1499 td_set_runstate(td, TD_INITIALIZED);
1500 dprint(FD_MUTEX, "up startup_mutex\n");
1501 fio_mutex_up(startup_mutex);
1502 dprint(FD_MUTEX, "wait on td->mutex\n");
1503 fio_mutex_down(td->mutex);
1504 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1505
1506 /*
1507 * A new gid requires privilege, so we need to do this before setting
1508 * the uid.
1509 */
1510 if (o->gid != -1U && setgid(o->gid)) {
1511 td_verror(td, errno, "setgid");
1512 goto err;
1513 }
1514 if (o->uid != -1U && setuid(o->uid)) {
1515 td_verror(td, errno, "setuid");
1516 goto err;
1517 }
1518
1519 /*
1520 * Do this early, we don't want the compress threads to be limited
1521 * to the same CPUs as the IO workers. So do this before we set
1522 * any potential CPU affinity
1523 */
1524 if (iolog_compress_init(td, sk_out))
1525 goto err;
1526
1527 /*
1528 * If we have a gettimeofday() thread, make sure we exclude that
1529 * thread from this job
1530 */
1531 if (o->gtod_cpu)
1532 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1533
1534 /*
1535 * Set affinity first, in case it has an impact on the memory
1536 * allocations.
1537 */
1538 if (fio_option_is_set(o, cpumask)) {
1539 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1540 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1541 if (!ret) {
1542 log_err("fio: no CPUs set\n");
1543 log_err("fio: Try increasing number of available CPUs\n");
1544 td_verror(td, EINVAL, "cpus_split");
1545 goto err;
1546 }
1547 }
1548 ret = fio_setaffinity(td->pid, o->cpumask);
1549 if (ret == -1) {
1550 td_verror(td, errno, "cpu_set_affinity");
1551 goto err;
1552 }
1553 }
1554
1555#ifdef CONFIG_LIBNUMA
1556 /* numa node setup */
1557 if (fio_option_is_set(o, numa_cpunodes) ||
1558 fio_option_is_set(o, numa_memnodes)) {
1559 struct bitmask *mask;
1560
1561 if (numa_available() < 0) {
1562 td_verror(td, errno, "Does not support NUMA API\n");
1563 goto err;
1564 }
1565
1566 if (fio_option_is_set(o, numa_cpunodes)) {
1567 mask = numa_parse_nodestring(o->numa_cpunodes);
1568 ret = numa_run_on_node_mask(mask);
1569 numa_free_nodemask(mask);
1570 if (ret == -1) {
1571 td_verror(td, errno, \
1572 "numa_run_on_node_mask failed\n");
1573 goto err;
1574 }
1575 }
1576
1577 if (fio_option_is_set(o, numa_memnodes)) {
1578 mask = NULL;
1579 if (o->numa_memnodes)
1580 mask = numa_parse_nodestring(o->numa_memnodes);
1581
1582 switch (o->numa_mem_mode) {
1583 case MPOL_INTERLEAVE:
1584 numa_set_interleave_mask(mask);
1585 break;
1586 case MPOL_BIND:
1587 numa_set_membind(mask);
1588 break;
1589 case MPOL_LOCAL:
1590 numa_set_localalloc();
1591 break;
1592 case MPOL_PREFERRED:
1593 numa_set_preferred(o->numa_mem_prefer_node);
1594 break;
1595 case MPOL_DEFAULT:
1596 default:
1597 break;
1598 }
1599
1600 if (mask)
1601 numa_free_nodemask(mask);
1602
1603 }
1604 }
1605#endif
1606
1607 if (fio_pin_memory(td))
1608 goto err;
1609
1610 /*
1611 * May alter parameters that init_io_u() will use, so we need to
1612 * do this first.
1613 */
1614 if (init_iolog(td))
1615 goto err;
1616
1617 if (init_io_u(td))
1618 goto err;
1619
1620 if (o->verify_async && verify_async_init(td))
1621 goto err;
1622
1623 if (fio_option_is_set(o, ioprio) ||
1624 fio_option_is_set(o, ioprio_class)) {
1625 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1626 if (ret == -1) {
1627 td_verror(td, errno, "ioprio_set");
1628 goto err;
1629 }
1630 }
1631
1632 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1633 goto err;
1634
1635 errno = 0;
1636 if (nice(o->nice) == -1 && errno != 0) {
1637 td_verror(td, errno, "nice");
1638 goto err;
1639 }
1640
1641 if (o->ioscheduler && switch_ioscheduler(td))
1642 goto err;
1643
1644 if (!o->create_serialize && setup_files(td))
1645 goto err;
1646
1647 if (td_io_init(td))
1648 goto err;
1649
1650 if (init_random_map(td))
1651 goto err;
1652
1653 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1654 goto err;
1655
1656 if (o->pre_read) {
1657 if (pre_read_files(td) < 0)
1658 goto err;
1659 }
1660
1661 fio_verify_init(td);
1662
1663 if (rate_submit_init(td, sk_out))
1664 goto err;
1665
1666 set_epoch_time(td, o->log_unix_epoch);
1667 fio_getrusage(&td->ru_start);
1668 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1669 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1670 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1671
1672 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1673 o->ratemin[DDIR_TRIM]) {
1674 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1675 sizeof(td->bw_sample_time));
1676 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1677 sizeof(td->bw_sample_time));
1678 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1679 sizeof(td->bw_sample_time));
1680 }
1681
1682 memset(bytes_done, 0, sizeof(bytes_done));
1683 clear_state = 0;
1684
1685 while (keep_running(td)) {
1686 uint64_t verify_bytes;
1687
1688 fio_gettime(&td->start, NULL);
1689 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1690
1691 if (clear_state) {
1692 clear_io_state(td, 0);
1693
1694 if (o->unlink_each_loop && unlink_all_files(td))
1695 break;
1696 }
1697
1698 prune_io_piece_log(td);
1699
1700 if (td->o.verify_only && td_write(td))
1701 verify_bytes = do_dry_run(td);
1702 else {
1703 do_io(td, bytes_done);
1704
1705 if (!ddir_rw_sum(bytes_done)) {
1706 fio_mark_td_terminate(td);
1707 verify_bytes = 0;
1708 } else {
1709 verify_bytes = bytes_done[DDIR_WRITE] +
1710 bytes_done[DDIR_TRIM];
1711 }
1712 }
1713
1714 /*
1715 * If we took too long to shut down, the main thread could
1716 * already consider us reaped/exited. If that happens, break
1717 * out and clean up.
1718 */
1719 if (td->runstate >= TD_EXITED)
1720 break;
1721
1722 clear_state = 1;
1723
1724 /*
1725 * Make sure we've successfully updated the rusage stats
1726 * before waiting on the stat mutex. Otherwise we could have
1727 * the stat thread holding stat mutex and waiting for
1728 * the rusage_sem, which would never get upped because
1729 * this thread is waiting for the stat mutex.
1730 */
1731 deadlock_loop_cnt = 0;
1732 do {
1733 check_update_rusage(td);
1734 if (!fio_mutex_down_trylock(stat_mutex))
1735 break;
1736 usleep(1000);
1737 if (deadlock_loop_cnt++ > 5000) {
1738 log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
1739 td->error = EDEADLK;
1740 goto err;
1741 }
1742 } while (1);
1743
1744 if (td_read(td) && td->io_bytes[DDIR_READ])
1745 update_runtime(td, elapsed_us, DDIR_READ);
1746 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1747 update_runtime(td, elapsed_us, DDIR_WRITE);
1748 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1749 update_runtime(td, elapsed_us, DDIR_TRIM);
1750 fio_gettime(&td->start, NULL);
1751 fio_mutex_up(stat_mutex);
1752
1753 if (td->error || td->terminate)
1754 break;
1755
1756 if (!o->do_verify ||
1757 o->verify == VERIFY_NONE ||
1758 td_ioengine_flagged(td, FIO_UNIDIR))
1759 continue;
1760
1761 clear_io_state(td, 0);
1762
1763 fio_gettime(&td->start, NULL);
1764
1765 do_verify(td, verify_bytes);
1766
1767 /*
1768 * See comment further up for why this is done here.
1769 */
1770 check_update_rusage(td);
1771
1772 fio_mutex_down(stat_mutex);
1773 update_runtime(td, elapsed_us, DDIR_READ);
1774 fio_gettime(&td->start, NULL);
1775 fio_mutex_up(stat_mutex);
1776
1777 if (td->error || td->terminate)
1778 break;
1779 }
1780
1781 /*
1782 * If td ended up with no I/O when it should have had,
1783 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1784 * (Are we not missing other flags that can be ignored ?)
1785 */
1786 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1787 !(td_ioengine_flagged(td, FIO_NOIO) ||
1788 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1789 log_err("%s: No I/O performed by %s, "
1790 "perhaps try --debug=io option for details?\n",
1791 td->o.name, td->io_ops->name);
1792
1793 td_set_runstate(td, TD_FINISHING);
1794
1795 update_rusage_stat(td);
1796 td->ts.total_run_time = mtime_since_now(&td->epoch);
1797 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1798 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1799 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1800
1801 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1802 (td->o.verify != VERIFY_NONE && td_write(td)))
1803 verify_save_state(td->thread_number);
1804
1805 fio_unpin_memory(td);
1806
1807 td_writeout_logs(td, true);
1808
1809 iolog_compress_exit(td);
1810 rate_submit_exit(td);
1811
1812 if (o->exec_postrun)
1813 exec_string(o, o->exec_postrun, (const char *)"postrun");
1814
1815 if (exitall_on_terminate || (o->exitall_error && td->error))
1816 fio_terminate_threads(td->groupid);
1817
1818err:
1819 if (td->error)
1820 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1821 td->verror);
1822
1823 if (o->verify_async)
1824 verify_async_exit(td);
1825
1826 close_and_free_files(td);
1827 cleanup_io_u(td);
1828 close_ioengine(td);
1829 cgroup_shutdown(td, &cgroup_mnt);
1830 verify_free_state(td);
1831
1832 if (td->zone_state_index) {
1833 int i;
1834
1835 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1836 free(td->zone_state_index[i]);
1837 free(td->zone_state_index);
1838 td->zone_state_index = NULL;
1839 }
1840
1841 if (fio_option_is_set(o, cpumask)) {
1842 ret = fio_cpuset_exit(&o->cpumask);
1843 if (ret)
1844 td_verror(td, ret, "fio_cpuset_exit");
1845 }
1846
1847 /*
1848 * do this very late, it will log file closing as well
1849 */
1850 if (o->write_iolog_file)
1851 write_iolog_close(td);
1852
1853 td_set_runstate(td, TD_EXITED);
1854
1855 /*
1856 * Do this last after setting our runstate to exited, so we
1857 * know that the stat thread is signaled.
1858 */
1859 check_update_rusage(td);
1860
1861 sk_out_drop();
1862 return (void *) (uintptr_t) td->error;
1863}
1864
1865/*
1866 * Run over the job map and reap the threads that have exited, if any.
1867 */
1868static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1869 uint64_t *m_rate)
1870{
1871 struct thread_data *td;
1872 unsigned int cputhreads, realthreads, pending;
1873 int i, status, ret;
1874
1875 /*
1876 * reap exited threads (TD_EXITED -> TD_REAPED)
1877 */
1878 realthreads = pending = cputhreads = 0;
1879 for_each_td(td, i) {
1880 int flags = 0;
1881
1882 /*
1883 * ->io_ops is NULL for a thread that has closed its
1884 * io engine
1885 */
1886 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1887 cputhreads++;
1888 else
1889 realthreads++;
1890
1891 if (!td->pid) {
1892 pending++;
1893 continue;
1894 }
1895 if (td->runstate == TD_REAPED)
1896 continue;
1897 if (td->o.use_thread) {
1898 if (td->runstate == TD_EXITED) {
1899 td_set_runstate(td, TD_REAPED);
1900 goto reaped;
1901 }
1902 continue;
1903 }
1904
1905 flags = WNOHANG;
1906 if (td->runstate == TD_EXITED)
1907 flags = 0;
1908
1909 /*
1910 * check if someone quit or got killed in an unusual way
1911 */
1912 ret = waitpid(td->pid, &status, flags);
1913 if (ret < 0) {
1914 if (errno == ECHILD) {
1915 log_err("fio: pid=%d disappeared %d\n",
1916 (int) td->pid, td->runstate);
1917 td->sig = ECHILD;
1918 td_set_runstate(td, TD_REAPED);
1919 goto reaped;
1920 }
1921 perror("waitpid");
1922 } else if (ret == td->pid) {
1923 if (WIFSIGNALED(status)) {
1924 int sig = WTERMSIG(status);
1925
1926 if (sig != SIGTERM && sig != SIGUSR2)
1927 log_err("fio: pid=%d, got signal=%d\n",
1928 (int) td->pid, sig);
1929 td->sig = sig;
1930 td_set_runstate(td, TD_REAPED);
1931 goto reaped;
1932 }
1933 if (WIFEXITED(status)) {
1934 if (WEXITSTATUS(status) && !td->error)
1935 td->error = WEXITSTATUS(status);
1936
1937 td_set_runstate(td, TD_REAPED);
1938 goto reaped;
1939 }
1940 }
1941
1942 /*
1943 * If the job is stuck, do a forceful timeout of it and
1944 * move on.
1945 */
1946 if (td->terminate &&
1947 td->runstate < TD_FSYNCING &&
1948 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1949 log_err("fio: job '%s' (state=%d) hasn't exited in "
1950 "%lu seconds, it appears to be stuck. Doing "
1951 "forceful exit of this job.\n",
1952 td->o.name, td->runstate,
1953 (unsigned long) time_since_now(&td->terminate_time));
1954 td_set_runstate(td, TD_REAPED);
1955 goto reaped;
1956 }
1957
1958 /*
1959 * thread is not dead, continue
1960 */
1961 pending++;
1962 continue;
1963reaped:
1964 (*nr_running)--;
1965 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1966 (*t_rate) -= ddir_rw_sum(td->o.rate);
1967 if (!td->pid)
1968 pending--;
1969
1970 if (td->error)
1971 exit_value++;
1972
1973 done_secs += mtime_since_now(&td->epoch) / 1000;
1974 profile_td_exit(td);
1975 }
1976
1977 if (*nr_running == cputhreads && !pending && realthreads)
1978 fio_terminate_threads(TERMINATE_ALL);
1979}
1980
1981static bool __check_trigger_file(void)
1982{
1983 struct stat sb;
1984
1985 if (!trigger_file)
1986 return false;
1987
1988 if (stat(trigger_file, &sb))
1989 return false;
1990
1991 if (unlink(trigger_file) < 0)
1992 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1993 strerror(errno));
1994
1995 return true;
1996}
1997
1998static bool trigger_timedout(void)
1999{
2000 if (trigger_timeout)
2001 return time_since_genesis() >= trigger_timeout;
2002
2003 return false;
2004}
2005
2006void exec_trigger(const char *cmd)
2007{
2008 int ret;
2009
2010 if (!cmd)
2011 return;
2012
2013 ret = system(cmd);
2014 if (ret == -1)
2015 log_err("fio: failed executing %s trigger\n", cmd);
2016}
2017
2018void check_trigger_file(void)
2019{
2020 if (__check_trigger_file() || trigger_timedout()) {
2021 if (nr_clients)
2022 fio_clients_send_trigger(trigger_remote_cmd);
2023 else {
2024 verify_save_state(IO_LIST_ALL);
2025 fio_terminate_threads(TERMINATE_ALL);
2026 exec_trigger(trigger_cmd);
2027 }
2028 }
2029}
2030
2031static int fio_verify_load_state(struct thread_data *td)
2032{
2033 int ret;
2034
2035 if (!td->o.verify_state)
2036 return 0;
2037
2038 if (is_backend) {
2039 void *data;
2040
2041 ret = fio_server_get_verify_state(td->o.name,
2042 td->thread_number - 1, &data);
2043 if (!ret)
2044 verify_assign_state(td, data);
2045 } else
2046 ret = verify_load_state(td, "local");
2047
2048 return ret;
2049}
2050
2051static void do_usleep(unsigned int usecs)
2052{
2053 check_for_running_stats();
2054 check_trigger_file();
2055 usleep(usecs);
2056}
2057
2058static bool check_mount_writes(struct thread_data *td)
2059{
2060 struct fio_file *f;
2061 unsigned int i;
2062
2063 if (!td_write(td) || td->o.allow_mounted_write)
2064 return false;
2065
2066 /*
2067 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2068 * are mkfs'd and mounted.
2069 */
2070 for_each_file(td, f, i) {
2071#ifdef FIO_HAVE_CHARDEV_SIZE
2072 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2073#else
2074 if (f->filetype != FIO_TYPE_BLOCK)
2075#endif
2076 continue;
2077 if (device_is_mounted(f->file_name))
2078 goto mounted;
2079 }
2080
2081 return false;
2082mounted:
2083 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2084 return true;
2085}
2086
2087static bool waitee_running(struct thread_data *me)
2088{
2089 const char *waitee = me->o.wait_for;
2090 const char *self = me->o.name;
2091 struct thread_data *td;
2092 int i;
2093
2094 if (!waitee)
2095 return false;
2096
2097 for_each_td(td, i) {
2098 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2099 continue;
2100
2101 if (td->runstate < TD_EXITED) {
2102 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2103 self, td->o.name,
2104 runstate_to_name(td->runstate));
2105 return true;
2106 }
2107 }
2108
2109 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2110 return false;
2111}
2112
2113/*
2114 * Main function for kicking off and reaping jobs, as needed.
2115 */
2116static void run_threads(struct sk_out *sk_out)
2117{
2118 struct thread_data *td;
2119 unsigned int i, todo, nr_running, nr_started;
2120 uint64_t m_rate, t_rate;
2121 uint64_t spent;
2122
2123 if (fio_gtod_offload && fio_start_gtod_thread())
2124 return;
2125
2126 fio_idle_prof_init();
2127
2128 set_sig_handlers();
2129
2130 nr_thread = nr_process = 0;
2131 for_each_td(td, i) {
2132 if (check_mount_writes(td))
2133 return;
2134 if (td->o.use_thread)
2135 nr_thread++;
2136 else
2137 nr_process++;
2138 }
2139
2140 if (output_format & FIO_OUTPUT_NORMAL) {
2141 log_info("Starting ");
2142 if (nr_thread)
2143 log_info("%d thread%s", nr_thread,
2144 nr_thread > 1 ? "s" : "");
2145 if (nr_process) {
2146 if (nr_thread)
2147 log_info(" and ");
2148 log_info("%d process%s", nr_process,
2149 nr_process > 1 ? "es" : "");
2150 }
2151 log_info("\n");
2152 log_info_flush();
2153 }
2154
2155 todo = thread_number;
2156 nr_running = 0;
2157 nr_started = 0;
2158 m_rate = t_rate = 0;
2159
2160 for_each_td(td, i) {
2161 print_status_init(td->thread_number - 1);
2162
2163 if (!td->o.create_serialize)
2164 continue;
2165
2166 if (fio_verify_load_state(td))
2167 goto reap;
2168
2169 /*
2170 * do file setup here so it happens sequentially,
2171 * we don't want X number of threads getting their
2172 * client data interspersed on disk
2173 */
2174 if (setup_files(td)) {
2175reap:
2176 exit_value++;
2177 if (td->error)
2178 log_err("fio: pid=%d, err=%d/%s\n",
2179 (int) td->pid, td->error, td->verror);
2180 td_set_runstate(td, TD_REAPED);
2181 todo--;
2182 } else {
2183 struct fio_file *f;
2184 unsigned int j;
2185
2186 /*
2187 * for sharing to work, each job must always open
2188 * its own files. so close them, if we opened them
2189 * for creation
2190 */
2191 for_each_file(td, f, j) {
2192 if (fio_file_open(f))
2193 td_io_close_file(td, f);
2194 }
2195 }
2196 }
2197
2198 /* start idle threads before io threads start to run */
2199 fio_idle_prof_start();
2200
2201 set_genesis_time();
2202
2203 while (todo) {
2204 struct thread_data *map[REAL_MAX_JOBS];
2205 struct timespec this_start;
2206 int this_jobs = 0, left;
2207 struct fork_data *fd;
2208
2209 /*
2210 * create threads (TD_NOT_CREATED -> TD_CREATED)
2211 */
2212 for_each_td(td, i) {
2213 if (td->runstate != TD_NOT_CREATED)
2214 continue;
2215
2216 /*
2217 * never got a chance to start, killed by other
2218 * thread for some reason
2219 */
2220 if (td->terminate) {
2221 todo--;
2222 continue;
2223 }
2224
2225 if (td->o.start_delay) {
2226 spent = utime_since_genesis();
2227
2228 if (td->o.start_delay > spent)
2229 continue;
2230 }
2231
2232 if (td->o.stonewall && (nr_started || nr_running)) {
2233 dprint(FD_PROCESS, "%s: stonewall wait\n",
2234 td->o.name);
2235 break;
2236 }
2237
2238 if (waitee_running(td)) {
2239 dprint(FD_PROCESS, "%s: waiting for %s\n",
2240 td->o.name, td->o.wait_for);
2241 continue;
2242 }
2243
2244 init_disk_util(td);
2245
2246 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2247 td->update_rusage = 0;
2248
2249 /*
2250 * Set state to created. Thread will transition
2251 * to TD_INITIALIZED when it's done setting up.
2252 */
2253 td_set_runstate(td, TD_CREATED);
2254 map[this_jobs++] = td;
2255 nr_started++;
2256
2257 fd = calloc(1, sizeof(*fd));
2258 fd->td = td;
2259 fd->sk_out = sk_out;
2260
2261 if (td->o.use_thread) {
2262 int ret;
2263
2264 dprint(FD_PROCESS, "will pthread_create\n");
2265 ret = pthread_create(&td->thread, NULL,
2266 thread_main, fd);
2267 if (ret) {
2268 log_err("pthread_create: %s\n",
2269 strerror(ret));
2270 free(fd);
2271 nr_started--;
2272 break;
2273 }
2274 ret = pthread_detach(td->thread);
2275 if (ret)
2276 log_err("pthread_detach: %s",
2277 strerror(ret));
2278 } else {
2279 pid_t pid;
2280 dprint(FD_PROCESS, "will fork\n");
2281 pid = fork();
2282 if (!pid) {
2283 int ret;
2284
2285 ret = (int)(uintptr_t)thread_main(fd);
2286 _exit(ret);
2287 } else if (i == fio_debug_jobno)
2288 *fio_debug_jobp = pid;
2289 }
2290 dprint(FD_MUTEX, "wait on startup_mutex\n");
2291 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2292 log_err("fio: job startup hung? exiting.\n");
2293 fio_terminate_threads(TERMINATE_ALL);
2294 fio_abort = 1;
2295 nr_started--;
2296 break;
2297 }
2298 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2299 }
2300
2301 /*
2302 * Wait for the started threads to transition to
2303 * TD_INITIALIZED.
2304 */
2305 fio_gettime(&this_start, NULL);
2306 left = this_jobs;
2307 while (left && !fio_abort) {
2308 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2309 break;
2310
2311 do_usleep(100000);
2312
2313 for (i = 0; i < this_jobs; i++) {
2314 td = map[i];
2315 if (!td)
2316 continue;
2317 if (td->runstate == TD_INITIALIZED) {
2318 map[i] = NULL;
2319 left--;
2320 } else if (td->runstate >= TD_EXITED) {
2321 map[i] = NULL;
2322 left--;
2323 todo--;
2324 nr_running++; /* work-around... */
2325 }
2326 }
2327 }
2328
2329 if (left) {
2330 log_err("fio: %d job%s failed to start\n", left,
2331 left > 1 ? "s" : "");
2332 for (i = 0; i < this_jobs; i++) {
2333 td = map[i];
2334 if (!td)
2335 continue;
2336 kill(td->pid, SIGTERM);
2337 }
2338 break;
2339 }
2340
2341 /*
2342 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2343 */
2344 for_each_td(td, i) {
2345 if (td->runstate != TD_INITIALIZED)
2346 continue;
2347
2348 if (in_ramp_time(td))
2349 td_set_runstate(td, TD_RAMP);
2350 else
2351 td_set_runstate(td, TD_RUNNING);
2352 nr_running++;
2353 nr_started--;
2354 m_rate += ddir_rw_sum(td->o.ratemin);
2355 t_rate += ddir_rw_sum(td->o.rate);
2356 todo--;
2357 fio_mutex_up(td->mutex);
2358 }
2359
2360 reap_threads(&nr_running, &t_rate, &m_rate);
2361
2362 if (todo)
2363 do_usleep(100000);
2364 }
2365
2366 while (nr_running) {
2367 reap_threads(&nr_running, &t_rate, &m_rate);
2368 do_usleep(10000);
2369 }
2370
2371 fio_idle_prof_stop();
2372
2373 update_io_ticks();
2374}
2375
2376static void free_disk_util(void)
2377{
2378 disk_util_prune_entries();
2379 helper_thread_destroy();
2380}
2381
2382int fio_backend(struct sk_out *sk_out)
2383{
2384 struct thread_data *td;
2385 int i;
2386
2387 if (exec_profile) {
2388 if (load_profile(exec_profile))
2389 return 1;
2390 free(exec_profile);
2391 exec_profile = NULL;
2392 }
2393 if (!thread_number)
2394 return 0;
2395
2396 if (write_bw_log) {
2397 struct log_params p = {
2398 .log_type = IO_LOG_TYPE_BW,
2399 };
2400
2401 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2402 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2403 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2404 }
2405
2406 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2407 if (startup_mutex == NULL)
2408 return 1;
2409
2410 set_genesis_time();
2411 stat_init();
2412 helper_thread_create(startup_mutex, sk_out);
2413
2414 cgroup_list = smalloc(sizeof(*cgroup_list));
2415 INIT_FLIST_HEAD(cgroup_list);
2416
2417 run_threads(sk_out);
2418
2419 helper_thread_exit();
2420
2421 if (!fio_abort) {
2422 __show_run_stats();
2423 if (write_bw_log) {
2424 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2425 struct io_log *log = agg_io_log[i];
2426
2427 flush_log(log, false);
2428 free_log(log);
2429 }
2430 }
2431 }
2432
2433 for_each_td(td, i) {
2434 if (td->ss.dur) {
2435 if (td->ss.iops_data != NULL) {
2436 free(td->ss.iops_data);
2437 free(td->ss.bw_data);
2438 }
2439 }
2440 fio_options_free(td);
2441 if (td->rusage_sem) {
2442 fio_mutex_remove(td->rusage_sem);
2443 td->rusage_sem = NULL;
2444 }
2445 fio_mutex_remove(td->mutex);
2446 td->mutex = NULL;
2447 }
2448
2449 free_disk_util();
2450 cgroup_kill(cgroup_list);
2451 sfree(cgroup_list);
2452 sfree(cgroup_mnt);
2453
2454 fio_mutex_remove(startup_mutex);
2455 stat_exit();
2456 return exit_value;
2457}