ARCv2: ptrace: provide regset for accumulator/r30 regs
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
1da177e4 68
7ee3d4e8 69#include <asm/sections.h>
1da177e4 70#include <asm/tlbflush.h>
ac924c60 71#include <asm/div64.h>
1da177e4
LT
72#include "internal.h"
73
c8e251fa
CS
74/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 76#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 77
72812019
LS
78#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79DEFINE_PER_CPU(int, numa_node);
80EXPORT_PER_CPU_SYMBOL(numa_node);
81#endif
82
7aac7898
LS
83#ifdef CONFIG_HAVE_MEMORYLESS_NODES
84/*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 92int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
93#endif
94
bd233f53
MG
95/* work_structs for global per-cpu drains */
96DEFINE_MUTEX(pcpu_drain_mutex);
97DEFINE_PER_CPU(struct work_struct, pcpu_drain);
98
38addce8 99#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 100volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
101EXPORT_SYMBOL(latent_entropy);
102#endif
103
1da177e4 104/*
13808910 105 * Array of node states.
1da177e4 106 */
13808910
CL
107nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 [N_POSSIBLE] = NODE_MASK_ALL,
109 [N_ONLINE] = { { [0] = 1UL } },
110#ifndef CONFIG_NUMA
111 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
112#ifdef CONFIG_HIGHMEM
113 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
114#endif
115#ifdef CONFIG_MOVABLE_NODE
116 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
117#endif
118 [N_CPU] = { { [0] = 1UL } },
119#endif /* NUMA */
120};
121EXPORT_SYMBOL(node_states);
122
c3d5f5f0
JL
123/* Protect totalram_pages and zone->managed_pages */
124static DEFINE_SPINLOCK(managed_page_count_lock);
125
6c231b7b 126unsigned long totalram_pages __read_mostly;
cb45b0e9 127unsigned long totalreserve_pages __read_mostly;
e48322ab 128unsigned long totalcma_pages __read_mostly;
ab8fabd4 129
1b76b02f 130int percpu_pagelist_fraction;
dcce284a 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 132
bb14c2c7
VB
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
452aa699
RW
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
c9e664f1
RW
160
161static gfp_t saved_gfp_mask;
162
163void pm_restore_gfp_mask(void)
452aa699
RW
164{
165 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
452aa699
RW
170}
171
c9e664f1 172void pm_restrict_gfp_mask(void)
452aa699 173{
452aa699 174 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
d0164adc 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 178}
f90ac398
MG
179
180bool pm_suspended_storage(void)
181{
d0164adc 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
183 return false;
184 return true;
185}
452aa699
RW
186#endif /* CONFIG_PM_SLEEP */
187
d9c23400 188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 189unsigned int pageblock_order __read_mostly;
d9c23400
MG
190#endif
191
d98c7a09 192static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 193
1da177e4
LT
194/*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
1da177e4 204 */
2f1b6248 205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 206#ifdef CONFIG_ZONE_DMA
2f1b6248 207 256,
4b51d669 208#endif
fb0e7942 209#ifdef CONFIG_ZONE_DMA32
2f1b6248 210 256,
fb0e7942 211#endif
e53ef38d 212#ifdef CONFIG_HIGHMEM
2a1e274a 213 32,
e53ef38d 214#endif
2a1e274a 215 32,
2f1b6248 216};
1da177e4
LT
217
218EXPORT_SYMBOL(totalram_pages);
1da177e4 219
15ad7cdc 220static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 221#ifdef CONFIG_ZONE_DMA
2f1b6248 222 "DMA",
4b51d669 223#endif
fb0e7942 224#ifdef CONFIG_ZONE_DMA32
2f1b6248 225 "DMA32",
fb0e7942 226#endif
2f1b6248 227 "Normal",
e53ef38d 228#ifdef CONFIG_HIGHMEM
2a1e274a 229 "HighMem",
e53ef38d 230#endif
2a1e274a 231 "Movable",
033fbae9
DW
232#ifdef CONFIG_ZONE_DEVICE
233 "Device",
234#endif
2f1b6248
CL
235};
236
60f30350
VB
237char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242#ifdef CONFIG_CMA
243 "CMA",
244#endif
245#ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247#endif
248};
249
f1e61557
KS
250compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253#ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255#endif
9a982250
KS
256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258#endif
f1e61557
KS
259};
260
1da177e4 261int min_free_kbytes = 1024;
42aa83cb 262int user_min_free_kbytes = -1;
795ae7a0 263int watermark_scale_factor = 10;
1da177e4 264
2c85f51d
JB
265static unsigned long __meminitdata nr_kernel_pages;
266static unsigned long __meminitdata nr_all_pages;
a3142c8e 267static unsigned long __meminitdata dma_reserve;
1da177e4 268
0ee332c1
TH
269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __initdata required_kernelcore;
273static unsigned long __initdata required_movablecore;
274static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 275static bool mirrored_kernelcore;
0ee332c1
TH
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 281
418508c1
MS
282#if MAX_NUMNODES > 1
283int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 284int nr_online_nodes __read_mostly = 1;
418508c1 285EXPORT_SYMBOL(nr_node_ids);
62bc62a8 286EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
287#endif
288
9ef9acb0
MG
289int page_group_by_mobility_disabled __read_mostly;
290
3a80a7fa
MG
291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292static inline void reset_deferred_meminit(pg_data_t *pgdat)
293{
294 pgdat->first_deferred_pfn = ULONG_MAX;
295}
296
297/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 299{
ef70b6f4
MG
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
303 return true;
304
305 return false;
306}
307
308/*
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
315{
987b3095
LZ
316 unsigned long max_initialise;
317
3a80a7fa
MG
318 /* Always populate low zones for address-contrained allocations */
319 if (zone_end < pgdat_end_pfn(pgdat))
320 return true;
987b3095
LZ
321 /*
322 * Initialise at least 2G of a node but also take into account that
323 * two large system hashes that can take up 1GB for 0.25TB/node.
324 */
325 max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 (pgdat->node_spanned_pages >> 8));
3a80a7fa 327
3a80a7fa 328 (*nr_initialised)++;
987b3095 329 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
330 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 pgdat->first_deferred_pfn = pfn;
332 return false;
333 }
334
335 return true;
336}
337#else
338static inline void reset_deferred_meminit(pg_data_t *pgdat)
339{
340}
341
342static inline bool early_page_uninitialised(unsigned long pfn)
343{
344 return false;
345}
346
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
0b423ca2
MG
355/* Return a pointer to the bitmap storing bits affecting a block of pages */
356static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358{
359#ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361#else
362 return page_zone(page)->pageblock_flags;
363#endif /* CONFIG_SPARSEMEM */
364}
365
366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367{
368#ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371#else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377/**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390{
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403}
404
405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408{
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410}
411
412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413{
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415}
416
417/**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429{
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454}
3a80a7fa 455
ee6f509c 456void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 457{
5d0f3f72
KM
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
460 migratetype = MIGRATE_UNMOVABLE;
461
b2a0ac88
MG
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464}
465
13e7444b 466#ifdef CONFIG_DEBUG_VM
c6a57e19 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 468{
bdc8cb98
DH
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 472 unsigned long sp, start_pfn;
c6a57e19 473
bdc8cb98
DH
474 do {
475 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
108bcc96 478 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
b5e6a5a2 482 if (ret)
613813e8
DH
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
b5e6a5a2 486
bdc8cb98 487 return ret;
c6a57e19
DH
488}
489
490static int page_is_consistent(struct zone *zone, struct page *page)
491{
14e07298 492 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 493 return 0;
1da177e4 494 if (zone != page_zone(page))
c6a57e19
DH
495 return 0;
496
497 return 1;
498}
499/*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502static int bad_range(struct zone *zone, struct page *page)
503{
504 if (page_outside_zone_boundaries(zone, page))
1da177e4 505 return 1;
c6a57e19
DH
506 if (!page_is_consistent(zone, page))
507 return 1;
508
1da177e4
LT
509 return 0;
510}
13e7444b
NP
511#else
512static inline int bad_range(struct zone *zone, struct page *page)
513{
514 return 0;
515}
516#endif
517
d230dec1
KS
518static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
1da177e4 520{
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
533 }
534 if (nr_unshown) {
ff8e8116 535 pr_alert(
1e9e6365 536 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
537 nr_unshown);
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
544
ff8e8116 545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 546 current->comm, page_to_pfn(page));
ff8e8116
VB
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
4e462112 552 dump_page_owner(page);
3dc14741 553
4f31888c 554 print_modules();
1da177e4 555 dump_stack();
d936cf9b 556out:
8cc3b392 557 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 558 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
560}
561
1da177e4
LT
562/*
563 * Higher-order pages are called "compound pages". They are structured thusly:
564 *
1d798ca3 565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 566 *
1d798ca3
KS
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 569 *
1d798ca3
KS
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
1da177e4 572 *
1d798ca3 573 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 574 * This usage means that zero-order pages may not be compound.
1da177e4 575 */
d98c7a09 576
9a982250 577void free_compound_page(struct page *page)
d98c7a09 578{
d85f3385 579 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
580}
581
d00181b9 582void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
583{
584 int i;
585 int nr_pages = 1 << order;
586
f1e61557 587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
58a84aa9 592 set_page_count(p, 0);
1c290f64 593 p->mapping = TAIL_MAPPING;
1d798ca3 594 set_compound_head(p, page);
18229df5 595 }
53f9263b 596 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
597}
598
c0a32fc5
SG
599#ifdef CONFIG_DEBUG_PAGEALLOC
600unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
601bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 603EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
604bool _debug_guardpage_enabled __read_mostly;
605
031bc574
JK
606static int __init early_debug_pagealloc(char *buf)
607{
608 if (!buf)
609 return -EINVAL;
2a138dc7 610 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
611}
612early_param("debug_pagealloc", early_debug_pagealloc);
613
e30825f1
JK
614static bool need_debug_guardpage(void)
615{
031bc574
JK
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
619
f1c1e9f7
JK
620 if (!debug_guardpage_minorder())
621 return false;
622
e30825f1
JK
623 return true;
624}
625
626static void init_debug_guardpage(void)
627{
031bc574
JK
628 if (!debug_pagealloc_enabled())
629 return;
630
f1c1e9f7
JK
631 if (!debug_guardpage_minorder())
632 return;
633
e30825f1
JK
634 _debug_guardpage_enabled = true;
635}
636
637struct page_ext_operations debug_guardpage_ops = {
638 .need = need_debug_guardpage,
639 .init = init_debug_guardpage,
640};
c0a32fc5
SG
641
642static int __init debug_guardpage_minorder_setup(char *buf)
643{
644 unsigned long res;
645
646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 647 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
648 return 0;
649 }
650 _debug_guardpage_minorder = res;
1170532b 651 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
652 return 0;
653}
f1c1e9f7 654early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 655
acbc15a4 656static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 657 unsigned int order, int migratetype)
c0a32fc5 658{
e30825f1
JK
659 struct page_ext *page_ext;
660
661 if (!debug_guardpage_enabled())
acbc15a4
JK
662 return false;
663
664 if (order >= debug_guardpage_minorder())
665 return false;
e30825f1
JK
666
667 page_ext = lookup_page_ext(page);
f86e4271 668 if (unlikely(!page_ext))
acbc15a4 669 return false;
f86e4271 670
e30825f1
JK
671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
672
2847cf95
JK
673 INIT_LIST_HEAD(&page->lru);
674 set_page_private(page, order);
675 /* Guard pages are not available for any usage */
676 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
677
678 return true;
c0a32fc5
SG
679}
680
2847cf95
JK
681static inline void clear_page_guard(struct zone *zone, struct page *page,
682 unsigned int order, int migratetype)
c0a32fc5 683{
e30825f1
JK
684 struct page_ext *page_ext;
685
686 if (!debug_guardpage_enabled())
687 return;
688
689 page_ext = lookup_page_ext(page);
f86e4271
YS
690 if (unlikely(!page_ext))
691 return;
692
e30825f1
JK
693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694
2847cf95
JK
695 set_page_private(page, 0);
696 if (!is_migrate_isolate(migratetype))
697 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
698}
699#else
980ac167 700struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
701static inline bool set_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype) { return false; }
2847cf95
JK
703static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype) {}
c0a32fc5
SG
705#endif
706
7aeb09f9 707static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 708{
4c21e2f2 709 set_page_private(page, order);
676165a8 710 __SetPageBuddy(page);
1da177e4
LT
711}
712
713static inline void rmv_page_order(struct page *page)
714{
676165a8 715 __ClearPageBuddy(page);
4c21e2f2 716 set_page_private(page, 0);
1da177e4
LT
717}
718
1da177e4
LT
719/*
720 * This function checks whether a page is free && is the buddy
721 * we can do coalesce a page and its buddy if
13ad59df 722 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 723 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
724 * (c) a page and its buddy have the same order &&
725 * (d) a page and its buddy are in the same zone.
676165a8 726 *
cf6fe945
WSH
727 * For recording whether a page is in the buddy system, we set ->_mapcount
728 * PAGE_BUDDY_MAPCOUNT_VALUE.
729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730 * serialized by zone->lock.
1da177e4 731 *
676165a8 732 * For recording page's order, we use page_private(page).
1da177e4 733 */
cb2b95e1 734static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 735 unsigned int order)
1da177e4 736{
c0a32fc5 737 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
738 if (page_zone_id(page) != page_zone_id(buddy))
739 return 0;
740
4c5018ce
WY
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742
c0a32fc5
SG
743 return 1;
744 }
745
cb2b95e1 746 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
747 /*
748 * zone check is done late to avoid uselessly
749 * calculating zone/node ids for pages that could
750 * never merge.
751 */
752 if (page_zone_id(page) != page_zone_id(buddy))
753 return 0;
754
4c5018ce
WY
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756
6aa3001b 757 return 1;
676165a8 758 }
6aa3001b 759 return 0;
1da177e4
LT
760}
761
762/*
763 * Freeing function for a buddy system allocator.
764 *
765 * The concept of a buddy system is to maintain direct-mapped table
766 * (containing bit values) for memory blocks of various "orders".
767 * The bottom level table contains the map for the smallest allocatable
768 * units of memory (here, pages), and each level above it describes
769 * pairs of units from the levels below, hence, "buddies".
770 * At a high level, all that happens here is marking the table entry
771 * at the bottom level available, and propagating the changes upward
772 * as necessary, plus some accounting needed to play nicely with other
773 * parts of the VM system.
774 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
775 * free pages of length of (1 << order) and marked with _mapcount
776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777 * field.
1da177e4 778 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
779 * other. That is, if we allocate a small block, and both were
780 * free, the remainder of the region must be split into blocks.
1da177e4 781 * If a block is freed, and its buddy is also free, then this
5f63b720 782 * triggers coalescing into a block of larger size.
1da177e4 783 *
6d49e352 784 * -- nyc
1da177e4
LT
785 */
786
48db57f8 787static inline void __free_one_page(struct page *page,
dc4b0caf 788 unsigned long pfn,
ed0ae21d
MG
789 struct zone *zone, unsigned int order,
790 int migratetype)
1da177e4 791{
76741e77
VB
792 unsigned long combined_pfn;
793 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 794 struct page *buddy;
d9dddbf5
VB
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 798
d29bb978 799 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 801
ed0ae21d 802 VM_BUG_ON(migratetype == -1);
d9dddbf5 803 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 805
76741e77 806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 808
d9dddbf5 809continue_merging:
3c605096 810 while (order < max_order - 1) {
76741e77
VB
811 buddy_pfn = __find_buddy_pfn(pfn, order);
812 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
813
814 if (!pfn_valid_within(buddy_pfn))
815 goto done_merging;
cb2b95e1 816 if (!page_is_buddy(page, buddy, order))
d9dddbf5 817 goto done_merging;
c0a32fc5
SG
818 /*
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
821 */
822 if (page_is_guard(buddy)) {
2847cf95 823 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
824 } else {
825 list_del(&buddy->lru);
826 zone->free_area[order].nr_free--;
827 rmv_page_order(buddy);
828 }
76741e77
VB
829 combined_pfn = buddy_pfn & pfn;
830 page = page + (combined_pfn - pfn);
831 pfn = combined_pfn;
1da177e4
LT
832 order++;
833 }
d9dddbf5
VB
834 if (max_order < MAX_ORDER) {
835 /* If we are here, it means order is >= pageblock_order.
836 * We want to prevent merge between freepages on isolate
837 * pageblock and normal pageblock. Without this, pageblock
838 * isolation could cause incorrect freepage or CMA accounting.
839 *
840 * We don't want to hit this code for the more frequent
841 * low-order merging.
842 */
843 if (unlikely(has_isolate_pageblock(zone))) {
844 int buddy_mt;
845
76741e77
VB
846 buddy_pfn = __find_buddy_pfn(pfn, order);
847 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
848 buddy_mt = get_pageblock_migratetype(buddy);
849
850 if (migratetype != buddy_mt
851 && (is_migrate_isolate(migratetype) ||
852 is_migrate_isolate(buddy_mt)))
853 goto done_merging;
854 }
855 max_order++;
856 goto continue_merging;
857 }
858
859done_merging:
1da177e4 860 set_page_order(page, order);
6dda9d55
CZ
861
862 /*
863 * If this is not the largest possible page, check if the buddy
864 * of the next-highest order is free. If it is, it's possible
865 * that pages are being freed that will coalesce soon. In case,
866 * that is happening, add the free page to the tail of the list
867 * so it's less likely to be used soon and more likely to be merged
868 * as a higher order page
869 */
13ad59df 870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 871 struct page *higher_page, *higher_buddy;
76741e77
VB
872 combined_pfn = buddy_pfn & pfn;
873 higher_page = page + (combined_pfn - pfn);
874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
876 if (pfn_valid_within(buddy_pfn) &&
877 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
878 list_add_tail(&page->lru,
879 &zone->free_area[order].free_list[migratetype]);
880 goto out;
881 }
882 }
883
884 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
885out:
1da177e4
LT
886 zone->free_area[order].nr_free++;
887}
888
7bfec6f4
MG
889/*
890 * A bad page could be due to a number of fields. Instead of multiple branches,
891 * try and check multiple fields with one check. The caller must do a detailed
892 * check if necessary.
893 */
894static inline bool page_expected_state(struct page *page,
895 unsigned long check_flags)
896{
897 if (unlikely(atomic_read(&page->_mapcount) != -1))
898 return false;
899
900 if (unlikely((unsigned long)page->mapping |
901 page_ref_count(page) |
902#ifdef CONFIG_MEMCG
903 (unsigned long)page->mem_cgroup |
904#endif
905 (page->flags & check_flags)))
906 return false;
907
908 return true;
909}
910
bb552ac6 911static void free_pages_check_bad(struct page *page)
1da177e4 912{
7bfec6f4
MG
913 const char *bad_reason;
914 unsigned long bad_flags;
915
7bfec6f4
MG
916 bad_reason = NULL;
917 bad_flags = 0;
f0b791a3 918
53f9263b 919 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
920 bad_reason = "nonzero mapcount";
921 if (unlikely(page->mapping != NULL))
922 bad_reason = "non-NULL mapping";
fe896d18 923 if (unlikely(page_ref_count(page) != 0))
0139aa7b 924 bad_reason = "nonzero _refcount";
f0b791a3
DH
925 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
926 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
927 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
928 }
9edad6ea
JW
929#ifdef CONFIG_MEMCG
930 if (unlikely(page->mem_cgroup))
931 bad_reason = "page still charged to cgroup";
932#endif
7bfec6f4 933 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
934}
935
936static inline int free_pages_check(struct page *page)
937{
da838d4f 938 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 939 return 0;
bb552ac6
MG
940
941 /* Something has gone sideways, find it */
942 free_pages_check_bad(page);
7bfec6f4 943 return 1;
1da177e4
LT
944}
945
4db7548c
MG
946static int free_tail_pages_check(struct page *head_page, struct page *page)
947{
948 int ret = 1;
949
950 /*
951 * We rely page->lru.next never has bit 0 set, unless the page
952 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
953 */
954 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
955
956 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
957 ret = 0;
958 goto out;
959 }
960 switch (page - head_page) {
961 case 1:
962 /* the first tail page: ->mapping is compound_mapcount() */
963 if (unlikely(compound_mapcount(page))) {
964 bad_page(page, "nonzero compound_mapcount", 0);
965 goto out;
966 }
967 break;
968 case 2:
969 /*
970 * the second tail page: ->mapping is
971 * page_deferred_list().next -- ignore value.
972 */
973 break;
974 default:
975 if (page->mapping != TAIL_MAPPING) {
976 bad_page(page, "corrupted mapping in tail page", 0);
977 goto out;
978 }
979 break;
980 }
981 if (unlikely(!PageTail(page))) {
982 bad_page(page, "PageTail not set", 0);
983 goto out;
984 }
985 if (unlikely(compound_head(page) != head_page)) {
986 bad_page(page, "compound_head not consistent", 0);
987 goto out;
988 }
989 ret = 0;
990out:
991 page->mapping = NULL;
992 clear_compound_head(page);
993 return ret;
994}
995
e2769dbd
MG
996static __always_inline bool free_pages_prepare(struct page *page,
997 unsigned int order, bool check_free)
4db7548c 998{
e2769dbd 999 int bad = 0;
4db7548c 1000
4db7548c
MG
1001 VM_BUG_ON_PAGE(PageTail(page), page);
1002
e2769dbd
MG
1003 trace_mm_page_free(page, order);
1004 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1005
1006 /*
1007 * Check tail pages before head page information is cleared to
1008 * avoid checking PageCompound for order-0 pages.
1009 */
1010 if (unlikely(order)) {
1011 bool compound = PageCompound(page);
1012 int i;
1013
1014 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1015
9a73f61b
KS
1016 if (compound)
1017 ClearPageDoubleMap(page);
e2769dbd
MG
1018 for (i = 1; i < (1 << order); i++) {
1019 if (compound)
1020 bad += free_tail_pages_check(page, page + i);
1021 if (unlikely(free_pages_check(page + i))) {
1022 bad++;
1023 continue;
1024 }
1025 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 }
1027 }
bda807d4 1028 if (PageMappingFlags(page))
4db7548c 1029 page->mapping = NULL;
c4159a75 1030 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1031 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1032 if (check_free)
1033 bad += free_pages_check(page);
1034 if (bad)
1035 return false;
4db7548c 1036
e2769dbd
MG
1037 page_cpupid_reset_last(page);
1038 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 reset_page_owner(page, order);
4db7548c
MG
1040
1041 if (!PageHighMem(page)) {
1042 debug_check_no_locks_freed(page_address(page),
e2769dbd 1043 PAGE_SIZE << order);
4db7548c 1044 debug_check_no_obj_freed(page_address(page),
e2769dbd 1045 PAGE_SIZE << order);
4db7548c 1046 }
e2769dbd
MG
1047 arch_free_page(page, order);
1048 kernel_poison_pages(page, 1 << order, 0);
1049 kernel_map_pages(page, 1 << order, 0);
29b52de1 1050 kasan_free_pages(page, order);
4db7548c 1051
4db7548c
MG
1052 return true;
1053}
1054
e2769dbd
MG
1055#ifdef CONFIG_DEBUG_VM
1056static inline bool free_pcp_prepare(struct page *page)
1057{
1058 return free_pages_prepare(page, 0, true);
1059}
1060
1061static inline bool bulkfree_pcp_prepare(struct page *page)
1062{
1063 return false;
1064}
1065#else
1066static bool free_pcp_prepare(struct page *page)
1067{
1068 return free_pages_prepare(page, 0, false);
1069}
1070
4db7548c
MG
1071static bool bulkfree_pcp_prepare(struct page *page)
1072{
1073 return free_pages_check(page);
1074}
1075#endif /* CONFIG_DEBUG_VM */
1076
1da177e4 1077/*
5f8dcc21 1078 * Frees a number of pages from the PCP lists
1da177e4 1079 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1080 * count is the number of pages to free.
1da177e4
LT
1081 *
1082 * If the zone was previously in an "all pages pinned" state then look to
1083 * see if this freeing clears that state.
1084 *
1085 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086 * pinned" detection logic.
1087 */
5f8dcc21
MG
1088static void free_pcppages_bulk(struct zone *zone, int count,
1089 struct per_cpu_pages *pcp)
1da177e4 1090{
5f8dcc21 1091 int migratetype = 0;
a6f9edd6 1092 int batch_free = 0;
374ad05a 1093 unsigned long nr_scanned, flags;
3777999d 1094 bool isolated_pageblocks;
5f8dcc21 1095
374ad05a 1096 spin_lock_irqsave(&zone->lock, flags);
3777999d 1097 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1098 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1099 if (nr_scanned)
599d0c95 1100 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1101
e5b31ac2 1102 while (count) {
48db57f8 1103 struct page *page;
5f8dcc21
MG
1104 struct list_head *list;
1105
1106 /*
a6f9edd6
MG
1107 * Remove pages from lists in a round-robin fashion. A
1108 * batch_free count is maintained that is incremented when an
1109 * empty list is encountered. This is so more pages are freed
1110 * off fuller lists instead of spinning excessively around empty
1111 * lists
5f8dcc21
MG
1112 */
1113 do {
a6f9edd6 1114 batch_free++;
5f8dcc21
MG
1115 if (++migratetype == MIGRATE_PCPTYPES)
1116 migratetype = 0;
1117 list = &pcp->lists[migratetype];
1118 } while (list_empty(list));
48db57f8 1119
1d16871d
NK
1120 /* This is the only non-empty list. Free them all. */
1121 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1122 batch_free = count;
1d16871d 1123
a6f9edd6 1124 do {
770c8aaa
BZ
1125 int mt; /* migratetype of the to-be-freed page */
1126
a16601c5 1127 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1128 /* must delete as __free_one_page list manipulates */
1129 list_del(&page->lru);
aa016d14 1130
bb14c2c7 1131 mt = get_pcppage_migratetype(page);
aa016d14
VB
1132 /* MIGRATE_ISOLATE page should not go to pcplists */
1133 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1134 /* Pageblock could have been isolated meanwhile */
3777999d 1135 if (unlikely(isolated_pageblocks))
51bb1a40 1136 mt = get_pageblock_migratetype(page);
51bb1a40 1137
4db7548c
MG
1138 if (bulkfree_pcp_prepare(page))
1139 continue;
1140
dc4b0caf 1141 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1142 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1143 } while (--count && --batch_free && !list_empty(list));
1da177e4 1144 }
374ad05a 1145 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1146}
1147
dc4b0caf
MG
1148static void free_one_page(struct zone *zone,
1149 struct page *page, unsigned long pfn,
7aeb09f9 1150 unsigned int order,
ed0ae21d 1151 int migratetype)
1da177e4 1152{
374ad05a
MG
1153 unsigned long nr_scanned, flags;
1154 spin_lock_irqsave(&zone->lock, flags);
1155 __count_vm_events(PGFREE, 1 << order);
599d0c95 1156 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1157 if (nr_scanned)
599d0c95 1158 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1159
ad53f92e
JK
1160 if (unlikely(has_isolate_pageblock(zone) ||
1161 is_migrate_isolate(migratetype))) {
1162 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1163 }
dc4b0caf 1164 __free_one_page(page, pfn, zone, order, migratetype);
374ad05a 1165 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1166}
1167
1e8ce83c
RH
1168static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1169 unsigned long zone, int nid)
1170{
1e8ce83c 1171 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1172 init_page_count(page);
1173 page_mapcount_reset(page);
1174 page_cpupid_reset_last(page);
1e8ce83c 1175
1e8ce83c
RH
1176 INIT_LIST_HEAD(&page->lru);
1177#ifdef WANT_PAGE_VIRTUAL
1178 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1179 if (!is_highmem_idx(zone))
1180 set_page_address(page, __va(pfn << PAGE_SHIFT));
1181#endif
1182}
1183
1184static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1185 int nid)
1186{
1187 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1188}
1189
7e18adb4
MG
1190#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1191static void init_reserved_page(unsigned long pfn)
1192{
1193 pg_data_t *pgdat;
1194 int nid, zid;
1195
1196 if (!early_page_uninitialised(pfn))
1197 return;
1198
1199 nid = early_pfn_to_nid(pfn);
1200 pgdat = NODE_DATA(nid);
1201
1202 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1203 struct zone *zone = &pgdat->node_zones[zid];
1204
1205 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1206 break;
1207 }
1208 __init_single_pfn(pfn, zid, nid);
1209}
1210#else
1211static inline void init_reserved_page(unsigned long pfn)
1212{
1213}
1214#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1215
92923ca3
NZ
1216/*
1217 * Initialised pages do not have PageReserved set. This function is
1218 * called for each range allocated by the bootmem allocator and
1219 * marks the pages PageReserved. The remaining valid pages are later
1220 * sent to the buddy page allocator.
1221 */
4b50bcc7 1222void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1223{
1224 unsigned long start_pfn = PFN_DOWN(start);
1225 unsigned long end_pfn = PFN_UP(end);
1226
7e18adb4
MG
1227 for (; start_pfn < end_pfn; start_pfn++) {
1228 if (pfn_valid(start_pfn)) {
1229 struct page *page = pfn_to_page(start_pfn);
1230
1231 init_reserved_page(start_pfn);
1d798ca3
KS
1232
1233 /* Avoid false-positive PageTail() */
1234 INIT_LIST_HEAD(&page->lru);
1235
7e18adb4
MG
1236 SetPageReserved(page);
1237 }
1238 }
92923ca3
NZ
1239}
1240
ec95f53a
KM
1241static void __free_pages_ok(struct page *page, unsigned int order)
1242{
95e34412 1243 int migratetype;
dc4b0caf 1244 unsigned long pfn = page_to_pfn(page);
ec95f53a 1245
e2769dbd 1246 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1247 return;
1248
cfc47a28 1249 migratetype = get_pfnblock_migratetype(page, pfn);
dc4b0caf 1250 free_one_page(page_zone(page), page, pfn, order, migratetype);
1da177e4
LT
1251}
1252
949698a3 1253static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1254{
c3993076 1255 unsigned int nr_pages = 1 << order;
e2d0bd2b 1256 struct page *p = page;
c3993076 1257 unsigned int loop;
a226f6c8 1258
e2d0bd2b
YL
1259 prefetchw(p);
1260 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1261 prefetchw(p + 1);
c3993076
JW
1262 __ClearPageReserved(p);
1263 set_page_count(p, 0);
a226f6c8 1264 }
e2d0bd2b
YL
1265 __ClearPageReserved(p);
1266 set_page_count(p, 0);
c3993076 1267
e2d0bd2b 1268 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1269 set_page_refcounted(page);
1270 __free_pages(page, order);
a226f6c8
DH
1271}
1272
75a592a4
MG
1273#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1274 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1275
75a592a4
MG
1276static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1277
1278int __meminit early_pfn_to_nid(unsigned long pfn)
1279{
7ace9917 1280 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1281 int nid;
1282
7ace9917 1283 spin_lock(&early_pfn_lock);
75a592a4 1284 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1285 if (nid < 0)
e4568d38 1286 nid = first_online_node;
7ace9917
MG
1287 spin_unlock(&early_pfn_lock);
1288
1289 return nid;
75a592a4
MG
1290}
1291#endif
1292
1293#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1294static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1295 struct mminit_pfnnid_cache *state)
1296{
1297 int nid;
1298
1299 nid = __early_pfn_to_nid(pfn, state);
1300 if (nid >= 0 && nid != node)
1301 return false;
1302 return true;
1303}
1304
1305/* Only safe to use early in boot when initialisation is single-threaded */
1306static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1307{
1308 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1309}
1310
1311#else
1312
1313static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1314{
1315 return true;
1316}
1317static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1318 struct mminit_pfnnid_cache *state)
1319{
1320 return true;
1321}
1322#endif
1323
1324
0e1cc95b 1325void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1326 unsigned int order)
1327{
1328 if (early_page_uninitialised(pfn))
1329 return;
949698a3 1330 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1331}
1332
7cf91a98
JK
1333/*
1334 * Check that the whole (or subset of) a pageblock given by the interval of
1335 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1336 * with the migration of free compaction scanner. The scanners then need to
1337 * use only pfn_valid_within() check for arches that allow holes within
1338 * pageblocks.
1339 *
1340 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1341 *
1342 * It's possible on some configurations to have a setup like node0 node1 node0
1343 * i.e. it's possible that all pages within a zones range of pages do not
1344 * belong to a single zone. We assume that a border between node0 and node1
1345 * can occur within a single pageblock, but not a node0 node1 node0
1346 * interleaving within a single pageblock. It is therefore sufficient to check
1347 * the first and last page of a pageblock and avoid checking each individual
1348 * page in a pageblock.
1349 */
1350struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1351 unsigned long end_pfn, struct zone *zone)
1352{
1353 struct page *start_page;
1354 struct page *end_page;
1355
1356 /* end_pfn is one past the range we are checking */
1357 end_pfn--;
1358
1359 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1360 return NULL;
1361
1362 start_page = pfn_to_page(start_pfn);
1363
1364 if (page_zone(start_page) != zone)
1365 return NULL;
1366
1367 end_page = pfn_to_page(end_pfn);
1368
1369 /* This gives a shorter code than deriving page_zone(end_page) */
1370 if (page_zone_id(start_page) != page_zone_id(end_page))
1371 return NULL;
1372
1373 return start_page;
1374}
1375
1376void set_zone_contiguous(struct zone *zone)
1377{
1378 unsigned long block_start_pfn = zone->zone_start_pfn;
1379 unsigned long block_end_pfn;
1380
1381 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1382 for (; block_start_pfn < zone_end_pfn(zone);
1383 block_start_pfn = block_end_pfn,
1384 block_end_pfn += pageblock_nr_pages) {
1385
1386 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1387
1388 if (!__pageblock_pfn_to_page(block_start_pfn,
1389 block_end_pfn, zone))
1390 return;
1391 }
1392
1393 /* We confirm that there is no hole */
1394 zone->contiguous = true;
1395}
1396
1397void clear_zone_contiguous(struct zone *zone)
1398{
1399 zone->contiguous = false;
1400}
1401
7e18adb4 1402#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1403static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1404 unsigned long pfn, int nr_pages)
1405{
1406 int i;
1407
1408 if (!page)
1409 return;
1410
1411 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1412 if (nr_pages == pageblock_nr_pages &&
1413 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1414 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1415 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1416 return;
1417 }
1418
e780149b
XQ
1419 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1420 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1421 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1422 __free_pages_boot_core(page, 0);
e780149b 1423 }
a4de83dd
MG
1424}
1425
d3cd131d
NS
1426/* Completion tracking for deferred_init_memmap() threads */
1427static atomic_t pgdat_init_n_undone __initdata;
1428static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1429
1430static inline void __init pgdat_init_report_one_done(void)
1431{
1432 if (atomic_dec_and_test(&pgdat_init_n_undone))
1433 complete(&pgdat_init_all_done_comp);
1434}
0e1cc95b 1435
7e18adb4 1436/* Initialise remaining memory on a node */
0e1cc95b 1437static int __init deferred_init_memmap(void *data)
7e18adb4 1438{
0e1cc95b
MG
1439 pg_data_t *pgdat = data;
1440 int nid = pgdat->node_id;
7e18adb4
MG
1441 struct mminit_pfnnid_cache nid_init_state = { };
1442 unsigned long start = jiffies;
1443 unsigned long nr_pages = 0;
1444 unsigned long walk_start, walk_end;
1445 int i, zid;
1446 struct zone *zone;
7e18adb4 1447 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1448 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1449
0e1cc95b 1450 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1451 pgdat_init_report_one_done();
0e1cc95b
MG
1452 return 0;
1453 }
1454
1455 /* Bind memory initialisation thread to a local node if possible */
1456 if (!cpumask_empty(cpumask))
1457 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1458
1459 /* Sanity check boundaries */
1460 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1461 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1462 pgdat->first_deferred_pfn = ULONG_MAX;
1463
1464 /* Only the highest zone is deferred so find it */
1465 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1466 zone = pgdat->node_zones + zid;
1467 if (first_init_pfn < zone_end_pfn(zone))
1468 break;
1469 }
1470
1471 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1472 unsigned long pfn, end_pfn;
54608c3f 1473 struct page *page = NULL;
a4de83dd
MG
1474 struct page *free_base_page = NULL;
1475 unsigned long free_base_pfn = 0;
1476 int nr_to_free = 0;
7e18adb4
MG
1477
1478 end_pfn = min(walk_end, zone_end_pfn(zone));
1479 pfn = first_init_pfn;
1480 if (pfn < walk_start)
1481 pfn = walk_start;
1482 if (pfn < zone->zone_start_pfn)
1483 pfn = zone->zone_start_pfn;
1484
1485 for (; pfn < end_pfn; pfn++) {
54608c3f 1486 if (!pfn_valid_within(pfn))
a4de83dd 1487 goto free_range;
7e18adb4 1488
54608c3f
MG
1489 /*
1490 * Ensure pfn_valid is checked every
e780149b 1491 * pageblock_nr_pages for memory holes
54608c3f 1492 */
e780149b 1493 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1494 if (!pfn_valid(pfn)) {
1495 page = NULL;
a4de83dd 1496 goto free_range;
54608c3f
MG
1497 }
1498 }
1499
1500 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1501 page = NULL;
a4de83dd 1502 goto free_range;
54608c3f
MG
1503 }
1504
1505 /* Minimise pfn page lookups and scheduler checks */
e780149b 1506 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1507 page++;
1508 } else {
a4de83dd
MG
1509 nr_pages += nr_to_free;
1510 deferred_free_range(free_base_page,
1511 free_base_pfn, nr_to_free);
1512 free_base_page = NULL;
1513 free_base_pfn = nr_to_free = 0;
1514
54608c3f
MG
1515 page = pfn_to_page(pfn);
1516 cond_resched();
1517 }
7e18adb4
MG
1518
1519 if (page->flags) {
1520 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1521 goto free_range;
7e18adb4
MG
1522 }
1523
1524 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1525 if (!free_base_page) {
1526 free_base_page = page;
1527 free_base_pfn = pfn;
1528 nr_to_free = 0;
1529 }
1530 nr_to_free++;
1531
1532 /* Where possible, batch up pages for a single free */
1533 continue;
1534free_range:
1535 /* Free the current block of pages to allocator */
1536 nr_pages += nr_to_free;
1537 deferred_free_range(free_base_page, free_base_pfn,
1538 nr_to_free);
1539 free_base_page = NULL;
1540 free_base_pfn = nr_to_free = 0;
7e18adb4 1541 }
e780149b
XQ
1542 /* Free the last block of pages to allocator */
1543 nr_pages += nr_to_free;
1544 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1545
7e18adb4
MG
1546 first_init_pfn = max(end_pfn, first_init_pfn);
1547 }
1548
1549 /* Sanity check that the next zone really is unpopulated */
1550 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1551
0e1cc95b 1552 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1553 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1554
1555 pgdat_init_report_one_done();
0e1cc95b
MG
1556 return 0;
1557}
7cf91a98 1558#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1559
1560void __init page_alloc_init_late(void)
1561{
7cf91a98
JK
1562 struct zone *zone;
1563
1564#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1565 int nid;
1566
d3cd131d
NS
1567 /* There will be num_node_state(N_MEMORY) threads */
1568 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1569 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1570 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1571 }
1572
1573 /* Block until all are initialised */
d3cd131d 1574 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1575
1576 /* Reinit limits that are based on free pages after the kernel is up */
1577 files_maxfiles_init();
7cf91a98
JK
1578#endif
1579
1580 for_each_populated_zone(zone)
1581 set_zone_contiguous(zone);
7e18adb4 1582}
7e18adb4 1583
47118af0 1584#ifdef CONFIG_CMA
9cf510a5 1585/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1586void __init init_cma_reserved_pageblock(struct page *page)
1587{
1588 unsigned i = pageblock_nr_pages;
1589 struct page *p = page;
1590
1591 do {
1592 __ClearPageReserved(p);
1593 set_page_count(p, 0);
1594 } while (++p, --i);
1595
47118af0 1596 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1597
1598 if (pageblock_order >= MAX_ORDER) {
1599 i = pageblock_nr_pages;
1600 p = page;
1601 do {
1602 set_page_refcounted(p);
1603 __free_pages(p, MAX_ORDER - 1);
1604 p += MAX_ORDER_NR_PAGES;
1605 } while (i -= MAX_ORDER_NR_PAGES);
1606 } else {
1607 set_page_refcounted(page);
1608 __free_pages(page, pageblock_order);
1609 }
1610
3dcc0571 1611 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1612}
1613#endif
1da177e4
LT
1614
1615/*
1616 * The order of subdivision here is critical for the IO subsystem.
1617 * Please do not alter this order without good reasons and regression
1618 * testing. Specifically, as large blocks of memory are subdivided,
1619 * the order in which smaller blocks are delivered depends on the order
1620 * they're subdivided in this function. This is the primary factor
1621 * influencing the order in which pages are delivered to the IO
1622 * subsystem according to empirical testing, and this is also justified
1623 * by considering the behavior of a buddy system containing a single
1624 * large block of memory acted on by a series of small allocations.
1625 * This behavior is a critical factor in sglist merging's success.
1626 *
6d49e352 1627 * -- nyc
1da177e4 1628 */
085cc7d5 1629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1630 int low, int high, struct free_area *area,
1631 int migratetype)
1da177e4
LT
1632{
1633 unsigned long size = 1 << high;
1634
1635 while (high > low) {
1636 area--;
1637 high--;
1638 size >>= 1;
309381fe 1639 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1640
acbc15a4
JK
1641 /*
1642 * Mark as guard pages (or page), that will allow to
1643 * merge back to allocator when buddy will be freed.
1644 * Corresponding page table entries will not be touched,
1645 * pages will stay not present in virtual address space
1646 */
1647 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1648 continue;
acbc15a4 1649
b2a0ac88 1650 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1651 area->nr_free++;
1652 set_page_order(&page[size], high);
1653 }
1da177e4
LT
1654}
1655
4e611801 1656static void check_new_page_bad(struct page *page)
1da177e4 1657{
4e611801
VB
1658 const char *bad_reason = NULL;
1659 unsigned long bad_flags = 0;
7bfec6f4 1660
53f9263b 1661 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1662 bad_reason = "nonzero mapcount";
1663 if (unlikely(page->mapping != NULL))
1664 bad_reason = "non-NULL mapping";
fe896d18 1665 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1666 bad_reason = "nonzero _count";
f4c18e6f
NH
1667 if (unlikely(page->flags & __PG_HWPOISON)) {
1668 bad_reason = "HWPoisoned (hardware-corrupted)";
1669 bad_flags = __PG_HWPOISON;
e570f56c
NH
1670 /* Don't complain about hwpoisoned pages */
1671 page_mapcount_reset(page); /* remove PageBuddy */
1672 return;
f4c18e6f 1673 }
f0b791a3
DH
1674 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1675 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1676 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1677 }
9edad6ea
JW
1678#ifdef CONFIG_MEMCG
1679 if (unlikely(page->mem_cgroup))
1680 bad_reason = "page still charged to cgroup";
1681#endif
4e611801
VB
1682 bad_page(page, bad_reason, bad_flags);
1683}
1684
1685/*
1686 * This page is about to be returned from the page allocator
1687 */
1688static inline int check_new_page(struct page *page)
1689{
1690 if (likely(page_expected_state(page,
1691 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1692 return 0;
1693
1694 check_new_page_bad(page);
1695 return 1;
2a7684a2
WF
1696}
1697
1414c7f4
LA
1698static inline bool free_pages_prezeroed(bool poisoned)
1699{
1700 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1701 page_poisoning_enabled() && poisoned;
1702}
1703
479f854a
MG
1704#ifdef CONFIG_DEBUG_VM
1705static bool check_pcp_refill(struct page *page)
1706{
1707 return false;
1708}
1709
1710static bool check_new_pcp(struct page *page)
1711{
1712 return check_new_page(page);
1713}
1714#else
1715static bool check_pcp_refill(struct page *page)
1716{
1717 return check_new_page(page);
1718}
1719static bool check_new_pcp(struct page *page)
1720{
1721 return false;
1722}
1723#endif /* CONFIG_DEBUG_VM */
1724
1725static bool check_new_pages(struct page *page, unsigned int order)
1726{
1727 int i;
1728 for (i = 0; i < (1 << order); i++) {
1729 struct page *p = page + i;
1730
1731 if (unlikely(check_new_page(p)))
1732 return true;
1733 }
1734
1735 return false;
1736}
1737
46f24fd8
JK
1738inline void post_alloc_hook(struct page *page, unsigned int order,
1739 gfp_t gfp_flags)
1740{
1741 set_page_private(page, 0);
1742 set_page_refcounted(page);
1743
1744 arch_alloc_page(page, order);
1745 kernel_map_pages(page, 1 << order, 1);
1746 kernel_poison_pages(page, 1 << order, 1);
1747 kasan_alloc_pages(page, order);
1748 set_page_owner(page, order, gfp_flags);
1749}
1750
479f854a 1751static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1752 unsigned int alloc_flags)
2a7684a2
WF
1753{
1754 int i;
1414c7f4 1755 bool poisoned = true;
2a7684a2
WF
1756
1757 for (i = 0; i < (1 << order); i++) {
1758 struct page *p = page + i;
1414c7f4
LA
1759 if (poisoned)
1760 poisoned &= page_is_poisoned(p);
2a7684a2 1761 }
689bcebf 1762
46f24fd8 1763 post_alloc_hook(page, order, gfp_flags);
17cf4406 1764
1414c7f4 1765 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1766 for (i = 0; i < (1 << order); i++)
1767 clear_highpage(page + i);
17cf4406
NP
1768
1769 if (order && (gfp_flags & __GFP_COMP))
1770 prep_compound_page(page, order);
1771
75379191 1772 /*
2f064f34 1773 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1774 * allocate the page. The expectation is that the caller is taking
1775 * steps that will free more memory. The caller should avoid the page
1776 * being used for !PFMEMALLOC purposes.
1777 */
2f064f34
MH
1778 if (alloc_flags & ALLOC_NO_WATERMARKS)
1779 set_page_pfmemalloc(page);
1780 else
1781 clear_page_pfmemalloc(page);
1da177e4
LT
1782}
1783
56fd56b8
MG
1784/*
1785 * Go through the free lists for the given migratetype and remove
1786 * the smallest available page from the freelists
1787 */
728ec980
MG
1788static inline
1789struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1790 int migratetype)
1791{
1792 unsigned int current_order;
b8af2941 1793 struct free_area *area;
56fd56b8
MG
1794 struct page *page;
1795
1796 /* Find a page of the appropriate size in the preferred list */
1797 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1798 area = &(zone->free_area[current_order]);
a16601c5 1799 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1800 struct page, lru);
a16601c5
GT
1801 if (!page)
1802 continue;
56fd56b8
MG
1803 list_del(&page->lru);
1804 rmv_page_order(page);
1805 area->nr_free--;
56fd56b8 1806 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1807 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1808 return page;
1809 }
1810
1811 return NULL;
1812}
1813
1814
b2a0ac88
MG
1815/*
1816 * This array describes the order lists are fallen back to when
1817 * the free lists for the desirable migrate type are depleted
1818 */
47118af0 1819static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1820 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1822 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1823#ifdef CONFIG_CMA
974a786e 1824 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1825#endif
194159fb 1826#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1827 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1828#endif
b2a0ac88
MG
1829};
1830
dc67647b
JK
1831#ifdef CONFIG_CMA
1832static struct page *__rmqueue_cma_fallback(struct zone *zone,
1833 unsigned int order)
1834{
1835 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1836}
1837#else
1838static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1839 unsigned int order) { return NULL; }
1840#endif
1841
c361be55
MG
1842/*
1843 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1844 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1845 * boundary. If alignment is required, use move_freepages_block()
1846 */
435b405c 1847int move_freepages(struct zone *zone,
b69a7288
AB
1848 struct page *start_page, struct page *end_page,
1849 int migratetype)
c361be55
MG
1850{
1851 struct page *page;
d00181b9 1852 unsigned int order;
d100313f 1853 int pages_moved = 0;
c361be55
MG
1854
1855#ifndef CONFIG_HOLES_IN_ZONE
1856 /*
1857 * page_zone is not safe to call in this context when
1858 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1859 * anyway as we check zone boundaries in move_freepages_block().
1860 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1861 * grouping pages by mobility
c361be55 1862 */
97ee4ba7 1863 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1864#endif
1865
1866 for (page = start_page; page <= end_page;) {
1867 if (!pfn_valid_within(page_to_pfn(page))) {
1868 page++;
1869 continue;
1870 }
1871
f073bdc5
AB
1872 /* Make sure we are not inadvertently changing nodes */
1873 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1874
c361be55
MG
1875 if (!PageBuddy(page)) {
1876 page++;
1877 continue;
1878 }
1879
1880 order = page_order(page);
84be48d8
KS
1881 list_move(&page->lru,
1882 &zone->free_area[order].free_list[migratetype]);
c361be55 1883 page += 1 << order;
d100313f 1884 pages_moved += 1 << order;
c361be55
MG
1885 }
1886
d100313f 1887 return pages_moved;
c361be55
MG
1888}
1889
ee6f509c 1890int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1891 int migratetype)
c361be55
MG
1892{
1893 unsigned long start_pfn, end_pfn;
1894 struct page *start_page, *end_page;
1895
1896 start_pfn = page_to_pfn(page);
d9c23400 1897 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1898 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1899 end_page = start_page + pageblock_nr_pages - 1;
1900 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1901
1902 /* Do not cross zone boundaries */
108bcc96 1903 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1904 start_page = page;
108bcc96 1905 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1906 return 0;
1907
1908 return move_freepages(zone, start_page, end_page, migratetype);
1909}
1910
2f66a68f
MG
1911static void change_pageblock_range(struct page *pageblock_page,
1912 int start_order, int migratetype)
1913{
1914 int nr_pageblocks = 1 << (start_order - pageblock_order);
1915
1916 while (nr_pageblocks--) {
1917 set_pageblock_migratetype(pageblock_page, migratetype);
1918 pageblock_page += pageblock_nr_pages;
1919 }
1920}
1921
fef903ef 1922/*
9c0415eb
VB
1923 * When we are falling back to another migratetype during allocation, try to
1924 * steal extra free pages from the same pageblocks to satisfy further
1925 * allocations, instead of polluting multiple pageblocks.
1926 *
1927 * If we are stealing a relatively large buddy page, it is likely there will
1928 * be more free pages in the pageblock, so try to steal them all. For
1929 * reclaimable and unmovable allocations, we steal regardless of page size,
1930 * as fragmentation caused by those allocations polluting movable pageblocks
1931 * is worse than movable allocations stealing from unmovable and reclaimable
1932 * pageblocks.
fef903ef 1933 */
4eb7dce6
JK
1934static bool can_steal_fallback(unsigned int order, int start_mt)
1935{
1936 /*
1937 * Leaving this order check is intended, although there is
1938 * relaxed order check in next check. The reason is that
1939 * we can actually steal whole pageblock if this condition met,
1940 * but, below check doesn't guarantee it and that is just heuristic
1941 * so could be changed anytime.
1942 */
1943 if (order >= pageblock_order)
1944 return true;
1945
1946 if (order >= pageblock_order / 2 ||
1947 start_mt == MIGRATE_RECLAIMABLE ||
1948 start_mt == MIGRATE_UNMOVABLE ||
1949 page_group_by_mobility_disabled)
1950 return true;
1951
1952 return false;
1953}
1954
1955/*
1956 * This function implements actual steal behaviour. If order is large enough,
1957 * we can steal whole pageblock. If not, we first move freepages in this
1958 * pageblock and check whether half of pages are moved or not. If half of
1959 * pages are moved, we can change migratetype of pageblock and permanently
1960 * use it's pages as requested migratetype in the future.
1961 */
1962static void steal_suitable_fallback(struct zone *zone, struct page *page,
1963 int start_type)
fef903ef 1964{
d00181b9 1965 unsigned int current_order = page_order(page);
4eb7dce6 1966 int pages;
fef903ef 1967
fef903ef
SB
1968 /* Take ownership for orders >= pageblock_order */
1969 if (current_order >= pageblock_order) {
1970 change_pageblock_range(page, current_order, start_type);
3a1086fb 1971 return;
fef903ef
SB
1972 }
1973
4eb7dce6 1974 pages = move_freepages_block(zone, page, start_type);
fef903ef 1975
4eb7dce6
JK
1976 /* Claim the whole block if over half of it is free */
1977 if (pages >= (1 << (pageblock_order-1)) ||
1978 page_group_by_mobility_disabled)
1979 set_pageblock_migratetype(page, start_type);
1980}
1981
2149cdae
JK
1982/*
1983 * Check whether there is a suitable fallback freepage with requested order.
1984 * If only_stealable is true, this function returns fallback_mt only if
1985 * we can steal other freepages all together. This would help to reduce
1986 * fragmentation due to mixed migratetype pages in one pageblock.
1987 */
1988int find_suitable_fallback(struct free_area *area, unsigned int order,
1989 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1990{
1991 int i;
1992 int fallback_mt;
1993
1994 if (area->nr_free == 0)
1995 return -1;
1996
1997 *can_steal = false;
1998 for (i = 0;; i++) {
1999 fallback_mt = fallbacks[migratetype][i];
974a786e 2000 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2001 break;
2002
2003 if (list_empty(&area->free_list[fallback_mt]))
2004 continue;
fef903ef 2005
4eb7dce6
JK
2006 if (can_steal_fallback(order, migratetype))
2007 *can_steal = true;
2008
2149cdae
JK
2009 if (!only_stealable)
2010 return fallback_mt;
2011
2012 if (*can_steal)
2013 return fallback_mt;
fef903ef 2014 }
4eb7dce6
JK
2015
2016 return -1;
fef903ef
SB
2017}
2018
0aaa29a5
MG
2019/*
2020 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2021 * there are no empty page blocks that contain a page with a suitable order
2022 */
2023static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2024 unsigned int alloc_order)
2025{
2026 int mt;
2027 unsigned long max_managed, flags;
2028
2029 /*
2030 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2031 * Check is race-prone but harmless.
2032 */
2033 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2034 if (zone->nr_reserved_highatomic >= max_managed)
2035 return;
2036
2037 spin_lock_irqsave(&zone->lock, flags);
2038
2039 /* Recheck the nr_reserved_highatomic limit under the lock */
2040 if (zone->nr_reserved_highatomic >= max_managed)
2041 goto out_unlock;
2042
2043 /* Yoink! */
2044 mt = get_pageblock_migratetype(page);
2045 if (mt != MIGRATE_HIGHATOMIC &&
2046 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2047 zone->nr_reserved_highatomic += pageblock_nr_pages;
2048 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2049 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2050 }
2051
2052out_unlock:
2053 spin_unlock_irqrestore(&zone->lock, flags);
2054}
2055
2056/*
2057 * Used when an allocation is about to fail under memory pressure. This
2058 * potentially hurts the reliability of high-order allocations when under
2059 * intense memory pressure but failed atomic allocations should be easier
2060 * to recover from than an OOM.
29fac03b
MK
2061 *
2062 * If @force is true, try to unreserve a pageblock even though highatomic
2063 * pageblock is exhausted.
0aaa29a5 2064 */
29fac03b
MK
2065static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2066 bool force)
0aaa29a5
MG
2067{
2068 struct zonelist *zonelist = ac->zonelist;
2069 unsigned long flags;
2070 struct zoneref *z;
2071 struct zone *zone;
2072 struct page *page;
2073 int order;
04c8716f 2074 bool ret;
0aaa29a5
MG
2075
2076 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2077 ac->nodemask) {
29fac03b
MK
2078 /*
2079 * Preserve at least one pageblock unless memory pressure
2080 * is really high.
2081 */
2082 if (!force && zone->nr_reserved_highatomic <=
2083 pageblock_nr_pages)
0aaa29a5
MG
2084 continue;
2085
2086 spin_lock_irqsave(&zone->lock, flags);
2087 for (order = 0; order < MAX_ORDER; order++) {
2088 struct free_area *area = &(zone->free_area[order]);
2089
a16601c5
GT
2090 page = list_first_entry_or_null(
2091 &area->free_list[MIGRATE_HIGHATOMIC],
2092 struct page, lru);
2093 if (!page)
0aaa29a5
MG
2094 continue;
2095
0aaa29a5 2096 /*
4855e4a7
MK
2097 * In page freeing path, migratetype change is racy so
2098 * we can counter several free pages in a pageblock
2099 * in this loop althoug we changed the pageblock type
2100 * from highatomic to ac->migratetype. So we should
2101 * adjust the count once.
0aaa29a5 2102 */
4855e4a7
MK
2103 if (get_pageblock_migratetype(page) ==
2104 MIGRATE_HIGHATOMIC) {
2105 /*
2106 * It should never happen but changes to
2107 * locking could inadvertently allow a per-cpu
2108 * drain to add pages to MIGRATE_HIGHATOMIC
2109 * while unreserving so be safe and watch for
2110 * underflows.
2111 */
2112 zone->nr_reserved_highatomic -= min(
2113 pageblock_nr_pages,
2114 zone->nr_reserved_highatomic);
2115 }
0aaa29a5
MG
2116
2117 /*
2118 * Convert to ac->migratetype and avoid the normal
2119 * pageblock stealing heuristics. Minimally, the caller
2120 * is doing the work and needs the pages. More
2121 * importantly, if the block was always converted to
2122 * MIGRATE_UNMOVABLE or another type then the number
2123 * of pageblocks that cannot be completely freed
2124 * may increase.
2125 */
2126 set_pageblock_migratetype(page, ac->migratetype);
04c8716f 2127 ret = move_freepages_block(zone, page, ac->migratetype);
29fac03b
MK
2128 if (ret) {
2129 spin_unlock_irqrestore(&zone->lock, flags);
2130 return ret;
2131 }
0aaa29a5
MG
2132 }
2133 spin_unlock_irqrestore(&zone->lock, flags);
2134 }
04c8716f
MK
2135
2136 return false;
0aaa29a5
MG
2137}
2138
b2a0ac88 2139/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2140static inline struct page *
7aeb09f9 2141__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2142{
b8af2941 2143 struct free_area *area;
7aeb09f9 2144 unsigned int current_order;
b2a0ac88 2145 struct page *page;
4eb7dce6
JK
2146 int fallback_mt;
2147 bool can_steal;
b2a0ac88
MG
2148
2149 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2150 for (current_order = MAX_ORDER-1;
2151 current_order >= order && current_order <= MAX_ORDER-1;
2152 --current_order) {
4eb7dce6
JK
2153 area = &(zone->free_area[current_order]);
2154 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2155 start_migratetype, false, &can_steal);
4eb7dce6
JK
2156 if (fallback_mt == -1)
2157 continue;
b2a0ac88 2158
a16601c5 2159 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2160 struct page, lru);
88ed365e
MK
2161 if (can_steal &&
2162 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 2163 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2164
4eb7dce6
JK
2165 /* Remove the page from the freelists */
2166 area->nr_free--;
2167 list_del(&page->lru);
2168 rmv_page_order(page);
3a1086fb 2169
4eb7dce6
JK
2170 expand(zone, page, order, current_order, area,
2171 start_migratetype);
2172 /*
bb14c2c7 2173 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2174 * migratetype depending on the decisions in
bb14c2c7
VB
2175 * find_suitable_fallback(). This is OK as long as it does not
2176 * differ for MIGRATE_CMA pageblocks. Those can be used as
2177 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2178 */
bb14c2c7 2179 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2180
4eb7dce6
JK
2181 trace_mm_page_alloc_extfrag(page, order, current_order,
2182 start_migratetype, fallback_mt);
e0fff1bd 2183
4eb7dce6 2184 return page;
b2a0ac88
MG
2185 }
2186
728ec980 2187 return NULL;
b2a0ac88
MG
2188}
2189
56fd56b8 2190/*
1da177e4
LT
2191 * Do the hard work of removing an element from the buddy allocator.
2192 * Call me with the zone->lock already held.
2193 */
b2a0ac88 2194static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2195 int migratetype)
1da177e4 2196{
1da177e4
LT
2197 struct page *page;
2198
56fd56b8 2199 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2200 if (unlikely(!page)) {
dc67647b
JK
2201 if (migratetype == MIGRATE_MOVABLE)
2202 page = __rmqueue_cma_fallback(zone, order);
2203
2204 if (!page)
2205 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2206 }
2207
0d3d062a 2208 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2209 return page;
1da177e4
LT
2210}
2211
5f63b720 2212/*
1da177e4
LT
2213 * Obtain a specified number of elements from the buddy allocator, all under
2214 * a single hold of the lock, for efficiency. Add them to the supplied list.
2215 * Returns the number of new pages which were placed at *list.
2216 */
5f63b720 2217static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2218 unsigned long count, struct list_head *list,
b745bc85 2219 int migratetype, bool cold)
1da177e4 2220{
a6de734b 2221 int i, alloced = 0;
374ad05a 2222 unsigned long flags;
5f63b720 2223
374ad05a 2224 spin_lock_irqsave(&zone->lock, flags);
1da177e4 2225 for (i = 0; i < count; ++i) {
6ac0206b 2226 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2227 if (unlikely(page == NULL))
1da177e4 2228 break;
81eabcbe 2229
479f854a
MG
2230 if (unlikely(check_pcp_refill(page)))
2231 continue;
2232
81eabcbe
MG
2233 /*
2234 * Split buddy pages returned by expand() are received here
2235 * in physical page order. The page is added to the callers and
2236 * list and the list head then moves forward. From the callers
2237 * perspective, the linked list is ordered by page number in
2238 * some conditions. This is useful for IO devices that can
2239 * merge IO requests if the physical pages are ordered
2240 * properly.
2241 */
b745bc85 2242 if (likely(!cold))
e084b2d9
MG
2243 list_add(&page->lru, list);
2244 else
2245 list_add_tail(&page->lru, list);
81eabcbe 2246 list = &page->lru;
a6de734b 2247 alloced++;
bb14c2c7 2248 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2249 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2250 -(1 << order));
1da177e4 2251 }
a6de734b
MG
2252
2253 /*
2254 * i pages were removed from the buddy list even if some leak due
2255 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2256 * on i. Do not confuse with 'alloced' which is the number of
2257 * pages added to the pcp list.
2258 */
f2260e6b 2259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
374ad05a 2260 spin_unlock_irqrestore(&zone->lock, flags);
a6de734b 2261 return alloced;
1da177e4
LT
2262}
2263
4ae7c039 2264#ifdef CONFIG_NUMA
8fce4d8e 2265/*
4037d452
CL
2266 * Called from the vmstat counter updater to drain pagesets of this
2267 * currently executing processor on remote nodes after they have
2268 * expired.
2269 *
879336c3
CL
2270 * Note that this function must be called with the thread pinned to
2271 * a single processor.
8fce4d8e 2272 */
4037d452 2273void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2274{
4ae7c039 2275 unsigned long flags;
7be12fc9 2276 int to_drain, batch;
4ae7c039 2277
4037d452 2278 local_irq_save(flags);
4db0c3c2 2279 batch = READ_ONCE(pcp->batch);
7be12fc9 2280 to_drain = min(pcp->count, batch);
2a13515c
KM
2281 if (to_drain > 0) {
2282 free_pcppages_bulk(zone, to_drain, pcp);
2283 pcp->count -= to_drain;
2284 }
4037d452 2285 local_irq_restore(flags);
4ae7c039
CL
2286}
2287#endif
2288
9f8f2172 2289/*
93481ff0 2290 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2291 *
2292 * The processor must either be the current processor and the
2293 * thread pinned to the current processor or a processor that
2294 * is not online.
2295 */
93481ff0 2296static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2297{
c54ad30c 2298 unsigned long flags;
93481ff0
VB
2299 struct per_cpu_pageset *pset;
2300 struct per_cpu_pages *pcp;
1da177e4 2301
93481ff0
VB
2302 local_irq_save(flags);
2303 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2304
93481ff0
VB
2305 pcp = &pset->pcp;
2306 if (pcp->count) {
2307 free_pcppages_bulk(zone, pcp->count, pcp);
2308 pcp->count = 0;
2309 }
2310 local_irq_restore(flags);
2311}
3dfa5721 2312
93481ff0
VB
2313/*
2314 * Drain pcplists of all zones on the indicated processor.
2315 *
2316 * The processor must either be the current processor and the
2317 * thread pinned to the current processor or a processor that
2318 * is not online.
2319 */
2320static void drain_pages(unsigned int cpu)
2321{
2322 struct zone *zone;
2323
2324 for_each_populated_zone(zone) {
2325 drain_pages_zone(cpu, zone);
1da177e4
LT
2326 }
2327}
1da177e4 2328
9f8f2172
CL
2329/*
2330 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2331 *
2332 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2333 * the single zone's pages.
9f8f2172 2334 */
93481ff0 2335void drain_local_pages(struct zone *zone)
9f8f2172 2336{
93481ff0
VB
2337 int cpu = smp_processor_id();
2338
2339 if (zone)
2340 drain_pages_zone(cpu, zone);
2341 else
2342 drain_pages(cpu);
9f8f2172
CL
2343}
2344
0ccce3b9
MG
2345static void drain_local_pages_wq(struct work_struct *work)
2346{
a459eeb7
MH
2347 /*
2348 * drain_all_pages doesn't use proper cpu hotplug protection so
2349 * we can race with cpu offline when the WQ can move this from
2350 * a cpu pinned worker to an unbound one. We can operate on a different
2351 * cpu which is allright but we also have to make sure to not move to
2352 * a different one.
2353 */
2354 preempt_disable();
0ccce3b9 2355 drain_local_pages(NULL);
a459eeb7 2356 preempt_enable();
0ccce3b9
MG
2357}
2358
9f8f2172 2359/*
74046494
GBY
2360 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2361 *
93481ff0
VB
2362 * When zone parameter is non-NULL, spill just the single zone's pages.
2363 *
0ccce3b9 2364 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2365 */
93481ff0 2366void drain_all_pages(struct zone *zone)
9f8f2172 2367{
74046494 2368 int cpu;
74046494
GBY
2369
2370 /*
2371 * Allocate in the BSS so we wont require allocation in
2372 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2373 */
2374 static cpumask_t cpus_with_pcps;
2375
ce612879
MH
2376 /*
2377 * Make sure nobody triggers this path before mm_percpu_wq is fully
2378 * initialized.
2379 */
2380 if (WARN_ON_ONCE(!mm_percpu_wq))
2381 return;
2382
0ccce3b9
MG
2383 /* Workqueues cannot recurse */
2384 if (current->flags & PF_WQ_WORKER)
2385 return;
2386
bd233f53
MG
2387 /*
2388 * Do not drain if one is already in progress unless it's specific to
2389 * a zone. Such callers are primarily CMA and memory hotplug and need
2390 * the drain to be complete when the call returns.
2391 */
2392 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2393 if (!zone)
2394 return;
2395 mutex_lock(&pcpu_drain_mutex);
2396 }
0ccce3b9 2397
74046494
GBY
2398 /*
2399 * We don't care about racing with CPU hotplug event
2400 * as offline notification will cause the notified
2401 * cpu to drain that CPU pcps and on_each_cpu_mask
2402 * disables preemption as part of its processing
2403 */
2404 for_each_online_cpu(cpu) {
93481ff0
VB
2405 struct per_cpu_pageset *pcp;
2406 struct zone *z;
74046494 2407 bool has_pcps = false;
93481ff0
VB
2408
2409 if (zone) {
74046494 2410 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2411 if (pcp->pcp.count)
74046494 2412 has_pcps = true;
93481ff0
VB
2413 } else {
2414 for_each_populated_zone(z) {
2415 pcp = per_cpu_ptr(z->pageset, cpu);
2416 if (pcp->pcp.count) {
2417 has_pcps = true;
2418 break;
2419 }
74046494
GBY
2420 }
2421 }
93481ff0 2422
74046494
GBY
2423 if (has_pcps)
2424 cpumask_set_cpu(cpu, &cpus_with_pcps);
2425 else
2426 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2427 }
0ccce3b9 2428
bd233f53
MG
2429 for_each_cpu(cpu, &cpus_with_pcps) {
2430 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2431 INIT_WORK(work, drain_local_pages_wq);
ce612879 2432 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2433 }
bd233f53
MG
2434 for_each_cpu(cpu, &cpus_with_pcps)
2435 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2436
2437 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2438}
2439
296699de 2440#ifdef CONFIG_HIBERNATION
1da177e4
LT
2441
2442void mark_free_pages(struct zone *zone)
2443{
f623f0db
RW
2444 unsigned long pfn, max_zone_pfn;
2445 unsigned long flags;
7aeb09f9 2446 unsigned int order, t;
86760a2c 2447 struct page *page;
1da177e4 2448
8080fc03 2449 if (zone_is_empty(zone))
1da177e4
LT
2450 return;
2451
2452 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2453
108bcc96 2454 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2455 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2456 if (pfn_valid(pfn)) {
86760a2c 2457 page = pfn_to_page(pfn);
ba6b0979
JK
2458
2459 if (page_zone(page) != zone)
2460 continue;
2461
7be98234
RW
2462 if (!swsusp_page_is_forbidden(page))
2463 swsusp_unset_page_free(page);
f623f0db 2464 }
1da177e4 2465
b2a0ac88 2466 for_each_migratetype_order(order, t) {
86760a2c
GT
2467 list_for_each_entry(page,
2468 &zone->free_area[order].free_list[t], lru) {
f623f0db 2469 unsigned long i;
1da177e4 2470
86760a2c 2471 pfn = page_to_pfn(page);
f623f0db 2472 for (i = 0; i < (1UL << order); i++)
7be98234 2473 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2474 }
b2a0ac88 2475 }
1da177e4
LT
2476 spin_unlock_irqrestore(&zone->lock, flags);
2477}
e2c55dc8 2478#endif /* CONFIG_PM */
1da177e4 2479
1da177e4
LT
2480/*
2481 * Free a 0-order page
b745bc85 2482 * cold == true ? free a cold page : free a hot page
1da177e4 2483 */
b745bc85 2484void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2485{
2486 struct zone *zone = page_zone(page);
2487 struct per_cpu_pages *pcp;
dc4b0caf 2488 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2489 int migratetype;
1da177e4 2490
374ad05a
MG
2491 if (in_interrupt()) {
2492 __free_pages_ok(page, 0);
2493 return;
2494 }
2495
4db7548c 2496 if (!free_pcp_prepare(page))
689bcebf
HD
2497 return;
2498
dc4b0caf 2499 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2500 set_pcppage_migratetype(page, migratetype);
374ad05a 2501 preempt_disable();
da456f14 2502
5f8dcc21
MG
2503 /*
2504 * We only track unmovable, reclaimable and movable on pcp lists.
2505 * Free ISOLATE pages back to the allocator because they are being
2506 * offlined but treat RESERVE as movable pages so we can get those
2507 * areas back if necessary. Otherwise, we may have to free
2508 * excessively into the page allocator
2509 */
2510 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2511 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2512 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2513 goto out;
2514 }
2515 migratetype = MIGRATE_MOVABLE;
2516 }
2517
374ad05a 2518 __count_vm_event(PGFREE);
99dcc3e5 2519 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2520 if (!cold)
5f8dcc21 2521 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2522 else
2523 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2524 pcp->count++;
48db57f8 2525 if (pcp->count >= pcp->high) {
4db0c3c2 2526 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2527 free_pcppages_bulk(zone, batch, pcp);
2528 pcp->count -= batch;
48db57f8 2529 }
5f8dcc21
MG
2530
2531out:
374ad05a 2532 preempt_enable();
1da177e4
LT
2533}
2534
cc59850e
KK
2535/*
2536 * Free a list of 0-order pages
2537 */
b745bc85 2538void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2539{
2540 struct page *page, *next;
2541
2542 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2543 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2544 free_hot_cold_page(page, cold);
2545 }
2546}
2547
8dfcc9ba
NP
2548/*
2549 * split_page takes a non-compound higher-order page, and splits it into
2550 * n (1<<order) sub-pages: page[0..n]
2551 * Each sub-page must be freed individually.
2552 *
2553 * Note: this is probably too low level an operation for use in drivers.
2554 * Please consult with lkml before using this in your driver.
2555 */
2556void split_page(struct page *page, unsigned int order)
2557{
2558 int i;
2559
309381fe
SL
2560 VM_BUG_ON_PAGE(PageCompound(page), page);
2561 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2562
2563#ifdef CONFIG_KMEMCHECK
2564 /*
2565 * Split shadow pages too, because free(page[0]) would
2566 * otherwise free the whole shadow.
2567 */
2568 if (kmemcheck_page_is_tracked(page))
2569 split_page(virt_to_page(page[0].shadow), order);
2570#endif
2571
a9627bc5 2572 for (i = 1; i < (1 << order); i++)
7835e98b 2573 set_page_refcounted(page + i);
a9627bc5 2574 split_page_owner(page, order);
8dfcc9ba 2575}
5853ff23 2576EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2577
3c605096 2578int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2579{
748446bb
MG
2580 unsigned long watermark;
2581 struct zone *zone;
2139cbe6 2582 int mt;
748446bb
MG
2583
2584 BUG_ON(!PageBuddy(page));
2585
2586 zone = page_zone(page);
2e30abd1 2587 mt = get_pageblock_migratetype(page);
748446bb 2588
194159fb 2589 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2590 /*
2591 * Obey watermarks as if the page was being allocated. We can
2592 * emulate a high-order watermark check with a raised order-0
2593 * watermark, because we already know our high-order page
2594 * exists.
2595 */
2596 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2597 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2598 return 0;
2599
8fb74b9f 2600 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2601 }
748446bb
MG
2602
2603 /* Remove page from free list */
2604 list_del(&page->lru);
2605 zone->free_area[order].nr_free--;
2606 rmv_page_order(page);
2139cbe6 2607
400bc7fd 2608 /*
2609 * Set the pageblock if the isolated page is at least half of a
2610 * pageblock
2611 */
748446bb
MG
2612 if (order >= pageblock_order - 1) {
2613 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2614 for (; page < endpage; page += pageblock_nr_pages) {
2615 int mt = get_pageblock_migratetype(page);
88ed365e
MK
2616 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2617 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2618 set_pageblock_migratetype(page,
2619 MIGRATE_MOVABLE);
2620 }
748446bb
MG
2621 }
2622
f3a14ced 2623
8fb74b9f 2624 return 1UL << order;
1fb3f8ca
MG
2625}
2626
060e7417
MG
2627/*
2628 * Update NUMA hit/miss statistics
2629 *
2630 * Must be called with interrupts disabled.
060e7417 2631 */
41b6167e 2632static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2633{
2634#ifdef CONFIG_NUMA
060e7417
MG
2635 enum zone_stat_item local_stat = NUMA_LOCAL;
2636
2df26639 2637 if (z->node != numa_node_id())
060e7417 2638 local_stat = NUMA_OTHER;
060e7417 2639
2df26639 2640 if (z->node == preferred_zone->node)
060e7417 2641 __inc_zone_state(z, NUMA_HIT);
2df26639 2642 else {
060e7417
MG
2643 __inc_zone_state(z, NUMA_MISS);
2644 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2645 }
2df26639 2646 __inc_zone_state(z, local_stat);
060e7417
MG
2647#endif
2648}
2649
066b2393
MG
2650/* Remove page from the per-cpu list, caller must protect the list */
2651static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2652 bool cold, struct per_cpu_pages *pcp,
2653 struct list_head *list)
2654{
2655 struct page *page;
2656
374ad05a
MG
2657 VM_BUG_ON(in_interrupt());
2658
066b2393
MG
2659 do {
2660 if (list_empty(list)) {
2661 pcp->count += rmqueue_bulk(zone, 0,
2662 pcp->batch, list,
2663 migratetype, cold);
2664 if (unlikely(list_empty(list)))
2665 return NULL;
2666 }
2667
2668 if (cold)
2669 page = list_last_entry(list, struct page, lru);
2670 else
2671 page = list_first_entry(list, struct page, lru);
2672
2673 list_del(&page->lru);
2674 pcp->count--;
2675 } while (check_new_pcp(page));
2676
2677 return page;
2678}
2679
2680/* Lock and remove page from the per-cpu list */
2681static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2682 struct zone *zone, unsigned int order,
2683 gfp_t gfp_flags, int migratetype)
2684{
2685 struct per_cpu_pages *pcp;
2686 struct list_head *list;
2687 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2688 struct page *page;
066b2393 2689
374ad05a 2690 preempt_disable();
066b2393
MG
2691 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2692 list = &pcp->lists[migratetype];
2693 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2694 if (page) {
2695 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2696 zone_statistics(preferred_zone, zone);
2697 }
374ad05a 2698 preempt_enable();
066b2393
MG
2699 return page;
2700}
2701
1da177e4 2702/*
75379191 2703 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2704 */
0a15c3e9 2705static inline
066b2393 2706struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2707 struct zone *zone, unsigned int order,
c603844b
MG
2708 gfp_t gfp_flags, unsigned int alloc_flags,
2709 int migratetype)
1da177e4
LT
2710{
2711 unsigned long flags;
689bcebf 2712 struct page *page;
1da177e4 2713
374ad05a 2714 if (likely(order == 0) && !in_interrupt()) {
066b2393
MG
2715 page = rmqueue_pcplist(preferred_zone, zone, order,
2716 gfp_flags, migratetype);
2717 goto out;
2718 }
83b9355b 2719
066b2393
MG
2720 /*
2721 * We most definitely don't want callers attempting to
2722 * allocate greater than order-1 page units with __GFP_NOFAIL.
2723 */
2724 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2725 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2726
066b2393
MG
2727 do {
2728 page = NULL;
2729 if (alloc_flags & ALLOC_HARDER) {
2730 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2731 if (page)
2732 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2733 }
a74609fa 2734 if (!page)
066b2393
MG
2735 page = __rmqueue(zone, order, migratetype);
2736 } while (page && check_new_pages(page, order));
2737 spin_unlock(&zone->lock);
2738 if (!page)
2739 goto failed;
2740 __mod_zone_freepage_state(zone, -(1 << order),
2741 get_pcppage_migratetype(page));
1da177e4 2742
16709d1d 2743 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2744 zone_statistics(preferred_zone, zone);
a74609fa 2745 local_irq_restore(flags);
1da177e4 2746
066b2393
MG
2747out:
2748 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2749 return page;
a74609fa
NP
2750
2751failed:
2752 local_irq_restore(flags);
a74609fa 2753 return NULL;
1da177e4
LT
2754}
2755
933e312e
AM
2756#ifdef CONFIG_FAIL_PAGE_ALLOC
2757
b2588c4b 2758static struct {
933e312e
AM
2759 struct fault_attr attr;
2760
621a5f7a 2761 bool ignore_gfp_highmem;
71baba4b 2762 bool ignore_gfp_reclaim;
54114994 2763 u32 min_order;
933e312e
AM
2764} fail_page_alloc = {
2765 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2766 .ignore_gfp_reclaim = true,
621a5f7a 2767 .ignore_gfp_highmem = true,
54114994 2768 .min_order = 1,
933e312e
AM
2769};
2770
2771static int __init setup_fail_page_alloc(char *str)
2772{
2773 return setup_fault_attr(&fail_page_alloc.attr, str);
2774}
2775__setup("fail_page_alloc=", setup_fail_page_alloc);
2776
deaf386e 2777static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2778{
54114994 2779 if (order < fail_page_alloc.min_order)
deaf386e 2780 return false;
933e312e 2781 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2782 return false;
933e312e 2783 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2784 return false;
71baba4b
MG
2785 if (fail_page_alloc.ignore_gfp_reclaim &&
2786 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2787 return false;
933e312e
AM
2788
2789 return should_fail(&fail_page_alloc.attr, 1 << order);
2790}
2791
2792#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2793
2794static int __init fail_page_alloc_debugfs(void)
2795{
f4ae40a6 2796 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2797 struct dentry *dir;
933e312e 2798
dd48c085
AM
2799 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2800 &fail_page_alloc.attr);
2801 if (IS_ERR(dir))
2802 return PTR_ERR(dir);
933e312e 2803
b2588c4b 2804 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2805 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2806 goto fail;
2807 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2808 &fail_page_alloc.ignore_gfp_highmem))
2809 goto fail;
2810 if (!debugfs_create_u32("min-order", mode, dir,
2811 &fail_page_alloc.min_order))
2812 goto fail;
2813
2814 return 0;
2815fail:
dd48c085 2816 debugfs_remove_recursive(dir);
933e312e 2817
b2588c4b 2818 return -ENOMEM;
933e312e
AM
2819}
2820
2821late_initcall(fail_page_alloc_debugfs);
2822
2823#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2824
2825#else /* CONFIG_FAIL_PAGE_ALLOC */
2826
deaf386e 2827static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2828{
deaf386e 2829 return false;
933e312e
AM
2830}
2831
2832#endif /* CONFIG_FAIL_PAGE_ALLOC */
2833
1da177e4 2834/*
97a16fc8
MG
2835 * Return true if free base pages are above 'mark'. For high-order checks it
2836 * will return true of the order-0 watermark is reached and there is at least
2837 * one free page of a suitable size. Checking now avoids taking the zone lock
2838 * to check in the allocation paths if no pages are free.
1da177e4 2839 */
86a294a8
MH
2840bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2841 int classzone_idx, unsigned int alloc_flags,
2842 long free_pages)
1da177e4 2843{
d23ad423 2844 long min = mark;
1da177e4 2845 int o;
c603844b 2846 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2847
0aaa29a5 2848 /* free_pages may go negative - that's OK */
df0a6daa 2849 free_pages -= (1 << order) - 1;
0aaa29a5 2850
7fb1d9fc 2851 if (alloc_flags & ALLOC_HIGH)
1da177e4 2852 min -= min / 2;
0aaa29a5
MG
2853
2854 /*
2855 * If the caller does not have rights to ALLOC_HARDER then subtract
2856 * the high-atomic reserves. This will over-estimate the size of the
2857 * atomic reserve but it avoids a search.
2858 */
97a16fc8 2859 if (likely(!alloc_harder))
0aaa29a5
MG
2860 free_pages -= z->nr_reserved_highatomic;
2861 else
1da177e4 2862 min -= min / 4;
e2b19197 2863
d95ea5d1
BZ
2864#ifdef CONFIG_CMA
2865 /* If allocation can't use CMA areas don't use free CMA pages */
2866 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2867 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2868#endif
026b0814 2869
97a16fc8
MG
2870 /*
2871 * Check watermarks for an order-0 allocation request. If these
2872 * are not met, then a high-order request also cannot go ahead
2873 * even if a suitable page happened to be free.
2874 */
2875 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2876 return false;
1da177e4 2877
97a16fc8
MG
2878 /* If this is an order-0 request then the watermark is fine */
2879 if (!order)
2880 return true;
2881
2882 /* For a high-order request, check at least one suitable page is free */
2883 for (o = order; o < MAX_ORDER; o++) {
2884 struct free_area *area = &z->free_area[o];
2885 int mt;
2886
2887 if (!area->nr_free)
2888 continue;
2889
2890 if (alloc_harder)
2891 return true;
1da177e4 2892
97a16fc8
MG
2893 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2894 if (!list_empty(&area->free_list[mt]))
2895 return true;
2896 }
2897
2898#ifdef CONFIG_CMA
2899 if ((alloc_flags & ALLOC_CMA) &&
2900 !list_empty(&area->free_list[MIGRATE_CMA])) {
2901 return true;
2902 }
2903#endif
1da177e4 2904 }
97a16fc8 2905 return false;
88f5acf8
MG
2906}
2907
7aeb09f9 2908bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2909 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2910{
2911 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2912 zone_page_state(z, NR_FREE_PAGES));
2913}
2914
48ee5f36
MG
2915static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2916 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2917{
2918 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2919 long cma_pages = 0;
2920
2921#ifdef CONFIG_CMA
2922 /* If allocation can't use CMA areas don't use free CMA pages */
2923 if (!(alloc_flags & ALLOC_CMA))
2924 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2925#endif
2926
2927 /*
2928 * Fast check for order-0 only. If this fails then the reserves
2929 * need to be calculated. There is a corner case where the check
2930 * passes but only the high-order atomic reserve are free. If
2931 * the caller is !atomic then it'll uselessly search the free
2932 * list. That corner case is then slower but it is harmless.
2933 */
2934 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2935 return true;
2936
2937 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2938 free_pages);
2939}
2940
7aeb09f9 2941bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2942 unsigned long mark, int classzone_idx)
88f5acf8
MG
2943{
2944 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2945
2946 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2947 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2948
e2b19197 2949 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2950 free_pages);
1da177e4
LT
2951}
2952
9276b1bc 2953#ifdef CONFIG_NUMA
957f822a
DR
2954static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2955{
e02dc017 2956 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 2957 RECLAIM_DISTANCE;
957f822a 2958}
9276b1bc 2959#else /* CONFIG_NUMA */
957f822a
DR
2960static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2961{
2962 return true;
2963}
9276b1bc
PJ
2964#endif /* CONFIG_NUMA */
2965
7fb1d9fc 2966/*
0798e519 2967 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2968 * a page.
2969 */
2970static struct page *
a9263751
VB
2971get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2972 const struct alloc_context *ac)
753ee728 2973{
c33d6c06 2974 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2975 struct zone *zone;
3b8c0be4
MG
2976 struct pglist_data *last_pgdat_dirty_limit = NULL;
2977
7fb1d9fc 2978 /*
9276b1bc 2979 * Scan zonelist, looking for a zone with enough free.
344736f2 2980 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2981 */
c33d6c06 2982 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2983 ac->nodemask) {
be06af00 2984 struct page *page;
e085dbc5
JW
2985 unsigned long mark;
2986
664eedde
MG
2987 if (cpusets_enabled() &&
2988 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2989 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2990 continue;
a756cf59
JW
2991 /*
2992 * When allocating a page cache page for writing, we
281e3726
MG
2993 * want to get it from a node that is within its dirty
2994 * limit, such that no single node holds more than its
a756cf59 2995 * proportional share of globally allowed dirty pages.
281e3726 2996 * The dirty limits take into account the node's
a756cf59
JW
2997 * lowmem reserves and high watermark so that kswapd
2998 * should be able to balance it without having to
2999 * write pages from its LRU list.
3000 *
a756cf59 3001 * XXX: For now, allow allocations to potentially
281e3726 3002 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3003 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3004 * which is important when on a NUMA setup the allowed
281e3726 3005 * nodes are together not big enough to reach the
a756cf59 3006 * global limit. The proper fix for these situations
281e3726 3007 * will require awareness of nodes in the
a756cf59
JW
3008 * dirty-throttling and the flusher threads.
3009 */
3b8c0be4
MG
3010 if (ac->spread_dirty_pages) {
3011 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3012 continue;
3013
3014 if (!node_dirty_ok(zone->zone_pgdat)) {
3015 last_pgdat_dirty_limit = zone->zone_pgdat;
3016 continue;
3017 }
3018 }
7fb1d9fc 3019
e085dbc5 3020 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3021 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3022 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3023 int ret;
3024
5dab2911
MG
3025 /* Checked here to keep the fast path fast */
3026 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3027 if (alloc_flags & ALLOC_NO_WATERMARKS)
3028 goto try_this_zone;
3029
a5f5f91d 3030 if (node_reclaim_mode == 0 ||
c33d6c06 3031 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3032 continue;
3033
a5f5f91d 3034 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3035 switch (ret) {
a5f5f91d 3036 case NODE_RECLAIM_NOSCAN:
fa5e084e 3037 /* did not scan */
cd38b115 3038 continue;
a5f5f91d 3039 case NODE_RECLAIM_FULL:
fa5e084e 3040 /* scanned but unreclaimable */
cd38b115 3041 continue;
fa5e084e
MG
3042 default:
3043 /* did we reclaim enough */
fed2719e 3044 if (zone_watermark_ok(zone, order, mark,
93ea9964 3045 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3046 goto try_this_zone;
3047
fed2719e 3048 continue;
0798e519 3049 }
7fb1d9fc
RS
3050 }
3051
fa5e084e 3052try_this_zone:
066b2393 3053 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3054 gfp_mask, alloc_flags, ac->migratetype);
75379191 3055 if (page) {
479f854a 3056 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3057
3058 /*
3059 * If this is a high-order atomic allocation then check
3060 * if the pageblock should be reserved for the future
3061 */
3062 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3063 reserve_highatomic_pageblock(page, zone, order);
3064
75379191
VB
3065 return page;
3066 }
54a6eb5c 3067 }
9276b1bc 3068
4ffeaf35 3069 return NULL;
753ee728
MH
3070}
3071
29423e77
DR
3072/*
3073 * Large machines with many possible nodes should not always dump per-node
3074 * meminfo in irq context.
3075 */
3076static inline bool should_suppress_show_mem(void)
3077{
3078 bool ret = false;
3079
3080#if NODES_SHIFT > 8
3081 ret = in_interrupt();
3082#endif
3083 return ret;
3084}
3085
9af744d7 3086static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3087{
a238ab5b 3088 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3089 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3090
aa187507 3091 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3092 return;
3093
3094 /*
3095 * This documents exceptions given to allocations in certain
3096 * contexts that are allowed to allocate outside current's set
3097 * of allowed nodes.
3098 */
3099 if (!(gfp_mask & __GFP_NOMEMALLOC))
3100 if (test_thread_flag(TIF_MEMDIE) ||
3101 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3102 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3103 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3104 filter &= ~SHOW_MEM_FILTER_NODES;
3105
9af744d7 3106 show_mem(filter, nodemask);
aa187507
MH
3107}
3108
a8e99259 3109void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3110{
3111 struct va_format vaf;
3112 va_list args;
3113 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3114 DEFAULT_RATELIMIT_BURST);
3115
3116 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3117 debug_guardpage_minorder() > 0)
3118 return;
3119
7877cdcc 3120 pr_warn("%s: ", current->comm);
3ee9a4f0 3121
7877cdcc
MH
3122 va_start(args, fmt);
3123 vaf.fmt = fmt;
3124 vaf.va = &args;
3125 pr_cont("%pV", &vaf);
3126 va_end(args);
3ee9a4f0 3127
685dbf6f
DR
3128 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3129 if (nodemask)
3130 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3131 else
3132 pr_cont("(null)\n");
3133
a8e99259 3134 cpuset_print_current_mems_allowed();
3ee9a4f0 3135
a238ab5b 3136 dump_stack();
685dbf6f 3137 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3138}
3139
6c18ba7a
MH
3140static inline struct page *
3141__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3142 unsigned int alloc_flags,
3143 const struct alloc_context *ac)
3144{
3145 struct page *page;
3146
3147 page = get_page_from_freelist(gfp_mask, order,
3148 alloc_flags|ALLOC_CPUSET, ac);
3149 /*
3150 * fallback to ignore cpuset restriction if our nodes
3151 * are depleted
3152 */
3153 if (!page)
3154 page = get_page_from_freelist(gfp_mask, order,
3155 alloc_flags, ac);
3156
3157 return page;
3158}
3159
11e33f6a
MG
3160static inline struct page *
3161__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3162 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3163{
6e0fc46d
DR
3164 struct oom_control oc = {
3165 .zonelist = ac->zonelist,
3166 .nodemask = ac->nodemask,
2a966b77 3167 .memcg = NULL,
6e0fc46d
DR
3168 .gfp_mask = gfp_mask,
3169 .order = order,
6e0fc46d 3170 };
11e33f6a
MG
3171 struct page *page;
3172
9879de73
JW
3173 *did_some_progress = 0;
3174
9879de73 3175 /*
dc56401f
JW
3176 * Acquire the oom lock. If that fails, somebody else is
3177 * making progress for us.
9879de73 3178 */
dc56401f 3179 if (!mutex_trylock(&oom_lock)) {
9879de73 3180 *did_some_progress = 1;
11e33f6a 3181 schedule_timeout_uninterruptible(1);
1da177e4
LT
3182 return NULL;
3183 }
6b1de916 3184
11e33f6a
MG
3185 /*
3186 * Go through the zonelist yet one more time, keep very high watermark
3187 * here, this is only to catch a parallel oom killing, we must fail if
3188 * we're still under heavy pressure.
3189 */
a9263751
VB
3190 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3191 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3192 if (page)
11e33f6a
MG
3193 goto out;
3194
06ad276a
MH
3195 /* Coredumps can quickly deplete all memory reserves */
3196 if (current->flags & PF_DUMPCORE)
3197 goto out;
3198 /* The OOM killer will not help higher order allocs */
3199 if (order > PAGE_ALLOC_COSTLY_ORDER)
3200 goto out;
3201 /* The OOM killer does not needlessly kill tasks for lowmem */
3202 if (ac->high_zoneidx < ZONE_NORMAL)
3203 goto out;
3204 if (pm_suspended_storage())
3205 goto out;
3206 /*
3207 * XXX: GFP_NOFS allocations should rather fail than rely on
3208 * other request to make a forward progress.
3209 * We are in an unfortunate situation where out_of_memory cannot
3210 * do much for this context but let's try it to at least get
3211 * access to memory reserved if the current task is killed (see
3212 * out_of_memory). Once filesystems are ready to handle allocation
3213 * failures more gracefully we should just bail out here.
3214 */
3215
3216 /* The OOM killer may not free memory on a specific node */
3217 if (gfp_mask & __GFP_THISNODE)
3218 goto out;
3da88fb3 3219
11e33f6a 3220 /* Exhausted what can be done so it's blamo time */
5020e285 3221 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3222 *did_some_progress = 1;
5020e285 3223
6c18ba7a
MH
3224 /*
3225 * Help non-failing allocations by giving them access to memory
3226 * reserves
3227 */
3228 if (gfp_mask & __GFP_NOFAIL)
3229 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3230 ALLOC_NO_WATERMARKS, ac);
5020e285 3231 }
11e33f6a 3232out:
dc56401f 3233 mutex_unlock(&oom_lock);
11e33f6a
MG
3234 return page;
3235}
3236
33c2d214
MH
3237/*
3238 * Maximum number of compaction retries wit a progress before OOM
3239 * killer is consider as the only way to move forward.
3240 */
3241#define MAX_COMPACT_RETRIES 16
3242
56de7263
MG
3243#ifdef CONFIG_COMPACTION
3244/* Try memory compaction for high-order allocations before reclaim */
3245static struct page *
3246__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3247 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3248 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3249{
98dd3b48 3250 struct page *page;
53853e2d
VB
3251
3252 if (!order)
66199712 3253 return NULL;
66199712 3254
c06b1fca 3255 current->flags |= PF_MEMALLOC;
c5d01d0d 3256 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3257 prio);
c06b1fca 3258 current->flags &= ~PF_MEMALLOC;
56de7263 3259
c5d01d0d 3260 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3261 return NULL;
53853e2d 3262
98dd3b48
VB
3263 /*
3264 * At least in one zone compaction wasn't deferred or skipped, so let's
3265 * count a compaction stall
3266 */
3267 count_vm_event(COMPACTSTALL);
8fb74b9f 3268
31a6c190 3269 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3270
98dd3b48
VB
3271 if (page) {
3272 struct zone *zone = page_zone(page);
53853e2d 3273
98dd3b48
VB
3274 zone->compact_blockskip_flush = false;
3275 compaction_defer_reset(zone, order, true);
3276 count_vm_event(COMPACTSUCCESS);
3277 return page;
3278 }
56de7263 3279
98dd3b48
VB
3280 /*
3281 * It's bad if compaction run occurs and fails. The most likely reason
3282 * is that pages exist, but not enough to satisfy watermarks.
3283 */
3284 count_vm_event(COMPACTFAIL);
66199712 3285
98dd3b48 3286 cond_resched();
56de7263
MG
3287
3288 return NULL;
3289}
33c2d214 3290
3250845d
VB
3291static inline bool
3292should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3293 enum compact_result compact_result,
3294 enum compact_priority *compact_priority,
d9436498 3295 int *compaction_retries)
3250845d
VB
3296{
3297 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3298 int min_priority;
65190cff
MH
3299 bool ret = false;
3300 int retries = *compaction_retries;
3301 enum compact_priority priority = *compact_priority;
3250845d
VB
3302
3303 if (!order)
3304 return false;
3305
d9436498
VB
3306 if (compaction_made_progress(compact_result))
3307 (*compaction_retries)++;
3308
3250845d
VB
3309 /*
3310 * compaction considers all the zone as desperately out of memory
3311 * so it doesn't really make much sense to retry except when the
3312 * failure could be caused by insufficient priority
3313 */
d9436498
VB
3314 if (compaction_failed(compact_result))
3315 goto check_priority;
3250845d
VB
3316
3317 /*
3318 * make sure the compaction wasn't deferred or didn't bail out early
3319 * due to locks contention before we declare that we should give up.
3320 * But do not retry if the given zonelist is not suitable for
3321 * compaction.
3322 */
65190cff
MH
3323 if (compaction_withdrawn(compact_result)) {
3324 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3325 goto out;
3326 }
3250845d
VB
3327
3328 /*
3329 * !costly requests are much more important than __GFP_REPEAT
3330 * costly ones because they are de facto nofail and invoke OOM
3331 * killer to move on while costly can fail and users are ready
3332 * to cope with that. 1/4 retries is rather arbitrary but we
3333 * would need much more detailed feedback from compaction to
3334 * make a better decision.
3335 */
3336 if (order > PAGE_ALLOC_COSTLY_ORDER)
3337 max_retries /= 4;
65190cff
MH
3338 if (*compaction_retries <= max_retries) {
3339 ret = true;
3340 goto out;
3341 }
3250845d 3342
d9436498
VB
3343 /*
3344 * Make sure there are attempts at the highest priority if we exhausted
3345 * all retries or failed at the lower priorities.
3346 */
3347check_priority:
c2033b00
VB
3348 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3349 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3350
c2033b00 3351 if (*compact_priority > min_priority) {
d9436498
VB
3352 (*compact_priority)--;
3353 *compaction_retries = 0;
65190cff 3354 ret = true;
d9436498 3355 }
65190cff
MH
3356out:
3357 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3358 return ret;
3250845d 3359}
56de7263
MG
3360#else
3361static inline struct page *
3362__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3363 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3364 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3365{
33c2d214 3366 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3367 return NULL;
3368}
33c2d214
MH
3369
3370static inline bool
86a294a8
MH
3371should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3372 enum compact_result compact_result,
a5508cd8 3373 enum compact_priority *compact_priority,
d9436498 3374 int *compaction_retries)
33c2d214 3375{
31e49bfd
MH
3376 struct zone *zone;
3377 struct zoneref *z;
3378
3379 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3380 return false;
3381
3382 /*
3383 * There are setups with compaction disabled which would prefer to loop
3384 * inside the allocator rather than hit the oom killer prematurely.
3385 * Let's give them a good hope and keep retrying while the order-0
3386 * watermarks are OK.
3387 */
3388 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3389 ac->nodemask) {
3390 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3391 ac_classzone_idx(ac), alloc_flags))
3392 return true;
3393 }
33c2d214
MH
3394 return false;
3395}
3250845d 3396#endif /* CONFIG_COMPACTION */
56de7263 3397
bba90710
MS
3398/* Perform direct synchronous page reclaim */
3399static int
a9263751
VB
3400__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3401 const struct alloc_context *ac)
11e33f6a 3402{
11e33f6a 3403 struct reclaim_state reclaim_state;
bba90710 3404 int progress;
11e33f6a
MG
3405
3406 cond_resched();
3407
3408 /* We now go into synchronous reclaim */
3409 cpuset_memory_pressure_bump();
c06b1fca 3410 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3411 lockdep_set_current_reclaim_state(gfp_mask);
3412 reclaim_state.reclaimed_slab = 0;
c06b1fca 3413 current->reclaim_state = &reclaim_state;
11e33f6a 3414
a9263751
VB
3415 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3416 ac->nodemask);
11e33f6a 3417
c06b1fca 3418 current->reclaim_state = NULL;
11e33f6a 3419 lockdep_clear_current_reclaim_state();
c06b1fca 3420 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3421
3422 cond_resched();
3423
bba90710
MS
3424 return progress;
3425}
3426
3427/* The really slow allocator path where we enter direct reclaim */
3428static inline struct page *
3429__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3430 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3431 unsigned long *did_some_progress)
bba90710
MS
3432{
3433 struct page *page = NULL;
3434 bool drained = false;
3435
a9263751 3436 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3437 if (unlikely(!(*did_some_progress)))
3438 return NULL;
11e33f6a 3439
9ee493ce 3440retry:
31a6c190 3441 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3442
3443 /*
3444 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3445 * pages are pinned on the per-cpu lists or in high alloc reserves.
3446 * Shrink them them and try again
9ee493ce
MG
3447 */
3448 if (!page && !drained) {
29fac03b 3449 unreserve_highatomic_pageblock(ac, false);
93481ff0 3450 drain_all_pages(NULL);
9ee493ce
MG
3451 drained = true;
3452 goto retry;
3453 }
3454
11e33f6a
MG
3455 return page;
3456}
3457
a9263751 3458static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3459{
3460 struct zoneref *z;
3461 struct zone *zone;
e1a55637 3462 pg_data_t *last_pgdat = NULL;
3a025760 3463
a9263751 3464 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3465 ac->high_zoneidx, ac->nodemask) {
3466 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3467 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3468 last_pgdat = zone->zone_pgdat;
3469 }
3a025760
JW
3470}
3471
c603844b 3472static inline unsigned int
341ce06f
PZ
3473gfp_to_alloc_flags(gfp_t gfp_mask)
3474{
c603844b 3475 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3476
a56f57ff 3477 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3478 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3479
341ce06f
PZ
3480 /*
3481 * The caller may dip into page reserves a bit more if the caller
3482 * cannot run direct reclaim, or if the caller has realtime scheduling
3483 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3484 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3485 */
e6223a3b 3486 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3487
d0164adc 3488 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3489 /*
b104a35d
DR
3490 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3491 * if it can't schedule.
5c3240d9 3492 */
b104a35d 3493 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3494 alloc_flags |= ALLOC_HARDER;
523b9458 3495 /*
b104a35d 3496 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3497 * comment for __cpuset_node_allowed().
523b9458 3498 */
341ce06f 3499 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3500 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3501 alloc_flags |= ALLOC_HARDER;
3502
d95ea5d1 3503#ifdef CONFIG_CMA
43e7a34d 3504 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3505 alloc_flags |= ALLOC_CMA;
3506#endif
341ce06f
PZ
3507 return alloc_flags;
3508}
3509
072bb0aa
MG
3510bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3511{
31a6c190
VB
3512 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3513 return false;
3514
3515 if (gfp_mask & __GFP_MEMALLOC)
3516 return true;
3517 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3518 return true;
3519 if (!in_interrupt() &&
3520 ((current->flags & PF_MEMALLOC) ||
3521 unlikely(test_thread_flag(TIF_MEMDIE))))
3522 return true;
3523
3524 return false;
072bb0aa
MG
3525}
3526
0a0337e0
MH
3527/*
3528 * Maximum number of reclaim retries without any progress before OOM killer
3529 * is consider as the only way to move forward.
3530 */
3531#define MAX_RECLAIM_RETRIES 16
3532
3533/*
3534 * Checks whether it makes sense to retry the reclaim to make a forward progress
3535 * for the given allocation request.
3536 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3537 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3538 * any progress in a row) is considered as well as the reclaimable pages on the
3539 * applicable zone list (with a backoff mechanism which is a function of
3540 * no_progress_loops).
0a0337e0
MH
3541 *
3542 * Returns true if a retry is viable or false to enter the oom path.
3543 */
3544static inline bool
3545should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3546 struct alloc_context *ac, int alloc_flags,
423b452e 3547 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3548{
3549 struct zone *zone;
3550 struct zoneref *z;
3551
423b452e
VB
3552 /*
3553 * Costly allocations might have made a progress but this doesn't mean
3554 * their order will become available due to high fragmentation so
3555 * always increment the no progress counter for them
3556 */
3557 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3558 *no_progress_loops = 0;
3559 else
3560 (*no_progress_loops)++;
3561
0a0337e0
MH
3562 /*
3563 * Make sure we converge to OOM if we cannot make any progress
3564 * several times in the row.
3565 */
04c8716f
MK
3566 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3567 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3568 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3569 }
0a0337e0 3570
bca67592
MG
3571 /*
3572 * Keep reclaiming pages while there is a chance this will lead
3573 * somewhere. If none of the target zones can satisfy our allocation
3574 * request even if all reclaimable pages are considered then we are
3575 * screwed and have to go OOM.
0a0337e0
MH
3576 */
3577 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3578 ac->nodemask) {
3579 unsigned long available;
ede37713 3580 unsigned long reclaimable;
d379f01d
MH
3581 unsigned long min_wmark = min_wmark_pages(zone);
3582 bool wmark;
0a0337e0 3583
5a1c84b4 3584 available = reclaimable = zone_reclaimable_pages(zone);
423b452e 3585 available -= DIV_ROUND_UP((*no_progress_loops) * available,
0a0337e0 3586 MAX_RECLAIM_RETRIES);
5a1c84b4 3587 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3588
3589 /*
3590 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3591 * available?
0a0337e0 3592 */
d379f01d
MH
3593 wmark = __zone_watermark_ok(zone, order, min_wmark,
3594 ac_classzone_idx(ac), alloc_flags, available);
3595 trace_reclaim_retry_zone(z, order, reclaimable,
3596 available, min_wmark, *no_progress_loops, wmark);
3597 if (wmark) {
ede37713
MH
3598 /*
3599 * If we didn't make any progress and have a lot of
3600 * dirty + writeback pages then we should wait for
3601 * an IO to complete to slow down the reclaim and
3602 * prevent from pre mature OOM
3603 */
3604 if (!did_some_progress) {
11fb9989 3605 unsigned long write_pending;
ede37713 3606
5a1c84b4
MG
3607 write_pending = zone_page_state_snapshot(zone,
3608 NR_ZONE_WRITE_PENDING);
ede37713 3609
11fb9989 3610 if (2 * write_pending > reclaimable) {
ede37713
MH
3611 congestion_wait(BLK_RW_ASYNC, HZ/10);
3612 return true;
3613 }
3614 }
5a1c84b4 3615
ede37713
MH
3616 /*
3617 * Memory allocation/reclaim might be called from a WQ
3618 * context and the current implementation of the WQ
3619 * concurrency control doesn't recognize that
3620 * a particular WQ is congested if the worker thread is
3621 * looping without ever sleeping. Therefore we have to
3622 * do a short sleep here rather than calling
3623 * cond_resched().
3624 */
3625 if (current->flags & PF_WQ_WORKER)
3626 schedule_timeout_uninterruptible(1);
3627 else
3628 cond_resched();
3629
0a0337e0
MH
3630 return true;
3631 }
3632 }
3633
3634 return false;
3635}
3636
11e33f6a
MG
3637static inline struct page *
3638__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3639 struct alloc_context *ac)
11e33f6a 3640{
d0164adc 3641 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3642 struct page *page = NULL;
c603844b 3643 unsigned int alloc_flags;
11e33f6a 3644 unsigned long did_some_progress;
5ce9bfef 3645 enum compact_priority compact_priority;
c5d01d0d 3646 enum compact_result compact_result;
5ce9bfef
VB
3647 int compaction_retries;
3648 int no_progress_loops;
63f53dea
MH
3649 unsigned long alloc_start = jiffies;
3650 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3651 unsigned int cpuset_mems_cookie;
1da177e4 3652
72807a74
MG
3653 /*
3654 * In the slowpath, we sanity check order to avoid ever trying to
3655 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3656 * be using allocators in order of preference for an area that is
3657 * too large.
3658 */
1fc28b70
MG
3659 if (order >= MAX_ORDER) {
3660 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3661 return NULL;
1fc28b70 3662 }
1da177e4 3663
d0164adc
MG
3664 /*
3665 * We also sanity check to catch abuse of atomic reserves being used by
3666 * callers that are not in atomic context.
3667 */
3668 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3669 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3670 gfp_mask &= ~__GFP_ATOMIC;
3671
5ce9bfef
VB
3672retry_cpuset:
3673 compaction_retries = 0;
3674 no_progress_loops = 0;
3675 compact_priority = DEF_COMPACT_PRIORITY;
3676 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3677
3678 /*
3679 * The fast path uses conservative alloc_flags to succeed only until
3680 * kswapd needs to be woken up, and to avoid the cost of setting up
3681 * alloc_flags precisely. So we do that now.
3682 */
3683 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3684
e47483bc
VB
3685 /*
3686 * We need to recalculate the starting point for the zonelist iterator
3687 * because we might have used different nodemask in the fast path, or
3688 * there was a cpuset modification and we are retrying - otherwise we
3689 * could end up iterating over non-eligible zones endlessly.
3690 */
3691 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3692 ac->high_zoneidx, ac->nodemask);
3693 if (!ac->preferred_zoneref->zone)
3694 goto nopage;
3695
23771235
VB
3696 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3697 wake_all_kswapds(order, ac);
3698
3699 /*
3700 * The adjusted alloc_flags might result in immediate success, so try
3701 * that first
3702 */
3703 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3704 if (page)
3705 goto got_pg;
3706
a8161d1e
VB
3707 /*
3708 * For costly allocations, try direct compaction first, as it's likely
3709 * that we have enough base pages and don't need to reclaim. Don't try
3710 * that for allocations that are allowed to ignore watermarks, as the
3711 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3712 */
3713 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3714 !gfp_pfmemalloc_allowed(gfp_mask)) {
3715 page = __alloc_pages_direct_compact(gfp_mask, order,
3716 alloc_flags, ac,
a5508cd8 3717 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3718 &compact_result);
3719 if (page)
3720 goto got_pg;
3721
3eb2771b
VB
3722 /*
3723 * Checks for costly allocations with __GFP_NORETRY, which
3724 * includes THP page fault allocations
3725 */
3726 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3727 /*
3728 * If compaction is deferred for high-order allocations,
3729 * it is because sync compaction recently failed. If
3730 * this is the case and the caller requested a THP
3731 * allocation, we do not want to heavily disrupt the
3732 * system, so we fail the allocation instead of entering
3733 * direct reclaim.
3734 */
3735 if (compact_result == COMPACT_DEFERRED)
3736 goto nopage;
3737
a8161d1e 3738 /*
3eb2771b
VB
3739 * Looks like reclaim/compaction is worth trying, but
3740 * sync compaction could be very expensive, so keep
25160354 3741 * using async compaction.
a8161d1e 3742 */
a5508cd8 3743 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3744 }
3745 }
23771235 3746
31a6c190 3747retry:
23771235 3748 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3749 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3750 wake_all_kswapds(order, ac);
3751
23771235
VB
3752 if (gfp_pfmemalloc_allowed(gfp_mask))
3753 alloc_flags = ALLOC_NO_WATERMARKS;
3754
e46e7b77
MG
3755 /*
3756 * Reset the zonelist iterators if memory policies can be ignored.
3757 * These allocations are high priority and system rather than user
3758 * orientated.
3759 */
23771235 3760 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3761 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3762 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3763 ac->high_zoneidx, ac->nodemask);
3764 }
3765
23771235 3766 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3767 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3768 if (page)
3769 goto got_pg;
1da177e4 3770
d0164adc 3771 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3772 if (!can_direct_reclaim)
1da177e4
LT
3773 goto nopage;
3774
9a67f648
MH
3775 /* Make sure we know about allocations which stall for too long */
3776 if (time_after(jiffies, alloc_start + stall_timeout)) {
3777 warn_alloc(gfp_mask, ac->nodemask,
3778 "page allocation stalls for %ums, order:%u",
3779 jiffies_to_msecs(jiffies-alloc_start), order);
3780 stall_timeout += 10 * HZ;
33d53103 3781 }
341ce06f 3782
9a67f648
MH
3783 /* Avoid recursion of direct reclaim */
3784 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3785 goto nopage;
3786
a8161d1e
VB
3787 /* Try direct reclaim and then allocating */
3788 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3789 &did_some_progress);
3790 if (page)
3791 goto got_pg;
3792
3793 /* Try direct compaction and then allocating */
a9263751 3794 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3795 compact_priority, &compact_result);
56de7263
MG
3796 if (page)
3797 goto got_pg;
75f30861 3798
9083905a
JW
3799 /* Do not loop if specifically requested */
3800 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3801 goto nopage;
9083905a 3802
0a0337e0
MH
3803 /*
3804 * Do not retry costly high order allocations unless they are
3805 * __GFP_REPEAT
3806 */
3807 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3808 goto nopage;
0a0337e0 3809
0a0337e0 3810 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3811 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3812 goto retry;
3813
33c2d214
MH
3814 /*
3815 * It doesn't make any sense to retry for the compaction if the order-0
3816 * reclaim is not able to make any progress because the current
3817 * implementation of the compaction depends on the sufficient amount
3818 * of free memory (see __compaction_suitable)
3819 */
3820 if (did_some_progress > 0 &&
86a294a8 3821 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3822 compact_result, &compact_priority,
d9436498 3823 &compaction_retries))
33c2d214
MH
3824 goto retry;
3825
e47483bc
VB
3826 /*
3827 * It's possible we raced with cpuset update so the OOM would be
3828 * premature (see below the nopage: label for full explanation).
3829 */
3830 if (read_mems_allowed_retry(cpuset_mems_cookie))
3831 goto retry_cpuset;
3832
9083905a
JW
3833 /* Reclaim has failed us, start killing things */
3834 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3835 if (page)
3836 goto got_pg;
3837
9a67f648
MH
3838 /* Avoid allocations with no watermarks from looping endlessly */
3839 if (test_thread_flag(TIF_MEMDIE))
3840 goto nopage;
3841
9083905a 3842 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3843 if (did_some_progress) {
3844 no_progress_loops = 0;
9083905a 3845 goto retry;
0a0337e0 3846 }
9083905a 3847
1da177e4 3848nopage:
5ce9bfef 3849 /*
e47483bc
VB
3850 * When updating a task's mems_allowed or mempolicy nodemask, it is
3851 * possible to race with parallel threads in such a way that our
3852 * allocation can fail while the mask is being updated. If we are about
3853 * to fail, check if the cpuset changed during allocation and if so,
3854 * retry.
5ce9bfef
VB
3855 */
3856 if (read_mems_allowed_retry(cpuset_mems_cookie))
3857 goto retry_cpuset;
3858
9a67f648
MH
3859 /*
3860 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3861 * we always retry
3862 */
3863 if (gfp_mask & __GFP_NOFAIL) {
3864 /*
3865 * All existing users of the __GFP_NOFAIL are blockable, so warn
3866 * of any new users that actually require GFP_NOWAIT
3867 */
3868 if (WARN_ON_ONCE(!can_direct_reclaim))
3869 goto fail;
3870
3871 /*
3872 * PF_MEMALLOC request from this context is rather bizarre
3873 * because we cannot reclaim anything and only can loop waiting
3874 * for somebody to do a work for us
3875 */
3876 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3877
3878 /*
3879 * non failing costly orders are a hard requirement which we
3880 * are not prepared for much so let's warn about these users
3881 * so that we can identify them and convert them to something
3882 * else.
3883 */
3884 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3885
6c18ba7a
MH
3886 /*
3887 * Help non-failing allocations by giving them access to memory
3888 * reserves but do not use ALLOC_NO_WATERMARKS because this
3889 * could deplete whole memory reserves which would just make
3890 * the situation worse
3891 */
3892 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3893 if (page)
3894 goto got_pg;
3895
9a67f648
MH
3896 cond_resched();
3897 goto retry;
3898 }
3899fail:
a8e99259 3900 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 3901 "page allocation failure: order:%u", order);
1da177e4 3902got_pg:
072bb0aa 3903 return page;
1da177e4 3904}
11e33f6a 3905
9cd75558
MG
3906static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3907 struct zonelist *zonelist, nodemask_t *nodemask,
3908 struct alloc_context *ac, gfp_t *alloc_mask,
3909 unsigned int *alloc_flags)
11e33f6a 3910{
9cd75558
MG
3911 ac->high_zoneidx = gfp_zone(gfp_mask);
3912 ac->zonelist = zonelist;
3913 ac->nodemask = nodemask;
3914 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 3915
682a3385 3916 if (cpusets_enabled()) {
9cd75558 3917 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
3918 if (!ac->nodemask)
3919 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
3920 else
3921 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
3922 }
3923
11e33f6a
MG
3924 lockdep_trace_alloc(gfp_mask);
3925
d0164adc 3926 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3927
3928 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 3929 return false;
11e33f6a 3930
9cd75558
MG
3931 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3932 *alloc_flags |= ALLOC_CMA;
3933
3934 return true;
3935}
21bb9bd1 3936
9cd75558
MG
3937/* Determine whether to spread dirty pages and what the first usable zone */
3938static inline void finalise_ac(gfp_t gfp_mask,
3939 unsigned int order, struct alloc_context *ac)
3940{
c9ab0c4f 3941 /* Dirty zone balancing only done in the fast path */
9cd75558 3942 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 3943
e46e7b77
MG
3944 /*
3945 * The preferred zone is used for statistics but crucially it is
3946 * also used as the starting point for the zonelist iterator. It
3947 * may get reset for allocations that ignore memory policies.
3948 */
9cd75558
MG
3949 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3950 ac->high_zoneidx, ac->nodemask);
3951}
3952
3953/*
3954 * This is the 'heart' of the zoned buddy allocator.
3955 */
3956struct page *
3957__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3958 struct zonelist *zonelist, nodemask_t *nodemask)
3959{
3960 struct page *page;
3961 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3962 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3963 struct alloc_context ac = { };
3964
3965 gfp_mask &= gfp_allowed_mask;
3966 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3967 return NULL;
3968
3969 finalise_ac(gfp_mask, order, &ac);
5bb1b169 3970
5117f45d 3971 /* First allocation attempt */
a9263751 3972 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3973 if (likely(page))
3974 goto out;
11e33f6a 3975
4fcb0971
MG
3976 /*
3977 * Runtime PM, block IO and its error handling path can deadlock
3978 * because I/O on the device might not complete.
3979 */
3980 alloc_mask = memalloc_noio_flags(gfp_mask);
3981 ac.spread_dirty_pages = false;
23f086f9 3982
4741526b
MG
3983 /*
3984 * Restore the original nodemask if it was potentially replaced with
3985 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3986 */
e47483bc 3987 if (unlikely(ac.nodemask != nodemask))
4741526b 3988 ac.nodemask = nodemask;
16096c25 3989
4fcb0971 3990 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3991
4fcb0971 3992out:
c4159a75
VD
3993 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3994 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3995 __free_pages(page, order);
3996 page = NULL;
4949148a
VD
3997 }
3998
4fcb0971
MG
3999 if (kmemcheck_enabled && page)
4000 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4001
4002 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4003
11e33f6a 4004 return page;
1da177e4 4005}
d239171e 4006EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4007
4008/*
4009 * Common helper functions.
4010 */
920c7a5d 4011unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4012{
945a1113
AM
4013 struct page *page;
4014
4015 /*
4016 * __get_free_pages() returns a 32-bit address, which cannot represent
4017 * a highmem page
4018 */
4019 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4020
1da177e4
LT
4021 page = alloc_pages(gfp_mask, order);
4022 if (!page)
4023 return 0;
4024 return (unsigned long) page_address(page);
4025}
1da177e4
LT
4026EXPORT_SYMBOL(__get_free_pages);
4027
920c7a5d 4028unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4029{
945a1113 4030 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4031}
1da177e4
LT
4032EXPORT_SYMBOL(get_zeroed_page);
4033
920c7a5d 4034void __free_pages(struct page *page, unsigned int order)
1da177e4 4035{
b5810039 4036 if (put_page_testzero(page)) {
1da177e4 4037 if (order == 0)
b745bc85 4038 free_hot_cold_page(page, false);
1da177e4
LT
4039 else
4040 __free_pages_ok(page, order);
4041 }
4042}
4043
4044EXPORT_SYMBOL(__free_pages);
4045
920c7a5d 4046void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4047{
4048 if (addr != 0) {
725d704e 4049 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4050 __free_pages(virt_to_page((void *)addr), order);
4051 }
4052}
4053
4054EXPORT_SYMBOL(free_pages);
4055
b63ae8ca
AD
4056/*
4057 * Page Fragment:
4058 * An arbitrary-length arbitrary-offset area of memory which resides
4059 * within a 0 or higher order page. Multiple fragments within that page
4060 * are individually refcounted, in the page's reference counter.
4061 *
4062 * The page_frag functions below provide a simple allocation framework for
4063 * page fragments. This is used by the network stack and network device
4064 * drivers to provide a backing region of memory for use as either an
4065 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4066 */
2976db80
AD
4067static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4068 gfp_t gfp_mask)
b63ae8ca
AD
4069{
4070 struct page *page = NULL;
4071 gfp_t gfp = gfp_mask;
4072
4073#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4074 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4075 __GFP_NOMEMALLOC;
4076 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4077 PAGE_FRAG_CACHE_MAX_ORDER);
4078 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4079#endif
4080 if (unlikely(!page))
4081 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4082
4083 nc->va = page ? page_address(page) : NULL;
4084
4085 return page;
4086}
4087
2976db80 4088void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4089{
4090 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4091
4092 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4093 unsigned int order = compound_order(page);
4094
44fdffd7
AD
4095 if (order == 0)
4096 free_hot_cold_page(page, false);
4097 else
4098 __free_pages_ok(page, order);
4099 }
4100}
2976db80 4101EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4102
8c2dd3e4
AD
4103void *page_frag_alloc(struct page_frag_cache *nc,
4104 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4105{
4106 unsigned int size = PAGE_SIZE;
4107 struct page *page;
4108 int offset;
4109
4110 if (unlikely(!nc->va)) {
4111refill:
2976db80 4112 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4113 if (!page)
4114 return NULL;
4115
4116#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4117 /* if size can vary use size else just use PAGE_SIZE */
4118 size = nc->size;
4119#endif
4120 /* Even if we own the page, we do not use atomic_set().
4121 * This would break get_page_unless_zero() users.
4122 */
fe896d18 4123 page_ref_add(page, size - 1);
b63ae8ca
AD
4124
4125 /* reset page count bias and offset to start of new frag */
2f064f34 4126 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4127 nc->pagecnt_bias = size;
4128 nc->offset = size;
4129 }
4130
4131 offset = nc->offset - fragsz;
4132 if (unlikely(offset < 0)) {
4133 page = virt_to_page(nc->va);
4134
fe896d18 4135 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4136 goto refill;
4137
4138#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4139 /* if size can vary use size else just use PAGE_SIZE */
4140 size = nc->size;
4141#endif
4142 /* OK, page count is 0, we can safely set it */
fe896d18 4143 set_page_count(page, size);
b63ae8ca
AD
4144
4145 /* reset page count bias and offset to start of new frag */
4146 nc->pagecnt_bias = size;
4147 offset = size - fragsz;
4148 }
4149
4150 nc->pagecnt_bias--;
4151 nc->offset = offset;
4152
4153 return nc->va + offset;
4154}
8c2dd3e4 4155EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4156
4157/*
4158 * Frees a page fragment allocated out of either a compound or order 0 page.
4159 */
8c2dd3e4 4160void page_frag_free(void *addr)
b63ae8ca
AD
4161{
4162 struct page *page = virt_to_head_page(addr);
4163
4164 if (unlikely(put_page_testzero(page)))
4165 __free_pages_ok(page, compound_order(page));
4166}
8c2dd3e4 4167EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4168
d00181b9
KS
4169static void *make_alloc_exact(unsigned long addr, unsigned int order,
4170 size_t size)
ee85c2e1
AK
4171{
4172 if (addr) {
4173 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4174 unsigned long used = addr + PAGE_ALIGN(size);
4175
4176 split_page(virt_to_page((void *)addr), order);
4177 while (used < alloc_end) {
4178 free_page(used);
4179 used += PAGE_SIZE;
4180 }
4181 }
4182 return (void *)addr;
4183}
4184
2be0ffe2
TT
4185/**
4186 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4187 * @size: the number of bytes to allocate
4188 * @gfp_mask: GFP flags for the allocation
4189 *
4190 * This function is similar to alloc_pages(), except that it allocates the
4191 * minimum number of pages to satisfy the request. alloc_pages() can only
4192 * allocate memory in power-of-two pages.
4193 *
4194 * This function is also limited by MAX_ORDER.
4195 *
4196 * Memory allocated by this function must be released by free_pages_exact().
4197 */
4198void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4199{
4200 unsigned int order = get_order(size);
4201 unsigned long addr;
4202
4203 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4204 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4205}
4206EXPORT_SYMBOL(alloc_pages_exact);
4207
ee85c2e1
AK
4208/**
4209 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4210 * pages on a node.
b5e6ab58 4211 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4212 * @size: the number of bytes to allocate
4213 * @gfp_mask: GFP flags for the allocation
4214 *
4215 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4216 * back.
ee85c2e1 4217 */
e1931811 4218void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4219{
d00181b9 4220 unsigned int order = get_order(size);
ee85c2e1
AK
4221 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4222 if (!p)
4223 return NULL;
4224 return make_alloc_exact((unsigned long)page_address(p), order, size);
4225}
ee85c2e1 4226
2be0ffe2
TT
4227/**
4228 * free_pages_exact - release memory allocated via alloc_pages_exact()
4229 * @virt: the value returned by alloc_pages_exact.
4230 * @size: size of allocation, same value as passed to alloc_pages_exact().
4231 *
4232 * Release the memory allocated by a previous call to alloc_pages_exact.
4233 */
4234void free_pages_exact(void *virt, size_t size)
4235{
4236 unsigned long addr = (unsigned long)virt;
4237 unsigned long end = addr + PAGE_ALIGN(size);
4238
4239 while (addr < end) {
4240 free_page(addr);
4241 addr += PAGE_SIZE;
4242 }
4243}
4244EXPORT_SYMBOL(free_pages_exact);
4245
e0fb5815
ZY
4246/**
4247 * nr_free_zone_pages - count number of pages beyond high watermark
4248 * @offset: The zone index of the highest zone
4249 *
4250 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4251 * high watermark within all zones at or below a given zone index. For each
4252 * zone, the number of pages is calculated as:
834405c3 4253 * managed_pages - high_pages
e0fb5815 4254 */
ebec3862 4255static unsigned long nr_free_zone_pages(int offset)
1da177e4 4256{
dd1a239f 4257 struct zoneref *z;
54a6eb5c
MG
4258 struct zone *zone;
4259
e310fd43 4260 /* Just pick one node, since fallback list is circular */
ebec3862 4261 unsigned long sum = 0;
1da177e4 4262
0e88460d 4263 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4264
54a6eb5c 4265 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4266 unsigned long size = zone->managed_pages;
41858966 4267 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4268 if (size > high)
4269 sum += size - high;
1da177e4
LT
4270 }
4271
4272 return sum;
4273}
4274
e0fb5815
ZY
4275/**
4276 * nr_free_buffer_pages - count number of pages beyond high watermark
4277 *
4278 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4279 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4280 */
ebec3862 4281unsigned long nr_free_buffer_pages(void)
1da177e4 4282{
af4ca457 4283 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4284}
c2f1a551 4285EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4286
e0fb5815
ZY
4287/**
4288 * nr_free_pagecache_pages - count number of pages beyond high watermark
4289 *
4290 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4291 * high watermark within all zones.
1da177e4 4292 */
ebec3862 4293unsigned long nr_free_pagecache_pages(void)
1da177e4 4294{
2a1e274a 4295 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4296}
08e0f6a9
CL
4297
4298static inline void show_node(struct zone *zone)
1da177e4 4299{
e5adfffc 4300 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4301 printk("Node %d ", zone_to_nid(zone));
1da177e4 4302}
1da177e4 4303
d02bd27b
IR
4304long si_mem_available(void)
4305{
4306 long available;
4307 unsigned long pagecache;
4308 unsigned long wmark_low = 0;
4309 unsigned long pages[NR_LRU_LISTS];
4310 struct zone *zone;
4311 int lru;
4312
4313 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4314 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4315
4316 for_each_zone(zone)
4317 wmark_low += zone->watermark[WMARK_LOW];
4318
4319 /*
4320 * Estimate the amount of memory available for userspace allocations,
4321 * without causing swapping.
4322 */
4323 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4324
4325 /*
4326 * Not all the page cache can be freed, otherwise the system will
4327 * start swapping. Assume at least half of the page cache, or the
4328 * low watermark worth of cache, needs to stay.
4329 */
4330 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4331 pagecache -= min(pagecache / 2, wmark_low);
4332 available += pagecache;
4333
4334 /*
4335 * Part of the reclaimable slab consists of items that are in use,
4336 * and cannot be freed. Cap this estimate at the low watermark.
4337 */
4338 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4339 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4340
4341 if (available < 0)
4342 available = 0;
4343 return available;
4344}
4345EXPORT_SYMBOL_GPL(si_mem_available);
4346
1da177e4
LT
4347void si_meminfo(struct sysinfo *val)
4348{
4349 val->totalram = totalram_pages;
11fb9989 4350 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4351 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4352 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4353 val->totalhigh = totalhigh_pages;
4354 val->freehigh = nr_free_highpages();
1da177e4
LT
4355 val->mem_unit = PAGE_SIZE;
4356}
4357
4358EXPORT_SYMBOL(si_meminfo);
4359
4360#ifdef CONFIG_NUMA
4361void si_meminfo_node(struct sysinfo *val, int nid)
4362{
cdd91a77
JL
4363 int zone_type; /* needs to be signed */
4364 unsigned long managed_pages = 0;
fc2bd799
JK
4365 unsigned long managed_highpages = 0;
4366 unsigned long free_highpages = 0;
1da177e4
LT
4367 pg_data_t *pgdat = NODE_DATA(nid);
4368
cdd91a77
JL
4369 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4370 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4371 val->totalram = managed_pages;
11fb9989 4372 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4373 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4374#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4375 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4376 struct zone *zone = &pgdat->node_zones[zone_type];
4377
4378 if (is_highmem(zone)) {
4379 managed_highpages += zone->managed_pages;
4380 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4381 }
4382 }
4383 val->totalhigh = managed_highpages;
4384 val->freehigh = free_highpages;
98d2b0eb 4385#else
fc2bd799
JK
4386 val->totalhigh = managed_highpages;
4387 val->freehigh = free_highpages;
98d2b0eb 4388#endif
1da177e4
LT
4389 val->mem_unit = PAGE_SIZE;
4390}
4391#endif
4392
ddd588b5 4393/*
7bf02ea2
DR
4394 * Determine whether the node should be displayed or not, depending on whether
4395 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4396 */
9af744d7 4397static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4398{
ddd588b5 4399 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4400 return false;
ddd588b5 4401
9af744d7
MH
4402 /*
4403 * no node mask - aka implicit memory numa policy. Do not bother with
4404 * the synchronization - read_mems_allowed_begin - because we do not
4405 * have to be precise here.
4406 */
4407 if (!nodemask)
4408 nodemask = &cpuset_current_mems_allowed;
4409
4410 return !node_isset(nid, *nodemask);
ddd588b5
DR
4411}
4412
1da177e4
LT
4413#define K(x) ((x) << (PAGE_SHIFT-10))
4414
377e4f16
RV
4415static void show_migration_types(unsigned char type)
4416{
4417 static const char types[MIGRATE_TYPES] = {
4418 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4419 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4420 [MIGRATE_RECLAIMABLE] = 'E',
4421 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4422#ifdef CONFIG_CMA
4423 [MIGRATE_CMA] = 'C',
4424#endif
194159fb 4425#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4426 [MIGRATE_ISOLATE] = 'I',
194159fb 4427#endif
377e4f16
RV
4428 };
4429 char tmp[MIGRATE_TYPES + 1];
4430 char *p = tmp;
4431 int i;
4432
4433 for (i = 0; i < MIGRATE_TYPES; i++) {
4434 if (type & (1 << i))
4435 *p++ = types[i];
4436 }
4437
4438 *p = '\0';
1f84a18f 4439 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4440}
4441
1da177e4
LT
4442/*
4443 * Show free area list (used inside shift_scroll-lock stuff)
4444 * We also calculate the percentage fragmentation. We do this by counting the
4445 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4446 *
4447 * Bits in @filter:
4448 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4449 * cpuset.
1da177e4 4450 */
9af744d7 4451void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4452{
d1bfcdb8 4453 unsigned long free_pcp = 0;
c7241913 4454 int cpu;
1da177e4 4455 struct zone *zone;
599d0c95 4456 pg_data_t *pgdat;
1da177e4 4457
ee99c71c 4458 for_each_populated_zone(zone) {
9af744d7 4459 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4460 continue;
d1bfcdb8 4461
761b0677
KK
4462 for_each_online_cpu(cpu)
4463 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4464 }
4465
a731286d
KM
4466 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4467 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4468 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4469 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4470 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4471 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4472 global_node_page_state(NR_ACTIVE_ANON),
4473 global_node_page_state(NR_INACTIVE_ANON),
4474 global_node_page_state(NR_ISOLATED_ANON),
4475 global_node_page_state(NR_ACTIVE_FILE),
4476 global_node_page_state(NR_INACTIVE_FILE),
4477 global_node_page_state(NR_ISOLATED_FILE),
4478 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4479 global_node_page_state(NR_FILE_DIRTY),
4480 global_node_page_state(NR_WRITEBACK),
4481 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4482 global_page_state(NR_SLAB_RECLAIMABLE),
4483 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4484 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4485 global_node_page_state(NR_SHMEM),
a25700a5 4486 global_page_state(NR_PAGETABLE),
d1ce749a 4487 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4488 global_page_state(NR_FREE_PAGES),
4489 free_pcp,
d1ce749a 4490 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4491
599d0c95 4492 for_each_online_pgdat(pgdat) {
9af744d7 4493 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4494 continue;
4495
599d0c95
MG
4496 printk("Node %d"
4497 " active_anon:%lukB"
4498 " inactive_anon:%lukB"
4499 " active_file:%lukB"
4500 " inactive_file:%lukB"
4501 " unevictable:%lukB"
4502 " isolated(anon):%lukB"
4503 " isolated(file):%lukB"
50658e2e 4504 " mapped:%lukB"
11fb9989
MG
4505 " dirty:%lukB"
4506 " writeback:%lukB"
4507 " shmem:%lukB"
4508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4509 " shmem_thp: %lukB"
4510 " shmem_pmdmapped: %lukB"
4511 " anon_thp: %lukB"
4512#endif
4513 " writeback_tmp:%lukB"
4514 " unstable:%lukB"
33e077bd 4515 " pages_scanned:%lu"
599d0c95
MG
4516 " all_unreclaimable? %s"
4517 "\n",
4518 pgdat->node_id,
4519 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4520 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4521 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4522 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4523 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4524 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4525 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4526 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4527 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4528 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4529 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4530#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4531 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4532 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4533 * HPAGE_PMD_NR),
4534 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4535#endif
11fb9989
MG
4536 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4537 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4538 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4539 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4540 }
4541
ee99c71c 4542 for_each_populated_zone(zone) {
1da177e4
LT
4543 int i;
4544
9af744d7 4545 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4546 continue;
d1bfcdb8
KK
4547
4548 free_pcp = 0;
4549 for_each_online_cpu(cpu)
4550 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4551
1da177e4 4552 show_node(zone);
1f84a18f
JP
4553 printk(KERN_CONT
4554 "%s"
1da177e4
LT
4555 " free:%lukB"
4556 " min:%lukB"
4557 " low:%lukB"
4558 " high:%lukB"
71c799f4
MK
4559 " active_anon:%lukB"
4560 " inactive_anon:%lukB"
4561 " active_file:%lukB"
4562 " inactive_file:%lukB"
4563 " unevictable:%lukB"
5a1c84b4 4564 " writepending:%lukB"
1da177e4 4565 " present:%lukB"
9feedc9d 4566 " managed:%lukB"
4a0aa73f 4567 " mlocked:%lukB"
4a0aa73f
KM
4568 " slab_reclaimable:%lukB"
4569 " slab_unreclaimable:%lukB"
c6a7f572 4570 " kernel_stack:%lukB"
4a0aa73f 4571 " pagetables:%lukB"
4a0aa73f 4572 " bounce:%lukB"
d1bfcdb8
KK
4573 " free_pcp:%lukB"
4574 " local_pcp:%ukB"
d1ce749a 4575 " free_cma:%lukB"
1da177e4
LT
4576 "\n",
4577 zone->name,
88f5acf8 4578 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4579 K(min_wmark_pages(zone)),
4580 K(low_wmark_pages(zone)),
4581 K(high_wmark_pages(zone)),
71c799f4
MK
4582 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4583 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4584 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4585 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4586 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4587 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4588 K(zone->present_pages),
9feedc9d 4589 K(zone->managed_pages),
4a0aa73f 4590 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4591 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4592 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4593 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4594 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4595 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4596 K(free_pcp),
4597 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4598 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4599 printk("lowmem_reserve[]:");
4600 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4601 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4602 printk(KERN_CONT "\n");
1da177e4
LT
4603 }
4604
ee99c71c 4605 for_each_populated_zone(zone) {
d00181b9
KS
4606 unsigned int order;
4607 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4608 unsigned char types[MAX_ORDER];
1da177e4 4609
9af744d7 4610 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4611 continue;
1da177e4 4612 show_node(zone);
1f84a18f 4613 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4614
4615 spin_lock_irqsave(&zone->lock, flags);
4616 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4617 struct free_area *area = &zone->free_area[order];
4618 int type;
4619
4620 nr[order] = area->nr_free;
8f9de51a 4621 total += nr[order] << order;
377e4f16
RV
4622
4623 types[order] = 0;
4624 for (type = 0; type < MIGRATE_TYPES; type++) {
4625 if (!list_empty(&area->free_list[type]))
4626 types[order] |= 1 << type;
4627 }
1da177e4
LT
4628 }
4629 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4630 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4631 printk(KERN_CONT "%lu*%lukB ",
4632 nr[order], K(1UL) << order);
377e4f16
RV
4633 if (nr[order])
4634 show_migration_types(types[order]);
4635 }
1f84a18f 4636 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4637 }
4638
949f7ec5
DR
4639 hugetlb_show_meminfo();
4640
11fb9989 4641 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4642
1da177e4
LT
4643 show_swap_cache_info();
4644}
4645
19770b32
MG
4646static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4647{
4648 zoneref->zone = zone;
4649 zoneref->zone_idx = zone_idx(zone);
4650}
4651
1da177e4
LT
4652/*
4653 * Builds allocation fallback zone lists.
1a93205b
CL
4654 *
4655 * Add all populated zones of a node to the zonelist.
1da177e4 4656 */
f0c0b2b8 4657static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4658 int nr_zones)
1da177e4 4659{
1a93205b 4660 struct zone *zone;
bc732f1d 4661 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4662
4663 do {
2f6726e5 4664 zone_type--;
070f8032 4665 zone = pgdat->node_zones + zone_type;
6aa303de 4666 if (managed_zone(zone)) {
dd1a239f
MG
4667 zoneref_set_zone(zone,
4668 &zonelist->_zonerefs[nr_zones++]);
070f8032 4669 check_highest_zone(zone_type);
1da177e4 4670 }
2f6726e5 4671 } while (zone_type);
bc732f1d 4672
070f8032 4673 return nr_zones;
1da177e4
LT
4674}
4675
f0c0b2b8
KH
4676
4677/*
4678 * zonelist_order:
4679 * 0 = automatic detection of better ordering.
4680 * 1 = order by ([node] distance, -zonetype)
4681 * 2 = order by (-zonetype, [node] distance)
4682 *
4683 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4684 * the same zonelist. So only NUMA can configure this param.
4685 */
4686#define ZONELIST_ORDER_DEFAULT 0
4687#define ZONELIST_ORDER_NODE 1
4688#define ZONELIST_ORDER_ZONE 2
4689
4690/* zonelist order in the kernel.
4691 * set_zonelist_order() will set this to NODE or ZONE.
4692 */
4693static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4694static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4695
4696
1da177e4 4697#ifdef CONFIG_NUMA
f0c0b2b8
KH
4698/* The value user specified ....changed by config */
4699static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4700/* string for sysctl */
4701#define NUMA_ZONELIST_ORDER_LEN 16
4702char numa_zonelist_order[16] = "default";
4703
4704/*
4705 * interface for configure zonelist ordering.
4706 * command line option "numa_zonelist_order"
4707 * = "[dD]efault - default, automatic configuration.
4708 * = "[nN]ode - order by node locality, then by zone within node
4709 * = "[zZ]one - order by zone, then by locality within zone
4710 */
4711
4712static int __parse_numa_zonelist_order(char *s)
4713{
4714 if (*s == 'd' || *s == 'D') {
4715 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4716 } else if (*s == 'n' || *s == 'N') {
4717 user_zonelist_order = ZONELIST_ORDER_NODE;
4718 } else if (*s == 'z' || *s == 'Z') {
4719 user_zonelist_order = ZONELIST_ORDER_ZONE;
4720 } else {
1170532b 4721 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4722 return -EINVAL;
4723 }
4724 return 0;
4725}
4726
4727static __init int setup_numa_zonelist_order(char *s)
4728{
ecb256f8
VL
4729 int ret;
4730
4731 if (!s)
4732 return 0;
4733
4734 ret = __parse_numa_zonelist_order(s);
4735 if (ret == 0)
4736 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4737
4738 return ret;
f0c0b2b8
KH
4739}
4740early_param("numa_zonelist_order", setup_numa_zonelist_order);
4741
4742/*
4743 * sysctl handler for numa_zonelist_order
4744 */
cccad5b9 4745int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4746 void __user *buffer, size_t *length,
f0c0b2b8
KH
4747 loff_t *ppos)
4748{
4749 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4750 int ret;
443c6f14 4751 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4752
443c6f14 4753 mutex_lock(&zl_order_mutex);
dacbde09
CG
4754 if (write) {
4755 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4756 ret = -EINVAL;
4757 goto out;
4758 }
4759 strcpy(saved_string, (char *)table->data);
4760 }
8d65af78 4761 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4762 if (ret)
443c6f14 4763 goto out;
f0c0b2b8
KH
4764 if (write) {
4765 int oldval = user_zonelist_order;
dacbde09
CG
4766
4767 ret = __parse_numa_zonelist_order((char *)table->data);
4768 if (ret) {
f0c0b2b8
KH
4769 /*
4770 * bogus value. restore saved string
4771 */
dacbde09 4772 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4773 NUMA_ZONELIST_ORDER_LEN);
4774 user_zonelist_order = oldval;
4eaf3f64
HL
4775 } else if (oldval != user_zonelist_order) {
4776 mutex_lock(&zonelists_mutex);
9adb62a5 4777 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4778 mutex_unlock(&zonelists_mutex);
4779 }
f0c0b2b8 4780 }
443c6f14
AK
4781out:
4782 mutex_unlock(&zl_order_mutex);
4783 return ret;
f0c0b2b8
KH
4784}
4785
4786
62bc62a8 4787#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4788static int node_load[MAX_NUMNODES];
4789
1da177e4 4790/**
4dc3b16b 4791 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4792 * @node: node whose fallback list we're appending
4793 * @used_node_mask: nodemask_t of already used nodes
4794 *
4795 * We use a number of factors to determine which is the next node that should
4796 * appear on a given node's fallback list. The node should not have appeared
4797 * already in @node's fallback list, and it should be the next closest node
4798 * according to the distance array (which contains arbitrary distance values
4799 * from each node to each node in the system), and should also prefer nodes
4800 * with no CPUs, since presumably they'll have very little allocation pressure
4801 * on them otherwise.
4802 * It returns -1 if no node is found.
4803 */
f0c0b2b8 4804static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4805{
4cf808eb 4806 int n, val;
1da177e4 4807 int min_val = INT_MAX;
00ef2d2f 4808 int best_node = NUMA_NO_NODE;
a70f7302 4809 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4810
4cf808eb
LT
4811 /* Use the local node if we haven't already */
4812 if (!node_isset(node, *used_node_mask)) {
4813 node_set(node, *used_node_mask);
4814 return node;
4815 }
1da177e4 4816
4b0ef1fe 4817 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4818
4819 /* Don't want a node to appear more than once */
4820 if (node_isset(n, *used_node_mask))
4821 continue;
4822
1da177e4
LT
4823 /* Use the distance array to find the distance */
4824 val = node_distance(node, n);
4825
4cf808eb
LT
4826 /* Penalize nodes under us ("prefer the next node") */
4827 val += (n < node);
4828
1da177e4 4829 /* Give preference to headless and unused nodes */
a70f7302
RR
4830 tmp = cpumask_of_node(n);
4831 if (!cpumask_empty(tmp))
1da177e4
LT
4832 val += PENALTY_FOR_NODE_WITH_CPUS;
4833
4834 /* Slight preference for less loaded node */
4835 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4836 val += node_load[n];
4837
4838 if (val < min_val) {
4839 min_val = val;
4840 best_node = n;
4841 }
4842 }
4843
4844 if (best_node >= 0)
4845 node_set(best_node, *used_node_mask);
4846
4847 return best_node;
4848}
4849
f0c0b2b8
KH
4850
4851/*
4852 * Build zonelists ordered by node and zones within node.
4853 * This results in maximum locality--normal zone overflows into local
4854 * DMA zone, if any--but risks exhausting DMA zone.
4855 */
4856static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4857{
f0c0b2b8 4858 int j;
1da177e4 4859 struct zonelist *zonelist;
f0c0b2b8 4860
c9634cf0 4861 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4862 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4863 ;
bc732f1d 4864 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4865 zonelist->_zonerefs[j].zone = NULL;
4866 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4867}
4868
523b9458
CL
4869/*
4870 * Build gfp_thisnode zonelists
4871 */
4872static void build_thisnode_zonelists(pg_data_t *pgdat)
4873{
523b9458
CL
4874 int j;
4875 struct zonelist *zonelist;
4876
c9634cf0 4877 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4878 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4879 zonelist->_zonerefs[j].zone = NULL;
4880 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4881}
4882
f0c0b2b8
KH
4883/*
4884 * Build zonelists ordered by zone and nodes within zones.
4885 * This results in conserving DMA zone[s] until all Normal memory is
4886 * exhausted, but results in overflowing to remote node while memory
4887 * may still exist in local DMA zone.
4888 */
4889static int node_order[MAX_NUMNODES];
4890
4891static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4892{
f0c0b2b8
KH
4893 int pos, j, node;
4894 int zone_type; /* needs to be signed */
4895 struct zone *z;
4896 struct zonelist *zonelist;
4897
c9634cf0 4898 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4899 pos = 0;
4900 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4901 for (j = 0; j < nr_nodes; j++) {
4902 node = node_order[j];
4903 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4904 if (managed_zone(z)) {
dd1a239f
MG
4905 zoneref_set_zone(z,
4906 &zonelist->_zonerefs[pos++]);
54a6eb5c 4907 check_highest_zone(zone_type);
f0c0b2b8
KH
4908 }
4909 }
f0c0b2b8 4910 }
dd1a239f
MG
4911 zonelist->_zonerefs[pos].zone = NULL;
4912 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4913}
4914
3193913c
MG
4915#if defined(CONFIG_64BIT)
4916/*
4917 * Devices that require DMA32/DMA are relatively rare and do not justify a
4918 * penalty to every machine in case the specialised case applies. Default
4919 * to Node-ordering on 64-bit NUMA machines
4920 */
4921static int default_zonelist_order(void)
4922{
4923 return ZONELIST_ORDER_NODE;
4924}
4925#else
4926/*
4927 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4928 * by the kernel. If processes running on node 0 deplete the low memory zone
4929 * then reclaim will occur more frequency increasing stalls and potentially
4930 * be easier to OOM if a large percentage of the zone is under writeback or
4931 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4932 * Hence, default to zone ordering on 32-bit.
4933 */
f0c0b2b8
KH
4934static int default_zonelist_order(void)
4935{
f0c0b2b8
KH
4936 return ZONELIST_ORDER_ZONE;
4937}
3193913c 4938#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4939
4940static void set_zonelist_order(void)
4941{
4942 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4943 current_zonelist_order = default_zonelist_order();
4944 else
4945 current_zonelist_order = user_zonelist_order;
4946}
4947
4948static void build_zonelists(pg_data_t *pgdat)
4949{
c00eb15a 4950 int i, node, load;
1da177e4 4951 nodemask_t used_mask;
f0c0b2b8
KH
4952 int local_node, prev_node;
4953 struct zonelist *zonelist;
d00181b9 4954 unsigned int order = current_zonelist_order;
1da177e4
LT
4955
4956 /* initialize zonelists */
523b9458 4957 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4958 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4959 zonelist->_zonerefs[0].zone = NULL;
4960 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4961 }
4962
4963 /* NUMA-aware ordering of nodes */
4964 local_node = pgdat->node_id;
62bc62a8 4965 load = nr_online_nodes;
1da177e4
LT
4966 prev_node = local_node;
4967 nodes_clear(used_mask);
f0c0b2b8 4968
f0c0b2b8 4969 memset(node_order, 0, sizeof(node_order));
c00eb15a 4970 i = 0;
f0c0b2b8 4971
1da177e4
LT
4972 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4973 /*
4974 * We don't want to pressure a particular node.
4975 * So adding penalty to the first node in same
4976 * distance group to make it round-robin.
4977 */
957f822a
DR
4978 if (node_distance(local_node, node) !=
4979 node_distance(local_node, prev_node))
f0c0b2b8
KH
4980 node_load[node] = load;
4981
1da177e4
LT
4982 prev_node = node;
4983 load--;
f0c0b2b8
KH
4984 if (order == ZONELIST_ORDER_NODE)
4985 build_zonelists_in_node_order(pgdat, node);
4986 else
c00eb15a 4987 node_order[i++] = node; /* remember order */
f0c0b2b8 4988 }
1da177e4 4989
f0c0b2b8
KH
4990 if (order == ZONELIST_ORDER_ZONE) {
4991 /* calculate node order -- i.e., DMA last! */
c00eb15a 4992 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4993 }
523b9458
CL
4994
4995 build_thisnode_zonelists(pgdat);
1da177e4
LT
4996}
4997
7aac7898
LS
4998#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4999/*
5000 * Return node id of node used for "local" allocations.
5001 * I.e., first node id of first zone in arg node's generic zonelist.
5002 * Used for initializing percpu 'numa_mem', which is used primarily
5003 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5004 */
5005int local_memory_node(int node)
5006{
c33d6c06 5007 struct zoneref *z;
7aac7898 5008
c33d6c06 5009 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5010 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5011 NULL);
5012 return z->zone->node;
7aac7898
LS
5013}
5014#endif
f0c0b2b8 5015
6423aa81
JK
5016static void setup_min_unmapped_ratio(void);
5017static void setup_min_slab_ratio(void);
1da177e4
LT
5018#else /* CONFIG_NUMA */
5019
f0c0b2b8
KH
5020static void set_zonelist_order(void)
5021{
5022 current_zonelist_order = ZONELIST_ORDER_ZONE;
5023}
5024
5025static void build_zonelists(pg_data_t *pgdat)
1da177e4 5026{
19655d34 5027 int node, local_node;
54a6eb5c
MG
5028 enum zone_type j;
5029 struct zonelist *zonelist;
1da177e4
LT
5030
5031 local_node = pgdat->node_id;
1da177e4 5032
c9634cf0 5033 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 5034 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 5035
54a6eb5c
MG
5036 /*
5037 * Now we build the zonelist so that it contains the zones
5038 * of all the other nodes.
5039 * We don't want to pressure a particular node, so when
5040 * building the zones for node N, we make sure that the
5041 * zones coming right after the local ones are those from
5042 * node N+1 (modulo N)
5043 */
5044 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5045 if (!node_online(node))
5046 continue;
bc732f1d 5047 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5048 }
54a6eb5c
MG
5049 for (node = 0; node < local_node; node++) {
5050 if (!node_online(node))
5051 continue;
bc732f1d 5052 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5053 }
5054
dd1a239f
MG
5055 zonelist->_zonerefs[j].zone = NULL;
5056 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5057}
5058
5059#endif /* CONFIG_NUMA */
5060
99dcc3e5
CL
5061/*
5062 * Boot pageset table. One per cpu which is going to be used for all
5063 * zones and all nodes. The parameters will be set in such a way
5064 * that an item put on a list will immediately be handed over to
5065 * the buddy list. This is safe since pageset manipulation is done
5066 * with interrupts disabled.
5067 *
5068 * The boot_pagesets must be kept even after bootup is complete for
5069 * unused processors and/or zones. They do play a role for bootstrapping
5070 * hotplugged processors.
5071 *
5072 * zoneinfo_show() and maybe other functions do
5073 * not check if the processor is online before following the pageset pointer.
5074 * Other parts of the kernel may not check if the zone is available.
5075 */
5076static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5077static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 5078static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5079
4eaf3f64
HL
5080/*
5081 * Global mutex to protect against size modification of zonelists
5082 * as well as to serialize pageset setup for the new populated zone.
5083 */
5084DEFINE_MUTEX(zonelists_mutex);
5085
9b1a4d38 5086/* return values int ....just for stop_machine() */
4ed7e022 5087static int __build_all_zonelists(void *data)
1da177e4 5088{
6811378e 5089 int nid;
99dcc3e5 5090 int cpu;
9adb62a5 5091 pg_data_t *self = data;
9276b1bc 5092
7f9cfb31
BL
5093#ifdef CONFIG_NUMA
5094 memset(node_load, 0, sizeof(node_load));
5095#endif
9adb62a5
JL
5096
5097 if (self && !node_online(self->node_id)) {
5098 build_zonelists(self);
9adb62a5
JL
5099 }
5100
9276b1bc 5101 for_each_online_node(nid) {
7ea1530a
CL
5102 pg_data_t *pgdat = NODE_DATA(nid);
5103
5104 build_zonelists(pgdat);
9276b1bc 5105 }
99dcc3e5
CL
5106
5107 /*
5108 * Initialize the boot_pagesets that are going to be used
5109 * for bootstrapping processors. The real pagesets for
5110 * each zone will be allocated later when the per cpu
5111 * allocator is available.
5112 *
5113 * boot_pagesets are used also for bootstrapping offline
5114 * cpus if the system is already booted because the pagesets
5115 * are needed to initialize allocators on a specific cpu too.
5116 * F.e. the percpu allocator needs the page allocator which
5117 * needs the percpu allocator in order to allocate its pagesets
5118 * (a chicken-egg dilemma).
5119 */
7aac7898 5120 for_each_possible_cpu(cpu) {
99dcc3e5
CL
5121 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5122
7aac7898
LS
5123#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5124 /*
5125 * We now know the "local memory node" for each node--
5126 * i.e., the node of the first zone in the generic zonelist.
5127 * Set up numa_mem percpu variable for on-line cpus. During
5128 * boot, only the boot cpu should be on-line; we'll init the
5129 * secondary cpus' numa_mem as they come on-line. During
5130 * node/memory hotplug, we'll fixup all on-line cpus.
5131 */
5132 if (cpu_online(cpu))
5133 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5134#endif
5135 }
5136
6811378e
YG
5137 return 0;
5138}
5139
061f67bc
RV
5140static noinline void __init
5141build_all_zonelists_init(void)
5142{
5143 __build_all_zonelists(NULL);
5144 mminit_verify_zonelist();
5145 cpuset_init_current_mems_allowed();
5146}
5147
4eaf3f64
HL
5148/*
5149 * Called with zonelists_mutex held always
5150 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5151 *
5152 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5153 * [we're only called with non-NULL zone through __meminit paths] and
5154 * (2) call of __init annotated helper build_all_zonelists_init
5155 * [protected by SYSTEM_BOOTING].
4eaf3f64 5156 */
9adb62a5 5157void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5158{
f0c0b2b8
KH
5159 set_zonelist_order();
5160
6811378e 5161 if (system_state == SYSTEM_BOOTING) {
061f67bc 5162 build_all_zonelists_init();
6811378e 5163 } else {
e9959f0f 5164#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5165 if (zone)
5166 setup_zone_pageset(zone);
e9959f0f 5167#endif
dd1895e2
CS
5168 /* we have to stop all cpus to guarantee there is no user
5169 of zonelist */
9adb62a5 5170 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5171 /* cpuset refresh routine should be here */
5172 }
bd1e22b8 5173 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5174 /*
5175 * Disable grouping by mobility if the number of pages in the
5176 * system is too low to allow the mechanism to work. It would be
5177 * more accurate, but expensive to check per-zone. This check is
5178 * made on memory-hotadd so a system can start with mobility
5179 * disabled and enable it later
5180 */
d9c23400 5181 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5182 page_group_by_mobility_disabled = 1;
5183 else
5184 page_group_by_mobility_disabled = 0;
5185
756a025f
JP
5186 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5187 nr_online_nodes,
5188 zonelist_order_name[current_zonelist_order],
5189 page_group_by_mobility_disabled ? "off" : "on",
5190 vm_total_pages);
f0c0b2b8 5191#ifdef CONFIG_NUMA
f88dfff5 5192 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5193#endif
1da177e4
LT
5194}
5195
1da177e4
LT
5196/*
5197 * Initially all pages are reserved - free ones are freed
5198 * up by free_all_bootmem() once the early boot process is
5199 * done. Non-atomic initialization, single-pass.
5200 */
c09b4240 5201void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5202 unsigned long start_pfn, enum memmap_context context)
1da177e4 5203{
4b94ffdc 5204 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5205 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5206 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5207 unsigned long pfn;
3a80a7fa 5208 unsigned long nr_initialised = 0;
342332e6
TI
5209#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5210 struct memblock_region *r = NULL, *tmp;
5211#endif
1da177e4 5212
22b31eec
HD
5213 if (highest_memmap_pfn < end_pfn - 1)
5214 highest_memmap_pfn = end_pfn - 1;
5215
4b94ffdc
DW
5216 /*
5217 * Honor reservation requested by the driver for this ZONE_DEVICE
5218 * memory
5219 */
5220 if (altmap && start_pfn == altmap->base_pfn)
5221 start_pfn += altmap->reserve;
5222
cbe8dd4a 5223 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5224 /*
b72d0ffb
AM
5225 * There can be holes in boot-time mem_map[]s handed to this
5226 * function. They do not exist on hotplugged memory.
a2f3aa02 5227 */
b72d0ffb
AM
5228 if (context != MEMMAP_EARLY)
5229 goto not_early;
5230
b92df1de
PB
5231 if (!early_pfn_valid(pfn)) {
5232#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5233 /*
5234 * Skip to the pfn preceding the next valid one (or
5235 * end_pfn), such that we hit a valid pfn (or end_pfn)
5236 * on our next iteration of the loop.
5237 */
5238 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5239#endif
b72d0ffb 5240 continue;
b92df1de 5241 }
b72d0ffb
AM
5242 if (!early_pfn_in_nid(pfn, nid))
5243 continue;
5244 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5245 break;
342332e6
TI
5246
5247#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5248 /*
5249 * Check given memblock attribute by firmware which can affect
5250 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5251 * mirrored, it's an overlapped memmap init. skip it.
5252 */
5253 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5254 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5255 for_each_memblock(memory, tmp)
5256 if (pfn < memblock_region_memory_end_pfn(tmp))
5257 break;
5258 r = tmp;
5259 }
5260 if (pfn >= memblock_region_memory_base_pfn(r) &&
5261 memblock_is_mirror(r)) {
5262 /* already initialized as NORMAL */
5263 pfn = memblock_region_memory_end_pfn(r);
5264 continue;
342332e6 5265 }
a2f3aa02 5266 }
b72d0ffb 5267#endif
ac5d2539 5268
b72d0ffb 5269not_early:
ac5d2539
MG
5270 /*
5271 * Mark the block movable so that blocks are reserved for
5272 * movable at startup. This will force kernel allocations
5273 * to reserve their blocks rather than leaking throughout
5274 * the address space during boot when many long-lived
974a786e 5275 * kernel allocations are made.
ac5d2539
MG
5276 *
5277 * bitmap is created for zone's valid pfn range. but memmap
5278 * can be created for invalid pages (for alignment)
5279 * check here not to call set_pageblock_migratetype() against
5280 * pfn out of zone.
5281 */
5282 if (!(pfn & (pageblock_nr_pages - 1))) {
5283 struct page *page = pfn_to_page(pfn);
5284
5285 __init_single_page(page, pfn, zone, nid);
5286 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5287 } else {
5288 __init_single_pfn(pfn, zone, nid);
5289 }
1da177e4
LT
5290 }
5291}
5292
1e548deb 5293static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5294{
7aeb09f9 5295 unsigned int order, t;
b2a0ac88
MG
5296 for_each_migratetype_order(order, t) {
5297 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5298 zone->free_area[order].nr_free = 0;
5299 }
5300}
5301
5302#ifndef __HAVE_ARCH_MEMMAP_INIT
5303#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5304 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5305#endif
5306
7cd2b0a3 5307static int zone_batchsize(struct zone *zone)
e7c8d5c9 5308{
3a6be87f 5309#ifdef CONFIG_MMU
e7c8d5c9
CL
5310 int batch;
5311
5312 /*
5313 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5314 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5315 *
5316 * OK, so we don't know how big the cache is. So guess.
5317 */
b40da049 5318 batch = zone->managed_pages / 1024;
ba56e91c
SR
5319 if (batch * PAGE_SIZE > 512 * 1024)
5320 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5321 batch /= 4; /* We effectively *= 4 below */
5322 if (batch < 1)
5323 batch = 1;
5324
5325 /*
0ceaacc9
NP
5326 * Clamp the batch to a 2^n - 1 value. Having a power
5327 * of 2 value was found to be more likely to have
5328 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5329 *
0ceaacc9
NP
5330 * For example if 2 tasks are alternately allocating
5331 * batches of pages, one task can end up with a lot
5332 * of pages of one half of the possible page colors
5333 * and the other with pages of the other colors.
e7c8d5c9 5334 */
9155203a 5335 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5336
e7c8d5c9 5337 return batch;
3a6be87f
DH
5338
5339#else
5340 /* The deferral and batching of frees should be suppressed under NOMMU
5341 * conditions.
5342 *
5343 * The problem is that NOMMU needs to be able to allocate large chunks
5344 * of contiguous memory as there's no hardware page translation to
5345 * assemble apparent contiguous memory from discontiguous pages.
5346 *
5347 * Queueing large contiguous runs of pages for batching, however,
5348 * causes the pages to actually be freed in smaller chunks. As there
5349 * can be a significant delay between the individual batches being
5350 * recycled, this leads to the once large chunks of space being
5351 * fragmented and becoming unavailable for high-order allocations.
5352 */
5353 return 0;
5354#endif
e7c8d5c9
CL
5355}
5356
8d7a8fa9
CS
5357/*
5358 * pcp->high and pcp->batch values are related and dependent on one another:
5359 * ->batch must never be higher then ->high.
5360 * The following function updates them in a safe manner without read side
5361 * locking.
5362 *
5363 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5364 * those fields changing asynchronously (acording the the above rule).
5365 *
5366 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5367 * outside of boot time (or some other assurance that no concurrent updaters
5368 * exist).
5369 */
5370static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5371 unsigned long batch)
5372{
5373 /* start with a fail safe value for batch */
5374 pcp->batch = 1;
5375 smp_wmb();
5376
5377 /* Update high, then batch, in order */
5378 pcp->high = high;
5379 smp_wmb();
5380
5381 pcp->batch = batch;
5382}
5383
3664033c 5384/* a companion to pageset_set_high() */
4008bab7
CS
5385static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5386{
8d7a8fa9 5387 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5388}
5389
88c90dbc 5390static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5391{
5392 struct per_cpu_pages *pcp;
5f8dcc21 5393 int migratetype;
2caaad41 5394
1c6fe946
MD
5395 memset(p, 0, sizeof(*p));
5396
3dfa5721 5397 pcp = &p->pcp;
2caaad41 5398 pcp->count = 0;
5f8dcc21
MG
5399 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5400 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5401}
5402
88c90dbc
CS
5403static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5404{
5405 pageset_init(p);
5406 pageset_set_batch(p, batch);
5407}
5408
8ad4b1fb 5409/*
3664033c 5410 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5411 * to the value high for the pageset p.
5412 */
3664033c 5413static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5414 unsigned long high)
5415{
8d7a8fa9
CS
5416 unsigned long batch = max(1UL, high / 4);
5417 if ((high / 4) > (PAGE_SHIFT * 8))
5418 batch = PAGE_SHIFT * 8;
8ad4b1fb 5419
8d7a8fa9 5420 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5421}
5422
7cd2b0a3
DR
5423static void pageset_set_high_and_batch(struct zone *zone,
5424 struct per_cpu_pageset *pcp)
56cef2b8 5425{
56cef2b8 5426 if (percpu_pagelist_fraction)
3664033c 5427 pageset_set_high(pcp,
56cef2b8
CS
5428 (zone->managed_pages /
5429 percpu_pagelist_fraction));
5430 else
5431 pageset_set_batch(pcp, zone_batchsize(zone));
5432}
5433
169f6c19
CS
5434static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5435{
5436 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5437
5438 pageset_init(pcp);
5439 pageset_set_high_and_batch(zone, pcp);
5440}
5441
4ed7e022 5442static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5443{
5444 int cpu;
319774e2 5445 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5446 for_each_possible_cpu(cpu)
5447 zone_pageset_init(zone, cpu);
319774e2
WF
5448}
5449
2caaad41 5450/*
99dcc3e5
CL
5451 * Allocate per cpu pagesets and initialize them.
5452 * Before this call only boot pagesets were available.
e7c8d5c9 5453 */
99dcc3e5 5454void __init setup_per_cpu_pageset(void)
e7c8d5c9 5455{
b4911ea2 5456 struct pglist_data *pgdat;
99dcc3e5 5457 struct zone *zone;
e7c8d5c9 5458
319774e2
WF
5459 for_each_populated_zone(zone)
5460 setup_zone_pageset(zone);
b4911ea2
MG
5461
5462 for_each_online_pgdat(pgdat)
5463 pgdat->per_cpu_nodestats =
5464 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5465}
5466
c09b4240 5467static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5468{
99dcc3e5
CL
5469 /*
5470 * per cpu subsystem is not up at this point. The following code
5471 * relies on the ability of the linker to provide the
5472 * offset of a (static) per cpu variable into the per cpu area.
5473 */
5474 zone->pageset = &boot_pageset;
ed8ece2e 5475
b38a8725 5476 if (populated_zone(zone))
99dcc3e5
CL
5477 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5478 zone->name, zone->present_pages,
5479 zone_batchsize(zone));
ed8ece2e
DH
5480}
5481
4ed7e022 5482int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5483 unsigned long zone_start_pfn,
b171e409 5484 unsigned long size)
ed8ece2e
DH
5485{
5486 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5487
ed8ece2e
DH
5488 pgdat->nr_zones = zone_idx(zone) + 1;
5489
ed8ece2e
DH
5490 zone->zone_start_pfn = zone_start_pfn;
5491
708614e6
MG
5492 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5493 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5494 pgdat->node_id,
5495 (unsigned long)zone_idx(zone),
5496 zone_start_pfn, (zone_start_pfn + size));
5497
1e548deb 5498 zone_init_free_lists(zone);
9dcb8b68 5499 zone->initialized = 1;
718127cc
YG
5500
5501 return 0;
ed8ece2e
DH
5502}
5503
0ee332c1 5504#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5505#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5506
c713216d
MG
5507/*
5508 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5509 */
8a942fde
MG
5510int __meminit __early_pfn_to_nid(unsigned long pfn,
5511 struct mminit_pfnnid_cache *state)
c713216d 5512{
c13291a5 5513 unsigned long start_pfn, end_pfn;
e76b63f8 5514 int nid;
7c243c71 5515
8a942fde
MG
5516 if (state->last_start <= pfn && pfn < state->last_end)
5517 return state->last_nid;
c713216d 5518
e76b63f8
YL
5519 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5520 if (nid != -1) {
8a942fde
MG
5521 state->last_start = start_pfn;
5522 state->last_end = end_pfn;
5523 state->last_nid = nid;
e76b63f8
YL
5524 }
5525
5526 return nid;
c713216d
MG
5527}
5528#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5529
c713216d 5530/**
6782832e 5531 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5532 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5533 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5534 *
7d018176
ZZ
5535 * If an architecture guarantees that all ranges registered contain no holes
5536 * and may be freed, this this function may be used instead of calling
5537 * memblock_free_early_nid() manually.
c713216d 5538 */
c13291a5 5539void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5540{
c13291a5
TH
5541 unsigned long start_pfn, end_pfn;
5542 int i, this_nid;
edbe7d23 5543
c13291a5
TH
5544 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5545 start_pfn = min(start_pfn, max_low_pfn);
5546 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5547
c13291a5 5548 if (start_pfn < end_pfn)
6782832e
SS
5549 memblock_free_early_nid(PFN_PHYS(start_pfn),
5550 (end_pfn - start_pfn) << PAGE_SHIFT,
5551 this_nid);
edbe7d23 5552 }
edbe7d23 5553}
edbe7d23 5554
c713216d
MG
5555/**
5556 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5557 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5558 *
7d018176
ZZ
5559 * If an architecture guarantees that all ranges registered contain no holes and may
5560 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5561 */
5562void __init sparse_memory_present_with_active_regions(int nid)
5563{
c13291a5
TH
5564 unsigned long start_pfn, end_pfn;
5565 int i, this_nid;
c713216d 5566
c13291a5
TH
5567 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5568 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5569}
5570
5571/**
5572 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5573 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5574 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5575 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5576 *
5577 * It returns the start and end page frame of a node based on information
7d018176 5578 * provided by memblock_set_node(). If called for a node
c713216d 5579 * with no available memory, a warning is printed and the start and end
88ca3b94 5580 * PFNs will be 0.
c713216d 5581 */
a3142c8e 5582void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5583 unsigned long *start_pfn, unsigned long *end_pfn)
5584{
c13291a5 5585 unsigned long this_start_pfn, this_end_pfn;
c713216d 5586 int i;
c13291a5 5587
c713216d
MG
5588 *start_pfn = -1UL;
5589 *end_pfn = 0;
5590
c13291a5
TH
5591 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5592 *start_pfn = min(*start_pfn, this_start_pfn);
5593 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5594 }
5595
633c0666 5596 if (*start_pfn == -1UL)
c713216d 5597 *start_pfn = 0;
c713216d
MG
5598}
5599
2a1e274a
MG
5600/*
5601 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5602 * assumption is made that zones within a node are ordered in monotonic
5603 * increasing memory addresses so that the "highest" populated zone is used
5604 */
b69a7288 5605static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5606{
5607 int zone_index;
5608 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5609 if (zone_index == ZONE_MOVABLE)
5610 continue;
5611
5612 if (arch_zone_highest_possible_pfn[zone_index] >
5613 arch_zone_lowest_possible_pfn[zone_index])
5614 break;
5615 }
5616
5617 VM_BUG_ON(zone_index == -1);
5618 movable_zone = zone_index;
5619}
5620
5621/*
5622 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5623 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5624 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5625 * in each node depending on the size of each node and how evenly kernelcore
5626 * is distributed. This helper function adjusts the zone ranges
5627 * provided by the architecture for a given node by using the end of the
5628 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5629 * zones within a node are in order of monotonic increases memory addresses
5630 */
b69a7288 5631static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5632 unsigned long zone_type,
5633 unsigned long node_start_pfn,
5634 unsigned long node_end_pfn,
5635 unsigned long *zone_start_pfn,
5636 unsigned long *zone_end_pfn)
5637{
5638 /* Only adjust if ZONE_MOVABLE is on this node */
5639 if (zone_movable_pfn[nid]) {
5640 /* Size ZONE_MOVABLE */
5641 if (zone_type == ZONE_MOVABLE) {
5642 *zone_start_pfn = zone_movable_pfn[nid];
5643 *zone_end_pfn = min(node_end_pfn,
5644 arch_zone_highest_possible_pfn[movable_zone]);
5645
e506b996
XQ
5646 /* Adjust for ZONE_MOVABLE starting within this range */
5647 } else if (!mirrored_kernelcore &&
5648 *zone_start_pfn < zone_movable_pfn[nid] &&
5649 *zone_end_pfn > zone_movable_pfn[nid]) {
5650 *zone_end_pfn = zone_movable_pfn[nid];
5651
2a1e274a
MG
5652 /* Check if this whole range is within ZONE_MOVABLE */
5653 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5654 *zone_start_pfn = *zone_end_pfn;
5655 }
5656}
5657
c713216d
MG
5658/*
5659 * Return the number of pages a zone spans in a node, including holes
5660 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5661 */
6ea6e688 5662static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5663 unsigned long zone_type,
7960aedd
ZY
5664 unsigned long node_start_pfn,
5665 unsigned long node_end_pfn,
d91749c1
TI
5666 unsigned long *zone_start_pfn,
5667 unsigned long *zone_end_pfn,
c713216d
MG
5668 unsigned long *ignored)
5669{
b5685e92 5670 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5671 if (!node_start_pfn && !node_end_pfn)
5672 return 0;
5673
7960aedd 5674 /* Get the start and end of the zone */
d91749c1
TI
5675 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5676 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5677 adjust_zone_range_for_zone_movable(nid, zone_type,
5678 node_start_pfn, node_end_pfn,
d91749c1 5679 zone_start_pfn, zone_end_pfn);
c713216d
MG
5680
5681 /* Check that this node has pages within the zone's required range */
d91749c1 5682 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5683 return 0;
5684
5685 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5686 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5687 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5688
5689 /* Return the spanned pages */
d91749c1 5690 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5691}
5692
5693/*
5694 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5695 * then all holes in the requested range will be accounted for.
c713216d 5696 */
32996250 5697unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5698 unsigned long range_start_pfn,
5699 unsigned long range_end_pfn)
5700{
96e907d1
TH
5701 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5702 unsigned long start_pfn, end_pfn;
5703 int i;
c713216d 5704
96e907d1
TH
5705 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5706 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5707 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5708 nr_absent -= end_pfn - start_pfn;
c713216d 5709 }
96e907d1 5710 return nr_absent;
c713216d
MG
5711}
5712
5713/**
5714 * absent_pages_in_range - Return number of page frames in holes within a range
5715 * @start_pfn: The start PFN to start searching for holes
5716 * @end_pfn: The end PFN to stop searching for holes
5717 *
88ca3b94 5718 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5719 */
5720unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5721 unsigned long end_pfn)
5722{
5723 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5724}
5725
5726/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5727static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5728 unsigned long zone_type,
7960aedd
ZY
5729 unsigned long node_start_pfn,
5730 unsigned long node_end_pfn,
c713216d
MG
5731 unsigned long *ignored)
5732{
96e907d1
TH
5733 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5734 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5735 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5736 unsigned long nr_absent;
9c7cd687 5737
b5685e92 5738 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5739 if (!node_start_pfn && !node_end_pfn)
5740 return 0;
5741
96e907d1
TH
5742 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5743 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5744
2a1e274a
MG
5745 adjust_zone_range_for_zone_movable(nid, zone_type,
5746 node_start_pfn, node_end_pfn,
5747 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5748 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5749
5750 /*
5751 * ZONE_MOVABLE handling.
5752 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5753 * and vice versa.
5754 */
e506b996
XQ
5755 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5756 unsigned long start_pfn, end_pfn;
5757 struct memblock_region *r;
5758
5759 for_each_memblock(memory, r) {
5760 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5761 zone_start_pfn, zone_end_pfn);
5762 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5763 zone_start_pfn, zone_end_pfn);
5764
5765 if (zone_type == ZONE_MOVABLE &&
5766 memblock_is_mirror(r))
5767 nr_absent += end_pfn - start_pfn;
5768
5769 if (zone_type == ZONE_NORMAL &&
5770 !memblock_is_mirror(r))
5771 nr_absent += end_pfn - start_pfn;
342332e6
TI
5772 }
5773 }
5774
5775 return nr_absent;
c713216d 5776}
0e0b864e 5777
0ee332c1 5778#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5779static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5780 unsigned long zone_type,
7960aedd
ZY
5781 unsigned long node_start_pfn,
5782 unsigned long node_end_pfn,
d91749c1
TI
5783 unsigned long *zone_start_pfn,
5784 unsigned long *zone_end_pfn,
c713216d
MG
5785 unsigned long *zones_size)
5786{
d91749c1
TI
5787 unsigned int zone;
5788
5789 *zone_start_pfn = node_start_pfn;
5790 for (zone = 0; zone < zone_type; zone++)
5791 *zone_start_pfn += zones_size[zone];
5792
5793 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5794
c713216d
MG
5795 return zones_size[zone_type];
5796}
5797
6ea6e688 5798static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5799 unsigned long zone_type,
7960aedd
ZY
5800 unsigned long node_start_pfn,
5801 unsigned long node_end_pfn,
c713216d
MG
5802 unsigned long *zholes_size)
5803{
5804 if (!zholes_size)
5805 return 0;
5806
5807 return zholes_size[zone_type];
5808}
20e6926d 5809
0ee332c1 5810#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5811
a3142c8e 5812static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5813 unsigned long node_start_pfn,
5814 unsigned long node_end_pfn,
5815 unsigned long *zones_size,
5816 unsigned long *zholes_size)
c713216d 5817{
febd5949 5818 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5819 enum zone_type i;
5820
febd5949
GZ
5821 for (i = 0; i < MAX_NR_ZONES; i++) {
5822 struct zone *zone = pgdat->node_zones + i;
d91749c1 5823 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5824 unsigned long size, real_size;
c713216d 5825
febd5949
GZ
5826 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5827 node_start_pfn,
5828 node_end_pfn,
d91749c1
TI
5829 &zone_start_pfn,
5830 &zone_end_pfn,
febd5949
GZ
5831 zones_size);
5832 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5833 node_start_pfn, node_end_pfn,
5834 zholes_size);
d91749c1
TI
5835 if (size)
5836 zone->zone_start_pfn = zone_start_pfn;
5837 else
5838 zone->zone_start_pfn = 0;
febd5949
GZ
5839 zone->spanned_pages = size;
5840 zone->present_pages = real_size;
5841
5842 totalpages += size;
5843 realtotalpages += real_size;
5844 }
5845
5846 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5847 pgdat->node_present_pages = realtotalpages;
5848 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5849 realtotalpages);
5850}
5851
835c134e
MG
5852#ifndef CONFIG_SPARSEMEM
5853/*
5854 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5855 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5856 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5857 * round what is now in bits to nearest long in bits, then return it in
5858 * bytes.
5859 */
7c45512d 5860static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5861{
5862 unsigned long usemapsize;
5863
7c45512d 5864 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5865 usemapsize = roundup(zonesize, pageblock_nr_pages);
5866 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5867 usemapsize *= NR_PAGEBLOCK_BITS;
5868 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5869
5870 return usemapsize / 8;
5871}
5872
5873static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5874 struct zone *zone,
5875 unsigned long zone_start_pfn,
5876 unsigned long zonesize)
835c134e 5877{
7c45512d 5878 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5879 zone->pageblock_flags = NULL;
58a01a45 5880 if (usemapsize)
6782832e
SS
5881 zone->pageblock_flags =
5882 memblock_virt_alloc_node_nopanic(usemapsize,
5883 pgdat->node_id);
835c134e
MG
5884}
5885#else
7c45512d
LT
5886static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5887 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5888#endif /* CONFIG_SPARSEMEM */
5889
d9c23400 5890#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5891
d9c23400 5892/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5893void __paginginit set_pageblock_order(void)
d9c23400 5894{
955c1cd7
AM
5895 unsigned int order;
5896
d9c23400
MG
5897 /* Check that pageblock_nr_pages has not already been setup */
5898 if (pageblock_order)
5899 return;
5900
955c1cd7
AM
5901 if (HPAGE_SHIFT > PAGE_SHIFT)
5902 order = HUGETLB_PAGE_ORDER;
5903 else
5904 order = MAX_ORDER - 1;
5905
d9c23400
MG
5906 /*
5907 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5908 * This value may be variable depending on boot parameters on IA64 and
5909 * powerpc.
d9c23400
MG
5910 */
5911 pageblock_order = order;
5912}
5913#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5914
ba72cb8c
MG
5915/*
5916 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5917 * is unused as pageblock_order is set at compile-time. See
5918 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5919 * the kernel config
ba72cb8c 5920 */
15ca220e 5921void __paginginit set_pageblock_order(void)
ba72cb8c 5922{
ba72cb8c 5923}
d9c23400
MG
5924
5925#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5926
01cefaef
JL
5927static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5928 unsigned long present_pages)
5929{
5930 unsigned long pages = spanned_pages;
5931
5932 /*
5933 * Provide a more accurate estimation if there are holes within
5934 * the zone and SPARSEMEM is in use. If there are holes within the
5935 * zone, each populated memory region may cost us one or two extra
5936 * memmap pages due to alignment because memmap pages for each
89d790ab 5937 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
5938 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5939 */
5940 if (spanned_pages > present_pages + (present_pages >> 4) &&
5941 IS_ENABLED(CONFIG_SPARSEMEM))
5942 pages = present_pages;
5943
5944 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5945}
5946
1da177e4
LT
5947/*
5948 * Set up the zone data structures:
5949 * - mark all pages reserved
5950 * - mark all memory queues empty
5951 * - clear the memory bitmaps
6527af5d
MK
5952 *
5953 * NOTE: pgdat should get zeroed by caller.
1da177e4 5954 */
7f3eb55b 5955static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5956{
2f1b6248 5957 enum zone_type j;
ed8ece2e 5958 int nid = pgdat->node_id;
718127cc 5959 int ret;
1da177e4 5960
208d54e5 5961 pgdat_resize_init(pgdat);
8177a420
AA
5962#ifdef CONFIG_NUMA_BALANCING
5963 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5964 pgdat->numabalancing_migrate_nr_pages = 0;
5965 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5966#endif
5967#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5968 spin_lock_init(&pgdat->split_queue_lock);
5969 INIT_LIST_HEAD(&pgdat->split_queue);
5970 pgdat->split_queue_len = 0;
8177a420 5971#endif
1da177e4 5972 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5973 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5974#ifdef CONFIG_COMPACTION
5975 init_waitqueue_head(&pgdat->kcompactd_wait);
5976#endif
eefa864b 5977 pgdat_page_ext_init(pgdat);
a52633d8 5978 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5979 lruvec_init(node_lruvec(pgdat));
5f63b720 5980
1da177e4
LT
5981 for (j = 0; j < MAX_NR_ZONES; j++) {
5982 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5983 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5984 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5985
febd5949
GZ
5986 size = zone->spanned_pages;
5987 realsize = freesize = zone->present_pages;
1da177e4 5988
0e0b864e 5989 /*
9feedc9d 5990 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5991 * is used by this zone for memmap. This affects the watermark
5992 * and per-cpu initialisations
5993 */
01cefaef 5994 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5995 if (!is_highmem_idx(j)) {
5996 if (freesize >= memmap_pages) {
5997 freesize -= memmap_pages;
5998 if (memmap_pages)
5999 printk(KERN_DEBUG
6000 " %s zone: %lu pages used for memmap\n",
6001 zone_names[j], memmap_pages);
6002 } else
1170532b 6003 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6004 zone_names[j], memmap_pages, freesize);
6005 }
0e0b864e 6006
6267276f 6007 /* Account for reserved pages */
9feedc9d
JL
6008 if (j == 0 && freesize > dma_reserve) {
6009 freesize -= dma_reserve;
d903ef9f 6010 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6011 zone_names[0], dma_reserve);
0e0b864e
MG
6012 }
6013
98d2b0eb 6014 if (!is_highmem_idx(j))
9feedc9d 6015 nr_kernel_pages += freesize;
01cefaef
JL
6016 /* Charge for highmem memmap if there are enough kernel pages */
6017 else if (nr_kernel_pages > memmap_pages * 2)
6018 nr_kernel_pages -= memmap_pages;
9feedc9d 6019 nr_all_pages += freesize;
1da177e4 6020
9feedc9d
JL
6021 /*
6022 * Set an approximate value for lowmem here, it will be adjusted
6023 * when the bootmem allocator frees pages into the buddy system.
6024 * And all highmem pages will be managed by the buddy system.
6025 */
6026 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6027#ifdef CONFIG_NUMA
d5f541ed 6028 zone->node = nid;
9614634f 6029#endif
1da177e4 6030 zone->name = zone_names[j];
a52633d8 6031 zone->zone_pgdat = pgdat;
1da177e4 6032 spin_lock_init(&zone->lock);
bdc8cb98 6033 zone_seqlock_init(zone);
ed8ece2e 6034 zone_pcp_init(zone);
81c0a2bb 6035
1da177e4
LT
6036 if (!size)
6037 continue;
6038
955c1cd7 6039 set_pageblock_order();
7c45512d 6040 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6041 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6042 BUG_ON(ret);
76cdd58e 6043 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6044 }
6045}
6046
bd721ea7 6047static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6048{
b0aeba74 6049 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6050 unsigned long __maybe_unused offset = 0;
6051
1da177e4
LT
6052 /* Skip empty nodes */
6053 if (!pgdat->node_spanned_pages)
6054 return;
6055
d41dee36 6056#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6057 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6058 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6059 /* ia64 gets its own node_mem_map, before this, without bootmem */
6060 if (!pgdat->node_mem_map) {
b0aeba74 6061 unsigned long size, end;
d41dee36
AW
6062 struct page *map;
6063
e984bb43
BP
6064 /*
6065 * The zone's endpoints aren't required to be MAX_ORDER
6066 * aligned but the node_mem_map endpoints must be in order
6067 * for the buddy allocator to function correctly.
6068 */
108bcc96 6069 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6070 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6071 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6072 map = alloc_remap(pgdat->node_id, size);
6073 if (!map)
6782832e
SS
6074 map = memblock_virt_alloc_node_nopanic(size,
6075 pgdat->node_id);
a1c34a3b 6076 pgdat->node_mem_map = map + offset;
1da177e4 6077 }
12d810c1 6078#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6079 /*
6080 * With no DISCONTIG, the global mem_map is just set as node 0's
6081 */
c713216d 6082 if (pgdat == NODE_DATA(0)) {
1da177e4 6083 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6084#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6085 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6086 mem_map -= offset;
0ee332c1 6087#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6088 }
1da177e4 6089#endif
d41dee36 6090#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6091}
6092
9109fb7b
JW
6093void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6094 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6095{
9109fb7b 6096 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6097 unsigned long start_pfn = 0;
6098 unsigned long end_pfn = 0;
9109fb7b 6099
88fdf75d 6100 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6101 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6102
3a80a7fa 6103 reset_deferred_meminit(pgdat);
1da177e4
LT
6104 pgdat->node_id = nid;
6105 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6106 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6107#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6108 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6109 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6110 (u64)start_pfn << PAGE_SHIFT,
6111 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6112#else
6113 start_pfn = node_start_pfn;
7960aedd
ZY
6114#endif
6115 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6116 zones_size, zholes_size);
1da177e4
LT
6117
6118 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6119#ifdef CONFIG_FLAT_NODE_MEM_MAP
6120 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6121 nid, (unsigned long)pgdat,
6122 (unsigned long)pgdat->node_mem_map);
6123#endif
1da177e4 6124
7f3eb55b 6125 free_area_init_core(pgdat);
1da177e4
LT
6126}
6127
0ee332c1 6128#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6129
6130#if MAX_NUMNODES > 1
6131/*
6132 * Figure out the number of possible node ids.
6133 */
f9872caf 6134void __init setup_nr_node_ids(void)
418508c1 6135{
904a9553 6136 unsigned int highest;
418508c1 6137
904a9553 6138 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6139 nr_node_ids = highest + 1;
6140}
418508c1
MS
6141#endif
6142
1e01979c
TH
6143/**
6144 * node_map_pfn_alignment - determine the maximum internode alignment
6145 *
6146 * This function should be called after node map is populated and sorted.
6147 * It calculates the maximum power of two alignment which can distinguish
6148 * all the nodes.
6149 *
6150 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6151 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6152 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6153 * shifted, 1GiB is enough and this function will indicate so.
6154 *
6155 * This is used to test whether pfn -> nid mapping of the chosen memory
6156 * model has fine enough granularity to avoid incorrect mapping for the
6157 * populated node map.
6158 *
6159 * Returns the determined alignment in pfn's. 0 if there is no alignment
6160 * requirement (single node).
6161 */
6162unsigned long __init node_map_pfn_alignment(void)
6163{
6164 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6165 unsigned long start, end, mask;
1e01979c 6166 int last_nid = -1;
c13291a5 6167 int i, nid;
1e01979c 6168
c13291a5 6169 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6170 if (!start || last_nid < 0 || last_nid == nid) {
6171 last_nid = nid;
6172 last_end = end;
6173 continue;
6174 }
6175
6176 /*
6177 * Start with a mask granular enough to pin-point to the
6178 * start pfn and tick off bits one-by-one until it becomes
6179 * too coarse to separate the current node from the last.
6180 */
6181 mask = ~((1 << __ffs(start)) - 1);
6182 while (mask && last_end <= (start & (mask << 1)))
6183 mask <<= 1;
6184
6185 /* accumulate all internode masks */
6186 accl_mask |= mask;
6187 }
6188
6189 /* convert mask to number of pages */
6190 return ~accl_mask + 1;
6191}
6192
a6af2bc3 6193/* Find the lowest pfn for a node */
b69a7288 6194static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6195{
a6af2bc3 6196 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6197 unsigned long start_pfn;
6198 int i;
1abbfb41 6199
c13291a5
TH
6200 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6201 min_pfn = min(min_pfn, start_pfn);
c713216d 6202
a6af2bc3 6203 if (min_pfn == ULONG_MAX) {
1170532b 6204 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6205 return 0;
6206 }
6207
6208 return min_pfn;
c713216d
MG
6209}
6210
6211/**
6212 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6213 *
6214 * It returns the minimum PFN based on information provided via
7d018176 6215 * memblock_set_node().
c713216d
MG
6216 */
6217unsigned long __init find_min_pfn_with_active_regions(void)
6218{
6219 return find_min_pfn_for_node(MAX_NUMNODES);
6220}
6221
37b07e41
LS
6222/*
6223 * early_calculate_totalpages()
6224 * Sum pages in active regions for movable zone.
4b0ef1fe 6225 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6226 */
484f51f8 6227static unsigned long __init early_calculate_totalpages(void)
7e63efef 6228{
7e63efef 6229 unsigned long totalpages = 0;
c13291a5
TH
6230 unsigned long start_pfn, end_pfn;
6231 int i, nid;
6232
6233 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6234 unsigned long pages = end_pfn - start_pfn;
7e63efef 6235
37b07e41
LS
6236 totalpages += pages;
6237 if (pages)
4b0ef1fe 6238 node_set_state(nid, N_MEMORY);
37b07e41 6239 }
b8af2941 6240 return totalpages;
7e63efef
MG
6241}
6242
2a1e274a
MG
6243/*
6244 * Find the PFN the Movable zone begins in each node. Kernel memory
6245 * is spread evenly between nodes as long as the nodes have enough
6246 * memory. When they don't, some nodes will have more kernelcore than
6247 * others
6248 */
b224ef85 6249static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6250{
6251 int i, nid;
6252 unsigned long usable_startpfn;
6253 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6254 /* save the state before borrow the nodemask */
4b0ef1fe 6255 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6256 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6257 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6258 struct memblock_region *r;
b2f3eebe
TC
6259
6260 /* Need to find movable_zone earlier when movable_node is specified. */
6261 find_usable_zone_for_movable();
6262
6263 /*
6264 * If movable_node is specified, ignore kernelcore and movablecore
6265 * options.
6266 */
6267 if (movable_node_is_enabled()) {
136199f0
EM
6268 for_each_memblock(memory, r) {
6269 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6270 continue;
6271
136199f0 6272 nid = r->nid;
b2f3eebe 6273
136199f0 6274 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6275 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6276 min(usable_startpfn, zone_movable_pfn[nid]) :
6277 usable_startpfn;
6278 }
6279
6280 goto out2;
6281 }
2a1e274a 6282
342332e6
TI
6283 /*
6284 * If kernelcore=mirror is specified, ignore movablecore option
6285 */
6286 if (mirrored_kernelcore) {
6287 bool mem_below_4gb_not_mirrored = false;
6288
6289 for_each_memblock(memory, r) {
6290 if (memblock_is_mirror(r))
6291 continue;
6292
6293 nid = r->nid;
6294
6295 usable_startpfn = memblock_region_memory_base_pfn(r);
6296
6297 if (usable_startpfn < 0x100000) {
6298 mem_below_4gb_not_mirrored = true;
6299 continue;
6300 }
6301
6302 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6303 min(usable_startpfn, zone_movable_pfn[nid]) :
6304 usable_startpfn;
6305 }
6306
6307 if (mem_below_4gb_not_mirrored)
6308 pr_warn("This configuration results in unmirrored kernel memory.");
6309
6310 goto out2;
6311 }
6312
7e63efef 6313 /*
b2f3eebe 6314 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6315 * kernelcore that corresponds so that memory usable for
6316 * any allocation type is evenly spread. If both kernelcore
6317 * and movablecore are specified, then the value of kernelcore
6318 * will be used for required_kernelcore if it's greater than
6319 * what movablecore would have allowed.
6320 */
6321 if (required_movablecore) {
7e63efef
MG
6322 unsigned long corepages;
6323
6324 /*
6325 * Round-up so that ZONE_MOVABLE is at least as large as what
6326 * was requested by the user
6327 */
6328 required_movablecore =
6329 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6330 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6331 corepages = totalpages - required_movablecore;
6332
6333 required_kernelcore = max(required_kernelcore, corepages);
6334 }
6335
bde304bd
XQ
6336 /*
6337 * If kernelcore was not specified or kernelcore size is larger
6338 * than totalpages, there is no ZONE_MOVABLE.
6339 */
6340 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6341 goto out;
2a1e274a
MG
6342
6343 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6344 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6345
6346restart:
6347 /* Spread kernelcore memory as evenly as possible throughout nodes */
6348 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6349 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6350 unsigned long start_pfn, end_pfn;
6351
2a1e274a
MG
6352 /*
6353 * Recalculate kernelcore_node if the division per node
6354 * now exceeds what is necessary to satisfy the requested
6355 * amount of memory for the kernel
6356 */
6357 if (required_kernelcore < kernelcore_node)
6358 kernelcore_node = required_kernelcore / usable_nodes;
6359
6360 /*
6361 * As the map is walked, we track how much memory is usable
6362 * by the kernel using kernelcore_remaining. When it is
6363 * 0, the rest of the node is usable by ZONE_MOVABLE
6364 */
6365 kernelcore_remaining = kernelcore_node;
6366
6367 /* Go through each range of PFNs within this node */
c13291a5 6368 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6369 unsigned long size_pages;
6370
c13291a5 6371 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6372 if (start_pfn >= end_pfn)
6373 continue;
6374
6375 /* Account for what is only usable for kernelcore */
6376 if (start_pfn < usable_startpfn) {
6377 unsigned long kernel_pages;
6378 kernel_pages = min(end_pfn, usable_startpfn)
6379 - start_pfn;
6380
6381 kernelcore_remaining -= min(kernel_pages,
6382 kernelcore_remaining);
6383 required_kernelcore -= min(kernel_pages,
6384 required_kernelcore);
6385
6386 /* Continue if range is now fully accounted */
6387 if (end_pfn <= usable_startpfn) {
6388
6389 /*
6390 * Push zone_movable_pfn to the end so
6391 * that if we have to rebalance
6392 * kernelcore across nodes, we will
6393 * not double account here
6394 */
6395 zone_movable_pfn[nid] = end_pfn;
6396 continue;
6397 }
6398 start_pfn = usable_startpfn;
6399 }
6400
6401 /*
6402 * The usable PFN range for ZONE_MOVABLE is from
6403 * start_pfn->end_pfn. Calculate size_pages as the
6404 * number of pages used as kernelcore
6405 */
6406 size_pages = end_pfn - start_pfn;
6407 if (size_pages > kernelcore_remaining)
6408 size_pages = kernelcore_remaining;
6409 zone_movable_pfn[nid] = start_pfn + size_pages;
6410
6411 /*
6412 * Some kernelcore has been met, update counts and
6413 * break if the kernelcore for this node has been
b8af2941 6414 * satisfied
2a1e274a
MG
6415 */
6416 required_kernelcore -= min(required_kernelcore,
6417 size_pages);
6418 kernelcore_remaining -= size_pages;
6419 if (!kernelcore_remaining)
6420 break;
6421 }
6422 }
6423
6424 /*
6425 * If there is still required_kernelcore, we do another pass with one
6426 * less node in the count. This will push zone_movable_pfn[nid] further
6427 * along on the nodes that still have memory until kernelcore is
b8af2941 6428 * satisfied
2a1e274a
MG
6429 */
6430 usable_nodes--;
6431 if (usable_nodes && required_kernelcore > usable_nodes)
6432 goto restart;
6433
b2f3eebe 6434out2:
2a1e274a
MG
6435 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6436 for (nid = 0; nid < MAX_NUMNODES; nid++)
6437 zone_movable_pfn[nid] =
6438 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6439
20e6926d 6440out:
66918dcd 6441 /* restore the node_state */
4b0ef1fe 6442 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6443}
6444
4b0ef1fe
LJ
6445/* Any regular or high memory on that node ? */
6446static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6447{
37b07e41
LS
6448 enum zone_type zone_type;
6449
4b0ef1fe
LJ
6450 if (N_MEMORY == N_NORMAL_MEMORY)
6451 return;
6452
6453 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6454 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6455 if (populated_zone(zone)) {
4b0ef1fe
LJ
6456 node_set_state(nid, N_HIGH_MEMORY);
6457 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6458 zone_type <= ZONE_NORMAL)
6459 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6460 break;
6461 }
37b07e41 6462 }
37b07e41
LS
6463}
6464
c713216d
MG
6465/**
6466 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6467 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6468 *
6469 * This will call free_area_init_node() for each active node in the system.
7d018176 6470 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6471 * zone in each node and their holes is calculated. If the maximum PFN
6472 * between two adjacent zones match, it is assumed that the zone is empty.
6473 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6474 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6475 * starts where the previous one ended. For example, ZONE_DMA32 starts
6476 * at arch_max_dma_pfn.
6477 */
6478void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6479{
c13291a5
TH
6480 unsigned long start_pfn, end_pfn;
6481 int i, nid;
a6af2bc3 6482
c713216d
MG
6483 /* Record where the zone boundaries are */
6484 memset(arch_zone_lowest_possible_pfn, 0,
6485 sizeof(arch_zone_lowest_possible_pfn));
6486 memset(arch_zone_highest_possible_pfn, 0,
6487 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6488
6489 start_pfn = find_min_pfn_with_active_regions();
6490
6491 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6492 if (i == ZONE_MOVABLE)
6493 continue;
90cae1fe
OH
6494
6495 end_pfn = max(max_zone_pfn[i], start_pfn);
6496 arch_zone_lowest_possible_pfn[i] = start_pfn;
6497 arch_zone_highest_possible_pfn[i] = end_pfn;
6498
6499 start_pfn = end_pfn;
c713216d 6500 }
2a1e274a
MG
6501
6502 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6503 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6504 find_zone_movable_pfns_for_nodes();
c713216d 6505
c713216d 6506 /* Print out the zone ranges */
f88dfff5 6507 pr_info("Zone ranges:\n");
2a1e274a
MG
6508 for (i = 0; i < MAX_NR_ZONES; i++) {
6509 if (i == ZONE_MOVABLE)
6510 continue;
f88dfff5 6511 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6512 if (arch_zone_lowest_possible_pfn[i] ==
6513 arch_zone_highest_possible_pfn[i])
f88dfff5 6514 pr_cont("empty\n");
72f0ba02 6515 else
8d29e18a
JG
6516 pr_cont("[mem %#018Lx-%#018Lx]\n",
6517 (u64)arch_zone_lowest_possible_pfn[i]
6518 << PAGE_SHIFT,
6519 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6520 << PAGE_SHIFT) - 1);
2a1e274a
MG
6521 }
6522
6523 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6524 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6525 for (i = 0; i < MAX_NUMNODES; i++) {
6526 if (zone_movable_pfn[i])
8d29e18a
JG
6527 pr_info(" Node %d: %#018Lx\n", i,
6528 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6529 }
c713216d 6530
f2d52fe5 6531 /* Print out the early node map */
f88dfff5 6532 pr_info("Early memory node ranges\n");
c13291a5 6533 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6534 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6535 (u64)start_pfn << PAGE_SHIFT,
6536 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6537
6538 /* Initialise every node */
708614e6 6539 mminit_verify_pageflags_layout();
8ef82866 6540 setup_nr_node_ids();
c713216d
MG
6541 for_each_online_node(nid) {
6542 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6543 free_area_init_node(nid, NULL,
c713216d 6544 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6545
6546 /* Any memory on that node */
6547 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6548 node_set_state(nid, N_MEMORY);
6549 check_for_memory(pgdat, nid);
c713216d
MG
6550 }
6551}
2a1e274a 6552
7e63efef 6553static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6554{
6555 unsigned long long coremem;
6556 if (!p)
6557 return -EINVAL;
6558
6559 coremem = memparse(p, &p);
7e63efef 6560 *core = coremem >> PAGE_SHIFT;
2a1e274a 6561
7e63efef 6562 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6563 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6564
6565 return 0;
6566}
ed7ed365 6567
7e63efef
MG
6568/*
6569 * kernelcore=size sets the amount of memory for use for allocations that
6570 * cannot be reclaimed or migrated.
6571 */
6572static int __init cmdline_parse_kernelcore(char *p)
6573{
342332e6
TI
6574 /* parse kernelcore=mirror */
6575 if (parse_option_str(p, "mirror")) {
6576 mirrored_kernelcore = true;
6577 return 0;
6578 }
6579
7e63efef
MG
6580 return cmdline_parse_core(p, &required_kernelcore);
6581}
6582
6583/*
6584 * movablecore=size sets the amount of memory for use for allocations that
6585 * can be reclaimed or migrated.
6586 */
6587static int __init cmdline_parse_movablecore(char *p)
6588{
6589 return cmdline_parse_core(p, &required_movablecore);
6590}
6591
ed7ed365 6592early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6593early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6594
0ee332c1 6595#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6596
c3d5f5f0
JL
6597void adjust_managed_page_count(struct page *page, long count)
6598{
6599 spin_lock(&managed_page_count_lock);
6600 page_zone(page)->managed_pages += count;
6601 totalram_pages += count;
3dcc0571
JL
6602#ifdef CONFIG_HIGHMEM
6603 if (PageHighMem(page))
6604 totalhigh_pages += count;
6605#endif
c3d5f5f0
JL
6606 spin_unlock(&managed_page_count_lock);
6607}
3dcc0571 6608EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6609
11199692 6610unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6611{
11199692
JL
6612 void *pos;
6613 unsigned long pages = 0;
69afade7 6614
11199692
JL
6615 start = (void *)PAGE_ALIGN((unsigned long)start);
6616 end = (void *)((unsigned long)end & PAGE_MASK);
6617 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6618 if ((unsigned int)poison <= 0xFF)
11199692
JL
6619 memset(pos, poison, PAGE_SIZE);
6620 free_reserved_page(virt_to_page(pos));
69afade7
JL
6621 }
6622
6623 if (pages && s)
adb1fe9a
JP
6624 pr_info("Freeing %s memory: %ldK\n",
6625 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6626
6627 return pages;
6628}
11199692 6629EXPORT_SYMBOL(free_reserved_area);
69afade7 6630
cfa11e08
JL
6631#ifdef CONFIG_HIGHMEM
6632void free_highmem_page(struct page *page)
6633{
6634 __free_reserved_page(page);
6635 totalram_pages++;
7b4b2a0d 6636 page_zone(page)->managed_pages++;
cfa11e08
JL
6637 totalhigh_pages++;
6638}
6639#endif
6640
7ee3d4e8
JL
6641
6642void __init mem_init_print_info(const char *str)
6643{
6644 unsigned long physpages, codesize, datasize, rosize, bss_size;
6645 unsigned long init_code_size, init_data_size;
6646
6647 physpages = get_num_physpages();
6648 codesize = _etext - _stext;
6649 datasize = _edata - _sdata;
6650 rosize = __end_rodata - __start_rodata;
6651 bss_size = __bss_stop - __bss_start;
6652 init_data_size = __init_end - __init_begin;
6653 init_code_size = _einittext - _sinittext;
6654
6655 /*
6656 * Detect special cases and adjust section sizes accordingly:
6657 * 1) .init.* may be embedded into .data sections
6658 * 2) .init.text.* may be out of [__init_begin, __init_end],
6659 * please refer to arch/tile/kernel/vmlinux.lds.S.
6660 * 3) .rodata.* may be embedded into .text or .data sections.
6661 */
6662#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6663 do { \
6664 if (start <= pos && pos < end && size > adj) \
6665 size -= adj; \
6666 } while (0)
7ee3d4e8
JL
6667
6668 adj_init_size(__init_begin, __init_end, init_data_size,
6669 _sinittext, init_code_size);
6670 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6671 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6672 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6673 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6674
6675#undef adj_init_size
6676
756a025f 6677 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6678#ifdef CONFIG_HIGHMEM
756a025f 6679 ", %luK highmem"
7ee3d4e8 6680#endif
756a025f
JP
6681 "%s%s)\n",
6682 nr_free_pages() << (PAGE_SHIFT - 10),
6683 physpages << (PAGE_SHIFT - 10),
6684 codesize >> 10, datasize >> 10, rosize >> 10,
6685 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6686 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6687 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6688#ifdef CONFIG_HIGHMEM
756a025f 6689 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6690#endif
756a025f 6691 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6692}
6693
0e0b864e 6694/**
88ca3b94
RD
6695 * set_dma_reserve - set the specified number of pages reserved in the first zone
6696 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6697 *
013110a7 6698 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6699 * In the DMA zone, a significant percentage may be consumed by kernel image
6700 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6701 * function may optionally be used to account for unfreeable pages in the
6702 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6703 * smaller per-cpu batchsize.
0e0b864e
MG
6704 */
6705void __init set_dma_reserve(unsigned long new_dma_reserve)
6706{
6707 dma_reserve = new_dma_reserve;
6708}
6709
1da177e4
LT
6710void __init free_area_init(unsigned long *zones_size)
6711{
9109fb7b 6712 free_area_init_node(0, zones_size,
1da177e4
LT
6713 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6714}
1da177e4 6715
005fd4bb 6716static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6717{
1da177e4 6718
005fd4bb
SAS
6719 lru_add_drain_cpu(cpu);
6720 drain_pages(cpu);
9f8f2172 6721
005fd4bb
SAS
6722 /*
6723 * Spill the event counters of the dead processor
6724 * into the current processors event counters.
6725 * This artificially elevates the count of the current
6726 * processor.
6727 */
6728 vm_events_fold_cpu(cpu);
9f8f2172 6729
005fd4bb
SAS
6730 /*
6731 * Zero the differential counters of the dead processor
6732 * so that the vm statistics are consistent.
6733 *
6734 * This is only okay since the processor is dead and cannot
6735 * race with what we are doing.
6736 */
6737 cpu_vm_stats_fold(cpu);
6738 return 0;
1da177e4 6739}
1da177e4
LT
6740
6741void __init page_alloc_init(void)
6742{
005fd4bb
SAS
6743 int ret;
6744
6745 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6746 "mm/page_alloc:dead", NULL,
6747 page_alloc_cpu_dead);
6748 WARN_ON(ret < 0);
1da177e4
LT
6749}
6750
cb45b0e9 6751/*
34b10060 6752 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6753 * or min_free_kbytes changes.
6754 */
6755static void calculate_totalreserve_pages(void)
6756{
6757 struct pglist_data *pgdat;
6758 unsigned long reserve_pages = 0;
2f6726e5 6759 enum zone_type i, j;
cb45b0e9
HA
6760
6761 for_each_online_pgdat(pgdat) {
281e3726
MG
6762
6763 pgdat->totalreserve_pages = 0;
6764
cb45b0e9
HA
6765 for (i = 0; i < MAX_NR_ZONES; i++) {
6766 struct zone *zone = pgdat->node_zones + i;
3484b2de 6767 long max = 0;
cb45b0e9
HA
6768
6769 /* Find valid and maximum lowmem_reserve in the zone */
6770 for (j = i; j < MAX_NR_ZONES; j++) {
6771 if (zone->lowmem_reserve[j] > max)
6772 max = zone->lowmem_reserve[j];
6773 }
6774
41858966
MG
6775 /* we treat the high watermark as reserved pages. */
6776 max += high_wmark_pages(zone);
cb45b0e9 6777
b40da049
JL
6778 if (max > zone->managed_pages)
6779 max = zone->managed_pages;
a8d01437 6780
281e3726 6781 pgdat->totalreserve_pages += max;
a8d01437 6782
cb45b0e9
HA
6783 reserve_pages += max;
6784 }
6785 }
6786 totalreserve_pages = reserve_pages;
6787}
6788
1da177e4
LT
6789/*
6790 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6791 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6792 * has a correct pages reserved value, so an adequate number of
6793 * pages are left in the zone after a successful __alloc_pages().
6794 */
6795static void setup_per_zone_lowmem_reserve(void)
6796{
6797 struct pglist_data *pgdat;
2f6726e5 6798 enum zone_type j, idx;
1da177e4 6799
ec936fc5 6800 for_each_online_pgdat(pgdat) {
1da177e4
LT
6801 for (j = 0; j < MAX_NR_ZONES; j++) {
6802 struct zone *zone = pgdat->node_zones + j;
b40da049 6803 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6804
6805 zone->lowmem_reserve[j] = 0;
6806
2f6726e5
CL
6807 idx = j;
6808 while (idx) {
1da177e4
LT
6809 struct zone *lower_zone;
6810
2f6726e5
CL
6811 idx--;
6812
1da177e4
LT
6813 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6814 sysctl_lowmem_reserve_ratio[idx] = 1;
6815
6816 lower_zone = pgdat->node_zones + idx;
b40da049 6817 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6818 sysctl_lowmem_reserve_ratio[idx];
b40da049 6819 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6820 }
6821 }
6822 }
cb45b0e9
HA
6823
6824 /* update totalreserve_pages */
6825 calculate_totalreserve_pages();
1da177e4
LT
6826}
6827
cfd3da1e 6828static void __setup_per_zone_wmarks(void)
1da177e4
LT
6829{
6830 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6831 unsigned long lowmem_pages = 0;
6832 struct zone *zone;
6833 unsigned long flags;
6834
6835 /* Calculate total number of !ZONE_HIGHMEM pages */
6836 for_each_zone(zone) {
6837 if (!is_highmem(zone))
b40da049 6838 lowmem_pages += zone->managed_pages;
1da177e4
LT
6839 }
6840
6841 for_each_zone(zone) {
ac924c60
AM
6842 u64 tmp;
6843
1125b4e3 6844 spin_lock_irqsave(&zone->lock, flags);
b40da049 6845 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6846 do_div(tmp, lowmem_pages);
1da177e4
LT
6847 if (is_highmem(zone)) {
6848 /*
669ed175
NP
6849 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6850 * need highmem pages, so cap pages_min to a small
6851 * value here.
6852 *
41858966 6853 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6854 * deltas control asynch page reclaim, and so should
669ed175 6855 * not be capped for highmem.
1da177e4 6856 */
90ae8d67 6857 unsigned long min_pages;
1da177e4 6858
b40da049 6859 min_pages = zone->managed_pages / 1024;
90ae8d67 6860 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6861 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6862 } else {
669ed175
NP
6863 /*
6864 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6865 * proportionate to the zone's size.
6866 */
41858966 6867 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6868 }
6869
795ae7a0
JW
6870 /*
6871 * Set the kswapd watermarks distance according to the
6872 * scale factor in proportion to available memory, but
6873 * ensure a minimum size on small systems.
6874 */
6875 tmp = max_t(u64, tmp >> 2,
6876 mult_frac(zone->managed_pages,
6877 watermark_scale_factor, 10000));
6878
6879 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6880 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6881
1125b4e3 6882 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6883 }
cb45b0e9
HA
6884
6885 /* update totalreserve_pages */
6886 calculate_totalreserve_pages();
1da177e4
LT
6887}
6888
cfd3da1e
MG
6889/**
6890 * setup_per_zone_wmarks - called when min_free_kbytes changes
6891 * or when memory is hot-{added|removed}
6892 *
6893 * Ensures that the watermark[min,low,high] values for each zone are set
6894 * correctly with respect to min_free_kbytes.
6895 */
6896void setup_per_zone_wmarks(void)
6897{
6898 mutex_lock(&zonelists_mutex);
6899 __setup_per_zone_wmarks();
6900 mutex_unlock(&zonelists_mutex);
6901}
6902
1da177e4
LT
6903/*
6904 * Initialise min_free_kbytes.
6905 *
6906 * For small machines we want it small (128k min). For large machines
6907 * we want it large (64MB max). But it is not linear, because network
6908 * bandwidth does not increase linearly with machine size. We use
6909 *
b8af2941 6910 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6911 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6912 *
6913 * which yields
6914 *
6915 * 16MB: 512k
6916 * 32MB: 724k
6917 * 64MB: 1024k
6918 * 128MB: 1448k
6919 * 256MB: 2048k
6920 * 512MB: 2896k
6921 * 1024MB: 4096k
6922 * 2048MB: 5792k
6923 * 4096MB: 8192k
6924 * 8192MB: 11584k
6925 * 16384MB: 16384k
6926 */
1b79acc9 6927int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6928{
6929 unsigned long lowmem_kbytes;
5f12733e 6930 int new_min_free_kbytes;
1da177e4
LT
6931
6932 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6933 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6934
6935 if (new_min_free_kbytes > user_min_free_kbytes) {
6936 min_free_kbytes = new_min_free_kbytes;
6937 if (min_free_kbytes < 128)
6938 min_free_kbytes = 128;
6939 if (min_free_kbytes > 65536)
6940 min_free_kbytes = 65536;
6941 } else {
6942 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6943 new_min_free_kbytes, user_min_free_kbytes);
6944 }
bc75d33f 6945 setup_per_zone_wmarks();
a6cccdc3 6946 refresh_zone_stat_thresholds();
1da177e4 6947 setup_per_zone_lowmem_reserve();
6423aa81
JK
6948
6949#ifdef CONFIG_NUMA
6950 setup_min_unmapped_ratio();
6951 setup_min_slab_ratio();
6952#endif
6953
1da177e4
LT
6954 return 0;
6955}
bc22af74 6956core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6957
6958/*
b8af2941 6959 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6960 * that we can call two helper functions whenever min_free_kbytes
6961 * changes.
6962 */
cccad5b9 6963int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6964 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6965{
da8c757b
HP
6966 int rc;
6967
6968 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6969 if (rc)
6970 return rc;
6971
5f12733e
MH
6972 if (write) {
6973 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6974 setup_per_zone_wmarks();
5f12733e 6975 }
1da177e4
LT
6976 return 0;
6977}
6978
795ae7a0
JW
6979int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6980 void __user *buffer, size_t *length, loff_t *ppos)
6981{
6982 int rc;
6983
6984 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6985 if (rc)
6986 return rc;
6987
6988 if (write)
6989 setup_per_zone_wmarks();
6990
6991 return 0;
6992}
6993
9614634f 6994#ifdef CONFIG_NUMA
6423aa81 6995static void setup_min_unmapped_ratio(void)
9614634f 6996{
6423aa81 6997 pg_data_t *pgdat;
9614634f 6998 struct zone *zone;
9614634f 6999
a5f5f91d 7000 for_each_online_pgdat(pgdat)
81cbcbc2 7001 pgdat->min_unmapped_pages = 0;
a5f5f91d 7002
9614634f 7003 for_each_zone(zone)
a5f5f91d 7004 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7005 sysctl_min_unmapped_ratio) / 100;
9614634f 7006}
0ff38490 7007
6423aa81
JK
7008
7009int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7010 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7011{
0ff38490
CL
7012 int rc;
7013
8d65af78 7014 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7015 if (rc)
7016 return rc;
7017
6423aa81
JK
7018 setup_min_unmapped_ratio();
7019
7020 return 0;
7021}
7022
7023static void setup_min_slab_ratio(void)
7024{
7025 pg_data_t *pgdat;
7026 struct zone *zone;
7027
a5f5f91d
MG
7028 for_each_online_pgdat(pgdat)
7029 pgdat->min_slab_pages = 0;
7030
0ff38490 7031 for_each_zone(zone)
a5f5f91d 7032 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7033 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7034}
7035
7036int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7037 void __user *buffer, size_t *length, loff_t *ppos)
7038{
7039 int rc;
7040
7041 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7042 if (rc)
7043 return rc;
7044
7045 setup_min_slab_ratio();
7046
0ff38490
CL
7047 return 0;
7048}
9614634f
CL
7049#endif
7050
1da177e4
LT
7051/*
7052 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7053 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7054 * whenever sysctl_lowmem_reserve_ratio changes.
7055 *
7056 * The reserve ratio obviously has absolutely no relation with the
41858966 7057 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7058 * if in function of the boot time zone sizes.
7059 */
cccad5b9 7060int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7061 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7062{
8d65af78 7063 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7064 setup_per_zone_lowmem_reserve();
7065 return 0;
7066}
7067
8ad4b1fb
RS
7068/*
7069 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7070 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7071 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7072 */
cccad5b9 7073int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7074 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7075{
7076 struct zone *zone;
7cd2b0a3 7077 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7078 int ret;
7079
7cd2b0a3
DR
7080 mutex_lock(&pcp_batch_high_lock);
7081 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7082
8d65af78 7083 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7084 if (!write || ret < 0)
7085 goto out;
7086
7087 /* Sanity checking to avoid pcp imbalance */
7088 if (percpu_pagelist_fraction &&
7089 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7090 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7091 ret = -EINVAL;
7092 goto out;
7093 }
7094
7095 /* No change? */
7096 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7097 goto out;
c8e251fa 7098
364df0eb 7099 for_each_populated_zone(zone) {
7cd2b0a3
DR
7100 unsigned int cpu;
7101
22a7f12b 7102 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7103 pageset_set_high_and_batch(zone,
7104 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7105 }
7cd2b0a3 7106out:
c8e251fa 7107 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7108 return ret;
8ad4b1fb
RS
7109}
7110
a9919c79 7111#ifdef CONFIG_NUMA
f034b5d4 7112int hashdist = HASHDIST_DEFAULT;
1da177e4 7113
1da177e4
LT
7114static int __init set_hashdist(char *str)
7115{
7116 if (!str)
7117 return 0;
7118 hashdist = simple_strtoul(str, &str, 0);
7119 return 1;
7120}
7121__setup("hashdist=", set_hashdist);
7122#endif
7123
f6f34b43
SD
7124#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7125/*
7126 * Returns the number of pages that arch has reserved but
7127 * is not known to alloc_large_system_hash().
7128 */
7129static unsigned long __init arch_reserved_kernel_pages(void)
7130{
7131 return 0;
7132}
7133#endif
7134
1da177e4
LT
7135/*
7136 * allocate a large system hash table from bootmem
7137 * - it is assumed that the hash table must contain an exact power-of-2
7138 * quantity of entries
7139 * - limit is the number of hash buckets, not the total allocation size
7140 */
7141void *__init alloc_large_system_hash(const char *tablename,
7142 unsigned long bucketsize,
7143 unsigned long numentries,
7144 int scale,
7145 int flags,
7146 unsigned int *_hash_shift,
7147 unsigned int *_hash_mask,
31fe62b9
TB
7148 unsigned long low_limit,
7149 unsigned long high_limit)
1da177e4 7150{
31fe62b9 7151 unsigned long long max = high_limit;
1da177e4
LT
7152 unsigned long log2qty, size;
7153 void *table = NULL;
7154
7155 /* allow the kernel cmdline to have a say */
7156 if (!numentries) {
7157 /* round applicable memory size up to nearest megabyte */
04903664 7158 numentries = nr_kernel_pages;
f6f34b43 7159 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7160
7161 /* It isn't necessary when PAGE_SIZE >= 1MB */
7162 if (PAGE_SHIFT < 20)
7163 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7164
7165 /* limit to 1 bucket per 2^scale bytes of low memory */
7166 if (scale > PAGE_SHIFT)
7167 numentries >>= (scale - PAGE_SHIFT);
7168 else
7169 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7170
7171 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7172 if (unlikely(flags & HASH_SMALL)) {
7173 /* Makes no sense without HASH_EARLY */
7174 WARN_ON(!(flags & HASH_EARLY));
7175 if (!(numentries >> *_hash_shift)) {
7176 numentries = 1UL << *_hash_shift;
7177 BUG_ON(!numentries);
7178 }
7179 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7180 numentries = PAGE_SIZE / bucketsize;
1da177e4 7181 }
6e692ed3 7182 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7183
7184 /* limit allocation size to 1/16 total memory by default */
7185 if (max == 0) {
7186 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7187 do_div(max, bucketsize);
7188 }
074b8517 7189 max = min(max, 0x80000000ULL);
1da177e4 7190
31fe62b9
TB
7191 if (numentries < low_limit)
7192 numentries = low_limit;
1da177e4
LT
7193 if (numentries > max)
7194 numentries = max;
7195
f0d1b0b3 7196 log2qty = ilog2(numentries);
1da177e4
LT
7197
7198 do {
7199 size = bucketsize << log2qty;
7200 if (flags & HASH_EARLY)
6782832e 7201 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7202 else if (hashdist)
7203 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7204 else {
1037b83b
ED
7205 /*
7206 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7207 * some pages at the end of hash table which
7208 * alloc_pages_exact() automatically does
1037b83b 7209 */
264ef8a9 7210 if (get_order(size) < MAX_ORDER) {
a1dd268c 7211 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7212 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7213 }
1da177e4
LT
7214 }
7215 } while (!table && size > PAGE_SIZE && --log2qty);
7216
7217 if (!table)
7218 panic("Failed to allocate %s hash table\n", tablename);
7219
1170532b
JP
7220 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7221 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7222
7223 if (_hash_shift)
7224 *_hash_shift = log2qty;
7225 if (_hash_mask)
7226 *_hash_mask = (1 << log2qty) - 1;
7227
7228 return table;
7229}
a117e66e 7230
a5d76b54 7231/*
80934513
MK
7232 * This function checks whether pageblock includes unmovable pages or not.
7233 * If @count is not zero, it is okay to include less @count unmovable pages
7234 *
b8af2941 7235 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7236 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7237 * check without lock_page also may miss some movable non-lru pages at
7238 * race condition. So you can't expect this function should be exact.
a5d76b54 7239 */
b023f468
WC
7240bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7241 bool skip_hwpoisoned_pages)
49ac8255
KH
7242{
7243 unsigned long pfn, iter, found;
47118af0
MN
7244 int mt;
7245
49ac8255
KH
7246 /*
7247 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7248 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7249 */
7250 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7251 return false;
47118af0
MN
7252 mt = get_pageblock_migratetype(page);
7253 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7254 return false;
49ac8255
KH
7255
7256 pfn = page_to_pfn(page);
7257 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7258 unsigned long check = pfn + iter;
7259
29723fcc 7260 if (!pfn_valid_within(check))
49ac8255 7261 continue;
29723fcc 7262
49ac8255 7263 page = pfn_to_page(check);
c8721bbb
NH
7264
7265 /*
7266 * Hugepages are not in LRU lists, but they're movable.
7267 * We need not scan over tail pages bacause we don't
7268 * handle each tail page individually in migration.
7269 */
7270 if (PageHuge(page)) {
7271 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7272 continue;
7273 }
7274
97d255c8
MK
7275 /*
7276 * We can't use page_count without pin a page
7277 * because another CPU can free compound page.
7278 * This check already skips compound tails of THP
0139aa7b 7279 * because their page->_refcount is zero at all time.
97d255c8 7280 */
fe896d18 7281 if (!page_ref_count(page)) {
49ac8255
KH
7282 if (PageBuddy(page))
7283 iter += (1 << page_order(page)) - 1;
7284 continue;
7285 }
97d255c8 7286
b023f468
WC
7287 /*
7288 * The HWPoisoned page may be not in buddy system, and
7289 * page_count() is not 0.
7290 */
7291 if (skip_hwpoisoned_pages && PageHWPoison(page))
7292 continue;
7293
0efadf48
YX
7294 if (__PageMovable(page))
7295 continue;
7296
49ac8255
KH
7297 if (!PageLRU(page))
7298 found++;
7299 /*
6b4f7799
JW
7300 * If there are RECLAIMABLE pages, we need to check
7301 * it. But now, memory offline itself doesn't call
7302 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7303 */
7304 /*
7305 * If the page is not RAM, page_count()should be 0.
7306 * we don't need more check. This is an _used_ not-movable page.
7307 *
7308 * The problematic thing here is PG_reserved pages. PG_reserved
7309 * is set to both of a memory hole page and a _used_ kernel
7310 * page at boot.
7311 */
7312 if (found > count)
80934513 7313 return true;
49ac8255 7314 }
80934513 7315 return false;
49ac8255
KH
7316}
7317
7318bool is_pageblock_removable_nolock(struct page *page)
7319{
656a0706
MH
7320 struct zone *zone;
7321 unsigned long pfn;
687875fb
MH
7322
7323 /*
7324 * We have to be careful here because we are iterating over memory
7325 * sections which are not zone aware so we might end up outside of
7326 * the zone but still within the section.
656a0706
MH
7327 * We have to take care about the node as well. If the node is offline
7328 * its NODE_DATA will be NULL - see page_zone.
687875fb 7329 */
656a0706
MH
7330 if (!node_online(page_to_nid(page)))
7331 return false;
7332
7333 zone = page_zone(page);
7334 pfn = page_to_pfn(page);
108bcc96 7335 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7336 return false;
7337
b023f468 7338 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7339}
0c0e6195 7340
080fe206 7341#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7342
7343static unsigned long pfn_max_align_down(unsigned long pfn)
7344{
7345 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7346 pageblock_nr_pages) - 1);
7347}
7348
7349static unsigned long pfn_max_align_up(unsigned long pfn)
7350{
7351 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7352 pageblock_nr_pages));
7353}
7354
041d3a8c 7355/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7356static int __alloc_contig_migrate_range(struct compact_control *cc,
7357 unsigned long start, unsigned long end)
041d3a8c
MN
7358{
7359 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7360 unsigned long nr_reclaimed;
041d3a8c
MN
7361 unsigned long pfn = start;
7362 unsigned int tries = 0;
7363 int ret = 0;
7364
be49a6e1 7365 migrate_prep();
041d3a8c 7366
bb13ffeb 7367 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7368 if (fatal_signal_pending(current)) {
7369 ret = -EINTR;
7370 break;
7371 }
7372
bb13ffeb
MG
7373 if (list_empty(&cc->migratepages)) {
7374 cc->nr_migratepages = 0;
edc2ca61 7375 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7376 if (!pfn) {
7377 ret = -EINTR;
7378 break;
7379 }
7380 tries = 0;
7381 } else if (++tries == 5) {
7382 ret = ret < 0 ? ret : -EBUSY;
7383 break;
7384 }
7385
beb51eaa
MK
7386 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7387 &cc->migratepages);
7388 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7389
9c620e2b 7390 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7391 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7392 }
2a6f5124
SP
7393 if (ret < 0) {
7394 putback_movable_pages(&cc->migratepages);
7395 return ret;
7396 }
7397 return 0;
041d3a8c
MN
7398}
7399
7400/**
7401 * alloc_contig_range() -- tries to allocate given range of pages
7402 * @start: start PFN to allocate
7403 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7404 * @migratetype: migratetype of the underlaying pageblocks (either
7405 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7406 * in range must have the same migratetype and it must
7407 * be either of the two.
ca96b625 7408 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7409 *
7410 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7411 * aligned, however it's the caller's responsibility to guarantee that
7412 * we are the only thread that changes migrate type of pageblocks the
7413 * pages fall in.
7414 *
7415 * The PFN range must belong to a single zone.
7416 *
7417 * Returns zero on success or negative error code. On success all
7418 * pages which PFN is in [start, end) are allocated for the caller and
7419 * need to be freed with free_contig_range().
7420 */
0815f3d8 7421int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7422 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7423{
041d3a8c 7424 unsigned long outer_start, outer_end;
d00181b9
KS
7425 unsigned int order;
7426 int ret = 0;
041d3a8c 7427
bb13ffeb
MG
7428 struct compact_control cc = {
7429 .nr_migratepages = 0,
7430 .order = -1,
7431 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7432 .mode = MIGRATE_SYNC,
bb13ffeb 7433 .ignore_skip_hint = true,
ca96b625 7434 .gfp_mask = memalloc_noio_flags(gfp_mask),
bb13ffeb
MG
7435 };
7436 INIT_LIST_HEAD(&cc.migratepages);
7437
041d3a8c
MN
7438 /*
7439 * What we do here is we mark all pageblocks in range as
7440 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7441 * have different sizes, and due to the way page allocator
7442 * work, we align the range to biggest of the two pages so
7443 * that page allocator won't try to merge buddies from
7444 * different pageblocks and change MIGRATE_ISOLATE to some
7445 * other migration type.
7446 *
7447 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7448 * migrate the pages from an unaligned range (ie. pages that
7449 * we are interested in). This will put all the pages in
7450 * range back to page allocator as MIGRATE_ISOLATE.
7451 *
7452 * When this is done, we take the pages in range from page
7453 * allocator removing them from the buddy system. This way
7454 * page allocator will never consider using them.
7455 *
7456 * This lets us mark the pageblocks back as
7457 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7458 * aligned range but not in the unaligned, original range are
7459 * put back to page allocator so that buddy can use them.
7460 */
7461
7462 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7463 pfn_max_align_up(end), migratetype,
7464 false);
041d3a8c 7465 if (ret)
86a595f9 7466 return ret;
041d3a8c 7467
8ef5849f
JK
7468 /*
7469 * In case of -EBUSY, we'd like to know which page causes problem.
7470 * So, just fall through. We will check it in test_pages_isolated().
7471 */
bb13ffeb 7472 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7473 if (ret && ret != -EBUSY)
041d3a8c
MN
7474 goto done;
7475
7476 /*
7477 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7478 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7479 * more, all pages in [start, end) are free in page allocator.
7480 * What we are going to do is to allocate all pages from
7481 * [start, end) (that is remove them from page allocator).
7482 *
7483 * The only problem is that pages at the beginning and at the
7484 * end of interesting range may be not aligned with pages that
7485 * page allocator holds, ie. they can be part of higher order
7486 * pages. Because of this, we reserve the bigger range and
7487 * once this is done free the pages we are not interested in.
7488 *
7489 * We don't have to hold zone->lock here because the pages are
7490 * isolated thus they won't get removed from buddy.
7491 */
7492
7493 lru_add_drain_all();
510f5507 7494 drain_all_pages(cc.zone);
041d3a8c
MN
7495
7496 order = 0;
7497 outer_start = start;
7498 while (!PageBuddy(pfn_to_page(outer_start))) {
7499 if (++order >= MAX_ORDER) {
8ef5849f
JK
7500 outer_start = start;
7501 break;
041d3a8c
MN
7502 }
7503 outer_start &= ~0UL << order;
7504 }
7505
8ef5849f
JK
7506 if (outer_start != start) {
7507 order = page_order(pfn_to_page(outer_start));
7508
7509 /*
7510 * outer_start page could be small order buddy page and
7511 * it doesn't include start page. Adjust outer_start
7512 * in this case to report failed page properly
7513 * on tracepoint in test_pages_isolated()
7514 */
7515 if (outer_start + (1UL << order) <= start)
7516 outer_start = start;
7517 }
7518
041d3a8c 7519 /* Make sure the range is really isolated. */
b023f468 7520 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7521 pr_info("%s: [%lx, %lx) PFNs busy\n",
7522 __func__, outer_start, end);
041d3a8c
MN
7523 ret = -EBUSY;
7524 goto done;
7525 }
7526
49f223a9 7527 /* Grab isolated pages from freelists. */
bb13ffeb 7528 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7529 if (!outer_end) {
7530 ret = -EBUSY;
7531 goto done;
7532 }
7533
7534 /* Free head and tail (if any) */
7535 if (start != outer_start)
7536 free_contig_range(outer_start, start - outer_start);
7537 if (end != outer_end)
7538 free_contig_range(end, outer_end - end);
7539
7540done:
7541 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7542 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7543 return ret;
7544}
7545
7546void free_contig_range(unsigned long pfn, unsigned nr_pages)
7547{
bcc2b02f
MS
7548 unsigned int count = 0;
7549
7550 for (; nr_pages--; pfn++) {
7551 struct page *page = pfn_to_page(pfn);
7552
7553 count += page_count(page) != 1;
7554 __free_page(page);
7555 }
7556 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7557}
7558#endif
7559
4ed7e022 7560#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7561/*
7562 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7563 * page high values need to be recalulated.
7564 */
4ed7e022
JL
7565void __meminit zone_pcp_update(struct zone *zone)
7566{
0a647f38 7567 unsigned cpu;
c8e251fa 7568 mutex_lock(&pcp_batch_high_lock);
0a647f38 7569 for_each_possible_cpu(cpu)
169f6c19
CS
7570 pageset_set_high_and_batch(zone,
7571 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7572 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7573}
7574#endif
7575
340175b7
JL
7576void zone_pcp_reset(struct zone *zone)
7577{
7578 unsigned long flags;
5a883813
MK
7579 int cpu;
7580 struct per_cpu_pageset *pset;
340175b7
JL
7581
7582 /* avoid races with drain_pages() */
7583 local_irq_save(flags);
7584 if (zone->pageset != &boot_pageset) {
5a883813
MK
7585 for_each_online_cpu(cpu) {
7586 pset = per_cpu_ptr(zone->pageset, cpu);
7587 drain_zonestat(zone, pset);
7588 }
340175b7
JL
7589 free_percpu(zone->pageset);
7590 zone->pageset = &boot_pageset;
7591 }
7592 local_irq_restore(flags);
7593}
7594
6dcd73d7 7595#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7596/*
b9eb6319
JK
7597 * All pages in the range must be in a single zone and isolated
7598 * before calling this.
0c0e6195
KH
7599 */
7600void
7601__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7602{
7603 struct page *page;
7604 struct zone *zone;
7aeb09f9 7605 unsigned int order, i;
0c0e6195
KH
7606 unsigned long pfn;
7607 unsigned long flags;
7608 /* find the first valid pfn */
7609 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7610 if (pfn_valid(pfn))
7611 break;
7612 if (pfn == end_pfn)
7613 return;
7614 zone = page_zone(pfn_to_page(pfn));
7615 spin_lock_irqsave(&zone->lock, flags);
7616 pfn = start_pfn;
7617 while (pfn < end_pfn) {
7618 if (!pfn_valid(pfn)) {
7619 pfn++;
7620 continue;
7621 }
7622 page = pfn_to_page(pfn);
b023f468
WC
7623 /*
7624 * The HWPoisoned page may be not in buddy system, and
7625 * page_count() is not 0.
7626 */
7627 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7628 pfn++;
7629 SetPageReserved(page);
7630 continue;
7631 }
7632
0c0e6195
KH
7633 BUG_ON(page_count(page));
7634 BUG_ON(!PageBuddy(page));
7635 order = page_order(page);
7636#ifdef CONFIG_DEBUG_VM
1170532b
JP
7637 pr_info("remove from free list %lx %d %lx\n",
7638 pfn, 1 << order, end_pfn);
0c0e6195
KH
7639#endif
7640 list_del(&page->lru);
7641 rmv_page_order(page);
7642 zone->free_area[order].nr_free--;
0c0e6195
KH
7643 for (i = 0; i < (1 << order); i++)
7644 SetPageReserved((page+i));
7645 pfn += (1 << order);
7646 }
7647 spin_unlock_irqrestore(&zone->lock, flags);
7648}
7649#endif
8d22ba1b 7650
8d22ba1b
WF
7651bool is_free_buddy_page(struct page *page)
7652{
7653 struct zone *zone = page_zone(page);
7654 unsigned long pfn = page_to_pfn(page);
7655 unsigned long flags;
7aeb09f9 7656 unsigned int order;
8d22ba1b
WF
7657
7658 spin_lock_irqsave(&zone->lock, flags);
7659 for (order = 0; order < MAX_ORDER; order++) {
7660 struct page *page_head = page - (pfn & ((1 << order) - 1));
7661
7662 if (PageBuddy(page_head) && page_order(page_head) >= order)
7663 break;
7664 }
7665 spin_unlock_irqrestore(&zone->lock, flags);
7666
7667 return order < MAX_ORDER;
7668}