Make it possible to limit the number of open zones
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22 *
23 */
24#include <unistd.h>
25#include <string.h>
26#include <signal.h>
27#include <assert.h>
28#include <inttypes.h>
29#include <sys/stat.h>
30#include <sys/wait.h>
31#include <math.h>
32
33#include "fio.h"
34#include "smalloc.h"
35#include "verify.h"
36#include "diskutil.h"
37#include "cgroup.h"
38#include "profile.h"
39#include "lib/rand.h"
40#include "lib/memalign.h"
41#include "server.h"
42#include "lib/getrusage.h"
43#include "idletime.h"
44#include "err.h"
45#include "workqueue.h"
46#include "lib/mountcheck.h"
47#include "rate-submit.h"
48#include "helper_thread.h"
49#include "pshared.h"
50#include "zone-dist.h"
51
52static struct fio_sem *startup_sem;
53static struct flist_head *cgroup_list;
54static struct cgroup_mnt *cgroup_mnt;
55static int exit_value;
56static volatile int fio_abort;
57static unsigned int nr_process = 0;
58static unsigned int nr_thread = 0;
59
60struct io_log *agg_io_log[DDIR_RWDIR_CNT];
61
62int groupid = 0;
63unsigned int thread_number = 0;
64unsigned int stat_number = 0;
65int shm_id = 0;
66int temp_stall_ts;
67unsigned long done_secs = 0;
68
69#define JOB_START_TIMEOUT (5 * 1000)
70
71static void sig_int(int sig)
72{
73 if (threads) {
74 if (is_backend)
75 fio_server_got_signal(sig);
76 else {
77 log_info("\nfio: terminating on signal %d\n", sig);
78 log_info_flush();
79 exit_value = 128;
80 }
81
82 fio_terminate_threads(TERMINATE_ALL);
83 }
84}
85
86void sig_show_status(int sig)
87{
88 show_running_run_stats();
89}
90
91static void set_sig_handlers(void)
92{
93 struct sigaction act;
94
95 memset(&act, 0, sizeof(act));
96 act.sa_handler = sig_int;
97 act.sa_flags = SA_RESTART;
98 sigaction(SIGINT, &act, NULL);
99
100 memset(&act, 0, sizeof(act));
101 act.sa_handler = sig_int;
102 act.sa_flags = SA_RESTART;
103 sigaction(SIGTERM, &act, NULL);
104
105/* Windows uses SIGBREAK as a quit signal from other applications */
106#ifdef WIN32
107 memset(&act, 0, sizeof(act));
108 act.sa_handler = sig_int;
109 act.sa_flags = SA_RESTART;
110 sigaction(SIGBREAK, &act, NULL);
111#endif
112
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_show_status;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGUSR1, &act, NULL);
117
118 if (is_backend) {
119 memset(&act, 0, sizeof(act));
120 act.sa_handler = sig_int;
121 act.sa_flags = SA_RESTART;
122 sigaction(SIGPIPE, &act, NULL);
123 }
124}
125
126/*
127 * Check if we are above the minimum rate given.
128 */
129static bool __check_min_rate(struct thread_data *td, struct timespec *now,
130 enum fio_ddir ddir)
131{
132 unsigned long long bytes = 0;
133 unsigned long iops = 0;
134 unsigned long spent;
135 unsigned long rate;
136 unsigned int ratemin = 0;
137 unsigned int rate_iops = 0;
138 unsigned int rate_iops_min = 0;
139
140 assert(ddir_rw(ddir));
141
142 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
143 return false;
144
145 /*
146 * allow a 2 second settle period in the beginning
147 */
148 if (mtime_since(&td->start, now) < 2000)
149 return false;
150
151 iops += td->this_io_blocks[ddir];
152 bytes += td->this_io_bytes[ddir];
153 ratemin += td->o.ratemin[ddir];
154 rate_iops += td->o.rate_iops[ddir];
155 rate_iops_min += td->o.rate_iops_min[ddir];
156
157 /*
158 * if rate blocks is set, sample is running
159 */
160 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
161 spent = mtime_since(&td->lastrate[ddir], now);
162 if (spent < td->o.ratecycle)
163 return false;
164
165 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
166 /*
167 * check bandwidth specified rate
168 */
169 if (bytes < td->rate_bytes[ddir]) {
170 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
171 td->o.name, ratemin, bytes);
172 return true;
173 } else {
174 if (spent)
175 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
176 else
177 rate = 0;
178
179 if (rate < ratemin ||
180 bytes < td->rate_bytes[ddir]) {
181 log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
182 td->o.name, ratemin, rate);
183 return true;
184 }
185 }
186 } else {
187 /*
188 * checks iops specified rate
189 */
190 if (iops < rate_iops) {
191 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
192 td->o.name, rate_iops, iops);
193 return true;
194 } else {
195 if (spent)
196 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
197 else
198 rate = 0;
199
200 if (rate < rate_iops_min ||
201 iops < td->rate_blocks[ddir]) {
202 log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
203 td->o.name, rate_iops_min, rate);
204 return true;
205 }
206 }
207 }
208 }
209
210 td->rate_bytes[ddir] = bytes;
211 td->rate_blocks[ddir] = iops;
212 memcpy(&td->lastrate[ddir], now, sizeof(*now));
213 return false;
214}
215
216static bool check_min_rate(struct thread_data *td, struct timespec *now)
217{
218 bool ret = false;
219
220 if (td->bytes_done[DDIR_READ])
221 ret |= __check_min_rate(td, now, DDIR_READ);
222 if (td->bytes_done[DDIR_WRITE])
223 ret |= __check_min_rate(td, now, DDIR_WRITE);
224 if (td->bytes_done[DDIR_TRIM])
225 ret |= __check_min_rate(td, now, DDIR_TRIM);
226
227 return ret;
228}
229
230/*
231 * When job exits, we can cancel the in-flight IO if we are using async
232 * io. Attempt to do so.
233 */
234static void cleanup_pending_aio(struct thread_data *td)
235{
236 int r;
237
238 /*
239 * get immediately available events, if any
240 */
241 r = io_u_queued_complete(td, 0);
242 if (r < 0)
243 return;
244
245 /*
246 * now cancel remaining active events
247 */
248 if (td->io_ops->cancel) {
249 struct io_u *io_u;
250 int i;
251
252 io_u_qiter(&td->io_u_all, io_u, i) {
253 if (io_u->flags & IO_U_F_FLIGHT) {
254 r = td->io_ops->cancel(td, io_u);
255 if (!r)
256 put_io_u(td, io_u);
257 }
258 }
259 }
260
261 if (td->cur_depth)
262 r = io_u_queued_complete(td, td->cur_depth);
263}
264
265/*
266 * Helper to handle the final sync of a file. Works just like the normal
267 * io path, just does everything sync.
268 */
269static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
270{
271 struct io_u *io_u = __get_io_u(td);
272 enum fio_q_status ret;
273
274 if (!io_u)
275 return true;
276
277 io_u->ddir = DDIR_SYNC;
278 io_u->file = f;
279
280 if (td_io_prep(td, io_u)) {
281 put_io_u(td, io_u);
282 return true;
283 }
284
285requeue:
286 ret = td_io_queue(td, io_u);
287 switch (ret) {
288 case FIO_Q_QUEUED:
289 td_io_commit(td);
290 if (io_u_queued_complete(td, 1) < 0)
291 return true;
292 break;
293 case FIO_Q_COMPLETED:
294 if (io_u->error) {
295 td_verror(td, io_u->error, "td_io_queue");
296 return true;
297 }
298
299 if (io_u_sync_complete(td, io_u) < 0)
300 return true;
301 break;
302 case FIO_Q_BUSY:
303 td_io_commit(td);
304 goto requeue;
305 }
306
307 return false;
308}
309
310static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
311{
312 int ret;
313
314 if (fio_file_open(f))
315 return fio_io_sync(td, f);
316
317 if (td_io_open_file(td, f))
318 return 1;
319
320 ret = fio_io_sync(td, f);
321 td_io_close_file(td, f);
322 return ret;
323}
324
325static inline void __update_ts_cache(struct thread_data *td)
326{
327 fio_gettime(&td->ts_cache, NULL);
328}
329
330static inline void update_ts_cache(struct thread_data *td)
331{
332 if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
333 __update_ts_cache(td);
334}
335
336static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
337{
338 if (in_ramp_time(td))
339 return false;
340 if (!td->o.timeout)
341 return false;
342 if (utime_since(&td->epoch, t) >= td->o.timeout)
343 return true;
344
345 return false;
346}
347
348/*
349 * We need to update the runtime consistently in ms, but keep a running
350 * tally of the current elapsed time in microseconds for sub millisecond
351 * updates.
352 */
353static inline void update_runtime(struct thread_data *td,
354 unsigned long long *elapsed_us,
355 const enum fio_ddir ddir)
356{
357 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
358 return;
359
360 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
361 elapsed_us[ddir] += utime_since_now(&td->start);
362 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
363}
364
365static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
366 int *retptr)
367{
368 int ret = *retptr;
369
370 if (ret < 0 || td->error) {
371 int err = td->error;
372 enum error_type_bit eb;
373
374 if (ret < 0)
375 err = -ret;
376
377 eb = td_error_type(ddir, err);
378 if (!(td->o.continue_on_error & (1 << eb)))
379 return true;
380
381 if (td_non_fatal_error(td, eb, err)) {
382 /*
383 * Continue with the I/Os in case of
384 * a non fatal error.
385 */
386 update_error_count(td, err);
387 td_clear_error(td);
388 *retptr = 0;
389 return false;
390 } else if (td->o.fill_device && err == ENOSPC) {
391 /*
392 * We expect to hit this error if
393 * fill_device option is set.
394 */
395 td_clear_error(td);
396 fio_mark_td_terminate(td);
397 return true;
398 } else {
399 /*
400 * Stop the I/O in case of a fatal
401 * error.
402 */
403 update_error_count(td, err);
404 return true;
405 }
406 }
407
408 return false;
409}
410
411static void check_update_rusage(struct thread_data *td)
412{
413 if (td->update_rusage) {
414 td->update_rusage = 0;
415 update_rusage_stat(td);
416 fio_sem_up(td->rusage_sem);
417 }
418}
419
420static int wait_for_completions(struct thread_data *td, struct timespec *time)
421{
422 const int full = queue_full(td);
423 int min_evts = 0;
424 int ret;
425
426 if (td->flags & TD_F_REGROW_LOGS)
427 return io_u_quiesce(td);
428
429 /*
430 * if the queue is full, we MUST reap at least 1 event
431 */
432 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
433 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
434 min_evts = 1;
435
436 if (time && __should_check_rate(td))
437 fio_gettime(time, NULL);
438
439 do {
440 ret = io_u_queued_complete(td, min_evts);
441 if (ret < 0)
442 break;
443 } while (full && (td->cur_depth > td->o.iodepth_low));
444
445 return ret;
446}
447
448int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
449 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
450 struct timespec *comp_time)
451{
452 switch (*ret) {
453 case FIO_Q_COMPLETED:
454 if (io_u->error) {
455 *ret = -io_u->error;
456 clear_io_u(td, io_u);
457 } else if (io_u->resid) {
458 long long bytes = io_u->xfer_buflen - io_u->resid;
459 struct fio_file *f = io_u->file;
460
461 if (bytes_issued)
462 *bytes_issued += bytes;
463
464 if (!from_verify)
465 trim_io_piece(io_u);
466
467 /*
468 * zero read, fail
469 */
470 if (!bytes) {
471 if (!from_verify)
472 unlog_io_piece(td, io_u);
473 td_verror(td, EIO, "full resid");
474 put_io_u(td, io_u);
475 break;
476 }
477
478 io_u->xfer_buflen = io_u->resid;
479 io_u->xfer_buf += bytes;
480 io_u->offset += bytes;
481
482 if (ddir_rw(io_u->ddir))
483 td->ts.short_io_u[io_u->ddir]++;
484
485 if (io_u->offset == f->real_file_size)
486 goto sync_done;
487
488 requeue_io_u(td, &io_u);
489 } else {
490sync_done:
491 if (comp_time && __should_check_rate(td))
492 fio_gettime(comp_time, NULL);
493
494 *ret = io_u_sync_complete(td, io_u);
495 if (*ret < 0)
496 break;
497 }
498
499 if (td->flags & TD_F_REGROW_LOGS)
500 regrow_logs(td);
501
502 /*
503 * when doing I/O (not when verifying),
504 * check for any errors that are to be ignored
505 */
506 if (!from_verify)
507 break;
508
509 return 0;
510 case FIO_Q_QUEUED:
511 /*
512 * if the engine doesn't have a commit hook,
513 * the io_u is really queued. if it does have such
514 * a hook, it has to call io_u_queued() itself.
515 */
516 if (td->io_ops->commit == NULL)
517 io_u_queued(td, io_u);
518 if (bytes_issued)
519 *bytes_issued += io_u->xfer_buflen;
520 break;
521 case FIO_Q_BUSY:
522 if (!from_verify)
523 unlog_io_piece(td, io_u);
524 requeue_io_u(td, &io_u);
525 td_io_commit(td);
526 break;
527 default:
528 assert(*ret < 0);
529 td_verror(td, -(*ret), "td_io_queue");
530 break;
531 }
532
533 if (break_on_this_error(td, ddir, ret))
534 return 1;
535
536 return 0;
537}
538
539static inline bool io_in_polling(struct thread_data *td)
540{
541 return !td->o.iodepth_batch_complete_min &&
542 !td->o.iodepth_batch_complete_max;
543}
544/*
545 * Unlinks files from thread data fio_file structure
546 */
547static int unlink_all_files(struct thread_data *td)
548{
549 struct fio_file *f;
550 unsigned int i;
551 int ret = 0;
552
553 for_each_file(td, f, i) {
554 if (f->filetype != FIO_TYPE_FILE)
555 continue;
556 ret = td_io_unlink_file(td, f);
557 if (ret)
558 break;
559 }
560
561 if (ret)
562 td_verror(td, ret, "unlink_all_files");
563
564 return ret;
565}
566
567/*
568 * Check if io_u will overlap an in-flight IO in the queue
569 */
570static bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
571{
572 bool overlap;
573 struct io_u *check_io_u;
574 unsigned long long x1, x2, y1, y2;
575 int i;
576
577 x1 = io_u->offset;
578 x2 = io_u->offset + io_u->buflen;
579 overlap = false;
580 io_u_qiter(q, check_io_u, i) {
581 if (check_io_u->flags & IO_U_F_FLIGHT) {
582 y1 = check_io_u->offset;
583 y2 = check_io_u->offset + check_io_u->buflen;
584
585 if (x1 < y2 && y1 < x2) {
586 overlap = true;
587 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
588 x1, io_u->buflen,
589 y1, check_io_u->buflen);
590 break;
591 }
592 }
593 }
594
595 return overlap;
596}
597
598static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
599{
600 /*
601 * Check for overlap if the user asked us to, and we have
602 * at least one IO in flight besides this one.
603 */
604 if (td->o.serialize_overlap && td->cur_depth > 1 &&
605 in_flight_overlap(&td->io_u_all, io_u))
606 return FIO_Q_BUSY;
607
608 return td_io_queue(td, io_u);
609}
610
611/*
612 * The main verify engine. Runs over the writes we previously submitted,
613 * reads the blocks back in, and checks the crc/md5 of the data.
614 */
615static void do_verify(struct thread_data *td, uint64_t verify_bytes)
616{
617 struct fio_file *f;
618 struct io_u *io_u;
619 int ret, min_events;
620 unsigned int i;
621
622 dprint(FD_VERIFY, "starting loop\n");
623
624 /*
625 * sync io first and invalidate cache, to make sure we really
626 * read from disk.
627 */
628 for_each_file(td, f, i) {
629 if (!fio_file_open(f))
630 continue;
631 if (fio_io_sync(td, f))
632 break;
633 if (file_invalidate_cache(td, f))
634 break;
635 }
636
637 check_update_rusage(td);
638
639 if (td->error)
640 return;
641
642 /*
643 * verify_state needs to be reset before verification
644 * proceeds so that expected random seeds match actual
645 * random seeds in headers. The main loop will reset
646 * all random number generators if randrepeat is set.
647 */
648 if (!td->o.rand_repeatable)
649 td_fill_verify_state_seed(td);
650
651 td_set_runstate(td, TD_VERIFYING);
652
653 io_u = NULL;
654 while (!td->terminate) {
655 enum fio_ddir ddir;
656 int full;
657
658 update_ts_cache(td);
659 check_update_rusage(td);
660
661 if (runtime_exceeded(td, &td->ts_cache)) {
662 __update_ts_cache(td);
663 if (runtime_exceeded(td, &td->ts_cache)) {
664 fio_mark_td_terminate(td);
665 break;
666 }
667 }
668
669 if (flow_threshold_exceeded(td))
670 continue;
671
672 if (!td->o.experimental_verify) {
673 io_u = __get_io_u(td);
674 if (!io_u)
675 break;
676
677 if (get_next_verify(td, io_u)) {
678 put_io_u(td, io_u);
679 break;
680 }
681
682 if (td_io_prep(td, io_u)) {
683 put_io_u(td, io_u);
684 break;
685 }
686 } else {
687 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
688 break;
689
690 while ((io_u = get_io_u(td)) != NULL) {
691 if (IS_ERR_OR_NULL(io_u)) {
692 io_u = NULL;
693 ret = FIO_Q_BUSY;
694 goto reap;
695 }
696
697 /*
698 * We are only interested in the places where
699 * we wrote or trimmed IOs. Turn those into
700 * reads for verification purposes.
701 */
702 if (io_u->ddir == DDIR_READ) {
703 /*
704 * Pretend we issued it for rwmix
705 * accounting
706 */
707 td->io_issues[DDIR_READ]++;
708 put_io_u(td, io_u);
709 continue;
710 } else if (io_u->ddir == DDIR_TRIM) {
711 io_u->ddir = DDIR_READ;
712 io_u_set(td, io_u, IO_U_F_TRIMMED);
713 break;
714 } else if (io_u->ddir == DDIR_WRITE) {
715 io_u->ddir = DDIR_READ;
716 populate_verify_io_u(td, io_u);
717 break;
718 } else {
719 put_io_u(td, io_u);
720 continue;
721 }
722 }
723
724 if (!io_u)
725 break;
726 }
727
728 if (verify_state_should_stop(td, io_u)) {
729 put_io_u(td, io_u);
730 break;
731 }
732
733 if (td->o.verify_async)
734 io_u->end_io = verify_io_u_async;
735 else
736 io_u->end_io = verify_io_u;
737
738 ddir = io_u->ddir;
739 if (!td->o.disable_slat)
740 fio_gettime(&io_u->start_time, NULL);
741
742 ret = io_u_submit(td, io_u);
743
744 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
745 break;
746
747 /*
748 * if we can queue more, do so. but check if there are
749 * completed io_u's first. Note that we can get BUSY even
750 * without IO queued, if the system is resource starved.
751 */
752reap:
753 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
754 if (full || io_in_polling(td))
755 ret = wait_for_completions(td, NULL);
756
757 if (ret < 0)
758 break;
759 }
760
761 check_update_rusage(td);
762
763 if (!td->error) {
764 min_events = td->cur_depth;
765
766 if (min_events)
767 ret = io_u_queued_complete(td, min_events);
768 } else
769 cleanup_pending_aio(td);
770
771 td_set_runstate(td, TD_RUNNING);
772
773 dprint(FD_VERIFY, "exiting loop\n");
774}
775
776static bool exceeds_number_ios(struct thread_data *td)
777{
778 unsigned long long number_ios;
779
780 if (!td->o.number_ios)
781 return false;
782
783 number_ios = ddir_rw_sum(td->io_blocks);
784 number_ios += td->io_u_queued + td->io_u_in_flight;
785
786 return number_ios >= (td->o.number_ios * td->loops);
787}
788
789static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
790{
791 unsigned long long bytes, limit;
792
793 if (td_rw(td))
794 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
795 else if (td_write(td))
796 bytes = this_bytes[DDIR_WRITE];
797 else if (td_read(td))
798 bytes = this_bytes[DDIR_READ];
799 else
800 bytes = this_bytes[DDIR_TRIM];
801
802 if (td->o.io_size)
803 limit = td->o.io_size;
804 else
805 limit = td->o.size;
806
807 limit *= td->loops;
808 return bytes >= limit || exceeds_number_ios(td);
809}
810
811static bool io_issue_bytes_exceeded(struct thread_data *td)
812{
813 return io_bytes_exceeded(td, td->io_issue_bytes);
814}
815
816static bool io_complete_bytes_exceeded(struct thread_data *td)
817{
818 return io_bytes_exceeded(td, td->this_io_bytes);
819}
820
821/*
822 * used to calculate the next io time for rate control
823 *
824 */
825static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
826{
827 uint64_t bps = td->rate_bps[ddir];
828
829 assert(!(td->flags & TD_F_CHILD));
830
831 if (td->o.rate_process == RATE_PROCESS_POISSON) {
832 uint64_t val, iops;
833
834 iops = bps / td->o.bs[ddir];
835 val = (int64_t) (1000000 / iops) *
836 -logf(__rand_0_1(&td->poisson_state[ddir]));
837 if (val) {
838 dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
839 (unsigned long long) 1000000 / val,
840 ddir);
841 }
842 td->last_usec[ddir] += val;
843 return td->last_usec[ddir];
844 } else if (bps) {
845 uint64_t bytes = td->rate_io_issue_bytes[ddir];
846 uint64_t secs = bytes / bps;
847 uint64_t remainder = bytes % bps;
848
849 return remainder * 1000000 / bps + secs * 1000000;
850 }
851
852 return 0;
853}
854
855static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
856{
857 unsigned long long b;
858 uint64_t total;
859 int left;
860
861 b = ddir_rw_sum(td->io_blocks);
862 if (b % td->o.thinktime_blocks)
863 return;
864
865 io_u_quiesce(td);
866
867 total = 0;
868 if (td->o.thinktime_spin)
869 total = usec_spin(td->o.thinktime_spin);
870
871 left = td->o.thinktime - total;
872 if (left)
873 total += usec_sleep(td, left);
874
875 /*
876 * If we're ignoring thinktime for the rate, add the number of bytes
877 * we would have done while sleeping, minus one block to ensure we
878 * start issuing immediately after the sleep.
879 */
880 if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
881 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
882 uint64_t bs = td->o.min_bs[ddir];
883 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
884 uint64_t over;
885
886 if (usperop <= total)
887 over = bs;
888 else
889 over = (usperop - total) / usperop * -bs;
890
891 td->rate_io_issue_bytes[ddir] += (missed - over);
892 /* adjust for rate_process=poisson */
893 td->last_usec[ddir] += total;
894 }
895}
896
897/*
898 * Main IO worker function. It retrieves io_u's to process and queues
899 * and reaps them, checking for rate and errors along the way.
900 *
901 * Returns number of bytes written and trimmed.
902 */
903static void do_io(struct thread_data *td, uint64_t *bytes_done)
904{
905 unsigned int i;
906 int ret = 0;
907 uint64_t total_bytes, bytes_issued = 0;
908
909 for (i = 0; i < DDIR_RWDIR_CNT; i++)
910 bytes_done[i] = td->bytes_done[i];
911
912 if (in_ramp_time(td))
913 td_set_runstate(td, TD_RAMP);
914 else
915 td_set_runstate(td, TD_RUNNING);
916
917 lat_target_init(td);
918
919 total_bytes = td->o.size;
920 /*
921 * Allow random overwrite workloads to write up to io_size
922 * before starting verification phase as 'size' doesn't apply.
923 */
924 if (td_write(td) && td_random(td) && td->o.norandommap)
925 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
926 /*
927 * If verify_backlog is enabled, we'll run the verify in this
928 * handler as well. For that case, we may need up to twice the
929 * amount of bytes.
930 */
931 if (td->o.verify != VERIFY_NONE &&
932 (td_write(td) && td->o.verify_backlog))
933 total_bytes += td->o.size;
934
935 /* In trimwrite mode, each byte is trimmed and then written, so
936 * allow total_bytes to be twice as big */
937 if (td_trimwrite(td))
938 total_bytes += td->total_io_size;
939
940 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
941 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
942 td->o.time_based) {
943 struct timespec comp_time;
944 struct io_u *io_u;
945 int full;
946 enum fio_ddir ddir;
947
948 check_update_rusage(td);
949
950 if (td->terminate || td->done)
951 break;
952
953 update_ts_cache(td);
954
955 if (runtime_exceeded(td, &td->ts_cache)) {
956 __update_ts_cache(td);
957 if (runtime_exceeded(td, &td->ts_cache)) {
958 fio_mark_td_terminate(td);
959 break;
960 }
961 }
962
963 if (flow_threshold_exceeded(td))
964 continue;
965
966 /*
967 * Break if we exceeded the bytes. The exception is time
968 * based runs, but we still need to break out of the loop
969 * for those to run verification, if enabled.
970 * Jobs read from iolog do not use this stop condition.
971 */
972 if (bytes_issued >= total_bytes &&
973 !td->o.read_iolog_file &&
974 (!td->o.time_based ||
975 (td->o.time_based && td->o.verify != VERIFY_NONE)))
976 break;
977
978 io_u = get_io_u(td);
979 if (IS_ERR_OR_NULL(io_u)) {
980 int err = PTR_ERR(io_u);
981
982 io_u = NULL;
983 ddir = DDIR_INVAL;
984 if (err == -EBUSY) {
985 ret = FIO_Q_BUSY;
986 goto reap;
987 }
988 if (td->o.latency_target)
989 goto reap;
990 break;
991 }
992
993 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
994 populate_verify_io_u(td, io_u);
995
996 ddir = io_u->ddir;
997
998 /*
999 * Add verification end_io handler if:
1000 * - Asked to verify (!td_rw(td))
1001 * - Or the io_u is from our verify list (mixed write/ver)
1002 */
1003 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1004 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1005
1006 if (!td->o.verify_pattern_bytes) {
1007 io_u->rand_seed = __rand(&td->verify_state);
1008 if (sizeof(int) != sizeof(long *))
1009 io_u->rand_seed *= __rand(&td->verify_state);
1010 }
1011
1012 if (verify_state_should_stop(td, io_u)) {
1013 put_io_u(td, io_u);
1014 break;
1015 }
1016
1017 if (td->o.verify_async)
1018 io_u->end_io = verify_io_u_async;
1019 else
1020 io_u->end_io = verify_io_u;
1021 td_set_runstate(td, TD_VERIFYING);
1022 } else if (in_ramp_time(td))
1023 td_set_runstate(td, TD_RAMP);
1024 else
1025 td_set_runstate(td, TD_RUNNING);
1026
1027 /*
1028 * Always log IO before it's issued, so we know the specific
1029 * order of it. The logged unit will track when the IO has
1030 * completed.
1031 */
1032 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1033 td->o.do_verify &&
1034 td->o.verify != VERIFY_NONE &&
1035 !td->o.experimental_verify)
1036 log_io_piece(td, io_u);
1037
1038 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1039 const unsigned long long blen = io_u->xfer_buflen;
1040 const enum fio_ddir __ddir = acct_ddir(io_u);
1041
1042 if (td->error)
1043 break;
1044
1045 workqueue_enqueue(&td->io_wq, &io_u->work);
1046 ret = FIO_Q_QUEUED;
1047
1048 if (ddir_rw(__ddir)) {
1049 td->io_issues[__ddir]++;
1050 td->io_issue_bytes[__ddir] += blen;
1051 td->rate_io_issue_bytes[__ddir] += blen;
1052 }
1053
1054 if (should_check_rate(td))
1055 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1056
1057 } else {
1058 ret = io_u_submit(td, io_u);
1059
1060 if (should_check_rate(td))
1061 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1062
1063 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1064 break;
1065
1066 /*
1067 * See if we need to complete some commands. Note that
1068 * we can get BUSY even without IO queued, if the
1069 * system is resource starved.
1070 */
1071reap:
1072 full = queue_full(td) ||
1073 (ret == FIO_Q_BUSY && td->cur_depth);
1074 if (full || io_in_polling(td))
1075 ret = wait_for_completions(td, &comp_time);
1076 }
1077 if (ret < 0)
1078 break;
1079 if (!ddir_rw_sum(td->bytes_done) &&
1080 !td_ioengine_flagged(td, FIO_NOIO))
1081 continue;
1082
1083 if (!in_ramp_time(td) && should_check_rate(td)) {
1084 if (check_min_rate(td, &comp_time)) {
1085 if (exitall_on_terminate || td->o.exitall_error)
1086 fio_terminate_threads(td->groupid);
1087 td_verror(td, EIO, "check_min_rate");
1088 break;
1089 }
1090 }
1091 if (!in_ramp_time(td) && td->o.latency_target)
1092 lat_target_check(td);
1093
1094 if (ddir_rw(ddir) && td->o.thinktime)
1095 handle_thinktime(td, ddir);
1096 }
1097
1098 check_update_rusage(td);
1099
1100 if (td->trim_entries)
1101 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1102
1103 if (td->o.fill_device && td->error == ENOSPC) {
1104 td->error = 0;
1105 fio_mark_td_terminate(td);
1106 }
1107 if (!td->error) {
1108 struct fio_file *f;
1109
1110 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1111 workqueue_flush(&td->io_wq);
1112 i = 0;
1113 } else
1114 i = td->cur_depth;
1115
1116 if (i) {
1117 ret = io_u_queued_complete(td, i);
1118 if (td->o.fill_device && td->error == ENOSPC)
1119 td->error = 0;
1120 }
1121
1122 if (should_fsync(td) && td->o.end_fsync) {
1123 td_set_runstate(td, TD_FSYNCING);
1124
1125 for_each_file(td, f, i) {
1126 if (!fio_file_fsync(td, f))
1127 continue;
1128
1129 log_err("fio: end_fsync failed for file %s\n",
1130 f->file_name);
1131 }
1132 }
1133 } else
1134 cleanup_pending_aio(td);
1135
1136 /*
1137 * stop job if we failed doing any IO
1138 */
1139 if (!ddir_rw_sum(td->this_io_bytes))
1140 td->done = 1;
1141
1142 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1143 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1144}
1145
1146static void free_file_completion_logging(struct thread_data *td)
1147{
1148 struct fio_file *f;
1149 unsigned int i;
1150
1151 for_each_file(td, f, i) {
1152 if (!f->last_write_comp)
1153 break;
1154 sfree(f->last_write_comp);
1155 }
1156}
1157
1158static int init_file_completion_logging(struct thread_data *td,
1159 unsigned int depth)
1160{
1161 struct fio_file *f;
1162 unsigned int i;
1163
1164 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1165 return 0;
1166
1167 for_each_file(td, f, i) {
1168 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1169 if (!f->last_write_comp)
1170 goto cleanup;
1171 }
1172
1173 return 0;
1174
1175cleanup:
1176 free_file_completion_logging(td);
1177 log_err("fio: failed to alloc write comp data\n");
1178 return 1;
1179}
1180
1181static void cleanup_io_u(struct thread_data *td)
1182{
1183 struct io_u *io_u;
1184
1185 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1186
1187 if (td->io_ops->io_u_free)
1188 td->io_ops->io_u_free(td, io_u);
1189
1190 fio_memfree(io_u, sizeof(*io_u));
1191 }
1192
1193 free_io_mem(td);
1194
1195 io_u_rexit(&td->io_u_requeues);
1196 io_u_qexit(&td->io_u_freelist);
1197 io_u_qexit(&td->io_u_all);
1198
1199 free_file_completion_logging(td);
1200}
1201
1202static int init_io_u(struct thread_data *td)
1203{
1204 struct io_u *io_u;
1205 int cl_align, i, max_units;
1206 int err;
1207
1208 max_units = td->o.iodepth;
1209
1210 err = 0;
1211 err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1212 err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1213 err += !io_u_qinit(&td->io_u_all, td->o.iodepth);
1214
1215 if (err) {
1216 log_err("fio: failed setting up IO queues\n");
1217 return 1;
1218 }
1219
1220 cl_align = os_cache_line_size();
1221
1222 for (i = 0; i < max_units; i++) {
1223 void *ptr;
1224
1225 if (td->terminate)
1226 return 1;
1227
1228 ptr = fio_memalign(cl_align, sizeof(*io_u));
1229 if (!ptr) {
1230 log_err("fio: unable to allocate aligned memory\n");
1231 break;
1232 }
1233
1234 io_u = ptr;
1235 memset(io_u, 0, sizeof(*io_u));
1236 INIT_FLIST_HEAD(&io_u->verify_list);
1237 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1238
1239 io_u->index = i;
1240 io_u->flags = IO_U_F_FREE;
1241 io_u_qpush(&td->io_u_freelist, io_u);
1242
1243 /*
1244 * io_u never leaves this stack, used for iteration of all
1245 * io_u buffers.
1246 */
1247 io_u_qpush(&td->io_u_all, io_u);
1248
1249 if (td->io_ops->io_u_init) {
1250 int ret = td->io_ops->io_u_init(td, io_u);
1251
1252 if (ret) {
1253 log_err("fio: failed to init engine data: %d\n", ret);
1254 return 1;
1255 }
1256 }
1257 }
1258
1259 init_io_u_buffers(td);
1260
1261 if (init_file_completion_logging(td, max_units))
1262 return 1;
1263
1264 return 0;
1265}
1266
1267int init_io_u_buffers(struct thread_data *td)
1268{
1269 struct io_u *io_u;
1270 unsigned long long max_bs, min_write;
1271 int i, max_units;
1272 int data_xfer = 1;
1273 char *p;
1274
1275 max_units = td->o.iodepth;
1276 max_bs = td_max_bs(td);
1277 min_write = td->o.min_bs[DDIR_WRITE];
1278 td->orig_buffer_size = (unsigned long long) max_bs
1279 * (unsigned long long) max_units;
1280
1281 if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1282 data_xfer = 0;
1283
1284 /*
1285 * if we may later need to do address alignment, then add any
1286 * possible adjustment here so that we don't cause a buffer
1287 * overflow later. this adjustment may be too much if we get
1288 * lucky and the allocator gives us an aligned address.
1289 */
1290 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1291 td_ioengine_flagged(td, FIO_RAWIO))
1292 td->orig_buffer_size += page_mask + td->o.mem_align;
1293
1294 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1295 unsigned long long bs;
1296
1297 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1298 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1299 }
1300
1301 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1302 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1303 return 1;
1304 }
1305
1306 if (data_xfer && allocate_io_mem(td))
1307 return 1;
1308
1309 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1310 td_ioengine_flagged(td, FIO_RAWIO))
1311 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1312 else
1313 p = td->orig_buffer;
1314
1315 for (i = 0; i < max_units; i++) {
1316 io_u = td->io_u_all.io_us[i];
1317 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1318
1319 if (data_xfer) {
1320 io_u->buf = p;
1321 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1322
1323 if (td_write(td))
1324 io_u_fill_buffer(td, io_u, min_write, max_bs);
1325 if (td_write(td) && td->o.verify_pattern_bytes) {
1326 /*
1327 * Fill the buffer with the pattern if we are
1328 * going to be doing writes.
1329 */
1330 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1331 }
1332 }
1333 p += max_bs;
1334 }
1335
1336 return 0;
1337}
1338
1339/*
1340 * This function is Linux specific.
1341 * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1342 */
1343static int switch_ioscheduler(struct thread_data *td)
1344{
1345#ifdef FIO_HAVE_IOSCHED_SWITCH
1346 char tmp[256], tmp2[128], *p;
1347 FILE *f;
1348 int ret;
1349
1350 if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1351 return 0;
1352
1353 assert(td->files && td->files[0]);
1354 sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1355
1356 f = fopen(tmp, "r+");
1357 if (!f) {
1358 if (errno == ENOENT) {
1359 log_err("fio: os or kernel doesn't support IO scheduler"
1360 " switching\n");
1361 return 0;
1362 }
1363 td_verror(td, errno, "fopen iosched");
1364 return 1;
1365 }
1366
1367 /*
1368 * Set io scheduler.
1369 */
1370 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1371 if (ferror(f) || ret != 1) {
1372 td_verror(td, errno, "fwrite");
1373 fclose(f);
1374 return 1;
1375 }
1376
1377 rewind(f);
1378
1379 /*
1380 * Read back and check that the selected scheduler is now the default.
1381 */
1382 ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1383 if (ferror(f) || ret < 0) {
1384 td_verror(td, errno, "fread");
1385 fclose(f);
1386 return 1;
1387 }
1388 tmp[ret] = '\0';
1389 /*
1390 * either a list of io schedulers or "none\n" is expected. Strip the
1391 * trailing newline.
1392 */
1393 p = tmp;
1394 strsep(&p, "\n");
1395
1396 /*
1397 * Write to "none" entry doesn't fail, so check the result here.
1398 */
1399 if (!strcmp(tmp, "none")) {
1400 log_err("fio: io scheduler is not tunable\n");
1401 fclose(f);
1402 return 0;
1403 }
1404
1405 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1406 if (!strstr(tmp, tmp2)) {
1407 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1408 td_verror(td, EINVAL, "iosched_switch");
1409 fclose(f);
1410 return 1;
1411 }
1412
1413 fclose(f);
1414 return 0;
1415#else
1416 return 0;
1417#endif
1418}
1419
1420static bool keep_running(struct thread_data *td)
1421{
1422 unsigned long long limit;
1423
1424 if (td->done)
1425 return false;
1426 if (td->terminate)
1427 return false;
1428 if (td->o.time_based)
1429 return true;
1430 if (td->o.loops) {
1431 td->o.loops--;
1432 return true;
1433 }
1434 if (exceeds_number_ios(td))
1435 return false;
1436
1437 if (td->o.io_size)
1438 limit = td->o.io_size;
1439 else
1440 limit = td->o.size;
1441
1442 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1443 uint64_t diff;
1444
1445 /*
1446 * If the difference is less than the maximum IO size, we
1447 * are done.
1448 */
1449 diff = limit - ddir_rw_sum(td->io_bytes);
1450 if (diff < td_max_bs(td))
1451 return false;
1452
1453 if (fio_files_done(td) && !td->o.io_size)
1454 return false;
1455
1456 return true;
1457 }
1458
1459 return false;
1460}
1461
1462static int exec_string(struct thread_options *o, const char *string, const char *mode)
1463{
1464 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1465 int ret;
1466 char *str;
1467
1468 str = malloc(newlen);
1469 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1470
1471 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1472 ret = system(str);
1473 if (ret == -1)
1474 log_err("fio: exec of cmd <%s> failed\n", str);
1475
1476 free(str);
1477 return ret;
1478}
1479
1480/*
1481 * Dry run to compute correct state of numberio for verification.
1482 */
1483static uint64_t do_dry_run(struct thread_data *td)
1484{
1485 td_set_runstate(td, TD_RUNNING);
1486
1487 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1488 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1489 struct io_u *io_u;
1490 int ret;
1491
1492 if (td->terminate || td->done)
1493 break;
1494
1495 io_u = get_io_u(td);
1496 if (IS_ERR_OR_NULL(io_u))
1497 break;
1498
1499 io_u_set(td, io_u, IO_U_F_FLIGHT);
1500 io_u->error = 0;
1501 io_u->resid = 0;
1502 if (ddir_rw(acct_ddir(io_u)))
1503 td->io_issues[acct_ddir(io_u)]++;
1504 if (ddir_rw(io_u->ddir)) {
1505 io_u_mark_depth(td, 1);
1506 td->ts.total_io_u[io_u->ddir]++;
1507 }
1508
1509 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1510 td->o.do_verify &&
1511 td->o.verify != VERIFY_NONE &&
1512 !td->o.experimental_verify)
1513 log_io_piece(td, io_u);
1514
1515 ret = io_u_sync_complete(td, io_u);
1516 (void) ret;
1517 }
1518
1519 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1520}
1521
1522struct fork_data {
1523 struct thread_data *td;
1524 struct sk_out *sk_out;
1525};
1526
1527/*
1528 * Entry point for the thread based jobs. The process based jobs end up
1529 * here as well, after a little setup.
1530 */
1531static void *thread_main(void *data)
1532{
1533 struct fork_data *fd = data;
1534 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1535 struct thread_data *td = fd->td;
1536 struct thread_options *o = &td->o;
1537 struct sk_out *sk_out = fd->sk_out;
1538 uint64_t bytes_done[DDIR_RWDIR_CNT];
1539 int deadlock_loop_cnt;
1540 bool clear_state, did_some_io;
1541 int ret;
1542
1543 sk_out_assign(sk_out);
1544 free(fd);
1545
1546 if (!o->use_thread) {
1547 setsid();
1548 td->pid = getpid();
1549 } else
1550 td->pid = gettid();
1551
1552 fio_local_clock_init();
1553
1554 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1555
1556 if (is_backend)
1557 fio_server_send_start(td);
1558
1559 INIT_FLIST_HEAD(&td->io_log_list);
1560 INIT_FLIST_HEAD(&td->io_hist_list);
1561 INIT_FLIST_HEAD(&td->verify_list);
1562 INIT_FLIST_HEAD(&td->trim_list);
1563 td->io_hist_tree = RB_ROOT;
1564
1565 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1566 if (ret) {
1567 td_verror(td, ret, "mutex_cond_init_pshared");
1568 goto err;
1569 }
1570 ret = cond_init_pshared(&td->verify_cond);
1571 if (ret) {
1572 td_verror(td, ret, "mutex_cond_pshared");
1573 goto err;
1574 }
1575
1576 td_set_runstate(td, TD_INITIALIZED);
1577 dprint(FD_MUTEX, "up startup_sem\n");
1578 fio_sem_up(startup_sem);
1579 dprint(FD_MUTEX, "wait on td->sem\n");
1580 fio_sem_down(td->sem);
1581 dprint(FD_MUTEX, "done waiting on td->sem\n");
1582
1583 /*
1584 * A new gid requires privilege, so we need to do this before setting
1585 * the uid.
1586 */
1587 if (o->gid != -1U && setgid(o->gid)) {
1588 td_verror(td, errno, "setgid");
1589 goto err;
1590 }
1591 if (o->uid != -1U && setuid(o->uid)) {
1592 td_verror(td, errno, "setuid");
1593 goto err;
1594 }
1595
1596 td_zone_gen_index(td);
1597
1598 /*
1599 * Do this early, we don't want the compress threads to be limited
1600 * to the same CPUs as the IO workers. So do this before we set
1601 * any potential CPU affinity
1602 */
1603 if (iolog_compress_init(td, sk_out))
1604 goto err;
1605
1606 /*
1607 * If we have a gettimeofday() thread, make sure we exclude that
1608 * thread from this job
1609 */
1610 if (o->gtod_cpu)
1611 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1612
1613 /*
1614 * Set affinity first, in case it has an impact on the memory
1615 * allocations.
1616 */
1617 if (fio_option_is_set(o, cpumask)) {
1618 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1619 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1620 if (!ret) {
1621 log_err("fio: no CPUs set\n");
1622 log_err("fio: Try increasing number of available CPUs\n");
1623 td_verror(td, EINVAL, "cpus_split");
1624 goto err;
1625 }
1626 }
1627 ret = fio_setaffinity(td->pid, o->cpumask);
1628 if (ret == -1) {
1629 td_verror(td, errno, "cpu_set_affinity");
1630 goto err;
1631 }
1632 }
1633
1634#ifdef CONFIG_LIBNUMA
1635 /* numa node setup */
1636 if (fio_option_is_set(o, numa_cpunodes) ||
1637 fio_option_is_set(o, numa_memnodes)) {
1638 struct bitmask *mask;
1639
1640 if (numa_available() < 0) {
1641 td_verror(td, errno, "Does not support NUMA API\n");
1642 goto err;
1643 }
1644
1645 if (fio_option_is_set(o, numa_cpunodes)) {
1646 mask = numa_parse_nodestring(o->numa_cpunodes);
1647 ret = numa_run_on_node_mask(mask);
1648 numa_free_nodemask(mask);
1649 if (ret == -1) {
1650 td_verror(td, errno, \
1651 "numa_run_on_node_mask failed\n");
1652 goto err;
1653 }
1654 }
1655
1656 if (fio_option_is_set(o, numa_memnodes)) {
1657 mask = NULL;
1658 if (o->numa_memnodes)
1659 mask = numa_parse_nodestring(o->numa_memnodes);
1660
1661 switch (o->numa_mem_mode) {
1662 case MPOL_INTERLEAVE:
1663 numa_set_interleave_mask(mask);
1664 break;
1665 case MPOL_BIND:
1666 numa_set_membind(mask);
1667 break;
1668 case MPOL_LOCAL:
1669 numa_set_localalloc();
1670 break;
1671 case MPOL_PREFERRED:
1672 numa_set_preferred(o->numa_mem_prefer_node);
1673 break;
1674 case MPOL_DEFAULT:
1675 default:
1676 break;
1677 }
1678
1679 if (mask)
1680 numa_free_nodemask(mask);
1681
1682 }
1683 }
1684#endif
1685
1686 if (fio_pin_memory(td))
1687 goto err;
1688
1689 /*
1690 * May alter parameters that init_io_u() will use, so we need to
1691 * do this first.
1692 */
1693 if (!init_iolog(td))
1694 goto err;
1695
1696 if (init_io_u(td))
1697 goto err;
1698
1699 if (o->verify_async && verify_async_init(td))
1700 goto err;
1701
1702 if (fio_option_is_set(o, ioprio) ||
1703 fio_option_is_set(o, ioprio_class)) {
1704 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1705 if (ret == -1) {
1706 td_verror(td, errno, "ioprio_set");
1707 goto err;
1708 }
1709 }
1710
1711 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1712 goto err;
1713
1714 errno = 0;
1715 if (nice(o->nice) == -1 && errno != 0) {
1716 td_verror(td, errno, "nice");
1717 goto err;
1718 }
1719
1720 if (o->ioscheduler && switch_ioscheduler(td))
1721 goto err;
1722
1723 if (!o->create_serialize && setup_files(td))
1724 goto err;
1725
1726 if (td_io_init(td))
1727 goto err;
1728
1729 if (!init_random_map(td))
1730 goto err;
1731
1732 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1733 goto err;
1734
1735 if (o->pre_read && !pre_read_files(td))
1736 goto err;
1737
1738 fio_verify_init(td);
1739
1740 if (rate_submit_init(td, sk_out))
1741 goto err;
1742
1743 set_epoch_time(td, o->log_unix_epoch);
1744 fio_getrusage(&td->ru_start);
1745 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1746 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1747 memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1748
1749 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1750 o->ratemin[DDIR_TRIM]) {
1751 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1752 sizeof(td->bw_sample_time));
1753 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1754 sizeof(td->bw_sample_time));
1755 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1756 sizeof(td->bw_sample_time));
1757 }
1758
1759 memset(bytes_done, 0, sizeof(bytes_done));
1760 clear_state = false;
1761 did_some_io = false;
1762
1763 while (keep_running(td)) {
1764 uint64_t verify_bytes;
1765
1766 fio_gettime(&td->start, NULL);
1767 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1768
1769 if (clear_state) {
1770 clear_io_state(td, 0);
1771
1772 if (o->unlink_each_loop && unlink_all_files(td))
1773 break;
1774 }
1775
1776 prune_io_piece_log(td);
1777
1778 if (td->o.verify_only && td_write(td))
1779 verify_bytes = do_dry_run(td);
1780 else {
1781 do_io(td, bytes_done);
1782
1783 if (!ddir_rw_sum(bytes_done)) {
1784 fio_mark_td_terminate(td);
1785 verify_bytes = 0;
1786 } else {
1787 verify_bytes = bytes_done[DDIR_WRITE] +
1788 bytes_done[DDIR_TRIM];
1789 }
1790 }
1791
1792 /*
1793 * If we took too long to shut down, the main thread could
1794 * already consider us reaped/exited. If that happens, break
1795 * out and clean up.
1796 */
1797 if (td->runstate >= TD_EXITED)
1798 break;
1799
1800 clear_state = true;
1801
1802 /*
1803 * Make sure we've successfully updated the rusage stats
1804 * before waiting on the stat mutex. Otherwise we could have
1805 * the stat thread holding stat mutex and waiting for
1806 * the rusage_sem, which would never get upped because
1807 * this thread is waiting for the stat mutex.
1808 */
1809 deadlock_loop_cnt = 0;
1810 do {
1811 check_update_rusage(td);
1812 if (!fio_sem_down_trylock(stat_sem))
1813 break;
1814 usleep(1000);
1815 if (deadlock_loop_cnt++ > 5000) {
1816 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1817 td->error = EDEADLK;
1818 goto err;
1819 }
1820 } while (1);
1821
1822 if (td_read(td) && td->io_bytes[DDIR_READ])
1823 update_runtime(td, elapsed_us, DDIR_READ);
1824 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1825 update_runtime(td, elapsed_us, DDIR_WRITE);
1826 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1827 update_runtime(td, elapsed_us, DDIR_TRIM);
1828 fio_gettime(&td->start, NULL);
1829 fio_sem_up(stat_sem);
1830
1831 if (td->error || td->terminate)
1832 break;
1833
1834 if (!o->do_verify ||
1835 o->verify == VERIFY_NONE ||
1836 td_ioengine_flagged(td, FIO_UNIDIR))
1837 continue;
1838
1839 if (ddir_rw_sum(bytes_done))
1840 did_some_io = true;
1841
1842 clear_io_state(td, 0);
1843
1844 fio_gettime(&td->start, NULL);
1845
1846 do_verify(td, verify_bytes);
1847
1848 /*
1849 * See comment further up for why this is done here.
1850 */
1851 check_update_rusage(td);
1852
1853 fio_sem_down(stat_sem);
1854 update_runtime(td, elapsed_us, DDIR_READ);
1855 fio_gettime(&td->start, NULL);
1856 fio_sem_up(stat_sem);
1857
1858 if (td->error || td->terminate)
1859 break;
1860 }
1861
1862 /*
1863 * If td ended up with no I/O when it should have had,
1864 * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1865 * (Are we not missing other flags that can be ignored ?)
1866 */
1867 if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1868 !did_some_io && !td->o.create_only &&
1869 !(td_ioengine_flagged(td, FIO_NOIO) ||
1870 td_ioengine_flagged(td, FIO_DISKLESSIO)))
1871 log_err("%s: No I/O performed by %s, "
1872 "perhaps try --debug=io option for details?\n",
1873 td->o.name, td->io_ops->name);
1874
1875 td_set_runstate(td, TD_FINISHING);
1876
1877 update_rusage_stat(td);
1878 td->ts.total_run_time = mtime_since_now(&td->epoch);
1879 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1880 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1881 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1882
1883 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1884 (td->o.verify != VERIFY_NONE && td_write(td)))
1885 verify_save_state(td->thread_number);
1886
1887 fio_unpin_memory(td);
1888
1889 td_writeout_logs(td, true);
1890
1891 iolog_compress_exit(td);
1892 rate_submit_exit(td);
1893
1894 if (o->exec_postrun)
1895 exec_string(o, o->exec_postrun, (const char *)"postrun");
1896
1897 if (exitall_on_terminate || (o->exitall_error && td->error))
1898 fio_terminate_threads(td->groupid);
1899
1900err:
1901 if (td->error)
1902 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1903 td->verror);
1904
1905 if (o->verify_async)
1906 verify_async_exit(td);
1907
1908 close_and_free_files(td);
1909 cleanup_io_u(td);
1910 close_ioengine(td);
1911 cgroup_shutdown(td, cgroup_mnt);
1912 verify_free_state(td);
1913 td_zone_free_index(td);
1914
1915 if (fio_option_is_set(o, cpumask)) {
1916 ret = fio_cpuset_exit(&o->cpumask);
1917 if (ret)
1918 td_verror(td, ret, "fio_cpuset_exit");
1919 }
1920
1921 /*
1922 * do this very late, it will log file closing as well
1923 */
1924 if (o->write_iolog_file)
1925 write_iolog_close(td);
1926 if (td->io_log_rfile)
1927 fclose(td->io_log_rfile);
1928
1929 td_set_runstate(td, TD_EXITED);
1930
1931 /*
1932 * Do this last after setting our runstate to exited, so we
1933 * know that the stat thread is signaled.
1934 */
1935 check_update_rusage(td);
1936
1937 sk_out_drop();
1938 return (void *) (uintptr_t) td->error;
1939}
1940
1941/*
1942 * Run over the job map and reap the threads that have exited, if any.
1943 */
1944static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1945 uint64_t *m_rate)
1946{
1947 struct thread_data *td;
1948 unsigned int cputhreads, realthreads, pending;
1949 int i, status, ret;
1950
1951 /*
1952 * reap exited threads (TD_EXITED -> TD_REAPED)
1953 */
1954 realthreads = pending = cputhreads = 0;
1955 for_each_td(td, i) {
1956 int flags = 0;
1957
1958 if (!strcmp(td->o.ioengine, "cpuio"))
1959 cputhreads++;
1960 else
1961 realthreads++;
1962
1963 if (!td->pid) {
1964 pending++;
1965 continue;
1966 }
1967 if (td->runstate == TD_REAPED)
1968 continue;
1969 if (td->o.use_thread) {
1970 if (td->runstate == TD_EXITED) {
1971 td_set_runstate(td, TD_REAPED);
1972 goto reaped;
1973 }
1974 continue;
1975 }
1976
1977 flags = WNOHANG;
1978 if (td->runstate == TD_EXITED)
1979 flags = 0;
1980
1981 /*
1982 * check if someone quit or got killed in an unusual way
1983 */
1984 ret = waitpid(td->pid, &status, flags);
1985 if (ret < 0) {
1986 if (errno == ECHILD) {
1987 log_err("fio: pid=%d disappeared %d\n",
1988 (int) td->pid, td->runstate);
1989 td->sig = ECHILD;
1990 td_set_runstate(td, TD_REAPED);
1991 goto reaped;
1992 }
1993 perror("waitpid");
1994 } else if (ret == td->pid) {
1995 if (WIFSIGNALED(status)) {
1996 int sig = WTERMSIG(status);
1997
1998 if (sig != SIGTERM && sig != SIGUSR2)
1999 log_err("fio: pid=%d, got signal=%d\n",
2000 (int) td->pid, sig);
2001 td->sig = sig;
2002 td_set_runstate(td, TD_REAPED);
2003 goto reaped;
2004 }
2005 if (WIFEXITED(status)) {
2006 if (WEXITSTATUS(status) && !td->error)
2007 td->error = WEXITSTATUS(status);
2008
2009 td_set_runstate(td, TD_REAPED);
2010 goto reaped;
2011 }
2012 }
2013
2014 /*
2015 * If the job is stuck, do a forceful timeout of it and
2016 * move on.
2017 */
2018 if (td->terminate &&
2019 td->runstate < TD_FSYNCING &&
2020 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2021 log_err("fio: job '%s' (state=%d) hasn't exited in "
2022 "%lu seconds, it appears to be stuck. Doing "
2023 "forceful exit of this job.\n",
2024 td->o.name, td->runstate,
2025 (unsigned long) time_since_now(&td->terminate_time));
2026 td_set_runstate(td, TD_REAPED);
2027 goto reaped;
2028 }
2029
2030 /*
2031 * thread is not dead, continue
2032 */
2033 pending++;
2034 continue;
2035reaped:
2036 (*nr_running)--;
2037 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2038 (*t_rate) -= ddir_rw_sum(td->o.rate);
2039 if (!td->pid)
2040 pending--;
2041
2042 if (td->error)
2043 exit_value++;
2044
2045 done_secs += mtime_since_now(&td->epoch) / 1000;
2046 profile_td_exit(td);
2047 }
2048
2049 if (*nr_running == cputhreads && !pending && realthreads)
2050 fio_terminate_threads(TERMINATE_ALL);
2051}
2052
2053static bool __check_trigger_file(void)
2054{
2055 struct stat sb;
2056
2057 if (!trigger_file)
2058 return false;
2059
2060 if (stat(trigger_file, &sb))
2061 return false;
2062
2063 if (unlink(trigger_file) < 0)
2064 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2065 strerror(errno));
2066
2067 return true;
2068}
2069
2070static bool trigger_timedout(void)
2071{
2072 if (trigger_timeout)
2073 if (time_since_genesis() >= trigger_timeout) {
2074 trigger_timeout = 0;
2075 return true;
2076 }
2077
2078 return false;
2079}
2080
2081void exec_trigger(const char *cmd)
2082{
2083 int ret;
2084
2085 if (!cmd || cmd[0] == '\0')
2086 return;
2087
2088 ret = system(cmd);
2089 if (ret == -1)
2090 log_err("fio: failed executing %s trigger\n", cmd);
2091}
2092
2093void check_trigger_file(void)
2094{
2095 if (__check_trigger_file() || trigger_timedout()) {
2096 if (nr_clients)
2097 fio_clients_send_trigger(trigger_remote_cmd);
2098 else {
2099 verify_save_state(IO_LIST_ALL);
2100 fio_terminate_threads(TERMINATE_ALL);
2101 exec_trigger(trigger_cmd);
2102 }
2103 }
2104}
2105
2106static int fio_verify_load_state(struct thread_data *td)
2107{
2108 int ret;
2109
2110 if (!td->o.verify_state)
2111 return 0;
2112
2113 if (is_backend) {
2114 void *data;
2115
2116 ret = fio_server_get_verify_state(td->o.name,
2117 td->thread_number - 1, &data);
2118 if (!ret)
2119 verify_assign_state(td, data);
2120 } else
2121 ret = verify_load_state(td, "local");
2122
2123 return ret;
2124}
2125
2126static void do_usleep(unsigned int usecs)
2127{
2128 check_for_running_stats();
2129 check_trigger_file();
2130 usleep(usecs);
2131}
2132
2133static bool check_mount_writes(struct thread_data *td)
2134{
2135 struct fio_file *f;
2136 unsigned int i;
2137
2138 if (!td_write(td) || td->o.allow_mounted_write)
2139 return false;
2140
2141 /*
2142 * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2143 * are mkfs'd and mounted.
2144 */
2145 for_each_file(td, f, i) {
2146#ifdef FIO_HAVE_CHARDEV_SIZE
2147 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2148#else
2149 if (f->filetype != FIO_TYPE_BLOCK)
2150#endif
2151 continue;
2152 if (device_is_mounted(f->file_name))
2153 goto mounted;
2154 }
2155
2156 return false;
2157mounted:
2158 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2159 return true;
2160}
2161
2162static bool waitee_running(struct thread_data *me)
2163{
2164 const char *waitee = me->o.wait_for;
2165 const char *self = me->o.name;
2166 struct thread_data *td;
2167 int i;
2168
2169 if (!waitee)
2170 return false;
2171
2172 for_each_td(td, i) {
2173 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2174 continue;
2175
2176 if (td->runstate < TD_EXITED) {
2177 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2178 self, td->o.name,
2179 runstate_to_name(td->runstate));
2180 return true;
2181 }
2182 }
2183
2184 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2185 return false;
2186}
2187
2188/*
2189 * Main function for kicking off and reaping jobs, as needed.
2190 */
2191static void run_threads(struct sk_out *sk_out)
2192{
2193 struct thread_data *td;
2194 unsigned int i, todo, nr_running, nr_started;
2195 uint64_t m_rate, t_rate;
2196 uint64_t spent;
2197
2198 if (fio_gtod_offload && fio_start_gtod_thread())
2199 return;
2200
2201 fio_idle_prof_init();
2202
2203 set_sig_handlers();
2204
2205 nr_thread = nr_process = 0;
2206 for_each_td(td, i) {
2207 if (check_mount_writes(td))
2208 return;
2209 if (td->o.use_thread)
2210 nr_thread++;
2211 else
2212 nr_process++;
2213 }
2214
2215 if (output_format & FIO_OUTPUT_NORMAL) {
2216 log_info("Starting ");
2217 if (nr_thread)
2218 log_info("%d thread%s", nr_thread,
2219 nr_thread > 1 ? "s" : "");
2220 if (nr_process) {
2221 if (nr_thread)
2222 log_info(" and ");
2223 log_info("%d process%s", nr_process,
2224 nr_process > 1 ? "es" : "");
2225 }
2226 log_info("\n");
2227 log_info_flush();
2228 }
2229
2230 todo = thread_number;
2231 nr_running = 0;
2232 nr_started = 0;
2233 m_rate = t_rate = 0;
2234
2235 for_each_td(td, i) {
2236 print_status_init(td->thread_number - 1);
2237
2238 if (!td->o.create_serialize)
2239 continue;
2240
2241 if (fio_verify_load_state(td))
2242 goto reap;
2243
2244 /*
2245 * do file setup here so it happens sequentially,
2246 * we don't want X number of threads getting their
2247 * client data interspersed on disk
2248 */
2249 if (setup_files(td)) {
2250reap:
2251 exit_value++;
2252 if (td->error)
2253 log_err("fio: pid=%d, err=%d/%s\n",
2254 (int) td->pid, td->error, td->verror);
2255 td_set_runstate(td, TD_REAPED);
2256 todo--;
2257 } else {
2258 struct fio_file *f;
2259 unsigned int j;
2260
2261 /*
2262 * for sharing to work, each job must always open
2263 * its own files. so close them, if we opened them
2264 * for creation
2265 */
2266 for_each_file(td, f, j) {
2267 if (fio_file_open(f))
2268 td_io_close_file(td, f);
2269 }
2270 }
2271 }
2272
2273 /* start idle threads before io threads start to run */
2274 fio_idle_prof_start();
2275
2276 set_genesis_time();
2277
2278 while (todo) {
2279 struct thread_data *map[REAL_MAX_JOBS];
2280 struct timespec this_start;
2281 int this_jobs = 0, left;
2282 struct fork_data *fd;
2283
2284 /*
2285 * create threads (TD_NOT_CREATED -> TD_CREATED)
2286 */
2287 for_each_td(td, i) {
2288 if (td->runstate != TD_NOT_CREATED)
2289 continue;
2290
2291 /*
2292 * never got a chance to start, killed by other
2293 * thread for some reason
2294 */
2295 if (td->terminate) {
2296 todo--;
2297 continue;
2298 }
2299
2300 if (td->o.start_delay) {
2301 spent = utime_since_genesis();
2302
2303 if (td->o.start_delay > spent)
2304 continue;
2305 }
2306
2307 if (td->o.stonewall && (nr_started || nr_running)) {
2308 dprint(FD_PROCESS, "%s: stonewall wait\n",
2309 td->o.name);
2310 break;
2311 }
2312
2313 if (waitee_running(td)) {
2314 dprint(FD_PROCESS, "%s: waiting for %s\n",
2315 td->o.name, td->o.wait_for);
2316 continue;
2317 }
2318
2319 init_disk_util(td);
2320
2321 td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2322 td->update_rusage = 0;
2323
2324 /*
2325 * Set state to created. Thread will transition
2326 * to TD_INITIALIZED when it's done setting up.
2327 */
2328 td_set_runstate(td, TD_CREATED);
2329 map[this_jobs++] = td;
2330 nr_started++;
2331
2332 fd = calloc(1, sizeof(*fd));
2333 fd->td = td;
2334 fd->sk_out = sk_out;
2335
2336 if (td->o.use_thread) {
2337 int ret;
2338
2339 dprint(FD_PROCESS, "will pthread_create\n");
2340 ret = pthread_create(&td->thread, NULL,
2341 thread_main, fd);
2342 if (ret) {
2343 log_err("pthread_create: %s\n",
2344 strerror(ret));
2345 free(fd);
2346 nr_started--;
2347 break;
2348 }
2349 fd = NULL;
2350 ret = pthread_detach(td->thread);
2351 if (ret)
2352 log_err("pthread_detach: %s",
2353 strerror(ret));
2354 } else {
2355 pid_t pid;
2356 dprint(FD_PROCESS, "will fork\n");
2357 pid = fork();
2358 if (!pid) {
2359 int ret;
2360
2361 ret = (int)(uintptr_t)thread_main(fd);
2362 _exit(ret);
2363 } else if (i == fio_debug_jobno)
2364 *fio_debug_jobp = pid;
2365 }
2366 dprint(FD_MUTEX, "wait on startup_sem\n");
2367 if (fio_sem_down_timeout(startup_sem, 10000)) {
2368 log_err("fio: job startup hung? exiting.\n");
2369 fio_terminate_threads(TERMINATE_ALL);
2370 fio_abort = 1;
2371 nr_started--;
2372 free(fd);
2373 break;
2374 }
2375 dprint(FD_MUTEX, "done waiting on startup_sem\n");
2376 }
2377
2378 /*
2379 * Wait for the started threads to transition to
2380 * TD_INITIALIZED.
2381 */
2382 fio_gettime(&this_start, NULL);
2383 left = this_jobs;
2384 while (left && !fio_abort) {
2385 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2386 break;
2387
2388 do_usleep(100000);
2389
2390 for (i = 0; i < this_jobs; i++) {
2391 td = map[i];
2392 if (!td)
2393 continue;
2394 if (td->runstate == TD_INITIALIZED) {
2395 map[i] = NULL;
2396 left--;
2397 } else if (td->runstate >= TD_EXITED) {
2398 map[i] = NULL;
2399 left--;
2400 todo--;
2401 nr_running++; /* work-around... */
2402 }
2403 }
2404 }
2405
2406 if (left) {
2407 log_err("fio: %d job%s failed to start\n", left,
2408 left > 1 ? "s" : "");
2409 for (i = 0; i < this_jobs; i++) {
2410 td = map[i];
2411 if (!td)
2412 continue;
2413 kill(td->pid, SIGTERM);
2414 }
2415 break;
2416 }
2417
2418 /*
2419 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2420 */
2421 for_each_td(td, i) {
2422 if (td->runstate != TD_INITIALIZED)
2423 continue;
2424
2425 if (in_ramp_time(td))
2426 td_set_runstate(td, TD_RAMP);
2427 else
2428 td_set_runstate(td, TD_RUNNING);
2429 nr_running++;
2430 nr_started--;
2431 m_rate += ddir_rw_sum(td->o.ratemin);
2432 t_rate += ddir_rw_sum(td->o.rate);
2433 todo--;
2434 fio_sem_up(td->sem);
2435 }
2436
2437 reap_threads(&nr_running, &t_rate, &m_rate);
2438
2439 if (todo)
2440 do_usleep(100000);
2441 }
2442
2443 while (nr_running) {
2444 reap_threads(&nr_running, &t_rate, &m_rate);
2445 do_usleep(10000);
2446 }
2447
2448 fio_idle_prof_stop();
2449
2450 update_io_ticks();
2451}
2452
2453static void free_disk_util(void)
2454{
2455 disk_util_prune_entries();
2456 helper_thread_destroy();
2457}
2458
2459int fio_backend(struct sk_out *sk_out)
2460{
2461 struct thread_data *td;
2462 int i;
2463
2464 if (exec_profile) {
2465 if (load_profile(exec_profile))
2466 return 1;
2467 free(exec_profile);
2468 exec_profile = NULL;
2469 }
2470 if (!thread_number)
2471 return 0;
2472
2473 if (write_bw_log) {
2474 struct log_params p = {
2475 .log_type = IO_LOG_TYPE_BW,
2476 };
2477
2478 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2479 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2480 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2481 }
2482
2483 startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2484 if (!sk_out)
2485 is_local_backend = true;
2486 if (startup_sem == NULL)
2487 return 1;
2488
2489 set_genesis_time();
2490 stat_init();
2491 helper_thread_create(startup_sem, sk_out);
2492
2493 cgroup_list = smalloc(sizeof(*cgroup_list));
2494 if (cgroup_list)
2495 INIT_FLIST_HEAD(cgroup_list);
2496
2497 run_threads(sk_out);
2498
2499 helper_thread_exit();
2500
2501 if (!fio_abort) {
2502 __show_run_stats();
2503 if (write_bw_log) {
2504 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2505 struct io_log *log = agg_io_log[i];
2506
2507 flush_log(log, false);
2508 free_log(log);
2509 }
2510 }
2511 }
2512
2513 for_each_td(td, i) {
2514 steadystate_free(td);
2515 fio_options_free(td);
2516 if (td->rusage_sem) {
2517 fio_sem_remove(td->rusage_sem);
2518 td->rusage_sem = NULL;
2519 }
2520 fio_sem_remove(td->sem);
2521 td->sem = NULL;
2522 }
2523
2524 free_disk_util();
2525 if (cgroup_list) {
2526 cgroup_kill(cgroup_list);
2527 sfree(cgroup_list);
2528 }
2529
2530 fio_sem_remove(startup_sem);
2531 stat_exit();
2532 return exit_value;
2533}