t/read-to-pipe-async: Do not divide by zero
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17 #include "zbd.h"
18 #include "oslib/asprintf.h"
19
20 #define LOG_MSEC_SLACK  1
21
22 struct fio_sem *stat_sem;
23
24 void clear_rusage_stat(struct thread_data *td)
25 {
26         struct thread_stat *ts = &td->ts;
27
28         fio_getrusage(&td->ru_start);
29         ts->usr_time = ts->sys_time = 0;
30         ts->ctx = 0;
31         ts->minf = ts->majf = 0;
32 }
33
34 void update_rusage_stat(struct thread_data *td)
35 {
36         struct thread_stat *ts = &td->ts;
37
38         fio_getrusage(&td->ru_end);
39         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
40                                         &td->ru_end.ru_utime);
41         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
42                                         &td->ru_end.ru_stime);
43         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
44                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
45         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
46         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
47
48         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
49 }
50
51 /*
52  * Given a latency, return the index of the corresponding bucket in
53  * the structure tracking percentiles.
54  *
55  * (1) find the group (and error bits) that the value (latency)
56  * belongs to by looking at its MSB. (2) find the bucket number in the
57  * group by looking at the index bits.
58  *
59  */
60 static unsigned int plat_val_to_idx(unsigned long long val)
61 {
62         unsigned int msb, error_bits, base, offset, idx;
63
64         /* Find MSB starting from bit 0 */
65         if (val == 0)
66                 msb = 0;
67         else
68                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
69
70         /*
71          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
72          * all bits of the sample as index
73          */
74         if (msb <= FIO_IO_U_PLAT_BITS)
75                 return val;
76
77         /* Compute the number of error bits to discard*/
78         error_bits = msb - FIO_IO_U_PLAT_BITS;
79
80         /* Compute the number of buckets before the group */
81         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
82
83         /*
84          * Discard the error bits and apply the mask to find the
85          * index for the buckets in the group
86          */
87         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
88
89         /* Make sure the index does not exceed (array size - 1) */
90         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
91                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
92
93         return idx;
94 }
95
96 /*
97  * Convert the given index of the bucket array to the value
98  * represented by the bucket
99  */
100 static unsigned long long plat_idx_to_val(unsigned int idx)
101 {
102         unsigned int error_bits;
103         unsigned long long k, base;
104
105         assert(idx < FIO_IO_U_PLAT_NR);
106
107         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108          * all bits of the sample as index */
109         if (idx < (FIO_IO_U_PLAT_VAL << 1))
110                 return idx;
111
112         /* Find the group and compute the minimum value of that group */
113         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
115
116         /* Find its bucket number of the group */
117         k = idx % FIO_IO_U_PLAT_VAL;
118
119         /* Return the mean of the range of the bucket */
120         return base + ((k + 0.5) * (1 << error_bits));
121 }
122
123 static int double_cmp(const void *a, const void *b)
124 {
125         const fio_fp64_t fa = *(const fio_fp64_t *) a;
126         const fio_fp64_t fb = *(const fio_fp64_t *) b;
127         int cmp = 0;
128
129         if (fa.u.f > fb.u.f)
130                 cmp = 1;
131         else if (fa.u.f < fb.u.f)
132                 cmp = -1;
133
134         return cmp;
135 }
136
137 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
138                                    fio_fp64_t *plist, unsigned long long **output,
139                                    unsigned long long *maxv, unsigned long long *minv)
140 {
141         unsigned long long sum = 0;
142         unsigned int len, i, j = 0;
143         unsigned long long *ovals = NULL;
144         bool is_last;
145
146         *minv = -1ULL;
147         *maxv = 0;
148
149         len = 0;
150         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
151                 len++;
152
153         if (!len)
154                 return 0;
155
156         /*
157          * Sort the percentile list. Note that it may already be sorted if
158          * we are using the default values, but since it's a short list this
159          * isn't a worry. Also note that this does not work for NaN values.
160          */
161         if (len > 1)
162                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
163
164         ovals = malloc(len * sizeof(*ovals));
165         if (!ovals)
166                 return 0;
167
168         /*
169          * Calculate bucket values, note down max and min values
170          */
171         is_last = false;
172         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
173                 sum += io_u_plat[i];
174                 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
175                         assert(plist[j].u.f <= 100.0);
176
177                         ovals[j] = plat_idx_to_val(i);
178                         if (ovals[j] < *minv)
179                                 *minv = ovals[j];
180                         if (ovals[j] > *maxv)
181                                 *maxv = ovals[j];
182
183                         is_last = (j == len - 1) != 0;
184                         if (is_last)
185                                 break;
186
187                         j++;
188                 }
189         }
190
191         if (!is_last)
192                 log_err("fio: error calculating latency percentiles\n");
193
194         *output = ovals;
195         return len;
196 }
197
198 /*
199  * Find and display the p-th percentile of clat
200  */
201 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
202                                   fio_fp64_t *plist, unsigned int precision,
203                                   const char *pre, struct buf_output *out)
204 {
205         unsigned int divisor, len, i, j = 0;
206         unsigned long long minv, maxv;
207         unsigned long long *ovals;
208         int per_line, scale_down, time_width;
209         bool is_last;
210         char fmt[32];
211
212         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
213         if (!len || !ovals)
214                 goto out;
215
216         /*
217          * We default to nsecs, but if the value range is such that we
218          * should scale down to usecs or msecs, do that.
219          */
220         if (minv > 2000000 && maxv > 99999999ULL) {
221                 scale_down = 2;
222                 divisor = 1000000;
223                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
224         } else if (minv > 2000 && maxv > 99999) {
225                 scale_down = 1;
226                 divisor = 1000;
227                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
228         } else {
229                 scale_down = 0;
230                 divisor = 1;
231                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
232         }
233
234
235         time_width = max(5, (int) (log10(maxv / divisor) + 1));
236         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
237                         precision, time_width);
238         /* fmt will be something like " %5.2fth=[%4llu]%c" */
239         per_line = (80 - 7) / (precision + 10 + time_width);
240
241         for (j = 0; j < len; j++) {
242                 /* for formatting */
243                 if (j != 0 && (j % per_line) == 0)
244                         log_buf(out, "     |");
245
246                 /* end of the list */
247                 is_last = (j == len - 1) != 0;
248
249                 for (i = 0; i < scale_down; i++)
250                         ovals[j] = (ovals[j] + 999) / 1000;
251
252                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
253
254                 if (is_last)
255                         break;
256
257                 if ((j % per_line) == per_line - 1)     /* for formatting */
258                         log_buf(out, "\n");
259         }
260
261 out:
262         if (ovals)
263                 free(ovals);
264 }
265
266 bool calc_lat(struct io_stat *is, unsigned long long *min,
267               unsigned long long *max, double *mean, double *dev)
268 {
269         double n = (double) is->samples;
270
271         if (n == 0)
272                 return false;
273
274         *min = is->min_val;
275         *max = is->max_val;
276         *mean = is->mean.u.f;
277
278         if (n > 1.0)
279                 *dev = sqrt(is->S.u.f / (n - 1.0));
280         else
281                 *dev = 0;
282
283         return true;
284 }
285
286 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
287 {
288         char *io, *agg, *min, *max;
289         char *ioalt, *aggalt, *minalt, *maxalt;
290         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
291         int i;
292
293         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
294
295         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
296                 const int i2p = is_power_of_2(rs->kb_base);
297
298                 if (!rs->max_run[i])
299                         continue;
300
301                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
302                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
303                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
304                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
305                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
306                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
307                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
308                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
309                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
310                                 rs->unified_rw_rep ? "  MIXED" : str[i],
311                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
312                                 (unsigned long long) rs->min_run[i],
313                                 (unsigned long long) rs->max_run[i]);
314
315                 free(io);
316                 free(agg);
317                 free(min);
318                 free(max);
319                 free(ioalt);
320                 free(aggalt);
321                 free(minalt);
322                 free(maxalt);
323         }
324 }
325
326 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
327 {
328         int i;
329
330         /*
331          * Do depth distribution calculations
332          */
333         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
334                 if (total) {
335                         io_u_dist[i] = (double) map[i] / (double) total;
336                         io_u_dist[i] *= 100.0;
337                         if (io_u_dist[i] < 0.1 && map[i])
338                                 io_u_dist[i] = 0.1;
339                 } else
340                         io_u_dist[i] = 0.0;
341         }
342 }
343
344 static void stat_calc_lat(struct thread_stat *ts, double *dst,
345                           uint64_t *src, int nr)
346 {
347         unsigned long total = ddir_rw_sum(ts->total_io_u);
348         int i;
349
350         /*
351          * Do latency distribution calculations
352          */
353         for (i = 0; i < nr; i++) {
354                 if (total) {
355                         dst[i] = (double) src[i] / (double) total;
356                         dst[i] *= 100.0;
357                         if (dst[i] < 0.01 && src[i])
358                                 dst[i] = 0.01;
359                 } else
360                         dst[i] = 0.0;
361         }
362 }
363
364 /*
365  * To keep the terse format unaltered, add all of the ns latency
366  * buckets to the first us latency bucket
367  */
368 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
369 {
370         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
371         int i;
372
373         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
374
375         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
376                 ntotal += ts->io_u_lat_n[i];
377
378         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
379 }
380
381 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
382 {
383         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
384 }
385
386 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
387 {
388         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
389 }
390
391 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
392 {
393         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
394 }
395
396 static void display_lat(const char *name, unsigned long long min,
397                         unsigned long long max, double mean, double dev,
398                         struct buf_output *out)
399 {
400         const char *base = "(nsec)";
401         char *minp, *maxp;
402
403         if (nsec_to_msec(&min, &max, &mean, &dev))
404                 base = "(msec)";
405         else if (nsec_to_usec(&min, &max, &mean, &dev))
406                 base = "(usec)";
407
408         minp = num2str(min, 6, 1, 0, N2S_NONE);
409         maxp = num2str(max, 6, 1, 0, N2S_NONE);
410
411         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
412                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
413
414         free(minp);
415         free(maxp);
416 }
417
418 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
419                              int ddir, struct buf_output *out)
420 {
421         unsigned long runt;
422         unsigned long long min, max, bw, iops;
423         double mean, dev;
424         char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
425         int i2p;
426
427         if (ddir_sync(ddir)) {
428                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
429                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
430                         display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
431                         show_clat_percentiles(ts->io_u_sync_plat,
432                                                 ts->sync_stat.samples,
433                                                 ts->percentile_list,
434                                                 ts->percentile_precision,
435                                                 io_ddir_name(ddir), out);
436                 }
437                 return;
438         }
439
440         assert(ddir_rw(ddir));
441
442         if (!ts->runtime[ddir])
443                 return;
444
445         i2p = is_power_of_2(rs->kb_base);
446         runt = ts->runtime[ddir];
447
448         bw = (1000 * ts->io_bytes[ddir]) / runt;
449         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
450         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
451         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
452
453         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
454         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
455         if (ddir == DDIR_WRITE)
456                 post_st = zbd_write_status(ts);
457         else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
458                 uint64_t total;
459                 double hit;
460
461                 total = ts->cachehit + ts->cachemiss;
462                 hit = (double) ts->cachehit / (double) total;
463                 hit *= 100.0;
464                 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
465                         post_st = NULL;
466         }
467
468         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
469                         rs->unified_rw_rep ? "mixed" : io_ddir_name(ddir),
470                         iops_p, bw_p, bw_p_alt, io_p,
471                         (unsigned long long) ts->runtime[ddir],
472                         post_st ? : "");
473
474         free(post_st);
475         free(io_p);
476         free(bw_p);
477         free(bw_p_alt);
478         free(iops_p);
479
480         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
481                 display_lat("slat", min, max, mean, dev, out);
482         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
483                 display_lat("clat", min, max, mean, dev, out);
484         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
485                 display_lat(" lat", min, max, mean, dev, out);
486
487         if (ts->clat_percentiles || ts->lat_percentiles) {
488                 const char *name = ts->clat_percentiles ? "clat" : " lat";
489                 uint64_t samples;
490
491                 if (ts->clat_percentiles)
492                         samples = ts->clat_stat[ddir].samples;
493                 else
494                         samples = ts->lat_stat[ddir].samples;
495
496                 show_clat_percentiles(ts->io_u_plat[ddir],
497                                         samples,
498                                         ts->percentile_list,
499                                         ts->percentile_precision, name, out);
500         }
501         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
502                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
503                 const char *bw_str;
504
505                 if ((rs->unit_base == 1) && i2p)
506                         bw_str = "Kibit";
507                 else if (rs->unit_base == 1)
508                         bw_str = "kbit";
509                 else if (i2p)
510                         bw_str = "KiB";
511                 else
512                         bw_str = "kB";
513
514                 if (rs->agg[ddir]) {
515                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
516                         if (p_of_agg > 100.0)
517                                 p_of_agg = 100.0;
518                 }
519
520                 if (rs->unit_base == 1) {
521                         min *= 8.0;
522                         max *= 8.0;
523                         mean *= 8.0;
524                         dev *= 8.0;
525                 }
526
527                 if (mean > fkb_base * fkb_base) {
528                         min /= fkb_base;
529                         max /= fkb_base;
530                         mean /= fkb_base;
531                         dev /= fkb_base;
532                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
533                 }
534
535                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
536                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
537                         bw_str, min, max, p_of_agg, mean, dev,
538                         (&ts->bw_stat[ddir])->samples);
539         }
540         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
541                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
542                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
543                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
544         }
545 }
546
547 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
548                      const char *msg, struct buf_output *out)
549 {
550         bool new_line = true, shown = false;
551         int i, line = 0;
552
553         for (i = 0; i < nr; i++) {
554                 if (io_u_lat[i] <= 0.0)
555                         continue;
556                 shown = true;
557                 if (new_line) {
558                         if (line)
559                                 log_buf(out, "\n");
560                         log_buf(out, "  lat (%s)   : ", msg);
561                         new_line = false;
562                         line = 0;
563                 }
564                 if (line)
565                         log_buf(out, ", ");
566                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
567                 line++;
568                 if (line == 5)
569                         new_line = true;
570         }
571
572         if (shown)
573                 log_buf(out, "\n");
574
575         return true;
576 }
577
578 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
579 {
580         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
581                                  "250=", "500=", "750=", "1000=", };
582
583         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
584 }
585
586 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
587 {
588         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
589                                  "250=", "500=", "750=", "1000=", };
590
591         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
592 }
593
594 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
595 {
596         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
597                                  "250=", "500=", "750=", "1000=", "2000=",
598                                  ">=2000=", };
599
600         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
601 }
602
603 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
604 {
605         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
606         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
607         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
608
609         stat_calc_lat_n(ts, io_u_lat_n);
610         stat_calc_lat_u(ts, io_u_lat_u);
611         stat_calc_lat_m(ts, io_u_lat_m);
612
613         show_lat_n(io_u_lat_n, out);
614         show_lat_u(io_u_lat_u, out);
615         show_lat_m(io_u_lat_m, out);
616 }
617
618 static int block_state_category(int block_state)
619 {
620         switch (block_state) {
621         case BLOCK_STATE_UNINIT:
622                 return 0;
623         case BLOCK_STATE_TRIMMED:
624         case BLOCK_STATE_WRITTEN:
625                 return 1;
626         case BLOCK_STATE_WRITE_FAILURE:
627         case BLOCK_STATE_TRIM_FAILURE:
628                 return 2;
629         default:
630                 /* Silence compile warning on some BSDs and have a return */
631                 assert(0);
632                 return -1;
633         }
634 }
635
636 static int compare_block_infos(const void *bs1, const void *bs2)
637 {
638         uint64_t block1 = *(uint64_t *)bs1;
639         uint64_t block2 = *(uint64_t *)bs2;
640         int state1 = BLOCK_INFO_STATE(block1);
641         int state2 = BLOCK_INFO_STATE(block2);
642         int bscat1 = block_state_category(state1);
643         int bscat2 = block_state_category(state2);
644         int cycles1 = BLOCK_INFO_TRIMS(block1);
645         int cycles2 = BLOCK_INFO_TRIMS(block2);
646
647         if (bscat1 < bscat2)
648                 return -1;
649         if (bscat1 > bscat2)
650                 return 1;
651
652         if (cycles1 < cycles2)
653                 return -1;
654         if (cycles1 > cycles2)
655                 return 1;
656
657         if (state1 < state2)
658                 return -1;
659         if (state1 > state2)
660                 return 1;
661
662         assert(block1 == block2);
663         return 0;
664 }
665
666 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
667                                   fio_fp64_t *plist, unsigned int **percentiles,
668                                   unsigned int *types)
669 {
670         int len = 0;
671         int i, nr_uninit;
672
673         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
674
675         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
676                 len++;
677
678         if (!len)
679                 return 0;
680
681         /*
682          * Sort the percentile list. Note that it may already be sorted if
683          * we are using the default values, but since it's a short list this
684          * isn't a worry. Also note that this does not work for NaN values.
685          */
686         if (len > 1)
687                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
688
689         /* Start only after the uninit entries end */
690         for (nr_uninit = 0;
691              nr_uninit < nr_block_infos
692                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
693              nr_uninit ++)
694                 ;
695
696         if (nr_uninit == nr_block_infos)
697                 return 0;
698
699         *percentiles = calloc(len, sizeof(**percentiles));
700
701         for (i = 0; i < len; i++) {
702                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
703                                 + nr_uninit;
704                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
705         }
706
707         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
708         for (i = 0; i < nr_block_infos; i++)
709                 types[BLOCK_INFO_STATE(block_infos[i])]++;
710
711         return len;
712 }
713
714 static const char *block_state_names[] = {
715         [BLOCK_STATE_UNINIT] = "unwritten",
716         [BLOCK_STATE_TRIMMED] = "trimmed",
717         [BLOCK_STATE_WRITTEN] = "written",
718         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
719         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
720 };
721
722 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
723                              fio_fp64_t *plist, struct buf_output *out)
724 {
725         int len, pos, i;
726         unsigned int *percentiles = NULL;
727         unsigned int block_state_counts[BLOCK_STATE_COUNT];
728
729         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
730                                      &percentiles, block_state_counts);
731
732         log_buf(out, "  block lifetime percentiles :\n   |");
733         pos = 0;
734         for (i = 0; i < len; i++) {
735                 uint32_t block_info = percentiles[i];
736 #define LINE_LENGTH     75
737                 char str[LINE_LENGTH];
738                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
739                                      plist[i].u.f, block_info,
740                                      i == len - 1 ? '\n' : ',');
741                 assert(strln < LINE_LENGTH);
742                 if (pos + strln > LINE_LENGTH) {
743                         pos = 0;
744                         log_buf(out, "\n   |");
745                 }
746                 log_buf(out, "%s", str);
747                 pos += strln;
748 #undef LINE_LENGTH
749         }
750         if (percentiles)
751                 free(percentiles);
752
753         log_buf(out, "        states               :");
754         for (i = 0; i < BLOCK_STATE_COUNT; i++)
755                 log_buf(out, " %s=%u%c",
756                          block_state_names[i], block_state_counts[i],
757                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
758 }
759
760 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
761 {
762         char *p1, *p1alt, *p2;
763         unsigned long long bw_mean, iops_mean;
764         const int i2p = is_power_of_2(ts->kb_base);
765
766         if (!ts->ss_dur)
767                 return;
768
769         bw_mean = steadystate_bw_mean(ts);
770         iops_mean = steadystate_iops_mean(ts);
771
772         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
773         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
774         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
775
776         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
777                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
778                 p1, p1alt, p2,
779                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
780                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
781                 ts->ss_criterion.u.f,
782                 ts->ss_state & FIO_SS_PCT ? "%" : "");
783
784         free(p1);
785         free(p1alt);
786         free(p2);
787 }
788
789 static void show_thread_status_normal(struct thread_stat *ts,
790                                       struct group_run_stats *rs,
791                                       struct buf_output *out)
792 {
793         double usr_cpu, sys_cpu;
794         unsigned long runtime;
795         double io_u_dist[FIO_IO_U_MAP_NR];
796         time_t time_p;
797         char time_buf[32];
798
799         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
800                 return;
801                 
802         memset(time_buf, 0, sizeof(time_buf));
803
804         time(&time_p);
805         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
806
807         if (!ts->error) {
808                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
809                                         ts->name, ts->groupid, ts->members,
810                                         ts->error, (int) ts->pid, time_buf);
811         } else {
812                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
813                                         ts->name, ts->groupid, ts->members,
814                                         ts->error, ts->verror, (int) ts->pid,
815                                         time_buf);
816         }
817
818         if (strlen(ts->description))
819                 log_buf(out, "  Description  : [%s]\n", ts->description);
820
821         if (ts->io_bytes[DDIR_READ])
822                 show_ddir_status(rs, ts, DDIR_READ, out);
823         if (ts->io_bytes[DDIR_WRITE])
824                 show_ddir_status(rs, ts, DDIR_WRITE, out);
825         if (ts->io_bytes[DDIR_TRIM])
826                 show_ddir_status(rs, ts, DDIR_TRIM, out);
827
828         show_latencies(ts, out);
829
830         if (ts->sync_stat.samples)
831                 show_ddir_status(rs, ts, DDIR_SYNC, out);
832
833         runtime = ts->total_run_time;
834         if (runtime) {
835                 double runt = (double) runtime;
836
837                 usr_cpu = (double) ts->usr_time * 100 / runt;
838                 sys_cpu = (double) ts->sys_time * 100 / runt;
839         } else {
840                 usr_cpu = 0;
841                 sys_cpu = 0;
842         }
843
844         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
845                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
846                         (unsigned long long) ts->ctx,
847                         (unsigned long long) ts->majf,
848                         (unsigned long long) ts->minf);
849
850         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
851         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
852                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
853                                         io_u_dist[1], io_u_dist[2],
854                                         io_u_dist[3], io_u_dist[4],
855                                         io_u_dist[5], io_u_dist[6]);
856
857         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
858         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
859                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
860                                         io_u_dist[1], io_u_dist[2],
861                                         io_u_dist[3], io_u_dist[4],
862                                         io_u_dist[5], io_u_dist[6]);
863         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
864         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
865                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
866                                         io_u_dist[1], io_u_dist[2],
867                                         io_u_dist[3], io_u_dist[4],
868                                         io_u_dist[5], io_u_dist[6]);
869         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
870                                  " short=%llu,%llu,%llu,0"
871                                  " dropped=%llu,%llu,%llu,0\n",
872                                         (unsigned long long) ts->total_io_u[0],
873                                         (unsigned long long) ts->total_io_u[1],
874                                         (unsigned long long) ts->total_io_u[2],
875                                         (unsigned long long) ts->total_io_u[3],
876                                         (unsigned long long) ts->short_io_u[0],
877                                         (unsigned long long) ts->short_io_u[1],
878                                         (unsigned long long) ts->short_io_u[2],
879                                         (unsigned long long) ts->drop_io_u[0],
880                                         (unsigned long long) ts->drop_io_u[1],
881                                         (unsigned long long) ts->drop_io_u[2]);
882         if (ts->continue_on_error) {
883                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
884                                         (unsigned long long)ts->total_err_count,
885                                         ts->first_error,
886                                         strerror(ts->first_error));
887         }
888         if (ts->latency_depth) {
889                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
890                                         (unsigned long long)ts->latency_target,
891                                         (unsigned long long)ts->latency_window,
892                                         ts->latency_percentile.u.f,
893                                         ts->latency_depth);
894         }
895
896         if (ts->nr_block_infos)
897                 show_block_infos(ts->nr_block_infos, ts->block_infos,
898                                   ts->percentile_list, out);
899
900         if (ts->ss_dur)
901                 show_ss_normal(ts, out);
902 }
903
904 static void show_ddir_status_terse(struct thread_stat *ts,
905                                    struct group_run_stats *rs, int ddir,
906                                    int ver, struct buf_output *out)
907 {
908         unsigned long long min, max, minv, maxv, bw, iops;
909         unsigned long long *ovals = NULL;
910         double mean, dev;
911         unsigned int len;
912         int i, bw_stat;
913
914         assert(ddir_rw(ddir));
915
916         iops = bw = 0;
917         if (ts->runtime[ddir]) {
918                 uint64_t runt = ts->runtime[ddir];
919
920                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
921                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
922         }
923
924         log_buf(out, ";%llu;%llu;%llu;%llu",
925                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
926                                         (unsigned long long) ts->runtime[ddir]);
927
928         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
929                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
930         else
931                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
932
933         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
934                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
935         else
936                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
937
938         if (ts->clat_percentiles || ts->lat_percentiles) {
939                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
940                                         ts->clat_stat[ddir].samples,
941                                         ts->percentile_list, &ovals, &maxv,
942                                         &minv);
943         } else
944                 len = 0;
945
946         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
947                 if (i >= len) {
948                         log_buf(out, ";0%%=0");
949                         continue;
950                 }
951                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
952         }
953
954         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
955                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
956         else
957                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
958
959         if (ovals)
960                 free(ovals);
961
962         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
963         if (bw_stat) {
964                 double p_of_agg = 100.0;
965
966                 if (rs->agg[ddir]) {
967                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
968                         if (p_of_agg > 100.0)
969                                 p_of_agg = 100.0;
970                 }
971
972                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
973         } else
974                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
975
976         if (ver == 5) {
977                 if (bw_stat)
978                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
979                 else
980                         log_buf(out, ";%lu", 0UL);
981
982                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
983                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
984                                 mean, dev, (&ts->iops_stat[ddir])->samples);
985                 else
986                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
987         }
988 }
989
990 static void add_ddir_status_json(struct thread_stat *ts,
991                 struct group_run_stats *rs, int ddir, struct json_object *parent)
992 {
993         unsigned long long min, max, minv, maxv;
994         unsigned long long bw_bytes, bw;
995         unsigned long long *ovals = NULL;
996         double mean, dev, iops;
997         unsigned int len;
998         int i;
999         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
1000         char buf[120];
1001         double p_of_agg = 100.0;
1002
1003         assert(ddir_rw(ddir) || ddir_sync(ddir));
1004
1005         if (ts->unified_rw_rep && ddir != DDIR_READ)
1006                 return;
1007
1008         dir_object = json_create_object();
1009         json_object_add_value_object(parent,
1010                 ts->unified_rw_rep ? "mixed" : io_ddir_name(ddir), dir_object);
1011
1012         if (ddir_rw(ddir)) {
1013                 bw_bytes = 0;
1014                 bw = 0;
1015                 iops = 0.0;
1016                 if (ts->runtime[ddir]) {
1017                         uint64_t runt = ts->runtime[ddir];
1018
1019                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1020                         bw = bw_bytes / 1024; /* KiB/s */
1021                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1022                 }
1023
1024                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1025                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1026                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1027                 json_object_add_value_int(dir_object, "bw", bw);
1028                 json_object_add_value_float(dir_object, "iops", iops);
1029                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1030                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1031                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1032                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1033
1034                 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1035                         min = max = 0;
1036                         mean = dev = 0.0;
1037                 }
1038                 tmp_object = json_create_object();
1039                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1040                 json_object_add_value_int(tmp_object, "min", min);
1041                 json_object_add_value_int(tmp_object, "max", max);
1042                 json_object_add_value_float(tmp_object, "mean", mean);
1043                 json_object_add_value_float(tmp_object, "stddev", dev);
1044
1045                 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1046                         min = max = 0;
1047                         mean = dev = 0.0;
1048                 }
1049                 tmp_object = json_create_object();
1050                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1051                 json_object_add_value_int(tmp_object, "min", min);
1052                 json_object_add_value_int(tmp_object, "max", max);
1053                 json_object_add_value_float(tmp_object, "mean", mean);
1054                 json_object_add_value_float(tmp_object, "stddev", dev);
1055         } else {
1056                 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1057                         min = max = 0;
1058                         mean = dev = 0.0;
1059                 }
1060
1061                 tmp_object = json_create_object();
1062                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1063                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1064                 json_object_add_value_int(tmp_object, "min", min);
1065                 json_object_add_value_int(tmp_object, "max", max);
1066                 json_object_add_value_float(tmp_object, "mean", mean);
1067                 json_object_add_value_float(tmp_object, "stddev", dev);
1068         }
1069
1070         if (ts->clat_percentiles || ts->lat_percentiles) {
1071                 if (ddir_rw(ddir)) {
1072                         uint64_t samples;
1073
1074                         if (ts->clat_percentiles)
1075                                 samples = ts->clat_stat[ddir].samples;
1076                         else
1077                                 samples = ts->lat_stat[ddir].samples;
1078
1079                         len = calc_clat_percentiles(ts->io_u_plat[ddir],
1080                                         samples, ts->percentile_list, &ovals,
1081                                         &maxv, &minv);
1082                 } else {
1083                         len = calc_clat_percentiles(ts->io_u_sync_plat,
1084                                         ts->sync_stat.samples,
1085                                         ts->percentile_list, &ovals, &maxv,
1086                                         &minv);
1087                 }
1088
1089                 if (len > FIO_IO_U_LIST_MAX_LEN)
1090                         len = FIO_IO_U_LIST_MAX_LEN;
1091         } else
1092                 len = 0;
1093
1094         percentile_object = json_create_object();
1095         if (ts->clat_percentiles)
1096                 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1097         for (i = 0; i < len; i++) {
1098                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1099                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1100         }
1101
1102         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1103                 clat_bins_object = json_create_object();
1104                 if (ts->clat_percentiles)
1105                         json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1106
1107                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1108                         if (ddir_rw(ddir)) {
1109                                 if (ts->io_u_plat[ddir][i]) {
1110                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1111                                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1112                                 }
1113                         } else {
1114                                 if (ts->io_u_sync_plat[i]) {
1115                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1116                                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1117                                 }
1118                         }
1119                 }
1120         }
1121
1122         if (!ddir_rw(ddir))
1123                 return;
1124
1125         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1126                 min = max = 0;
1127                 mean = dev = 0.0;
1128         }
1129         tmp_object = json_create_object();
1130         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1131         json_object_add_value_int(tmp_object, "min", min);
1132         json_object_add_value_int(tmp_object, "max", max);
1133         json_object_add_value_float(tmp_object, "mean", mean);
1134         json_object_add_value_float(tmp_object, "stddev", dev);
1135         if (ts->lat_percentiles)
1136                 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1137         if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1138                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1139
1140         if (ovals)
1141                 free(ovals);
1142
1143         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1144                 if (rs->agg[ddir]) {
1145                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1146                         if (p_of_agg > 100.0)
1147                                 p_of_agg = 100.0;
1148                 }
1149         } else {
1150                 min = max = 0;
1151                 p_of_agg = mean = dev = 0.0;
1152         }
1153         json_object_add_value_int(dir_object, "bw_min", min);
1154         json_object_add_value_int(dir_object, "bw_max", max);
1155         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1156         json_object_add_value_float(dir_object, "bw_mean", mean);
1157         json_object_add_value_float(dir_object, "bw_dev", dev);
1158         json_object_add_value_int(dir_object, "bw_samples",
1159                                 (&ts->bw_stat[ddir])->samples);
1160
1161         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1162                 min = max = 0;
1163                 mean = dev = 0.0;
1164         }
1165         json_object_add_value_int(dir_object, "iops_min", min);
1166         json_object_add_value_int(dir_object, "iops_max", max);
1167         json_object_add_value_float(dir_object, "iops_mean", mean);
1168         json_object_add_value_float(dir_object, "iops_stddev", dev);
1169         json_object_add_value_int(dir_object, "iops_samples",
1170                                 (&ts->iops_stat[ddir])->samples);
1171
1172         if (ts->cachehit + ts->cachemiss) {
1173                 uint64_t total;
1174                 double hit;
1175
1176                 total = ts->cachehit + ts->cachemiss;
1177                 hit = (double) ts->cachehit / (double) total;
1178                 hit *= 100.0;
1179                 json_object_add_value_float(dir_object, "cachehit", hit);
1180         }
1181 }
1182
1183 static void show_thread_status_terse_all(struct thread_stat *ts,
1184                                          struct group_run_stats *rs, int ver,
1185                                          struct buf_output *out)
1186 {
1187         double io_u_dist[FIO_IO_U_MAP_NR];
1188         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1189         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1190         double usr_cpu, sys_cpu;
1191         int i;
1192
1193         /* General Info */
1194         if (ver == 2)
1195                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1196         else
1197                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1198                         ts->name, ts->groupid, ts->error);
1199
1200         /* Log Read Status */
1201         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1202         /* Log Write Status */
1203         show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1204         /* Log Trim Status */
1205         if (ver == 2 || ver == 4 || ver == 5)
1206                 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1207
1208         /* CPU Usage */
1209         if (ts->total_run_time) {
1210                 double runt = (double) ts->total_run_time;
1211
1212                 usr_cpu = (double) ts->usr_time * 100 / runt;
1213                 sys_cpu = (double) ts->sys_time * 100 / runt;
1214         } else {
1215                 usr_cpu = 0;
1216                 sys_cpu = 0;
1217         }
1218
1219         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1220                                                 (unsigned long long) ts->ctx,
1221                                                 (unsigned long long) ts->majf,
1222                                                 (unsigned long long) ts->minf);
1223
1224         /* Calc % distribution of IO depths, usecond, msecond latency */
1225         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1226         stat_calc_lat_nu(ts, io_u_lat_u);
1227         stat_calc_lat_m(ts, io_u_lat_m);
1228
1229         /* Only show fixed 7 I/O depth levels*/
1230         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1231                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1232                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1233
1234         /* Microsecond latency */
1235         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1236                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1237         /* Millisecond latency */
1238         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1239                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1240
1241         /* disk util stats, if any */
1242         if (ver >= 3 && is_running_backend())
1243                 show_disk_util(1, NULL, out);
1244
1245         /* Additional output if continue_on_error set - default off*/
1246         if (ts->continue_on_error)
1247                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1248
1249         /* Additional output if description is set */
1250         if (strlen(ts->description)) {
1251                 if (ver == 2)
1252                         log_buf(out, "\n");
1253                 log_buf(out, ";%s", ts->description);
1254         }
1255
1256         log_buf(out, "\n");
1257 }
1258
1259 static void json_add_job_opts(struct json_object *root, const char *name,
1260                               struct flist_head *opt_list)
1261 {
1262         struct json_object *dir_object;
1263         struct flist_head *entry;
1264         struct print_option *p;
1265
1266         if (flist_empty(opt_list))
1267                 return;
1268
1269         dir_object = json_create_object();
1270         json_object_add_value_object(root, name, dir_object);
1271
1272         flist_for_each(entry, opt_list) {
1273                 const char *pos = "";
1274
1275                 p = flist_entry(entry, struct print_option, list);
1276                 if (p->value)
1277                         pos = p->value;
1278                 json_object_add_value_string(dir_object, p->name, pos);
1279         }
1280 }
1281
1282 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1283                                                    struct group_run_stats *rs,
1284                                                    struct flist_head *opt_list)
1285 {
1286         struct json_object *root, *tmp;
1287         struct jobs_eta *je;
1288         double io_u_dist[FIO_IO_U_MAP_NR];
1289         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1290         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1291         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1292         double usr_cpu, sys_cpu;
1293         int i;
1294         size_t size;
1295
1296         root = json_create_object();
1297         json_object_add_value_string(root, "jobname", ts->name);
1298         json_object_add_value_int(root, "groupid", ts->groupid);
1299         json_object_add_value_int(root, "error", ts->error);
1300
1301         /* ETA Info */
1302         je = get_jobs_eta(true, &size);
1303         if (je) {
1304                 json_object_add_value_int(root, "eta", je->eta_sec);
1305                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1306         }
1307
1308         if (opt_list)
1309                 json_add_job_opts(root, "job options", opt_list);
1310
1311         add_ddir_status_json(ts, rs, DDIR_READ, root);
1312         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1313         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1314         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1315
1316         /* CPU Usage */
1317         if (ts->total_run_time) {
1318                 double runt = (double) ts->total_run_time;
1319
1320                 usr_cpu = (double) ts->usr_time * 100 / runt;
1321                 sys_cpu = (double) ts->sys_time * 100 / runt;
1322         } else {
1323                 usr_cpu = 0;
1324                 sys_cpu = 0;
1325         }
1326         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1327         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1328         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1329         json_object_add_value_int(root, "ctx", ts->ctx);
1330         json_object_add_value_int(root, "majf", ts->majf);
1331         json_object_add_value_int(root, "minf", ts->minf);
1332
1333         /* Calc % distribution of IO depths */
1334         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1335         tmp = json_create_object();
1336         json_object_add_value_object(root, "iodepth_level", tmp);
1337         /* Only show fixed 7 I/O depth levels*/
1338         for (i = 0; i < 7; i++) {
1339                 char name[20];
1340                 if (i < 6)
1341                         snprintf(name, 20, "%d", 1 << i);
1342                 else
1343                         snprintf(name, 20, ">=%d", 1 << i);
1344                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1345         }
1346
1347         /* Calc % distribution of submit IO depths */
1348         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1349         tmp = json_create_object();
1350         json_object_add_value_object(root, "iodepth_submit", tmp);
1351         /* Only show fixed 7 I/O depth levels*/
1352         for (i = 0; i < 7; i++) {
1353                 char name[20];
1354                 if (i == 0)
1355                         snprintf(name, 20, "0");
1356                 else if (i < 6)
1357                         snprintf(name, 20, "%d", 1 << (i+1));
1358                 else
1359                         snprintf(name, 20, ">=%d", 1 << i);
1360                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1361         }
1362
1363         /* Calc % distribution of completion IO depths */
1364         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1365         tmp = json_create_object();
1366         json_object_add_value_object(root, "iodepth_complete", tmp);
1367         /* Only show fixed 7 I/O depth levels*/
1368         for (i = 0; i < 7; i++) {
1369                 char name[20];
1370                 if (i == 0)
1371                         snprintf(name, 20, "0");
1372                 else if (i < 6)
1373                         snprintf(name, 20, "%d", 1 << (i+1));
1374                 else
1375                         snprintf(name, 20, ">=%d", 1 << i);
1376                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1377         }
1378
1379         /* Calc % distribution of nsecond, usecond, msecond latency */
1380         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1381         stat_calc_lat_n(ts, io_u_lat_n);
1382         stat_calc_lat_u(ts, io_u_lat_u);
1383         stat_calc_lat_m(ts, io_u_lat_m);
1384
1385         /* Nanosecond latency */
1386         tmp = json_create_object();
1387         json_object_add_value_object(root, "latency_ns", tmp);
1388         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1389                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1390                                  "250", "500", "750", "1000", };
1391                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1392         }
1393         /* Microsecond latency */
1394         tmp = json_create_object();
1395         json_object_add_value_object(root, "latency_us", tmp);
1396         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1397                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1398                                  "250", "500", "750", "1000", };
1399                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1400         }
1401         /* Millisecond latency */
1402         tmp = json_create_object();
1403         json_object_add_value_object(root, "latency_ms", tmp);
1404         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1405                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1406                                  "250", "500", "750", "1000", "2000",
1407                                  ">=2000", };
1408                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1409         }
1410
1411         /* Additional output if continue_on_error set - default off*/
1412         if (ts->continue_on_error) {
1413                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1414                 json_object_add_value_int(root, "first_error", ts->first_error);
1415         }
1416
1417         if (ts->latency_depth) {
1418                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1419                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1420                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1421                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1422         }
1423
1424         /* Additional output if description is set */
1425         if (strlen(ts->description))
1426                 json_object_add_value_string(root, "desc", ts->description);
1427
1428         if (ts->nr_block_infos) {
1429                 /* Block error histogram and types */
1430                 int len;
1431                 unsigned int *percentiles = NULL;
1432                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1433
1434                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1435                                              ts->percentile_list,
1436                                              &percentiles, block_state_counts);
1437
1438                 if (len) {
1439                         struct json_object *block, *percentile_object, *states;
1440                         int state;
1441                         block = json_create_object();
1442                         json_object_add_value_object(root, "block", block);
1443
1444                         percentile_object = json_create_object();
1445                         json_object_add_value_object(block, "percentiles",
1446                                                      percentile_object);
1447                         for (i = 0; i < len; i++) {
1448                                 char buf[20];
1449                                 snprintf(buf, sizeof(buf), "%f",
1450                                          ts->percentile_list[i].u.f);
1451                                 json_object_add_value_int(percentile_object,
1452                                                           (const char *)buf,
1453                                                           percentiles[i]);
1454                         }
1455
1456                         states = json_create_object();
1457                         json_object_add_value_object(block, "states", states);
1458                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1459                                 json_object_add_value_int(states,
1460                                         block_state_names[state],
1461                                         block_state_counts[state]);
1462                         }
1463                         free(percentiles);
1464                 }
1465         }
1466
1467         if (ts->ss_dur) {
1468                 struct json_object *data;
1469                 struct json_array *iops, *bw;
1470                 int j, k, l;
1471                 char ss_buf[64];
1472
1473                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1474                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1475                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1476                         (float) ts->ss_limit.u.f,
1477                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1478
1479                 tmp = json_create_object();
1480                 json_object_add_value_object(root, "steadystate", tmp);
1481                 json_object_add_value_string(tmp, "ss", ss_buf);
1482                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1483                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1484
1485                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1486                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1487                 json_object_add_value_string(tmp, "criterion", ss_buf);
1488                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1489                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1490
1491                 data = json_create_object();
1492                 json_object_add_value_object(tmp, "data", data);
1493                 bw = json_create_array();
1494                 iops = json_create_array();
1495
1496                 /*
1497                 ** if ss was attained or the buffer is not full,
1498                 ** ss->head points to the first element in the list.
1499                 ** otherwise it actually points to the second element
1500                 ** in the list
1501                 */
1502                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1503                         j = ts->ss_head;
1504                 else
1505                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1506                 for (l = 0; l < ts->ss_dur; l++) {
1507                         k = (j + l) % ts->ss_dur;
1508                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1509                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1510                 }
1511                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1512                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1513                 json_object_add_value_array(data, "iops", iops);
1514                 json_object_add_value_array(data, "bw", bw);
1515         }
1516
1517         return root;
1518 }
1519
1520 static void show_thread_status_terse(struct thread_stat *ts,
1521                                      struct group_run_stats *rs,
1522                                      struct buf_output *out)
1523 {
1524         if (terse_version >= 2 && terse_version <= 5)
1525                 show_thread_status_terse_all(ts, rs, terse_version, out);
1526         else
1527                 log_err("fio: bad terse version!? %d\n", terse_version);
1528 }
1529
1530 struct json_object *show_thread_status(struct thread_stat *ts,
1531                                        struct group_run_stats *rs,
1532                                        struct flist_head *opt_list,
1533                                        struct buf_output *out)
1534 {
1535         struct json_object *ret = NULL;
1536
1537         if (output_format & FIO_OUTPUT_TERSE)
1538                 show_thread_status_terse(ts, rs,  out);
1539         if (output_format & FIO_OUTPUT_JSON)
1540                 ret = show_thread_status_json(ts, rs, opt_list);
1541         if (output_format & FIO_OUTPUT_NORMAL)
1542                 show_thread_status_normal(ts, rs,  out);
1543
1544         return ret;
1545 }
1546
1547 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1548 {
1549         double mean, S;
1550
1551         dst->min_val = min(dst->min_val, src->min_val);
1552         dst->max_val = max(dst->max_val, src->max_val);
1553
1554         /*
1555          * Compute new mean and S after the merge
1556          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1557          *  #Parallel_algorithm>
1558          */
1559         if (first) {
1560                 mean = src->mean.u.f;
1561                 S = src->S.u.f;
1562         } else {
1563                 double delta = src->mean.u.f - dst->mean.u.f;
1564
1565                 mean = ((src->mean.u.f * src->samples) +
1566                         (dst->mean.u.f * dst->samples)) /
1567                         (dst->samples + src->samples);
1568
1569                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1570                         (dst->samples * src->samples) /
1571                         (dst->samples + src->samples);
1572         }
1573
1574         dst->samples += src->samples;
1575         dst->mean.u.f = mean;
1576         dst->S.u.f = S;
1577
1578 }
1579
1580 /*
1581  * We sum two kinds of stats - one that is time based, in which case we
1582  * apply the proper summing technique, and then one that is iops/bw
1583  * numbers. For group_reporting, we should just add those up, not make
1584  * them the mean of everything.
1585  */
1586 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
1587                      bool pure_sum)
1588 {
1589         if (src->samples == 0)
1590                 return;
1591
1592         if (!pure_sum) {
1593                 __sum_stat(dst, src, first);
1594                 return;
1595         }
1596
1597         if (first) {
1598                 dst->min_val = src->min_val;
1599                 dst->max_val = src->max_val;
1600                 dst->samples = src->samples;
1601                 dst->mean.u.f = src->mean.u.f;
1602                 dst->S.u.f = src->S.u.f;
1603         } else {
1604                 dst->min_val += src->min_val;
1605                 dst->max_val += src->max_val;
1606                 dst->samples += src->samples;
1607                 dst->mean.u.f += src->mean.u.f;
1608                 dst->S.u.f += src->S.u.f;
1609         }
1610 }
1611
1612 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1613 {
1614         int i;
1615
1616         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1617                 if (dst->max_run[i] < src->max_run[i])
1618                         dst->max_run[i] = src->max_run[i];
1619                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1620                         dst->min_run[i] = src->min_run[i];
1621                 if (dst->max_bw[i] < src->max_bw[i])
1622                         dst->max_bw[i] = src->max_bw[i];
1623                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1624                         dst->min_bw[i] = src->min_bw[i];
1625
1626                 dst->iobytes[i] += src->iobytes[i];
1627                 dst->agg[i] += src->agg[i];
1628         }
1629
1630         if (!dst->kb_base)
1631                 dst->kb_base = src->kb_base;
1632         if (!dst->unit_base)
1633                 dst->unit_base = src->unit_base;
1634         if (!dst->sig_figs)
1635                 dst->sig_figs = src->sig_figs;
1636 }
1637
1638 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1639                       bool first)
1640 {
1641         int l, k;
1642
1643         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1644                 if (!dst->unified_rw_rep) {
1645                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
1646                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
1647                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
1648                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
1649                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
1650
1651                         dst->io_bytes[l] += src->io_bytes[l];
1652
1653                         if (dst->runtime[l] < src->runtime[l])
1654                                 dst->runtime[l] = src->runtime[l];
1655                 } else {
1656                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
1657                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
1658                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
1659                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
1660                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
1661
1662                         dst->io_bytes[0] += src->io_bytes[l];
1663
1664                         if (dst->runtime[0] < src->runtime[l])
1665                                 dst->runtime[0] = src->runtime[l];
1666
1667                         /*
1668                          * We're summing to the same destination, so override
1669                          * 'first' after the first iteration of the loop
1670                          */
1671                         first = false;
1672                 }
1673         }
1674
1675         sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
1676         dst->usr_time += src->usr_time;
1677         dst->sys_time += src->sys_time;
1678         dst->ctx += src->ctx;
1679         dst->majf += src->majf;
1680         dst->minf += src->minf;
1681
1682         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1683                 dst->io_u_map[k] += src->io_u_map[k];
1684                 dst->io_u_submit[k] += src->io_u_submit[k];
1685                 dst->io_u_complete[k] += src->io_u_complete[k];
1686         }
1687
1688         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1689                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1690         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1691                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1692         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1693                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1694
1695         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1696                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1697
1698         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1699                 if (!dst->unified_rw_rep) {
1700                         dst->total_io_u[k] += src->total_io_u[k];
1701                         dst->short_io_u[k] += src->short_io_u[k];
1702                         dst->drop_io_u[k] += src->drop_io_u[k];
1703                 } else {
1704                         dst->total_io_u[0] += src->total_io_u[k];
1705                         dst->short_io_u[0] += src->short_io_u[k];
1706                         dst->drop_io_u[0] += src->drop_io_u[k];
1707                 }
1708         }
1709
1710         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1711
1712         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1713                 int m;
1714
1715                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1716                         if (!dst->unified_rw_rep)
1717                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1718                         else
1719                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1720                 }
1721         }
1722
1723         dst->total_run_time += src->total_run_time;
1724         dst->total_submit += src->total_submit;
1725         dst->total_complete += src->total_complete;
1726         dst->nr_zone_resets += src->nr_zone_resets;
1727         dst->cachehit += src->cachehit;
1728         dst->cachemiss += src->cachemiss;
1729 }
1730
1731 void init_group_run_stat(struct group_run_stats *gs)
1732 {
1733         int i;
1734         memset(gs, 0, sizeof(*gs));
1735
1736         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1737                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1738 }
1739
1740 void init_thread_stat(struct thread_stat *ts)
1741 {
1742         int j;
1743
1744         memset(ts, 0, sizeof(*ts));
1745
1746         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1747                 ts->lat_stat[j].min_val = -1UL;
1748                 ts->clat_stat[j].min_val = -1UL;
1749                 ts->slat_stat[j].min_val = -1UL;
1750                 ts->bw_stat[j].min_val = -1UL;
1751                 ts->iops_stat[j].min_val = -1UL;
1752         }
1753         ts->sync_stat.min_val = -1UL;
1754         ts->groupid = -1;
1755 }
1756
1757 void __show_run_stats(void)
1758 {
1759         struct group_run_stats *runstats, *rs;
1760         struct thread_data *td;
1761         struct thread_stat *threadstats, *ts;
1762         int i, j, k, nr_ts, last_ts, idx;
1763         bool kb_base_warned = false;
1764         bool unit_base_warned = false;
1765         struct json_object *root = NULL;
1766         struct json_array *array = NULL;
1767         struct buf_output output[FIO_OUTPUT_NR];
1768         struct flist_head **opt_lists;
1769
1770         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1771
1772         for (i = 0; i < groupid + 1; i++)
1773                 init_group_run_stat(&runstats[i]);
1774
1775         /*
1776          * find out how many threads stats we need. if group reporting isn't
1777          * enabled, it's one-per-td.
1778          */
1779         nr_ts = 0;
1780         last_ts = -1;
1781         for_each_td(td, i) {
1782                 if (!td->o.group_reporting) {
1783                         nr_ts++;
1784                         continue;
1785                 }
1786                 if (last_ts == td->groupid)
1787                         continue;
1788                 if (!td->o.stats)
1789                         continue;
1790
1791                 last_ts = td->groupid;
1792                 nr_ts++;
1793         }
1794
1795         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1796         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1797
1798         for (i = 0; i < nr_ts; i++) {
1799                 init_thread_stat(&threadstats[i]);
1800                 opt_lists[i] = NULL;
1801         }
1802
1803         j = 0;
1804         last_ts = -1;
1805         idx = 0;
1806         for_each_td(td, i) {
1807                 if (!td->o.stats)
1808                         continue;
1809                 if (idx && (!td->o.group_reporting ||
1810                     (td->o.group_reporting && last_ts != td->groupid))) {
1811                         idx = 0;
1812                         j++;
1813                 }
1814
1815                 last_ts = td->groupid;
1816
1817                 ts = &threadstats[j];
1818
1819                 ts->clat_percentiles = td->o.clat_percentiles;
1820                 ts->lat_percentiles = td->o.lat_percentiles;
1821                 ts->percentile_precision = td->o.percentile_precision;
1822                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1823                 opt_lists[j] = &td->opt_list;
1824
1825                 idx++;
1826                 ts->members++;
1827
1828                 if (ts->groupid == -1) {
1829                         /*
1830                          * These are per-group shared already
1831                          */
1832                         snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
1833                         if (td->o.description)
1834                                 snprintf(ts->description,
1835                                          sizeof(ts->description), "%s",
1836                                          td->o.description);
1837                         else
1838                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1839
1840                         /*
1841                          * If multiple entries in this group, this is
1842                          * the first member.
1843                          */
1844                         ts->thread_number = td->thread_number;
1845                         ts->groupid = td->groupid;
1846
1847                         /*
1848                          * first pid in group, not very useful...
1849                          */
1850                         ts->pid = td->pid;
1851
1852                         ts->kb_base = td->o.kb_base;
1853                         ts->unit_base = td->o.unit_base;
1854                         ts->sig_figs = td->o.sig_figs;
1855                         ts->unified_rw_rep = td->o.unified_rw_rep;
1856                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1857                         log_info("fio: kb_base differs for jobs in group, using"
1858                                  " %u as the base\n", ts->kb_base);
1859                         kb_base_warned = true;
1860                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1861                         log_info("fio: unit_base differs for jobs in group, using"
1862                                  " %u as the base\n", ts->unit_base);
1863                         unit_base_warned = true;
1864                 }
1865
1866                 ts->continue_on_error = td->o.continue_on_error;
1867                 ts->total_err_count += td->total_err_count;
1868                 ts->first_error = td->first_error;
1869                 if (!ts->error) {
1870                         if (!td->error && td->o.continue_on_error &&
1871                             td->first_error) {
1872                                 ts->error = td->first_error;
1873                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
1874                                          td->verror);
1875                         } else  if (td->error) {
1876                                 ts->error = td->error;
1877                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
1878                                          td->verror);
1879                         }
1880                 }
1881
1882                 ts->latency_depth = td->latency_qd;
1883                 ts->latency_target = td->o.latency_target;
1884                 ts->latency_percentile = td->o.latency_percentile;
1885                 ts->latency_window = td->o.latency_window;
1886
1887                 ts->nr_block_infos = td->ts.nr_block_infos;
1888                 for (k = 0; k < ts->nr_block_infos; k++)
1889                         ts->block_infos[k] = td->ts.block_infos[k];
1890
1891                 sum_thread_stats(ts, &td->ts, idx == 1);
1892
1893                 if (td->o.ss_dur) {
1894                         ts->ss_state = td->ss.state;
1895                         ts->ss_dur = td->ss.dur;
1896                         ts->ss_head = td->ss.head;
1897                         ts->ss_bw_data = td->ss.bw_data;
1898                         ts->ss_iops_data = td->ss.iops_data;
1899                         ts->ss_limit.u.f = td->ss.limit;
1900                         ts->ss_slope.u.f = td->ss.slope;
1901                         ts->ss_deviation.u.f = td->ss.deviation;
1902                         ts->ss_criterion.u.f = td->ss.criterion;
1903                 }
1904                 else
1905                         ts->ss_dur = ts->ss_state = 0;
1906         }
1907
1908         for (i = 0; i < nr_ts; i++) {
1909                 unsigned long long bw;
1910
1911                 ts = &threadstats[i];
1912                 if (ts->groupid == -1)
1913                         continue;
1914                 rs = &runstats[ts->groupid];
1915                 rs->kb_base = ts->kb_base;
1916                 rs->unit_base = ts->unit_base;
1917                 rs->sig_figs = ts->sig_figs;
1918                 rs->unified_rw_rep += ts->unified_rw_rep;
1919
1920                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1921                         if (!ts->runtime[j])
1922                                 continue;
1923                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1924                                 rs->min_run[j] = ts->runtime[j];
1925                         if (ts->runtime[j] > rs->max_run[j])
1926                                 rs->max_run[j] = ts->runtime[j];
1927
1928                         bw = 0;
1929                         if (ts->runtime[j])
1930                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1931                         if (bw < rs->min_bw[j])
1932                                 rs->min_bw[j] = bw;
1933                         if (bw > rs->max_bw[j])
1934                                 rs->max_bw[j] = bw;
1935
1936                         rs->iobytes[j] += ts->io_bytes[j];
1937                 }
1938         }
1939
1940         for (i = 0; i < groupid + 1; i++) {
1941                 int ddir;
1942
1943                 rs = &runstats[i];
1944
1945                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1946                         if (rs->max_run[ddir])
1947                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1948                                                 rs->max_run[ddir];
1949                 }
1950         }
1951
1952         for (i = 0; i < FIO_OUTPUT_NR; i++)
1953                 buf_output_init(&output[i]);
1954
1955         /*
1956          * don't overwrite last signal output
1957          */
1958         if (output_format & FIO_OUTPUT_NORMAL)
1959                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1960         if (output_format & FIO_OUTPUT_JSON) {
1961                 struct thread_data *global;
1962                 char time_buf[32];
1963                 struct timeval now;
1964                 unsigned long long ms_since_epoch;
1965                 time_t tv_sec;
1966
1967                 gettimeofday(&now, NULL);
1968                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1969                                  (unsigned long long)(now.tv_usec) / 1000;
1970
1971                 tv_sec = now.tv_sec;
1972                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
1973                 if (time_buf[strlen(time_buf) - 1] == '\n')
1974                         time_buf[strlen(time_buf) - 1] = '\0';
1975
1976                 root = json_create_object();
1977                 json_object_add_value_string(root, "fio version", fio_version_string);
1978                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1979                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1980                 json_object_add_value_string(root, "time", time_buf);
1981                 global = get_global_options();
1982                 json_add_job_opts(root, "global options", &global->opt_list);
1983                 array = json_create_array();
1984                 json_object_add_value_array(root, "jobs", array);
1985         }
1986
1987         if (is_backend)
1988                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1989
1990         for (i = 0; i < nr_ts; i++) {
1991                 ts = &threadstats[i];
1992                 rs = &runstats[ts->groupid];
1993
1994                 if (is_backend) {
1995                         fio_server_send_job_options(opt_lists[i], i);
1996                         fio_server_send_ts(ts, rs);
1997                 } else {
1998                         if (output_format & FIO_OUTPUT_TERSE)
1999                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2000                         if (output_format & FIO_OUTPUT_JSON) {
2001                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2002                                 json_array_add_value_object(array, tmp);
2003                         }
2004                         if (output_format & FIO_OUTPUT_NORMAL)
2005                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2006                 }
2007         }
2008         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2009                 /* disk util stats, if any */
2010                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2011
2012                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2013
2014                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2015                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2016                 json_free_object(root);
2017         }
2018
2019         for (i = 0; i < groupid + 1; i++) {
2020                 rs = &runstats[i];
2021
2022                 rs->groupid = i;
2023                 if (is_backend)
2024                         fio_server_send_gs(rs);
2025                 else if (output_format & FIO_OUTPUT_NORMAL)
2026                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2027         }
2028
2029         if (is_backend)
2030                 fio_server_send_du();
2031         else if (output_format & FIO_OUTPUT_NORMAL) {
2032                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2033                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2034         }
2035
2036         for (i = 0; i < FIO_OUTPUT_NR; i++) {
2037                 struct buf_output *out = &output[i];
2038
2039                 log_info_buf(out->buf, out->buflen);
2040                 buf_output_free(out);
2041         }
2042
2043         fio_idle_prof_cleanup();
2044
2045         log_info_flush();
2046         free(runstats);
2047         free(threadstats);
2048         free(opt_lists);
2049 }
2050
2051 void __show_running_run_stats(void)
2052 {
2053         struct thread_data *td;
2054         unsigned long long *rt;
2055         struct timespec ts;
2056         int i;
2057
2058         fio_sem_down(stat_sem);
2059
2060         rt = malloc(thread_number * sizeof(unsigned long long));
2061         fio_gettime(&ts, NULL);
2062
2063         for_each_td(td, i) {
2064                 td->update_rusage = 1;
2065                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2066                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2067                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2068                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2069
2070                 rt[i] = mtime_since(&td->start, &ts);
2071                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2072                         td->ts.runtime[DDIR_READ] += rt[i];
2073                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2074                         td->ts.runtime[DDIR_WRITE] += rt[i];
2075                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2076                         td->ts.runtime[DDIR_TRIM] += rt[i];
2077         }
2078
2079         for_each_td(td, i) {
2080                 if (td->runstate >= TD_EXITED)
2081                         continue;
2082                 if (td->rusage_sem) {
2083                         td->update_rusage = 1;
2084                         fio_sem_down(td->rusage_sem);
2085                 }
2086                 td->update_rusage = 0;
2087         }
2088
2089         __show_run_stats();
2090
2091         for_each_td(td, i) {
2092                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2093                         td->ts.runtime[DDIR_READ] -= rt[i];
2094                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2095                         td->ts.runtime[DDIR_WRITE] -= rt[i];
2096                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2097                         td->ts.runtime[DDIR_TRIM] -= rt[i];
2098         }
2099
2100         free(rt);
2101         fio_sem_up(stat_sem);
2102 }
2103
2104 static bool status_interval_init;
2105 static struct timespec status_time;
2106 static bool status_file_disabled;
2107
2108 #define FIO_STATUS_FILE         "fio-dump-status"
2109
2110 static int check_status_file(void)
2111 {
2112         struct stat sb;
2113         const char *temp_dir;
2114         char fio_status_file_path[PATH_MAX];
2115
2116         if (status_file_disabled)
2117                 return 0;
2118
2119         temp_dir = getenv("TMPDIR");
2120         if (temp_dir == NULL) {
2121                 temp_dir = getenv("TEMP");
2122                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2123                         temp_dir = NULL;
2124         }
2125         if (temp_dir == NULL)
2126                 temp_dir = "/tmp";
2127 #ifdef __COVERITY__
2128         __coverity_tainted_data_sanitize__(temp_dir);
2129 #endif
2130
2131         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2132
2133         if (stat(fio_status_file_path, &sb))
2134                 return 0;
2135
2136         if (unlink(fio_status_file_path) < 0) {
2137                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2138                                                         strerror(errno));
2139                 log_err("fio: disabling status file updates\n");
2140                 status_file_disabled = true;
2141         }
2142
2143         return 1;
2144 }
2145
2146 void check_for_running_stats(void)
2147 {
2148         if (status_interval) {
2149                 if (!status_interval_init) {
2150                         fio_gettime(&status_time, NULL);
2151                         status_interval_init = true;
2152                 } else if (mtime_since_now(&status_time) >= status_interval) {
2153                         show_running_run_stats();
2154                         fio_gettime(&status_time, NULL);
2155                         return;
2156                 }
2157         }
2158         if (check_status_file()) {
2159                 show_running_run_stats();
2160                 return;
2161         }
2162 }
2163
2164 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2165 {
2166         double val = data;
2167         double delta;
2168
2169         if (data > is->max_val)
2170                 is->max_val = data;
2171         if (data < is->min_val)
2172                 is->min_val = data;
2173
2174         delta = val - is->mean.u.f;
2175         if (delta) {
2176                 is->mean.u.f += delta / (is->samples + 1.0);
2177                 is->S.u.f += delta * (val - is->mean.u.f);
2178         }
2179
2180         is->samples++;
2181 }
2182
2183 /*
2184  * Return a struct io_logs, which is added to the tail of the log
2185  * list for 'iolog'.
2186  */
2187 static struct io_logs *get_new_log(struct io_log *iolog)
2188 {
2189         size_t new_size, new_samples;
2190         struct io_logs *cur_log;
2191
2192         /*
2193          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2194          * forever
2195          */
2196         if (!iolog->cur_log_max)
2197                 new_samples = DEF_LOG_ENTRIES;
2198         else {
2199                 new_samples = iolog->cur_log_max * 2;
2200                 if (new_samples > MAX_LOG_ENTRIES)
2201                         new_samples = MAX_LOG_ENTRIES;
2202         }
2203
2204         new_size = new_samples * log_entry_sz(iolog);
2205
2206         cur_log = smalloc(sizeof(*cur_log));
2207         if (cur_log) {
2208                 INIT_FLIST_HEAD(&cur_log->list);
2209                 cur_log->log = malloc(new_size);
2210                 if (cur_log->log) {
2211                         cur_log->nr_samples = 0;
2212                         cur_log->max_samples = new_samples;
2213                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2214                         iolog->cur_log_max = new_samples;
2215                         return cur_log;
2216                 }
2217                 sfree(cur_log);
2218         }
2219
2220         return NULL;
2221 }
2222
2223 /*
2224  * Add and return a new log chunk, or return current log if big enough
2225  */
2226 static struct io_logs *regrow_log(struct io_log *iolog)
2227 {
2228         struct io_logs *cur_log;
2229         int i;
2230
2231         if (!iolog || iolog->disabled)
2232                 goto disable;
2233
2234         cur_log = iolog_cur_log(iolog);
2235         if (!cur_log) {
2236                 cur_log = get_new_log(iolog);
2237                 if (!cur_log)
2238                         return NULL;
2239         }
2240
2241         if (cur_log->nr_samples < cur_log->max_samples)
2242                 return cur_log;
2243
2244         /*
2245          * No room for a new sample. If we're compressing on the fly, flush
2246          * out the current chunk
2247          */
2248         if (iolog->log_gz) {
2249                 if (iolog_cur_flush(iolog, cur_log)) {
2250                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2251                         return NULL;
2252                 }
2253         }
2254
2255         /*
2256          * Get a new log array, and add to our list
2257          */
2258         cur_log = get_new_log(iolog);
2259         if (!cur_log) {
2260                 log_err("fio: failed extending iolog! Will stop logging.\n");
2261                 return NULL;
2262         }
2263
2264         if (!iolog->pending || !iolog->pending->nr_samples)
2265                 return cur_log;
2266
2267         /*
2268          * Flush pending items to new log
2269          */
2270         for (i = 0; i < iolog->pending->nr_samples; i++) {
2271                 struct io_sample *src, *dst;
2272
2273                 src = get_sample(iolog, iolog->pending, i);
2274                 dst = get_sample(iolog, cur_log, i);
2275                 memcpy(dst, src, log_entry_sz(iolog));
2276         }
2277         cur_log->nr_samples = iolog->pending->nr_samples;
2278
2279         iolog->pending->nr_samples = 0;
2280         return cur_log;
2281 disable:
2282         if (iolog)
2283                 iolog->disabled = true;
2284         return NULL;
2285 }
2286
2287 void regrow_logs(struct thread_data *td)
2288 {
2289         regrow_log(td->slat_log);
2290         regrow_log(td->clat_log);
2291         regrow_log(td->clat_hist_log);
2292         regrow_log(td->lat_log);
2293         regrow_log(td->bw_log);
2294         regrow_log(td->iops_log);
2295         td->flags &= ~TD_F_REGROW_LOGS;
2296 }
2297
2298 static struct io_logs *get_cur_log(struct io_log *iolog)
2299 {
2300         struct io_logs *cur_log;
2301
2302         cur_log = iolog_cur_log(iolog);
2303         if (!cur_log) {
2304                 cur_log = get_new_log(iolog);
2305                 if (!cur_log)
2306                         return NULL;
2307         }
2308
2309         if (cur_log->nr_samples < cur_log->max_samples)
2310                 return cur_log;
2311
2312         /*
2313          * Out of space. If we're in IO offload mode, or we're not doing
2314          * per unit logging (hence logging happens outside of the IO thread
2315          * as well), add a new log chunk inline. If we're doing inline
2316          * submissions, flag 'td' as needing a log regrow and we'll take
2317          * care of it on the submission side.
2318          */
2319         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2320             !per_unit_log(iolog))
2321                 return regrow_log(iolog);
2322
2323         if (iolog->td)
2324                 iolog->td->flags |= TD_F_REGROW_LOGS;
2325         if (iolog->pending)
2326                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2327         return iolog->pending;
2328 }
2329
2330 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2331                              enum fio_ddir ddir, unsigned long long bs,
2332                              unsigned long t, uint64_t offset)
2333 {
2334         struct io_logs *cur_log;
2335
2336         if (iolog->disabled)
2337                 return;
2338         if (flist_empty(&iolog->io_logs))
2339                 iolog->avg_last[ddir] = t;
2340
2341         cur_log = get_cur_log(iolog);
2342         if (cur_log) {
2343                 struct io_sample *s;
2344
2345                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2346
2347                 s->data = data;
2348                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2349                 io_sample_set_ddir(iolog, s, ddir);
2350                 s->bs = bs;
2351
2352                 if (iolog->log_offset) {
2353                         struct io_sample_offset *so = (void *) s;
2354
2355                         so->offset = offset;
2356                 }
2357
2358                 cur_log->nr_samples++;
2359                 return;
2360         }
2361
2362         iolog->disabled = true;
2363 }
2364
2365 static inline void reset_io_stat(struct io_stat *ios)
2366 {
2367         ios->min_val = -1ULL;
2368         ios->max_val = ios->samples = 0;
2369         ios->mean.u.f = ios->S.u.f = 0;
2370 }
2371
2372 void reset_io_stats(struct thread_data *td)
2373 {
2374         struct thread_stat *ts = &td->ts;
2375         int i, j;
2376
2377         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2378                 reset_io_stat(&ts->clat_stat[i]);
2379                 reset_io_stat(&ts->slat_stat[i]);
2380                 reset_io_stat(&ts->lat_stat[i]);
2381                 reset_io_stat(&ts->bw_stat[i]);
2382                 reset_io_stat(&ts->iops_stat[i]);
2383
2384                 ts->io_bytes[i] = 0;
2385                 ts->runtime[i] = 0;
2386                 ts->total_io_u[i] = 0;
2387                 ts->short_io_u[i] = 0;
2388                 ts->drop_io_u[i] = 0;
2389
2390                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2391                         ts->io_u_plat[i][j] = 0;
2392                         if (!i)
2393                                 ts->io_u_sync_plat[j] = 0;
2394                 }
2395         }
2396
2397         ts->total_io_u[DDIR_SYNC] = 0;
2398
2399         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2400                 ts->io_u_map[i] = 0;
2401                 ts->io_u_submit[i] = 0;
2402                 ts->io_u_complete[i] = 0;
2403         }
2404
2405         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2406                 ts->io_u_lat_n[i] = 0;
2407         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2408                 ts->io_u_lat_u[i] = 0;
2409         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2410                 ts->io_u_lat_m[i] = 0;
2411
2412         ts->total_submit = 0;
2413         ts->total_complete = 0;
2414         ts->nr_zone_resets = 0;
2415         ts->cachehit = ts->cachemiss = 0;
2416 }
2417
2418 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2419                               unsigned long elapsed, bool log_max)
2420 {
2421         /*
2422          * Note an entry in the log. Use the mean from the logged samples,
2423          * making sure to properly round up. Only write a log entry if we
2424          * had actual samples done.
2425          */
2426         if (iolog->avg_window[ddir].samples) {
2427                 union io_sample_data data;
2428
2429                 if (log_max)
2430                         data.val = iolog->avg_window[ddir].max_val;
2431                 else
2432                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2433
2434                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2435         }
2436
2437         reset_io_stat(&iolog->avg_window[ddir]);
2438 }
2439
2440 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2441                              bool log_max)
2442 {
2443         int ddir;
2444
2445         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2446                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2447 }
2448
2449 static unsigned long add_log_sample(struct thread_data *td,
2450                                     struct io_log *iolog,
2451                                     union io_sample_data data,
2452                                     enum fio_ddir ddir, unsigned long long bs,
2453                                     uint64_t offset)
2454 {
2455         unsigned long elapsed, this_window;
2456
2457         if (!ddir_rw(ddir))
2458                 return 0;
2459
2460         elapsed = mtime_since_now(&td->epoch);
2461
2462         /*
2463          * If no time averaging, just add the log sample.
2464          */
2465         if (!iolog->avg_msec) {
2466                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2467                 return 0;
2468         }
2469
2470         /*
2471          * Add the sample. If the time period has passed, then
2472          * add that entry to the log and clear.
2473          */
2474         add_stat_sample(&iolog->avg_window[ddir], data.val);
2475
2476         /*
2477          * If period hasn't passed, adding the above sample is all we
2478          * need to do.
2479          */
2480         this_window = elapsed - iolog->avg_last[ddir];
2481         if (elapsed < iolog->avg_last[ddir])
2482                 return iolog->avg_last[ddir] - elapsed;
2483         else if (this_window < iolog->avg_msec) {
2484                 unsigned long diff = iolog->avg_msec - this_window;
2485
2486                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2487                         return diff;
2488         }
2489
2490         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2491
2492         iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2493         return iolog->avg_msec;
2494 }
2495
2496 void finalize_logs(struct thread_data *td, bool unit_logs)
2497 {
2498         unsigned long elapsed;
2499
2500         elapsed = mtime_since_now(&td->epoch);
2501
2502         if (td->clat_log && unit_logs)
2503                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2504         if (td->slat_log && unit_logs)
2505                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2506         if (td->lat_log && unit_logs)
2507                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2508         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2509                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2510         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2511                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2512 }
2513
2514 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2515 {
2516         struct io_log *iolog;
2517
2518         if (!ddir_rw(ddir))
2519                 return;
2520
2521         iolog = agg_io_log[ddir];
2522         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2523 }
2524
2525 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2526 {
2527         unsigned int idx = plat_val_to_idx(nsec);
2528         assert(idx < FIO_IO_U_PLAT_NR);
2529
2530         ts->io_u_sync_plat[idx]++;
2531         add_stat_sample(&ts->sync_stat, nsec);
2532 }
2533
2534 static void add_clat_percentile_sample(struct thread_stat *ts,
2535                                 unsigned long long nsec, enum fio_ddir ddir)
2536 {
2537         unsigned int idx = plat_val_to_idx(nsec);
2538         assert(idx < FIO_IO_U_PLAT_NR);
2539
2540         ts->io_u_plat[ddir][idx]++;
2541 }
2542
2543 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2544                      unsigned long long nsec, unsigned long long bs,
2545                      uint64_t offset)
2546 {
2547         const bool needs_lock = td_async_processing(td);
2548         unsigned long elapsed, this_window;
2549         struct thread_stat *ts = &td->ts;
2550         struct io_log *iolog = td->clat_hist_log;
2551
2552         if (needs_lock)
2553                 __td_io_u_lock(td);
2554
2555         add_stat_sample(&ts->clat_stat[ddir], nsec);
2556
2557         if (td->clat_log)
2558                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2559                                offset);
2560
2561         if (ts->clat_percentiles)
2562                 add_clat_percentile_sample(ts, nsec, ddir);
2563
2564         if (iolog && iolog->hist_msec) {
2565                 struct io_hist *hw = &iolog->hist_window[ddir];
2566
2567                 hw->samples++;
2568                 elapsed = mtime_since_now(&td->epoch);
2569                 if (!hw->hist_last)
2570                         hw->hist_last = elapsed;
2571                 this_window = elapsed - hw->hist_last;
2572                 
2573                 if (this_window >= iolog->hist_msec) {
2574                         uint64_t *io_u_plat;
2575                         struct io_u_plat_entry *dst;
2576
2577                         /*
2578                          * Make a byte-for-byte copy of the latency histogram
2579                          * stored in td->ts.io_u_plat[ddir], recording it in a
2580                          * log sample. Note that the matching call to free() is
2581                          * located in iolog.c after printing this sample to the
2582                          * log file.
2583                          */
2584                         io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2585                         dst = malloc(sizeof(struct io_u_plat_entry));
2586                         memcpy(&(dst->io_u_plat), io_u_plat,
2587                                 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
2588                         flist_add(&dst->list, &hw->list);
2589                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2590                                                 elapsed, offset);
2591
2592                         /*
2593                          * Update the last time we recorded as being now, minus
2594                          * any drift in time we encountered before actually
2595                          * making the record.
2596                          */
2597                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2598                         hw->samples = 0;
2599                 }
2600         }
2601
2602         if (needs_lock)
2603                 __td_io_u_unlock(td);
2604 }
2605
2606 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2607                      unsigned long usec, unsigned long long bs, uint64_t offset)
2608 {
2609         const bool needs_lock = td_async_processing(td);
2610         struct thread_stat *ts = &td->ts;
2611
2612         if (!ddir_rw(ddir))
2613                 return;
2614
2615         if (needs_lock)
2616                 __td_io_u_lock(td);
2617
2618         add_stat_sample(&ts->slat_stat[ddir], usec);
2619
2620         if (td->slat_log)
2621                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2622
2623         if (needs_lock)
2624                 __td_io_u_unlock(td);
2625 }
2626
2627 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2628                     unsigned long long nsec, unsigned long long bs,
2629                     uint64_t offset)
2630 {
2631         const bool needs_lock = td_async_processing(td);
2632         struct thread_stat *ts = &td->ts;
2633
2634         if (!ddir_rw(ddir))
2635                 return;
2636
2637         if (needs_lock)
2638                 __td_io_u_lock(td);
2639
2640         add_stat_sample(&ts->lat_stat[ddir], nsec);
2641
2642         if (td->lat_log)
2643                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2644                                offset);
2645
2646         if (ts->lat_percentiles)
2647                 add_clat_percentile_sample(ts, nsec, ddir);
2648
2649         if (needs_lock)
2650                 __td_io_u_unlock(td);
2651 }
2652
2653 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2654                    unsigned int bytes, unsigned long long spent)
2655 {
2656         const bool needs_lock = td_async_processing(td);
2657         struct thread_stat *ts = &td->ts;
2658         unsigned long rate;
2659
2660         if (spent)
2661                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2662         else
2663                 rate = 0;
2664
2665         if (needs_lock)
2666                 __td_io_u_lock(td);
2667
2668         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2669
2670         if (td->bw_log)
2671                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2672                                bytes, io_u->offset);
2673
2674         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2675
2676         if (needs_lock)
2677                 __td_io_u_unlock(td);
2678 }
2679
2680 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2681                          struct timespec *t, unsigned int avg_time,
2682                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2683                          struct io_stat *stat, struct io_log *log,
2684                          bool is_kb)
2685 {
2686         const bool needs_lock = td_async_processing(td);
2687         unsigned long spent, rate;
2688         enum fio_ddir ddir;
2689         unsigned long next, next_log;
2690
2691         next_log = avg_time;
2692
2693         spent = mtime_since(parent_tv, t);
2694         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2695                 return avg_time - spent;
2696
2697         if (needs_lock)
2698                 __td_io_u_lock(td);
2699
2700         /*
2701          * Compute both read and write rates for the interval.
2702          */
2703         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2704                 uint64_t delta;
2705
2706                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2707                 if (!delta)
2708                         continue; /* No entries for interval */
2709
2710                 if (spent) {
2711                         if (is_kb)
2712                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2713                         else
2714                                 rate = (delta * 1000) / spent;
2715                 } else
2716                         rate = 0;
2717
2718                 add_stat_sample(&stat[ddir], rate);
2719
2720                 if (log) {
2721                         unsigned long long bs = 0;
2722
2723                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2724                                 bs = td->o.min_bs[ddir];
2725
2726                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2727                         next_log = min(next_log, next);
2728                 }
2729
2730                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2731         }
2732
2733         timespec_add_msec(parent_tv, avg_time);
2734
2735         if (needs_lock)
2736                 __td_io_u_unlock(td);
2737
2738         if (spent <= avg_time)
2739                 next = avg_time;
2740         else
2741                 next = avg_time - (1 + spent - avg_time);
2742
2743         return min(next, next_log);
2744 }
2745
2746 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2747 {
2748         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2749                                 td->this_io_bytes, td->stat_io_bytes,
2750                                 td->ts.bw_stat, td->bw_log, true);
2751 }
2752
2753 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2754                      unsigned int bytes)
2755 {
2756         const bool needs_lock = td_async_processing(td);
2757         struct thread_stat *ts = &td->ts;
2758
2759         if (needs_lock)
2760                 __td_io_u_lock(td);
2761
2762         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2763
2764         if (td->iops_log)
2765                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2766                                bytes, io_u->offset);
2767
2768         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2769
2770         if (needs_lock)
2771                 __td_io_u_unlock(td);
2772 }
2773
2774 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2775 {
2776         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2777                                 td->this_io_blocks, td->stat_io_blocks,
2778                                 td->ts.iops_stat, td->iops_log, false);
2779 }
2780
2781 /*
2782  * Returns msecs to next event
2783  */
2784 int calc_log_samples(void)
2785 {
2786         struct thread_data *td;
2787         unsigned int next = ~0U, tmp;
2788         struct timespec now;
2789         int i;
2790
2791         fio_gettime(&now, NULL);
2792
2793         for_each_td(td, i) {
2794                 if (!td->o.stats)
2795                         continue;
2796                 if (in_ramp_time(td) ||
2797                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2798                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2799                         continue;
2800                 }
2801                 if (!td->bw_log ||
2802                         (td->bw_log && !per_unit_log(td->bw_log))) {
2803                         tmp = add_bw_samples(td, &now);
2804                         if (tmp < next)
2805                                 next = tmp;
2806                 }
2807                 if (!td->iops_log ||
2808                         (td->iops_log && !per_unit_log(td->iops_log))) {
2809                         tmp = add_iops_samples(td, &now);
2810                         if (tmp < next)
2811                                 next = tmp;
2812                 }
2813         }
2814
2815         return next == ~0U ? 0 : next;
2816 }
2817
2818 void stat_init(void)
2819 {
2820         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
2821 }
2822
2823 void stat_exit(void)
2824 {
2825         /*
2826          * When we have the mutex, we know out-of-band access to it
2827          * have ended.
2828          */
2829         fio_sem_down(stat_sem);
2830         fio_sem_remove(stat_sem);
2831 }
2832
2833 /*
2834  * Called from signal handler. Wake up status thread.
2835  */
2836 void show_running_run_stats(void)
2837 {
2838         helper_do_stat();
2839 }
2840
2841 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2842 {
2843         /* Ignore io_u's which span multiple blocks--they will just get
2844          * inaccurate counts. */
2845         int idx = (io_u->offset - io_u->file->file_offset)
2846                         / td->o.bs[DDIR_TRIM];
2847         uint32_t *info = &td->ts.block_infos[idx];
2848         assert(idx < td->ts.nr_block_infos);
2849         return info;
2850 }