Make windowsaio match iometer performance. Without this, we see around 60k on local...
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38
39#include "fio.h"
40#ifndef FIO_NO_HAVE_SHM_H
41#include <sys/shm.h>
42#endif
43#include "hash.h"
44#include "smalloc.h"
45#include "verify.h"
46#include "trim.h"
47#include "diskutil.h"
48#include "cgroup.h"
49#include "profile.h"
50#include "lib/rand.h"
51#include "memalign.h"
52#include "server.h"
53#include "lib/getrusage.h"
54#include "idletime.h"
55#include "err.h"
56#include "lib/tp.h"
57#include "workqueue.h"
58
59static pthread_t helper_thread;
60static pthread_mutex_t helper_lock;
61pthread_cond_t helper_cond;
62int helper_do_stat = 0;
63
64static struct fio_mutex *startup_mutex;
65static struct flist_head *cgroup_list;
66static char *cgroup_mnt;
67static int exit_value;
68static volatile int fio_abort;
69static unsigned int nr_process = 0;
70static unsigned int nr_thread = 0;
71
72struct io_log *agg_io_log[DDIR_RWDIR_CNT];
73
74int groupid = 0;
75unsigned int thread_number = 0;
76unsigned int stat_number = 0;
77int shm_id = 0;
78int temp_stall_ts;
79unsigned long done_secs = 0;
80volatile int helper_exit = 0;
81
82#define PAGE_ALIGN(buf) \
83 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
84
85#define JOB_START_TIMEOUT (5 * 1000)
86
87static void sig_int(int sig)
88{
89 if (threads) {
90 if (is_backend)
91 fio_server_got_signal(sig);
92 else {
93 log_info("\nfio: terminating on signal %d\n", sig);
94 log_info_flush();
95 exit_value = 128;
96 }
97
98 fio_terminate_threads(TERMINATE_ALL);
99 }
100}
101
102static void sig_show_status(int sig)
103{
104 show_running_run_stats();
105}
106
107static void set_sig_handlers(void)
108{
109 struct sigaction act;
110
111 memset(&act, 0, sizeof(act));
112 act.sa_handler = sig_int;
113 act.sa_flags = SA_RESTART;
114 sigaction(SIGINT, &act, NULL);
115
116 memset(&act, 0, sizeof(act));
117 act.sa_handler = sig_int;
118 act.sa_flags = SA_RESTART;
119 sigaction(SIGTERM, &act, NULL);
120
121/* Windows uses SIGBREAK as a quit signal from other applications */
122#ifdef WIN32
123 memset(&act, 0, sizeof(act));
124 act.sa_handler = sig_int;
125 act.sa_flags = SA_RESTART;
126 sigaction(SIGBREAK, &act, NULL);
127#endif
128
129 memset(&act, 0, sizeof(act));
130 act.sa_handler = sig_show_status;
131 act.sa_flags = SA_RESTART;
132 sigaction(SIGUSR1, &act, NULL);
133
134 if (is_backend) {
135 memset(&act, 0, sizeof(act));
136 act.sa_handler = sig_int;
137 act.sa_flags = SA_RESTART;
138 sigaction(SIGPIPE, &act, NULL);
139 }
140}
141
142/*
143 * Check if we are above the minimum rate given.
144 */
145static int __check_min_rate(struct thread_data *td, struct timeval *now,
146 enum fio_ddir ddir)
147{
148 unsigned long long bytes = 0;
149 unsigned long iops = 0;
150 unsigned long spent;
151 unsigned long rate;
152 unsigned int ratemin = 0;
153 unsigned int rate_iops = 0;
154 unsigned int rate_iops_min = 0;
155
156 assert(ddir_rw(ddir));
157
158 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
159 return 0;
160
161 /*
162 * allow a 2 second settle period in the beginning
163 */
164 if (mtime_since(&td->start, now) < 2000)
165 return 0;
166
167 iops += td->this_io_blocks[ddir];
168 bytes += td->this_io_bytes[ddir];
169 ratemin += td->o.ratemin[ddir];
170 rate_iops += td->o.rate_iops[ddir];
171 rate_iops_min += td->o.rate_iops_min[ddir];
172
173 /*
174 * if rate blocks is set, sample is running
175 */
176 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
177 spent = mtime_since(&td->lastrate[ddir], now);
178 if (spent < td->o.ratecycle)
179 return 0;
180
181 if (td->o.rate[ddir]) {
182 /*
183 * check bandwidth specified rate
184 */
185 if (bytes < td->rate_bytes[ddir]) {
186 log_err("%s: min rate %u not met\n", td->o.name,
187 ratemin);
188 return 1;
189 } else {
190 if (spent)
191 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
192 else
193 rate = 0;
194
195 if (rate < ratemin ||
196 bytes < td->rate_bytes[ddir]) {
197 log_err("%s: min rate %u not met, got"
198 " %luKB/sec\n", td->o.name,
199 ratemin, rate);
200 return 1;
201 }
202 }
203 } else {
204 /*
205 * checks iops specified rate
206 */
207 if (iops < rate_iops) {
208 log_err("%s: min iops rate %u not met\n",
209 td->o.name, rate_iops);
210 return 1;
211 } else {
212 if (spent)
213 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
214 else
215 rate = 0;
216
217 if (rate < rate_iops_min ||
218 iops < td->rate_blocks[ddir]) {
219 log_err("%s: min iops rate %u not met,"
220 " got %lu\n", td->o.name,
221 rate_iops_min, rate);
222 }
223 }
224 }
225 }
226
227 td->rate_bytes[ddir] = bytes;
228 td->rate_blocks[ddir] = iops;
229 memcpy(&td->lastrate[ddir], now, sizeof(*now));
230 return 0;
231}
232
233static int check_min_rate(struct thread_data *td, struct timeval *now)
234{
235 int ret = 0;
236
237 if (td->bytes_done[DDIR_READ])
238 ret |= __check_min_rate(td, now, DDIR_READ);
239 if (td->bytes_done[DDIR_WRITE])
240 ret |= __check_min_rate(td, now, DDIR_WRITE);
241 if (td->bytes_done[DDIR_TRIM])
242 ret |= __check_min_rate(td, now, DDIR_TRIM);
243
244 return ret;
245}
246
247/*
248 * When job exits, we can cancel the in-flight IO if we are using async
249 * io. Attempt to do so.
250 */
251static void cleanup_pending_aio(struct thread_data *td)
252{
253 int r;
254
255 /*
256 * get immediately available events, if any
257 */
258 r = io_u_queued_complete(td, 0);
259 if (r < 0)
260 return;
261
262 /*
263 * now cancel remaining active events
264 */
265 if (td->io_ops->cancel) {
266 struct io_u *io_u;
267 int i;
268
269 io_u_qiter(&td->io_u_all, io_u, i) {
270 if (io_u->flags & IO_U_F_FLIGHT) {
271 r = td->io_ops->cancel(td, io_u);
272 if (!r)
273 put_io_u(td, io_u);
274 }
275 }
276 }
277
278 if (td->cur_depth)
279 r = io_u_queued_complete(td, td->cur_depth);
280}
281
282/*
283 * Helper to handle the final sync of a file. Works just like the normal
284 * io path, just does everything sync.
285 */
286static int fio_io_sync(struct thread_data *td, struct fio_file *f)
287{
288 struct io_u *io_u = __get_io_u(td);
289 int ret;
290
291 if (!io_u)
292 return 1;
293
294 io_u->ddir = DDIR_SYNC;
295 io_u->file = f;
296
297 if (td_io_prep(td, io_u)) {
298 put_io_u(td, io_u);
299 return 1;
300 }
301
302requeue:
303 ret = td_io_queue(td, io_u);
304 if (ret < 0) {
305 td_verror(td, io_u->error, "td_io_queue");
306 put_io_u(td, io_u);
307 return 1;
308 } else if (ret == FIO_Q_QUEUED) {
309 if (io_u_queued_complete(td, 1) < 0)
310 return 1;
311 } else if (ret == FIO_Q_COMPLETED) {
312 if (io_u->error) {
313 td_verror(td, io_u->error, "td_io_queue");
314 return 1;
315 }
316
317 if (io_u_sync_complete(td, io_u) < 0)
318 return 1;
319 } else if (ret == FIO_Q_BUSY) {
320 if (td_io_commit(td))
321 return 1;
322 goto requeue;
323 }
324
325 return 0;
326}
327
328static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329{
330 int ret;
331
332 if (fio_file_open(f))
333 return fio_io_sync(td, f);
334
335 if (td_io_open_file(td, f))
336 return 1;
337
338 ret = fio_io_sync(td, f);
339 td_io_close_file(td, f);
340 return ret;
341}
342
343static inline void __update_tv_cache(struct thread_data *td)
344{
345 fio_gettime(&td->tv_cache, NULL);
346}
347
348static inline void update_tv_cache(struct thread_data *td)
349{
350 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351 __update_tv_cache(td);
352}
353
354static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
355{
356 if (in_ramp_time(td))
357 return 0;
358 if (!td->o.timeout)
359 return 0;
360 if (utime_since(&td->epoch, t) >= td->o.timeout)
361 return 1;
362
363 return 0;
364}
365
366static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
367 int *retptr)
368{
369 int ret = *retptr;
370
371 if (ret < 0 || td->error) {
372 int err = td->error;
373 enum error_type_bit eb;
374
375 if (ret < 0)
376 err = -ret;
377
378 eb = td_error_type(ddir, err);
379 if (!(td->o.continue_on_error & (1 << eb)))
380 return 1;
381
382 if (td_non_fatal_error(td, eb, err)) {
383 /*
384 * Continue with the I/Os in case of
385 * a non fatal error.
386 */
387 update_error_count(td, err);
388 td_clear_error(td);
389 *retptr = 0;
390 return 0;
391 } else if (td->o.fill_device && err == ENOSPC) {
392 /*
393 * We expect to hit this error if
394 * fill_device option is set.
395 */
396 td_clear_error(td);
397 fio_mark_td_terminate(td);
398 return 1;
399 } else {
400 /*
401 * Stop the I/O in case of a fatal
402 * error.
403 */
404 update_error_count(td, err);
405 return 1;
406 }
407 }
408
409 return 0;
410}
411
412static void check_update_rusage(struct thread_data *td)
413{
414 if (td->update_rusage) {
415 td->update_rusage = 0;
416 update_rusage_stat(td);
417 fio_mutex_up(td->rusage_sem);
418 }
419}
420
421static int wait_for_completions(struct thread_data *td, struct timeval *time)
422{
423 const int full = queue_full(td);
424 int min_evts = 0;
425 int ret;
426
427 /*
428 * if the queue is full, we MUST reap at least 1 event
429 */
430 min_evts = min(td->o.iodepth_batch_complete, td->cur_depth);
431 if ((full && !min_evts) || !td->o.iodepth_batch_complete)
432 min_evts = 1;
433
434 if (time && (__should_check_rate(td, DDIR_READ) ||
435 __should_check_rate(td, DDIR_WRITE) ||
436 __should_check_rate(td, DDIR_TRIM)))
437 fio_gettime(time, NULL);
438
439 do {
440 ret = io_u_queued_complete(td, min_evts);
441 if (ret < 0)
442 break;
443 } while (full && (td->cur_depth > td->o.iodepth_low));
444
445 return ret;
446}
447
448int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
449 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
450 struct timeval *comp_time)
451{
452 int ret2;
453
454 switch (*ret) {
455 case FIO_Q_COMPLETED:
456 if (io_u->error) {
457 *ret = -io_u->error;
458 clear_io_u(td, io_u);
459 } else if (io_u->resid) {
460 int bytes = io_u->xfer_buflen - io_u->resid;
461 struct fio_file *f = io_u->file;
462
463 if (bytes_issued)
464 *bytes_issued += bytes;
465
466 if (!from_verify)
467 trim_io_piece(td, io_u);
468
469 /*
470 * zero read, fail
471 */
472 if (!bytes) {
473 if (!from_verify)
474 unlog_io_piece(td, io_u);
475 td_verror(td, EIO, "full resid");
476 put_io_u(td, io_u);
477 break;
478 }
479
480 io_u->xfer_buflen = io_u->resid;
481 io_u->xfer_buf += bytes;
482 io_u->offset += bytes;
483
484 if (ddir_rw(io_u->ddir))
485 td->ts.short_io_u[io_u->ddir]++;
486
487 f = io_u->file;
488 if (io_u->offset == f->real_file_size)
489 goto sync_done;
490
491 requeue_io_u(td, &io_u);
492 } else {
493sync_done:
494 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
495 __should_check_rate(td, DDIR_WRITE) ||
496 __should_check_rate(td, DDIR_TRIM)))
497 fio_gettime(comp_time, NULL);
498
499 *ret = io_u_sync_complete(td, io_u);
500 if (*ret < 0)
501 break;
502 }
503 return 0;
504 case FIO_Q_QUEUED:
505 /*
506 * if the engine doesn't have a commit hook,
507 * the io_u is really queued. if it does have such
508 * a hook, it has to call io_u_queued() itself.
509 */
510 if (td->io_ops->commit == NULL)
511 io_u_queued(td, io_u);
512 if (bytes_issued)
513 *bytes_issued += io_u->xfer_buflen;
514 break;
515 case FIO_Q_BUSY:
516 if (!from_verify)
517 unlog_io_piece(td, io_u);
518 requeue_io_u(td, &io_u);
519 ret2 = td_io_commit(td);
520 if (ret2 < 0)
521 *ret = ret2;
522 break;
523 default:
524 assert(ret < 0);
525 td_verror(td, -(*ret), "td_io_queue");
526 break;
527 }
528
529 if (break_on_this_error(td, ddir, ret))
530 return 1;
531
532 return 0;
533}
534
535/*
536 * The main verify engine. Runs over the writes we previously submitted,
537 * reads the blocks back in, and checks the crc/md5 of the data.
538 */
539static void do_verify(struct thread_data *td, uint64_t verify_bytes)
540{
541 struct fio_file *f;
542 struct io_u *io_u;
543 int ret, min_events;
544 unsigned int i;
545
546 dprint(FD_VERIFY, "starting loop\n");
547
548 /*
549 * sync io first and invalidate cache, to make sure we really
550 * read from disk.
551 */
552 for_each_file(td, f, i) {
553 if (!fio_file_open(f))
554 continue;
555 if (fio_io_sync(td, f))
556 break;
557 if (file_invalidate_cache(td, f))
558 break;
559 }
560
561 check_update_rusage(td);
562
563 if (td->error)
564 return;
565
566 td_set_runstate(td, TD_VERIFYING);
567
568 io_u = NULL;
569 while (!td->terminate) {
570 enum fio_ddir ddir;
571 int full;
572
573 update_tv_cache(td);
574 check_update_rusage(td);
575
576 if (runtime_exceeded(td, &td->tv_cache)) {
577 __update_tv_cache(td);
578 if (runtime_exceeded(td, &td->tv_cache)) {
579 fio_mark_td_terminate(td);
580 break;
581 }
582 }
583
584 if (flow_threshold_exceeded(td))
585 continue;
586
587 if (!td->o.experimental_verify) {
588 io_u = __get_io_u(td);
589 if (!io_u)
590 break;
591
592 if (get_next_verify(td, io_u)) {
593 put_io_u(td, io_u);
594 break;
595 }
596
597 if (td_io_prep(td, io_u)) {
598 put_io_u(td, io_u);
599 break;
600 }
601 } else {
602 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
603 break;
604
605 while ((io_u = get_io_u(td)) != NULL) {
606 if (IS_ERR(io_u)) {
607 io_u = NULL;
608 ret = FIO_Q_BUSY;
609 goto reap;
610 }
611
612 /*
613 * We are only interested in the places where
614 * we wrote or trimmed IOs. Turn those into
615 * reads for verification purposes.
616 */
617 if (io_u->ddir == DDIR_READ) {
618 /*
619 * Pretend we issued it for rwmix
620 * accounting
621 */
622 td->io_issues[DDIR_READ]++;
623 put_io_u(td, io_u);
624 continue;
625 } else if (io_u->ddir == DDIR_TRIM) {
626 io_u->ddir = DDIR_READ;
627 io_u_set(io_u, IO_U_F_TRIMMED);
628 break;
629 } else if (io_u->ddir == DDIR_WRITE) {
630 io_u->ddir = DDIR_READ;
631 break;
632 } else {
633 put_io_u(td, io_u);
634 continue;
635 }
636 }
637
638 if (!io_u)
639 break;
640 }
641
642 if (verify_state_should_stop(td, io_u)) {
643 put_io_u(td, io_u);
644 break;
645 }
646
647 if (td->o.verify_async)
648 io_u->end_io = verify_io_u_async;
649 else
650 io_u->end_io = verify_io_u;
651
652 ddir = io_u->ddir;
653 if (!td->o.disable_slat)
654 fio_gettime(&io_u->start_time, NULL);
655
656 ret = td_io_queue(td, io_u);
657
658 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
659 break;
660
661 /*
662 * if we can queue more, do so. but check if there are
663 * completed io_u's first. Note that we can get BUSY even
664 * without IO queued, if the system is resource starved.
665 */
666reap:
667 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
668 if (full || !td->o.iodepth_batch_complete)
669 ret = wait_for_completions(td, NULL);
670
671 if (ret < 0)
672 break;
673 }
674
675 check_update_rusage(td);
676
677 if (!td->error) {
678 min_events = td->cur_depth;
679
680 if (min_events)
681 ret = io_u_queued_complete(td, min_events);
682 } else
683 cleanup_pending_aio(td);
684
685 td_set_runstate(td, TD_RUNNING);
686
687 dprint(FD_VERIFY, "exiting loop\n");
688}
689
690static unsigned int exceeds_number_ios(struct thread_data *td)
691{
692 unsigned long long number_ios;
693
694 if (!td->o.number_ios)
695 return 0;
696
697 number_ios = ddir_rw_sum(td->io_blocks);
698 number_ios += td->io_u_queued + td->io_u_in_flight;
699
700 return number_ios >= (td->o.number_ios * td->loops);
701}
702
703static int io_issue_bytes_exceeded(struct thread_data *td)
704{
705 unsigned long long bytes, limit;
706
707 if (td_rw(td))
708 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
709 else if (td_write(td))
710 bytes = td->io_issue_bytes[DDIR_WRITE];
711 else if (td_read(td))
712 bytes = td->io_issue_bytes[DDIR_READ];
713 else
714 bytes = td->io_issue_bytes[DDIR_TRIM];
715
716 if (td->o.io_limit)
717 limit = td->o.io_limit;
718 else
719 limit = td->o.size;
720
721 limit *= td->loops;
722 return bytes >= limit || exceeds_number_ios(td);
723}
724
725static int io_complete_bytes_exceeded(struct thread_data *td)
726{
727 unsigned long long bytes, limit;
728
729 if (td_rw(td))
730 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
731 else if (td_write(td))
732 bytes = td->this_io_bytes[DDIR_WRITE];
733 else if (td_read(td))
734 bytes = td->this_io_bytes[DDIR_READ];
735 else
736 bytes = td->this_io_bytes[DDIR_TRIM];
737
738 if (td->o.io_limit)
739 limit = td->o.io_limit;
740 else
741 limit = td->o.size;
742
743 limit *= td->loops;
744 return bytes >= limit || exceeds_number_ios(td);
745}
746
747/*
748 * Main IO worker function. It retrieves io_u's to process and queues
749 * and reaps them, checking for rate and errors along the way.
750 *
751 * Returns number of bytes written and trimmed.
752 */
753static uint64_t do_io(struct thread_data *td)
754{
755 unsigned int i;
756 int ret = 0;
757 uint64_t total_bytes, bytes_issued = 0;
758
759 if (in_ramp_time(td))
760 td_set_runstate(td, TD_RAMP);
761 else
762 td_set_runstate(td, TD_RUNNING);
763
764 lat_target_init(td);
765
766 total_bytes = td->o.size;
767 /*
768 * Allow random overwrite workloads to write up to io_limit
769 * before starting verification phase as 'size' doesn't apply.
770 */
771 if (td_write(td) && td_random(td) && td->o.norandommap)
772 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
773 /*
774 * If verify_backlog is enabled, we'll run the verify in this
775 * handler as well. For that case, we may need up to twice the
776 * amount of bytes.
777 */
778 if (td->o.verify != VERIFY_NONE &&
779 (td_write(td) && td->o.verify_backlog))
780 total_bytes += td->o.size;
781
782 /* In trimwrite mode, each byte is trimmed and then written, so
783 * allow total_bytes to be twice as big */
784 if (td_trimwrite(td))
785 total_bytes += td->total_io_size;
786
787 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
788 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
789 td->o.time_based) {
790 struct timeval comp_time;
791 struct io_u *io_u;
792 int full;
793 enum fio_ddir ddir;
794
795 check_update_rusage(td);
796
797 if (td->terminate || td->done)
798 break;
799
800 update_tv_cache(td);
801
802 if (runtime_exceeded(td, &td->tv_cache)) {
803 __update_tv_cache(td);
804 if (runtime_exceeded(td, &td->tv_cache)) {
805 fio_mark_td_terminate(td);
806 break;
807 }
808 }
809
810 if (flow_threshold_exceeded(td))
811 continue;
812
813 if (bytes_issued >= total_bytes)
814 break;
815
816 io_u = get_io_u(td);
817 if (IS_ERR_OR_NULL(io_u)) {
818 int err = PTR_ERR(io_u);
819
820 io_u = NULL;
821 if (err == -EBUSY) {
822 ret = FIO_Q_BUSY;
823 goto reap;
824 }
825 if (td->o.latency_target)
826 goto reap;
827 break;
828 }
829
830 ddir = io_u->ddir;
831
832 /*
833 * Add verification end_io handler if:
834 * - Asked to verify (!td_rw(td))
835 * - Or the io_u is from our verify list (mixed write/ver)
836 */
837 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
838 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
839
840 if (!td->o.verify_pattern_bytes) {
841 io_u->rand_seed = __rand(&td->verify_state);
842 if (sizeof(int) != sizeof(long *))
843 io_u->rand_seed *= __rand(&td->verify_state);
844 }
845
846 if (verify_state_should_stop(td, io_u)) {
847 put_io_u(td, io_u);
848 break;
849 }
850
851 if (td->o.verify_async)
852 io_u->end_io = verify_io_u_async;
853 else
854 io_u->end_io = verify_io_u;
855 td_set_runstate(td, TD_VERIFYING);
856 } else if (in_ramp_time(td))
857 td_set_runstate(td, TD_RAMP);
858 else
859 td_set_runstate(td, TD_RUNNING);
860
861 /*
862 * Always log IO before it's issued, so we know the specific
863 * order of it. The logged unit will track when the IO has
864 * completed.
865 */
866 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
867 td->o.do_verify &&
868 td->o.verify != VERIFY_NONE &&
869 !td->o.experimental_verify)
870 log_io_piece(td, io_u);
871
872 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
873 if (td->error)
874 break;
875 ret = workqueue_enqueue(&td->io_wq, io_u);
876 } else {
877 ret = td_io_queue(td, io_u);
878
879 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 1, &comp_time))
880 break;
881
882 /*
883 * See if we need to complete some commands. Note that
884 * we can get BUSY even without IO queued, if the
885 * system is resource starved.
886 */
887reap:
888 full = queue_full(td) ||
889 (ret == FIO_Q_BUSY && td->cur_depth);
890 if (full || !td->o.iodepth_batch_complete)
891 ret = wait_for_completions(td, &comp_time);
892 }
893 if (ret < 0)
894 break;
895 if (!ddir_rw_sum(td->bytes_done) &&
896 !(td->io_ops->flags & FIO_NOIO))
897 continue;
898
899 if (!in_ramp_time(td) && should_check_rate(td)) {
900 if (check_min_rate(td, &comp_time)) {
901 if (exitall_on_terminate)
902 fio_terminate_threads(td->groupid);
903 td_verror(td, EIO, "check_min_rate");
904 break;
905 }
906 }
907 if (!in_ramp_time(td) && td->o.latency_target)
908 lat_target_check(td);
909
910 if (td->o.thinktime) {
911 unsigned long long b;
912
913 b = ddir_rw_sum(td->io_blocks);
914 if (!(b % td->o.thinktime_blocks)) {
915 int left;
916
917 io_u_quiesce(td);
918
919 if (td->o.thinktime_spin)
920 usec_spin(td->o.thinktime_spin);
921
922 left = td->o.thinktime - td->o.thinktime_spin;
923 if (left)
924 usec_sleep(td, left);
925 }
926 }
927 }
928
929 check_update_rusage(td);
930
931 if (td->trim_entries)
932 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
933
934 if (td->o.fill_device && td->error == ENOSPC) {
935 td->error = 0;
936 fio_mark_td_terminate(td);
937 }
938 if (!td->error) {
939 struct fio_file *f;
940
941 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
942 workqueue_flush(&td->io_wq);
943 i = 0;
944 } else
945 i = td->cur_depth;
946
947 if (i) {
948 ret = io_u_queued_complete(td, i);
949 if (td->o.fill_device && td->error == ENOSPC)
950 td->error = 0;
951 }
952
953 if (should_fsync(td) && td->o.end_fsync) {
954 td_set_runstate(td, TD_FSYNCING);
955
956 for_each_file(td, f, i) {
957 if (!fio_file_fsync(td, f))
958 continue;
959
960 log_err("fio: end_fsync failed for file %s\n",
961 f->file_name);
962 }
963 }
964 } else
965 cleanup_pending_aio(td);
966
967 /*
968 * stop job if we failed doing any IO
969 */
970 if (!ddir_rw_sum(td->this_io_bytes))
971 td->done = 1;
972
973 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
974}
975
976static void cleanup_io_u(struct thread_data *td)
977{
978 struct io_u *io_u;
979
980 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
981
982 if (td->io_ops->io_u_free)
983 td->io_ops->io_u_free(td, io_u);
984
985 fio_memfree(io_u, sizeof(*io_u));
986 }
987
988 free_io_mem(td);
989
990 io_u_rexit(&td->io_u_requeues);
991 io_u_qexit(&td->io_u_freelist);
992 io_u_qexit(&td->io_u_all);
993
994 if (td->last_write_comp)
995 sfree(td->last_write_comp);
996}
997
998static int init_io_u(struct thread_data *td)
999{
1000 struct io_u *io_u;
1001 unsigned int max_bs, min_write;
1002 int cl_align, i, max_units;
1003 int data_xfer = 1, err;
1004 char *p;
1005
1006 max_units = td->o.iodepth;
1007 max_bs = td_max_bs(td);
1008 min_write = td->o.min_bs[DDIR_WRITE];
1009 td->orig_buffer_size = (unsigned long long) max_bs
1010 * (unsigned long long) max_units;
1011
1012 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1013 data_xfer = 0;
1014
1015 err = 0;
1016 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1017 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1018 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1019
1020 if (err) {
1021 log_err("fio: failed setting up IO queues\n");
1022 return 1;
1023 }
1024
1025 /*
1026 * if we may later need to do address alignment, then add any
1027 * possible adjustment here so that we don't cause a buffer
1028 * overflow later. this adjustment may be too much if we get
1029 * lucky and the allocator gives us an aligned address.
1030 */
1031 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1032 (td->io_ops->flags & FIO_RAWIO))
1033 td->orig_buffer_size += page_mask + td->o.mem_align;
1034
1035 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1036 unsigned long bs;
1037
1038 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1039 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1040 }
1041
1042 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1043 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1044 return 1;
1045 }
1046
1047 if (data_xfer && allocate_io_mem(td))
1048 return 1;
1049
1050 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1051 (td->io_ops->flags & FIO_RAWIO))
1052 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1053 else
1054 p = td->orig_buffer;
1055
1056 cl_align = os_cache_line_size();
1057
1058 for (i = 0; i < max_units; i++) {
1059 void *ptr;
1060
1061 if (td->terminate)
1062 return 1;
1063
1064 ptr = fio_memalign(cl_align, sizeof(*io_u));
1065 if (!ptr) {
1066 log_err("fio: unable to allocate aligned memory\n");
1067 break;
1068 }
1069
1070 io_u = ptr;
1071 memset(io_u, 0, sizeof(*io_u));
1072 INIT_FLIST_HEAD(&io_u->verify_list);
1073 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1074
1075 if (data_xfer) {
1076 io_u->buf = p;
1077 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1078
1079 if (td_write(td))
1080 io_u_fill_buffer(td, io_u, min_write, max_bs);
1081 if (td_write(td) && td->o.verify_pattern_bytes) {
1082 /*
1083 * Fill the buffer with the pattern if we are
1084 * going to be doing writes.
1085 */
1086 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1087 }
1088 }
1089
1090 io_u->index = i;
1091 io_u->flags = IO_U_F_FREE;
1092 io_u_qpush(&td->io_u_freelist, io_u);
1093
1094 /*
1095 * io_u never leaves this stack, used for iteration of all
1096 * io_u buffers.
1097 */
1098 io_u_qpush(&td->io_u_all, io_u);
1099
1100 if (td->io_ops->io_u_init) {
1101 int ret = td->io_ops->io_u_init(td, io_u);
1102
1103 if (ret) {
1104 log_err("fio: failed to init engine data: %d\n", ret);
1105 return 1;
1106 }
1107 }
1108
1109 p += max_bs;
1110 }
1111
1112 if (td->o.verify != VERIFY_NONE) {
1113 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1114 if (!td->last_write_comp) {
1115 log_err("fio: failed to alloc write comp data\n");
1116 return 1;
1117 }
1118 }
1119
1120 return 0;
1121}
1122
1123static int switch_ioscheduler(struct thread_data *td)
1124{
1125 char tmp[256], tmp2[128];
1126 FILE *f;
1127 int ret;
1128
1129 if (td->io_ops->flags & FIO_DISKLESSIO)
1130 return 0;
1131
1132 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1133
1134 f = fopen(tmp, "r+");
1135 if (!f) {
1136 if (errno == ENOENT) {
1137 log_err("fio: os or kernel doesn't support IO scheduler"
1138 " switching\n");
1139 return 0;
1140 }
1141 td_verror(td, errno, "fopen iosched");
1142 return 1;
1143 }
1144
1145 /*
1146 * Set io scheduler.
1147 */
1148 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1149 if (ferror(f) || ret != 1) {
1150 td_verror(td, errno, "fwrite");
1151 fclose(f);
1152 return 1;
1153 }
1154
1155 rewind(f);
1156
1157 /*
1158 * Read back and check that the selected scheduler is now the default.
1159 */
1160 ret = fread(tmp, sizeof(tmp), 1, f);
1161 if (ferror(f) || ret < 0) {
1162 td_verror(td, errno, "fread");
1163 fclose(f);
1164 return 1;
1165 }
1166 tmp[sizeof(tmp) - 1] = '\0';
1167
1168
1169 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1170 if (!strstr(tmp, tmp2)) {
1171 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1172 td_verror(td, EINVAL, "iosched_switch");
1173 fclose(f);
1174 return 1;
1175 }
1176
1177 fclose(f);
1178 return 0;
1179}
1180
1181static int keep_running(struct thread_data *td)
1182{
1183 unsigned long long limit;
1184
1185 if (td->done)
1186 return 0;
1187 if (td->o.time_based)
1188 return 1;
1189 if (td->o.loops) {
1190 td->o.loops--;
1191 return 1;
1192 }
1193 if (exceeds_number_ios(td))
1194 return 0;
1195
1196 if (td->o.io_limit)
1197 limit = td->o.io_limit;
1198 else
1199 limit = td->o.size;
1200
1201 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1202 uint64_t diff;
1203
1204 /*
1205 * If the difference is less than the minimum IO size, we
1206 * are done.
1207 */
1208 diff = limit - ddir_rw_sum(td->io_bytes);
1209 if (diff < td_max_bs(td))
1210 return 0;
1211
1212 if (fio_files_done(td))
1213 return 0;
1214
1215 return 1;
1216 }
1217
1218 return 0;
1219}
1220
1221static int exec_string(struct thread_options *o, const char *string, const char *mode)
1222{
1223 int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1224 char *str;
1225
1226 str = malloc(newlen);
1227 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1228
1229 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1230 ret = system(str);
1231 if (ret == -1)
1232 log_err("fio: exec of cmd <%s> failed\n", str);
1233
1234 free(str);
1235 return ret;
1236}
1237
1238/*
1239 * Dry run to compute correct state of numberio for verification.
1240 */
1241static uint64_t do_dry_run(struct thread_data *td)
1242{
1243 td_set_runstate(td, TD_RUNNING);
1244
1245 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1246 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1247 struct io_u *io_u;
1248 int ret;
1249
1250 if (td->terminate || td->done)
1251 break;
1252
1253 io_u = get_io_u(td);
1254 if (!io_u)
1255 break;
1256
1257 io_u_set(io_u, IO_U_F_FLIGHT);
1258 io_u->error = 0;
1259 io_u->resid = 0;
1260 if (ddir_rw(acct_ddir(io_u)))
1261 td->io_issues[acct_ddir(io_u)]++;
1262 if (ddir_rw(io_u->ddir)) {
1263 io_u_mark_depth(td, 1);
1264 td->ts.total_io_u[io_u->ddir]++;
1265 }
1266
1267 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1268 td->o.do_verify &&
1269 td->o.verify != VERIFY_NONE &&
1270 !td->o.experimental_verify)
1271 log_io_piece(td, io_u);
1272
1273 ret = io_u_sync_complete(td, io_u);
1274 (void) ret;
1275 }
1276
1277 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1278}
1279
1280static void io_workqueue_fn(struct thread_data *td, struct io_u *io_u)
1281{
1282 const enum fio_ddir ddir = io_u->ddir;
1283 int ret;
1284
1285 dprint(FD_RATE, "io_u %p queued by %u\n", io_u, gettid());
1286
1287 io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1288
1289 td->cur_depth++;
1290
1291 ret = td_io_queue(td, io_u);
1292
1293 dprint(FD_RATE, "io_u %p ret %d by %u\n", io_u, ret, gettid());
1294
1295 io_queue_event(td, io_u, &ret, ddir, NULL, 0, NULL);
1296
1297 if (ret == FIO_Q_QUEUED)
1298 ret = io_u_queued_complete(td, 1);
1299
1300 td->cur_depth--;
1301}
1302
1303/*
1304 * Entry point for the thread based jobs. The process based jobs end up
1305 * here as well, after a little setup.
1306 */
1307static void *thread_main(void *data)
1308{
1309 unsigned long long elapsed;
1310 struct thread_data *td = data;
1311 struct thread_options *o = &td->o;
1312 pthread_condattr_t attr;
1313 int clear_state;
1314 int ret;
1315
1316 if (!o->use_thread) {
1317 setsid();
1318 td->pid = getpid();
1319 } else
1320 td->pid = gettid();
1321
1322 fio_local_clock_init(o->use_thread);
1323
1324 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1325
1326 if (is_backend)
1327 fio_server_send_start(td);
1328
1329 INIT_FLIST_HEAD(&td->io_log_list);
1330 INIT_FLIST_HEAD(&td->io_hist_list);
1331 INIT_FLIST_HEAD(&td->verify_list);
1332 INIT_FLIST_HEAD(&td->trim_list);
1333 INIT_FLIST_HEAD(&td->next_rand_list);
1334 pthread_mutex_init(&td->io_u_lock, NULL);
1335 td->io_hist_tree = RB_ROOT;
1336
1337 pthread_condattr_init(&attr);
1338 pthread_cond_init(&td->verify_cond, &attr);
1339 pthread_cond_init(&td->free_cond, &attr);
1340
1341 td_set_runstate(td, TD_INITIALIZED);
1342 dprint(FD_MUTEX, "up startup_mutex\n");
1343 fio_mutex_up(startup_mutex);
1344 dprint(FD_MUTEX, "wait on td->mutex\n");
1345 fio_mutex_down(td->mutex);
1346 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1347
1348 /*
1349 * A new gid requires privilege, so we need to do this before setting
1350 * the uid.
1351 */
1352 if (o->gid != -1U && setgid(o->gid)) {
1353 td_verror(td, errno, "setgid");
1354 goto err;
1355 }
1356 if (o->uid != -1U && setuid(o->uid)) {
1357 td_verror(td, errno, "setuid");
1358 goto err;
1359 }
1360
1361 /*
1362 * If we have a gettimeofday() thread, make sure we exclude that
1363 * thread from this job
1364 */
1365 if (o->gtod_cpu)
1366 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1367
1368 /*
1369 * Set affinity first, in case it has an impact on the memory
1370 * allocations.
1371 */
1372 if (fio_option_is_set(o, cpumask)) {
1373 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1374 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1375 if (!ret) {
1376 log_err("fio: no CPUs set\n");
1377 log_err("fio: Try increasing number of available CPUs\n");
1378 td_verror(td, EINVAL, "cpus_split");
1379 goto err;
1380 }
1381 }
1382 ret = fio_setaffinity(td->pid, o->cpumask);
1383 if (ret == -1) {
1384 td_verror(td, errno, "cpu_set_affinity");
1385 goto err;
1386 }
1387 }
1388
1389#ifdef CONFIG_LIBNUMA
1390 /* numa node setup */
1391 if (fio_option_is_set(o, numa_cpunodes) ||
1392 fio_option_is_set(o, numa_memnodes)) {
1393 struct bitmask *mask;
1394
1395 if (numa_available() < 0) {
1396 td_verror(td, errno, "Does not support NUMA API\n");
1397 goto err;
1398 }
1399
1400 if (fio_option_is_set(o, numa_cpunodes)) {
1401 mask = numa_parse_nodestring(o->numa_cpunodes);
1402 ret = numa_run_on_node_mask(mask);
1403 numa_free_nodemask(mask);
1404 if (ret == -1) {
1405 td_verror(td, errno, \
1406 "numa_run_on_node_mask failed\n");
1407 goto err;
1408 }
1409 }
1410
1411 if (fio_option_is_set(o, numa_memnodes)) {
1412 mask = NULL;
1413 if (o->numa_memnodes)
1414 mask = numa_parse_nodestring(o->numa_memnodes);
1415
1416 switch (o->numa_mem_mode) {
1417 case MPOL_INTERLEAVE:
1418 numa_set_interleave_mask(mask);
1419 break;
1420 case MPOL_BIND:
1421 numa_set_membind(mask);
1422 break;
1423 case MPOL_LOCAL:
1424 numa_set_localalloc();
1425 break;
1426 case MPOL_PREFERRED:
1427 numa_set_preferred(o->numa_mem_prefer_node);
1428 break;
1429 case MPOL_DEFAULT:
1430 default:
1431 break;
1432 }
1433
1434 if (mask)
1435 numa_free_nodemask(mask);
1436
1437 }
1438 }
1439#endif
1440
1441 if (fio_pin_memory(td))
1442 goto err;
1443
1444 /*
1445 * May alter parameters that init_io_u() will use, so we need to
1446 * do this first.
1447 */
1448 if (init_iolog(td))
1449 goto err;
1450
1451 if (init_io_u(td))
1452 goto err;
1453
1454 if (o->verify_async && verify_async_init(td))
1455 goto err;
1456
1457 if (fio_option_is_set(o, ioprio) ||
1458 fio_option_is_set(o, ioprio_class)) {
1459 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1460 if (ret == -1) {
1461 td_verror(td, errno, "ioprio_set");
1462 goto err;
1463 }
1464 }
1465
1466 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1467 goto err;
1468
1469 errno = 0;
1470 if (nice(o->nice) == -1 && errno != 0) {
1471 td_verror(td, errno, "nice");
1472 goto err;
1473 }
1474
1475 if (o->ioscheduler && switch_ioscheduler(td))
1476 goto err;
1477
1478 if (!o->create_serialize && setup_files(td))
1479 goto err;
1480
1481 if (td_io_init(td))
1482 goto err;
1483
1484 if (init_random_map(td))
1485 goto err;
1486
1487 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1488 goto err;
1489
1490 if (o->pre_read) {
1491 if (pre_read_files(td) < 0)
1492 goto err;
1493 }
1494
1495 if (td->flags & TD_F_COMPRESS_LOG)
1496 tp_init(&td->tp_data);
1497
1498 fio_verify_init(td);
1499
1500 if ((o->io_submit_mode == IO_MODE_OFFLOAD) &&
1501 workqueue_init(td, &td->io_wq, io_workqueue_fn, td->o.iodepth))
1502 goto err;
1503
1504 fio_gettime(&td->epoch, NULL);
1505 fio_getrusage(&td->ru_start);
1506 clear_state = 0;
1507 while (keep_running(td)) {
1508 uint64_t verify_bytes;
1509
1510 fio_gettime(&td->start, NULL);
1511 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1512 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1513 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1514
1515 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1516 o->ratemin[DDIR_TRIM]) {
1517 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1518 sizeof(td->bw_sample_time));
1519 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1520 sizeof(td->bw_sample_time));
1521 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1522 sizeof(td->bw_sample_time));
1523 }
1524
1525 if (clear_state)
1526 clear_io_state(td);
1527
1528 prune_io_piece_log(td);
1529
1530 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1531 verify_bytes = do_dry_run(td);
1532 else
1533 verify_bytes = do_io(td);
1534
1535 clear_state = 1;
1536
1537 /*
1538 * Make sure we've successfully updated the rusage stats
1539 * before waiting on the stat mutex. Otherwise we could have
1540 * the stat thread holding stat mutex and waiting for
1541 * the rusage_sem, which would never get upped because
1542 * this thread is waiting for the stat mutex.
1543 */
1544 check_update_rusage(td);
1545
1546 fio_mutex_down(stat_mutex);
1547 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1548 elapsed = mtime_since_now(&td->start);
1549 td->ts.runtime[DDIR_READ] += elapsed;
1550 }
1551 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1552 elapsed = mtime_since_now(&td->start);
1553 td->ts.runtime[DDIR_WRITE] += elapsed;
1554 }
1555 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1556 elapsed = mtime_since_now(&td->start);
1557 td->ts.runtime[DDIR_TRIM] += elapsed;
1558 }
1559 fio_gettime(&td->start, NULL);
1560 fio_mutex_up(stat_mutex);
1561
1562 if (td->error || td->terminate)
1563 break;
1564
1565 if (!o->do_verify ||
1566 o->verify == VERIFY_NONE ||
1567 (td->io_ops->flags & FIO_UNIDIR))
1568 continue;
1569
1570 clear_io_state(td);
1571
1572 fio_gettime(&td->start, NULL);
1573
1574 do_verify(td, verify_bytes);
1575
1576 /*
1577 * See comment further up for why this is done here.
1578 */
1579 check_update_rusage(td);
1580
1581 fio_mutex_down(stat_mutex);
1582 td->ts.runtime[DDIR_READ] += mtime_since_now(&td->start);
1583 fio_gettime(&td->start, NULL);
1584 fio_mutex_up(stat_mutex);
1585
1586 if (td->error || td->terminate)
1587 break;
1588 }
1589
1590 update_rusage_stat(td);
1591 td->ts.total_run_time = mtime_since_now(&td->epoch);
1592 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1593 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1594 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1595
1596 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1597 (td->o.verify != VERIFY_NONE && td_write(td))) {
1598 struct all_io_list *state;
1599 size_t sz;
1600
1601 state = get_all_io_list(td->thread_number, &sz);
1602 if (state) {
1603 __verify_save_state(state, "local");
1604 free(state);
1605 }
1606 }
1607
1608 fio_unpin_memory(td);
1609
1610 fio_writeout_logs(td);
1611
1612 if (o->io_submit_mode == IO_MODE_OFFLOAD)
1613 workqueue_exit(&td->io_wq);
1614
1615 if (td->flags & TD_F_COMPRESS_LOG)
1616 tp_exit(&td->tp_data);
1617
1618 if (o->exec_postrun)
1619 exec_string(o, o->exec_postrun, (const char *)"postrun");
1620
1621 if (exitall_on_terminate)
1622 fio_terminate_threads(td->groupid);
1623
1624err:
1625 if (td->error)
1626 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1627 td->verror);
1628
1629 if (o->verify_async)
1630 verify_async_exit(td);
1631
1632 close_and_free_files(td);
1633 cleanup_io_u(td);
1634 close_ioengine(td);
1635 cgroup_shutdown(td, &cgroup_mnt);
1636 verify_free_state(td);
1637
1638 if (fio_option_is_set(o, cpumask)) {
1639 ret = fio_cpuset_exit(&o->cpumask);
1640 if (ret)
1641 td_verror(td, ret, "fio_cpuset_exit");
1642 }
1643
1644 /*
1645 * do this very late, it will log file closing as well
1646 */
1647 if (o->write_iolog_file)
1648 write_iolog_close(td);
1649
1650 fio_mutex_remove(td->mutex);
1651 td->mutex = NULL;
1652
1653 td_set_runstate(td, TD_EXITED);
1654
1655 /*
1656 * Do this last after setting our runstate to exited, so we
1657 * know that the stat thread is signaled.
1658 */
1659 check_update_rusage(td);
1660
1661 return (void *) (uintptr_t) td->error;
1662}
1663
1664
1665/*
1666 * We cannot pass the td data into a forked process, so attach the td and
1667 * pass it to the thread worker.
1668 */
1669static int fork_main(int shmid, int offset)
1670{
1671 struct thread_data *td;
1672 void *data, *ret;
1673
1674#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1675 data = shmat(shmid, NULL, 0);
1676 if (data == (void *) -1) {
1677 int __err = errno;
1678
1679 perror("shmat");
1680 return __err;
1681 }
1682#else
1683 /*
1684 * HP-UX inherits shm mappings?
1685 */
1686 data = threads;
1687#endif
1688
1689 td = data + offset * sizeof(struct thread_data);
1690 ret = thread_main(td);
1691 shmdt(data);
1692 return (int) (uintptr_t) ret;
1693}
1694
1695static void dump_td_info(struct thread_data *td)
1696{
1697 log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1698 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1699 (unsigned long) time_since_now(&td->terminate_time));
1700}
1701
1702/*
1703 * Run over the job map and reap the threads that have exited, if any.
1704 */
1705static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1706 unsigned int *m_rate)
1707{
1708 struct thread_data *td;
1709 unsigned int cputhreads, realthreads, pending;
1710 int i, status, ret;
1711
1712 /*
1713 * reap exited threads (TD_EXITED -> TD_REAPED)
1714 */
1715 realthreads = pending = cputhreads = 0;
1716 for_each_td(td, i) {
1717 int flags = 0;
1718
1719 /*
1720 * ->io_ops is NULL for a thread that has closed its
1721 * io engine
1722 */
1723 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1724 cputhreads++;
1725 else
1726 realthreads++;
1727
1728 if (!td->pid) {
1729 pending++;
1730 continue;
1731 }
1732 if (td->runstate == TD_REAPED)
1733 continue;
1734 if (td->o.use_thread) {
1735 if (td->runstate == TD_EXITED) {
1736 td_set_runstate(td, TD_REAPED);
1737 goto reaped;
1738 }
1739 continue;
1740 }
1741
1742 flags = WNOHANG;
1743 if (td->runstate == TD_EXITED)
1744 flags = 0;
1745
1746 /*
1747 * check if someone quit or got killed in an unusual way
1748 */
1749 ret = waitpid(td->pid, &status, flags);
1750 if (ret < 0) {
1751 if (errno == ECHILD) {
1752 log_err("fio: pid=%d disappeared %d\n",
1753 (int) td->pid, td->runstate);
1754 td->sig = ECHILD;
1755 td_set_runstate(td, TD_REAPED);
1756 goto reaped;
1757 }
1758 perror("waitpid");
1759 } else if (ret == td->pid) {
1760 if (WIFSIGNALED(status)) {
1761 int sig = WTERMSIG(status);
1762
1763 if (sig != SIGTERM && sig != SIGUSR2)
1764 log_err("fio: pid=%d, got signal=%d\n",
1765 (int) td->pid, sig);
1766 td->sig = sig;
1767 td_set_runstate(td, TD_REAPED);
1768 goto reaped;
1769 }
1770 if (WIFEXITED(status)) {
1771 if (WEXITSTATUS(status) && !td->error)
1772 td->error = WEXITSTATUS(status);
1773
1774 td_set_runstate(td, TD_REAPED);
1775 goto reaped;
1776 }
1777 }
1778
1779 /*
1780 * If the job is stuck, do a forceful timeout of it and
1781 * move on.
1782 */
1783 if (td->terminate &&
1784 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1785 dump_td_info(td);
1786 td_set_runstate(td, TD_REAPED);
1787 goto reaped;
1788 }
1789
1790 /*
1791 * thread is not dead, continue
1792 */
1793 pending++;
1794 continue;
1795reaped:
1796 (*nr_running)--;
1797 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1798 (*t_rate) -= ddir_rw_sum(td->o.rate);
1799 if (!td->pid)
1800 pending--;
1801
1802 if (td->error)
1803 exit_value++;
1804
1805 done_secs += mtime_since_now(&td->epoch) / 1000;
1806 profile_td_exit(td);
1807 }
1808
1809 if (*nr_running == cputhreads && !pending && realthreads)
1810 fio_terminate_threads(TERMINATE_ALL);
1811}
1812
1813static int __check_trigger_file(void)
1814{
1815 struct stat sb;
1816
1817 if (!trigger_file)
1818 return 0;
1819
1820 if (stat(trigger_file, &sb))
1821 return 0;
1822
1823 if (unlink(trigger_file) < 0)
1824 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1825 strerror(errno));
1826
1827 return 1;
1828}
1829
1830static int trigger_timedout(void)
1831{
1832 if (trigger_timeout)
1833 return time_since_genesis() >= trigger_timeout;
1834
1835 return 0;
1836}
1837
1838void exec_trigger(const char *cmd)
1839{
1840 int ret;
1841
1842 if (!cmd)
1843 return;
1844
1845 ret = system(cmd);
1846 if (ret == -1)
1847 log_err("fio: failed executing %s trigger\n", cmd);
1848}
1849
1850void check_trigger_file(void)
1851{
1852 if (__check_trigger_file() || trigger_timedout()) {
1853 if (nr_clients)
1854 fio_clients_send_trigger(trigger_remote_cmd);
1855 else {
1856 verify_save_state();
1857 fio_terminate_threads(TERMINATE_ALL);
1858 exec_trigger(trigger_cmd);
1859 }
1860 }
1861}
1862
1863static int fio_verify_load_state(struct thread_data *td)
1864{
1865 int ret;
1866
1867 if (!td->o.verify_state)
1868 return 0;
1869
1870 if (is_backend) {
1871 void *data;
1872
1873 ret = fio_server_get_verify_state(td->o.name,
1874 td->thread_number - 1, &data);
1875 if (!ret)
1876 verify_convert_assign_state(td, data);
1877 } else
1878 ret = verify_load_state(td, "local");
1879
1880 return ret;
1881}
1882
1883static void do_usleep(unsigned int usecs)
1884{
1885 check_for_running_stats();
1886 check_trigger_file();
1887 usleep(usecs);
1888}
1889
1890/*
1891 * Main function for kicking off and reaping jobs, as needed.
1892 */
1893static void run_threads(void)
1894{
1895 struct thread_data *td;
1896 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1897 uint64_t spent;
1898
1899 if (fio_gtod_offload && fio_start_gtod_thread())
1900 return;
1901
1902 fio_idle_prof_init();
1903
1904 set_sig_handlers();
1905
1906 nr_thread = nr_process = 0;
1907 for_each_td(td, i) {
1908 if (td->o.use_thread)
1909 nr_thread++;
1910 else
1911 nr_process++;
1912 }
1913
1914 if (output_format == FIO_OUTPUT_NORMAL) {
1915 log_info("Starting ");
1916 if (nr_thread)
1917 log_info("%d thread%s", nr_thread,
1918 nr_thread > 1 ? "s" : "");
1919 if (nr_process) {
1920 if (nr_thread)
1921 log_info(" and ");
1922 log_info("%d process%s", nr_process,
1923 nr_process > 1 ? "es" : "");
1924 }
1925 log_info("\n");
1926 log_info_flush();
1927 }
1928
1929 todo = thread_number;
1930 nr_running = 0;
1931 nr_started = 0;
1932 m_rate = t_rate = 0;
1933
1934 for_each_td(td, i) {
1935 print_status_init(td->thread_number - 1);
1936
1937 if (!td->o.create_serialize)
1938 continue;
1939
1940 if (fio_verify_load_state(td))
1941 goto reap;
1942
1943 /*
1944 * do file setup here so it happens sequentially,
1945 * we don't want X number of threads getting their
1946 * client data interspersed on disk
1947 */
1948 if (setup_files(td)) {
1949reap:
1950 exit_value++;
1951 if (td->error)
1952 log_err("fio: pid=%d, err=%d/%s\n",
1953 (int) td->pid, td->error, td->verror);
1954 td_set_runstate(td, TD_REAPED);
1955 todo--;
1956 } else {
1957 struct fio_file *f;
1958 unsigned int j;
1959
1960 /*
1961 * for sharing to work, each job must always open
1962 * its own files. so close them, if we opened them
1963 * for creation
1964 */
1965 for_each_file(td, f, j) {
1966 if (fio_file_open(f))
1967 td_io_close_file(td, f);
1968 }
1969 }
1970 }
1971
1972 /* start idle threads before io threads start to run */
1973 fio_idle_prof_start();
1974
1975 set_genesis_time();
1976
1977 while (todo) {
1978 struct thread_data *map[REAL_MAX_JOBS];
1979 struct timeval this_start;
1980 int this_jobs = 0, left;
1981
1982 /*
1983 * create threads (TD_NOT_CREATED -> TD_CREATED)
1984 */
1985 for_each_td(td, i) {
1986 if (td->runstate != TD_NOT_CREATED)
1987 continue;
1988
1989 /*
1990 * never got a chance to start, killed by other
1991 * thread for some reason
1992 */
1993 if (td->terminate) {
1994 todo--;
1995 continue;
1996 }
1997
1998 if (td->o.start_delay) {
1999 spent = utime_since_genesis();
2000
2001 if (td->o.start_delay > spent)
2002 continue;
2003 }
2004
2005 if (td->o.stonewall && (nr_started || nr_running)) {
2006 dprint(FD_PROCESS, "%s: stonewall wait\n",
2007 td->o.name);
2008 break;
2009 }
2010
2011 init_disk_util(td);
2012
2013 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2014 td->update_rusage = 0;
2015
2016 /*
2017 * Set state to created. Thread will transition
2018 * to TD_INITIALIZED when it's done setting up.
2019 */
2020 td_set_runstate(td, TD_CREATED);
2021 map[this_jobs++] = td;
2022 nr_started++;
2023
2024 if (td->o.use_thread) {
2025 int ret;
2026
2027 dprint(FD_PROCESS, "will pthread_create\n");
2028 ret = pthread_create(&td->thread, NULL,
2029 thread_main, td);
2030 if (ret) {
2031 log_err("pthread_create: %s\n",
2032 strerror(ret));
2033 nr_started--;
2034 break;
2035 }
2036 ret = pthread_detach(td->thread);
2037 if (ret)
2038 log_err("pthread_detach: %s",
2039 strerror(ret));
2040 } else {
2041 pid_t pid;
2042 dprint(FD_PROCESS, "will fork\n");
2043 pid = fork();
2044 if (!pid) {
2045 int ret = fork_main(shm_id, i);
2046
2047 _exit(ret);
2048 } else if (i == fio_debug_jobno)
2049 *fio_debug_jobp = pid;
2050 }
2051 dprint(FD_MUTEX, "wait on startup_mutex\n");
2052 if (fio_mutex_down_timeout(startup_mutex, 10)) {
2053 log_err("fio: job startup hung? exiting.\n");
2054 fio_terminate_threads(TERMINATE_ALL);
2055 fio_abort = 1;
2056 nr_started--;
2057 break;
2058 }
2059 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2060 }
2061
2062 /*
2063 * Wait for the started threads to transition to
2064 * TD_INITIALIZED.
2065 */
2066 fio_gettime(&this_start, NULL);
2067 left = this_jobs;
2068 while (left && !fio_abort) {
2069 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2070 break;
2071
2072 do_usleep(100000);
2073
2074 for (i = 0; i < this_jobs; i++) {
2075 td = map[i];
2076 if (!td)
2077 continue;
2078 if (td->runstate == TD_INITIALIZED) {
2079 map[i] = NULL;
2080 left--;
2081 } else if (td->runstate >= TD_EXITED) {
2082 map[i] = NULL;
2083 left--;
2084 todo--;
2085 nr_running++; /* work-around... */
2086 }
2087 }
2088 }
2089
2090 if (left) {
2091 log_err("fio: %d job%s failed to start\n", left,
2092 left > 1 ? "s" : "");
2093 for (i = 0; i < this_jobs; i++) {
2094 td = map[i];
2095 if (!td)
2096 continue;
2097 kill(td->pid, SIGTERM);
2098 }
2099 break;
2100 }
2101
2102 /*
2103 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2104 */
2105 for_each_td(td, i) {
2106 if (td->runstate != TD_INITIALIZED)
2107 continue;
2108
2109 if (in_ramp_time(td))
2110 td_set_runstate(td, TD_RAMP);
2111 else
2112 td_set_runstate(td, TD_RUNNING);
2113 nr_running++;
2114 nr_started--;
2115 m_rate += ddir_rw_sum(td->o.ratemin);
2116 t_rate += ddir_rw_sum(td->o.rate);
2117 todo--;
2118 fio_mutex_up(td->mutex);
2119 }
2120
2121 reap_threads(&nr_running, &t_rate, &m_rate);
2122
2123 if (todo)
2124 do_usleep(100000);
2125 }
2126
2127 while (nr_running) {
2128 reap_threads(&nr_running, &t_rate, &m_rate);
2129 do_usleep(10000);
2130 }
2131
2132 fio_idle_prof_stop();
2133
2134 update_io_ticks();
2135}
2136
2137static void wait_for_helper_thread_exit(void)
2138{
2139 void *ret;
2140
2141 helper_exit = 1;
2142 pthread_cond_signal(&helper_cond);
2143 pthread_join(helper_thread, &ret);
2144}
2145
2146static void free_disk_util(void)
2147{
2148 disk_util_prune_entries();
2149
2150 pthread_cond_destroy(&helper_cond);
2151}
2152
2153static void *helper_thread_main(void *data)
2154{
2155 int ret = 0;
2156
2157 fio_mutex_up(startup_mutex);
2158
2159 while (!ret) {
2160 uint64_t sec = DISK_UTIL_MSEC / 1000;
2161 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2162 struct timespec ts;
2163 struct timeval tv;
2164
2165 gettimeofday(&tv, NULL);
2166 ts.tv_sec = tv.tv_sec + sec;
2167 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2168
2169 if (ts.tv_nsec >= 1000000000ULL) {
2170 ts.tv_nsec -= 1000000000ULL;
2171 ts.tv_sec++;
2172 }
2173
2174 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2175
2176 ret = update_io_ticks();
2177
2178 if (helper_do_stat) {
2179 helper_do_stat = 0;
2180 __show_running_run_stats();
2181 }
2182
2183 if (!is_backend)
2184 print_thread_status();
2185 }
2186
2187 return NULL;
2188}
2189
2190static int create_helper_thread(void)
2191{
2192 int ret;
2193
2194 setup_disk_util();
2195
2196 pthread_cond_init(&helper_cond, NULL);
2197 pthread_mutex_init(&helper_lock, NULL);
2198
2199 ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2200 if (ret) {
2201 log_err("Can't create helper thread: %s\n", strerror(ret));
2202 return 1;
2203 }
2204
2205 dprint(FD_MUTEX, "wait on startup_mutex\n");
2206 fio_mutex_down(startup_mutex);
2207 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2208 return 0;
2209}
2210
2211int fio_backend(void)
2212{
2213 struct thread_data *td;
2214 int i;
2215
2216 if (exec_profile) {
2217 if (load_profile(exec_profile))
2218 return 1;
2219 free(exec_profile);
2220 exec_profile = NULL;
2221 }
2222 if (!thread_number)
2223 return 0;
2224
2225 if (write_bw_log) {
2226 struct log_params p = {
2227 .log_type = IO_LOG_TYPE_BW,
2228 };
2229
2230 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2231 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2232 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2233 }
2234
2235 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2236 if (startup_mutex == NULL)
2237 return 1;
2238
2239 set_genesis_time();
2240 stat_init();
2241 create_helper_thread();
2242
2243 cgroup_list = smalloc(sizeof(*cgroup_list));
2244 INIT_FLIST_HEAD(cgroup_list);
2245
2246 run_threads();
2247
2248 wait_for_helper_thread_exit();
2249
2250 if (!fio_abort) {
2251 __show_run_stats();
2252 if (write_bw_log) {
2253 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2254 struct io_log *log = agg_io_log[i];
2255
2256 flush_log(log);
2257 free_log(log);
2258 }
2259 }
2260 }
2261
2262 for_each_td(td, i) {
2263 fio_options_free(td);
2264 if (td->rusage_sem) {
2265 fio_mutex_remove(td->rusage_sem);
2266 td->rusage_sem = NULL;
2267 }
2268 }
2269
2270 free_disk_util();
2271 cgroup_kill(cgroup_list);
2272 sfree(cgroup_list);
2273 sfree(cgroup_mnt);
2274
2275 fio_mutex_remove(startup_mutex);
2276 stat_exit();
2277 return exit_value;
2278}