stat: use helper for IO direction name
[fio.git] / stat.c
... / ...
CommitLineData
1#include <stdio.h>
2#include <string.h>
3#include <sys/time.h>
4#include <sys/stat.h>
5#include <math.h>
6
7#include "fio.h"
8#include "diskutil.h"
9#include "lib/ieee754.h"
10#include "json.h"
11#include "lib/getrusage.h"
12#include "idletime.h"
13#include "lib/pow2.h"
14#include "lib/output_buffer.h"
15#include "helper_thread.h"
16#include "smalloc.h"
17#include "zbd.h"
18
19#define LOG_MSEC_SLACK 1
20
21struct fio_sem *stat_sem;
22
23void clear_rusage_stat(struct thread_data *td)
24{
25 struct thread_stat *ts = &td->ts;
26
27 fio_getrusage(&td->ru_start);
28 ts->usr_time = ts->sys_time = 0;
29 ts->ctx = 0;
30 ts->minf = ts->majf = 0;
31}
32
33void update_rusage_stat(struct thread_data *td)
34{
35 struct thread_stat *ts = &td->ts;
36
37 fio_getrusage(&td->ru_end);
38 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
39 &td->ru_end.ru_utime);
40 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
41 &td->ru_end.ru_stime);
42 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
43 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
44 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
45 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
46
47 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
48}
49
50/*
51 * Given a latency, return the index of the corresponding bucket in
52 * the structure tracking percentiles.
53 *
54 * (1) find the group (and error bits) that the value (latency)
55 * belongs to by looking at its MSB. (2) find the bucket number in the
56 * group by looking at the index bits.
57 *
58 */
59static unsigned int plat_val_to_idx(unsigned long long val)
60{
61 unsigned int msb, error_bits, base, offset, idx;
62
63 /* Find MSB starting from bit 0 */
64 if (val == 0)
65 msb = 0;
66 else
67 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
68
69 /*
70 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
71 * all bits of the sample as index
72 */
73 if (msb <= FIO_IO_U_PLAT_BITS)
74 return val;
75
76 /* Compute the number of error bits to discard*/
77 error_bits = msb - FIO_IO_U_PLAT_BITS;
78
79 /* Compute the number of buckets before the group */
80 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
81
82 /*
83 * Discard the error bits and apply the mask to find the
84 * index for the buckets in the group
85 */
86 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
87
88 /* Make sure the index does not exceed (array size - 1) */
89 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
90 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
91
92 return idx;
93}
94
95/*
96 * Convert the given index of the bucket array to the value
97 * represented by the bucket
98 */
99static unsigned long long plat_idx_to_val(unsigned int idx)
100{
101 unsigned int error_bits;
102 unsigned long long k, base;
103
104 assert(idx < FIO_IO_U_PLAT_NR);
105
106 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
107 * all bits of the sample as index */
108 if (idx < (FIO_IO_U_PLAT_VAL << 1))
109 return idx;
110
111 /* Find the group and compute the minimum value of that group */
112 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
113 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
114
115 /* Find its bucket number of the group */
116 k = idx % FIO_IO_U_PLAT_VAL;
117
118 /* Return the mean of the range of the bucket */
119 return base + ((k + 0.5) * (1 << error_bits));
120}
121
122static int double_cmp(const void *a, const void *b)
123{
124 const fio_fp64_t fa = *(const fio_fp64_t *) a;
125 const fio_fp64_t fb = *(const fio_fp64_t *) b;
126 int cmp = 0;
127
128 if (fa.u.f > fb.u.f)
129 cmp = 1;
130 else if (fa.u.f < fb.u.f)
131 cmp = -1;
132
133 return cmp;
134}
135
136unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
137 fio_fp64_t *plist, unsigned long long **output,
138 unsigned long long *maxv, unsigned long long *minv)
139{
140 unsigned long long sum = 0;
141 unsigned int len, i, j = 0;
142 unsigned int oval_len = 0;
143 unsigned long long *ovals = NULL;
144 bool is_last;
145
146 *minv = -1ULL;
147 *maxv = 0;
148
149 len = 0;
150 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
151 len++;
152
153 if (!len)
154 return 0;
155
156 /*
157 * Sort the percentile list. Note that it may already be sorted if
158 * we are using the default values, but since it's a short list this
159 * isn't a worry. Also note that this does not work for NaN values.
160 */
161 if (len > 1)
162 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
163
164 /*
165 * Calculate bucket values, note down max and min values
166 */
167 is_last = false;
168 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
169 sum += io_u_plat[i];
170 while (sum >= (plist[j].u.f / 100.0 * nr)) {
171 assert(plist[j].u.f <= 100.0);
172
173 if (j == oval_len) {
174 oval_len += 100;
175 ovals = realloc(ovals, oval_len * sizeof(*ovals));
176 }
177
178 ovals[j] = plat_idx_to_val(i);
179 if (ovals[j] < *minv)
180 *minv = ovals[j];
181 if (ovals[j] > *maxv)
182 *maxv = ovals[j];
183
184 is_last = (j == len - 1) != 0;
185 if (is_last)
186 break;
187
188 j++;
189 }
190 }
191
192 *output = ovals;
193 return len;
194}
195
196/*
197 * Find and display the p-th percentile of clat
198 */
199static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
200 fio_fp64_t *plist, unsigned int precision,
201 const char *pre, struct buf_output *out)
202{
203 unsigned int divisor, len, i, j = 0;
204 unsigned long long minv, maxv;
205 unsigned long long *ovals;
206 int per_line, scale_down, time_width;
207 bool is_last;
208 char fmt[32];
209
210 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
211 if (!len || !ovals)
212 goto out;
213
214 /*
215 * We default to nsecs, but if the value range is such that we
216 * should scale down to usecs or msecs, do that.
217 */
218 if (minv > 2000000 && maxv > 99999999ULL) {
219 scale_down = 2;
220 divisor = 1000000;
221 log_buf(out, " %s percentiles (msec):\n |", pre);
222 } else if (minv > 2000 && maxv > 99999) {
223 scale_down = 1;
224 divisor = 1000;
225 log_buf(out, " %s percentiles (usec):\n |", pre);
226 } else {
227 scale_down = 0;
228 divisor = 1;
229 log_buf(out, " %s percentiles (nsec):\n |", pre);
230 }
231
232
233 time_width = max(5, (int) (log10(maxv / divisor) + 1));
234 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
235 precision, time_width);
236 /* fmt will be something like " %5.2fth=[%4llu]%c" */
237 per_line = (80 - 7) / (precision + 10 + time_width);
238
239 for (j = 0; j < len; j++) {
240 /* for formatting */
241 if (j != 0 && (j % per_line) == 0)
242 log_buf(out, " |");
243
244 /* end of the list */
245 is_last = (j == len - 1) != 0;
246
247 for (i = 0; i < scale_down; i++)
248 ovals[j] = (ovals[j] + 999) / 1000;
249
250 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
251
252 if (is_last)
253 break;
254
255 if ((j % per_line) == per_line - 1) /* for formatting */
256 log_buf(out, "\n");
257 }
258
259out:
260 if (ovals)
261 free(ovals);
262}
263
264bool calc_lat(struct io_stat *is, unsigned long long *min,
265 unsigned long long *max, double *mean, double *dev)
266{
267 double n = (double) is->samples;
268
269 if (n == 0)
270 return false;
271
272 *min = is->min_val;
273 *max = is->max_val;
274 *mean = is->mean.u.f;
275
276 if (n > 1.0)
277 *dev = sqrt(is->S.u.f / (n - 1.0));
278 else
279 *dev = 0;
280
281 return true;
282}
283
284void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
285{
286 char *io, *agg, *min, *max;
287 char *ioalt, *aggalt, *minalt, *maxalt;
288 const char *str[] = { " READ", " WRITE" , " TRIM"};
289 int i;
290
291 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
292
293 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
294 const int i2p = is_power_of_2(rs->kb_base);
295
296 if (!rs->max_run[i])
297 continue;
298
299 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
300 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
301 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
302 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
303 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
304 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
305 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
306 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
307 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
308 rs->unified_rw_rep ? " MIXED" : str[i],
309 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
310 (unsigned long long) rs->min_run[i],
311 (unsigned long long) rs->max_run[i]);
312
313 free(io);
314 free(agg);
315 free(min);
316 free(max);
317 free(ioalt);
318 free(aggalt);
319 free(minalt);
320 free(maxalt);
321 }
322}
323
324void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
325{
326 int i;
327
328 /*
329 * Do depth distribution calculations
330 */
331 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
332 if (total) {
333 io_u_dist[i] = (double) map[i] / (double) total;
334 io_u_dist[i] *= 100.0;
335 if (io_u_dist[i] < 0.1 && map[i])
336 io_u_dist[i] = 0.1;
337 } else
338 io_u_dist[i] = 0.0;
339 }
340}
341
342static void stat_calc_lat(struct thread_stat *ts, double *dst,
343 uint64_t *src, int nr)
344{
345 unsigned long total = ddir_rw_sum(ts->total_io_u);
346 int i;
347
348 /*
349 * Do latency distribution calculations
350 */
351 for (i = 0; i < nr; i++) {
352 if (total) {
353 dst[i] = (double) src[i] / (double) total;
354 dst[i] *= 100.0;
355 if (dst[i] < 0.01 && src[i])
356 dst[i] = 0.01;
357 } else
358 dst[i] = 0.0;
359 }
360}
361
362/*
363 * To keep the terse format unaltered, add all of the ns latency
364 * buckets to the first us latency bucket
365 */
366static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
367{
368 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
369 int i;
370
371 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
372
373 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
374 ntotal += ts->io_u_lat_n[i];
375
376 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
377}
378
379void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
380{
381 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
382}
383
384void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
385{
386 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
387}
388
389void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
390{
391 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
392}
393
394static void display_lat(const char *name, unsigned long long min,
395 unsigned long long max, double mean, double dev,
396 struct buf_output *out)
397{
398 const char *base = "(nsec)";
399 char *minp, *maxp;
400
401 if (nsec_to_msec(&min, &max, &mean, &dev))
402 base = "(msec)";
403 else if (nsec_to_usec(&min, &max, &mean, &dev))
404 base = "(usec)";
405
406 minp = num2str(min, 6, 1, 0, N2S_NONE);
407 maxp = num2str(max, 6, 1, 0, N2S_NONE);
408
409 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
410 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
411
412 free(minp);
413 free(maxp);
414}
415
416static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
417 int ddir, struct buf_output *out)
418{
419 unsigned long runt;
420 unsigned long long min, max, bw, iops;
421 double mean, dev;
422 char *io_p, *bw_p, *bw_p_alt, *iops_p, *zbd_w_st = NULL;
423 int i2p;
424
425 if (ddir_sync(ddir)) {
426 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
427 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
428 display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
429 show_clat_percentiles(ts->io_u_sync_plat,
430 ts->sync_stat.samples,
431 ts->percentile_list,
432 ts->percentile_precision,
433 io_ddir_name(ddir), out);
434 }
435 return;
436 }
437
438 assert(ddir_rw(ddir));
439
440 if (!ts->runtime[ddir])
441 return;
442
443 i2p = is_power_of_2(rs->kb_base);
444 runt = ts->runtime[ddir];
445
446 bw = (1000 * ts->io_bytes[ddir]) / runt;
447 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
448 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
449 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
450
451 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
452 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
453 if (ddir == DDIR_WRITE)
454 zbd_w_st = zbd_write_status(ts);
455
456 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
457 rs->unified_rw_rep ? "mixed" : io_ddir_name(ddir),
458 iops_p, bw_p, bw_p_alt, io_p,
459 (unsigned long long) ts->runtime[ddir],
460 zbd_w_st ? : "");
461
462 free(zbd_w_st);
463 free(io_p);
464 free(bw_p);
465 free(bw_p_alt);
466 free(iops_p);
467
468 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
469 display_lat("slat", min, max, mean, dev, out);
470 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
471 display_lat("clat", min, max, mean, dev, out);
472 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
473 display_lat(" lat", min, max, mean, dev, out);
474
475 if (ts->clat_percentiles || ts->lat_percentiles) {
476 const char *name = ts->clat_percentiles ? "clat" : " lat";
477 uint64_t samples;
478
479 if (ts->clat_percentiles)
480 samples = ts->clat_stat[ddir].samples;
481 else
482 samples = ts->lat_stat[ddir].samples;
483
484 show_clat_percentiles(ts->io_u_plat[ddir],
485 samples,
486 ts->percentile_list,
487 ts->percentile_precision, name, out);
488 }
489 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
490 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
491 const char *bw_str;
492
493 if ((rs->unit_base == 1) && i2p)
494 bw_str = "Kibit";
495 else if (rs->unit_base == 1)
496 bw_str = "kbit";
497 else if (i2p)
498 bw_str = "KiB";
499 else
500 bw_str = "kB";
501
502 if (rs->agg[ddir]) {
503 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
504 if (p_of_agg > 100.0)
505 p_of_agg = 100.0;
506 }
507
508 if (rs->unit_base == 1) {
509 min *= 8.0;
510 max *= 8.0;
511 mean *= 8.0;
512 dev *= 8.0;
513 }
514
515 if (mean > fkb_base * fkb_base) {
516 min /= fkb_base;
517 max /= fkb_base;
518 mean /= fkb_base;
519 dev /= fkb_base;
520 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
521 }
522
523 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
524 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
525 bw_str, min, max, p_of_agg, mean, dev,
526 (&ts->bw_stat[ddir])->samples);
527 }
528 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
529 log_buf(out, " iops : min=%5llu, max=%5llu, "
530 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
531 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
532 }
533}
534
535static bool show_lat(double *io_u_lat, int nr, const char **ranges,
536 const char *msg, struct buf_output *out)
537{
538 bool new_line = true, shown = false;
539 int i, line = 0;
540
541 for (i = 0; i < nr; i++) {
542 if (io_u_lat[i] <= 0.0)
543 continue;
544 shown = true;
545 if (new_line) {
546 if (line)
547 log_buf(out, "\n");
548 log_buf(out, " lat (%s) : ", msg);
549 new_line = false;
550 line = 0;
551 }
552 if (line)
553 log_buf(out, ", ");
554 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
555 line++;
556 if (line == 5)
557 new_line = true;
558 }
559
560 if (shown)
561 log_buf(out, "\n");
562
563 return true;
564}
565
566static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
567{
568 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
569 "250=", "500=", "750=", "1000=", };
570
571 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
572}
573
574static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
575{
576 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
577 "250=", "500=", "750=", "1000=", };
578
579 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
580}
581
582static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
583{
584 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
585 "250=", "500=", "750=", "1000=", "2000=",
586 ">=2000=", };
587
588 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
589}
590
591static void show_latencies(struct thread_stat *ts, struct buf_output *out)
592{
593 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
594 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
595 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
596
597 stat_calc_lat_n(ts, io_u_lat_n);
598 stat_calc_lat_u(ts, io_u_lat_u);
599 stat_calc_lat_m(ts, io_u_lat_m);
600
601 show_lat_n(io_u_lat_n, out);
602 show_lat_u(io_u_lat_u, out);
603 show_lat_m(io_u_lat_m, out);
604}
605
606static int block_state_category(int block_state)
607{
608 switch (block_state) {
609 case BLOCK_STATE_UNINIT:
610 return 0;
611 case BLOCK_STATE_TRIMMED:
612 case BLOCK_STATE_WRITTEN:
613 return 1;
614 case BLOCK_STATE_WRITE_FAILURE:
615 case BLOCK_STATE_TRIM_FAILURE:
616 return 2;
617 default:
618 /* Silence compile warning on some BSDs and have a return */
619 assert(0);
620 return -1;
621 }
622}
623
624static int compare_block_infos(const void *bs1, const void *bs2)
625{
626 uint64_t block1 = *(uint64_t *)bs1;
627 uint64_t block2 = *(uint64_t *)bs2;
628 int state1 = BLOCK_INFO_STATE(block1);
629 int state2 = BLOCK_INFO_STATE(block2);
630 int bscat1 = block_state_category(state1);
631 int bscat2 = block_state_category(state2);
632 int cycles1 = BLOCK_INFO_TRIMS(block1);
633 int cycles2 = BLOCK_INFO_TRIMS(block2);
634
635 if (bscat1 < bscat2)
636 return -1;
637 if (bscat1 > bscat2)
638 return 1;
639
640 if (cycles1 < cycles2)
641 return -1;
642 if (cycles1 > cycles2)
643 return 1;
644
645 if (state1 < state2)
646 return -1;
647 if (state1 > state2)
648 return 1;
649
650 assert(block1 == block2);
651 return 0;
652}
653
654static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
655 fio_fp64_t *plist, unsigned int **percentiles,
656 unsigned int *types)
657{
658 int len = 0;
659 int i, nr_uninit;
660
661 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
662
663 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
664 len++;
665
666 if (!len)
667 return 0;
668
669 /*
670 * Sort the percentile list. Note that it may already be sorted if
671 * we are using the default values, but since it's a short list this
672 * isn't a worry. Also note that this does not work for NaN values.
673 */
674 if (len > 1)
675 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
676
677 /* Start only after the uninit entries end */
678 for (nr_uninit = 0;
679 nr_uninit < nr_block_infos
680 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
681 nr_uninit ++)
682 ;
683
684 if (nr_uninit == nr_block_infos)
685 return 0;
686
687 *percentiles = calloc(len, sizeof(**percentiles));
688
689 for (i = 0; i < len; i++) {
690 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
691 + nr_uninit;
692 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
693 }
694
695 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
696 for (i = 0; i < nr_block_infos; i++)
697 types[BLOCK_INFO_STATE(block_infos[i])]++;
698
699 return len;
700}
701
702static const char *block_state_names[] = {
703 [BLOCK_STATE_UNINIT] = "unwritten",
704 [BLOCK_STATE_TRIMMED] = "trimmed",
705 [BLOCK_STATE_WRITTEN] = "written",
706 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
707 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
708};
709
710static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
711 fio_fp64_t *plist, struct buf_output *out)
712{
713 int len, pos, i;
714 unsigned int *percentiles = NULL;
715 unsigned int block_state_counts[BLOCK_STATE_COUNT];
716
717 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
718 &percentiles, block_state_counts);
719
720 log_buf(out, " block lifetime percentiles :\n |");
721 pos = 0;
722 for (i = 0; i < len; i++) {
723 uint32_t block_info = percentiles[i];
724#define LINE_LENGTH 75
725 char str[LINE_LENGTH];
726 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
727 plist[i].u.f, block_info,
728 i == len - 1 ? '\n' : ',');
729 assert(strln < LINE_LENGTH);
730 if (pos + strln > LINE_LENGTH) {
731 pos = 0;
732 log_buf(out, "\n |");
733 }
734 log_buf(out, "%s", str);
735 pos += strln;
736#undef LINE_LENGTH
737 }
738 if (percentiles)
739 free(percentiles);
740
741 log_buf(out, " states :");
742 for (i = 0; i < BLOCK_STATE_COUNT; i++)
743 log_buf(out, " %s=%u%c",
744 block_state_names[i], block_state_counts[i],
745 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
746}
747
748static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
749{
750 char *p1, *p1alt, *p2;
751 unsigned long long bw_mean, iops_mean;
752 const int i2p = is_power_of_2(ts->kb_base);
753
754 if (!ts->ss_dur)
755 return;
756
757 bw_mean = steadystate_bw_mean(ts);
758 iops_mean = steadystate_iops_mean(ts);
759
760 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
761 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
762 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
763
764 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
765 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
766 p1, p1alt, p2,
767 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
768 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
769 ts->ss_criterion.u.f,
770 ts->ss_state & FIO_SS_PCT ? "%" : "");
771
772 free(p1);
773 free(p1alt);
774 free(p2);
775}
776
777static void show_thread_status_normal(struct thread_stat *ts,
778 struct group_run_stats *rs,
779 struct buf_output *out)
780{
781 double usr_cpu, sys_cpu;
782 unsigned long runtime;
783 double io_u_dist[FIO_IO_U_MAP_NR];
784 time_t time_p;
785 char time_buf[32];
786
787 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
788 return;
789
790 memset(time_buf, 0, sizeof(time_buf));
791
792 time(&time_p);
793 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
794
795 if (!ts->error) {
796 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
797 ts->name, ts->groupid, ts->members,
798 ts->error, (int) ts->pid, time_buf);
799 } else {
800 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
801 ts->name, ts->groupid, ts->members,
802 ts->error, ts->verror, (int) ts->pid,
803 time_buf);
804 }
805
806 if (strlen(ts->description))
807 log_buf(out, " Description : [%s]\n", ts->description);
808
809 if (ts->io_bytes[DDIR_READ])
810 show_ddir_status(rs, ts, DDIR_READ, out);
811 if (ts->io_bytes[DDIR_WRITE])
812 show_ddir_status(rs, ts, DDIR_WRITE, out);
813 if (ts->io_bytes[DDIR_TRIM])
814 show_ddir_status(rs, ts, DDIR_TRIM, out);
815
816 show_latencies(ts, out);
817
818 if (ts->sync_stat.samples)
819 show_ddir_status(rs, ts, DDIR_SYNC, out);
820
821 runtime = ts->total_run_time;
822 if (runtime) {
823 double runt = (double) runtime;
824
825 usr_cpu = (double) ts->usr_time * 100 / runt;
826 sys_cpu = (double) ts->sys_time * 100 / runt;
827 } else {
828 usr_cpu = 0;
829 sys_cpu = 0;
830 }
831
832 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
833 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
834 (unsigned long long) ts->ctx,
835 (unsigned long long) ts->majf,
836 (unsigned long long) ts->minf);
837
838 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
839 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
840 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
841 io_u_dist[1], io_u_dist[2],
842 io_u_dist[3], io_u_dist[4],
843 io_u_dist[5], io_u_dist[6]);
844
845 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
846 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
847 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
848 io_u_dist[1], io_u_dist[2],
849 io_u_dist[3], io_u_dist[4],
850 io_u_dist[5], io_u_dist[6]);
851 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
852 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
853 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
854 io_u_dist[1], io_u_dist[2],
855 io_u_dist[3], io_u_dist[4],
856 io_u_dist[5], io_u_dist[6]);
857 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
858 " short=%llu,%llu,%llu,0"
859 " dropped=%llu,%llu,%llu,0\n",
860 (unsigned long long) ts->total_io_u[0],
861 (unsigned long long) ts->total_io_u[1],
862 (unsigned long long) ts->total_io_u[2],
863 (unsigned long long) ts->total_io_u[3],
864 (unsigned long long) ts->short_io_u[0],
865 (unsigned long long) ts->short_io_u[1],
866 (unsigned long long) ts->short_io_u[2],
867 (unsigned long long) ts->drop_io_u[0],
868 (unsigned long long) ts->drop_io_u[1],
869 (unsigned long long) ts->drop_io_u[2]);
870 if (ts->continue_on_error) {
871 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
872 (unsigned long long)ts->total_err_count,
873 ts->first_error,
874 strerror(ts->first_error));
875 }
876 if (ts->latency_depth) {
877 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
878 (unsigned long long)ts->latency_target,
879 (unsigned long long)ts->latency_window,
880 ts->latency_percentile.u.f,
881 ts->latency_depth);
882 }
883
884 if (ts->nr_block_infos)
885 show_block_infos(ts->nr_block_infos, ts->block_infos,
886 ts->percentile_list, out);
887
888 if (ts->ss_dur)
889 show_ss_normal(ts, out);
890}
891
892static void show_ddir_status_terse(struct thread_stat *ts,
893 struct group_run_stats *rs, int ddir,
894 int ver, struct buf_output *out)
895{
896 unsigned long long min, max, minv, maxv, bw, iops;
897 unsigned long long *ovals = NULL;
898 double mean, dev;
899 unsigned int len;
900 int i, bw_stat;
901
902 assert(ddir_rw(ddir));
903
904 iops = bw = 0;
905 if (ts->runtime[ddir]) {
906 uint64_t runt = ts->runtime[ddir];
907
908 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
909 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
910 }
911
912 log_buf(out, ";%llu;%llu;%llu;%llu",
913 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
914 (unsigned long long) ts->runtime[ddir]);
915
916 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
917 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
918 else
919 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
920
921 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
922 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
923 else
924 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
925
926 if (ts->clat_percentiles || ts->lat_percentiles) {
927 len = calc_clat_percentiles(ts->io_u_plat[ddir],
928 ts->clat_stat[ddir].samples,
929 ts->percentile_list, &ovals, &maxv,
930 &minv);
931 } else
932 len = 0;
933
934 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
935 if (i >= len) {
936 log_buf(out, ";0%%=0");
937 continue;
938 }
939 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
940 }
941
942 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
943 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
944 else
945 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
946
947 if (ovals)
948 free(ovals);
949
950 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
951 if (bw_stat) {
952 double p_of_agg = 100.0;
953
954 if (rs->agg[ddir]) {
955 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
956 if (p_of_agg > 100.0)
957 p_of_agg = 100.0;
958 }
959
960 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
961 } else
962 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
963
964 if (ver == 5) {
965 if (bw_stat)
966 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
967 else
968 log_buf(out, ";%lu", 0UL);
969
970 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
971 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
972 mean, dev, (&ts->iops_stat[ddir])->samples);
973 else
974 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
975 }
976}
977
978static void add_ddir_status_json(struct thread_stat *ts,
979 struct group_run_stats *rs, int ddir, struct json_object *parent)
980{
981 unsigned long long min, max, minv, maxv;
982 unsigned long long bw_bytes, bw;
983 unsigned long long *ovals = NULL;
984 double mean, dev, iops;
985 unsigned int len;
986 int i;
987 struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
988 char buf[120];
989 double p_of_agg = 100.0;
990
991 assert(ddir_rw(ddir) || ddir_sync(ddir));
992
993 if (ts->unified_rw_rep && ddir != DDIR_READ)
994 return;
995
996 dir_object = json_create_object();
997 json_object_add_value_object(parent,
998 ts->unified_rw_rep ? "mixed" : io_ddir_name(ddir), dir_object);
999
1000 if (ddir_rw(ddir)) {
1001 bw_bytes = 0;
1002 bw = 0;
1003 iops = 0.0;
1004 if (ts->runtime[ddir]) {
1005 uint64_t runt = ts->runtime[ddir];
1006
1007 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1008 bw = bw_bytes / 1024; /* KiB/s */
1009 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1010 }
1011
1012 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1013 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1014 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1015 json_object_add_value_int(dir_object, "bw", bw);
1016 json_object_add_value_float(dir_object, "iops", iops);
1017 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1018 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1019 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1020 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1021
1022 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1023 min = max = 0;
1024 mean = dev = 0.0;
1025 }
1026 tmp_object = json_create_object();
1027 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1028 json_object_add_value_int(tmp_object, "min", min);
1029 json_object_add_value_int(tmp_object, "max", max);
1030 json_object_add_value_float(tmp_object, "mean", mean);
1031 json_object_add_value_float(tmp_object, "stddev", dev);
1032
1033 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1034 min = max = 0;
1035 mean = dev = 0.0;
1036 }
1037 tmp_object = json_create_object();
1038 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1039 json_object_add_value_int(tmp_object, "min", min);
1040 json_object_add_value_int(tmp_object, "max", max);
1041 json_object_add_value_float(tmp_object, "mean", mean);
1042 json_object_add_value_float(tmp_object, "stddev", dev);
1043 } else {
1044 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1045 min = max = 0;
1046 mean = dev = 0.0;
1047 }
1048
1049 tmp_object = json_create_object();
1050 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1051 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1052 json_object_add_value_int(tmp_object, "min", min);
1053 json_object_add_value_int(tmp_object, "max", max);
1054 json_object_add_value_float(tmp_object, "mean", mean);
1055 json_object_add_value_float(tmp_object, "stddev", dev);
1056 }
1057
1058 if (ts->clat_percentiles || ts->lat_percentiles) {
1059 if (ddir_rw(ddir)) {
1060 uint64_t samples;
1061
1062 if (ts->clat_percentiles)
1063 samples = ts->clat_stat[ddir].samples;
1064 else
1065 samples = ts->lat_stat[ddir].samples;
1066
1067 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1068 samples, ts->percentile_list, &ovals,
1069 &maxv, &minv);
1070 } else {
1071 len = calc_clat_percentiles(ts->io_u_sync_plat,
1072 ts->sync_stat.samples,
1073 ts->percentile_list, &ovals, &maxv,
1074 &minv);
1075 }
1076
1077 if (len > FIO_IO_U_LIST_MAX_LEN)
1078 len = FIO_IO_U_LIST_MAX_LEN;
1079 } else
1080 len = 0;
1081
1082 percentile_object = json_create_object();
1083 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1084 for (i = 0; i < len; i++) {
1085 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1086 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
1087 }
1088
1089 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1090 clat_bins_object = json_create_object();
1091 if (ts->clat_percentiles)
1092 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1093
1094 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1095 if (ddir_rw(ddir)) {
1096 if (ts->io_u_plat[ddir][i]) {
1097 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1098 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
1099 }
1100 } else {
1101 if (ts->io_u_sync_plat[i]) {
1102 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1103 json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_sync_plat[i]);
1104 }
1105 }
1106 }
1107 }
1108
1109 if (!ddir_rw(ddir))
1110 return;
1111
1112 if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1113 min = max = 0;
1114 mean = dev = 0.0;
1115 }
1116 tmp_object = json_create_object();
1117 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1118 json_object_add_value_int(tmp_object, "min", min);
1119 json_object_add_value_int(tmp_object, "max", max);
1120 json_object_add_value_float(tmp_object, "mean", mean);
1121 json_object_add_value_float(tmp_object, "stddev", dev);
1122 if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1123 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1124
1125 if (ovals)
1126 free(ovals);
1127
1128 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1129 if (rs->agg[ddir]) {
1130 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1131 if (p_of_agg > 100.0)
1132 p_of_agg = 100.0;
1133 }
1134 } else {
1135 min = max = 0;
1136 p_of_agg = mean = dev = 0.0;
1137 }
1138 json_object_add_value_int(dir_object, "bw_min", min);
1139 json_object_add_value_int(dir_object, "bw_max", max);
1140 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1141 json_object_add_value_float(dir_object, "bw_mean", mean);
1142 json_object_add_value_float(dir_object, "bw_dev", dev);
1143 json_object_add_value_int(dir_object, "bw_samples",
1144 (&ts->bw_stat[ddir])->samples);
1145
1146 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1147 min = max = 0;
1148 mean = dev = 0.0;
1149 }
1150 json_object_add_value_int(dir_object, "iops_min", min);
1151 json_object_add_value_int(dir_object, "iops_max", max);
1152 json_object_add_value_float(dir_object, "iops_mean", mean);
1153 json_object_add_value_float(dir_object, "iops_stddev", dev);
1154 json_object_add_value_int(dir_object, "iops_samples",
1155 (&ts->iops_stat[ddir])->samples);
1156}
1157
1158static void show_thread_status_terse_all(struct thread_stat *ts,
1159 struct group_run_stats *rs, int ver,
1160 struct buf_output *out)
1161{
1162 double io_u_dist[FIO_IO_U_MAP_NR];
1163 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1164 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1165 double usr_cpu, sys_cpu;
1166 int i;
1167
1168 /* General Info */
1169 if (ver == 2)
1170 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1171 else
1172 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1173 ts->name, ts->groupid, ts->error);
1174
1175 /* Log Read Status */
1176 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1177 /* Log Write Status */
1178 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1179 /* Log Trim Status */
1180 if (ver == 2 || ver == 4 || ver == 5)
1181 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1182
1183 /* CPU Usage */
1184 if (ts->total_run_time) {
1185 double runt = (double) ts->total_run_time;
1186
1187 usr_cpu = (double) ts->usr_time * 100 / runt;
1188 sys_cpu = (double) ts->sys_time * 100 / runt;
1189 } else {
1190 usr_cpu = 0;
1191 sys_cpu = 0;
1192 }
1193
1194 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1195 (unsigned long long) ts->ctx,
1196 (unsigned long long) ts->majf,
1197 (unsigned long long) ts->minf);
1198
1199 /* Calc % distribution of IO depths, usecond, msecond latency */
1200 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1201 stat_calc_lat_nu(ts, io_u_lat_u);
1202 stat_calc_lat_m(ts, io_u_lat_m);
1203
1204 /* Only show fixed 7 I/O depth levels*/
1205 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1206 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1207 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1208
1209 /* Microsecond latency */
1210 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1211 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1212 /* Millisecond latency */
1213 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1214 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1215
1216 /* disk util stats, if any */
1217 if (ver >= 3 && is_running_backend())
1218 show_disk_util(1, NULL, out);
1219
1220 /* Additional output if continue_on_error set - default off*/
1221 if (ts->continue_on_error)
1222 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1223 if (ver == 2)
1224 log_buf(out, "\n");
1225
1226 /* Additional output if description is set */
1227 if (strlen(ts->description))
1228 log_buf(out, ";%s", ts->description);
1229
1230 log_buf(out, "\n");
1231}
1232
1233static void json_add_job_opts(struct json_object *root, const char *name,
1234 struct flist_head *opt_list)
1235{
1236 struct json_object *dir_object;
1237 struct flist_head *entry;
1238 struct print_option *p;
1239
1240 if (flist_empty(opt_list))
1241 return;
1242
1243 dir_object = json_create_object();
1244 json_object_add_value_object(root, name, dir_object);
1245
1246 flist_for_each(entry, opt_list) {
1247 const char *pos = "";
1248
1249 p = flist_entry(entry, struct print_option, list);
1250 if (p->value)
1251 pos = p->value;
1252 json_object_add_value_string(dir_object, p->name, pos);
1253 }
1254}
1255
1256static struct json_object *show_thread_status_json(struct thread_stat *ts,
1257 struct group_run_stats *rs,
1258 struct flist_head *opt_list)
1259{
1260 struct json_object *root, *tmp;
1261 struct jobs_eta *je;
1262 double io_u_dist[FIO_IO_U_MAP_NR];
1263 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1264 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1265 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1266 double usr_cpu, sys_cpu;
1267 int i;
1268 size_t size;
1269
1270 root = json_create_object();
1271 json_object_add_value_string(root, "jobname", ts->name);
1272 json_object_add_value_int(root, "groupid", ts->groupid);
1273 json_object_add_value_int(root, "error", ts->error);
1274
1275 /* ETA Info */
1276 je = get_jobs_eta(true, &size);
1277 if (je) {
1278 json_object_add_value_int(root, "eta", je->eta_sec);
1279 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1280 }
1281
1282 if (opt_list)
1283 json_add_job_opts(root, "job options", opt_list);
1284
1285 add_ddir_status_json(ts, rs, DDIR_READ, root);
1286 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1287 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1288 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1289
1290 /* CPU Usage */
1291 if (ts->total_run_time) {
1292 double runt = (double) ts->total_run_time;
1293
1294 usr_cpu = (double) ts->usr_time * 100 / runt;
1295 sys_cpu = (double) ts->sys_time * 100 / runt;
1296 } else {
1297 usr_cpu = 0;
1298 sys_cpu = 0;
1299 }
1300 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1301 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1302 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1303 json_object_add_value_int(root, "ctx", ts->ctx);
1304 json_object_add_value_int(root, "majf", ts->majf);
1305 json_object_add_value_int(root, "minf", ts->minf);
1306
1307 /* Calc % distribution of IO depths */
1308 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1309 tmp = json_create_object();
1310 json_object_add_value_object(root, "iodepth_level", tmp);
1311 /* Only show fixed 7 I/O depth levels*/
1312 for (i = 0; i < 7; i++) {
1313 char name[20];
1314 if (i < 6)
1315 snprintf(name, 20, "%d", 1 << i);
1316 else
1317 snprintf(name, 20, ">=%d", 1 << i);
1318 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1319 }
1320
1321 /* Calc % distribution of submit IO depths */
1322 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1323 tmp = json_create_object();
1324 json_object_add_value_object(root, "iodepth_submit", tmp);
1325 /* Only show fixed 7 I/O depth levels*/
1326 for (i = 0; i < 7; i++) {
1327 char name[20];
1328 if (i == 0)
1329 snprintf(name, 20, "0");
1330 else if (i < 6)
1331 snprintf(name, 20, "%d", 1 << (i+1));
1332 else
1333 snprintf(name, 20, ">=%d", 1 << i);
1334 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1335 }
1336
1337 /* Calc % distribution of completion IO depths */
1338 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1339 tmp = json_create_object();
1340 json_object_add_value_object(root, "iodepth_complete", tmp);
1341 /* Only show fixed 7 I/O depth levels*/
1342 for (i = 0; i < 7; i++) {
1343 char name[20];
1344 if (i == 0)
1345 snprintf(name, 20, "0");
1346 else if (i < 6)
1347 snprintf(name, 20, "%d", 1 << (i+1));
1348 else
1349 snprintf(name, 20, ">=%d", 1 << i);
1350 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1351 }
1352
1353 /* Calc % distribution of nsecond, usecond, msecond latency */
1354 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1355 stat_calc_lat_n(ts, io_u_lat_n);
1356 stat_calc_lat_u(ts, io_u_lat_u);
1357 stat_calc_lat_m(ts, io_u_lat_m);
1358
1359 /* Nanosecond latency */
1360 tmp = json_create_object();
1361 json_object_add_value_object(root, "latency_ns", tmp);
1362 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1363 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1364 "250", "500", "750", "1000", };
1365 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1366 }
1367 /* Microsecond latency */
1368 tmp = json_create_object();
1369 json_object_add_value_object(root, "latency_us", tmp);
1370 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1371 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1372 "250", "500", "750", "1000", };
1373 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1374 }
1375 /* Millisecond latency */
1376 tmp = json_create_object();
1377 json_object_add_value_object(root, "latency_ms", tmp);
1378 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1379 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1380 "250", "500", "750", "1000", "2000",
1381 ">=2000", };
1382 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1383 }
1384
1385 /* Additional output if continue_on_error set - default off*/
1386 if (ts->continue_on_error) {
1387 json_object_add_value_int(root, "total_err", ts->total_err_count);
1388 json_object_add_value_int(root, "first_error", ts->first_error);
1389 }
1390
1391 if (ts->latency_depth) {
1392 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1393 json_object_add_value_int(root, "latency_target", ts->latency_target);
1394 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1395 json_object_add_value_int(root, "latency_window", ts->latency_window);
1396 }
1397
1398 /* Additional output if description is set */
1399 if (strlen(ts->description))
1400 json_object_add_value_string(root, "desc", ts->description);
1401
1402 if (ts->nr_block_infos) {
1403 /* Block error histogram and types */
1404 int len;
1405 unsigned int *percentiles = NULL;
1406 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1407
1408 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1409 ts->percentile_list,
1410 &percentiles, block_state_counts);
1411
1412 if (len) {
1413 struct json_object *block, *percentile_object, *states;
1414 int state;
1415 block = json_create_object();
1416 json_object_add_value_object(root, "block", block);
1417
1418 percentile_object = json_create_object();
1419 json_object_add_value_object(block, "percentiles",
1420 percentile_object);
1421 for (i = 0; i < len; i++) {
1422 char buf[20];
1423 snprintf(buf, sizeof(buf), "%f",
1424 ts->percentile_list[i].u.f);
1425 json_object_add_value_int(percentile_object,
1426 (const char *)buf,
1427 percentiles[i]);
1428 }
1429
1430 states = json_create_object();
1431 json_object_add_value_object(block, "states", states);
1432 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1433 json_object_add_value_int(states,
1434 block_state_names[state],
1435 block_state_counts[state]);
1436 }
1437 free(percentiles);
1438 }
1439 }
1440
1441 if (ts->ss_dur) {
1442 struct json_object *data;
1443 struct json_array *iops, *bw;
1444 int j, k, l;
1445 char ss_buf[64];
1446
1447 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1448 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1449 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1450 (float) ts->ss_limit.u.f,
1451 ts->ss_state & FIO_SS_PCT ? "%" : "");
1452
1453 tmp = json_create_object();
1454 json_object_add_value_object(root, "steadystate", tmp);
1455 json_object_add_value_string(tmp, "ss", ss_buf);
1456 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1457 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1458
1459 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1460 ts->ss_state & FIO_SS_PCT ? "%" : "");
1461 json_object_add_value_string(tmp, "criterion", ss_buf);
1462 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1463 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1464
1465 data = json_create_object();
1466 json_object_add_value_object(tmp, "data", data);
1467 bw = json_create_array();
1468 iops = json_create_array();
1469
1470 /*
1471 ** if ss was attained or the buffer is not full,
1472 ** ss->head points to the first element in the list.
1473 ** otherwise it actually points to the second element
1474 ** in the list
1475 */
1476 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1477 j = ts->ss_head;
1478 else
1479 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1480 for (l = 0; l < ts->ss_dur; l++) {
1481 k = (j + l) % ts->ss_dur;
1482 json_array_add_value_int(bw, ts->ss_bw_data[k]);
1483 json_array_add_value_int(iops, ts->ss_iops_data[k]);
1484 }
1485 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1486 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1487 json_object_add_value_array(data, "iops", iops);
1488 json_object_add_value_array(data, "bw", bw);
1489 }
1490
1491 return root;
1492}
1493
1494static void show_thread_status_terse(struct thread_stat *ts,
1495 struct group_run_stats *rs,
1496 struct buf_output *out)
1497{
1498 if (terse_version >= 2 && terse_version <= 5)
1499 show_thread_status_terse_all(ts, rs, terse_version, out);
1500 else
1501 log_err("fio: bad terse version!? %d\n", terse_version);
1502}
1503
1504struct json_object *show_thread_status(struct thread_stat *ts,
1505 struct group_run_stats *rs,
1506 struct flist_head *opt_list,
1507 struct buf_output *out)
1508{
1509 struct json_object *ret = NULL;
1510
1511 if (output_format & FIO_OUTPUT_TERSE)
1512 show_thread_status_terse(ts, rs, out);
1513 if (output_format & FIO_OUTPUT_JSON)
1514 ret = show_thread_status_json(ts, rs, opt_list);
1515 if (output_format & FIO_OUTPUT_NORMAL)
1516 show_thread_status_normal(ts, rs, out);
1517
1518 return ret;
1519}
1520
1521static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1522{
1523 double mean, S;
1524
1525 if (src->samples == 0)
1526 return;
1527
1528 dst->min_val = min(dst->min_val, src->min_val);
1529 dst->max_val = max(dst->max_val, src->max_val);
1530
1531 /*
1532 * Compute new mean and S after the merge
1533 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1534 * #Parallel_algorithm>
1535 */
1536 if (first) {
1537 mean = src->mean.u.f;
1538 S = src->S.u.f;
1539 } else {
1540 double delta = src->mean.u.f - dst->mean.u.f;
1541
1542 mean = ((src->mean.u.f * src->samples) +
1543 (dst->mean.u.f * dst->samples)) /
1544 (dst->samples + src->samples);
1545
1546 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1547 (dst->samples * src->samples) /
1548 (dst->samples + src->samples);
1549 }
1550
1551 dst->samples += src->samples;
1552 dst->mean.u.f = mean;
1553 dst->S.u.f = S;
1554}
1555
1556void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1557{
1558 int i;
1559
1560 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1561 if (dst->max_run[i] < src->max_run[i])
1562 dst->max_run[i] = src->max_run[i];
1563 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1564 dst->min_run[i] = src->min_run[i];
1565 if (dst->max_bw[i] < src->max_bw[i])
1566 dst->max_bw[i] = src->max_bw[i];
1567 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1568 dst->min_bw[i] = src->min_bw[i];
1569
1570 dst->iobytes[i] += src->iobytes[i];
1571 dst->agg[i] += src->agg[i];
1572 }
1573
1574 if (!dst->kb_base)
1575 dst->kb_base = src->kb_base;
1576 if (!dst->unit_base)
1577 dst->unit_base = src->unit_base;
1578 if (!dst->sig_figs)
1579 dst->sig_figs = src->sig_figs;
1580}
1581
1582void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1583 bool first)
1584{
1585 int l, k;
1586
1587 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1588 if (!dst->unified_rw_rep) {
1589 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1590 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1591 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1592 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1593 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first);
1594
1595 dst->io_bytes[l] += src->io_bytes[l];
1596
1597 if (dst->runtime[l] < src->runtime[l])
1598 dst->runtime[l] = src->runtime[l];
1599 } else {
1600 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1601 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1602 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1603 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1604 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first);
1605
1606 dst->io_bytes[0] += src->io_bytes[l];
1607
1608 if (dst->runtime[0] < src->runtime[l])
1609 dst->runtime[0] = src->runtime[l];
1610
1611 /*
1612 * We're summing to the same destination, so override
1613 * 'first' after the first iteration of the loop
1614 */
1615 first = false;
1616 }
1617 }
1618
1619 sum_stat(&dst->sync_stat, &src->sync_stat, first);
1620 dst->usr_time += src->usr_time;
1621 dst->sys_time += src->sys_time;
1622 dst->ctx += src->ctx;
1623 dst->majf += src->majf;
1624 dst->minf += src->minf;
1625
1626 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1627 dst->io_u_map[k] += src->io_u_map[k];
1628 dst->io_u_submit[k] += src->io_u_submit[k];
1629 dst->io_u_complete[k] += src->io_u_complete[k];
1630 }
1631 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++) {
1632 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1633 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1634 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1635 }
1636 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1637 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1638
1639 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1640 if (!dst->unified_rw_rep) {
1641 dst->total_io_u[k] += src->total_io_u[k];
1642 dst->short_io_u[k] += src->short_io_u[k];
1643 dst->drop_io_u[k] += src->drop_io_u[k];
1644 } else {
1645 dst->total_io_u[0] += src->total_io_u[k];
1646 dst->short_io_u[0] += src->short_io_u[k];
1647 dst->drop_io_u[0] += src->drop_io_u[k];
1648 }
1649 }
1650
1651 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1652
1653 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1654 int m;
1655
1656 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1657 if (!dst->unified_rw_rep)
1658 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1659 else
1660 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1661 }
1662 }
1663
1664 dst->total_run_time += src->total_run_time;
1665 dst->total_submit += src->total_submit;
1666 dst->total_complete += src->total_complete;
1667 dst->nr_zone_resets += src->nr_zone_resets;
1668}
1669
1670void init_group_run_stat(struct group_run_stats *gs)
1671{
1672 int i;
1673 memset(gs, 0, sizeof(*gs));
1674
1675 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1676 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1677}
1678
1679void init_thread_stat(struct thread_stat *ts)
1680{
1681 int j;
1682
1683 memset(ts, 0, sizeof(*ts));
1684
1685 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1686 ts->lat_stat[j].min_val = -1UL;
1687 ts->clat_stat[j].min_val = -1UL;
1688 ts->slat_stat[j].min_val = -1UL;
1689 ts->bw_stat[j].min_val = -1UL;
1690 ts->iops_stat[j].min_val = -1UL;
1691 }
1692 ts->sync_stat.min_val = -1UL;
1693 ts->groupid = -1;
1694}
1695
1696void __show_run_stats(void)
1697{
1698 struct group_run_stats *runstats, *rs;
1699 struct thread_data *td;
1700 struct thread_stat *threadstats, *ts;
1701 int i, j, k, nr_ts, last_ts, idx;
1702 bool kb_base_warned = false;
1703 bool unit_base_warned = false;
1704 struct json_object *root = NULL;
1705 struct json_array *array = NULL;
1706 struct buf_output output[FIO_OUTPUT_NR];
1707 struct flist_head **opt_lists;
1708
1709 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1710
1711 for (i = 0; i < groupid + 1; i++)
1712 init_group_run_stat(&runstats[i]);
1713
1714 /*
1715 * find out how many threads stats we need. if group reporting isn't
1716 * enabled, it's one-per-td.
1717 */
1718 nr_ts = 0;
1719 last_ts = -1;
1720 for_each_td(td, i) {
1721 if (!td->o.group_reporting) {
1722 nr_ts++;
1723 continue;
1724 }
1725 if (last_ts == td->groupid)
1726 continue;
1727 if (!td->o.stats)
1728 continue;
1729
1730 last_ts = td->groupid;
1731 nr_ts++;
1732 }
1733
1734 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1735 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1736
1737 for (i = 0; i < nr_ts; i++) {
1738 init_thread_stat(&threadstats[i]);
1739 opt_lists[i] = NULL;
1740 }
1741
1742 j = 0;
1743 last_ts = -1;
1744 idx = 0;
1745 for_each_td(td, i) {
1746 if (!td->o.stats)
1747 continue;
1748 if (idx && (!td->o.group_reporting ||
1749 (td->o.group_reporting && last_ts != td->groupid))) {
1750 idx = 0;
1751 j++;
1752 }
1753
1754 last_ts = td->groupid;
1755
1756 ts = &threadstats[j];
1757
1758 ts->clat_percentiles = td->o.clat_percentiles;
1759 ts->lat_percentiles = td->o.lat_percentiles;
1760 ts->percentile_precision = td->o.percentile_precision;
1761 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1762 opt_lists[j] = &td->opt_list;
1763
1764 idx++;
1765 ts->members++;
1766
1767 if (ts->groupid == -1) {
1768 /*
1769 * These are per-group shared already
1770 */
1771 strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1772 if (td->o.description)
1773 strncpy(ts->description, td->o.description,
1774 FIO_JOBDESC_SIZE - 1);
1775 else
1776 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1777
1778 /*
1779 * If multiple entries in this group, this is
1780 * the first member.
1781 */
1782 ts->thread_number = td->thread_number;
1783 ts->groupid = td->groupid;
1784
1785 /*
1786 * first pid in group, not very useful...
1787 */
1788 ts->pid = td->pid;
1789
1790 ts->kb_base = td->o.kb_base;
1791 ts->unit_base = td->o.unit_base;
1792 ts->sig_figs = td->o.sig_figs;
1793 ts->unified_rw_rep = td->o.unified_rw_rep;
1794 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1795 log_info("fio: kb_base differs for jobs in group, using"
1796 " %u as the base\n", ts->kb_base);
1797 kb_base_warned = true;
1798 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1799 log_info("fio: unit_base differs for jobs in group, using"
1800 " %u as the base\n", ts->unit_base);
1801 unit_base_warned = true;
1802 }
1803
1804 ts->continue_on_error = td->o.continue_on_error;
1805 ts->total_err_count += td->total_err_count;
1806 ts->first_error = td->first_error;
1807 if (!ts->error) {
1808 if (!td->error && td->o.continue_on_error &&
1809 td->first_error) {
1810 ts->error = td->first_error;
1811 ts->verror[sizeof(ts->verror) - 1] = '\0';
1812 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1813 } else if (td->error) {
1814 ts->error = td->error;
1815 ts->verror[sizeof(ts->verror) - 1] = '\0';
1816 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1817 }
1818 }
1819
1820 ts->latency_depth = td->latency_qd;
1821 ts->latency_target = td->o.latency_target;
1822 ts->latency_percentile = td->o.latency_percentile;
1823 ts->latency_window = td->o.latency_window;
1824
1825 ts->nr_block_infos = td->ts.nr_block_infos;
1826 for (k = 0; k < ts->nr_block_infos; k++)
1827 ts->block_infos[k] = td->ts.block_infos[k];
1828
1829 sum_thread_stats(ts, &td->ts, idx == 1);
1830
1831 if (td->o.ss_dur) {
1832 ts->ss_state = td->ss.state;
1833 ts->ss_dur = td->ss.dur;
1834 ts->ss_head = td->ss.head;
1835 ts->ss_bw_data = td->ss.bw_data;
1836 ts->ss_iops_data = td->ss.iops_data;
1837 ts->ss_limit.u.f = td->ss.limit;
1838 ts->ss_slope.u.f = td->ss.slope;
1839 ts->ss_deviation.u.f = td->ss.deviation;
1840 ts->ss_criterion.u.f = td->ss.criterion;
1841 }
1842 else
1843 ts->ss_dur = ts->ss_state = 0;
1844 }
1845
1846 for (i = 0; i < nr_ts; i++) {
1847 unsigned long long bw;
1848
1849 ts = &threadstats[i];
1850 if (ts->groupid == -1)
1851 continue;
1852 rs = &runstats[ts->groupid];
1853 rs->kb_base = ts->kb_base;
1854 rs->unit_base = ts->unit_base;
1855 rs->sig_figs = ts->sig_figs;
1856 rs->unified_rw_rep += ts->unified_rw_rep;
1857
1858 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1859 if (!ts->runtime[j])
1860 continue;
1861 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1862 rs->min_run[j] = ts->runtime[j];
1863 if (ts->runtime[j] > rs->max_run[j])
1864 rs->max_run[j] = ts->runtime[j];
1865
1866 bw = 0;
1867 if (ts->runtime[j])
1868 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
1869 if (bw < rs->min_bw[j])
1870 rs->min_bw[j] = bw;
1871 if (bw > rs->max_bw[j])
1872 rs->max_bw[j] = bw;
1873
1874 rs->iobytes[j] += ts->io_bytes[j];
1875 }
1876 }
1877
1878 for (i = 0; i < groupid + 1; i++) {
1879 int ddir;
1880
1881 rs = &runstats[i];
1882
1883 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1884 if (rs->max_run[ddir])
1885 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
1886 rs->max_run[ddir];
1887 }
1888 }
1889
1890 for (i = 0; i < FIO_OUTPUT_NR; i++)
1891 buf_output_init(&output[i]);
1892
1893 /*
1894 * don't overwrite last signal output
1895 */
1896 if (output_format & FIO_OUTPUT_NORMAL)
1897 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1898 if (output_format & FIO_OUTPUT_JSON) {
1899 struct thread_data *global;
1900 char time_buf[32];
1901 struct timeval now;
1902 unsigned long long ms_since_epoch;
1903 time_t tv_sec;
1904
1905 gettimeofday(&now, NULL);
1906 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1907 (unsigned long long)(now.tv_usec) / 1000;
1908
1909 tv_sec = now.tv_sec;
1910 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
1911 if (time_buf[strlen(time_buf) - 1] == '\n')
1912 time_buf[strlen(time_buf) - 1] = '\0';
1913
1914 root = json_create_object();
1915 json_object_add_value_string(root, "fio version", fio_version_string);
1916 json_object_add_value_int(root, "timestamp", now.tv_sec);
1917 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1918 json_object_add_value_string(root, "time", time_buf);
1919 global = get_global_options();
1920 json_add_job_opts(root, "global options", &global->opt_list);
1921 array = json_create_array();
1922 json_object_add_value_array(root, "jobs", array);
1923 }
1924
1925 if (is_backend)
1926 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1927
1928 for (i = 0; i < nr_ts; i++) {
1929 ts = &threadstats[i];
1930 rs = &runstats[ts->groupid];
1931
1932 if (is_backend) {
1933 fio_server_send_job_options(opt_lists[i], i);
1934 fio_server_send_ts(ts, rs);
1935 } else {
1936 if (output_format & FIO_OUTPUT_TERSE)
1937 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1938 if (output_format & FIO_OUTPUT_JSON) {
1939 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1940 json_array_add_value_object(array, tmp);
1941 }
1942 if (output_format & FIO_OUTPUT_NORMAL)
1943 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1944 }
1945 }
1946 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1947 /* disk util stats, if any */
1948 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1949
1950 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1951
1952 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1953 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1954 json_free_object(root);
1955 }
1956
1957 for (i = 0; i < groupid + 1; i++) {
1958 rs = &runstats[i];
1959
1960 rs->groupid = i;
1961 if (is_backend)
1962 fio_server_send_gs(rs);
1963 else if (output_format & FIO_OUTPUT_NORMAL)
1964 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1965 }
1966
1967 if (is_backend)
1968 fio_server_send_du();
1969 else if (output_format & FIO_OUTPUT_NORMAL) {
1970 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1971 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1972 }
1973
1974 for (i = 0; i < FIO_OUTPUT_NR; i++) {
1975 struct buf_output *out = &output[i];
1976
1977 log_info_buf(out->buf, out->buflen);
1978 buf_output_free(out);
1979 }
1980
1981 fio_idle_prof_cleanup();
1982
1983 log_info_flush();
1984 free(runstats);
1985 free(threadstats);
1986 free(opt_lists);
1987}
1988
1989void __show_running_run_stats(void)
1990{
1991 struct thread_data *td;
1992 unsigned long long *rt;
1993 struct timespec ts;
1994 int i;
1995
1996 fio_sem_down(stat_sem);
1997
1998 rt = malloc(thread_number * sizeof(unsigned long long));
1999 fio_gettime(&ts, NULL);
2000
2001 for_each_td(td, i) {
2002 td->update_rusage = 1;
2003 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2004 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2005 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2006 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2007
2008 rt[i] = mtime_since(&td->start, &ts);
2009 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2010 td->ts.runtime[DDIR_READ] += rt[i];
2011 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2012 td->ts.runtime[DDIR_WRITE] += rt[i];
2013 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2014 td->ts.runtime[DDIR_TRIM] += rt[i];
2015 }
2016
2017 for_each_td(td, i) {
2018 if (td->runstate >= TD_EXITED)
2019 continue;
2020 if (td->rusage_sem) {
2021 td->update_rusage = 1;
2022 fio_sem_down(td->rusage_sem);
2023 }
2024 td->update_rusage = 0;
2025 }
2026
2027 __show_run_stats();
2028
2029 for_each_td(td, i) {
2030 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2031 td->ts.runtime[DDIR_READ] -= rt[i];
2032 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2033 td->ts.runtime[DDIR_WRITE] -= rt[i];
2034 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2035 td->ts.runtime[DDIR_TRIM] -= rt[i];
2036 }
2037
2038 free(rt);
2039 fio_sem_up(stat_sem);
2040}
2041
2042static bool status_interval_init;
2043static struct timespec status_time;
2044static bool status_file_disabled;
2045
2046#define FIO_STATUS_FILE "fio-dump-status"
2047
2048static int check_status_file(void)
2049{
2050 struct stat sb;
2051 const char *temp_dir;
2052 char fio_status_file_path[PATH_MAX];
2053
2054 if (status_file_disabled)
2055 return 0;
2056
2057 temp_dir = getenv("TMPDIR");
2058 if (temp_dir == NULL) {
2059 temp_dir = getenv("TEMP");
2060 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2061 temp_dir = NULL;
2062 }
2063 if (temp_dir == NULL)
2064 temp_dir = "/tmp";
2065
2066 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2067
2068 if (stat(fio_status_file_path, &sb))
2069 return 0;
2070
2071 if (unlink(fio_status_file_path) < 0) {
2072 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2073 strerror(errno));
2074 log_err("fio: disabling status file updates\n");
2075 status_file_disabled = true;
2076 }
2077
2078 return 1;
2079}
2080
2081void check_for_running_stats(void)
2082{
2083 if (status_interval) {
2084 if (!status_interval_init) {
2085 fio_gettime(&status_time, NULL);
2086 status_interval_init = true;
2087 } else if (mtime_since_now(&status_time) >= status_interval) {
2088 show_running_run_stats();
2089 fio_gettime(&status_time, NULL);
2090 return;
2091 }
2092 }
2093 if (check_status_file()) {
2094 show_running_run_stats();
2095 return;
2096 }
2097}
2098
2099static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2100{
2101 double val = data;
2102 double delta;
2103
2104 if (data > is->max_val)
2105 is->max_val = data;
2106 if (data < is->min_val)
2107 is->min_val = data;
2108
2109 delta = val - is->mean.u.f;
2110 if (delta) {
2111 is->mean.u.f += delta / (is->samples + 1.0);
2112 is->S.u.f += delta * (val - is->mean.u.f);
2113 }
2114
2115 is->samples++;
2116}
2117
2118/*
2119 * Return a struct io_logs, which is added to the tail of the log
2120 * list for 'iolog'.
2121 */
2122static struct io_logs *get_new_log(struct io_log *iolog)
2123{
2124 size_t new_size, new_samples;
2125 struct io_logs *cur_log;
2126
2127 /*
2128 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2129 * forever
2130 */
2131 if (!iolog->cur_log_max)
2132 new_samples = DEF_LOG_ENTRIES;
2133 else {
2134 new_samples = iolog->cur_log_max * 2;
2135 if (new_samples > MAX_LOG_ENTRIES)
2136 new_samples = MAX_LOG_ENTRIES;
2137 }
2138
2139 new_size = new_samples * log_entry_sz(iolog);
2140
2141 cur_log = smalloc(sizeof(*cur_log));
2142 if (cur_log) {
2143 INIT_FLIST_HEAD(&cur_log->list);
2144 cur_log->log = malloc(new_size);
2145 if (cur_log->log) {
2146 cur_log->nr_samples = 0;
2147 cur_log->max_samples = new_samples;
2148 flist_add_tail(&cur_log->list, &iolog->io_logs);
2149 iolog->cur_log_max = new_samples;
2150 return cur_log;
2151 }
2152 sfree(cur_log);
2153 }
2154
2155 return NULL;
2156}
2157
2158/*
2159 * Add and return a new log chunk, or return current log if big enough
2160 */
2161static struct io_logs *regrow_log(struct io_log *iolog)
2162{
2163 struct io_logs *cur_log;
2164 int i;
2165
2166 if (!iolog || iolog->disabled)
2167 goto disable;
2168
2169 cur_log = iolog_cur_log(iolog);
2170 if (!cur_log) {
2171 cur_log = get_new_log(iolog);
2172 if (!cur_log)
2173 return NULL;
2174 }
2175
2176 if (cur_log->nr_samples < cur_log->max_samples)
2177 return cur_log;
2178
2179 /*
2180 * No room for a new sample. If we're compressing on the fly, flush
2181 * out the current chunk
2182 */
2183 if (iolog->log_gz) {
2184 if (iolog_cur_flush(iolog, cur_log)) {
2185 log_err("fio: failed flushing iolog! Will stop logging.\n");
2186 return NULL;
2187 }
2188 }
2189
2190 /*
2191 * Get a new log array, and add to our list
2192 */
2193 cur_log = get_new_log(iolog);
2194 if (!cur_log) {
2195 log_err("fio: failed extending iolog! Will stop logging.\n");
2196 return NULL;
2197 }
2198
2199 if (!iolog->pending || !iolog->pending->nr_samples)
2200 return cur_log;
2201
2202 /*
2203 * Flush pending items to new log
2204 */
2205 for (i = 0; i < iolog->pending->nr_samples; i++) {
2206 struct io_sample *src, *dst;
2207
2208 src = get_sample(iolog, iolog->pending, i);
2209 dst = get_sample(iolog, cur_log, i);
2210 memcpy(dst, src, log_entry_sz(iolog));
2211 }
2212 cur_log->nr_samples = iolog->pending->nr_samples;
2213
2214 iolog->pending->nr_samples = 0;
2215 return cur_log;
2216disable:
2217 if (iolog)
2218 iolog->disabled = true;
2219 return NULL;
2220}
2221
2222void regrow_logs(struct thread_data *td)
2223{
2224 regrow_log(td->slat_log);
2225 regrow_log(td->clat_log);
2226 regrow_log(td->clat_hist_log);
2227 regrow_log(td->lat_log);
2228 regrow_log(td->bw_log);
2229 regrow_log(td->iops_log);
2230 td->flags &= ~TD_F_REGROW_LOGS;
2231}
2232
2233static struct io_logs *get_cur_log(struct io_log *iolog)
2234{
2235 struct io_logs *cur_log;
2236
2237 cur_log = iolog_cur_log(iolog);
2238 if (!cur_log) {
2239 cur_log = get_new_log(iolog);
2240 if (!cur_log)
2241 return NULL;
2242 }
2243
2244 if (cur_log->nr_samples < cur_log->max_samples)
2245 return cur_log;
2246
2247 /*
2248 * Out of space. If we're in IO offload mode, or we're not doing
2249 * per unit logging (hence logging happens outside of the IO thread
2250 * as well), add a new log chunk inline. If we're doing inline
2251 * submissions, flag 'td' as needing a log regrow and we'll take
2252 * care of it on the submission side.
2253 */
2254 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2255 !per_unit_log(iolog))
2256 return regrow_log(iolog);
2257
2258 if (iolog->td)
2259 iolog->td->flags |= TD_F_REGROW_LOGS;
2260 if (iolog->pending)
2261 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2262 return iolog->pending;
2263}
2264
2265static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2266 enum fio_ddir ddir, unsigned long long bs,
2267 unsigned long t, uint64_t offset)
2268{
2269 struct io_logs *cur_log;
2270
2271 if (iolog->disabled)
2272 return;
2273 if (flist_empty(&iolog->io_logs))
2274 iolog->avg_last[ddir] = t;
2275
2276 cur_log = get_cur_log(iolog);
2277 if (cur_log) {
2278 struct io_sample *s;
2279
2280 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2281
2282 s->data = data;
2283 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2284 io_sample_set_ddir(iolog, s, ddir);
2285 s->bs = bs;
2286
2287 if (iolog->log_offset) {
2288 struct io_sample_offset *so = (void *) s;
2289
2290 so->offset = offset;
2291 }
2292
2293 cur_log->nr_samples++;
2294 return;
2295 }
2296
2297 iolog->disabled = true;
2298}
2299
2300static inline void reset_io_stat(struct io_stat *ios)
2301{
2302 ios->max_val = ios->min_val = ios->samples = 0;
2303 ios->mean.u.f = ios->S.u.f = 0;
2304}
2305
2306void reset_io_stats(struct thread_data *td)
2307{
2308 struct thread_stat *ts = &td->ts;
2309 int i, j;
2310
2311 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2312 reset_io_stat(&ts->clat_stat[i]);
2313 reset_io_stat(&ts->slat_stat[i]);
2314 reset_io_stat(&ts->lat_stat[i]);
2315 reset_io_stat(&ts->bw_stat[i]);
2316 reset_io_stat(&ts->iops_stat[i]);
2317
2318 ts->io_bytes[i] = 0;
2319 ts->runtime[i] = 0;
2320 ts->total_io_u[i] = 0;
2321 ts->short_io_u[i] = 0;
2322 ts->drop_io_u[i] = 0;
2323
2324 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2325 ts->io_u_plat[i][j] = 0;
2326 if (!i)
2327 ts->io_u_sync_plat[j] = 0;
2328 }
2329 }
2330
2331 ts->total_io_u[DDIR_SYNC] = 0;
2332
2333 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2334 ts->io_u_map[i] = 0;
2335 ts->io_u_submit[i] = 0;
2336 ts->io_u_complete[i] = 0;
2337 }
2338
2339 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2340 ts->io_u_lat_n[i] = 0;
2341 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2342 ts->io_u_lat_u[i] = 0;
2343 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2344 ts->io_u_lat_m[i] = 0;
2345
2346 ts->total_submit = 0;
2347 ts->total_complete = 0;
2348 ts->nr_zone_resets = 0;
2349}
2350
2351static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2352 unsigned long elapsed, bool log_max)
2353{
2354 /*
2355 * Note an entry in the log. Use the mean from the logged samples,
2356 * making sure to properly round up. Only write a log entry if we
2357 * had actual samples done.
2358 */
2359 if (iolog->avg_window[ddir].samples) {
2360 union io_sample_data data;
2361
2362 if (log_max)
2363 data.val = iolog->avg_window[ddir].max_val;
2364 else
2365 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2366
2367 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2368 }
2369
2370 reset_io_stat(&iolog->avg_window[ddir]);
2371}
2372
2373static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2374 bool log_max)
2375{
2376 int ddir;
2377
2378 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2379 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2380}
2381
2382static unsigned long add_log_sample(struct thread_data *td,
2383 struct io_log *iolog,
2384 union io_sample_data data,
2385 enum fio_ddir ddir, unsigned long long bs,
2386 uint64_t offset)
2387{
2388 unsigned long elapsed, this_window;
2389
2390 if (!ddir_rw(ddir))
2391 return 0;
2392
2393 elapsed = mtime_since_now(&td->epoch);
2394
2395 /*
2396 * If no time averaging, just add the log sample.
2397 */
2398 if (!iolog->avg_msec) {
2399 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2400 return 0;
2401 }
2402
2403 /*
2404 * Add the sample. If the time period has passed, then
2405 * add that entry to the log and clear.
2406 */
2407 add_stat_sample(&iolog->avg_window[ddir], data.val);
2408
2409 /*
2410 * If period hasn't passed, adding the above sample is all we
2411 * need to do.
2412 */
2413 this_window = elapsed - iolog->avg_last[ddir];
2414 if (elapsed < iolog->avg_last[ddir])
2415 return iolog->avg_last[ddir] - elapsed;
2416 else if (this_window < iolog->avg_msec) {
2417 unsigned long diff = iolog->avg_msec - this_window;
2418
2419 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2420 return diff;
2421 }
2422
2423 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2424
2425 iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2426 return iolog->avg_msec;
2427}
2428
2429void finalize_logs(struct thread_data *td, bool unit_logs)
2430{
2431 unsigned long elapsed;
2432
2433 elapsed = mtime_since_now(&td->epoch);
2434
2435 if (td->clat_log && unit_logs)
2436 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2437 if (td->slat_log && unit_logs)
2438 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2439 if (td->lat_log && unit_logs)
2440 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2441 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2442 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2443 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2444 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2445}
2446
2447void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2448{
2449 struct io_log *iolog;
2450
2451 if (!ddir_rw(ddir))
2452 return;
2453
2454 iolog = agg_io_log[ddir];
2455 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2456}
2457
2458void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2459{
2460 unsigned int idx = plat_val_to_idx(nsec);
2461 assert(idx < FIO_IO_U_PLAT_NR);
2462
2463 ts->io_u_sync_plat[idx]++;
2464 add_stat_sample(&ts->sync_stat, nsec);
2465}
2466
2467static void add_clat_percentile_sample(struct thread_stat *ts,
2468 unsigned long long nsec, enum fio_ddir ddir)
2469{
2470 unsigned int idx = plat_val_to_idx(nsec);
2471 assert(idx < FIO_IO_U_PLAT_NR);
2472
2473 ts->io_u_plat[ddir][idx]++;
2474}
2475
2476void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2477 unsigned long long nsec, unsigned long long bs,
2478 uint64_t offset)
2479{
2480 const bool needs_lock = td_async_processing(td);
2481 unsigned long elapsed, this_window;
2482 struct thread_stat *ts = &td->ts;
2483 struct io_log *iolog = td->clat_hist_log;
2484
2485 if (needs_lock)
2486 __td_io_u_lock(td);
2487
2488 add_stat_sample(&ts->clat_stat[ddir], nsec);
2489
2490 if (td->clat_log)
2491 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2492 offset);
2493
2494 if (ts->clat_percentiles)
2495 add_clat_percentile_sample(ts, nsec, ddir);
2496
2497 if (iolog && iolog->hist_msec) {
2498 struct io_hist *hw = &iolog->hist_window[ddir];
2499
2500 hw->samples++;
2501 elapsed = mtime_since_now(&td->epoch);
2502 if (!hw->hist_last)
2503 hw->hist_last = elapsed;
2504 this_window = elapsed - hw->hist_last;
2505
2506 if (this_window >= iolog->hist_msec) {
2507 uint64_t *io_u_plat;
2508 struct io_u_plat_entry *dst;
2509
2510 /*
2511 * Make a byte-for-byte copy of the latency histogram
2512 * stored in td->ts.io_u_plat[ddir], recording it in a
2513 * log sample. Note that the matching call to free() is
2514 * located in iolog.c after printing this sample to the
2515 * log file.
2516 */
2517 io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2518 dst = malloc(sizeof(struct io_u_plat_entry));
2519 memcpy(&(dst->io_u_plat), io_u_plat,
2520 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2521 flist_add(&dst->list, &hw->list);
2522 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2523 elapsed, offset);
2524
2525 /*
2526 * Update the last time we recorded as being now, minus
2527 * any drift in time we encountered before actually
2528 * making the record.
2529 */
2530 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2531 hw->samples = 0;
2532 }
2533 }
2534
2535 if (needs_lock)
2536 __td_io_u_unlock(td);
2537}
2538
2539void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2540 unsigned long usec, unsigned long long bs, uint64_t offset)
2541{
2542 const bool needs_lock = td_async_processing(td);
2543 struct thread_stat *ts = &td->ts;
2544
2545 if (!ddir_rw(ddir))
2546 return;
2547
2548 if (needs_lock)
2549 __td_io_u_lock(td);
2550
2551 add_stat_sample(&ts->slat_stat[ddir], usec);
2552
2553 if (td->slat_log)
2554 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2555
2556 if (needs_lock)
2557 __td_io_u_unlock(td);
2558}
2559
2560void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2561 unsigned long long nsec, unsigned long long bs,
2562 uint64_t offset)
2563{
2564 const bool needs_lock = td_async_processing(td);
2565 struct thread_stat *ts = &td->ts;
2566
2567 if (!ddir_rw(ddir))
2568 return;
2569
2570 if (needs_lock)
2571 __td_io_u_lock(td);
2572
2573 add_stat_sample(&ts->lat_stat[ddir], nsec);
2574
2575 if (td->lat_log)
2576 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2577 offset);
2578
2579 if (ts->lat_percentiles)
2580 add_clat_percentile_sample(ts, nsec, ddir);
2581
2582 if (needs_lock)
2583 __td_io_u_unlock(td);
2584}
2585
2586void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2587 unsigned int bytes, unsigned long long spent)
2588{
2589 const bool needs_lock = td_async_processing(td);
2590 struct thread_stat *ts = &td->ts;
2591 unsigned long rate;
2592
2593 if (spent)
2594 rate = (unsigned long) (bytes * 1000000ULL / spent);
2595 else
2596 rate = 0;
2597
2598 if (needs_lock)
2599 __td_io_u_lock(td);
2600
2601 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2602
2603 if (td->bw_log)
2604 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2605 bytes, io_u->offset);
2606
2607 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2608
2609 if (needs_lock)
2610 __td_io_u_unlock(td);
2611}
2612
2613static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2614 struct timespec *t, unsigned int avg_time,
2615 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2616 struct io_stat *stat, struct io_log *log,
2617 bool is_kb)
2618{
2619 const bool needs_lock = td_async_processing(td);
2620 unsigned long spent, rate;
2621 enum fio_ddir ddir;
2622 unsigned long next, next_log;
2623
2624 next_log = avg_time;
2625
2626 spent = mtime_since(parent_tv, t);
2627 if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2628 return avg_time - spent;
2629
2630 if (needs_lock)
2631 __td_io_u_lock(td);
2632
2633 /*
2634 * Compute both read and write rates for the interval.
2635 */
2636 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2637 uint64_t delta;
2638
2639 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2640 if (!delta)
2641 continue; /* No entries for interval */
2642
2643 if (spent) {
2644 if (is_kb)
2645 rate = delta * 1000 / spent / 1024; /* KiB/s */
2646 else
2647 rate = (delta * 1000) / spent;
2648 } else
2649 rate = 0;
2650
2651 add_stat_sample(&stat[ddir], rate);
2652
2653 if (log) {
2654 unsigned long long bs = 0;
2655
2656 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2657 bs = td->o.min_bs[ddir];
2658
2659 next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2660 next_log = min(next_log, next);
2661 }
2662
2663 stat_io_bytes[ddir] = this_io_bytes[ddir];
2664 }
2665
2666 timespec_add_msec(parent_tv, avg_time);
2667
2668 if (needs_lock)
2669 __td_io_u_unlock(td);
2670
2671 if (spent <= avg_time)
2672 next = avg_time;
2673 else
2674 next = avg_time - (1 + spent - avg_time);
2675
2676 return min(next, next_log);
2677}
2678
2679static int add_bw_samples(struct thread_data *td, struct timespec *t)
2680{
2681 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2682 td->this_io_bytes, td->stat_io_bytes,
2683 td->ts.bw_stat, td->bw_log, true);
2684}
2685
2686void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2687 unsigned int bytes)
2688{
2689 const bool needs_lock = td_async_processing(td);
2690 struct thread_stat *ts = &td->ts;
2691
2692 if (needs_lock)
2693 __td_io_u_lock(td);
2694
2695 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2696
2697 if (td->iops_log)
2698 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2699 bytes, io_u->offset);
2700
2701 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2702
2703 if (needs_lock)
2704 __td_io_u_unlock(td);
2705}
2706
2707static int add_iops_samples(struct thread_data *td, struct timespec *t)
2708{
2709 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2710 td->this_io_blocks, td->stat_io_blocks,
2711 td->ts.iops_stat, td->iops_log, false);
2712}
2713
2714/*
2715 * Returns msecs to next event
2716 */
2717int calc_log_samples(void)
2718{
2719 struct thread_data *td;
2720 unsigned int next = ~0U, tmp;
2721 struct timespec now;
2722 int i;
2723
2724 fio_gettime(&now, NULL);
2725
2726 for_each_td(td, i) {
2727 if (!td->o.stats)
2728 continue;
2729 if (in_ramp_time(td) ||
2730 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2731 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2732 continue;
2733 }
2734 if (!td->bw_log ||
2735 (td->bw_log && !per_unit_log(td->bw_log))) {
2736 tmp = add_bw_samples(td, &now);
2737 if (tmp < next)
2738 next = tmp;
2739 }
2740 if (!td->iops_log ||
2741 (td->iops_log && !per_unit_log(td->iops_log))) {
2742 tmp = add_iops_samples(td, &now);
2743 if (tmp < next)
2744 next = tmp;
2745 }
2746 }
2747
2748 return next == ~0U ? 0 : next;
2749}
2750
2751void stat_init(void)
2752{
2753 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
2754}
2755
2756void stat_exit(void)
2757{
2758 /*
2759 * When we have the mutex, we know out-of-band access to it
2760 * have ended.
2761 */
2762 fio_sem_down(stat_sem);
2763 fio_sem_remove(stat_sem);
2764}
2765
2766/*
2767 * Called from signal handler. Wake up status thread.
2768 */
2769void show_running_run_stats(void)
2770{
2771 helper_do_stat();
2772}
2773
2774uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2775{
2776 /* Ignore io_u's which span multiple blocks--they will just get
2777 * inaccurate counts. */
2778 int idx = (io_u->offset - io_u->file->file_offset)
2779 / td->o.bs[DDIR_TRIM];
2780 uint32_t *info = &td->ts.block_infos[idx];
2781 assert(idx < td->ts.nr_block_infos);
2782 return info;
2783}