io_u: don't do expensive int divide for buffer scramble
[fio.git] / io_u.c
... / ...
CommitLineData
1#include <unistd.h>
2#include <fcntl.h>
3#include <string.h>
4#include <signal.h>
5#include <time.h>
6#include <assert.h>
7
8#include "fio.h"
9#include "hash.h"
10#include "verify.h"
11#include "trim.h"
12#include "lib/rand.h"
13#include "lib/axmap.h"
14#include "err.h"
15#include "lib/pow2.h"
16#include "minmax.h"
17
18struct io_completion_data {
19 int nr; /* input */
20
21 int error; /* output */
22 uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
23 struct timespec time; /* output */
24};
25
26/*
27 * The ->io_axmap contains a map of blocks we have or have not done io
28 * to yet. Used to make sure we cover the entire range in a fair fashion.
29 */
30static bool random_map_free(struct fio_file *f, const uint64_t block)
31{
32 return !axmap_isset(f->io_axmap, block);
33}
34
35/*
36 * Mark a given offset as used in the map.
37 */
38static void mark_random_map(struct thread_data *td, struct io_u *io_u)
39{
40 unsigned int min_bs = td->o.min_bs[io_u->ddir];
41 struct fio_file *f = io_u->file;
42 unsigned int nr_blocks;
43 uint64_t block;
44
45 block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
46 nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
47
48 if (!(io_u->flags & IO_U_F_BUSY_OK))
49 nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
50
51 if ((nr_blocks * min_bs) < io_u->buflen)
52 io_u->buflen = nr_blocks * min_bs;
53}
54
55static uint64_t last_block(struct thread_data *td, struct fio_file *f,
56 enum fio_ddir ddir)
57{
58 uint64_t max_blocks;
59 uint64_t max_size;
60
61 assert(ddir_rw(ddir));
62
63 /*
64 * Hmm, should we make sure that ->io_size <= ->real_file_size?
65 * -> not for now since there is code assuming it could go either.
66 */
67 max_size = f->io_size;
68 if (max_size > f->real_file_size)
69 max_size = f->real_file_size;
70
71 if (td->o.zone_range)
72 max_size = td->o.zone_range;
73
74 if (td->o.min_bs[ddir] > td->o.ba[ddir])
75 max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
76
77 max_blocks = max_size / (uint64_t) td->o.ba[ddir];
78 if (!max_blocks)
79 return 0;
80
81 return max_blocks;
82}
83
84struct rand_off {
85 struct flist_head list;
86 uint64_t off;
87};
88
89static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
90 enum fio_ddir ddir, uint64_t *b,
91 uint64_t lastb)
92{
93 uint64_t r;
94
95 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
96 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
97
98 r = __rand(&td->random_state);
99
100 dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
101
102 *b = lastb * (r / (rand_max(&td->random_state) + 1.0));
103 } else {
104 uint64_t off = 0;
105
106 assert(fio_file_lfsr(f));
107
108 if (lfsr_next(&f->lfsr, &off))
109 return 1;
110
111 *b = off;
112 }
113
114 /*
115 * if we are not maintaining a random map, we are done.
116 */
117 if (!file_randommap(td, f))
118 goto ret;
119
120 /*
121 * calculate map offset and check if it's free
122 */
123 if (random_map_free(f, *b))
124 goto ret;
125
126 dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
127 (unsigned long long) *b);
128
129 *b = axmap_next_free(f->io_axmap, *b);
130 if (*b == (uint64_t) -1ULL)
131 return 1;
132ret:
133 return 0;
134}
135
136static int __get_next_rand_offset_zipf(struct thread_data *td,
137 struct fio_file *f, enum fio_ddir ddir,
138 uint64_t *b)
139{
140 *b = zipf_next(&f->zipf);
141 return 0;
142}
143
144static int __get_next_rand_offset_pareto(struct thread_data *td,
145 struct fio_file *f, enum fio_ddir ddir,
146 uint64_t *b)
147{
148 *b = pareto_next(&f->zipf);
149 return 0;
150}
151
152static int __get_next_rand_offset_gauss(struct thread_data *td,
153 struct fio_file *f, enum fio_ddir ddir,
154 uint64_t *b)
155{
156 *b = gauss_next(&f->gauss);
157 return 0;
158}
159
160static int __get_next_rand_offset_zoned_abs(struct thread_data *td,
161 struct fio_file *f,
162 enum fio_ddir ddir, uint64_t *b)
163{
164 struct zone_split_index *zsi;
165 uint64_t lastb, send, stotal;
166 static int warned;
167 unsigned int v;
168
169 lastb = last_block(td, f, ddir);
170 if (!lastb)
171 return 1;
172
173 if (!td->o.zone_split_nr[ddir]) {
174bail:
175 return __get_next_rand_offset(td, f, ddir, b, lastb);
176 }
177
178 /*
179 * Generate a value, v, between 1 and 100, both inclusive
180 */
181 v = rand32_between(&td->zone_state, 1, 100);
182
183 /*
184 * Find our generated table. 'send' is the end block of this zone,
185 * 'stotal' is our start offset.
186 */
187 zsi = &td->zone_state_index[ddir][v - 1];
188 stotal = zsi->size_prev / td->o.ba[ddir];
189 send = zsi->size / td->o.ba[ddir];
190
191 /*
192 * Should never happen
193 */
194 if (send == -1U) {
195 if (!warned) {
196 log_err("fio: bug in zoned generation\n");
197 warned = 1;
198 }
199 goto bail;
200 } else if (send > lastb) {
201 /*
202 * This happens if the user specifies ranges that exceed
203 * the file/device size. We can't handle that gracefully,
204 * so error and exit.
205 */
206 log_err("fio: zoned_abs sizes exceed file size\n");
207 return 1;
208 }
209
210 /*
211 * Generate index from 0..send-stotal
212 */
213 if (__get_next_rand_offset(td, f, ddir, b, send - stotal) == 1)
214 return 1;
215
216 *b += stotal;
217 return 0;
218}
219
220static int __get_next_rand_offset_zoned(struct thread_data *td,
221 struct fio_file *f, enum fio_ddir ddir,
222 uint64_t *b)
223{
224 unsigned int v, send, stotal;
225 uint64_t offset, lastb;
226 static int warned;
227 struct zone_split_index *zsi;
228
229 lastb = last_block(td, f, ddir);
230 if (!lastb)
231 return 1;
232
233 if (!td->o.zone_split_nr[ddir]) {
234bail:
235 return __get_next_rand_offset(td, f, ddir, b, lastb);
236 }
237
238 /*
239 * Generate a value, v, between 1 and 100, both inclusive
240 */
241 v = rand32_between(&td->zone_state, 1, 100);
242
243 zsi = &td->zone_state_index[ddir][v - 1];
244 stotal = zsi->size_perc_prev;
245 send = zsi->size_perc;
246
247 /*
248 * Should never happen
249 */
250 if (send == -1U) {
251 if (!warned) {
252 log_err("fio: bug in zoned generation\n");
253 warned = 1;
254 }
255 goto bail;
256 }
257
258 /*
259 * 'send' is some percentage below or equal to 100 that
260 * marks the end of the current IO range. 'stotal' marks
261 * the start, in percent.
262 */
263 if (stotal)
264 offset = stotal * lastb / 100ULL;
265 else
266 offset = 0;
267
268 lastb = lastb * (send - stotal) / 100ULL;
269
270 /*
271 * Generate index from 0..send-of-lastb
272 */
273 if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
274 return 1;
275
276 /*
277 * Add our start offset, if any
278 */
279 if (offset)
280 *b += offset;
281
282 return 0;
283}
284
285static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
286{
287 struct rand_off *r1 = flist_entry(a, struct rand_off, list);
288 struct rand_off *r2 = flist_entry(b, struct rand_off, list);
289
290 return r1->off - r2->off;
291}
292
293static int get_off_from_method(struct thread_data *td, struct fio_file *f,
294 enum fio_ddir ddir, uint64_t *b)
295{
296 if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
297 uint64_t lastb;
298
299 lastb = last_block(td, f, ddir);
300 if (!lastb)
301 return 1;
302
303 return __get_next_rand_offset(td, f, ddir, b, lastb);
304 } else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
305 return __get_next_rand_offset_zipf(td, f, ddir, b);
306 else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
307 return __get_next_rand_offset_pareto(td, f, ddir, b);
308 else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
309 return __get_next_rand_offset_gauss(td, f, ddir, b);
310 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
311 return __get_next_rand_offset_zoned(td, f, ddir, b);
312 else if (td->o.random_distribution == FIO_RAND_DIST_ZONED_ABS)
313 return __get_next_rand_offset_zoned_abs(td, f, ddir, b);
314
315 log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
316 return 1;
317}
318
319/*
320 * Sort the reads for a verify phase in batches of verifysort_nr, if
321 * specified.
322 */
323static inline bool should_sort_io(struct thread_data *td)
324{
325 if (!td->o.verifysort_nr || !td->o.do_verify)
326 return false;
327 if (!td_random(td))
328 return false;
329 if (td->runstate != TD_VERIFYING)
330 return false;
331 if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
332 td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
333 return false;
334
335 return true;
336}
337
338static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
339{
340 unsigned int v;
341
342 if (td->o.perc_rand[ddir] == 100)
343 return true;
344
345 v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
346
347 return v <= td->o.perc_rand[ddir];
348}
349
350static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
351 enum fio_ddir ddir, uint64_t *b)
352{
353 struct rand_off *r;
354 int i, ret = 1;
355
356 if (!should_sort_io(td))
357 return get_off_from_method(td, f, ddir, b);
358
359 if (!flist_empty(&td->next_rand_list)) {
360fetch:
361 r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
362 flist_del(&r->list);
363 *b = r->off;
364 free(r);
365 return 0;
366 }
367
368 for (i = 0; i < td->o.verifysort_nr; i++) {
369 r = malloc(sizeof(*r));
370
371 ret = get_off_from_method(td, f, ddir, &r->off);
372 if (ret) {
373 free(r);
374 break;
375 }
376
377 flist_add(&r->list, &td->next_rand_list);
378 }
379
380 if (ret && !i)
381 return ret;
382
383 assert(!flist_empty(&td->next_rand_list));
384 flist_sort(NULL, &td->next_rand_list, flist_cmp);
385 goto fetch;
386}
387
388static void loop_cache_invalidate(struct thread_data *td, struct fio_file *f)
389{
390 struct thread_options *o = &td->o;
391
392 if (o->invalidate_cache && !o->odirect) {
393 int fio_unused ret;
394
395 ret = file_invalidate_cache(td, f);
396 }
397}
398
399static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
400 enum fio_ddir ddir, uint64_t *b)
401{
402 if (!get_next_rand_offset(td, f, ddir, b))
403 return 0;
404
405 if (td->o.time_based ||
406 (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
407 fio_file_reset(td, f);
408 if (!get_next_rand_offset(td, f, ddir, b))
409 return 0;
410 loop_cache_invalidate(td, f);
411 }
412
413 dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
414 f->file_name, (unsigned long long) f->last_pos[ddir],
415 (unsigned long long) f->real_file_size);
416 return 1;
417}
418
419static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
420 enum fio_ddir ddir, uint64_t *offset)
421{
422 struct thread_options *o = &td->o;
423
424 assert(ddir_rw(ddir));
425
426 /*
427 * If we reach the end for a time based run, reset us back to 0
428 * and invalidate the cache, if we need to.
429 */
430 if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
431 o->time_based) {
432 f->last_pos[ddir] = f->file_offset;
433 loop_cache_invalidate(td, f);
434 }
435
436 if (f->last_pos[ddir] < f->real_file_size) {
437 uint64_t pos;
438
439 if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
440 if (f->real_file_size > f->io_size)
441 f->last_pos[ddir] = f->io_size;
442 else
443 f->last_pos[ddir] = f->real_file_size;
444 }
445
446 pos = f->last_pos[ddir] - f->file_offset;
447 if (pos && o->ddir_seq_add) {
448 pos += o->ddir_seq_add;
449
450 /*
451 * If we reach beyond the end of the file
452 * with holed IO, wrap around to the
453 * beginning again. If we're doing backwards IO,
454 * wrap to the end.
455 */
456 if (pos >= f->real_file_size) {
457 if (o->ddir_seq_add > 0)
458 pos = f->file_offset;
459 else {
460 if (f->real_file_size > f->io_size)
461 pos = f->io_size;
462 else
463 pos = f->real_file_size;
464
465 pos += o->ddir_seq_add;
466 }
467 }
468 }
469
470 *offset = pos;
471 return 0;
472 }
473
474 return 1;
475}
476
477static int get_next_block(struct thread_data *td, struct io_u *io_u,
478 enum fio_ddir ddir, int rw_seq,
479 unsigned int *is_random)
480{
481 struct fio_file *f = io_u->file;
482 uint64_t b, offset;
483 int ret;
484
485 assert(ddir_rw(ddir));
486
487 b = offset = -1ULL;
488
489 if (rw_seq) {
490 if (td_random(td)) {
491 if (should_do_random(td, ddir)) {
492 ret = get_next_rand_block(td, f, ddir, &b);
493 *is_random = 1;
494 } else {
495 *is_random = 0;
496 io_u_set(td, io_u, IO_U_F_BUSY_OK);
497 ret = get_next_seq_offset(td, f, ddir, &offset);
498 if (ret)
499 ret = get_next_rand_block(td, f, ddir, &b);
500 }
501 } else {
502 *is_random = 0;
503 ret = get_next_seq_offset(td, f, ddir, &offset);
504 }
505 } else {
506 io_u_set(td, io_u, IO_U_F_BUSY_OK);
507 *is_random = 0;
508
509 if (td->o.rw_seq == RW_SEQ_SEQ) {
510 ret = get_next_seq_offset(td, f, ddir, &offset);
511 if (ret) {
512 ret = get_next_rand_block(td, f, ddir, &b);
513 *is_random = 0;
514 }
515 } else if (td->o.rw_seq == RW_SEQ_IDENT) {
516 if (f->last_start[ddir] != -1ULL)
517 offset = f->last_start[ddir] - f->file_offset;
518 else
519 offset = 0;
520 ret = 0;
521 } else {
522 log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
523 ret = 1;
524 }
525 }
526
527 if (!ret) {
528 if (offset != -1ULL)
529 io_u->offset = offset;
530 else if (b != -1ULL)
531 io_u->offset = b * td->o.ba[ddir];
532 else {
533 log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
534 ret = 1;
535 }
536 }
537
538 return ret;
539}
540
541/*
542 * For random io, generate a random new block and see if it's used. Repeat
543 * until we find a free one. For sequential io, just return the end of
544 * the last io issued.
545 */
546static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
547 unsigned int *is_random)
548{
549 struct fio_file *f = io_u->file;
550 enum fio_ddir ddir = io_u->ddir;
551 int rw_seq_hit = 0;
552
553 assert(ddir_rw(ddir));
554
555 if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
556 rw_seq_hit = 1;
557 td->ddir_seq_nr = td->o.ddir_seq_nr;
558 }
559
560 if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
561 return 1;
562
563 if (io_u->offset >= f->io_size) {
564 dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
565 (unsigned long long) io_u->offset,
566 (unsigned long long) f->io_size);
567 return 1;
568 }
569
570 io_u->offset += f->file_offset;
571 if (io_u->offset >= f->real_file_size) {
572 dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
573 (unsigned long long) io_u->offset,
574 (unsigned long long) f->real_file_size);
575 return 1;
576 }
577
578 return 0;
579}
580
581static int get_next_offset(struct thread_data *td, struct io_u *io_u,
582 unsigned int *is_random)
583{
584 if (td->flags & TD_F_PROFILE_OPS) {
585 struct prof_io_ops *ops = &td->prof_io_ops;
586
587 if (ops->fill_io_u_off)
588 return ops->fill_io_u_off(td, io_u, is_random);
589 }
590
591 return __get_next_offset(td, io_u, is_random);
592}
593
594static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
595 unsigned int buflen)
596{
597 struct fio_file *f = io_u->file;
598
599 return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
600}
601
602static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
603 unsigned int is_random)
604{
605 int ddir = io_u->ddir;
606 unsigned int buflen = 0;
607 unsigned int minbs, maxbs;
608 uint64_t frand_max, r;
609 bool power_2;
610
611 assert(ddir_rw(ddir));
612
613 if (td->o.bs_is_seq_rand)
614 ddir = is_random ? DDIR_WRITE: DDIR_READ;
615
616 minbs = td->o.min_bs[ddir];
617 maxbs = td->o.max_bs[ddir];
618
619 if (minbs == maxbs)
620 return minbs;
621
622 /*
623 * If we can't satisfy the min block size from here, then fail
624 */
625 if (!io_u_fits(td, io_u, minbs))
626 return 0;
627
628 frand_max = rand_max(&td->bsrange_state[ddir]);
629 do {
630 r = __rand(&td->bsrange_state[ddir]);
631
632 if (!td->o.bssplit_nr[ddir]) {
633 buflen = 1 + (unsigned int) ((double) maxbs *
634 (r / (frand_max + 1.0)));
635 if (buflen < minbs)
636 buflen = minbs;
637 } else {
638 long long perc = 0;
639 unsigned int i;
640
641 for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
642 struct bssplit *bsp = &td->o.bssplit[ddir][i];
643
644 buflen = bsp->bs;
645 perc += bsp->perc;
646 if (!perc)
647 break;
648 if ((r / perc <= frand_max / 100ULL) &&
649 io_u_fits(td, io_u, buflen))
650 break;
651 }
652 }
653
654 power_2 = is_power_of_2(minbs);
655 if (!td->o.bs_unaligned && power_2)
656 buflen &= ~(minbs - 1);
657 else if (!td->o.bs_unaligned && !power_2)
658 buflen -= buflen % minbs;
659 } while (!io_u_fits(td, io_u, buflen));
660
661 return buflen;
662}
663
664static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
665 unsigned int is_random)
666{
667 if (td->flags & TD_F_PROFILE_OPS) {
668 struct prof_io_ops *ops = &td->prof_io_ops;
669
670 if (ops->fill_io_u_size)
671 return ops->fill_io_u_size(td, io_u, is_random);
672 }
673
674 return __get_next_buflen(td, io_u, is_random);
675}
676
677static void set_rwmix_bytes(struct thread_data *td)
678{
679 unsigned int diff;
680
681 /*
682 * we do time or byte based switch. this is needed because
683 * buffered writes may issue a lot quicker than they complete,
684 * whereas reads do not.
685 */
686 diff = td->o.rwmix[td->rwmix_ddir ^ 1];
687 td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
688}
689
690static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
691{
692 unsigned int v;
693
694 v = rand32_between(&td->rwmix_state, 1, 100);
695
696 if (v <= td->o.rwmix[DDIR_READ])
697 return DDIR_READ;
698
699 return DDIR_WRITE;
700}
701
702int io_u_quiesce(struct thread_data *td)
703{
704 int completed = 0;
705
706 /*
707 * We are going to sleep, ensure that we flush anything pending as
708 * not to skew our latency numbers.
709 *
710 * Changed to only monitor 'in flight' requests here instead of the
711 * td->cur_depth, b/c td->cur_depth does not accurately represent
712 * io's that have been actually submitted to an async engine,
713 * and cur_depth is meaningless for sync engines.
714 */
715 if (td->io_u_queued || td->cur_depth) {
716 int fio_unused ret;
717
718 ret = td_io_commit(td);
719 }
720
721 while (td->io_u_in_flight) {
722 int ret;
723
724 ret = io_u_queued_complete(td, 1);
725 if (ret > 0)
726 completed += ret;
727 }
728
729 if (td->flags & TD_F_REGROW_LOGS)
730 regrow_logs(td);
731
732 return completed;
733}
734
735static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
736{
737 enum fio_ddir odir = ddir ^ 1;
738 uint64_t usec;
739 uint64_t now;
740
741 assert(ddir_rw(ddir));
742 now = utime_since_now(&td->start);
743
744 /*
745 * if rate_next_io_time is in the past, need to catch up to rate
746 */
747 if (td->rate_next_io_time[ddir] <= now)
748 return ddir;
749
750 /*
751 * We are ahead of rate in this direction. See if we
752 * should switch.
753 */
754 if (td_rw(td) && td->o.rwmix[odir]) {
755 /*
756 * Other direction is behind rate, switch
757 */
758 if (td->rate_next_io_time[odir] <= now)
759 return odir;
760
761 /*
762 * Both directions are ahead of rate. sleep the min
763 * switch if necissary
764 */
765 if (td->rate_next_io_time[ddir] <=
766 td->rate_next_io_time[odir]) {
767 usec = td->rate_next_io_time[ddir] - now;
768 } else {
769 usec = td->rate_next_io_time[odir] - now;
770 ddir = odir;
771 }
772 } else
773 usec = td->rate_next_io_time[ddir] - now;
774
775 if (td->o.io_submit_mode == IO_MODE_INLINE)
776 io_u_quiesce(td);
777
778 usec = usec_sleep(td, usec);
779
780 return ddir;
781}
782
783/*
784 * Return the data direction for the next io_u. If the job is a
785 * mixed read/write workload, check the rwmix cycle and switch if
786 * necessary.
787 */
788static enum fio_ddir get_rw_ddir(struct thread_data *td)
789{
790 enum fio_ddir ddir;
791
792 /*
793 * See if it's time to fsync/fdatasync/sync_file_range first,
794 * and if not then move on to check regular I/Os.
795 */
796 if (should_fsync(td)) {
797 if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
798 !(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
799 return DDIR_SYNC;
800
801 if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
802 !(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
803 return DDIR_DATASYNC;
804
805 if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
806 !(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
807 return DDIR_SYNC_FILE_RANGE;
808 }
809
810 if (td_rw(td)) {
811 /*
812 * Check if it's time to seed a new data direction.
813 */
814 if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
815 /*
816 * Put a top limit on how many bytes we do for
817 * one data direction, to avoid overflowing the
818 * ranges too much
819 */
820 ddir = get_rand_ddir(td);
821
822 if (ddir != td->rwmix_ddir)
823 set_rwmix_bytes(td);
824
825 td->rwmix_ddir = ddir;
826 }
827 ddir = td->rwmix_ddir;
828 } else if (td_read(td))
829 ddir = DDIR_READ;
830 else if (td_write(td))
831 ddir = DDIR_WRITE;
832 else if (td_trim(td))
833 ddir = DDIR_TRIM;
834 else
835 ddir = DDIR_INVAL;
836
837 td->rwmix_ddir = rate_ddir(td, ddir);
838 return td->rwmix_ddir;
839}
840
841static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
842{
843 enum fio_ddir ddir = get_rw_ddir(td);
844
845 if (td_trimwrite(td)) {
846 struct fio_file *f = io_u->file;
847 if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
848 ddir = DDIR_TRIM;
849 else
850 ddir = DDIR_WRITE;
851 }
852
853 io_u->ddir = io_u->acct_ddir = ddir;
854
855 if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
856 td->o.barrier_blocks &&
857 !(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
858 td->io_issues[DDIR_WRITE])
859 io_u_set(td, io_u, IO_U_F_BARRIER);
860}
861
862void put_file_log(struct thread_data *td, struct fio_file *f)
863{
864 unsigned int ret = put_file(td, f);
865
866 if (ret)
867 td_verror(td, ret, "file close");
868}
869
870void put_io_u(struct thread_data *td, struct io_u *io_u)
871{
872 if (td->parent)
873 td = td->parent;
874
875 td_io_u_lock(td);
876
877 if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
878 put_file_log(td, io_u->file);
879
880 io_u->file = NULL;
881 io_u_set(td, io_u, IO_U_F_FREE);
882
883 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
884 td->cur_depth--;
885 assert(!(td->flags & TD_F_CHILD));
886 }
887 io_u_qpush(&td->io_u_freelist, io_u);
888 td_io_u_unlock(td);
889 td_io_u_free_notify(td);
890}
891
892void clear_io_u(struct thread_data *td, struct io_u *io_u)
893{
894 io_u_clear(td, io_u, IO_U_F_FLIGHT);
895 put_io_u(td, io_u);
896}
897
898void requeue_io_u(struct thread_data *td, struct io_u **io_u)
899{
900 struct io_u *__io_u = *io_u;
901 enum fio_ddir ddir = acct_ddir(__io_u);
902
903 dprint(FD_IO, "requeue %p\n", __io_u);
904
905 if (td->parent)
906 td = td->parent;
907
908 td_io_u_lock(td);
909
910 io_u_set(td, __io_u, IO_U_F_FREE);
911 if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
912 td->io_issues[ddir]--;
913
914 io_u_clear(td, __io_u, IO_U_F_FLIGHT);
915 if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
916 td->cur_depth--;
917 assert(!(td->flags & TD_F_CHILD));
918 }
919
920 io_u_rpush(&td->io_u_requeues, __io_u);
921 td_io_u_unlock(td);
922 td_io_u_free_notify(td);
923 *io_u = NULL;
924}
925
926static int fill_io_u(struct thread_data *td, struct io_u *io_u)
927{
928 unsigned int is_random;
929
930 if (td_ioengine_flagged(td, FIO_NOIO))
931 goto out;
932
933 set_rw_ddir(td, io_u);
934
935 /*
936 * fsync() or fdatasync() or trim etc, we are done
937 */
938 if (!ddir_rw(io_u->ddir))
939 goto out;
940
941 /*
942 * See if it's time to switch to a new zone
943 */
944 if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
945 struct fio_file *f = io_u->file;
946
947 td->zone_bytes = 0;
948 f->file_offset += td->o.zone_range + td->o.zone_skip;
949
950 /*
951 * Wrap from the beginning, if we exceed the file size
952 */
953 if (f->file_offset >= f->real_file_size)
954 f->file_offset = f->real_file_size - f->file_offset;
955 f->last_pos[io_u->ddir] = f->file_offset;
956 td->io_skip_bytes += td->o.zone_skip;
957 }
958
959 /*
960 * No log, let the seq/rand engine retrieve the next buflen and
961 * position.
962 */
963 if (get_next_offset(td, io_u, &is_random)) {
964 dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
965 return 1;
966 }
967
968 io_u->buflen = get_next_buflen(td, io_u, is_random);
969 if (!io_u->buflen) {
970 dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
971 return 1;
972 }
973
974 if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
975 dprint(FD_IO, "io_u %p, offset + buflen exceeds file size\n",
976 io_u);
977 dprint(FD_IO, " offset=%llu/buflen=%lu > %llu\n",
978 (unsigned long long) io_u->offset, io_u->buflen,
979 (unsigned long long) io_u->file->real_file_size);
980 return 1;
981 }
982
983 /*
984 * mark entry before potentially trimming io_u
985 */
986 if (td_random(td) && file_randommap(td, io_u->file))
987 mark_random_map(td, io_u);
988
989out:
990 dprint_io_u(io_u, "fill_io_u");
991 td->zone_bytes += io_u->buflen;
992 return 0;
993}
994
995static void __io_u_mark_map(unsigned int *map, unsigned int nr)
996{
997 int idx = 0;
998
999 switch (nr) {
1000 default:
1001 idx = 6;
1002 break;
1003 case 33 ... 64:
1004 idx = 5;
1005 break;
1006 case 17 ... 32:
1007 idx = 4;
1008 break;
1009 case 9 ... 16:
1010 idx = 3;
1011 break;
1012 case 5 ... 8:
1013 idx = 2;
1014 break;
1015 case 1 ... 4:
1016 idx = 1;
1017 case 0:
1018 break;
1019 }
1020
1021 map[idx]++;
1022}
1023
1024void io_u_mark_submit(struct thread_data *td, unsigned int nr)
1025{
1026 __io_u_mark_map(td->ts.io_u_submit, nr);
1027 td->ts.total_submit++;
1028}
1029
1030void io_u_mark_complete(struct thread_data *td, unsigned int nr)
1031{
1032 __io_u_mark_map(td->ts.io_u_complete, nr);
1033 td->ts.total_complete++;
1034}
1035
1036void io_u_mark_depth(struct thread_data *td, unsigned int nr)
1037{
1038 int idx = 0;
1039
1040 switch (td->cur_depth) {
1041 default:
1042 idx = 6;
1043 break;
1044 case 32 ... 63:
1045 idx = 5;
1046 break;
1047 case 16 ... 31:
1048 idx = 4;
1049 break;
1050 case 8 ... 15:
1051 idx = 3;
1052 break;
1053 case 4 ... 7:
1054 idx = 2;
1055 break;
1056 case 2 ... 3:
1057 idx = 1;
1058 case 1:
1059 break;
1060 }
1061
1062 td->ts.io_u_map[idx] += nr;
1063}
1064
1065static void io_u_mark_lat_nsec(struct thread_data *td, unsigned long long nsec)
1066{
1067 int idx = 0;
1068
1069 assert(nsec < 1000);
1070
1071 switch (nsec) {
1072 case 750 ... 999:
1073 idx = 9;
1074 break;
1075 case 500 ... 749:
1076 idx = 8;
1077 break;
1078 case 250 ... 499:
1079 idx = 7;
1080 break;
1081 case 100 ... 249:
1082 idx = 6;
1083 break;
1084 case 50 ... 99:
1085 idx = 5;
1086 break;
1087 case 20 ... 49:
1088 idx = 4;
1089 break;
1090 case 10 ... 19:
1091 idx = 3;
1092 break;
1093 case 4 ... 9:
1094 idx = 2;
1095 break;
1096 case 2 ... 3:
1097 idx = 1;
1098 case 0 ... 1:
1099 break;
1100 }
1101
1102 assert(idx < FIO_IO_U_LAT_N_NR);
1103 td->ts.io_u_lat_n[idx]++;
1104}
1105
1106static void io_u_mark_lat_usec(struct thread_data *td, unsigned long long usec)
1107{
1108 int idx = 0;
1109
1110 assert(usec < 1000 && usec >= 1);
1111
1112 switch (usec) {
1113 case 750 ... 999:
1114 idx = 9;
1115 break;
1116 case 500 ... 749:
1117 idx = 8;
1118 break;
1119 case 250 ... 499:
1120 idx = 7;
1121 break;
1122 case 100 ... 249:
1123 idx = 6;
1124 break;
1125 case 50 ... 99:
1126 idx = 5;
1127 break;
1128 case 20 ... 49:
1129 idx = 4;
1130 break;
1131 case 10 ... 19:
1132 idx = 3;
1133 break;
1134 case 4 ... 9:
1135 idx = 2;
1136 break;
1137 case 2 ... 3:
1138 idx = 1;
1139 case 0 ... 1:
1140 break;
1141 }
1142
1143 assert(idx < FIO_IO_U_LAT_U_NR);
1144 td->ts.io_u_lat_u[idx]++;
1145}
1146
1147static void io_u_mark_lat_msec(struct thread_data *td, unsigned long long msec)
1148{
1149 int idx = 0;
1150
1151 assert(msec >= 1);
1152
1153 switch (msec) {
1154 default:
1155 idx = 11;
1156 break;
1157 case 1000 ... 1999:
1158 idx = 10;
1159 break;
1160 case 750 ... 999:
1161 idx = 9;
1162 break;
1163 case 500 ... 749:
1164 idx = 8;
1165 break;
1166 case 250 ... 499:
1167 idx = 7;
1168 break;
1169 case 100 ... 249:
1170 idx = 6;
1171 break;
1172 case 50 ... 99:
1173 idx = 5;
1174 break;
1175 case 20 ... 49:
1176 idx = 4;
1177 break;
1178 case 10 ... 19:
1179 idx = 3;
1180 break;
1181 case 4 ... 9:
1182 idx = 2;
1183 break;
1184 case 2 ... 3:
1185 idx = 1;
1186 case 0 ... 1:
1187 break;
1188 }
1189
1190 assert(idx < FIO_IO_U_LAT_M_NR);
1191 td->ts.io_u_lat_m[idx]++;
1192}
1193
1194static void io_u_mark_latency(struct thread_data *td, unsigned long long nsec)
1195{
1196 if (nsec < 1000)
1197 io_u_mark_lat_nsec(td, nsec);
1198 else if (nsec < 1000000)
1199 io_u_mark_lat_usec(td, nsec / 1000);
1200 else
1201 io_u_mark_lat_msec(td, nsec / 1000000);
1202}
1203
1204static unsigned int __get_next_fileno_rand(struct thread_data *td)
1205{
1206 unsigned long fileno;
1207
1208 if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
1209 uint64_t frand_max = rand_max(&td->next_file_state);
1210 unsigned long r;
1211
1212 r = __rand(&td->next_file_state);
1213 return (unsigned int) ((double) td->o.nr_files
1214 * (r / (frand_max + 1.0)));
1215 }
1216
1217 if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
1218 fileno = zipf_next(&td->next_file_zipf);
1219 else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
1220 fileno = pareto_next(&td->next_file_zipf);
1221 else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
1222 fileno = gauss_next(&td->next_file_gauss);
1223 else {
1224 log_err("fio: bad file service type: %d\n", td->o.file_service_type);
1225 assert(0);
1226 return 0;
1227 }
1228
1229 return fileno >> FIO_FSERVICE_SHIFT;
1230}
1231
1232/*
1233 * Get next file to service by choosing one at random
1234 */
1235static struct fio_file *get_next_file_rand(struct thread_data *td,
1236 enum fio_file_flags goodf,
1237 enum fio_file_flags badf)
1238{
1239 struct fio_file *f;
1240 int fno;
1241
1242 do {
1243 int opened = 0;
1244
1245 fno = __get_next_fileno_rand(td);
1246
1247 f = td->files[fno];
1248 if (fio_file_done(f))
1249 continue;
1250
1251 if (!fio_file_open(f)) {
1252 int err;
1253
1254 if (td->nr_open_files >= td->o.open_files)
1255 return ERR_PTR(-EBUSY);
1256
1257 err = td_io_open_file(td, f);
1258 if (err)
1259 continue;
1260 opened = 1;
1261 }
1262
1263 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
1264 dprint(FD_FILE, "get_next_file_rand: %p\n", f);
1265 return f;
1266 }
1267 if (opened)
1268 td_io_close_file(td, f);
1269 } while (1);
1270}
1271
1272/*
1273 * Get next file to service by doing round robin between all available ones
1274 */
1275static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
1276 int badf)
1277{
1278 unsigned int old_next_file = td->next_file;
1279 struct fio_file *f;
1280
1281 do {
1282 int opened = 0;
1283
1284 f = td->files[td->next_file];
1285
1286 td->next_file++;
1287 if (td->next_file >= td->o.nr_files)
1288 td->next_file = 0;
1289
1290 dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
1291 if (fio_file_done(f)) {
1292 f = NULL;
1293 continue;
1294 }
1295
1296 if (!fio_file_open(f)) {
1297 int err;
1298
1299 if (td->nr_open_files >= td->o.open_files)
1300 return ERR_PTR(-EBUSY);
1301
1302 err = td_io_open_file(td, f);
1303 if (err) {
1304 dprint(FD_FILE, "error %d on open of %s\n",
1305 err, f->file_name);
1306 f = NULL;
1307 continue;
1308 }
1309 opened = 1;
1310 }
1311
1312 dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
1313 f->flags);
1314 if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
1315 break;
1316
1317 if (opened)
1318 td_io_close_file(td, f);
1319
1320 f = NULL;
1321 } while (td->next_file != old_next_file);
1322
1323 dprint(FD_FILE, "get_next_file_rr: %p\n", f);
1324 return f;
1325}
1326
1327static struct fio_file *__get_next_file(struct thread_data *td)
1328{
1329 struct fio_file *f;
1330
1331 assert(td->o.nr_files <= td->files_index);
1332
1333 if (td->nr_done_files >= td->o.nr_files) {
1334 dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
1335 " nr_files=%d\n", td->nr_open_files,
1336 td->nr_done_files,
1337 td->o.nr_files);
1338 return NULL;
1339 }
1340
1341 f = td->file_service_file;
1342 if (f && fio_file_open(f) && !fio_file_closing(f)) {
1343 if (td->o.file_service_type == FIO_FSERVICE_SEQ)
1344 goto out;
1345 if (td->file_service_left--)
1346 goto out;
1347 }
1348
1349 if (td->o.file_service_type == FIO_FSERVICE_RR ||
1350 td->o.file_service_type == FIO_FSERVICE_SEQ)
1351 f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
1352 else
1353 f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
1354
1355 if (IS_ERR(f))
1356 return f;
1357
1358 td->file_service_file = f;
1359 td->file_service_left = td->file_service_nr - 1;
1360out:
1361 if (f)
1362 dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
1363 else
1364 dprint(FD_FILE, "get_next_file: NULL\n");
1365 return f;
1366}
1367
1368static struct fio_file *get_next_file(struct thread_data *td)
1369{
1370 if (td->flags & TD_F_PROFILE_OPS) {
1371 struct prof_io_ops *ops = &td->prof_io_ops;
1372
1373 if (ops->get_next_file)
1374 return ops->get_next_file(td);
1375 }
1376
1377 return __get_next_file(td);
1378}
1379
1380static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
1381{
1382 struct fio_file *f;
1383
1384 do {
1385 f = get_next_file(td);
1386 if (IS_ERR_OR_NULL(f))
1387 return PTR_ERR(f);
1388
1389 io_u->file = f;
1390 get_file(f);
1391
1392 if (!fill_io_u(td, io_u))
1393 break;
1394
1395 put_file_log(td, f);
1396 td_io_close_file(td, f);
1397 io_u->file = NULL;
1398 if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
1399 fio_file_reset(td, f);
1400 else {
1401 fio_file_set_done(f);
1402 td->nr_done_files++;
1403 dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
1404 td->nr_done_files, td->o.nr_files);
1405 }
1406 } while (1);
1407
1408 return 0;
1409}
1410
1411static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
1412 unsigned long tusec, unsigned long max_usec)
1413{
1414 if (!td->error)
1415 log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
1416 td_verror(td, ETIMEDOUT, "max latency exceeded");
1417 icd->error = ETIMEDOUT;
1418}
1419
1420static void lat_new_cycle(struct thread_data *td)
1421{
1422 fio_gettime(&td->latency_ts, NULL);
1423 td->latency_ios = ddir_rw_sum(td->io_blocks);
1424 td->latency_failed = 0;
1425}
1426
1427/*
1428 * We had an IO outside the latency target. Reduce the queue depth. If we
1429 * are at QD=1, then it's time to give up.
1430 */
1431static bool __lat_target_failed(struct thread_data *td)
1432{
1433 if (td->latency_qd == 1)
1434 return true;
1435
1436 td->latency_qd_high = td->latency_qd;
1437
1438 if (td->latency_qd == td->latency_qd_low)
1439 td->latency_qd_low--;
1440
1441 td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
1442
1443 dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1444
1445 /*
1446 * When we ramp QD down, quiesce existing IO to prevent
1447 * a storm of ramp downs due to pending higher depth.
1448 */
1449 io_u_quiesce(td);
1450 lat_new_cycle(td);
1451 return false;
1452}
1453
1454static bool lat_target_failed(struct thread_data *td)
1455{
1456 if (td->o.latency_percentile.u.f == 100.0)
1457 return __lat_target_failed(td);
1458
1459 td->latency_failed++;
1460 return false;
1461}
1462
1463void lat_target_init(struct thread_data *td)
1464{
1465 td->latency_end_run = 0;
1466
1467 if (td->o.latency_target) {
1468 dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
1469 fio_gettime(&td->latency_ts, NULL);
1470 td->latency_qd = 1;
1471 td->latency_qd_high = td->o.iodepth;
1472 td->latency_qd_low = 1;
1473 td->latency_ios = ddir_rw_sum(td->io_blocks);
1474 } else
1475 td->latency_qd = td->o.iodepth;
1476}
1477
1478void lat_target_reset(struct thread_data *td)
1479{
1480 if (!td->latency_end_run)
1481 lat_target_init(td);
1482}
1483
1484static void lat_target_success(struct thread_data *td)
1485{
1486 const unsigned int qd = td->latency_qd;
1487 struct thread_options *o = &td->o;
1488
1489 td->latency_qd_low = td->latency_qd;
1490
1491 /*
1492 * If we haven't failed yet, we double up to a failing value instead
1493 * of bisecting from highest possible queue depth. If we have set
1494 * a limit other than td->o.iodepth, bisect between that.
1495 */
1496 if (td->latency_qd_high != o->iodepth)
1497 td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
1498 else
1499 td->latency_qd *= 2;
1500
1501 if (td->latency_qd > o->iodepth)
1502 td->latency_qd = o->iodepth;
1503
1504 dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
1505
1506 /*
1507 * Same as last one, we are done. Let it run a latency cycle, so
1508 * we get only the results from the targeted depth.
1509 */
1510 if (td->latency_qd == qd) {
1511 if (td->latency_end_run) {
1512 dprint(FD_RATE, "We are done\n");
1513 td->done = 1;
1514 } else {
1515 dprint(FD_RATE, "Quiesce and final run\n");
1516 io_u_quiesce(td);
1517 td->latency_end_run = 1;
1518 reset_all_stats(td);
1519 reset_io_stats(td);
1520 }
1521 }
1522
1523 lat_new_cycle(td);
1524}
1525
1526/*
1527 * Check if we can bump the queue depth
1528 */
1529void lat_target_check(struct thread_data *td)
1530{
1531 uint64_t usec_window;
1532 uint64_t ios;
1533 double success_ios;
1534
1535 usec_window = utime_since_now(&td->latency_ts);
1536 if (usec_window < td->o.latency_window)
1537 return;
1538
1539 ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
1540 success_ios = (double) (ios - td->latency_failed) / (double) ios;
1541 success_ios *= 100.0;
1542
1543 dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
1544
1545 if (success_ios >= td->o.latency_percentile.u.f)
1546 lat_target_success(td);
1547 else
1548 __lat_target_failed(td);
1549}
1550
1551/*
1552 * If latency target is enabled, we might be ramping up or down and not
1553 * using the full queue depth available.
1554 */
1555bool queue_full(const struct thread_data *td)
1556{
1557 const int qempty = io_u_qempty(&td->io_u_freelist);
1558
1559 if (qempty)
1560 return true;
1561 if (!td->o.latency_target)
1562 return false;
1563
1564 return td->cur_depth >= td->latency_qd;
1565}
1566
1567struct io_u *__get_io_u(struct thread_data *td)
1568{
1569 struct io_u *io_u = NULL;
1570
1571 if (td->stop_io)
1572 return NULL;
1573
1574 td_io_u_lock(td);
1575
1576again:
1577 if (!io_u_rempty(&td->io_u_requeues))
1578 io_u = io_u_rpop(&td->io_u_requeues);
1579 else if (!queue_full(td)) {
1580 io_u = io_u_qpop(&td->io_u_freelist);
1581
1582 io_u->file = NULL;
1583 io_u->buflen = 0;
1584 io_u->resid = 0;
1585 io_u->end_io = NULL;
1586 }
1587
1588 if (io_u) {
1589 assert(io_u->flags & IO_U_F_FREE);
1590 io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
1591 IO_U_F_TRIMMED | IO_U_F_BARRIER |
1592 IO_U_F_VER_LIST);
1593
1594 io_u->error = 0;
1595 io_u->acct_ddir = -1;
1596 td->cur_depth++;
1597 assert(!(td->flags & TD_F_CHILD));
1598 io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
1599 io_u->ipo = NULL;
1600 } else if (td_async_processing(td)) {
1601 /*
1602 * We ran out, wait for async verify threads to finish and
1603 * return one
1604 */
1605 assert(!(td->flags & TD_F_CHILD));
1606 assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
1607 goto again;
1608 }
1609
1610 td_io_u_unlock(td);
1611 return io_u;
1612}
1613
1614static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
1615{
1616 if (!(td->flags & TD_F_TRIM_BACKLOG))
1617 return false;
1618
1619 if (td->trim_entries) {
1620 int get_trim = 0;
1621
1622 if (td->trim_batch) {
1623 td->trim_batch--;
1624 get_trim = 1;
1625 } else if (!(td->io_hist_len % td->o.trim_backlog) &&
1626 td->last_ddir != DDIR_READ) {
1627 td->trim_batch = td->o.trim_batch;
1628 if (!td->trim_batch)
1629 td->trim_batch = td->o.trim_backlog;
1630 get_trim = 1;
1631 }
1632
1633 if (get_trim && get_next_trim(td, io_u))
1634 return true;
1635 }
1636
1637 return false;
1638}
1639
1640static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
1641{
1642 if (!(td->flags & TD_F_VER_BACKLOG))
1643 return false;
1644
1645 if (td->io_hist_len) {
1646 int get_verify = 0;
1647
1648 if (td->verify_batch)
1649 get_verify = 1;
1650 else if (!(td->io_hist_len % td->o.verify_backlog) &&
1651 td->last_ddir != DDIR_READ) {
1652 td->verify_batch = td->o.verify_batch;
1653 if (!td->verify_batch)
1654 td->verify_batch = td->o.verify_backlog;
1655 get_verify = 1;
1656 }
1657
1658 if (get_verify && !get_next_verify(td, io_u)) {
1659 td->verify_batch--;
1660 return true;
1661 }
1662 }
1663
1664 return false;
1665}
1666
1667/*
1668 * Fill offset and start time into the buffer content, to prevent too
1669 * easy compressible data for simple de-dupe attempts. Do this for every
1670 * 512b block in the range, since that should be the smallest block size
1671 * we can expect from a device.
1672 */
1673static void small_content_scramble(struct io_u *io_u)
1674{
1675 unsigned int i, nr_blocks = io_u->buflen / 512;
1676 uint64_t boffset, usec;
1677 unsigned int offset;
1678 char *p, *end;
1679
1680 if (!nr_blocks)
1681 return;
1682
1683 p = io_u->xfer_buf;
1684 boffset = io_u->offset;
1685 io_u->buf_filled_len = 0;
1686
1687 /* close enough for this purpose */
1688 usec = io_u->start_time.tv_nsec >> 10;
1689
1690 for (i = 0; i < nr_blocks; i++) {
1691 /*
1692 * Fill the byte offset into a "random" start offset of
1693 * the buffer, given by the product of the usec time
1694 * and the actual offset.
1695 */
1696 offset = (usec ^ boffset) & 511;
1697 offset &= ~(sizeof(uint64_t) - 1);
1698 if (offset >= 512 - sizeof(uint64_t))
1699 offset -= sizeof(uint64_t);
1700 memcpy(p + offset, &boffset, sizeof(boffset));
1701
1702 end = p + 512 - sizeof(io_u->start_time);
1703 memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
1704 p += 512;
1705 boffset += 512;
1706 }
1707}
1708
1709/*
1710 * Return an io_u to be processed. Gets a buflen and offset, sets direction,
1711 * etc. The returned io_u is fully ready to be prepped and submitted.
1712 */
1713struct io_u *get_io_u(struct thread_data *td)
1714{
1715 struct fio_file *f;
1716 struct io_u *io_u;
1717 int do_scramble = 0;
1718 long ret = 0;
1719
1720 io_u = __get_io_u(td);
1721 if (!io_u) {
1722 dprint(FD_IO, "__get_io_u failed\n");
1723 return NULL;
1724 }
1725
1726 if (check_get_verify(td, io_u))
1727 goto out;
1728 if (check_get_trim(td, io_u))
1729 goto out;
1730
1731 /*
1732 * from a requeue, io_u already setup
1733 */
1734 if (io_u->file)
1735 goto out;
1736
1737 /*
1738 * If using an iolog, grab next piece if any available.
1739 */
1740 if (td->flags & TD_F_READ_IOLOG) {
1741 if (read_iolog_get(td, io_u))
1742 goto err_put;
1743 } else if (set_io_u_file(td, io_u)) {
1744 ret = -EBUSY;
1745 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1746 goto err_put;
1747 }
1748
1749 f = io_u->file;
1750 if (!f) {
1751 dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
1752 goto err_put;
1753 }
1754
1755 assert(fio_file_open(f));
1756
1757 if (ddir_rw(io_u->ddir)) {
1758 if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
1759 dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
1760 goto err_put;
1761 }
1762
1763 f->last_start[io_u->ddir] = io_u->offset;
1764 f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
1765
1766 if (io_u->ddir == DDIR_WRITE) {
1767 if (td->flags & TD_F_REFILL_BUFFERS) {
1768 io_u_fill_buffer(td, io_u,
1769 td->o.min_bs[DDIR_WRITE],
1770 io_u->buflen);
1771 } else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
1772 !(td->flags & TD_F_COMPRESS))
1773 do_scramble = 1;
1774 if (td->flags & TD_F_VER_NONE) {
1775 populate_verify_io_u(td, io_u);
1776 do_scramble = 0;
1777 }
1778 } else if (io_u->ddir == DDIR_READ) {
1779 /*
1780 * Reset the buf_filled parameters so next time if the
1781 * buffer is used for writes it is refilled.
1782 */
1783 io_u->buf_filled_len = 0;
1784 }
1785 }
1786
1787 /*
1788 * Set io data pointers.
1789 */
1790 io_u->xfer_buf = io_u->buf;
1791 io_u->xfer_buflen = io_u->buflen;
1792
1793out:
1794 assert(io_u->file);
1795 if (!td_io_prep(td, io_u)) {
1796 if (!td->o.disable_lat)
1797 fio_gettime(&io_u->start_time, NULL);
1798
1799 if (do_scramble)
1800 small_content_scramble(io_u);
1801
1802 return io_u;
1803 }
1804err_put:
1805 dprint(FD_IO, "get_io_u failed\n");
1806 put_io_u(td, io_u);
1807 return ERR_PTR(ret);
1808}
1809
1810static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
1811{
1812 enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
1813
1814 if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
1815 return;
1816
1817 log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
1818 io_u->file ? " on file " : "",
1819 io_u->file ? io_u->file->file_name : "",
1820 strerror(io_u->error),
1821 io_ddir_name(io_u->ddir),
1822 io_u->offset, io_u->xfer_buflen);
1823
1824 if (td->io_ops->errdetails) {
1825 char *err = td->io_ops->errdetails(io_u);
1826
1827 log_err("fio: %s\n", err);
1828 free(err);
1829 }
1830
1831 if (!td->error)
1832 td_verror(td, io_u->error, "io_u error");
1833}
1834
1835void io_u_log_error(struct thread_data *td, struct io_u *io_u)
1836{
1837 __io_u_log_error(td, io_u);
1838 if (td->parent)
1839 __io_u_log_error(td->parent, io_u);
1840}
1841
1842static inline bool gtod_reduce(struct thread_data *td)
1843{
1844 return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
1845 || td->o.gtod_reduce;
1846}
1847
1848static void account_io_completion(struct thread_data *td, struct io_u *io_u,
1849 struct io_completion_data *icd,
1850 const enum fio_ddir idx, unsigned int bytes)
1851{
1852 const int no_reduce = !gtod_reduce(td);
1853 unsigned long long llnsec = 0;
1854
1855 if (td->parent)
1856 td = td->parent;
1857
1858 if (!td->o.stats || td_ioengine_flagged(td, FIO_NOSTATS))
1859 return;
1860
1861 if (no_reduce)
1862 llnsec = ntime_since(&io_u->issue_time, &icd->time);
1863
1864 if (!td->o.disable_lat) {
1865 unsigned long long tnsec;
1866
1867 tnsec = ntime_since(&io_u->start_time, &icd->time);
1868 add_lat_sample(td, idx, tnsec, bytes, io_u->offset);
1869
1870 if (td->flags & TD_F_PROFILE_OPS) {
1871 struct prof_io_ops *ops = &td->prof_io_ops;
1872
1873 if (ops->io_u_lat)
1874 icd->error = ops->io_u_lat(td, tnsec/1000);
1875 }
1876
1877 if (td->o.max_latency && tnsec/1000 > td->o.max_latency)
1878 lat_fatal(td, icd, tnsec/1000, td->o.max_latency);
1879 if (td->o.latency_target && tnsec/1000 > td->o.latency_target) {
1880 if (lat_target_failed(td))
1881 lat_fatal(td, icd, tnsec/1000, td->o.latency_target);
1882 }
1883 }
1884
1885 if (ddir_rw(idx)) {
1886 if (!td->o.disable_clat) {
1887 add_clat_sample(td, idx, llnsec, bytes, io_u->offset);
1888 io_u_mark_latency(td, llnsec);
1889 }
1890
1891 if (!td->o.disable_bw && per_unit_log(td->bw_log))
1892 add_bw_sample(td, io_u, bytes, llnsec);
1893
1894 if (no_reduce && per_unit_log(td->iops_log))
1895 add_iops_sample(td, io_u, bytes);
1896 }
1897
1898 if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
1899 uint32_t *info = io_u_block_info(td, io_u);
1900 if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
1901 if (io_u->ddir == DDIR_TRIM) {
1902 *info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
1903 BLOCK_INFO_TRIMS(*info) + 1);
1904 } else if (io_u->ddir == DDIR_WRITE) {
1905 *info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
1906 *info);
1907 }
1908 }
1909 }
1910}
1911
1912static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
1913 uint64_t offset, unsigned int bytes)
1914{
1915 int idx;
1916
1917 if (!f)
1918 return;
1919
1920 if (f->first_write == -1ULL || offset < f->first_write)
1921 f->first_write = offset;
1922 if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
1923 f->last_write = offset + bytes;
1924
1925 if (!f->last_write_comp)
1926 return;
1927
1928 idx = f->last_write_idx++;
1929 f->last_write_comp[idx] = offset;
1930 if (f->last_write_idx == td->o.iodepth)
1931 f->last_write_idx = 0;
1932}
1933
1934static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
1935 struct io_completion_data *icd)
1936{
1937 struct io_u *io_u = *io_u_ptr;
1938 enum fio_ddir ddir = io_u->ddir;
1939 struct fio_file *f = io_u->file;
1940
1941 dprint_io_u(io_u, "io complete");
1942
1943 assert(io_u->flags & IO_U_F_FLIGHT);
1944 io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
1945
1946 /*
1947 * Mark IO ok to verify
1948 */
1949 if (io_u->ipo) {
1950 /*
1951 * Remove errored entry from the verification list
1952 */
1953 if (io_u->error)
1954 unlog_io_piece(td, io_u);
1955 else {
1956 io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
1957 write_barrier();
1958 }
1959 }
1960
1961 if (ddir_sync(ddir)) {
1962 td->last_was_sync = 1;
1963 if (f) {
1964 f->first_write = -1ULL;
1965 f->last_write = -1ULL;
1966 }
1967 return;
1968 }
1969
1970 td->last_was_sync = 0;
1971 td->last_ddir = ddir;
1972
1973 if (!io_u->error && ddir_rw(ddir)) {
1974 unsigned int bytes = io_u->buflen - io_u->resid;
1975 int ret;
1976
1977 td->io_blocks[ddir]++;
1978 td->this_io_blocks[ddir]++;
1979 td->io_bytes[ddir] += bytes;
1980
1981 if (!(io_u->flags & IO_U_F_VER_LIST))
1982 td->this_io_bytes[ddir] += bytes;
1983
1984 if (ddir == DDIR_WRITE)
1985 file_log_write_comp(td, f, io_u->offset, bytes);
1986
1987 if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
1988 td->runstate == TD_VERIFYING))
1989 account_io_completion(td, io_u, icd, ddir, bytes);
1990
1991 icd->bytes_done[ddir] += bytes;
1992
1993 if (io_u->end_io) {
1994 ret = io_u->end_io(td, io_u_ptr);
1995 io_u = *io_u_ptr;
1996 if (ret && !icd->error)
1997 icd->error = ret;
1998 }
1999 } else if (io_u->error) {
2000 icd->error = io_u->error;
2001 io_u_log_error(td, io_u);
2002 }
2003 if (icd->error) {
2004 enum error_type_bit eb = td_error_type(ddir, icd->error);
2005
2006 if (!td_non_fatal_error(td, eb, icd->error))
2007 return;
2008
2009 /*
2010 * If there is a non_fatal error, then add to the error count
2011 * and clear all the errors.
2012 */
2013 update_error_count(td, icd->error);
2014 td_clear_error(td);
2015 icd->error = 0;
2016 if (io_u)
2017 io_u->error = 0;
2018 }
2019}
2020
2021static void init_icd(struct thread_data *td, struct io_completion_data *icd,
2022 int nr)
2023{
2024 int ddir;
2025
2026 if (!gtod_reduce(td))
2027 fio_gettime(&icd->time, NULL);
2028
2029 icd->nr = nr;
2030
2031 icd->error = 0;
2032 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2033 icd->bytes_done[ddir] = 0;
2034}
2035
2036static void ios_completed(struct thread_data *td,
2037 struct io_completion_data *icd)
2038{
2039 struct io_u *io_u;
2040 int i;
2041
2042 for (i = 0; i < icd->nr; i++) {
2043 io_u = td->io_ops->event(td, i);
2044
2045 io_completed(td, &io_u, icd);
2046
2047 if (io_u)
2048 put_io_u(td, io_u);
2049 }
2050}
2051
2052/*
2053 * Complete a single io_u for the sync engines.
2054 */
2055int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
2056{
2057 struct io_completion_data icd;
2058 int ddir;
2059
2060 init_icd(td, &icd, 1);
2061 io_completed(td, &io_u, &icd);
2062
2063 if (io_u)
2064 put_io_u(td, io_u);
2065
2066 if (icd.error) {
2067 td_verror(td, icd.error, "io_u_sync_complete");
2068 return -1;
2069 }
2070
2071 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2072 td->bytes_done[ddir] += icd.bytes_done[ddir];
2073
2074 return 0;
2075}
2076
2077/*
2078 * Called to complete min_events number of io for the async engines.
2079 */
2080int io_u_queued_complete(struct thread_data *td, int min_evts)
2081{
2082 struct io_completion_data icd;
2083 struct timespec *tvp = NULL;
2084 int ret, ddir;
2085 struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
2086
2087 dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
2088
2089 if (!min_evts)
2090 tvp = &ts;
2091 else if (min_evts > td->cur_depth)
2092 min_evts = td->cur_depth;
2093
2094 /* No worries, td_io_getevents fixes min and max if they are
2095 * set incorrectly */
2096 ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
2097 if (ret < 0) {
2098 td_verror(td, -ret, "td_io_getevents");
2099 return ret;
2100 } else if (!ret)
2101 return ret;
2102
2103 init_icd(td, &icd, ret);
2104 ios_completed(td, &icd);
2105 if (icd.error) {
2106 td_verror(td, icd.error, "io_u_queued_complete");
2107 return -1;
2108 }
2109
2110 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2111 td->bytes_done[ddir] += icd.bytes_done[ddir];
2112
2113 return ret;
2114}
2115
2116/*
2117 * Call when io_u is really queued, to update the submission latency.
2118 */
2119void io_u_queued(struct thread_data *td, struct io_u *io_u)
2120{
2121 if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
2122 unsigned long slat_time;
2123
2124 slat_time = ntime_since(&io_u->start_time, &io_u->issue_time);
2125
2126 if (td->parent)
2127 td = td->parent;
2128
2129 add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
2130 io_u->offset);
2131 }
2132}
2133
2134/*
2135 * See if we should reuse the last seed, if dedupe is enabled
2136 */
2137static struct frand_state *get_buf_state(struct thread_data *td)
2138{
2139 unsigned int v;
2140
2141 if (!td->o.dedupe_percentage)
2142 return &td->buf_state;
2143 else if (td->o.dedupe_percentage == 100) {
2144 frand_copy(&td->buf_state_prev, &td->buf_state);
2145 return &td->buf_state;
2146 }
2147
2148 v = rand32_between(&td->dedupe_state, 1, 100);
2149
2150 if (v <= td->o.dedupe_percentage)
2151 return &td->buf_state_prev;
2152
2153 return &td->buf_state;
2154}
2155
2156static void save_buf_state(struct thread_data *td, struct frand_state *rs)
2157{
2158 if (td->o.dedupe_percentage == 100)
2159 frand_copy(rs, &td->buf_state_prev);
2160 else if (rs == &td->buf_state)
2161 frand_copy(&td->buf_state_prev, rs);
2162}
2163
2164void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
2165 unsigned int max_bs)
2166{
2167 struct thread_options *o = &td->o;
2168
2169 if (o->mem_type == MEM_CUDA_MALLOC)
2170 return;
2171
2172 if (o->compress_percentage || o->dedupe_percentage) {
2173 unsigned int perc = td->o.compress_percentage;
2174 struct frand_state *rs;
2175 unsigned int left = max_bs;
2176 unsigned int this_write;
2177
2178 do {
2179 rs = get_buf_state(td);
2180
2181 min_write = min(min_write, left);
2182
2183 if (perc) {
2184 this_write = min_not_zero(min_write,
2185 td->o.compress_chunk);
2186
2187 fill_random_buf_percentage(rs, buf, perc,
2188 this_write, this_write,
2189 o->buffer_pattern,
2190 o->buffer_pattern_bytes);
2191 } else {
2192 fill_random_buf(rs, buf, min_write);
2193 this_write = min_write;
2194 }
2195
2196 buf += this_write;
2197 left -= this_write;
2198 save_buf_state(td, rs);
2199 } while (left);
2200 } else if (o->buffer_pattern_bytes)
2201 fill_buffer_pattern(td, buf, max_bs);
2202 else if (o->zero_buffers)
2203 memset(buf, 0, max_bs);
2204 else
2205 fill_random_buf(get_buf_state(td), buf, max_bs);
2206}
2207
2208/*
2209 * "randomly" fill the buffer contents
2210 */
2211void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
2212 unsigned int min_write, unsigned int max_bs)
2213{
2214 io_u->buf_filled_len = 0;
2215 fill_io_buffer(td, io_u->buf, min_write, max_bs);
2216}
2217
2218static int do_sync_file_range(const struct thread_data *td,
2219 struct fio_file *f)
2220{
2221 off64_t offset, nbytes;
2222
2223 offset = f->first_write;
2224 nbytes = f->last_write - f->first_write;
2225
2226 if (!nbytes)
2227 return 0;
2228
2229 return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
2230}
2231
2232int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
2233{
2234 int ret;
2235
2236 if (io_u->ddir == DDIR_SYNC) {
2237 ret = fsync(io_u->file->fd);
2238 } else if (io_u->ddir == DDIR_DATASYNC) {
2239#ifdef CONFIG_FDATASYNC
2240 ret = fdatasync(io_u->file->fd);
2241#else
2242 ret = io_u->xfer_buflen;
2243 io_u->error = EINVAL;
2244#endif
2245 } else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
2246 ret = do_sync_file_range(td, io_u->file);
2247 else {
2248 ret = io_u->xfer_buflen;
2249 io_u->error = EINVAL;
2250 }
2251
2252 if (ret < 0)
2253 io_u->error = errno;
2254
2255 return ret;
2256}
2257
2258int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
2259{
2260#ifndef FIO_HAVE_TRIM
2261 io_u->error = EINVAL;
2262 return 0;
2263#else
2264 struct fio_file *f = io_u->file;
2265 int ret;
2266
2267 ret = os_trim(f, io_u->offset, io_u->xfer_buflen);
2268 if (!ret)
2269 return io_u->xfer_buflen;
2270
2271 io_u->error = ret;
2272 return 0;
2273#endif
2274}