Remove rw from dax_{do_,}io()
[linux-2.6-block.git] / fs / ocfs2 / aops.c
1 /* -*- mode: c; c-basic-offset: 8; -*-
2  * vim: noexpandtab sw=8 ts=8 sts=0:
3  *
4  * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public
17  * License along with this program; if not, write to the
18  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19  * Boston, MA 021110-1307, USA.
20  */
21
22 #include <linux/fs.h>
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
31 #include <linux/blkdev.h>
32 #include <linux/uio.h>
33
34 #include <cluster/masklog.h>
35
36 #include "ocfs2.h"
37
38 #include "alloc.h"
39 #include "aops.h"
40 #include "dlmglue.h"
41 #include "extent_map.h"
42 #include "file.h"
43 #include "inode.h"
44 #include "journal.h"
45 #include "suballoc.h"
46 #include "super.h"
47 #include "symlink.h"
48 #include "refcounttree.h"
49 #include "ocfs2_trace.h"
50
51 #include "buffer_head_io.h"
52 #include "dir.h"
53 #include "namei.h"
54 #include "sysfile.h"
55
56 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57                                    struct buffer_head *bh_result, int create)
58 {
59         int err = -EIO;
60         int status;
61         struct ocfs2_dinode *fe = NULL;
62         struct buffer_head *bh = NULL;
63         struct buffer_head *buffer_cache_bh = NULL;
64         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65         void *kaddr;
66
67         trace_ocfs2_symlink_get_block(
68                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
69                         (unsigned long long)iblock, bh_result, create);
70
71         BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73         if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74                 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75                      (unsigned long long)iblock);
76                 goto bail;
77         }
78
79         status = ocfs2_read_inode_block(inode, &bh);
80         if (status < 0) {
81                 mlog_errno(status);
82                 goto bail;
83         }
84         fe = (struct ocfs2_dinode *) bh->b_data;
85
86         if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87                                                     le32_to_cpu(fe->i_clusters))) {
88                 err = -ENOMEM;
89                 mlog(ML_ERROR, "block offset is outside the allocated size: "
90                      "%llu\n", (unsigned long long)iblock);
91                 goto bail;
92         }
93
94         /* We don't use the page cache to create symlink data, so if
95          * need be, copy it over from the buffer cache. */
96         if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97                 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98                             iblock;
99                 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100                 if (!buffer_cache_bh) {
101                         err = -ENOMEM;
102                         mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103                         goto bail;
104                 }
105
106                 /* we haven't locked out transactions, so a commit
107                  * could've happened. Since we've got a reference on
108                  * the bh, even if it commits while we're doing the
109                  * copy, the data is still good. */
110                 if (buffer_jbd(buffer_cache_bh)
111                     && ocfs2_inode_is_new(inode)) {
112                         kaddr = kmap_atomic(bh_result->b_page);
113                         if (!kaddr) {
114                                 mlog(ML_ERROR, "couldn't kmap!\n");
115                                 goto bail;
116                         }
117                         memcpy(kaddr + (bh_result->b_size * iblock),
118                                buffer_cache_bh->b_data,
119                                bh_result->b_size);
120                         kunmap_atomic(kaddr);
121                         set_buffer_uptodate(bh_result);
122                 }
123                 brelse(buffer_cache_bh);
124         }
125
126         map_bh(bh_result, inode->i_sb,
127                le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129         err = 0;
130
131 bail:
132         brelse(bh);
133
134         return err;
135 }
136
137 int ocfs2_get_block(struct inode *inode, sector_t iblock,
138                     struct buffer_head *bh_result, int create)
139 {
140         int err = 0;
141         unsigned int ext_flags;
142         u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143         u64 p_blkno, count, past_eof;
144         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146         trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147                               (unsigned long long)iblock, bh_result, create);
148
149         if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150                 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151                      inode, inode->i_ino);
152
153         if (S_ISLNK(inode->i_mode)) {
154                 /* this always does I/O for some reason. */
155                 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156                 goto bail;
157         }
158
159         err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160                                           &ext_flags);
161         if (err) {
162                 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163                      "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164                      (unsigned long long)p_blkno);
165                 goto bail;
166         }
167
168         if (max_blocks < count)
169                 count = max_blocks;
170
171         /*
172          * ocfs2 never allocates in this function - the only time we
173          * need to use BH_New is when we're extending i_size on a file
174          * system which doesn't support holes, in which case BH_New
175          * allows __block_write_begin() to zero.
176          *
177          * If we see this on a sparse file system, then a truncate has
178          * raced us and removed the cluster. In this case, we clear
179          * the buffers dirty and uptodate bits and let the buffer code
180          * ignore it as a hole.
181          */
182         if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183                 clear_buffer_dirty(bh_result);
184                 clear_buffer_uptodate(bh_result);
185                 goto bail;
186         }
187
188         /* Treat the unwritten extent as a hole for zeroing purposes. */
189         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190                 map_bh(bh_result, inode->i_sb, p_blkno);
191
192         bh_result->b_size = count << inode->i_blkbits;
193
194         if (!ocfs2_sparse_alloc(osb)) {
195                 if (p_blkno == 0) {
196                         err = -EIO;
197                         mlog(ML_ERROR,
198                              "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199                              (unsigned long long)iblock,
200                              (unsigned long long)p_blkno,
201                              (unsigned long long)OCFS2_I(inode)->ip_blkno);
202                         mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203                         dump_stack();
204                         goto bail;
205                 }
206         }
207
208         past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210         trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211                                   (unsigned long long)past_eof);
212         if (create && (iblock >= past_eof))
213                 set_buffer_new(bh_result);
214
215 bail:
216         if (err < 0)
217                 err = -EIO;
218
219         return err;
220 }
221
222 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223                            struct buffer_head *di_bh)
224 {
225         void *kaddr;
226         loff_t size;
227         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229         if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230                 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231                             (unsigned long long)OCFS2_I(inode)->ip_blkno);
232                 return -EROFS;
233         }
234
235         size = i_size_read(inode);
236
237         if (size > PAGE_CACHE_SIZE ||
238             size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239                 ocfs2_error(inode->i_sb,
240                             "Inode %llu has with inline data has bad size: %Lu",
241                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
242                             (unsigned long long)size);
243                 return -EROFS;
244         }
245
246         kaddr = kmap_atomic(page);
247         if (size)
248                 memcpy(kaddr, di->id2.i_data.id_data, size);
249         /* Clear the remaining part of the page */
250         memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251         flush_dcache_page(page);
252         kunmap_atomic(kaddr);
253
254         SetPageUptodate(page);
255
256         return 0;
257 }
258
259 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260 {
261         int ret;
262         struct buffer_head *di_bh = NULL;
263
264         BUG_ON(!PageLocked(page));
265         BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267         ret = ocfs2_read_inode_block(inode, &di_bh);
268         if (ret) {
269                 mlog_errno(ret);
270                 goto out;
271         }
272
273         ret = ocfs2_read_inline_data(inode, page, di_bh);
274 out:
275         unlock_page(page);
276
277         brelse(di_bh);
278         return ret;
279 }
280
281 static int ocfs2_readpage(struct file *file, struct page *page)
282 {
283         struct inode *inode = page->mapping->host;
284         struct ocfs2_inode_info *oi = OCFS2_I(inode);
285         loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286         int ret, unlock = 1;
287
288         trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289                              (page ? page->index : 0));
290
291         ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292         if (ret != 0) {
293                 if (ret == AOP_TRUNCATED_PAGE)
294                         unlock = 0;
295                 mlog_errno(ret);
296                 goto out;
297         }
298
299         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300                 /*
301                  * Unlock the page and cycle ip_alloc_sem so that we don't
302                  * busyloop waiting for ip_alloc_sem to unlock
303                  */
304                 ret = AOP_TRUNCATED_PAGE;
305                 unlock_page(page);
306                 unlock = 0;
307                 down_read(&oi->ip_alloc_sem);
308                 up_read(&oi->ip_alloc_sem);
309                 goto out_inode_unlock;
310         }
311
312         /*
313          * i_size might have just been updated as we grabed the meta lock.  We
314          * might now be discovering a truncate that hit on another node.
315          * block_read_full_page->get_block freaks out if it is asked to read
316          * beyond the end of a file, so we check here.  Callers
317          * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318          * and notice that the page they just read isn't needed.
319          *
320          * XXX sys_readahead() seems to get that wrong?
321          */
322         if (start >= i_size_read(inode)) {
323                 zero_user(page, 0, PAGE_SIZE);
324                 SetPageUptodate(page);
325                 ret = 0;
326                 goto out_alloc;
327         }
328
329         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330                 ret = ocfs2_readpage_inline(inode, page);
331         else
332                 ret = block_read_full_page(page, ocfs2_get_block);
333         unlock = 0;
334
335 out_alloc:
336         up_read(&OCFS2_I(inode)->ip_alloc_sem);
337 out_inode_unlock:
338         ocfs2_inode_unlock(inode, 0);
339 out:
340         if (unlock)
341                 unlock_page(page);
342         return ret;
343 }
344
345 /*
346  * This is used only for read-ahead. Failures or difficult to handle
347  * situations are safe to ignore.
348  *
349  * Right now, we don't bother with BH_Boundary - in-inode extent lists
350  * are quite large (243 extents on 4k blocks), so most inodes don't
351  * grow out to a tree. If need be, detecting boundary extents could
352  * trivially be added in a future version of ocfs2_get_block().
353  */
354 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355                            struct list_head *pages, unsigned nr_pages)
356 {
357         int ret, err = -EIO;
358         struct inode *inode = mapping->host;
359         struct ocfs2_inode_info *oi = OCFS2_I(inode);
360         loff_t start;
361         struct page *last;
362
363         /*
364          * Use the nonblocking flag for the dlm code to avoid page
365          * lock inversion, but don't bother with retrying.
366          */
367         ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368         if (ret)
369                 return err;
370
371         if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372                 ocfs2_inode_unlock(inode, 0);
373                 return err;
374         }
375
376         /*
377          * Don't bother with inline-data. There isn't anything
378          * to read-ahead in that case anyway...
379          */
380         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381                 goto out_unlock;
382
383         /*
384          * Check whether a remote node truncated this file - we just
385          * drop out in that case as it's not worth handling here.
386          */
387         last = list_entry(pages->prev, struct page, lru);
388         start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389         if (start >= i_size_read(inode))
390                 goto out_unlock;
391
392         err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394 out_unlock:
395         up_read(&oi->ip_alloc_sem);
396         ocfs2_inode_unlock(inode, 0);
397
398         return err;
399 }
400
401 /* Note: Because we don't support holes, our allocation has
402  * already happened (allocation writes zeros to the file data)
403  * so we don't have to worry about ordered writes in
404  * ocfs2_writepage.
405  *
406  * ->writepage is called during the process of invalidating the page cache
407  * during blocked lock processing.  It can't block on any cluster locks
408  * to during block mapping.  It's relying on the fact that the block
409  * mapping can't have disappeared under the dirty pages that it is
410  * being asked to write back.
411  */
412 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413 {
414         trace_ocfs2_writepage(
415                 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416                 page->index);
417
418         return block_write_full_page(page, ocfs2_get_block, wbc);
419 }
420
421 /* Taken from ext3. We don't necessarily need the full blown
422  * functionality yet, but IMHO it's better to cut and paste the whole
423  * thing so we can avoid introducing our own bugs (and easily pick up
424  * their fixes when they happen) --Mark */
425 int walk_page_buffers(  handle_t *handle,
426                         struct buffer_head *head,
427                         unsigned from,
428                         unsigned to,
429                         int *partial,
430                         int (*fn)(      handle_t *handle,
431                                         struct buffer_head *bh))
432 {
433         struct buffer_head *bh;
434         unsigned block_start, block_end;
435         unsigned blocksize = head->b_size;
436         int err, ret = 0;
437         struct buffer_head *next;
438
439         for (   bh = head, block_start = 0;
440                 ret == 0 && (bh != head || !block_start);
441                 block_start = block_end, bh = next)
442         {
443                 next = bh->b_this_page;
444                 block_end = block_start + blocksize;
445                 if (block_end <= from || block_start >= to) {
446                         if (partial && !buffer_uptodate(bh))
447                                 *partial = 1;
448                         continue;
449                 }
450                 err = (*fn)(handle, bh);
451                 if (!ret)
452                         ret = err;
453         }
454         return ret;
455 }
456
457 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458 {
459         sector_t status;
460         u64 p_blkno = 0;
461         int err = 0;
462         struct inode *inode = mapping->host;
463
464         trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465                          (unsigned long long)block);
466
467         /* We don't need to lock journal system files, since they aren't
468          * accessed concurrently from multiple nodes.
469          */
470         if (!INODE_JOURNAL(inode)) {
471                 err = ocfs2_inode_lock(inode, NULL, 0);
472                 if (err) {
473                         if (err != -ENOENT)
474                                 mlog_errno(err);
475                         goto bail;
476                 }
477                 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478         }
479
480         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481                 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482                                                   NULL);
483
484         if (!INODE_JOURNAL(inode)) {
485                 up_read(&OCFS2_I(inode)->ip_alloc_sem);
486                 ocfs2_inode_unlock(inode, 0);
487         }
488
489         if (err) {
490                 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491                      (unsigned long long)block);
492                 mlog_errno(err);
493                 goto bail;
494         }
495
496 bail:
497         status = err ? 0 : p_blkno;
498
499         return status;
500 }
501
502 /*
503  * TODO: Make this into a generic get_blocks function.
504  *
505  * From do_direct_io in direct-io.c:
506  *  "So what we do is to permit the ->get_blocks function to populate
507  *   bh.b_size with the size of IO which is permitted at this offset and
508  *   this i_blkbits."
509  *
510  * This function is called directly from get_more_blocks in direct-io.c.
511  *
512  * called like this: dio->get_blocks(dio->inode, fs_startblk,
513  *                                      fs_count, map_bh, dio->rw == WRITE);
514  */
515 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516                                      struct buffer_head *bh_result, int create)
517 {
518         int ret;
519         u32 cpos = 0;
520         int alloc_locked = 0;
521         u64 p_blkno, inode_blocks, contig_blocks;
522         unsigned int ext_flags;
523         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524         unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525         unsigned long len = bh_result->b_size;
526         unsigned int clusters_to_alloc = 0;
527
528         cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530         /* This function won't even be called if the request isn't all
531          * nicely aligned and of the right size, so there's no need
532          * for us to check any of that. */
533
534         inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536         /* This figures out the size of the next contiguous block, and
537          * our logical offset */
538         ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539                                           &contig_blocks, &ext_flags);
540         if (ret) {
541                 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542                      (unsigned long long)iblock);
543                 ret = -EIO;
544                 goto bail;
545         }
546
547         /* We should already CoW the refcounted extent in case of create. */
548         BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550         /* allocate blocks if no p_blkno is found, and create == 1 */
551         if (!p_blkno && create) {
552                 ret = ocfs2_inode_lock(inode, NULL, 1);
553                 if (ret < 0) {
554                         mlog_errno(ret);
555                         goto bail;
556                 }
557
558                 alloc_locked = 1;
559
560                 /* fill hole, allocate blocks can't be larger than the size
561                  * of the hole */
562                 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563                 if (clusters_to_alloc > contig_blocks)
564                         clusters_to_alloc = contig_blocks;
565
566                 /* allocate extent and insert them into the extent tree */
567                 ret = ocfs2_extend_allocation(inode, cpos,
568                                 clusters_to_alloc, 0);
569                 if (ret < 0) {
570                         mlog_errno(ret);
571                         goto bail;
572                 }
573
574                 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575                                 &contig_blocks, &ext_flags);
576                 if (ret < 0) {
577                         mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578                                         (unsigned long long)iblock);
579                         ret = -EIO;
580                         goto bail;
581                 }
582         }
583
584         /*
585          * get_more_blocks() expects us to describe a hole by clearing
586          * the mapped bit on bh_result().
587          *
588          * Consider an unwritten extent as a hole.
589          */
590         if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591                 map_bh(bh_result, inode->i_sb, p_blkno);
592         else
593                 clear_buffer_mapped(bh_result);
594
595         /* make sure we don't map more than max_blocks blocks here as
596            that's all the kernel will handle at this point. */
597         if (max_blocks < contig_blocks)
598                 contig_blocks = max_blocks;
599         bh_result->b_size = contig_blocks << blocksize_bits;
600 bail:
601         if (alloc_locked)
602                 ocfs2_inode_unlock(inode, 1);
603         return ret;
604 }
605
606 /*
607  * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
608  * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
609  * to protect io on one node from truncation on another.
610  */
611 static void ocfs2_dio_end_io(struct kiocb *iocb,
612                              loff_t offset,
613                              ssize_t bytes,
614                              void *private)
615 {
616         struct inode *inode = file_inode(iocb->ki_filp);
617         int level;
618
619         /* this io's submitter should not have unlocked this before we could */
620         BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
621
622         if (ocfs2_iocb_is_sem_locked(iocb))
623                 ocfs2_iocb_clear_sem_locked(iocb);
624
625         if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626                 ocfs2_iocb_clear_unaligned_aio(iocb);
627
628                 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
629         }
630
631         ocfs2_iocb_clear_rw_locked(iocb);
632
633         level = ocfs2_iocb_rw_locked_level(iocb);
634         ocfs2_rw_unlock(inode, level);
635 }
636
637 static int ocfs2_releasepage(struct page *page, gfp_t wait)
638 {
639         if (!page_has_buffers(page))
640                 return 0;
641         return try_to_free_buffers(page);
642 }
643
644 static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645                 struct inode *inode, loff_t offset)
646 {
647         int ret = 0;
648         u32 v_cpos = 0;
649         u32 p_cpos = 0;
650         unsigned int num_clusters = 0;
651         unsigned int ext_flags = 0;
652
653         v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654         ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655                         &num_clusters, &ext_flags);
656         if (ret < 0) {
657                 mlog_errno(ret);
658                 return ret;
659         }
660
661         if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662                 return 1;
663
664         return 0;
665 }
666
667 static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
668                 struct iov_iter *iter,
669                 loff_t offset)
670 {
671         ssize_t ret = 0;
672         ssize_t written = 0;
673         bool orphaned = false;
674         int is_overwrite = 0;
675         struct file *file = iocb->ki_filp;
676         struct inode *inode = file_inode(file)->i_mapping->host;
677         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
678         struct buffer_head *di_bh = NULL;
679         size_t count = iter->count;
680         journal_t *journal = osb->journal->j_journal;
681         u32 zero_len;
682         int cluster_align;
683         loff_t final_size = offset + count;
684         int append_write = offset >= i_size_read(inode) ? 1 : 0;
685         unsigned int num_clusters = 0;
686         unsigned int ext_flags = 0;
687
688         {
689                 u64 o = offset;
690
691                 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
692                 cluster_align = !zero_len;
693         }
694
695         /*
696          * when final_size > inode->i_size, inode->i_size will be
697          * updated after direct write, so add the inode to orphan
698          * dir first.
699          */
700         if (final_size > i_size_read(inode)) {
701                 ret = ocfs2_add_inode_to_orphan(osb, inode);
702                 if (ret < 0) {
703                         mlog_errno(ret);
704                         goto out;
705                 }
706                 orphaned = true;
707         }
708
709         if (append_write) {
710                 ret = ocfs2_inode_lock(inode, &di_bh, 1);
711                 if (ret < 0) {
712                         mlog_errno(ret);
713                         goto clean_orphan;
714                 }
715
716                 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
717                         ret = ocfs2_zero_extend(inode, di_bh, offset);
718                 else
719                         ret = ocfs2_extend_no_holes(inode, di_bh, offset,
720                                         offset);
721                 if (ret < 0) {
722                         mlog_errno(ret);
723                         ocfs2_inode_unlock(inode, 1);
724                         brelse(di_bh);
725                         goto clean_orphan;
726                 }
727
728                 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
729                 if (is_overwrite < 0) {
730                         mlog_errno(is_overwrite);
731                         ocfs2_inode_unlock(inode, 1);
732                         brelse(di_bh);
733                         goto clean_orphan;
734                 }
735
736                 ocfs2_inode_unlock(inode, 1);
737                 brelse(di_bh);
738                 di_bh = NULL;
739         }
740
741         written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
742                                        offset, ocfs2_direct_IO_get_blocks,
743                                        ocfs2_dio_end_io, NULL, 0);
744         if (unlikely(written < 0)) {
745                 loff_t i_size = i_size_read(inode);
746
747                 if (offset + count > i_size) {
748                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
749                         if (ret < 0) {
750                                 mlog_errno(ret);
751                                 goto clean_orphan;
752                         }
753
754                         if (i_size == i_size_read(inode)) {
755                                 ret = ocfs2_truncate_file(inode, di_bh,
756                                                 i_size);
757                                 if (ret < 0) {
758                                         if (ret != -ENOSPC)
759                                                 mlog_errno(ret);
760
761                                         ocfs2_inode_unlock(inode, 1);
762                                         brelse(di_bh);
763                                         goto clean_orphan;
764                                 }
765                         }
766
767                         ocfs2_inode_unlock(inode, 1);
768                         brelse(di_bh);
769
770                         ret = jbd2_journal_force_commit(journal);
771                         if (ret < 0)
772                                 mlog_errno(ret);
773                 }
774         } else if (written < 0 && append_write && !is_overwrite &&
775                         !cluster_align) {
776                 u32 p_cpos = 0;
777                 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
778
779                 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
780                                 &num_clusters, &ext_flags);
781                 if (ret < 0) {
782                         mlog_errno(ret);
783                         goto clean_orphan;
784                 }
785
786                 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
787
788                 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
789                                 p_cpos << (osb->s_clustersize_bits - 9),
790                                 zero_len >> 9, GFP_KERNEL, false);
791                 if (ret < 0)
792                         mlog_errno(ret);
793         }
794
795 clean_orphan:
796         if (orphaned) {
797                 int tmp_ret;
798                 int update_isize = written > 0 ? 1 : 0;
799                 loff_t end = update_isize ? offset + written : 0;
800
801                 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
802                                 update_isize, end);
803                 if (tmp_ret < 0) {
804                         ret = tmp_ret;
805                         goto out;
806                 }
807
808                 tmp_ret = jbd2_journal_force_commit(journal);
809                 if (tmp_ret < 0) {
810                         ret = tmp_ret;
811                         mlog_errno(tmp_ret);
812                 }
813         }
814
815 out:
816         if (ret >= 0)
817                 ret = written;
818         return ret;
819 }
820
821 static ssize_t ocfs2_direct_IO(int rw,
822                                struct kiocb *iocb,
823                                struct iov_iter *iter,
824                                loff_t offset)
825 {
826         struct file *file = iocb->ki_filp;
827         struct inode *inode = file_inode(file)->i_mapping->host;
828         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
829         int full_coherency = !(osb->s_mount_opt &
830                         OCFS2_MOUNT_COHERENCY_BUFFERED);
831
832         /*
833          * Fallback to buffered I/O if we see an inode without
834          * extents.
835          */
836         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
837                 return 0;
838
839         /* Fallback to buffered I/O if we are appending and
840          * concurrent O_DIRECT writes are allowed.
841          */
842         if (i_size_read(inode) <= offset && !full_coherency)
843                 return 0;
844
845         if (rw == READ)
846                 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
847                                             iter, offset,
848                                             ocfs2_direct_IO_get_blocks,
849                                             ocfs2_dio_end_io, NULL, 0);
850         else
851                 return ocfs2_direct_IO_write(iocb, iter, offset);
852 }
853
854 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
855                                             u32 cpos,
856                                             unsigned int *start,
857                                             unsigned int *end)
858 {
859         unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
860
861         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
862                 unsigned int cpp;
863
864                 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
865
866                 cluster_start = cpos % cpp;
867                 cluster_start = cluster_start << osb->s_clustersize_bits;
868
869                 cluster_end = cluster_start + osb->s_clustersize;
870         }
871
872         BUG_ON(cluster_start > PAGE_SIZE);
873         BUG_ON(cluster_end > PAGE_SIZE);
874
875         if (start)
876                 *start = cluster_start;
877         if (end)
878                 *end = cluster_end;
879 }
880
881 /*
882  * 'from' and 'to' are the region in the page to avoid zeroing.
883  *
884  * If pagesize > clustersize, this function will avoid zeroing outside
885  * of the cluster boundary.
886  *
887  * from == to == 0 is code for "zero the entire cluster region"
888  */
889 static void ocfs2_clear_page_regions(struct page *page,
890                                      struct ocfs2_super *osb, u32 cpos,
891                                      unsigned from, unsigned to)
892 {
893         void *kaddr;
894         unsigned int cluster_start, cluster_end;
895
896         ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
897
898         kaddr = kmap_atomic(page);
899
900         if (from || to) {
901                 if (from > cluster_start)
902                         memset(kaddr + cluster_start, 0, from - cluster_start);
903                 if (to < cluster_end)
904                         memset(kaddr + to, 0, cluster_end - to);
905         } else {
906                 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
907         }
908
909         kunmap_atomic(kaddr);
910 }
911
912 /*
913  * Nonsparse file systems fully allocate before we get to the write
914  * code. This prevents ocfs2_write() from tagging the write as an
915  * allocating one, which means ocfs2_map_page_blocks() might try to
916  * read-in the blocks at the tail of our file. Avoid reading them by
917  * testing i_size against each block offset.
918  */
919 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
920                                  unsigned int block_start)
921 {
922         u64 offset = page_offset(page) + block_start;
923
924         if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
925                 return 1;
926
927         if (i_size_read(inode) > offset)
928                 return 1;
929
930         return 0;
931 }
932
933 /*
934  * Some of this taken from __block_write_begin(). We already have our
935  * mapping by now though, and the entire write will be allocating or
936  * it won't, so not much need to use BH_New.
937  *
938  * This will also skip zeroing, which is handled externally.
939  */
940 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
941                           struct inode *inode, unsigned int from,
942                           unsigned int to, int new)
943 {
944         int ret = 0;
945         struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
946         unsigned int block_end, block_start;
947         unsigned int bsize = 1 << inode->i_blkbits;
948
949         if (!page_has_buffers(page))
950                 create_empty_buffers(page, bsize, 0);
951
952         head = page_buffers(page);
953         for (bh = head, block_start = 0; bh != head || !block_start;
954              bh = bh->b_this_page, block_start += bsize) {
955                 block_end = block_start + bsize;
956
957                 clear_buffer_new(bh);
958
959                 /*
960                  * Ignore blocks outside of our i/o range -
961                  * they may belong to unallocated clusters.
962                  */
963                 if (block_start >= to || block_end <= from) {
964                         if (PageUptodate(page))
965                                 set_buffer_uptodate(bh);
966                         continue;
967                 }
968
969                 /*
970                  * For an allocating write with cluster size >= page
971                  * size, we always write the entire page.
972                  */
973                 if (new)
974                         set_buffer_new(bh);
975
976                 if (!buffer_mapped(bh)) {
977                         map_bh(bh, inode->i_sb, *p_blkno);
978                         unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
979                 }
980
981                 if (PageUptodate(page)) {
982                         if (!buffer_uptodate(bh))
983                                 set_buffer_uptodate(bh);
984                 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
985                            !buffer_new(bh) &&
986                            ocfs2_should_read_blk(inode, page, block_start) &&
987                            (block_start < from || block_end > to)) {
988                         ll_rw_block(READ, 1, &bh);
989                         *wait_bh++=bh;
990                 }
991
992                 *p_blkno = *p_blkno + 1;
993         }
994
995         /*
996          * If we issued read requests - let them complete.
997          */
998         while(wait_bh > wait) {
999                 wait_on_buffer(*--wait_bh);
1000                 if (!buffer_uptodate(*wait_bh))
1001                         ret = -EIO;
1002         }
1003
1004         if (ret == 0 || !new)
1005                 return ret;
1006
1007         /*
1008          * If we get -EIO above, zero out any newly allocated blocks
1009          * to avoid exposing stale data.
1010          */
1011         bh = head;
1012         block_start = 0;
1013         do {
1014                 block_end = block_start + bsize;
1015                 if (block_end <= from)
1016                         goto next_bh;
1017                 if (block_start >= to)
1018                         break;
1019
1020                 zero_user(page, block_start, bh->b_size);
1021                 set_buffer_uptodate(bh);
1022                 mark_buffer_dirty(bh);
1023
1024 next_bh:
1025                 block_start = block_end;
1026                 bh = bh->b_this_page;
1027         } while (bh != head);
1028
1029         return ret;
1030 }
1031
1032 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1033 #define OCFS2_MAX_CTXT_PAGES    1
1034 #else
1035 #define OCFS2_MAX_CTXT_PAGES    (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1036 #endif
1037
1038 #define OCFS2_MAX_CLUSTERS_PER_PAGE     (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1039
1040 /*
1041  * Describe the state of a single cluster to be written to.
1042  */
1043 struct ocfs2_write_cluster_desc {
1044         u32             c_cpos;
1045         u32             c_phys;
1046         /*
1047          * Give this a unique field because c_phys eventually gets
1048          * filled.
1049          */
1050         unsigned        c_new;
1051         unsigned        c_unwritten;
1052         unsigned        c_needs_zero;
1053 };
1054
1055 struct ocfs2_write_ctxt {
1056         /* Logical cluster position / len of write */
1057         u32                             w_cpos;
1058         u32                             w_clen;
1059
1060         /* First cluster allocated in a nonsparse extend */
1061         u32                             w_first_new_cpos;
1062
1063         struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1064
1065         /*
1066          * This is true if page_size > cluster_size.
1067          *
1068          * It triggers a set of special cases during write which might
1069          * have to deal with allocating writes to partial pages.
1070          */
1071         unsigned int                    w_large_pages;
1072
1073         /*
1074          * Pages involved in this write.
1075          *
1076          * w_target_page is the page being written to by the user.
1077          *
1078          * w_pages is an array of pages which always contains
1079          * w_target_page, and in the case of an allocating write with
1080          * page_size < cluster size, it will contain zero'd and mapped
1081          * pages adjacent to w_target_page which need to be written
1082          * out in so that future reads from that region will get
1083          * zero's.
1084          */
1085         unsigned int                    w_num_pages;
1086         struct page                     *w_pages[OCFS2_MAX_CTXT_PAGES];
1087         struct page                     *w_target_page;
1088
1089         /*
1090          * w_target_locked is used for page_mkwrite path indicating no unlocking
1091          * against w_target_page in ocfs2_write_end_nolock.
1092          */
1093         unsigned int                    w_target_locked:1;
1094
1095         /*
1096          * ocfs2_write_end() uses this to know what the real range to
1097          * write in the target should be.
1098          */
1099         unsigned int                    w_target_from;
1100         unsigned int                    w_target_to;
1101
1102         /*
1103          * We could use journal_current_handle() but this is cleaner,
1104          * IMHO -Mark
1105          */
1106         handle_t                        *w_handle;
1107
1108         struct buffer_head              *w_di_bh;
1109
1110         struct ocfs2_cached_dealloc_ctxt w_dealloc;
1111 };
1112
1113 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1114 {
1115         int i;
1116
1117         for(i = 0; i < num_pages; i++) {
1118                 if (pages[i]) {
1119                         unlock_page(pages[i]);
1120                         mark_page_accessed(pages[i]);
1121                         page_cache_release(pages[i]);
1122                 }
1123         }
1124 }
1125
1126 static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1127 {
1128         int i;
1129
1130         /*
1131          * w_target_locked is only set to true in the page_mkwrite() case.
1132          * The intent is to allow us to lock the target page from write_begin()
1133          * to write_end(). The caller must hold a ref on w_target_page.
1134          */
1135         if (wc->w_target_locked) {
1136                 BUG_ON(!wc->w_target_page);
1137                 for (i = 0; i < wc->w_num_pages; i++) {
1138                         if (wc->w_target_page == wc->w_pages[i]) {
1139                                 wc->w_pages[i] = NULL;
1140                                 break;
1141                         }
1142                 }
1143                 mark_page_accessed(wc->w_target_page);
1144                 page_cache_release(wc->w_target_page);
1145         }
1146         ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1147 }
1148
1149 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1150 {
1151         ocfs2_unlock_pages(wc);
1152         brelse(wc->w_di_bh);
1153         kfree(wc);
1154 }
1155
1156 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1157                                   struct ocfs2_super *osb, loff_t pos,
1158                                   unsigned len, struct buffer_head *di_bh)
1159 {
1160         u32 cend;
1161         struct ocfs2_write_ctxt *wc;
1162
1163         wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1164         if (!wc)
1165                 return -ENOMEM;
1166
1167         wc->w_cpos = pos >> osb->s_clustersize_bits;
1168         wc->w_first_new_cpos = UINT_MAX;
1169         cend = (pos + len - 1) >> osb->s_clustersize_bits;
1170         wc->w_clen = cend - wc->w_cpos + 1;
1171         get_bh(di_bh);
1172         wc->w_di_bh = di_bh;
1173
1174         if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1175                 wc->w_large_pages = 1;
1176         else
1177                 wc->w_large_pages = 0;
1178
1179         ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1180
1181         *wcp = wc;
1182
1183         return 0;
1184 }
1185
1186 /*
1187  * If a page has any new buffers, zero them out here, and mark them uptodate
1188  * and dirty so they'll be written out (in order to prevent uninitialised
1189  * block data from leaking). And clear the new bit.
1190  */
1191 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1192 {
1193         unsigned int block_start, block_end;
1194         struct buffer_head *head, *bh;
1195
1196         BUG_ON(!PageLocked(page));
1197         if (!page_has_buffers(page))
1198                 return;
1199
1200         bh = head = page_buffers(page);
1201         block_start = 0;
1202         do {
1203                 block_end = block_start + bh->b_size;
1204
1205                 if (buffer_new(bh)) {
1206                         if (block_end > from && block_start < to) {
1207                                 if (!PageUptodate(page)) {
1208                                         unsigned start, end;
1209
1210                                         start = max(from, block_start);
1211                                         end = min(to, block_end);
1212
1213                                         zero_user_segment(page, start, end);
1214                                         set_buffer_uptodate(bh);
1215                                 }
1216
1217                                 clear_buffer_new(bh);
1218                                 mark_buffer_dirty(bh);
1219                         }
1220                 }
1221
1222                 block_start = block_end;
1223                 bh = bh->b_this_page;
1224         } while (bh != head);
1225 }
1226
1227 /*
1228  * Only called when we have a failure during allocating write to write
1229  * zero's to the newly allocated region.
1230  */
1231 static void ocfs2_write_failure(struct inode *inode,
1232                                 struct ocfs2_write_ctxt *wc,
1233                                 loff_t user_pos, unsigned user_len)
1234 {
1235         int i;
1236         unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1237                 to = user_pos + user_len;
1238         struct page *tmppage;
1239
1240         ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1241
1242         for(i = 0; i < wc->w_num_pages; i++) {
1243                 tmppage = wc->w_pages[i];
1244
1245                 if (page_has_buffers(tmppage)) {
1246                         if (ocfs2_should_order_data(inode))
1247                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1248
1249                         block_commit_write(tmppage, from, to);
1250                 }
1251         }
1252 }
1253
1254 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1255                                         struct ocfs2_write_ctxt *wc,
1256                                         struct page *page, u32 cpos,
1257                                         loff_t user_pos, unsigned user_len,
1258                                         int new)
1259 {
1260         int ret;
1261         unsigned int map_from = 0, map_to = 0;
1262         unsigned int cluster_start, cluster_end;
1263         unsigned int user_data_from = 0, user_data_to = 0;
1264
1265         ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1266                                         &cluster_start, &cluster_end);
1267
1268         /* treat the write as new if the a hole/lseek spanned across
1269          * the page boundary.
1270          */
1271         new = new | ((i_size_read(inode) <= page_offset(page)) &&
1272                         (page_offset(page) <= user_pos));
1273
1274         if (page == wc->w_target_page) {
1275                 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1276                 map_to = map_from + user_len;
1277
1278                 if (new)
1279                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1280                                                     cluster_start, cluster_end,
1281                                                     new);
1282                 else
1283                         ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1284                                                     map_from, map_to, new);
1285                 if (ret) {
1286                         mlog_errno(ret);
1287                         goto out;
1288                 }
1289
1290                 user_data_from = map_from;
1291                 user_data_to = map_to;
1292                 if (new) {
1293                         map_from = cluster_start;
1294                         map_to = cluster_end;
1295                 }
1296         } else {
1297                 /*
1298                  * If we haven't allocated the new page yet, we
1299                  * shouldn't be writing it out without copying user
1300                  * data. This is likely a math error from the caller.
1301                  */
1302                 BUG_ON(!new);
1303
1304                 map_from = cluster_start;
1305                 map_to = cluster_end;
1306
1307                 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1308                                             cluster_start, cluster_end, new);
1309                 if (ret) {
1310                         mlog_errno(ret);
1311                         goto out;
1312                 }
1313         }
1314
1315         /*
1316          * Parts of newly allocated pages need to be zero'd.
1317          *
1318          * Above, we have also rewritten 'to' and 'from' - as far as
1319          * the rest of the function is concerned, the entire cluster
1320          * range inside of a page needs to be written.
1321          *
1322          * We can skip this if the page is up to date - it's already
1323          * been zero'd from being read in as a hole.
1324          */
1325         if (new && !PageUptodate(page))
1326                 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1327                                          cpos, user_data_from, user_data_to);
1328
1329         flush_dcache_page(page);
1330
1331 out:
1332         return ret;
1333 }
1334
1335 /*
1336  * This function will only grab one clusters worth of pages.
1337  */
1338 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1339                                       struct ocfs2_write_ctxt *wc,
1340                                       u32 cpos, loff_t user_pos,
1341                                       unsigned user_len, int new,
1342                                       struct page *mmap_page)
1343 {
1344         int ret = 0, i;
1345         unsigned long start, target_index, end_index, index;
1346         struct inode *inode = mapping->host;
1347         loff_t last_byte;
1348
1349         target_index = user_pos >> PAGE_CACHE_SHIFT;
1350
1351         /*
1352          * Figure out how many pages we'll be manipulating here. For
1353          * non allocating write, we just change the one
1354          * page. Otherwise, we'll need a whole clusters worth.  If we're
1355          * writing past i_size, we only need enough pages to cover the
1356          * last page of the write.
1357          */
1358         if (new) {
1359                 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1360                 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1361                 /*
1362                  * We need the index *past* the last page we could possibly
1363                  * touch.  This is the page past the end of the write or
1364                  * i_size, whichever is greater.
1365                  */
1366                 last_byte = max(user_pos + user_len, i_size_read(inode));
1367                 BUG_ON(last_byte < 1);
1368                 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1369                 if ((start + wc->w_num_pages) > end_index)
1370                         wc->w_num_pages = end_index - start;
1371         } else {
1372                 wc->w_num_pages = 1;
1373                 start = target_index;
1374         }
1375
1376         for(i = 0; i < wc->w_num_pages; i++) {
1377                 index = start + i;
1378
1379                 if (index == target_index && mmap_page) {
1380                         /*
1381                          * ocfs2_pagemkwrite() is a little different
1382                          * and wants us to directly use the page
1383                          * passed in.
1384                          */
1385                         lock_page(mmap_page);
1386
1387                         /* Exit and let the caller retry */
1388                         if (mmap_page->mapping != mapping) {
1389                                 WARN_ON(mmap_page->mapping);
1390                                 unlock_page(mmap_page);
1391                                 ret = -EAGAIN;
1392                                 goto out;
1393                         }
1394
1395                         page_cache_get(mmap_page);
1396                         wc->w_pages[i] = mmap_page;
1397                         wc->w_target_locked = true;
1398                 } else {
1399                         wc->w_pages[i] = find_or_create_page(mapping, index,
1400                                                              GFP_NOFS);
1401                         if (!wc->w_pages[i]) {
1402                                 ret = -ENOMEM;
1403                                 mlog_errno(ret);
1404                                 goto out;
1405                         }
1406                 }
1407                 wait_for_stable_page(wc->w_pages[i]);
1408
1409                 if (index == target_index)
1410                         wc->w_target_page = wc->w_pages[i];
1411         }
1412 out:
1413         if (ret)
1414                 wc->w_target_locked = false;
1415         return ret;
1416 }
1417
1418 /*
1419  * Prepare a single cluster for write one cluster into the file.
1420  */
1421 static int ocfs2_write_cluster(struct address_space *mapping,
1422                                u32 phys, unsigned int unwritten,
1423                                unsigned int should_zero,
1424                                struct ocfs2_alloc_context *data_ac,
1425                                struct ocfs2_alloc_context *meta_ac,
1426                                struct ocfs2_write_ctxt *wc, u32 cpos,
1427                                loff_t user_pos, unsigned user_len)
1428 {
1429         int ret, i, new;
1430         u64 v_blkno, p_blkno;
1431         struct inode *inode = mapping->host;
1432         struct ocfs2_extent_tree et;
1433
1434         new = phys == 0 ? 1 : 0;
1435         if (new) {
1436                 u32 tmp_pos;
1437
1438                 /*
1439                  * This is safe to call with the page locks - it won't take
1440                  * any additional semaphores or cluster locks.
1441                  */
1442                 tmp_pos = cpos;
1443                 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1444                                            &tmp_pos, 1, 0, wc->w_di_bh,
1445                                            wc->w_handle, data_ac,
1446                                            meta_ac, NULL);
1447                 /*
1448                  * This shouldn't happen because we must have already
1449                  * calculated the correct meta data allocation required. The
1450                  * internal tree allocation code should know how to increase
1451                  * transaction credits itself.
1452                  *
1453                  * If need be, we could handle -EAGAIN for a
1454                  * RESTART_TRANS here.
1455                  */
1456                 mlog_bug_on_msg(ret == -EAGAIN,
1457                                 "Inode %llu: EAGAIN return during allocation.\n",
1458                                 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1459                 if (ret < 0) {
1460                         mlog_errno(ret);
1461                         goto out;
1462                 }
1463         } else if (unwritten) {
1464                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1465                                               wc->w_di_bh);
1466                 ret = ocfs2_mark_extent_written(inode, &et,
1467                                                 wc->w_handle, cpos, 1, phys,
1468                                                 meta_ac, &wc->w_dealloc);
1469                 if (ret < 0) {
1470                         mlog_errno(ret);
1471                         goto out;
1472                 }
1473         }
1474
1475         if (should_zero)
1476                 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1477         else
1478                 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1479
1480         /*
1481          * The only reason this should fail is due to an inability to
1482          * find the extent added.
1483          */
1484         ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1485                                           NULL);
1486         if (ret < 0) {
1487                 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1488                             "at logical block %llu",
1489                             (unsigned long long)OCFS2_I(inode)->ip_blkno,
1490                             (unsigned long long)v_blkno);
1491                 goto out;
1492         }
1493
1494         BUG_ON(p_blkno == 0);
1495
1496         for(i = 0; i < wc->w_num_pages; i++) {
1497                 int tmpret;
1498
1499                 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1500                                                       wc->w_pages[i], cpos,
1501                                                       user_pos, user_len,
1502                                                       should_zero);
1503                 if (tmpret) {
1504                         mlog_errno(tmpret);
1505                         if (ret == 0)
1506                                 ret = tmpret;
1507                 }
1508         }
1509
1510         /*
1511          * We only have cleanup to do in case of allocating write.
1512          */
1513         if (ret && new)
1514                 ocfs2_write_failure(inode, wc, user_pos, user_len);
1515
1516 out:
1517
1518         return ret;
1519 }
1520
1521 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1522                                        struct ocfs2_alloc_context *data_ac,
1523                                        struct ocfs2_alloc_context *meta_ac,
1524                                        struct ocfs2_write_ctxt *wc,
1525                                        loff_t pos, unsigned len)
1526 {
1527         int ret, i;
1528         loff_t cluster_off;
1529         unsigned int local_len = len;
1530         struct ocfs2_write_cluster_desc *desc;
1531         struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1532
1533         for (i = 0; i < wc->w_clen; i++) {
1534                 desc = &wc->w_desc[i];
1535
1536                 /*
1537                  * We have to make sure that the total write passed in
1538                  * doesn't extend past a single cluster.
1539                  */
1540                 local_len = len;
1541                 cluster_off = pos & (osb->s_clustersize - 1);
1542                 if ((cluster_off + local_len) > osb->s_clustersize)
1543                         local_len = osb->s_clustersize - cluster_off;
1544
1545                 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1546                                           desc->c_unwritten,
1547                                           desc->c_needs_zero,
1548                                           data_ac, meta_ac,
1549                                           wc, desc->c_cpos, pos, local_len);
1550                 if (ret) {
1551                         mlog_errno(ret);
1552                         goto out;
1553                 }
1554
1555                 len -= local_len;
1556                 pos += local_len;
1557         }
1558
1559         ret = 0;
1560 out:
1561         return ret;
1562 }
1563
1564 /*
1565  * ocfs2_write_end() wants to know which parts of the target page it
1566  * should complete the write on. It's easiest to compute them ahead of
1567  * time when a more complete view of the write is available.
1568  */
1569 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1570                                         struct ocfs2_write_ctxt *wc,
1571                                         loff_t pos, unsigned len, int alloc)
1572 {
1573         struct ocfs2_write_cluster_desc *desc;
1574
1575         wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1576         wc->w_target_to = wc->w_target_from + len;
1577
1578         if (alloc == 0)
1579                 return;
1580
1581         /*
1582          * Allocating write - we may have different boundaries based
1583          * on page size and cluster size.
1584          *
1585          * NOTE: We can no longer compute one value from the other as
1586          * the actual write length and user provided length may be
1587          * different.
1588          */
1589
1590         if (wc->w_large_pages) {
1591                 /*
1592                  * We only care about the 1st and last cluster within
1593                  * our range and whether they should be zero'd or not. Either
1594                  * value may be extended out to the start/end of a
1595                  * newly allocated cluster.
1596                  */
1597                 desc = &wc->w_desc[0];
1598                 if (desc->c_needs_zero)
1599                         ocfs2_figure_cluster_boundaries(osb,
1600                                                         desc->c_cpos,
1601                                                         &wc->w_target_from,
1602                                                         NULL);
1603
1604                 desc = &wc->w_desc[wc->w_clen - 1];
1605                 if (desc->c_needs_zero)
1606                         ocfs2_figure_cluster_boundaries(osb,
1607                                                         desc->c_cpos,
1608                                                         NULL,
1609                                                         &wc->w_target_to);
1610         } else {
1611                 wc->w_target_from = 0;
1612                 wc->w_target_to = PAGE_CACHE_SIZE;
1613         }
1614 }
1615
1616 /*
1617  * Populate each single-cluster write descriptor in the write context
1618  * with information about the i/o to be done.
1619  *
1620  * Returns the number of clusters that will have to be allocated, as
1621  * well as a worst case estimate of the number of extent records that
1622  * would have to be created during a write to an unwritten region.
1623  */
1624 static int ocfs2_populate_write_desc(struct inode *inode,
1625                                      struct ocfs2_write_ctxt *wc,
1626                                      unsigned int *clusters_to_alloc,
1627                                      unsigned int *extents_to_split)
1628 {
1629         int ret;
1630         struct ocfs2_write_cluster_desc *desc;
1631         unsigned int num_clusters = 0;
1632         unsigned int ext_flags = 0;
1633         u32 phys = 0;
1634         int i;
1635
1636         *clusters_to_alloc = 0;
1637         *extents_to_split = 0;
1638
1639         for (i = 0; i < wc->w_clen; i++) {
1640                 desc = &wc->w_desc[i];
1641                 desc->c_cpos = wc->w_cpos + i;
1642
1643                 if (num_clusters == 0) {
1644                         /*
1645                          * Need to look up the next extent record.
1646                          */
1647                         ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1648                                                  &num_clusters, &ext_flags);
1649                         if (ret) {
1650                                 mlog_errno(ret);
1651                                 goto out;
1652                         }
1653
1654                         /* We should already CoW the refcountd extent. */
1655                         BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1656
1657                         /*
1658                          * Assume worst case - that we're writing in
1659                          * the middle of the extent.
1660                          *
1661                          * We can assume that the write proceeds from
1662                          * left to right, in which case the extent
1663                          * insert code is smart enough to coalesce the
1664                          * next splits into the previous records created.
1665                          */
1666                         if (ext_flags & OCFS2_EXT_UNWRITTEN)
1667                                 *extents_to_split = *extents_to_split + 2;
1668                 } else if (phys) {
1669                         /*
1670                          * Only increment phys if it doesn't describe
1671                          * a hole.
1672                          */
1673                         phys++;
1674                 }
1675
1676                 /*
1677                  * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1678                  * file that got extended.  w_first_new_cpos tells us
1679                  * where the newly allocated clusters are so we can
1680                  * zero them.
1681                  */
1682                 if (desc->c_cpos >= wc->w_first_new_cpos) {
1683                         BUG_ON(phys == 0);
1684                         desc->c_needs_zero = 1;
1685                 }
1686
1687                 desc->c_phys = phys;
1688                 if (phys == 0) {
1689                         desc->c_new = 1;
1690                         desc->c_needs_zero = 1;
1691                         *clusters_to_alloc = *clusters_to_alloc + 1;
1692                 }
1693
1694                 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1695                         desc->c_unwritten = 1;
1696                         desc->c_needs_zero = 1;
1697                 }
1698
1699                 num_clusters--;
1700         }
1701
1702         ret = 0;
1703 out:
1704         return ret;
1705 }
1706
1707 static int ocfs2_write_begin_inline(struct address_space *mapping,
1708                                     struct inode *inode,
1709                                     struct ocfs2_write_ctxt *wc)
1710 {
1711         int ret;
1712         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1713         struct page *page;
1714         handle_t *handle;
1715         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1716
1717         handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1718         if (IS_ERR(handle)) {
1719                 ret = PTR_ERR(handle);
1720                 mlog_errno(ret);
1721                 goto out;
1722         }
1723
1724         page = find_or_create_page(mapping, 0, GFP_NOFS);
1725         if (!page) {
1726                 ocfs2_commit_trans(osb, handle);
1727                 ret = -ENOMEM;
1728                 mlog_errno(ret);
1729                 goto out;
1730         }
1731         /*
1732          * If we don't set w_num_pages then this page won't get unlocked
1733          * and freed on cleanup of the write context.
1734          */
1735         wc->w_pages[0] = wc->w_target_page = page;
1736         wc->w_num_pages = 1;
1737
1738         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1739                                       OCFS2_JOURNAL_ACCESS_WRITE);
1740         if (ret) {
1741                 ocfs2_commit_trans(osb, handle);
1742
1743                 mlog_errno(ret);
1744                 goto out;
1745         }
1746
1747         if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1748                 ocfs2_set_inode_data_inline(inode, di);
1749
1750         if (!PageUptodate(page)) {
1751                 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1752                 if (ret) {
1753                         ocfs2_commit_trans(osb, handle);
1754
1755                         goto out;
1756                 }
1757         }
1758
1759         wc->w_handle = handle;
1760 out:
1761         return ret;
1762 }
1763
1764 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1765 {
1766         struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1767
1768         if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1769                 return 1;
1770         return 0;
1771 }
1772
1773 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1774                                           struct inode *inode, loff_t pos,
1775                                           unsigned len, struct page *mmap_page,
1776                                           struct ocfs2_write_ctxt *wc)
1777 {
1778         int ret, written = 0;
1779         loff_t end = pos + len;
1780         struct ocfs2_inode_info *oi = OCFS2_I(inode);
1781         struct ocfs2_dinode *di = NULL;
1782
1783         trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1784                                              len, (unsigned long long)pos,
1785                                              oi->ip_dyn_features);
1786
1787         /*
1788          * Handle inodes which already have inline data 1st.
1789          */
1790         if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1791                 if (mmap_page == NULL &&
1792                     ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1793                         goto do_inline_write;
1794
1795                 /*
1796                  * The write won't fit - we have to give this inode an
1797                  * inline extent list now.
1798                  */
1799                 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1800                 if (ret)
1801                         mlog_errno(ret);
1802                 goto out;
1803         }
1804
1805         /*
1806          * Check whether the inode can accept inline data.
1807          */
1808         if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1809                 return 0;
1810
1811         /*
1812          * Check whether the write can fit.
1813          */
1814         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1815         if (mmap_page ||
1816             end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1817                 return 0;
1818
1819 do_inline_write:
1820         ret = ocfs2_write_begin_inline(mapping, inode, wc);
1821         if (ret) {
1822                 mlog_errno(ret);
1823                 goto out;
1824         }
1825
1826         /*
1827          * This signals to the caller that the data can be written
1828          * inline.
1829          */
1830         written = 1;
1831 out:
1832         return written ? written : ret;
1833 }
1834
1835 /*
1836  * This function only does anything for file systems which can't
1837  * handle sparse files.
1838  *
1839  * What we want to do here is fill in any hole between the current end
1840  * of allocation and the end of our write. That way the rest of the
1841  * write path can treat it as an non-allocating write, which has no
1842  * special case code for sparse/nonsparse files.
1843  */
1844 static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1845                                         struct buffer_head *di_bh,
1846                                         loff_t pos, unsigned len,
1847                                         struct ocfs2_write_ctxt *wc)
1848 {
1849         int ret;
1850         loff_t newsize = pos + len;
1851
1852         BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1853
1854         if (newsize <= i_size_read(inode))
1855                 return 0;
1856
1857         ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1858         if (ret)
1859                 mlog_errno(ret);
1860
1861         wc->w_first_new_cpos =
1862                 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1863
1864         return ret;
1865 }
1866
1867 static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1868                            loff_t pos)
1869 {
1870         int ret = 0;
1871
1872         BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1873         if (pos > i_size_read(inode))
1874                 ret = ocfs2_zero_extend(inode, di_bh, pos);
1875
1876         return ret;
1877 }
1878
1879 /*
1880  * Try to flush truncate logs if we can free enough clusters from it.
1881  * As for return value, "< 0" means error, "0" no space and "1" means
1882  * we have freed enough spaces and let the caller try to allocate again.
1883  */
1884 static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1885                                           unsigned int needed)
1886 {
1887         tid_t target;
1888         int ret = 0;
1889         unsigned int truncated_clusters;
1890
1891         mutex_lock(&osb->osb_tl_inode->i_mutex);
1892         truncated_clusters = osb->truncated_clusters;
1893         mutex_unlock(&osb->osb_tl_inode->i_mutex);
1894
1895         /*
1896          * Check whether we can succeed in allocating if we free
1897          * the truncate log.
1898          */
1899         if (truncated_clusters < needed)
1900                 goto out;
1901
1902         ret = ocfs2_flush_truncate_log(osb);
1903         if (ret) {
1904                 mlog_errno(ret);
1905                 goto out;
1906         }
1907
1908         if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1909                 jbd2_log_wait_commit(osb->journal->j_journal, target);
1910                 ret = 1;
1911         }
1912 out:
1913         return ret;
1914 }
1915
1916 int ocfs2_write_begin_nolock(struct file *filp,
1917                              struct address_space *mapping,
1918                              loff_t pos, unsigned len, unsigned flags,
1919                              struct page **pagep, void **fsdata,
1920                              struct buffer_head *di_bh, struct page *mmap_page)
1921 {
1922         int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
1923         unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
1924         struct ocfs2_write_ctxt *wc;
1925         struct inode *inode = mapping->host;
1926         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1927         struct ocfs2_dinode *di;
1928         struct ocfs2_alloc_context *data_ac = NULL;
1929         struct ocfs2_alloc_context *meta_ac = NULL;
1930         handle_t *handle;
1931         struct ocfs2_extent_tree et;
1932         int try_free = 1, ret1;
1933
1934 try_again:
1935         ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1936         if (ret) {
1937                 mlog_errno(ret);
1938                 return ret;
1939         }
1940
1941         if (ocfs2_supports_inline_data(osb)) {
1942                 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1943                                                      mmap_page, wc);
1944                 if (ret == 1) {
1945                         ret = 0;
1946                         goto success;
1947                 }
1948                 if (ret < 0) {
1949                         mlog_errno(ret);
1950                         goto out;
1951                 }
1952         }
1953
1954         if (ocfs2_sparse_alloc(osb))
1955                 ret = ocfs2_zero_tail(inode, di_bh, pos);
1956         else
1957                 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1958                                                    wc);
1959         if (ret) {
1960                 mlog_errno(ret);
1961                 goto out;
1962         }
1963
1964         ret = ocfs2_check_range_for_refcount(inode, pos, len);
1965         if (ret < 0) {
1966                 mlog_errno(ret);
1967                 goto out;
1968         } else if (ret == 1) {
1969                 clusters_need = wc->w_clen;
1970                 ret = ocfs2_refcount_cow(inode, di_bh,
1971                                          wc->w_cpos, wc->w_clen, UINT_MAX);
1972                 if (ret) {
1973                         mlog_errno(ret);
1974                         goto out;
1975                 }
1976         }
1977
1978         ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1979                                         &extents_to_split);
1980         if (ret) {
1981                 mlog_errno(ret);
1982                 goto out;
1983         }
1984         clusters_need += clusters_to_alloc;
1985
1986         di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1987
1988         trace_ocfs2_write_begin_nolock(
1989                         (unsigned long long)OCFS2_I(inode)->ip_blkno,
1990                         (long long)i_size_read(inode),
1991                         le32_to_cpu(di->i_clusters),
1992                         pos, len, flags, mmap_page,
1993                         clusters_to_alloc, extents_to_split);
1994
1995         /*
1996          * We set w_target_from, w_target_to here so that
1997          * ocfs2_write_end() knows which range in the target page to
1998          * write out. An allocation requires that we write the entire
1999          * cluster range.
2000          */
2001         if (clusters_to_alloc || extents_to_split) {
2002                 /*
2003                  * XXX: We are stretching the limits of
2004                  * ocfs2_lock_allocators(). It greatly over-estimates
2005                  * the work to be done.
2006                  */
2007                 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2008                                               wc->w_di_bh);
2009                 ret = ocfs2_lock_allocators(inode, &et,
2010                                             clusters_to_alloc, extents_to_split,
2011                                             &data_ac, &meta_ac);
2012                 if (ret) {
2013                         mlog_errno(ret);
2014                         goto out;
2015                 }
2016
2017                 if (data_ac)
2018                         data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2019
2020                 credits = ocfs2_calc_extend_credits(inode->i_sb,
2021                                                     &di->id2.i_list);
2022
2023         }
2024
2025         /*
2026          * We have to zero sparse allocated clusters, unwritten extent clusters,
2027          * and non-sparse clusters we just extended.  For non-sparse writes,
2028          * we know zeros will only be needed in the first and/or last cluster.
2029          */
2030         if (clusters_to_alloc || extents_to_split ||
2031             (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2032                             wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2033                 cluster_of_pages = 1;
2034         else
2035                 cluster_of_pages = 0;
2036
2037         ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2038
2039         handle = ocfs2_start_trans(osb, credits);
2040         if (IS_ERR(handle)) {
2041                 ret = PTR_ERR(handle);
2042                 mlog_errno(ret);
2043                 goto out;
2044         }
2045
2046         wc->w_handle = handle;
2047
2048         if (clusters_to_alloc) {
2049                 ret = dquot_alloc_space_nodirty(inode,
2050                         ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2051                 if (ret)
2052                         goto out_commit;
2053         }
2054         /*
2055          * We don't want this to fail in ocfs2_write_end(), so do it
2056          * here.
2057          */
2058         ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2059                                       OCFS2_JOURNAL_ACCESS_WRITE);
2060         if (ret) {
2061                 mlog_errno(ret);
2062                 goto out_quota;
2063         }
2064
2065         /*
2066          * Fill our page array first. That way we've grabbed enough so
2067          * that we can zero and flush if we error after adding the
2068          * extent.
2069          */
2070         ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2071                                          cluster_of_pages, mmap_page);
2072         if (ret && ret != -EAGAIN) {
2073                 mlog_errno(ret);
2074                 goto out_quota;
2075         }
2076
2077         /*
2078          * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2079          * the target page. In this case, we exit with no error and no target
2080          * page. This will trigger the caller, page_mkwrite(), to re-try
2081          * the operation.
2082          */
2083         if (ret == -EAGAIN) {
2084                 BUG_ON(wc->w_target_page);
2085                 ret = 0;
2086                 goto out_quota;
2087         }
2088
2089         ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2090                                           len);
2091         if (ret) {
2092                 mlog_errno(ret);
2093                 goto out_quota;
2094         }
2095
2096         if (data_ac)
2097                 ocfs2_free_alloc_context(data_ac);
2098         if (meta_ac)
2099                 ocfs2_free_alloc_context(meta_ac);
2100
2101 success:
2102         *pagep = wc->w_target_page;
2103         *fsdata = wc;
2104         return 0;
2105 out_quota:
2106         if (clusters_to_alloc)
2107                 dquot_free_space(inode,
2108                           ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2109 out_commit:
2110         ocfs2_commit_trans(osb, handle);
2111
2112 out:
2113         ocfs2_free_write_ctxt(wc);
2114
2115         if (data_ac) {
2116                 ocfs2_free_alloc_context(data_ac);
2117                 data_ac = NULL;
2118         }
2119         if (meta_ac) {
2120                 ocfs2_free_alloc_context(meta_ac);
2121                 meta_ac = NULL;
2122         }
2123
2124         if (ret == -ENOSPC && try_free) {
2125                 /*
2126                  * Try to free some truncate log so that we can have enough
2127                  * clusters to allocate.
2128                  */
2129                 try_free = 0;
2130
2131                 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2132                 if (ret1 == 1)
2133                         goto try_again;
2134
2135                 if (ret1 < 0)
2136                         mlog_errno(ret1);
2137         }
2138
2139         return ret;
2140 }
2141
2142 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2143                              loff_t pos, unsigned len, unsigned flags,
2144                              struct page **pagep, void **fsdata)
2145 {
2146         int ret;
2147         struct buffer_head *di_bh = NULL;
2148         struct inode *inode = mapping->host;
2149
2150         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2151         if (ret) {
2152                 mlog_errno(ret);
2153                 return ret;
2154         }
2155
2156         /*
2157          * Take alloc sem here to prevent concurrent lookups. That way
2158          * the mapping, zeroing and tree manipulation within
2159          * ocfs2_write() will be safe against ->readpage(). This
2160          * should also serve to lock out allocation from a shared
2161          * writeable region.
2162          */
2163         down_write(&OCFS2_I(inode)->ip_alloc_sem);
2164
2165         ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2166                                        fsdata, di_bh, NULL);
2167         if (ret) {
2168                 mlog_errno(ret);
2169                 goto out_fail;
2170         }
2171
2172         brelse(di_bh);
2173
2174         return 0;
2175
2176 out_fail:
2177         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2178
2179         brelse(di_bh);
2180         ocfs2_inode_unlock(inode, 1);
2181
2182         return ret;
2183 }
2184
2185 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2186                                    unsigned len, unsigned *copied,
2187                                    struct ocfs2_dinode *di,
2188                                    struct ocfs2_write_ctxt *wc)
2189 {
2190         void *kaddr;
2191
2192         if (unlikely(*copied < len)) {
2193                 if (!PageUptodate(wc->w_target_page)) {
2194                         *copied = 0;
2195                         return;
2196                 }
2197         }
2198
2199         kaddr = kmap_atomic(wc->w_target_page);
2200         memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2201         kunmap_atomic(kaddr);
2202
2203         trace_ocfs2_write_end_inline(
2204              (unsigned long long)OCFS2_I(inode)->ip_blkno,
2205              (unsigned long long)pos, *copied,
2206              le16_to_cpu(di->id2.i_data.id_count),
2207              le16_to_cpu(di->i_dyn_features));
2208 }
2209
2210 int ocfs2_write_end_nolock(struct address_space *mapping,
2211                            loff_t pos, unsigned len, unsigned copied,
2212                            struct page *page, void *fsdata)
2213 {
2214         int i;
2215         unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2216         struct inode *inode = mapping->host;
2217         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2218         struct ocfs2_write_ctxt *wc = fsdata;
2219         struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2220         handle_t *handle = wc->w_handle;
2221         struct page *tmppage;
2222
2223         if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2224                 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2225                 goto out_write_size;
2226         }
2227
2228         if (unlikely(copied < len)) {
2229                 if (!PageUptodate(wc->w_target_page))
2230                         copied = 0;
2231
2232                 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2233                                        start+len);
2234         }
2235         flush_dcache_page(wc->w_target_page);
2236
2237         for(i = 0; i < wc->w_num_pages; i++) {
2238                 tmppage = wc->w_pages[i];
2239
2240                 if (tmppage == wc->w_target_page) {
2241                         from = wc->w_target_from;
2242                         to = wc->w_target_to;
2243
2244                         BUG_ON(from > PAGE_CACHE_SIZE ||
2245                                to > PAGE_CACHE_SIZE ||
2246                                to < from);
2247                 } else {
2248                         /*
2249                          * Pages adjacent to the target (if any) imply
2250                          * a hole-filling write in which case we want
2251                          * to flush their entire range.
2252                          */
2253                         from = 0;
2254                         to = PAGE_CACHE_SIZE;
2255                 }
2256
2257                 if (page_has_buffers(tmppage)) {
2258                         if (ocfs2_should_order_data(inode))
2259                                 ocfs2_jbd2_file_inode(wc->w_handle, inode);
2260                         block_commit_write(tmppage, from, to);
2261                 }
2262         }
2263
2264 out_write_size:
2265         pos += copied;
2266         if (pos > i_size_read(inode)) {
2267                 i_size_write(inode, pos);
2268                 mark_inode_dirty(inode);
2269         }
2270         inode->i_blocks = ocfs2_inode_sector_count(inode);
2271         di->i_size = cpu_to_le64((u64)i_size_read(inode));
2272         inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2273         di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2274         di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2275         ocfs2_update_inode_fsync_trans(handle, inode, 1);
2276         ocfs2_journal_dirty(handle, wc->w_di_bh);
2277
2278         /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2279          * lock, or it will cause a deadlock since journal commit threads holds
2280          * this lock and will ask for the page lock when flushing the data.
2281          * put it here to preserve the unlock order.
2282          */
2283         ocfs2_unlock_pages(wc);
2284
2285         ocfs2_commit_trans(osb, handle);
2286
2287         ocfs2_run_deallocs(osb, &wc->w_dealloc);
2288
2289         brelse(wc->w_di_bh);
2290         kfree(wc);
2291
2292         return copied;
2293 }
2294
2295 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2296                            loff_t pos, unsigned len, unsigned copied,
2297                            struct page *page, void *fsdata)
2298 {
2299         int ret;
2300         struct inode *inode = mapping->host;
2301
2302         ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2303
2304         up_write(&OCFS2_I(inode)->ip_alloc_sem);
2305         ocfs2_inode_unlock(inode, 1);
2306
2307         return ret;
2308 }
2309
2310 const struct address_space_operations ocfs2_aops = {
2311         .readpage               = ocfs2_readpage,
2312         .readpages              = ocfs2_readpages,
2313         .writepage              = ocfs2_writepage,
2314         .write_begin            = ocfs2_write_begin,
2315         .write_end              = ocfs2_write_end,
2316         .bmap                   = ocfs2_bmap,
2317         .direct_IO              = ocfs2_direct_IO,
2318         .invalidatepage         = block_invalidatepage,
2319         .releasepage            = ocfs2_releasepage,
2320         .migratepage            = buffer_migrate_page,
2321         .is_partially_uptodate  = block_is_partially_uptodate,
2322         .error_remove_page      = generic_error_remove_page,
2323 };