NVMe: Handle failures differently in nvme_submit_bio_queue()
[linux-2.6-block.git] / drivers / block / nvme.c
1 /*
2  * NVM Express device driver
3  * Copyright (c) 2011, Intel Corporation.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  * You should have received a copy of the GNU General Public License along with
15  * this program; if not, write to the Free Software Foundation, Inc.,
16  * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17  */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/errno.h>
23 #include <linux/fs.h>
24 #include <linux/genhd.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kdev_t.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/module.h>
32 #include <linux/moduleparam.h>
33 #include <linux/pci.h>
34 #include <linux/poison.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <linux/types.h>
38 #include <linux/version.h>
39
40 #define NVME_Q_DEPTH 1024
41 #define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
42 #define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
43 #define NVME_MINORS 64
44 #define IO_TIMEOUT      (5 * HZ)
45 #define ADMIN_TIMEOUT   (60 * HZ)
46
47 static int nvme_major;
48 module_param(nvme_major, int, 0);
49
50 static int use_threaded_interrupts;
51 module_param(use_threaded_interrupts, int, 0);
52
53 /*
54  * Represents an NVM Express device.  Each nvme_dev is a PCI function.
55  */
56 struct nvme_dev {
57         struct nvme_queue **queues;
58         u32 __iomem *dbs;
59         struct pci_dev *pci_dev;
60         struct dma_pool *prp_page_pool;
61         struct dma_pool *prp_small_pool;
62         int instance;
63         int queue_count;
64         u32 ctrl_config;
65         struct msix_entry *entry;
66         struct nvme_bar __iomem *bar;
67         struct list_head namespaces;
68         char serial[20];
69         char model[40];
70         char firmware_rev[8];
71 };
72
73 /*
74  * An NVM Express namespace is equivalent to a SCSI LUN
75  */
76 struct nvme_ns {
77         struct list_head list;
78
79         struct nvme_dev *dev;
80         struct request_queue *queue;
81         struct gendisk *disk;
82
83         int ns_id;
84         int lba_shift;
85 };
86
87 /*
88  * An NVM Express queue.  Each device has at least two (one for admin
89  * commands and one for I/O commands).
90  */
91 struct nvme_queue {
92         struct device *q_dmadev;
93         struct nvme_dev *dev;
94         spinlock_t q_lock;
95         struct nvme_command *sq_cmds;
96         volatile struct nvme_completion *cqes;
97         dma_addr_t sq_dma_addr;
98         dma_addr_t cq_dma_addr;
99         wait_queue_head_t sq_full;
100         struct bio_list sq_cong;
101         u32 __iomem *q_db;
102         u16 q_depth;
103         u16 cq_vector;
104         u16 sq_head;
105         u16 sq_tail;
106         u16 cq_head;
107         u16 cq_phase;
108         unsigned long cmdid_data[];
109 };
110
111 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio);
112
113 /*
114  * Check we didin't inadvertently grow the command struct
115  */
116 static inline void _nvme_check_size(void)
117 {
118         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
119         BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
120         BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
121         BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
122         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
123         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
124         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
125         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
126         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
127 }
128
129 struct nvme_cmd_info {
130         unsigned long ctx;
131         unsigned long timeout;
132 };
133
134 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
135 {
136         return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
137 }
138
139 /**
140  * alloc_cmdid - Allocate a Command ID
141  * @param nvmeq The queue that will be used for this command
142  * @param ctx A pointer that will be passed to the handler
143  * @param handler The ID of the handler to call
144  *
145  * Allocate a Command ID for a queue.  The data passed in will
146  * be passed to the completion handler.  This is implemented by using
147  * the bottom two bits of the ctx pointer to store the handler ID.
148  * Passing in a pointer that's not 4-byte aligned will cause a BUG.
149  * We can change this if it becomes a problem.
150  */
151 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
152                                                         unsigned timeout)
153 {
154         int depth = nvmeq->q_depth;
155         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
156         int cmdid;
157
158         BUG_ON((unsigned long)ctx & 3);
159
160         do {
161                 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
162                 if (cmdid >= depth)
163                         return -EBUSY;
164         } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
165
166         info[cmdid].ctx = (unsigned long)ctx | handler;
167         info[cmdid].timeout = jiffies + timeout;
168         return cmdid;
169 }
170
171 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
172                                                 int handler, unsigned timeout)
173 {
174         int cmdid;
175         wait_event_killable(nvmeq->sq_full,
176                 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
177         return (cmdid < 0) ? -EINTR : cmdid;
178 }
179
180 /* If you need more than four handlers, you'll need to change how
181  * alloc_cmdid and nvme_process_cq work.  Consider using a special
182  * CMD_CTX value instead, if that works for your situation.
183  */
184 enum {
185         sync_completion_id = 0,
186         bio_completion_id,
187 };
188
189 #define CMD_CTX_BASE            (POISON_POINTER_DELTA + sync_completion_id)
190 #define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
191 #define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
192 #define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
193
194 static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
195 {
196         unsigned long data;
197         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
198
199         if (cmdid >= nvmeq->q_depth)
200                 return CMD_CTX_INVALID;
201         data = info[cmdid].ctx;
202         info[cmdid].ctx = CMD_CTX_COMPLETED;
203         clear_bit(cmdid, nvmeq->cmdid_data);
204         wake_up(&nvmeq->sq_full);
205         return data;
206 }
207
208 static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
209 {
210         struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
211         info[cmdid].ctx = CMD_CTX_CANCELLED;
212 }
213
214 static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
215 {
216         int qid, cpu = get_cpu();
217         if (cpu < ns->dev->queue_count)
218                 qid = cpu + 1;
219         else
220                 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
221         return ns->dev->queues[qid];
222 }
223
224 static void put_nvmeq(struct nvme_queue *nvmeq)
225 {
226         put_cpu();
227 }
228
229 /**
230  * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
231  * @nvmeq: The queue to use
232  * @cmd: The command to send
233  *
234  * Safe to use from interrupt context
235  */
236 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
237 {
238         unsigned long flags;
239         u16 tail;
240         /* XXX: Need to check tail isn't going to overrun head */
241         spin_lock_irqsave(&nvmeq->q_lock, flags);
242         tail = nvmeq->sq_tail;
243         memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
244         writel(tail, nvmeq->q_db);
245         if (++tail == nvmeq->q_depth)
246                 tail = 0;
247         nvmeq->sq_tail = tail;
248         spin_unlock_irqrestore(&nvmeq->q_lock, flags);
249
250         return 0;
251 }
252
253 struct nvme_prps {
254         int npages;
255         dma_addr_t first_dma;
256         __le64 *list[0];
257 };
258
259 static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
260 {
261         const int last_prp = PAGE_SIZE / 8 - 1;
262         int i;
263         dma_addr_t prp_dma;
264
265         if (!prps)
266                 return;
267
268         prp_dma = prps->first_dma;
269
270         if (prps->npages == 0)
271                 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
272         for (i = 0; i < prps->npages; i++) {
273                 __le64 *prp_list = prps->list[i];
274                 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
275                 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
276                 prp_dma = next_prp_dma;
277         }
278         kfree(prps);
279 }
280
281 struct nvme_bio {
282         struct bio *bio;
283         int nents;
284         struct nvme_prps *prps;
285         struct scatterlist sg[0];
286 };
287
288 /* XXX: use a mempool */
289 static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
290 {
291         return kzalloc(sizeof(struct nvme_bio) +
292                         sizeof(struct scatterlist) * nseg, gfp);
293 }
294
295 static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
296 {
297         nvme_free_prps(nvmeq->dev, nbio->prps);
298         kfree(nbio);
299 }
300
301 static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
302                                                 struct nvme_completion *cqe)
303 {
304         struct nvme_bio *nbio = ctx;
305         struct bio *bio = nbio->bio;
306         u16 status = le16_to_cpup(&cqe->status) >> 1;
307
308         dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
309                         bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
310         free_nbio(nvmeq, nbio);
311         bio_endio(bio, status ? -EIO : 0);
312         bio = bio_list_pop(&nvmeq->sq_cong);
313         if (bio)
314                 nvme_resubmit_bio(nvmeq, bio);
315 }
316
317 /* length is in bytes */
318 static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
319                                         struct nvme_common_command *cmd,
320                                         struct scatterlist *sg, int length)
321 {
322         struct dma_pool *pool;
323         int dma_len = sg_dma_len(sg);
324         u64 dma_addr = sg_dma_address(sg);
325         int offset = offset_in_page(dma_addr);
326         __le64 *prp_list;
327         dma_addr_t prp_dma;
328         int nprps, npages, i, prp_page;
329         struct nvme_prps *prps = NULL;
330
331         cmd->prp1 = cpu_to_le64(dma_addr);
332         length -= (PAGE_SIZE - offset);
333         if (length <= 0)
334                 return prps;
335
336         dma_len -= (PAGE_SIZE - offset);
337         if (dma_len) {
338                 dma_addr += (PAGE_SIZE - offset);
339         } else {
340                 sg = sg_next(sg);
341                 dma_addr = sg_dma_address(sg);
342                 dma_len = sg_dma_len(sg);
343         }
344
345         if (length <= PAGE_SIZE) {
346                 cmd->prp2 = cpu_to_le64(dma_addr);
347                 return prps;
348         }
349
350         nprps = DIV_ROUND_UP(length, PAGE_SIZE);
351         npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
352         prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
353         prp_page = 0;
354         if (nprps <= (256 / 8)) {
355                 pool = dev->prp_small_pool;
356                 prps->npages = 0;
357         } else {
358                 pool = dev->prp_page_pool;
359                 prps->npages = npages;
360         }
361
362         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
363         prps->list[prp_page++] = prp_list;
364         prps->first_dma = prp_dma;
365         cmd->prp2 = cpu_to_le64(prp_dma);
366         i = 0;
367         for (;;) {
368                 if (i == PAGE_SIZE / 8 - 1) {
369                         __le64 *old_prp_list = prp_list;
370                         prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
371                         prps->list[prp_page++] = prp_list;
372                         old_prp_list[i] = cpu_to_le64(prp_dma);
373                         i = 0;
374                 }
375                 prp_list[i++] = cpu_to_le64(dma_addr);
376                 dma_len -= PAGE_SIZE;
377                 dma_addr += PAGE_SIZE;
378                 length -= PAGE_SIZE;
379                 if (length <= 0)
380                         break;
381                 if (dma_len > 0)
382                         continue;
383                 BUG_ON(dma_len < 0);
384                 sg = sg_next(sg);
385                 dma_addr = sg_dma_address(sg);
386                 dma_len = sg_dma_len(sg);
387         }
388
389         return prps;
390 }
391
392 static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
393                 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
394 {
395         struct bio_vec *bvec, *bvprv = NULL;
396         struct scatterlist *sg = NULL;
397         int i, nsegs = 0;
398
399         sg_init_table(nbio->sg, psegs);
400         bio_for_each_segment(bvec, bio, i) {
401                 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
402                         sg->length += bvec->bv_len;
403                 } else {
404                         /* Check bvprv && offset == 0 */
405                         sg = sg ? sg + 1 : nbio->sg;
406                         sg_set_page(sg, bvec->bv_page, bvec->bv_len,
407                                                         bvec->bv_offset);
408                         nsegs++;
409                 }
410                 bvprv = bvec;
411         }
412         nbio->nents = nsegs;
413         sg_mark_end(sg);
414         return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
415 }
416
417 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
418                                                                 struct bio *bio)
419 {
420         struct nvme_command *cmnd;
421         struct nvme_bio *nbio;
422         enum dma_data_direction dma_dir;
423         int cmdid, result = -ENOMEM;
424         u16 control;
425         u32 dsmgmt;
426         int psegs = bio_phys_segments(ns->queue, bio);
427
428         nbio = alloc_nbio(psegs, GFP_ATOMIC);
429         if (!nbio)
430                 goto nomem;
431         nbio->bio = bio;
432
433         result = -EBUSY;
434         cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
435         if (unlikely(cmdid < 0))
436                 goto free_nbio;
437
438         control = 0;
439         if (bio->bi_rw & REQ_FUA)
440                 control |= NVME_RW_FUA;
441         if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
442                 control |= NVME_RW_LR;
443
444         dsmgmt = 0;
445         if (bio->bi_rw & REQ_RAHEAD)
446                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
447
448         cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
449
450         memset(cmnd, 0, sizeof(*cmnd));
451         if (bio_data_dir(bio)) {
452                 cmnd->rw.opcode = nvme_cmd_write;
453                 dma_dir = DMA_TO_DEVICE;
454         } else {
455                 cmnd->rw.opcode = nvme_cmd_read;
456                 dma_dir = DMA_FROM_DEVICE;
457         }
458
459         result = -ENOMEM;
460         if (nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs) == 0)
461                 goto free_nbio;
462
463         cmnd->rw.flags = 1;
464         cmnd->rw.command_id = cmdid;
465         cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
466         nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
467                                                                 bio->bi_size);
468         cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
469         cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
470         cmnd->rw.control = cpu_to_le16(control);
471         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
472
473         writel(nvmeq->sq_tail, nvmeq->q_db);
474         if (++nvmeq->sq_tail == nvmeq->q_depth)
475                 nvmeq->sq_tail = 0;
476
477         return 0;
478
479  free_nbio:
480         free_nbio(nvmeq, nbio);
481  nomem:
482         return result;
483 }
484
485 static void nvme_resubmit_bio(struct nvme_queue *nvmeq, struct bio *bio)
486 {
487         struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
488         if (nvme_submit_bio_queue(nvmeq, ns, bio))
489                 bio_list_add_head(&nvmeq->sq_cong, bio);
490         else if (bio_list_empty(&nvmeq->sq_cong))
491                 blk_clear_queue_congested(ns->queue, rw_is_sync(bio->bi_rw));
492         /* XXX: Need to duplicate the logic from __freed_request here */
493 }
494
495 /*
496  * NB: return value of non-zero would mean that we were a stacking driver.
497  * make_request must always succeed.
498  */
499 static int nvme_make_request(struct request_queue *q, struct bio *bio)
500 {
501         struct nvme_ns *ns = q->queuedata;
502         struct nvme_queue *nvmeq = get_nvmeq(ns);
503         int result = -EBUSY;
504
505         spin_lock_irq(&nvmeq->q_lock);
506         if (bio_list_empty(&nvmeq->sq_cong))
507                 result = nvme_submit_bio_queue(nvmeq, ns, bio);
508         if (unlikely(result)) {
509                 if (bio_list_empty(&nvmeq->sq_cong))
510                         add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
511                 bio_list_add(&nvmeq->sq_cong, bio);
512         }
513
514         spin_unlock_irq(&nvmeq->q_lock);
515         put_nvmeq(nvmeq);
516
517         return 0;
518 }
519
520 struct sync_cmd_info {
521         struct task_struct *task;
522         u32 result;
523         int status;
524 };
525
526 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
527                                                 struct nvme_completion *cqe)
528 {
529         struct sync_cmd_info *cmdinfo = ctx;
530         if ((unsigned long)cmdinfo == CMD_CTX_CANCELLED)
531                 return;
532         if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
533                 dev_warn(nvmeq->q_dmadev,
534                                 "completed id %d twice on queue %d\n",
535                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
536                 return;
537         }
538         if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
539                 dev_warn(nvmeq->q_dmadev,
540                                 "invalid id %d completed on queue %d\n",
541                                 cqe->command_id, le16_to_cpup(&cqe->sq_id));
542                 return;
543         }
544         cmdinfo->result = le32_to_cpup(&cqe->result);
545         cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
546         wake_up_process(cmdinfo->task);
547 }
548
549 typedef void (*completion_fn)(struct nvme_queue *, void *,
550                                                 struct nvme_completion *);
551
552 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
553 {
554         u16 head, phase;
555
556         static const completion_fn completions[4] = {
557                 [sync_completion_id] = sync_completion,
558                 [bio_completion_id]  = bio_completion,
559         };
560
561         head = nvmeq->cq_head;
562         phase = nvmeq->cq_phase;
563
564         for (;;) {
565                 unsigned long data;
566                 void *ptr;
567                 unsigned char handler;
568                 struct nvme_completion cqe = nvmeq->cqes[head];
569                 if ((le16_to_cpu(cqe.status) & 1) != phase)
570                         break;
571                 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
572                 if (++head == nvmeq->q_depth) {
573                         head = 0;
574                         phase = !phase;
575                 }
576
577                 data = free_cmdid(nvmeq, cqe.command_id);
578                 handler = data & 3;
579                 ptr = (void *)(data & ~3UL);
580                 completions[handler](nvmeq, ptr, &cqe);
581         }
582
583         /* If the controller ignores the cq head doorbell and continuously
584          * writes to the queue, it is theoretically possible to wrap around
585          * the queue twice and mistakenly return IRQ_NONE.  Linux only
586          * requires that 0.1% of your interrupts are handled, so this isn't
587          * a big problem.
588          */
589         if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
590                 return IRQ_NONE;
591
592         writel(head, nvmeq->q_db + 1);
593         nvmeq->cq_head = head;
594         nvmeq->cq_phase = phase;
595
596         return IRQ_HANDLED;
597 }
598
599 static irqreturn_t nvme_irq(int irq, void *data)
600 {
601         irqreturn_t result;
602         struct nvme_queue *nvmeq = data;
603         spin_lock(&nvmeq->q_lock);
604         result = nvme_process_cq(nvmeq);
605         spin_unlock(&nvmeq->q_lock);
606         return result;
607 }
608
609 static irqreturn_t nvme_irq_check(int irq, void *data)
610 {
611         struct nvme_queue *nvmeq = data;
612         struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
613         if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
614                 return IRQ_NONE;
615         return IRQ_WAKE_THREAD;
616 }
617
618 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
619 {
620         spin_lock_irq(&nvmeq->q_lock);
621         cancel_cmdid_data(nvmeq, cmdid);
622         spin_unlock_irq(&nvmeq->q_lock);
623 }
624
625 /*
626  * Returns 0 on success.  If the result is negative, it's a Linux error code;
627  * if the result is positive, it's an NVM Express status code
628  */
629 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
630                         struct nvme_command *cmd, u32 *result, unsigned timeout)
631 {
632         int cmdid;
633         struct sync_cmd_info cmdinfo;
634
635         cmdinfo.task = current;
636         cmdinfo.status = -EINTR;
637
638         cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
639                                                                 timeout);
640         if (cmdid < 0)
641                 return cmdid;
642         cmd->common.command_id = cmdid;
643
644         set_current_state(TASK_KILLABLE);
645         nvme_submit_cmd(nvmeq, cmd);
646         schedule();
647
648         if (cmdinfo.status == -EINTR) {
649                 nvme_abort_command(nvmeq, cmdid);
650                 return -EINTR;
651         }
652
653         if (result)
654                 *result = cmdinfo.result;
655
656         return cmdinfo.status;
657 }
658
659 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
660                                                                 u32 *result)
661 {
662         return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
663 }
664
665 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
666 {
667         int status;
668         struct nvme_command c;
669
670         memset(&c, 0, sizeof(c));
671         c.delete_queue.opcode = opcode;
672         c.delete_queue.qid = cpu_to_le16(id);
673
674         status = nvme_submit_admin_cmd(dev, &c, NULL);
675         if (status)
676                 return -EIO;
677         return 0;
678 }
679
680 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
681                                                 struct nvme_queue *nvmeq)
682 {
683         int status;
684         struct nvme_command c;
685         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
686
687         memset(&c, 0, sizeof(c));
688         c.create_cq.opcode = nvme_admin_create_cq;
689         c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
690         c.create_cq.cqid = cpu_to_le16(qid);
691         c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
692         c.create_cq.cq_flags = cpu_to_le16(flags);
693         c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
694
695         status = nvme_submit_admin_cmd(dev, &c, NULL);
696         if (status)
697                 return -EIO;
698         return 0;
699 }
700
701 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
702                                                 struct nvme_queue *nvmeq)
703 {
704         int status;
705         struct nvme_command c;
706         int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
707
708         memset(&c, 0, sizeof(c));
709         c.create_sq.opcode = nvme_admin_create_sq;
710         c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
711         c.create_sq.sqid = cpu_to_le16(qid);
712         c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
713         c.create_sq.sq_flags = cpu_to_le16(flags);
714         c.create_sq.cqid = cpu_to_le16(qid);
715
716         status = nvme_submit_admin_cmd(dev, &c, NULL);
717         if (status)
718                 return -EIO;
719         return 0;
720 }
721
722 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
723 {
724         return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
725 }
726
727 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
728 {
729         return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
730 }
731
732 static void nvme_free_queue(struct nvme_dev *dev, int qid)
733 {
734         struct nvme_queue *nvmeq = dev->queues[qid];
735
736         free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
737
738         /* Don't tell the adapter to delete the admin queue */
739         if (qid) {
740                 adapter_delete_sq(dev, qid);
741                 adapter_delete_cq(dev, qid);
742         }
743
744         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
745                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
746         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
747                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
748         kfree(nvmeq);
749 }
750
751 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
752                                                         int depth, int vector)
753 {
754         struct device *dmadev = &dev->pci_dev->dev;
755         unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
756         struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
757         if (!nvmeq)
758                 return NULL;
759
760         nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
761                                         &nvmeq->cq_dma_addr, GFP_KERNEL);
762         if (!nvmeq->cqes)
763                 goto free_nvmeq;
764         memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
765
766         nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
767                                         &nvmeq->sq_dma_addr, GFP_KERNEL);
768         if (!nvmeq->sq_cmds)
769                 goto free_cqdma;
770
771         nvmeq->q_dmadev = dmadev;
772         nvmeq->dev = dev;
773         spin_lock_init(&nvmeq->q_lock);
774         nvmeq->cq_head = 0;
775         nvmeq->cq_phase = 1;
776         init_waitqueue_head(&nvmeq->sq_full);
777         bio_list_init(&nvmeq->sq_cong);
778         nvmeq->q_db = &dev->dbs[qid * 2];
779         nvmeq->q_depth = depth;
780         nvmeq->cq_vector = vector;
781
782         return nvmeq;
783
784  free_cqdma:
785         dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
786                                                         nvmeq->cq_dma_addr);
787  free_nvmeq:
788         kfree(nvmeq);
789         return NULL;
790 }
791
792 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
793                                                         const char *name)
794 {
795         if (use_threaded_interrupts)
796                 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
797                                         nvme_irq_check, nvme_irq,
798                                         IRQF_DISABLED | IRQF_SHARED,
799                                         name, nvmeq);
800         return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
801                                 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
802 }
803
804 static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
805                                         int qid, int cq_size, int vector)
806 {
807         int result;
808         struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
809
810         if (!nvmeq)
811                 return NULL;
812
813         result = adapter_alloc_cq(dev, qid, nvmeq);
814         if (result < 0)
815                 goto free_nvmeq;
816
817         result = adapter_alloc_sq(dev, qid, nvmeq);
818         if (result < 0)
819                 goto release_cq;
820
821         result = queue_request_irq(dev, nvmeq, "nvme");
822         if (result < 0)
823                 goto release_sq;
824
825         return nvmeq;
826
827  release_sq:
828         adapter_delete_sq(dev, qid);
829  release_cq:
830         adapter_delete_cq(dev, qid);
831  free_nvmeq:
832         dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
833                                 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
834         dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
835                                         nvmeq->sq_cmds, nvmeq->sq_dma_addr);
836         kfree(nvmeq);
837         return NULL;
838 }
839
840 static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
841 {
842         int result;
843         u32 aqa;
844         struct nvme_queue *nvmeq;
845
846         dev->dbs = ((void __iomem *)dev->bar) + 4096;
847
848         nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
849         if (!nvmeq)
850                 return -ENOMEM;
851
852         aqa = nvmeq->q_depth - 1;
853         aqa |= aqa << 16;
854
855         dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
856         dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
857         dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
858
859         writel(0, &dev->bar->cc);
860         writel(aqa, &dev->bar->aqa);
861         writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
862         writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
863         writel(dev->ctrl_config, &dev->bar->cc);
864
865         while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
866                 msleep(100);
867                 if (fatal_signal_pending(current))
868                         return -EINTR;
869         }
870
871         result = queue_request_irq(dev, nvmeq, "nvme admin");
872         dev->queues[0] = nvmeq;
873         return result;
874 }
875
876 static int nvme_map_user_pages(struct nvme_dev *dev, int write,
877                                 unsigned long addr, unsigned length,
878                                 struct scatterlist **sgp)
879 {
880         int i, err, count, nents, offset;
881         struct scatterlist *sg;
882         struct page **pages;
883
884         if (addr & 3)
885                 return -EINVAL;
886         if (!length)
887                 return -EINVAL;
888
889         offset = offset_in_page(addr);
890         count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
891         pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
892
893         err = get_user_pages_fast(addr, count, 1, pages);
894         if (err < count) {
895                 count = err;
896                 err = -EFAULT;
897                 goto put_pages;
898         }
899
900         sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
901         sg_init_table(sg, count);
902         sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
903         length -= (PAGE_SIZE - offset);
904         for (i = 1; i < count; i++) {
905                 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
906                 length -= PAGE_SIZE;
907         }
908
909         err = -ENOMEM;
910         nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
911                                 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
912         if (!nents)
913                 goto put_pages;
914
915         kfree(pages);
916         *sgp = sg;
917         return nents;
918
919  put_pages:
920         for (i = 0; i < count; i++)
921                 put_page(pages[i]);
922         kfree(pages);
923         return err;
924 }
925
926 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
927                                 unsigned long addr, int length,
928                                 struct scatterlist *sg, int nents)
929 {
930         int i, count;
931
932         count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
933         dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
934
935         for (i = 0; i < count; i++)
936                 put_page(sg_page(&sg[i]));
937 }
938
939 static int nvme_submit_user_admin_command(struct nvme_dev *dev,
940                                         unsigned long addr, unsigned length,
941                                         struct nvme_command *cmd)
942 {
943         int err, nents;
944         struct scatterlist *sg;
945         struct nvme_prps *prps;
946
947         nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
948         if (nents < 0)
949                 return nents;
950         prps = nvme_setup_prps(dev, &cmd->common, sg, length);
951         err = nvme_submit_admin_cmd(dev, cmd, NULL);
952         nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
953         nvme_free_prps(dev, prps);
954         return err ? -EIO : 0;
955 }
956
957 static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
958 {
959         struct nvme_command c;
960
961         memset(&c, 0, sizeof(c));
962         c.identify.opcode = nvme_admin_identify;
963         c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
964         c.identify.cns = cpu_to_le32(cns);
965
966         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
967 }
968
969 static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
970 {
971         struct nvme_command c;
972
973         memset(&c, 0, sizeof(c));
974         c.features.opcode = nvme_admin_get_features;
975         c.features.nsid = cpu_to_le32(ns->ns_id);
976         c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
977
978         return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
979 }
980
981 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
982 {
983         struct nvme_dev *dev = ns->dev;
984         struct nvme_queue *nvmeq;
985         struct nvme_user_io io;
986         struct nvme_command c;
987         unsigned length;
988         u32 result;
989         int nents, status;
990         struct scatterlist *sg;
991         struct nvme_prps *prps;
992
993         if (copy_from_user(&io, uio, sizeof(io)))
994                 return -EFAULT;
995         length = io.nblocks << io.block_shift;
996         nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
997         if (nents < 0)
998                 return nents;
999
1000         memset(&c, 0, sizeof(c));
1001         c.rw.opcode = io.opcode;
1002         c.rw.flags = io.flags;
1003         c.rw.nsid = cpu_to_le32(io.nsid);
1004         c.rw.slba = cpu_to_le64(io.slba);
1005         c.rw.length = cpu_to_le16(io.nblocks - 1);
1006         c.rw.control = cpu_to_le16(io.control);
1007         c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1008         c.rw.reftag = cpu_to_le32(io.reftag);   /* XXX: endian? */
1009         c.rw.apptag = cpu_to_le16(io.apptag);
1010         c.rw.appmask = cpu_to_le16(io.appmask);
1011         /* XXX: metadata */
1012         prps = nvme_setup_prps(dev, &c.common, sg, length);
1013
1014         nvmeq = get_nvmeq(ns);
1015         /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1016          * disabled.  We may be preempted at any point, and be rescheduled
1017          * to a different CPU.  That will cause cacheline bouncing, but no
1018          * additional races since q_lock already protects against other CPUs.
1019          */
1020         put_nvmeq(nvmeq);
1021         status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
1022
1023         nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
1024         nvme_free_prps(dev, prps);
1025         put_user(result, &uio->result);
1026         return status;
1027 }
1028
1029 static int nvme_download_firmware(struct nvme_ns *ns,
1030                                                 struct nvme_dlfw __user *udlfw)
1031 {
1032         struct nvme_dev *dev = ns->dev;
1033         struct nvme_dlfw dlfw;
1034         struct nvme_command c;
1035         int nents, status;
1036         struct scatterlist *sg;
1037         struct nvme_prps *prps;
1038
1039         if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1040                 return -EFAULT;
1041         if (dlfw.length >= (1 << 30))
1042                 return -EINVAL;
1043
1044         nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1045         if (nents < 0)
1046                 return nents;
1047
1048         memset(&c, 0, sizeof(c));
1049         c.dlfw.opcode = nvme_admin_download_fw;
1050         c.dlfw.numd = cpu_to_le32(dlfw.length);
1051         c.dlfw.offset = cpu_to_le32(dlfw.offset);
1052         prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
1053
1054         status = nvme_submit_admin_cmd(dev, &c, NULL);
1055         nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
1056         nvme_free_prps(dev, prps);
1057         return status;
1058 }
1059
1060 static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1061 {
1062         struct nvme_dev *dev = ns->dev;
1063         struct nvme_command c;
1064
1065         memset(&c, 0, sizeof(c));
1066         c.common.opcode = nvme_admin_activate_fw;
1067         c.common.rsvd10[0] = cpu_to_le32(arg);
1068
1069         return nvme_submit_admin_cmd(dev, &c, NULL);
1070 }
1071
1072 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1073                                                         unsigned long arg)
1074 {
1075         struct nvme_ns *ns = bdev->bd_disk->private_data;
1076
1077         switch (cmd) {
1078         case NVME_IOCTL_IDENTIFY_NS:
1079                 return nvme_identify(ns, arg, 0);
1080         case NVME_IOCTL_IDENTIFY_CTRL:
1081                 return nvme_identify(ns, arg, 1);
1082         case NVME_IOCTL_GET_RANGE_TYPE:
1083                 return nvme_get_range_type(ns, arg);
1084         case NVME_IOCTL_SUBMIT_IO:
1085                 return nvme_submit_io(ns, (void __user *)arg);
1086         case NVME_IOCTL_DOWNLOAD_FW:
1087                 return nvme_download_firmware(ns, (void __user *)arg);
1088         case NVME_IOCTL_ACTIVATE_FW:
1089                 return nvme_activate_firmware(ns, arg);
1090         default:
1091                 return -ENOTTY;
1092         }
1093 }
1094
1095 static const struct block_device_operations nvme_fops = {
1096         .owner          = THIS_MODULE,
1097         .ioctl          = nvme_ioctl,
1098 };
1099
1100 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1101                         struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1102 {
1103         struct nvme_ns *ns;
1104         struct gendisk *disk;
1105         int lbaf;
1106
1107         if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1108                 return NULL;
1109
1110         ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1111         if (!ns)
1112                 return NULL;
1113         ns->queue = blk_alloc_queue(GFP_KERNEL);
1114         if (!ns->queue)
1115                 goto out_free_ns;
1116         ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1117                                 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1118         blk_queue_make_request(ns->queue, nvme_make_request);
1119         ns->dev = dev;
1120         ns->queue->queuedata = ns;
1121
1122         disk = alloc_disk(NVME_MINORS);
1123         if (!disk)
1124                 goto out_free_queue;
1125         ns->ns_id = index;
1126         ns->disk = disk;
1127         lbaf = id->flbas & 0xf;
1128         ns->lba_shift = id->lbaf[lbaf].ds;
1129
1130         disk->major = nvme_major;
1131         disk->minors = NVME_MINORS;
1132         disk->first_minor = NVME_MINORS * index;
1133         disk->fops = &nvme_fops;
1134         disk->private_data = ns;
1135         disk->queue = ns->queue;
1136         disk->driverfs_dev = &dev->pci_dev->dev;
1137         sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1138         set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1139
1140         return ns;
1141
1142  out_free_queue:
1143         blk_cleanup_queue(ns->queue);
1144  out_free_ns:
1145         kfree(ns);
1146         return NULL;
1147 }
1148
1149 static void nvme_ns_free(struct nvme_ns *ns)
1150 {
1151         put_disk(ns->disk);
1152         blk_cleanup_queue(ns->queue);
1153         kfree(ns);
1154 }
1155
1156 static int set_queue_count(struct nvme_dev *dev, int count)
1157 {
1158         int status;
1159         u32 result;
1160         struct nvme_command c;
1161         u32 q_count = (count - 1) | ((count - 1) << 16);
1162
1163         memset(&c, 0, sizeof(c));
1164         c.features.opcode = nvme_admin_get_features;
1165         c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1166         c.features.dword11 = cpu_to_le32(q_count);
1167
1168         status = nvme_submit_admin_cmd(dev, &c, &result);
1169         if (status)
1170                 return -EIO;
1171         return min(result & 0xffff, result >> 16) + 1;
1172 }
1173
1174 static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1175 {
1176         int result, cpu, i, nr_queues;
1177
1178         nr_queues = num_online_cpus();
1179         result = set_queue_count(dev, nr_queues);
1180         if (result < 0)
1181                 return result;
1182         if (result < nr_queues)
1183                 nr_queues = result;
1184
1185         /* Deregister the admin queue's interrupt */
1186         free_irq(dev->entry[0].vector, dev->queues[0]);
1187
1188         for (i = 0; i < nr_queues; i++)
1189                 dev->entry[i].entry = i;
1190         for (;;) {
1191                 result = pci_enable_msix(dev->pci_dev, dev->entry, nr_queues);
1192                 if (result == 0) {
1193                         break;
1194                 } else if (result > 0) {
1195                         nr_queues = result;
1196                         continue;
1197                 } else {
1198                         nr_queues = 1;
1199                         break;
1200                 }
1201         }
1202
1203         result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1204         /* XXX: handle failure here */
1205
1206         cpu = cpumask_first(cpu_online_mask);
1207         for (i = 0; i < nr_queues; i++) {
1208                 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1209                 cpu = cpumask_next(cpu, cpu_online_mask);
1210         }
1211
1212         for (i = 0; i < nr_queues; i++) {
1213                 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1214                                                         NVME_Q_DEPTH, i);
1215                 if (!dev->queues[i + 1])
1216                         return -ENOMEM;
1217                 dev->queue_count++;
1218         }
1219
1220         return 0;
1221 }
1222
1223 static void nvme_free_queues(struct nvme_dev *dev)
1224 {
1225         int i;
1226
1227         for (i = dev->queue_count - 1; i >= 0; i--)
1228                 nvme_free_queue(dev, i);
1229 }
1230
1231 static int __devinit nvme_dev_add(struct nvme_dev *dev)
1232 {
1233         int res, nn, i;
1234         struct nvme_ns *ns, *next;
1235         struct nvme_id_ctrl *ctrl;
1236         void *id;
1237         dma_addr_t dma_addr;
1238         struct nvme_command cid, crt;
1239
1240         res = nvme_setup_io_queues(dev);
1241         if (res)
1242                 return res;
1243
1244         /* XXX: Switch to a SG list once prp2 works */
1245         id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1246                                                                 GFP_KERNEL);
1247
1248         memset(&cid, 0, sizeof(cid));
1249         cid.identify.opcode = nvme_admin_identify;
1250         cid.identify.nsid = 0;
1251         cid.identify.prp1 = cpu_to_le64(dma_addr);
1252         cid.identify.cns = cpu_to_le32(1);
1253
1254         res = nvme_submit_admin_cmd(dev, &cid, NULL);
1255         if (res) {
1256                 res = -EIO;
1257                 goto out_free;
1258         }
1259
1260         ctrl = id;
1261         nn = le32_to_cpup(&ctrl->nn);
1262         memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1263         memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1264         memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1265
1266         cid.identify.cns = 0;
1267         memset(&crt, 0, sizeof(crt));
1268         crt.features.opcode = nvme_admin_get_features;
1269         crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1270         crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1271
1272         for (i = 0; i < nn; i++) {
1273                 cid.identify.nsid = cpu_to_le32(i);
1274                 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1275                 if (res)
1276                         continue;
1277
1278                 if (((struct nvme_id_ns *)id)->ncap == 0)
1279                         continue;
1280
1281                 crt.features.nsid = cpu_to_le32(i);
1282                 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1283                 if (res)
1284                         continue;
1285
1286                 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1287                 if (ns)
1288                         list_add_tail(&ns->list, &dev->namespaces);
1289         }
1290         list_for_each_entry(ns, &dev->namespaces, list)
1291                 add_disk(ns->disk);
1292
1293         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1294         return 0;
1295
1296  out_free:
1297         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1298                 list_del(&ns->list);
1299                 nvme_ns_free(ns);
1300         }
1301
1302         dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1303         return res;
1304 }
1305
1306 static int nvme_dev_remove(struct nvme_dev *dev)
1307 {
1308         struct nvme_ns *ns, *next;
1309
1310         /* TODO: wait all I/O finished or cancel them */
1311
1312         list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1313                 list_del(&ns->list);
1314                 del_gendisk(ns->disk);
1315                 nvme_ns_free(ns);
1316         }
1317
1318         nvme_free_queues(dev);
1319
1320         return 0;
1321 }
1322
1323 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1324 {
1325         struct device *dmadev = &dev->pci_dev->dev;
1326         dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1327                                                 PAGE_SIZE, PAGE_SIZE, 0);
1328         if (!dev->prp_page_pool)
1329                 return -ENOMEM;
1330
1331         /* Optimisation for I/Os between 4k and 128k */
1332         dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1333                                                 256, 256, 0);
1334         if (!dev->prp_small_pool) {
1335                 dma_pool_destroy(dev->prp_page_pool);
1336                 return -ENOMEM;
1337         }
1338         return 0;
1339 }
1340
1341 static void nvme_release_prp_pools(struct nvme_dev *dev)
1342 {
1343         dma_pool_destroy(dev->prp_page_pool);
1344         dma_pool_destroy(dev->prp_small_pool);
1345 }
1346
1347 /* XXX: Use an ida or something to let remove / add work correctly */
1348 static void nvme_set_instance(struct nvme_dev *dev)
1349 {
1350         static int instance;
1351         dev->instance = instance++;
1352 }
1353
1354 static void nvme_release_instance(struct nvme_dev *dev)
1355 {
1356 }
1357
1358 static int __devinit nvme_probe(struct pci_dev *pdev,
1359                                                 const struct pci_device_id *id)
1360 {
1361         int bars, result = -ENOMEM;
1362         struct nvme_dev *dev;
1363
1364         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1365         if (!dev)
1366                 return -ENOMEM;
1367         dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1368                                                                 GFP_KERNEL);
1369         if (!dev->entry)
1370                 goto free;
1371         dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1372                                                                 GFP_KERNEL);
1373         if (!dev->queues)
1374                 goto free;
1375
1376         if (pci_enable_device_mem(pdev))
1377                 goto free;
1378         pci_set_master(pdev);
1379         bars = pci_select_bars(pdev, IORESOURCE_MEM);
1380         if (pci_request_selected_regions(pdev, bars, "nvme"))
1381                 goto disable;
1382
1383         INIT_LIST_HEAD(&dev->namespaces);
1384         dev->pci_dev = pdev;
1385         pci_set_drvdata(pdev, dev);
1386         dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1387         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1388         nvme_set_instance(dev);
1389         dev->entry[0].vector = pdev->irq;
1390
1391         result = nvme_setup_prp_pools(dev);
1392         if (result)
1393                 goto disable_msix;
1394
1395         dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1396         if (!dev->bar) {
1397                 result = -ENOMEM;
1398                 goto disable_msix;
1399         }
1400
1401         result = nvme_configure_admin_queue(dev);
1402         if (result)
1403                 goto unmap;
1404         dev->queue_count++;
1405
1406         result = nvme_dev_add(dev);
1407         if (result)
1408                 goto delete;
1409         return 0;
1410
1411  delete:
1412         nvme_free_queues(dev);
1413  unmap:
1414         iounmap(dev->bar);
1415  disable_msix:
1416         pci_disable_msix(pdev);
1417         nvme_release_instance(dev);
1418         nvme_release_prp_pools(dev);
1419  disable:
1420         pci_disable_device(pdev);
1421         pci_release_regions(pdev);
1422  free:
1423         kfree(dev->queues);
1424         kfree(dev->entry);
1425         kfree(dev);
1426         return result;
1427 }
1428
1429 static void __devexit nvme_remove(struct pci_dev *pdev)
1430 {
1431         struct nvme_dev *dev = pci_get_drvdata(pdev);
1432         nvme_dev_remove(dev);
1433         pci_disable_msix(pdev);
1434         iounmap(dev->bar);
1435         nvme_release_instance(dev);
1436         nvme_release_prp_pools(dev);
1437         pci_disable_device(pdev);
1438         pci_release_regions(pdev);
1439         kfree(dev->queues);
1440         kfree(dev->entry);
1441         kfree(dev);
1442 }
1443
1444 /* These functions are yet to be implemented */
1445 #define nvme_error_detected NULL
1446 #define nvme_dump_registers NULL
1447 #define nvme_link_reset NULL
1448 #define nvme_slot_reset NULL
1449 #define nvme_error_resume NULL
1450 #define nvme_suspend NULL
1451 #define nvme_resume NULL
1452
1453 static struct pci_error_handlers nvme_err_handler = {
1454         .error_detected = nvme_error_detected,
1455         .mmio_enabled   = nvme_dump_registers,
1456         .link_reset     = nvme_link_reset,
1457         .slot_reset     = nvme_slot_reset,
1458         .resume         = nvme_error_resume,
1459 };
1460
1461 /* Move to pci_ids.h later */
1462 #define PCI_CLASS_STORAGE_EXPRESS       0x010802
1463
1464 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1465         { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1466         { 0, }
1467 };
1468 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1469
1470 static struct pci_driver nvme_driver = {
1471         .name           = "nvme",
1472         .id_table       = nvme_id_table,
1473         .probe          = nvme_probe,
1474         .remove         = __devexit_p(nvme_remove),
1475         .suspend        = nvme_suspend,
1476         .resume         = nvme_resume,
1477         .err_handler    = &nvme_err_handler,
1478 };
1479
1480 static int __init nvme_init(void)
1481 {
1482         int result;
1483
1484         nvme_major = register_blkdev(nvme_major, "nvme");
1485         if (nvme_major <= 0)
1486                 return -EBUSY;
1487
1488         result = pci_register_driver(&nvme_driver);
1489         if (!result)
1490                 return 0;
1491
1492         unregister_blkdev(nvme_major, "nvme");
1493         return result;
1494 }
1495
1496 static void __exit nvme_exit(void)
1497 {
1498         pci_unregister_driver(&nvme_driver);
1499         unregister_blkdev(nvme_major, "nvme");
1500 }
1501
1502 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1503 MODULE_LICENSE("GPL");
1504 MODULE_VERSION("0.2");
1505 module_init(nvme_init);
1506 module_exit(nvme_exit);