mm: page_alloc: cache the last node whose dirty limit is reached
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
1da177e4 94/*
13808910 95 * Array of node states.
1da177e4 96 */
13808910
CL
97nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100#ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102#ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
104#endif
105#ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
107#endif
108 [N_CPU] = { { [0] = 1UL } },
109#endif /* NUMA */
110};
111EXPORT_SYMBOL(node_states);
112
c3d5f5f0
JL
113/* Protect totalram_pages and zone->managed_pages */
114static DEFINE_SPINLOCK(managed_page_count_lock);
115
6c231b7b 116unsigned long totalram_pages __read_mostly;
cb45b0e9 117unsigned long totalreserve_pages __read_mostly;
e48322ab 118unsigned long totalcma_pages __read_mostly;
ab8fabd4 119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
bb14c2c7
VB
123/*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131static inline int get_pcppage_migratetype(struct page *page)
132{
133 return page->index;
134}
135
136static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137{
138 page->index = migratetype;
139}
140
452aa699
RW
141#ifdef CONFIG_PM_SLEEP
142/*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
c9e664f1
RW
150
151static gfp_t saved_gfp_mask;
152
153void pm_restore_gfp_mask(void)
452aa699
RW
154{
155 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
452aa699
RW
160}
161
c9e664f1 162void pm_restrict_gfp_mask(void)
452aa699 163{
452aa699 164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
d0164adc 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 168}
f90ac398
MG
169
170bool pm_suspended_storage(void)
171{
d0164adc 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
173 return false;
174 return true;
175}
452aa699
RW
176#endif /* CONFIG_PM_SLEEP */
177
d9c23400 178#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 179unsigned int pageblock_order __read_mostly;
d9c23400
MG
180#endif
181
d98c7a09 182static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 183
1da177e4
LT
184/*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
1da177e4 194 */
2f1b6248 195int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 256,
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 256,
fb0e7942 201#endif
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 32,
e53ef38d 204#endif
2a1e274a 205 32,
2f1b6248 206};
1da177e4
LT
207
208EXPORT_SYMBOL(totalram_pages);
1da177e4 209
15ad7cdc 210static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
2f1b6248 212 "DMA",
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248 215 "DMA32",
fb0e7942 216#endif
2f1b6248 217 "Normal",
e53ef38d 218#ifdef CONFIG_HIGHMEM
2a1e274a 219 "HighMem",
e53ef38d 220#endif
2a1e274a 221 "Movable",
033fbae9
DW
222#ifdef CONFIG_ZONE_DEVICE
223 "Device",
224#endif
2f1b6248
CL
225};
226
60f30350
VB
227char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232#ifdef CONFIG_CMA
233 "CMA",
234#endif
235#ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237#endif
238};
239
f1e61557
KS
240compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243#ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245#endif
9a982250
KS
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248#endif
f1e61557
KS
249};
250
1da177e4 251int min_free_kbytes = 1024;
42aa83cb 252int user_min_free_kbytes = -1;
795ae7a0 253int watermark_scale_factor = 10;
1da177e4 254
2c85f51d
JB
255static unsigned long __meminitdata nr_kernel_pages;
256static unsigned long __meminitdata nr_all_pages;
a3142c8e 257static unsigned long __meminitdata dma_reserve;
1da177e4 258
0ee332c1
TH
259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262static unsigned long __initdata required_kernelcore;
263static unsigned long __initdata required_movablecore;
264static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 265static bool mirrored_kernelcore;
0ee332c1
TH
266
267/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268int movable_zone;
269EXPORT_SYMBOL(movable_zone);
270#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 271
418508c1
MS
272#if MAX_NUMNODES > 1
273int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 274int nr_online_nodes __read_mostly = 1;
418508c1 275EXPORT_SYMBOL(nr_node_ids);
62bc62a8 276EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
277#endif
278
9ef9acb0
MG
279int page_group_by_mobility_disabled __read_mostly;
280
3a80a7fa
MG
281#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282static inline void reset_deferred_meminit(pg_data_t *pgdat)
283{
284 pgdat->first_deferred_pfn = ULONG_MAX;
285}
286
287/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 288static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 289{
ef70b6f4
MG
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
293 return true;
294
295 return false;
296}
297
298/*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305{
987b3095
LZ
306 unsigned long max_initialise;
307
3a80a7fa
MG
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
987b3095
LZ
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
3a80a7fa 317
3a80a7fa 318 (*nr_initialised)++;
987b3095 319 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326}
327#else
328static inline void reset_deferred_meminit(pg_data_t *pgdat)
329{
330}
331
332static inline bool early_page_uninitialised(unsigned long pfn)
333{
334 return false;
335}
336
337static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340{
341 return true;
342}
343#endif
344
0b423ca2
MG
345/* Return a pointer to the bitmap storing bits affecting a block of pages */
346static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348{
349#ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351#else
352 return page_zone(page)->pageblock_flags;
353#endif /* CONFIG_SPARSEMEM */
354}
355
356static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357{
358#ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361#else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364#endif /* CONFIG_SPARSEMEM */
365}
366
367/**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380{
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393}
394
395unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398{
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400}
401
402static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403{
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405}
406
407/**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444}
3a80a7fa 445
ee6f509c 446void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 447{
5d0f3f72
KM
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
450 migratetype = MIGRATE_UNMOVABLE;
451
b2a0ac88
MG
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454}
455
13e7444b 456#ifdef CONFIG_DEBUG_VM
c6a57e19 457static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 458{
bdc8cb98
DH
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 462 unsigned long sp, start_pfn;
c6a57e19 463
bdc8cb98
DH
464 do {
465 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
108bcc96 468 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
b5e6a5a2 472 if (ret)
613813e8
DH
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
b5e6a5a2 476
bdc8cb98 477 return ret;
c6a57e19
DH
478}
479
480static int page_is_consistent(struct zone *zone, struct page *page)
481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 483 return 0;
1da177e4 484 if (zone != page_zone(page))
c6a57e19
DH
485 return 0;
486
487 return 1;
488}
489/*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492static int bad_range(struct zone *zone, struct page *page)
493{
494 if (page_outside_zone_boundaries(zone, page))
1da177e4 495 return 1;
c6a57e19
DH
496 if (!page_is_consistent(zone, page))
497 return 1;
498
1da177e4
LT
499 return 0;
500}
13e7444b
NP
501#else
502static inline int bad_range(struct zone *zone, struct page *page)
503{
504 return 0;
505}
506#endif
507
d230dec1
KS
508static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
1da177e4 510{
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
ff8e8116 525 pr_alert(
1e9e6365 526 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
ff8e8116 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 536 current->comm, page_to_pfn(page));
ff8e8116
VB
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
4e462112 542 dump_page_owner(page);
3dc14741 543
4f31888c 544 print_modules();
1da177e4 545 dump_stack();
d936cf9b 546out:
8cc3b392 547 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 548 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
550}
551
1da177e4
LT
552/*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
1d798ca3 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 556 *
1d798ca3
KS
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 559 *
1d798ca3
KS
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
1da177e4 562 *
1d798ca3 563 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 564 * This usage means that zero-order pages may not be compound.
1da177e4 565 */
d98c7a09 566
9a982250 567void free_compound_page(struct page *page)
d98c7a09 568{
d85f3385 569 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
570}
571
d00181b9 572void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
573{
574 int i;
575 int nr_pages = 1 << order;
576
f1e61557 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
58a84aa9 582 set_page_count(p, 0);
1c290f64 583 p->mapping = TAIL_MAPPING;
1d798ca3 584 set_compound_head(p, page);
18229df5 585 }
53f9263b 586 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
587}
588
c0a32fc5
SG
589#ifdef CONFIG_DEBUG_PAGEALLOC
590unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
591bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 593EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
594bool _debug_guardpage_enabled __read_mostly;
595
031bc574
JK
596static int __init early_debug_pagealloc(char *buf)
597{
598 if (!buf)
599 return -EINVAL;
2a138dc7 600 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
601}
602early_param("debug_pagealloc", early_debug_pagealloc);
603
e30825f1
JK
604static bool need_debug_guardpage(void)
605{
031bc574
JK
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
e30825f1
JK
610 return true;
611}
612
613static void init_debug_guardpage(void)
614{
031bc574
JK
615 if (!debug_pagealloc_enabled())
616 return;
617
e30825f1
JK
618 _debug_guardpage_enabled = true;
619}
620
621struct page_ext_operations debug_guardpage_ops = {
622 .need = need_debug_guardpage,
623 .init = init_debug_guardpage,
624};
c0a32fc5
SG
625
626static int __init debug_guardpage_minorder_setup(char *buf)
627{
628 unsigned long res;
629
630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 631 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
632 return 0;
633 }
634 _debug_guardpage_minorder = res;
1170532b 635 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
636 return 0;
637}
638__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639
2847cf95
JK
640static inline void set_page_guard(struct zone *zone, struct page *page,
641 unsigned int order, int migratetype)
c0a32fc5 642{
e30825f1
JK
643 struct page_ext *page_ext;
644
645 if (!debug_guardpage_enabled())
646 return;
647
648 page_ext = lookup_page_ext(page);
f86e4271
YS
649 if (unlikely(!page_ext))
650 return;
651
e30825f1
JK
652 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653
2847cf95
JK
654 INIT_LIST_HEAD(&page->lru);
655 set_page_private(page, order);
656 /* Guard pages are not available for any usage */
657 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
658}
659
2847cf95
JK
660static inline void clear_page_guard(struct zone *zone, struct page *page,
661 unsigned int order, int migratetype)
c0a32fc5 662{
e30825f1
JK
663 struct page_ext *page_ext;
664
665 if (!debug_guardpage_enabled())
666 return;
667
668 page_ext = lookup_page_ext(page);
f86e4271
YS
669 if (unlikely(!page_ext))
670 return;
671
e30825f1
JK
672 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 set_page_private(page, 0);
675 if (!is_migrate_isolate(migratetype))
676 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
677}
678#else
e30825f1 679struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
680static inline void set_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype) {}
682static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype) {}
c0a32fc5
SG
684#endif
685
7aeb09f9 686static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 687{
4c21e2f2 688 set_page_private(page, order);
676165a8 689 __SetPageBuddy(page);
1da177e4
LT
690}
691
692static inline void rmv_page_order(struct page *page)
693{
676165a8 694 __ClearPageBuddy(page);
4c21e2f2 695 set_page_private(page, 0);
1da177e4
LT
696}
697
1da177e4
LT
698/*
699 * This function checks whether a page is free && is the buddy
700 * we can do coalesce a page and its buddy if
13e7444b 701 * (a) the buddy is not in a hole &&
676165a8 702 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
703 * (c) a page and its buddy have the same order &&
704 * (d) a page and its buddy are in the same zone.
676165a8 705 *
cf6fe945
WSH
706 * For recording whether a page is in the buddy system, we set ->_mapcount
707 * PAGE_BUDDY_MAPCOUNT_VALUE.
708 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709 * serialized by zone->lock.
1da177e4 710 *
676165a8 711 * For recording page's order, we use page_private(page).
1da177e4 712 */
cb2b95e1 713static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 714 unsigned int order)
1da177e4 715{
14e07298 716 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 717 return 0;
13e7444b 718
c0a32fc5 719 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
720 if (page_zone_id(page) != page_zone_id(buddy))
721 return 0;
722
4c5018ce
WY
723 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724
c0a32fc5
SG
725 return 1;
726 }
727
cb2b95e1 728 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
729 /*
730 * zone check is done late to avoid uselessly
731 * calculating zone/node ids for pages that could
732 * never merge.
733 */
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
4c5018ce
WY
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
6aa3001b 739 return 1;
676165a8 740 }
6aa3001b 741 return 0;
1da177e4
LT
742}
743
744/*
745 * Freeing function for a buddy system allocator.
746 *
747 * The concept of a buddy system is to maintain direct-mapped table
748 * (containing bit values) for memory blocks of various "orders".
749 * The bottom level table contains the map for the smallest allocatable
750 * units of memory (here, pages), and each level above it describes
751 * pairs of units from the levels below, hence, "buddies".
752 * At a high level, all that happens here is marking the table entry
753 * at the bottom level available, and propagating the changes upward
754 * as necessary, plus some accounting needed to play nicely with other
755 * parts of the VM system.
756 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
757 * free pages of length of (1 << order) and marked with _mapcount
758 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759 * field.
1da177e4 760 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
761 * other. That is, if we allocate a small block, and both were
762 * free, the remainder of the region must be split into blocks.
1da177e4 763 * If a block is freed, and its buddy is also free, then this
5f63b720 764 * triggers coalescing into a block of larger size.
1da177e4 765 *
6d49e352 766 * -- nyc
1da177e4
LT
767 */
768
48db57f8 769static inline void __free_one_page(struct page *page,
dc4b0caf 770 unsigned long pfn,
ed0ae21d
MG
771 struct zone *zone, unsigned int order,
772 int migratetype)
1da177e4
LT
773{
774 unsigned long page_idx;
6dda9d55 775 unsigned long combined_idx;
43506fad 776 unsigned long uninitialized_var(buddy_idx);
6dda9d55 777 struct page *buddy;
d9dddbf5
VB
778 unsigned int max_order;
779
780 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 781
d29bb978 782 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 784
ed0ae21d 785 VM_BUG_ON(migratetype == -1);
d9dddbf5 786 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 787 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 788
d9dddbf5 789 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 790
309381fe
SL
791 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 793
d9dddbf5 794continue_merging:
3c605096 795 while (order < max_order - 1) {
43506fad
KC
796 buddy_idx = __find_buddy_index(page_idx, order);
797 buddy = page + (buddy_idx - page_idx);
cb2b95e1 798 if (!page_is_buddy(page, buddy, order))
d9dddbf5 799 goto done_merging;
c0a32fc5
SG
800 /*
801 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 * merge with it and move up one order.
803 */
804 if (page_is_guard(buddy)) {
2847cf95 805 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
806 } else {
807 list_del(&buddy->lru);
808 zone->free_area[order].nr_free--;
809 rmv_page_order(buddy);
810 }
43506fad 811 combined_idx = buddy_idx & page_idx;
1da177e4
LT
812 page = page + (combined_idx - page_idx);
813 page_idx = combined_idx;
814 order++;
815 }
d9dddbf5
VB
816 if (max_order < MAX_ORDER) {
817 /* If we are here, it means order is >= pageblock_order.
818 * We want to prevent merge between freepages on isolate
819 * pageblock and normal pageblock. Without this, pageblock
820 * isolation could cause incorrect freepage or CMA accounting.
821 *
822 * We don't want to hit this code for the more frequent
823 * low-order merging.
824 */
825 if (unlikely(has_isolate_pageblock(zone))) {
826 int buddy_mt;
827
828 buddy_idx = __find_buddy_index(page_idx, order);
829 buddy = page + (buddy_idx - page_idx);
830 buddy_mt = get_pageblock_migratetype(buddy);
831
832 if (migratetype != buddy_mt
833 && (is_migrate_isolate(migratetype) ||
834 is_migrate_isolate(buddy_mt)))
835 goto done_merging;
836 }
837 max_order++;
838 goto continue_merging;
839 }
840
841done_merging:
1da177e4 842 set_page_order(page, order);
6dda9d55
CZ
843
844 /*
845 * If this is not the largest possible page, check if the buddy
846 * of the next-highest order is free. If it is, it's possible
847 * that pages are being freed that will coalesce soon. In case,
848 * that is happening, add the free page to the tail of the list
849 * so it's less likely to be used soon and more likely to be merged
850 * as a higher order page
851 */
b7f50cfa 852 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 853 struct page *higher_page, *higher_buddy;
43506fad
KC
854 combined_idx = buddy_idx & page_idx;
855 higher_page = page + (combined_idx - page_idx);
856 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 857 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
858 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 list_add_tail(&page->lru,
860 &zone->free_area[order].free_list[migratetype]);
861 goto out;
862 }
863 }
864
865 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866out:
1da177e4
LT
867 zone->free_area[order].nr_free++;
868}
869
7bfec6f4
MG
870/*
871 * A bad page could be due to a number of fields. Instead of multiple branches,
872 * try and check multiple fields with one check. The caller must do a detailed
873 * check if necessary.
874 */
875static inline bool page_expected_state(struct page *page,
876 unsigned long check_flags)
877{
878 if (unlikely(atomic_read(&page->_mapcount) != -1))
879 return false;
880
881 if (unlikely((unsigned long)page->mapping |
882 page_ref_count(page) |
883#ifdef CONFIG_MEMCG
884 (unsigned long)page->mem_cgroup |
885#endif
886 (page->flags & check_flags)))
887 return false;
888
889 return true;
890}
891
bb552ac6 892static void free_pages_check_bad(struct page *page)
1da177e4 893{
7bfec6f4
MG
894 const char *bad_reason;
895 unsigned long bad_flags;
896
7bfec6f4
MG
897 bad_reason = NULL;
898 bad_flags = 0;
f0b791a3 899
53f9263b 900 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
fe896d18 904 if (unlikely(page_ref_count(page) != 0))
0139aa7b 905 bad_reason = "nonzero _refcount";
f0b791a3
DH
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 }
9edad6ea
JW
910#ifdef CONFIG_MEMCG
911 if (unlikely(page->mem_cgroup))
912 bad_reason = "page still charged to cgroup";
913#endif
7bfec6f4 914 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
915}
916
917static inline int free_pages_check(struct page *page)
918{
da838d4f 919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 920 return 0;
bb552ac6
MG
921
922 /* Something has gone sideways, find it */
923 free_pages_check_bad(page);
7bfec6f4 924 return 1;
1da177e4
LT
925}
926
4db7548c
MG
927static int free_tail_pages_check(struct page *head_page, struct page *page)
928{
929 int ret = 1;
930
931 /*
932 * We rely page->lru.next never has bit 0 set, unless the page
933 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 */
935 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936
937 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 ret = 0;
939 goto out;
940 }
941 switch (page - head_page) {
942 case 1:
943 /* the first tail page: ->mapping is compound_mapcount() */
944 if (unlikely(compound_mapcount(page))) {
945 bad_page(page, "nonzero compound_mapcount", 0);
946 goto out;
947 }
948 break;
949 case 2:
950 /*
951 * the second tail page: ->mapping is
952 * page_deferred_list().next -- ignore value.
953 */
954 break;
955 default:
956 if (page->mapping != TAIL_MAPPING) {
957 bad_page(page, "corrupted mapping in tail page", 0);
958 goto out;
959 }
960 break;
961 }
962 if (unlikely(!PageTail(page))) {
963 bad_page(page, "PageTail not set", 0);
964 goto out;
965 }
966 if (unlikely(compound_head(page) != head_page)) {
967 bad_page(page, "compound_head not consistent", 0);
968 goto out;
969 }
970 ret = 0;
971out:
972 page->mapping = NULL;
973 clear_compound_head(page);
974 return ret;
975}
976
e2769dbd
MG
977static __always_inline bool free_pages_prepare(struct page *page,
978 unsigned int order, bool check_free)
4db7548c 979{
e2769dbd 980 int bad = 0;
4db7548c 981
4db7548c
MG
982 VM_BUG_ON_PAGE(PageTail(page), page);
983
e2769dbd
MG
984 trace_mm_page_free(page, order);
985 kmemcheck_free_shadow(page, order);
e2769dbd
MG
986
987 /*
988 * Check tail pages before head page information is cleared to
989 * avoid checking PageCompound for order-0 pages.
990 */
991 if (unlikely(order)) {
992 bool compound = PageCompound(page);
993 int i;
994
995 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 996
9a73f61b
KS
997 if (compound)
998 ClearPageDoubleMap(page);
e2769dbd
MG
999 for (i = 1; i < (1 << order); i++) {
1000 if (compound)
1001 bad += free_tail_pages_check(page, page + i);
1002 if (unlikely(free_pages_check(page + i))) {
1003 bad++;
1004 continue;
1005 }
1006 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 }
1008 }
bda807d4 1009 if (PageMappingFlags(page))
4db7548c 1010 page->mapping = NULL;
4949148a
VD
1011 if (memcg_kmem_enabled() && PageKmemcg(page)) {
1012 memcg_kmem_uncharge(page, order);
1013 __ClearPageKmemcg(page);
1014 }
e2769dbd
MG
1015 if (check_free)
1016 bad += free_pages_check(page);
1017 if (bad)
1018 return false;
4db7548c 1019
e2769dbd
MG
1020 page_cpupid_reset_last(page);
1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 reset_page_owner(page, order);
4db7548c
MG
1023
1024 if (!PageHighMem(page)) {
1025 debug_check_no_locks_freed(page_address(page),
e2769dbd 1026 PAGE_SIZE << order);
4db7548c 1027 debug_check_no_obj_freed(page_address(page),
e2769dbd 1028 PAGE_SIZE << order);
4db7548c 1029 }
e2769dbd
MG
1030 arch_free_page(page, order);
1031 kernel_poison_pages(page, 1 << order, 0);
1032 kernel_map_pages(page, 1 << order, 0);
29b52de1 1033 kasan_free_pages(page, order);
4db7548c 1034
4db7548c
MG
1035 return true;
1036}
1037
e2769dbd
MG
1038#ifdef CONFIG_DEBUG_VM
1039static inline bool free_pcp_prepare(struct page *page)
1040{
1041 return free_pages_prepare(page, 0, true);
1042}
1043
1044static inline bool bulkfree_pcp_prepare(struct page *page)
1045{
1046 return false;
1047}
1048#else
1049static bool free_pcp_prepare(struct page *page)
1050{
1051 return free_pages_prepare(page, 0, false);
1052}
1053
4db7548c
MG
1054static bool bulkfree_pcp_prepare(struct page *page)
1055{
1056 return free_pages_check(page);
1057}
1058#endif /* CONFIG_DEBUG_VM */
1059
1da177e4 1060/*
5f8dcc21 1061 * Frees a number of pages from the PCP lists
1da177e4 1062 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1063 * count is the number of pages to free.
1da177e4
LT
1064 *
1065 * If the zone was previously in an "all pages pinned" state then look to
1066 * see if this freeing clears that state.
1067 *
1068 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1069 * pinned" detection logic.
1070 */
5f8dcc21
MG
1071static void free_pcppages_bulk(struct zone *zone, int count,
1072 struct per_cpu_pages *pcp)
1da177e4 1073{
5f8dcc21 1074 int migratetype = 0;
a6f9edd6 1075 int batch_free = 0;
0d5d823a 1076 unsigned long nr_scanned;
3777999d 1077 bool isolated_pageblocks;
5f8dcc21 1078
c54ad30c 1079 spin_lock(&zone->lock);
3777999d 1080 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1081 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1082 if (nr_scanned)
599d0c95 1083 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1084
e5b31ac2 1085 while (count) {
48db57f8 1086 struct page *page;
5f8dcc21
MG
1087 struct list_head *list;
1088
1089 /*
a6f9edd6
MG
1090 * Remove pages from lists in a round-robin fashion. A
1091 * batch_free count is maintained that is incremented when an
1092 * empty list is encountered. This is so more pages are freed
1093 * off fuller lists instead of spinning excessively around empty
1094 * lists
5f8dcc21
MG
1095 */
1096 do {
a6f9edd6 1097 batch_free++;
5f8dcc21
MG
1098 if (++migratetype == MIGRATE_PCPTYPES)
1099 migratetype = 0;
1100 list = &pcp->lists[migratetype];
1101 } while (list_empty(list));
48db57f8 1102
1d16871d
NK
1103 /* This is the only non-empty list. Free them all. */
1104 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1105 batch_free = count;
1d16871d 1106
a6f9edd6 1107 do {
770c8aaa
BZ
1108 int mt; /* migratetype of the to-be-freed page */
1109
a16601c5 1110 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1111 /* must delete as __free_one_page list manipulates */
1112 list_del(&page->lru);
aa016d14 1113
bb14c2c7 1114 mt = get_pcppage_migratetype(page);
aa016d14
VB
1115 /* MIGRATE_ISOLATE page should not go to pcplists */
1116 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1117 /* Pageblock could have been isolated meanwhile */
3777999d 1118 if (unlikely(isolated_pageblocks))
51bb1a40 1119 mt = get_pageblock_migratetype(page);
51bb1a40 1120
4db7548c
MG
1121 if (bulkfree_pcp_prepare(page))
1122 continue;
1123
dc4b0caf 1124 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1125 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1126 } while (--count && --batch_free && !list_empty(list));
1da177e4 1127 }
c54ad30c 1128 spin_unlock(&zone->lock);
1da177e4
LT
1129}
1130
dc4b0caf
MG
1131static void free_one_page(struct zone *zone,
1132 struct page *page, unsigned long pfn,
7aeb09f9 1133 unsigned int order,
ed0ae21d 1134 int migratetype)
1da177e4 1135{
0d5d823a 1136 unsigned long nr_scanned;
006d22d9 1137 spin_lock(&zone->lock);
599d0c95 1138 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1139 if (nr_scanned)
599d0c95 1140 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1141
ad53f92e
JK
1142 if (unlikely(has_isolate_pageblock(zone) ||
1143 is_migrate_isolate(migratetype))) {
1144 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1145 }
dc4b0caf 1146 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1147 spin_unlock(&zone->lock);
48db57f8
NP
1148}
1149
1e8ce83c
RH
1150static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1151 unsigned long zone, int nid)
1152{
1e8ce83c 1153 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1154 init_page_count(page);
1155 page_mapcount_reset(page);
1156 page_cpupid_reset_last(page);
1e8ce83c 1157
1e8ce83c
RH
1158 INIT_LIST_HEAD(&page->lru);
1159#ifdef WANT_PAGE_VIRTUAL
1160 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1161 if (!is_highmem_idx(zone))
1162 set_page_address(page, __va(pfn << PAGE_SHIFT));
1163#endif
1164}
1165
1166static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1167 int nid)
1168{
1169 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1170}
1171
7e18adb4
MG
1172#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1173static void init_reserved_page(unsigned long pfn)
1174{
1175 pg_data_t *pgdat;
1176 int nid, zid;
1177
1178 if (!early_page_uninitialised(pfn))
1179 return;
1180
1181 nid = early_pfn_to_nid(pfn);
1182 pgdat = NODE_DATA(nid);
1183
1184 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1185 struct zone *zone = &pgdat->node_zones[zid];
1186
1187 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1188 break;
1189 }
1190 __init_single_pfn(pfn, zid, nid);
1191}
1192#else
1193static inline void init_reserved_page(unsigned long pfn)
1194{
1195}
1196#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1197
92923ca3
NZ
1198/*
1199 * Initialised pages do not have PageReserved set. This function is
1200 * called for each range allocated by the bootmem allocator and
1201 * marks the pages PageReserved. The remaining valid pages are later
1202 * sent to the buddy page allocator.
1203 */
4b50bcc7 1204void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1205{
1206 unsigned long start_pfn = PFN_DOWN(start);
1207 unsigned long end_pfn = PFN_UP(end);
1208
7e18adb4
MG
1209 for (; start_pfn < end_pfn; start_pfn++) {
1210 if (pfn_valid(start_pfn)) {
1211 struct page *page = pfn_to_page(start_pfn);
1212
1213 init_reserved_page(start_pfn);
1d798ca3
KS
1214
1215 /* Avoid false-positive PageTail() */
1216 INIT_LIST_HEAD(&page->lru);
1217
7e18adb4
MG
1218 SetPageReserved(page);
1219 }
1220 }
92923ca3
NZ
1221}
1222
ec95f53a
KM
1223static void __free_pages_ok(struct page *page, unsigned int order)
1224{
1225 unsigned long flags;
95e34412 1226 int migratetype;
dc4b0caf 1227 unsigned long pfn = page_to_pfn(page);
ec95f53a 1228
e2769dbd 1229 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1230 return;
1231
cfc47a28 1232 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1233 local_irq_save(flags);
f8891e5e 1234 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1235 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1236 local_irq_restore(flags);
1da177e4
LT
1237}
1238
949698a3 1239static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1240{
c3993076 1241 unsigned int nr_pages = 1 << order;
e2d0bd2b 1242 struct page *p = page;
c3993076 1243 unsigned int loop;
a226f6c8 1244
e2d0bd2b
YL
1245 prefetchw(p);
1246 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1247 prefetchw(p + 1);
c3993076
JW
1248 __ClearPageReserved(p);
1249 set_page_count(p, 0);
a226f6c8 1250 }
e2d0bd2b
YL
1251 __ClearPageReserved(p);
1252 set_page_count(p, 0);
c3993076 1253
e2d0bd2b 1254 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1255 set_page_refcounted(page);
1256 __free_pages(page, order);
a226f6c8
DH
1257}
1258
75a592a4
MG
1259#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1260 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1261
75a592a4
MG
1262static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1263
1264int __meminit early_pfn_to_nid(unsigned long pfn)
1265{
7ace9917 1266 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1267 int nid;
1268
7ace9917 1269 spin_lock(&early_pfn_lock);
75a592a4 1270 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1271 if (nid < 0)
e4568d38 1272 nid = first_online_node;
7ace9917
MG
1273 spin_unlock(&early_pfn_lock);
1274
1275 return nid;
75a592a4
MG
1276}
1277#endif
1278
1279#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1280static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1281 struct mminit_pfnnid_cache *state)
1282{
1283 int nid;
1284
1285 nid = __early_pfn_to_nid(pfn, state);
1286 if (nid >= 0 && nid != node)
1287 return false;
1288 return true;
1289}
1290
1291/* Only safe to use early in boot when initialisation is single-threaded */
1292static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1293{
1294 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1295}
1296
1297#else
1298
1299static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1300{
1301 return true;
1302}
1303static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1304 struct mminit_pfnnid_cache *state)
1305{
1306 return true;
1307}
1308#endif
1309
1310
0e1cc95b 1311void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1312 unsigned int order)
1313{
1314 if (early_page_uninitialised(pfn))
1315 return;
949698a3 1316 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1317}
1318
7cf91a98
JK
1319/*
1320 * Check that the whole (or subset of) a pageblock given by the interval of
1321 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1322 * with the migration of free compaction scanner. The scanners then need to
1323 * use only pfn_valid_within() check for arches that allow holes within
1324 * pageblocks.
1325 *
1326 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327 *
1328 * It's possible on some configurations to have a setup like node0 node1 node0
1329 * i.e. it's possible that all pages within a zones range of pages do not
1330 * belong to a single zone. We assume that a border between node0 and node1
1331 * can occur within a single pageblock, but not a node0 node1 node0
1332 * interleaving within a single pageblock. It is therefore sufficient to check
1333 * the first and last page of a pageblock and avoid checking each individual
1334 * page in a pageblock.
1335 */
1336struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1337 unsigned long end_pfn, struct zone *zone)
1338{
1339 struct page *start_page;
1340 struct page *end_page;
1341
1342 /* end_pfn is one past the range we are checking */
1343 end_pfn--;
1344
1345 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1346 return NULL;
1347
1348 start_page = pfn_to_page(start_pfn);
1349
1350 if (page_zone(start_page) != zone)
1351 return NULL;
1352
1353 end_page = pfn_to_page(end_pfn);
1354
1355 /* This gives a shorter code than deriving page_zone(end_page) */
1356 if (page_zone_id(start_page) != page_zone_id(end_page))
1357 return NULL;
1358
1359 return start_page;
1360}
1361
1362void set_zone_contiguous(struct zone *zone)
1363{
1364 unsigned long block_start_pfn = zone->zone_start_pfn;
1365 unsigned long block_end_pfn;
1366
1367 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1368 for (; block_start_pfn < zone_end_pfn(zone);
1369 block_start_pfn = block_end_pfn,
1370 block_end_pfn += pageblock_nr_pages) {
1371
1372 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1373
1374 if (!__pageblock_pfn_to_page(block_start_pfn,
1375 block_end_pfn, zone))
1376 return;
1377 }
1378
1379 /* We confirm that there is no hole */
1380 zone->contiguous = true;
1381}
1382
1383void clear_zone_contiguous(struct zone *zone)
1384{
1385 zone->contiguous = false;
1386}
1387
7e18adb4 1388#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1389static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1390 unsigned long pfn, int nr_pages)
1391{
1392 int i;
1393
1394 if (!page)
1395 return;
1396
1397 /* Free a large naturally-aligned chunk if possible */
1398 if (nr_pages == MAX_ORDER_NR_PAGES &&
1399 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1400 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1401 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1402 return;
1403 }
1404
949698a3
LZ
1405 for (i = 0; i < nr_pages; i++, page++)
1406 __free_pages_boot_core(page, 0);
a4de83dd
MG
1407}
1408
d3cd131d
NS
1409/* Completion tracking for deferred_init_memmap() threads */
1410static atomic_t pgdat_init_n_undone __initdata;
1411static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1412
1413static inline void __init pgdat_init_report_one_done(void)
1414{
1415 if (atomic_dec_and_test(&pgdat_init_n_undone))
1416 complete(&pgdat_init_all_done_comp);
1417}
0e1cc95b 1418
7e18adb4 1419/* Initialise remaining memory on a node */
0e1cc95b 1420static int __init deferred_init_memmap(void *data)
7e18adb4 1421{
0e1cc95b
MG
1422 pg_data_t *pgdat = data;
1423 int nid = pgdat->node_id;
7e18adb4
MG
1424 struct mminit_pfnnid_cache nid_init_state = { };
1425 unsigned long start = jiffies;
1426 unsigned long nr_pages = 0;
1427 unsigned long walk_start, walk_end;
1428 int i, zid;
1429 struct zone *zone;
7e18adb4 1430 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1431 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1432
0e1cc95b 1433 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1434 pgdat_init_report_one_done();
0e1cc95b
MG
1435 return 0;
1436 }
1437
1438 /* Bind memory initialisation thread to a local node if possible */
1439 if (!cpumask_empty(cpumask))
1440 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1441
1442 /* Sanity check boundaries */
1443 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1444 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1445 pgdat->first_deferred_pfn = ULONG_MAX;
1446
1447 /* Only the highest zone is deferred so find it */
1448 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1449 zone = pgdat->node_zones + zid;
1450 if (first_init_pfn < zone_end_pfn(zone))
1451 break;
1452 }
1453
1454 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1455 unsigned long pfn, end_pfn;
54608c3f 1456 struct page *page = NULL;
a4de83dd
MG
1457 struct page *free_base_page = NULL;
1458 unsigned long free_base_pfn = 0;
1459 int nr_to_free = 0;
7e18adb4
MG
1460
1461 end_pfn = min(walk_end, zone_end_pfn(zone));
1462 pfn = first_init_pfn;
1463 if (pfn < walk_start)
1464 pfn = walk_start;
1465 if (pfn < zone->zone_start_pfn)
1466 pfn = zone->zone_start_pfn;
1467
1468 for (; pfn < end_pfn; pfn++) {
54608c3f 1469 if (!pfn_valid_within(pfn))
a4de83dd 1470 goto free_range;
7e18adb4 1471
54608c3f
MG
1472 /*
1473 * Ensure pfn_valid is checked every
1474 * MAX_ORDER_NR_PAGES for memory holes
1475 */
1476 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1477 if (!pfn_valid(pfn)) {
1478 page = NULL;
a4de83dd 1479 goto free_range;
54608c3f
MG
1480 }
1481 }
1482
1483 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1484 page = NULL;
a4de83dd 1485 goto free_range;
54608c3f
MG
1486 }
1487
1488 /* Minimise pfn page lookups and scheduler checks */
1489 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1490 page++;
1491 } else {
a4de83dd
MG
1492 nr_pages += nr_to_free;
1493 deferred_free_range(free_base_page,
1494 free_base_pfn, nr_to_free);
1495 free_base_page = NULL;
1496 free_base_pfn = nr_to_free = 0;
1497
54608c3f
MG
1498 page = pfn_to_page(pfn);
1499 cond_resched();
1500 }
7e18adb4
MG
1501
1502 if (page->flags) {
1503 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1504 goto free_range;
7e18adb4
MG
1505 }
1506
1507 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1508 if (!free_base_page) {
1509 free_base_page = page;
1510 free_base_pfn = pfn;
1511 nr_to_free = 0;
1512 }
1513 nr_to_free++;
1514
1515 /* Where possible, batch up pages for a single free */
1516 continue;
1517free_range:
1518 /* Free the current block of pages to allocator */
1519 nr_pages += nr_to_free;
1520 deferred_free_range(free_base_page, free_base_pfn,
1521 nr_to_free);
1522 free_base_page = NULL;
1523 free_base_pfn = nr_to_free = 0;
7e18adb4 1524 }
a4de83dd 1525
7e18adb4
MG
1526 first_init_pfn = max(end_pfn, first_init_pfn);
1527 }
1528
1529 /* Sanity check that the next zone really is unpopulated */
1530 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1531
0e1cc95b 1532 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1533 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1534
1535 pgdat_init_report_one_done();
0e1cc95b
MG
1536 return 0;
1537}
7cf91a98 1538#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1539
1540void __init page_alloc_init_late(void)
1541{
7cf91a98
JK
1542 struct zone *zone;
1543
1544#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1545 int nid;
1546
d3cd131d
NS
1547 /* There will be num_node_state(N_MEMORY) threads */
1548 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1549 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1550 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1551 }
1552
1553 /* Block until all are initialised */
d3cd131d 1554 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1555
1556 /* Reinit limits that are based on free pages after the kernel is up */
1557 files_maxfiles_init();
7cf91a98
JK
1558#endif
1559
1560 for_each_populated_zone(zone)
1561 set_zone_contiguous(zone);
7e18adb4 1562}
7e18adb4 1563
47118af0 1564#ifdef CONFIG_CMA
9cf510a5 1565/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1566void __init init_cma_reserved_pageblock(struct page *page)
1567{
1568 unsigned i = pageblock_nr_pages;
1569 struct page *p = page;
1570
1571 do {
1572 __ClearPageReserved(p);
1573 set_page_count(p, 0);
1574 } while (++p, --i);
1575
47118af0 1576 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1577
1578 if (pageblock_order >= MAX_ORDER) {
1579 i = pageblock_nr_pages;
1580 p = page;
1581 do {
1582 set_page_refcounted(p);
1583 __free_pages(p, MAX_ORDER - 1);
1584 p += MAX_ORDER_NR_PAGES;
1585 } while (i -= MAX_ORDER_NR_PAGES);
1586 } else {
1587 set_page_refcounted(page);
1588 __free_pages(page, pageblock_order);
1589 }
1590
3dcc0571 1591 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1592}
1593#endif
1da177e4
LT
1594
1595/*
1596 * The order of subdivision here is critical for the IO subsystem.
1597 * Please do not alter this order without good reasons and regression
1598 * testing. Specifically, as large blocks of memory are subdivided,
1599 * the order in which smaller blocks are delivered depends on the order
1600 * they're subdivided in this function. This is the primary factor
1601 * influencing the order in which pages are delivered to the IO
1602 * subsystem according to empirical testing, and this is also justified
1603 * by considering the behavior of a buddy system containing a single
1604 * large block of memory acted on by a series of small allocations.
1605 * This behavior is a critical factor in sglist merging's success.
1606 *
6d49e352 1607 * -- nyc
1da177e4 1608 */
085cc7d5 1609static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1610 int low, int high, struct free_area *area,
1611 int migratetype)
1da177e4
LT
1612{
1613 unsigned long size = 1 << high;
1614
1615 while (high > low) {
1616 area--;
1617 high--;
1618 size >>= 1;
309381fe 1619 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1620
2847cf95 1621 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1622 debug_guardpage_enabled() &&
2847cf95 1623 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1624 /*
1625 * Mark as guard pages (or page), that will allow to
1626 * merge back to allocator when buddy will be freed.
1627 * Corresponding page table entries will not be touched,
1628 * pages will stay not present in virtual address space
1629 */
2847cf95 1630 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1631 continue;
1632 }
b2a0ac88 1633 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1634 area->nr_free++;
1635 set_page_order(&page[size], high);
1636 }
1da177e4
LT
1637}
1638
4e611801 1639static void check_new_page_bad(struct page *page)
1da177e4 1640{
4e611801
VB
1641 const char *bad_reason = NULL;
1642 unsigned long bad_flags = 0;
7bfec6f4 1643
53f9263b 1644 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1645 bad_reason = "nonzero mapcount";
1646 if (unlikely(page->mapping != NULL))
1647 bad_reason = "non-NULL mapping";
fe896d18 1648 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1649 bad_reason = "nonzero _count";
f4c18e6f
NH
1650 if (unlikely(page->flags & __PG_HWPOISON)) {
1651 bad_reason = "HWPoisoned (hardware-corrupted)";
1652 bad_flags = __PG_HWPOISON;
e570f56c
NH
1653 /* Don't complain about hwpoisoned pages */
1654 page_mapcount_reset(page); /* remove PageBuddy */
1655 return;
f4c18e6f 1656 }
f0b791a3
DH
1657 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1658 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1659 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1660 }
9edad6ea
JW
1661#ifdef CONFIG_MEMCG
1662 if (unlikely(page->mem_cgroup))
1663 bad_reason = "page still charged to cgroup";
1664#endif
4e611801
VB
1665 bad_page(page, bad_reason, bad_flags);
1666}
1667
1668/*
1669 * This page is about to be returned from the page allocator
1670 */
1671static inline int check_new_page(struct page *page)
1672{
1673 if (likely(page_expected_state(page,
1674 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1675 return 0;
1676
1677 check_new_page_bad(page);
1678 return 1;
2a7684a2
WF
1679}
1680
1414c7f4
LA
1681static inline bool free_pages_prezeroed(bool poisoned)
1682{
1683 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1684 page_poisoning_enabled() && poisoned;
1685}
1686
479f854a
MG
1687#ifdef CONFIG_DEBUG_VM
1688static bool check_pcp_refill(struct page *page)
1689{
1690 return false;
1691}
1692
1693static bool check_new_pcp(struct page *page)
1694{
1695 return check_new_page(page);
1696}
1697#else
1698static bool check_pcp_refill(struct page *page)
1699{
1700 return check_new_page(page);
1701}
1702static bool check_new_pcp(struct page *page)
1703{
1704 return false;
1705}
1706#endif /* CONFIG_DEBUG_VM */
1707
1708static bool check_new_pages(struct page *page, unsigned int order)
1709{
1710 int i;
1711 for (i = 0; i < (1 << order); i++) {
1712 struct page *p = page + i;
1713
1714 if (unlikely(check_new_page(p)))
1715 return true;
1716 }
1717
1718 return false;
1719}
1720
46f24fd8
JK
1721inline void post_alloc_hook(struct page *page, unsigned int order,
1722 gfp_t gfp_flags)
1723{
1724 set_page_private(page, 0);
1725 set_page_refcounted(page);
1726
1727 arch_alloc_page(page, order);
1728 kernel_map_pages(page, 1 << order, 1);
1729 kernel_poison_pages(page, 1 << order, 1);
1730 kasan_alloc_pages(page, order);
1731 set_page_owner(page, order, gfp_flags);
1732}
1733
479f854a 1734static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1735 unsigned int alloc_flags)
2a7684a2
WF
1736{
1737 int i;
1414c7f4 1738 bool poisoned = true;
2a7684a2
WF
1739
1740 for (i = 0; i < (1 << order); i++) {
1741 struct page *p = page + i;
1414c7f4
LA
1742 if (poisoned)
1743 poisoned &= page_is_poisoned(p);
2a7684a2 1744 }
689bcebf 1745
46f24fd8 1746 post_alloc_hook(page, order, gfp_flags);
17cf4406 1747
1414c7f4 1748 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1749 for (i = 0; i < (1 << order); i++)
1750 clear_highpage(page + i);
17cf4406
NP
1751
1752 if (order && (gfp_flags & __GFP_COMP))
1753 prep_compound_page(page, order);
1754
75379191 1755 /*
2f064f34 1756 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1757 * allocate the page. The expectation is that the caller is taking
1758 * steps that will free more memory. The caller should avoid the page
1759 * being used for !PFMEMALLOC purposes.
1760 */
2f064f34
MH
1761 if (alloc_flags & ALLOC_NO_WATERMARKS)
1762 set_page_pfmemalloc(page);
1763 else
1764 clear_page_pfmemalloc(page);
1da177e4
LT
1765}
1766
56fd56b8
MG
1767/*
1768 * Go through the free lists for the given migratetype and remove
1769 * the smallest available page from the freelists
1770 */
728ec980
MG
1771static inline
1772struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1773 int migratetype)
1774{
1775 unsigned int current_order;
b8af2941 1776 struct free_area *area;
56fd56b8
MG
1777 struct page *page;
1778
1779 /* Find a page of the appropriate size in the preferred list */
1780 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1781 area = &(zone->free_area[current_order]);
a16601c5 1782 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1783 struct page, lru);
a16601c5
GT
1784 if (!page)
1785 continue;
56fd56b8
MG
1786 list_del(&page->lru);
1787 rmv_page_order(page);
1788 area->nr_free--;
56fd56b8 1789 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1790 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1791 return page;
1792 }
1793
1794 return NULL;
1795}
1796
1797
b2a0ac88
MG
1798/*
1799 * This array describes the order lists are fallen back to when
1800 * the free lists for the desirable migrate type are depleted
1801 */
47118af0 1802static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1803 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1804 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1805 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1806#ifdef CONFIG_CMA
974a786e 1807 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1808#endif
194159fb 1809#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1810 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1811#endif
b2a0ac88
MG
1812};
1813
dc67647b
JK
1814#ifdef CONFIG_CMA
1815static struct page *__rmqueue_cma_fallback(struct zone *zone,
1816 unsigned int order)
1817{
1818 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1819}
1820#else
1821static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1822 unsigned int order) { return NULL; }
1823#endif
1824
c361be55
MG
1825/*
1826 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1827 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1828 * boundary. If alignment is required, use move_freepages_block()
1829 */
435b405c 1830int move_freepages(struct zone *zone,
b69a7288
AB
1831 struct page *start_page, struct page *end_page,
1832 int migratetype)
c361be55
MG
1833{
1834 struct page *page;
d00181b9 1835 unsigned int order;
d100313f 1836 int pages_moved = 0;
c361be55
MG
1837
1838#ifndef CONFIG_HOLES_IN_ZONE
1839 /*
1840 * page_zone is not safe to call in this context when
1841 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1842 * anyway as we check zone boundaries in move_freepages_block().
1843 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1844 * grouping pages by mobility
c361be55 1845 */
97ee4ba7 1846 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1847#endif
1848
1849 for (page = start_page; page <= end_page;) {
344c790e 1850 /* Make sure we are not inadvertently changing nodes */
309381fe 1851 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1852
c361be55
MG
1853 if (!pfn_valid_within(page_to_pfn(page))) {
1854 page++;
1855 continue;
1856 }
1857
1858 if (!PageBuddy(page)) {
1859 page++;
1860 continue;
1861 }
1862
1863 order = page_order(page);
84be48d8
KS
1864 list_move(&page->lru,
1865 &zone->free_area[order].free_list[migratetype]);
c361be55 1866 page += 1 << order;
d100313f 1867 pages_moved += 1 << order;
c361be55
MG
1868 }
1869
d100313f 1870 return pages_moved;
c361be55
MG
1871}
1872
ee6f509c 1873int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1874 int migratetype)
c361be55
MG
1875{
1876 unsigned long start_pfn, end_pfn;
1877 struct page *start_page, *end_page;
1878
1879 start_pfn = page_to_pfn(page);
d9c23400 1880 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1881 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1882 end_page = start_page + pageblock_nr_pages - 1;
1883 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1884
1885 /* Do not cross zone boundaries */
108bcc96 1886 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1887 start_page = page;
108bcc96 1888 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1889 return 0;
1890
1891 return move_freepages(zone, start_page, end_page, migratetype);
1892}
1893
2f66a68f
MG
1894static void change_pageblock_range(struct page *pageblock_page,
1895 int start_order, int migratetype)
1896{
1897 int nr_pageblocks = 1 << (start_order - pageblock_order);
1898
1899 while (nr_pageblocks--) {
1900 set_pageblock_migratetype(pageblock_page, migratetype);
1901 pageblock_page += pageblock_nr_pages;
1902 }
1903}
1904
fef903ef 1905/*
9c0415eb
VB
1906 * When we are falling back to another migratetype during allocation, try to
1907 * steal extra free pages from the same pageblocks to satisfy further
1908 * allocations, instead of polluting multiple pageblocks.
1909 *
1910 * If we are stealing a relatively large buddy page, it is likely there will
1911 * be more free pages in the pageblock, so try to steal them all. For
1912 * reclaimable and unmovable allocations, we steal regardless of page size,
1913 * as fragmentation caused by those allocations polluting movable pageblocks
1914 * is worse than movable allocations stealing from unmovable and reclaimable
1915 * pageblocks.
fef903ef 1916 */
4eb7dce6
JK
1917static bool can_steal_fallback(unsigned int order, int start_mt)
1918{
1919 /*
1920 * Leaving this order check is intended, although there is
1921 * relaxed order check in next check. The reason is that
1922 * we can actually steal whole pageblock if this condition met,
1923 * but, below check doesn't guarantee it and that is just heuristic
1924 * so could be changed anytime.
1925 */
1926 if (order >= pageblock_order)
1927 return true;
1928
1929 if (order >= pageblock_order / 2 ||
1930 start_mt == MIGRATE_RECLAIMABLE ||
1931 start_mt == MIGRATE_UNMOVABLE ||
1932 page_group_by_mobility_disabled)
1933 return true;
1934
1935 return false;
1936}
1937
1938/*
1939 * This function implements actual steal behaviour. If order is large enough,
1940 * we can steal whole pageblock. If not, we first move freepages in this
1941 * pageblock and check whether half of pages are moved or not. If half of
1942 * pages are moved, we can change migratetype of pageblock and permanently
1943 * use it's pages as requested migratetype in the future.
1944 */
1945static void steal_suitable_fallback(struct zone *zone, struct page *page,
1946 int start_type)
fef903ef 1947{
d00181b9 1948 unsigned int current_order = page_order(page);
4eb7dce6 1949 int pages;
fef903ef 1950
fef903ef
SB
1951 /* Take ownership for orders >= pageblock_order */
1952 if (current_order >= pageblock_order) {
1953 change_pageblock_range(page, current_order, start_type);
3a1086fb 1954 return;
fef903ef
SB
1955 }
1956
4eb7dce6 1957 pages = move_freepages_block(zone, page, start_type);
fef903ef 1958
4eb7dce6
JK
1959 /* Claim the whole block if over half of it is free */
1960 if (pages >= (1 << (pageblock_order-1)) ||
1961 page_group_by_mobility_disabled)
1962 set_pageblock_migratetype(page, start_type);
1963}
1964
2149cdae
JK
1965/*
1966 * Check whether there is a suitable fallback freepage with requested order.
1967 * If only_stealable is true, this function returns fallback_mt only if
1968 * we can steal other freepages all together. This would help to reduce
1969 * fragmentation due to mixed migratetype pages in one pageblock.
1970 */
1971int find_suitable_fallback(struct free_area *area, unsigned int order,
1972 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1973{
1974 int i;
1975 int fallback_mt;
1976
1977 if (area->nr_free == 0)
1978 return -1;
1979
1980 *can_steal = false;
1981 for (i = 0;; i++) {
1982 fallback_mt = fallbacks[migratetype][i];
974a786e 1983 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1984 break;
1985
1986 if (list_empty(&area->free_list[fallback_mt]))
1987 continue;
fef903ef 1988
4eb7dce6
JK
1989 if (can_steal_fallback(order, migratetype))
1990 *can_steal = true;
1991
2149cdae
JK
1992 if (!only_stealable)
1993 return fallback_mt;
1994
1995 if (*can_steal)
1996 return fallback_mt;
fef903ef 1997 }
4eb7dce6
JK
1998
1999 return -1;
fef903ef
SB
2000}
2001
0aaa29a5
MG
2002/*
2003 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2004 * there are no empty page blocks that contain a page with a suitable order
2005 */
2006static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2007 unsigned int alloc_order)
2008{
2009 int mt;
2010 unsigned long max_managed, flags;
2011
2012 /*
2013 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2014 * Check is race-prone but harmless.
2015 */
2016 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2017 if (zone->nr_reserved_highatomic >= max_managed)
2018 return;
2019
2020 spin_lock_irqsave(&zone->lock, flags);
2021
2022 /* Recheck the nr_reserved_highatomic limit under the lock */
2023 if (zone->nr_reserved_highatomic >= max_managed)
2024 goto out_unlock;
2025
2026 /* Yoink! */
2027 mt = get_pageblock_migratetype(page);
2028 if (mt != MIGRATE_HIGHATOMIC &&
2029 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2030 zone->nr_reserved_highatomic += pageblock_nr_pages;
2031 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2032 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2033 }
2034
2035out_unlock:
2036 spin_unlock_irqrestore(&zone->lock, flags);
2037}
2038
2039/*
2040 * Used when an allocation is about to fail under memory pressure. This
2041 * potentially hurts the reliability of high-order allocations when under
2042 * intense memory pressure but failed atomic allocations should be easier
2043 * to recover from than an OOM.
2044 */
2045static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2046{
2047 struct zonelist *zonelist = ac->zonelist;
2048 unsigned long flags;
2049 struct zoneref *z;
2050 struct zone *zone;
2051 struct page *page;
2052 int order;
2053
2054 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2055 ac->nodemask) {
2056 /* Preserve at least one pageblock */
2057 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2058 continue;
2059
2060 spin_lock_irqsave(&zone->lock, flags);
2061 for (order = 0; order < MAX_ORDER; order++) {
2062 struct free_area *area = &(zone->free_area[order]);
2063
a16601c5
GT
2064 page = list_first_entry_or_null(
2065 &area->free_list[MIGRATE_HIGHATOMIC],
2066 struct page, lru);
2067 if (!page)
0aaa29a5
MG
2068 continue;
2069
0aaa29a5
MG
2070 /*
2071 * It should never happen but changes to locking could
2072 * inadvertently allow a per-cpu drain to add pages
2073 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2074 * and watch for underflows.
2075 */
2076 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2077 zone->nr_reserved_highatomic);
2078
2079 /*
2080 * Convert to ac->migratetype and avoid the normal
2081 * pageblock stealing heuristics. Minimally, the caller
2082 * is doing the work and needs the pages. More
2083 * importantly, if the block was always converted to
2084 * MIGRATE_UNMOVABLE or another type then the number
2085 * of pageblocks that cannot be completely freed
2086 * may increase.
2087 */
2088 set_pageblock_migratetype(page, ac->migratetype);
2089 move_freepages_block(zone, page, ac->migratetype);
2090 spin_unlock_irqrestore(&zone->lock, flags);
2091 return;
2092 }
2093 spin_unlock_irqrestore(&zone->lock, flags);
2094 }
2095}
2096
b2a0ac88 2097/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2098static inline struct page *
7aeb09f9 2099__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2100{
b8af2941 2101 struct free_area *area;
7aeb09f9 2102 unsigned int current_order;
b2a0ac88 2103 struct page *page;
4eb7dce6
JK
2104 int fallback_mt;
2105 bool can_steal;
b2a0ac88
MG
2106
2107 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2108 for (current_order = MAX_ORDER-1;
2109 current_order >= order && current_order <= MAX_ORDER-1;
2110 --current_order) {
4eb7dce6
JK
2111 area = &(zone->free_area[current_order]);
2112 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2113 start_migratetype, false, &can_steal);
4eb7dce6
JK
2114 if (fallback_mt == -1)
2115 continue;
b2a0ac88 2116
a16601c5 2117 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2118 struct page, lru);
2119 if (can_steal)
2120 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2121
4eb7dce6
JK
2122 /* Remove the page from the freelists */
2123 area->nr_free--;
2124 list_del(&page->lru);
2125 rmv_page_order(page);
3a1086fb 2126
4eb7dce6
JK
2127 expand(zone, page, order, current_order, area,
2128 start_migratetype);
2129 /*
bb14c2c7 2130 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2131 * migratetype depending on the decisions in
bb14c2c7
VB
2132 * find_suitable_fallback(). This is OK as long as it does not
2133 * differ for MIGRATE_CMA pageblocks. Those can be used as
2134 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2135 */
bb14c2c7 2136 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2137
4eb7dce6
JK
2138 trace_mm_page_alloc_extfrag(page, order, current_order,
2139 start_migratetype, fallback_mt);
e0fff1bd 2140
4eb7dce6 2141 return page;
b2a0ac88
MG
2142 }
2143
728ec980 2144 return NULL;
b2a0ac88
MG
2145}
2146
56fd56b8 2147/*
1da177e4
LT
2148 * Do the hard work of removing an element from the buddy allocator.
2149 * Call me with the zone->lock already held.
2150 */
b2a0ac88 2151static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2152 int migratetype)
1da177e4 2153{
1da177e4
LT
2154 struct page *page;
2155
56fd56b8 2156 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2157 if (unlikely(!page)) {
dc67647b
JK
2158 if (migratetype == MIGRATE_MOVABLE)
2159 page = __rmqueue_cma_fallback(zone, order);
2160
2161 if (!page)
2162 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2163 }
2164
0d3d062a 2165 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2166 return page;
1da177e4
LT
2167}
2168
5f63b720 2169/*
1da177e4
LT
2170 * Obtain a specified number of elements from the buddy allocator, all under
2171 * a single hold of the lock, for efficiency. Add them to the supplied list.
2172 * Returns the number of new pages which were placed at *list.
2173 */
5f63b720 2174static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2175 unsigned long count, struct list_head *list,
b745bc85 2176 int migratetype, bool cold)
1da177e4 2177{
5bcc9f86 2178 int i;
5f63b720 2179
c54ad30c 2180 spin_lock(&zone->lock);
1da177e4 2181 for (i = 0; i < count; ++i) {
6ac0206b 2182 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2183 if (unlikely(page == NULL))
1da177e4 2184 break;
81eabcbe 2185
479f854a
MG
2186 if (unlikely(check_pcp_refill(page)))
2187 continue;
2188
81eabcbe
MG
2189 /*
2190 * Split buddy pages returned by expand() are received here
2191 * in physical page order. The page is added to the callers and
2192 * list and the list head then moves forward. From the callers
2193 * perspective, the linked list is ordered by page number in
2194 * some conditions. This is useful for IO devices that can
2195 * merge IO requests if the physical pages are ordered
2196 * properly.
2197 */
b745bc85 2198 if (likely(!cold))
e084b2d9
MG
2199 list_add(&page->lru, list);
2200 else
2201 list_add_tail(&page->lru, list);
81eabcbe 2202 list = &page->lru;
bb14c2c7 2203 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2204 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2205 -(1 << order));
1da177e4 2206 }
f2260e6b 2207 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2208 spin_unlock(&zone->lock);
085cc7d5 2209 return i;
1da177e4
LT
2210}
2211
4ae7c039 2212#ifdef CONFIG_NUMA
8fce4d8e 2213/*
4037d452
CL
2214 * Called from the vmstat counter updater to drain pagesets of this
2215 * currently executing processor on remote nodes after they have
2216 * expired.
2217 *
879336c3
CL
2218 * Note that this function must be called with the thread pinned to
2219 * a single processor.
8fce4d8e 2220 */
4037d452 2221void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2222{
4ae7c039 2223 unsigned long flags;
7be12fc9 2224 int to_drain, batch;
4ae7c039 2225
4037d452 2226 local_irq_save(flags);
4db0c3c2 2227 batch = READ_ONCE(pcp->batch);
7be12fc9 2228 to_drain = min(pcp->count, batch);
2a13515c
KM
2229 if (to_drain > 0) {
2230 free_pcppages_bulk(zone, to_drain, pcp);
2231 pcp->count -= to_drain;
2232 }
4037d452 2233 local_irq_restore(flags);
4ae7c039
CL
2234}
2235#endif
2236
9f8f2172 2237/*
93481ff0 2238 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2239 *
2240 * The processor must either be the current processor and the
2241 * thread pinned to the current processor or a processor that
2242 * is not online.
2243 */
93481ff0 2244static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2245{
c54ad30c 2246 unsigned long flags;
93481ff0
VB
2247 struct per_cpu_pageset *pset;
2248 struct per_cpu_pages *pcp;
1da177e4 2249
93481ff0
VB
2250 local_irq_save(flags);
2251 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2252
93481ff0
VB
2253 pcp = &pset->pcp;
2254 if (pcp->count) {
2255 free_pcppages_bulk(zone, pcp->count, pcp);
2256 pcp->count = 0;
2257 }
2258 local_irq_restore(flags);
2259}
3dfa5721 2260
93481ff0
VB
2261/*
2262 * Drain pcplists of all zones on the indicated processor.
2263 *
2264 * The processor must either be the current processor and the
2265 * thread pinned to the current processor or a processor that
2266 * is not online.
2267 */
2268static void drain_pages(unsigned int cpu)
2269{
2270 struct zone *zone;
2271
2272 for_each_populated_zone(zone) {
2273 drain_pages_zone(cpu, zone);
1da177e4
LT
2274 }
2275}
1da177e4 2276
9f8f2172
CL
2277/*
2278 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2279 *
2280 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2281 * the single zone's pages.
9f8f2172 2282 */
93481ff0 2283void drain_local_pages(struct zone *zone)
9f8f2172 2284{
93481ff0
VB
2285 int cpu = smp_processor_id();
2286
2287 if (zone)
2288 drain_pages_zone(cpu, zone);
2289 else
2290 drain_pages(cpu);
9f8f2172
CL
2291}
2292
2293/*
74046494
GBY
2294 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2295 *
93481ff0
VB
2296 * When zone parameter is non-NULL, spill just the single zone's pages.
2297 *
74046494
GBY
2298 * Note that this code is protected against sending an IPI to an offline
2299 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2300 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2301 * nothing keeps CPUs from showing up after we populated the cpumask and
2302 * before the call to on_each_cpu_mask().
9f8f2172 2303 */
93481ff0 2304void drain_all_pages(struct zone *zone)
9f8f2172 2305{
74046494 2306 int cpu;
74046494
GBY
2307
2308 /*
2309 * Allocate in the BSS so we wont require allocation in
2310 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2311 */
2312 static cpumask_t cpus_with_pcps;
2313
2314 /*
2315 * We don't care about racing with CPU hotplug event
2316 * as offline notification will cause the notified
2317 * cpu to drain that CPU pcps and on_each_cpu_mask
2318 * disables preemption as part of its processing
2319 */
2320 for_each_online_cpu(cpu) {
93481ff0
VB
2321 struct per_cpu_pageset *pcp;
2322 struct zone *z;
74046494 2323 bool has_pcps = false;
93481ff0
VB
2324
2325 if (zone) {
74046494 2326 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2327 if (pcp->pcp.count)
74046494 2328 has_pcps = true;
93481ff0
VB
2329 } else {
2330 for_each_populated_zone(z) {
2331 pcp = per_cpu_ptr(z->pageset, cpu);
2332 if (pcp->pcp.count) {
2333 has_pcps = true;
2334 break;
2335 }
74046494
GBY
2336 }
2337 }
93481ff0 2338
74046494
GBY
2339 if (has_pcps)
2340 cpumask_set_cpu(cpu, &cpus_with_pcps);
2341 else
2342 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2343 }
93481ff0
VB
2344 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2345 zone, 1);
9f8f2172
CL
2346}
2347
296699de 2348#ifdef CONFIG_HIBERNATION
1da177e4
LT
2349
2350void mark_free_pages(struct zone *zone)
2351{
f623f0db
RW
2352 unsigned long pfn, max_zone_pfn;
2353 unsigned long flags;
7aeb09f9 2354 unsigned int order, t;
86760a2c 2355 struct page *page;
1da177e4 2356
8080fc03 2357 if (zone_is_empty(zone))
1da177e4
LT
2358 return;
2359
2360 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2361
108bcc96 2362 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2363 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2364 if (pfn_valid(pfn)) {
86760a2c 2365 page = pfn_to_page(pfn);
ba6b0979
JK
2366
2367 if (page_zone(page) != zone)
2368 continue;
2369
7be98234
RW
2370 if (!swsusp_page_is_forbidden(page))
2371 swsusp_unset_page_free(page);
f623f0db 2372 }
1da177e4 2373
b2a0ac88 2374 for_each_migratetype_order(order, t) {
86760a2c
GT
2375 list_for_each_entry(page,
2376 &zone->free_area[order].free_list[t], lru) {
f623f0db 2377 unsigned long i;
1da177e4 2378
86760a2c 2379 pfn = page_to_pfn(page);
f623f0db 2380 for (i = 0; i < (1UL << order); i++)
7be98234 2381 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2382 }
b2a0ac88 2383 }
1da177e4
LT
2384 spin_unlock_irqrestore(&zone->lock, flags);
2385}
e2c55dc8 2386#endif /* CONFIG_PM */
1da177e4 2387
1da177e4
LT
2388/*
2389 * Free a 0-order page
b745bc85 2390 * cold == true ? free a cold page : free a hot page
1da177e4 2391 */
b745bc85 2392void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2393{
2394 struct zone *zone = page_zone(page);
2395 struct per_cpu_pages *pcp;
2396 unsigned long flags;
dc4b0caf 2397 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2398 int migratetype;
1da177e4 2399
4db7548c 2400 if (!free_pcp_prepare(page))
689bcebf
HD
2401 return;
2402
dc4b0caf 2403 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2404 set_pcppage_migratetype(page, migratetype);
1da177e4 2405 local_irq_save(flags);
f8891e5e 2406 __count_vm_event(PGFREE);
da456f14 2407
5f8dcc21
MG
2408 /*
2409 * We only track unmovable, reclaimable and movable on pcp lists.
2410 * Free ISOLATE pages back to the allocator because they are being
2411 * offlined but treat RESERVE as movable pages so we can get those
2412 * areas back if necessary. Otherwise, we may have to free
2413 * excessively into the page allocator
2414 */
2415 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2416 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2417 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2418 goto out;
2419 }
2420 migratetype = MIGRATE_MOVABLE;
2421 }
2422
99dcc3e5 2423 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2424 if (!cold)
5f8dcc21 2425 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2426 else
2427 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2428 pcp->count++;
48db57f8 2429 if (pcp->count >= pcp->high) {
4db0c3c2 2430 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2431 free_pcppages_bulk(zone, batch, pcp);
2432 pcp->count -= batch;
48db57f8 2433 }
5f8dcc21
MG
2434
2435out:
1da177e4 2436 local_irq_restore(flags);
1da177e4
LT
2437}
2438
cc59850e
KK
2439/*
2440 * Free a list of 0-order pages
2441 */
b745bc85 2442void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2443{
2444 struct page *page, *next;
2445
2446 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2447 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2448 free_hot_cold_page(page, cold);
2449 }
2450}
2451
8dfcc9ba
NP
2452/*
2453 * split_page takes a non-compound higher-order page, and splits it into
2454 * n (1<<order) sub-pages: page[0..n]
2455 * Each sub-page must be freed individually.
2456 *
2457 * Note: this is probably too low level an operation for use in drivers.
2458 * Please consult with lkml before using this in your driver.
2459 */
2460void split_page(struct page *page, unsigned int order)
2461{
2462 int i;
2463
309381fe
SL
2464 VM_BUG_ON_PAGE(PageCompound(page), page);
2465 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2466
2467#ifdef CONFIG_KMEMCHECK
2468 /*
2469 * Split shadow pages too, because free(page[0]) would
2470 * otherwise free the whole shadow.
2471 */
2472 if (kmemcheck_page_is_tracked(page))
2473 split_page(virt_to_page(page[0].shadow), order);
2474#endif
2475
a9627bc5 2476 for (i = 1; i < (1 << order); i++)
7835e98b 2477 set_page_refcounted(page + i);
a9627bc5 2478 split_page_owner(page, order);
8dfcc9ba 2479}
5853ff23 2480EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2481
3c605096 2482int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2483{
748446bb
MG
2484 unsigned long watermark;
2485 struct zone *zone;
2139cbe6 2486 int mt;
748446bb
MG
2487
2488 BUG_ON(!PageBuddy(page));
2489
2490 zone = page_zone(page);
2e30abd1 2491 mt = get_pageblock_migratetype(page);
748446bb 2492
194159fb 2493 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2494 /* Obey watermarks as if the page was being allocated */
2495 watermark = low_wmark_pages(zone) + (1 << order);
2496 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2497 return 0;
2498
8fb74b9f 2499 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2500 }
748446bb
MG
2501
2502 /* Remove page from free list */
2503 list_del(&page->lru);
2504 zone->free_area[order].nr_free--;
2505 rmv_page_order(page);
2139cbe6 2506
400bc7fd 2507 /*
2508 * Set the pageblock if the isolated page is at least half of a
2509 * pageblock
2510 */
748446bb
MG
2511 if (order >= pageblock_order - 1) {
2512 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2513 for (; page < endpage; page += pageblock_nr_pages) {
2514 int mt = get_pageblock_migratetype(page);
194159fb 2515 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2516 set_pageblock_migratetype(page,
2517 MIGRATE_MOVABLE);
2518 }
748446bb
MG
2519 }
2520
f3a14ced 2521
8fb74b9f 2522 return 1UL << order;
1fb3f8ca
MG
2523}
2524
060e7417
MG
2525/*
2526 * Update NUMA hit/miss statistics
2527 *
2528 * Must be called with interrupts disabled.
2529 *
2530 * When __GFP_OTHER_NODE is set assume the node of the preferred
2531 * zone is the local node. This is useful for daemons who allocate
2532 * memory on behalf of other processes.
2533 */
2534static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2535 gfp_t flags)
2536{
2537#ifdef CONFIG_NUMA
2538 int local_nid = numa_node_id();
2539 enum zone_stat_item local_stat = NUMA_LOCAL;
2540
2541 if (unlikely(flags & __GFP_OTHER_NODE)) {
2542 local_stat = NUMA_OTHER;
2543 local_nid = preferred_zone->node;
2544 }
2545
2546 if (z->node == local_nid) {
2547 __inc_zone_state(z, NUMA_HIT);
2548 __inc_zone_state(z, local_stat);
2549 } else {
2550 __inc_zone_state(z, NUMA_MISS);
2551 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2552 }
2553#endif
2554}
2555
1da177e4 2556/*
75379191 2557 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2558 */
0a15c3e9
MG
2559static inline
2560struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2561 struct zone *zone, unsigned int order,
c603844b
MG
2562 gfp_t gfp_flags, unsigned int alloc_flags,
2563 int migratetype)
1da177e4
LT
2564{
2565 unsigned long flags;
689bcebf 2566 struct page *page;
b745bc85 2567 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2568
48db57f8 2569 if (likely(order == 0)) {
1da177e4 2570 struct per_cpu_pages *pcp;
5f8dcc21 2571 struct list_head *list;
1da177e4 2572
1da177e4 2573 local_irq_save(flags);
479f854a
MG
2574 do {
2575 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2576 list = &pcp->lists[migratetype];
2577 if (list_empty(list)) {
2578 pcp->count += rmqueue_bulk(zone, 0,
2579 pcp->batch, list,
2580 migratetype, cold);
2581 if (unlikely(list_empty(list)))
2582 goto failed;
2583 }
b92a6edd 2584
479f854a
MG
2585 if (cold)
2586 page = list_last_entry(list, struct page, lru);
2587 else
2588 page = list_first_entry(list, struct page, lru);
5f8dcc21 2589
83b9355b
VB
2590 list_del(&page->lru);
2591 pcp->count--;
2592
2593 } while (check_new_pcp(page));
7fb1d9fc 2594 } else {
0f352e53
MH
2595 /*
2596 * We most definitely don't want callers attempting to
2597 * allocate greater than order-1 page units with __GFP_NOFAIL.
2598 */
2599 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2600 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2601
479f854a
MG
2602 do {
2603 page = NULL;
2604 if (alloc_flags & ALLOC_HARDER) {
2605 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2606 if (page)
2607 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2608 }
2609 if (!page)
2610 page = __rmqueue(zone, order, migratetype);
2611 } while (page && check_new_pages(page, order));
a74609fa
NP
2612 spin_unlock(&zone->lock);
2613 if (!page)
2614 goto failed;
d1ce749a 2615 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2616 get_pcppage_migratetype(page));
1da177e4
LT
2617 }
2618
f8891e5e 2619 __count_zone_vm_events(PGALLOC, zone, 1 << order);
78afd561 2620 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2621 local_irq_restore(flags);
1da177e4 2622
309381fe 2623 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2624 return page;
a74609fa
NP
2625
2626failed:
2627 local_irq_restore(flags);
a74609fa 2628 return NULL;
1da177e4
LT
2629}
2630
933e312e
AM
2631#ifdef CONFIG_FAIL_PAGE_ALLOC
2632
b2588c4b 2633static struct {
933e312e
AM
2634 struct fault_attr attr;
2635
621a5f7a 2636 bool ignore_gfp_highmem;
71baba4b 2637 bool ignore_gfp_reclaim;
54114994 2638 u32 min_order;
933e312e
AM
2639} fail_page_alloc = {
2640 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2641 .ignore_gfp_reclaim = true,
621a5f7a 2642 .ignore_gfp_highmem = true,
54114994 2643 .min_order = 1,
933e312e
AM
2644};
2645
2646static int __init setup_fail_page_alloc(char *str)
2647{
2648 return setup_fault_attr(&fail_page_alloc.attr, str);
2649}
2650__setup("fail_page_alloc=", setup_fail_page_alloc);
2651
deaf386e 2652static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2653{
54114994 2654 if (order < fail_page_alloc.min_order)
deaf386e 2655 return false;
933e312e 2656 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2657 return false;
933e312e 2658 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2659 return false;
71baba4b
MG
2660 if (fail_page_alloc.ignore_gfp_reclaim &&
2661 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2662 return false;
933e312e
AM
2663
2664 return should_fail(&fail_page_alloc.attr, 1 << order);
2665}
2666
2667#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2668
2669static int __init fail_page_alloc_debugfs(void)
2670{
f4ae40a6 2671 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2672 struct dentry *dir;
933e312e 2673
dd48c085
AM
2674 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2675 &fail_page_alloc.attr);
2676 if (IS_ERR(dir))
2677 return PTR_ERR(dir);
933e312e 2678
b2588c4b 2679 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2680 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2681 goto fail;
2682 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2683 &fail_page_alloc.ignore_gfp_highmem))
2684 goto fail;
2685 if (!debugfs_create_u32("min-order", mode, dir,
2686 &fail_page_alloc.min_order))
2687 goto fail;
2688
2689 return 0;
2690fail:
dd48c085 2691 debugfs_remove_recursive(dir);
933e312e 2692
b2588c4b 2693 return -ENOMEM;
933e312e
AM
2694}
2695
2696late_initcall(fail_page_alloc_debugfs);
2697
2698#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2699
2700#else /* CONFIG_FAIL_PAGE_ALLOC */
2701
deaf386e 2702static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2703{
deaf386e 2704 return false;
933e312e
AM
2705}
2706
2707#endif /* CONFIG_FAIL_PAGE_ALLOC */
2708
1da177e4 2709/*
97a16fc8
MG
2710 * Return true if free base pages are above 'mark'. For high-order checks it
2711 * will return true of the order-0 watermark is reached and there is at least
2712 * one free page of a suitable size. Checking now avoids taking the zone lock
2713 * to check in the allocation paths if no pages are free.
1da177e4 2714 */
86a294a8
MH
2715bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2716 int classzone_idx, unsigned int alloc_flags,
2717 long free_pages)
1da177e4 2718{
d23ad423 2719 long min = mark;
1da177e4 2720 int o;
c603844b 2721 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2722
0aaa29a5 2723 /* free_pages may go negative - that's OK */
df0a6daa 2724 free_pages -= (1 << order) - 1;
0aaa29a5 2725
7fb1d9fc 2726 if (alloc_flags & ALLOC_HIGH)
1da177e4 2727 min -= min / 2;
0aaa29a5
MG
2728
2729 /*
2730 * If the caller does not have rights to ALLOC_HARDER then subtract
2731 * the high-atomic reserves. This will over-estimate the size of the
2732 * atomic reserve but it avoids a search.
2733 */
97a16fc8 2734 if (likely(!alloc_harder))
0aaa29a5
MG
2735 free_pages -= z->nr_reserved_highatomic;
2736 else
1da177e4 2737 min -= min / 4;
e2b19197 2738
d95ea5d1
BZ
2739#ifdef CONFIG_CMA
2740 /* If allocation can't use CMA areas don't use free CMA pages */
2741 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2742 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2743#endif
026b0814 2744
97a16fc8
MG
2745 /*
2746 * Check watermarks for an order-0 allocation request. If these
2747 * are not met, then a high-order request also cannot go ahead
2748 * even if a suitable page happened to be free.
2749 */
2750 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2751 return false;
1da177e4 2752
97a16fc8
MG
2753 /* If this is an order-0 request then the watermark is fine */
2754 if (!order)
2755 return true;
2756
2757 /* For a high-order request, check at least one suitable page is free */
2758 for (o = order; o < MAX_ORDER; o++) {
2759 struct free_area *area = &z->free_area[o];
2760 int mt;
2761
2762 if (!area->nr_free)
2763 continue;
2764
2765 if (alloc_harder)
2766 return true;
1da177e4 2767
97a16fc8
MG
2768 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2769 if (!list_empty(&area->free_list[mt]))
2770 return true;
2771 }
2772
2773#ifdef CONFIG_CMA
2774 if ((alloc_flags & ALLOC_CMA) &&
2775 !list_empty(&area->free_list[MIGRATE_CMA])) {
2776 return true;
2777 }
2778#endif
1da177e4 2779 }
97a16fc8 2780 return false;
88f5acf8
MG
2781}
2782
7aeb09f9 2783bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2784 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2785{
2786 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2787 zone_page_state(z, NR_FREE_PAGES));
2788}
2789
48ee5f36
MG
2790static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2791 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2792{
2793 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2794 long cma_pages = 0;
2795
2796#ifdef CONFIG_CMA
2797 /* If allocation can't use CMA areas don't use free CMA pages */
2798 if (!(alloc_flags & ALLOC_CMA))
2799 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2800#endif
2801
2802 /*
2803 * Fast check for order-0 only. If this fails then the reserves
2804 * need to be calculated. There is a corner case where the check
2805 * passes but only the high-order atomic reserve are free. If
2806 * the caller is !atomic then it'll uselessly search the free
2807 * list. That corner case is then slower but it is harmless.
2808 */
2809 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2810 return true;
2811
2812 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2813 free_pages);
2814}
2815
7aeb09f9 2816bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2817 unsigned long mark, int classzone_idx)
88f5acf8
MG
2818{
2819 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2820
2821 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2822 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2823
e2b19197 2824 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2825 free_pages);
1da177e4
LT
2826}
2827
9276b1bc 2828#ifdef CONFIG_NUMA
957f822a
DR
2829static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2830{
5f7a75ac
MG
2831 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2832 RECLAIM_DISTANCE;
957f822a 2833}
9276b1bc 2834#else /* CONFIG_NUMA */
957f822a
DR
2835static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2836{
2837 return true;
2838}
9276b1bc
PJ
2839#endif /* CONFIG_NUMA */
2840
7fb1d9fc 2841/*
0798e519 2842 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2843 * a page.
2844 */
2845static struct page *
a9263751
VB
2846get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2847 const struct alloc_context *ac)
753ee728 2848{
c33d6c06 2849 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2850 struct zone *zone;
3b8c0be4
MG
2851 struct pglist_data *last_pgdat_dirty_limit = NULL;
2852
7fb1d9fc 2853 /*
9276b1bc 2854 * Scan zonelist, looking for a zone with enough free.
344736f2 2855 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2856 */
c33d6c06 2857 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2858 ac->nodemask) {
be06af00 2859 struct page *page;
e085dbc5
JW
2860 unsigned long mark;
2861
664eedde
MG
2862 if (cpusets_enabled() &&
2863 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2864 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2865 continue;
a756cf59
JW
2866 /*
2867 * When allocating a page cache page for writing, we
281e3726
MG
2868 * want to get it from a node that is within its dirty
2869 * limit, such that no single node holds more than its
a756cf59 2870 * proportional share of globally allowed dirty pages.
281e3726 2871 * The dirty limits take into account the node's
a756cf59
JW
2872 * lowmem reserves and high watermark so that kswapd
2873 * should be able to balance it without having to
2874 * write pages from its LRU list.
2875 *
a756cf59 2876 * XXX: For now, allow allocations to potentially
281e3726 2877 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2878 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2879 * which is important when on a NUMA setup the allowed
281e3726 2880 * nodes are together not big enough to reach the
a756cf59 2881 * global limit. The proper fix for these situations
281e3726 2882 * will require awareness of nodes in the
a756cf59
JW
2883 * dirty-throttling and the flusher threads.
2884 */
3b8c0be4
MG
2885 if (ac->spread_dirty_pages) {
2886 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2887 continue;
2888
2889 if (!node_dirty_ok(zone->zone_pgdat)) {
2890 last_pgdat_dirty_limit = zone->zone_pgdat;
2891 continue;
2892 }
2893 }
7fb1d9fc 2894
e085dbc5 2895 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2896 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2897 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2898 int ret;
2899
5dab2911
MG
2900 /* Checked here to keep the fast path fast */
2901 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2902 if (alloc_flags & ALLOC_NO_WATERMARKS)
2903 goto try_this_zone;
2904
a5f5f91d 2905 if (node_reclaim_mode == 0 ||
c33d6c06 2906 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2907 continue;
2908
a5f5f91d 2909 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2910 switch (ret) {
a5f5f91d 2911 case NODE_RECLAIM_NOSCAN:
fa5e084e 2912 /* did not scan */
cd38b115 2913 continue;
a5f5f91d 2914 case NODE_RECLAIM_FULL:
fa5e084e 2915 /* scanned but unreclaimable */
cd38b115 2916 continue;
fa5e084e
MG
2917 default:
2918 /* did we reclaim enough */
fed2719e 2919 if (zone_watermark_ok(zone, order, mark,
93ea9964 2920 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2921 goto try_this_zone;
2922
fed2719e 2923 continue;
0798e519 2924 }
7fb1d9fc
RS
2925 }
2926
fa5e084e 2927try_this_zone:
c33d6c06 2928 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2929 gfp_mask, alloc_flags, ac->migratetype);
75379191 2930 if (page) {
479f854a 2931 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2932
2933 /*
2934 * If this is a high-order atomic allocation then check
2935 * if the pageblock should be reserved for the future
2936 */
2937 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2938 reserve_highatomic_pageblock(page, zone, order);
2939
75379191
VB
2940 return page;
2941 }
54a6eb5c 2942 }
9276b1bc 2943
4ffeaf35 2944 return NULL;
753ee728
MH
2945}
2946
29423e77
DR
2947/*
2948 * Large machines with many possible nodes should not always dump per-node
2949 * meminfo in irq context.
2950 */
2951static inline bool should_suppress_show_mem(void)
2952{
2953 bool ret = false;
2954
2955#if NODES_SHIFT > 8
2956 ret = in_interrupt();
2957#endif
2958 return ret;
2959}
2960
a238ab5b
DH
2961static DEFINE_RATELIMIT_STATE(nopage_rs,
2962 DEFAULT_RATELIMIT_INTERVAL,
2963 DEFAULT_RATELIMIT_BURST);
2964
d00181b9 2965void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2966{
a238ab5b
DH
2967 unsigned int filter = SHOW_MEM_FILTER_NODES;
2968
c0a32fc5
SG
2969 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2970 debug_guardpage_minorder() > 0)
a238ab5b
DH
2971 return;
2972
2973 /*
2974 * This documents exceptions given to allocations in certain
2975 * contexts that are allowed to allocate outside current's set
2976 * of allowed nodes.
2977 */
2978 if (!(gfp_mask & __GFP_NOMEMALLOC))
2979 if (test_thread_flag(TIF_MEMDIE) ||
2980 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2981 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2982 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2983 filter &= ~SHOW_MEM_FILTER_NODES;
2984
2985 if (fmt) {
3ee9a4f0
JP
2986 struct va_format vaf;
2987 va_list args;
2988
a238ab5b 2989 va_start(args, fmt);
3ee9a4f0
JP
2990
2991 vaf.fmt = fmt;
2992 vaf.va = &args;
2993
2994 pr_warn("%pV", &vaf);
2995
a238ab5b
DH
2996 va_end(args);
2997 }
2998
c5c990e8
VB
2999 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3000 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
3001 dump_stack();
3002 if (!should_suppress_show_mem())
3003 show_mem(filter);
3004}
3005
11e33f6a
MG
3006static inline struct page *
3007__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3008 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3009{
6e0fc46d
DR
3010 struct oom_control oc = {
3011 .zonelist = ac->zonelist,
3012 .nodemask = ac->nodemask,
2a966b77 3013 .memcg = NULL,
6e0fc46d
DR
3014 .gfp_mask = gfp_mask,
3015 .order = order,
6e0fc46d 3016 };
11e33f6a
MG
3017 struct page *page;
3018
9879de73
JW
3019 *did_some_progress = 0;
3020
9879de73 3021 /*
dc56401f
JW
3022 * Acquire the oom lock. If that fails, somebody else is
3023 * making progress for us.
9879de73 3024 */
dc56401f 3025 if (!mutex_trylock(&oom_lock)) {
9879de73 3026 *did_some_progress = 1;
11e33f6a 3027 schedule_timeout_uninterruptible(1);
1da177e4
LT
3028 return NULL;
3029 }
6b1de916 3030
11e33f6a
MG
3031 /*
3032 * Go through the zonelist yet one more time, keep very high watermark
3033 * here, this is only to catch a parallel oom killing, we must fail if
3034 * we're still under heavy pressure.
3035 */
a9263751
VB
3036 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3037 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3038 if (page)
11e33f6a
MG
3039 goto out;
3040
4365a567 3041 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3042 /* Coredumps can quickly deplete all memory reserves */
3043 if (current->flags & PF_DUMPCORE)
3044 goto out;
4365a567
KH
3045 /* The OOM killer will not help higher order allocs */
3046 if (order > PAGE_ALLOC_COSTLY_ORDER)
3047 goto out;
03668b3c 3048 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3049 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3050 goto out;
9083905a
JW
3051 if (pm_suspended_storage())
3052 goto out;
3da88fb3
MH
3053 /*
3054 * XXX: GFP_NOFS allocations should rather fail than rely on
3055 * other request to make a forward progress.
3056 * We are in an unfortunate situation where out_of_memory cannot
3057 * do much for this context but let's try it to at least get
3058 * access to memory reserved if the current task is killed (see
3059 * out_of_memory). Once filesystems are ready to handle allocation
3060 * failures more gracefully we should just bail out here.
3061 */
3062
4167e9b2 3063 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3064 if (gfp_mask & __GFP_THISNODE)
3065 goto out;
3066 }
11e33f6a 3067 /* Exhausted what can be done so it's blamo time */
5020e285 3068 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3069 *did_some_progress = 1;
5020e285
MH
3070
3071 if (gfp_mask & __GFP_NOFAIL) {
3072 page = get_page_from_freelist(gfp_mask, order,
3073 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3074 /*
3075 * fallback to ignore cpuset restriction if our nodes
3076 * are depleted
3077 */
3078 if (!page)
3079 page = get_page_from_freelist(gfp_mask, order,
3080 ALLOC_NO_WATERMARKS, ac);
3081 }
3082 }
11e33f6a 3083out:
dc56401f 3084 mutex_unlock(&oom_lock);
11e33f6a
MG
3085 return page;
3086}
3087
33c2d214
MH
3088
3089/*
3090 * Maximum number of compaction retries wit a progress before OOM
3091 * killer is consider as the only way to move forward.
3092 */
3093#define MAX_COMPACT_RETRIES 16
3094
56de7263
MG
3095#ifdef CONFIG_COMPACTION
3096/* Try memory compaction for high-order allocations before reclaim */
3097static struct page *
3098__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3099 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3100 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3101{
98dd3b48 3102 struct page *page;
c5d01d0d 3103 int contended_compaction;
53853e2d
VB
3104
3105 if (!order)
66199712 3106 return NULL;
66199712 3107
c06b1fca 3108 current->flags |= PF_MEMALLOC;
c5d01d0d
MH
3109 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3110 mode, &contended_compaction);
c06b1fca 3111 current->flags &= ~PF_MEMALLOC;
56de7263 3112
c5d01d0d 3113 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3114 return NULL;
53853e2d 3115
98dd3b48
VB
3116 /*
3117 * At least in one zone compaction wasn't deferred or skipped, so let's
3118 * count a compaction stall
3119 */
3120 count_vm_event(COMPACTSTALL);
8fb74b9f 3121
a9263751
VB
3122 page = get_page_from_freelist(gfp_mask, order,
3123 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
53853e2d 3124
98dd3b48
VB
3125 if (page) {
3126 struct zone *zone = page_zone(page);
53853e2d 3127
98dd3b48
VB
3128 zone->compact_blockskip_flush = false;
3129 compaction_defer_reset(zone, order, true);
3130 count_vm_event(COMPACTSUCCESS);
3131 return page;
3132 }
56de7263 3133
98dd3b48
VB
3134 /*
3135 * It's bad if compaction run occurs and fails. The most likely reason
3136 * is that pages exist, but not enough to satisfy watermarks.
3137 */
3138 count_vm_event(COMPACTFAIL);
66199712 3139
c5d01d0d
MH
3140 /*
3141 * In all zones where compaction was attempted (and not
3142 * deferred or skipped), lock contention has been detected.
3143 * For THP allocation we do not want to disrupt the others
3144 * so we fallback to base pages instead.
3145 */
3146 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3147 *compact_result = COMPACT_CONTENDED;
3148
3149 /*
3150 * If compaction was aborted due to need_resched(), we do not
3151 * want to further increase allocation latency, unless it is
3152 * khugepaged trying to collapse.
3153 */
3154 if (contended_compaction == COMPACT_CONTENDED_SCHED
3155 && !(current->flags & PF_KTHREAD))
3156 *compact_result = COMPACT_CONTENDED;
3157
98dd3b48 3158 cond_resched();
56de7263
MG
3159
3160 return NULL;
3161}
33c2d214
MH
3162
3163static inline bool
86a294a8
MH
3164should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3165 enum compact_result compact_result, enum migrate_mode *migrate_mode,
33c2d214
MH
3166 int compaction_retries)
3167{
7854ea6c
MH
3168 int max_retries = MAX_COMPACT_RETRIES;
3169
33c2d214
MH
3170 if (!order)
3171 return false;
3172
3173 /*
3174 * compaction considers all the zone as desperately out of memory
3175 * so it doesn't really make much sense to retry except when the
3176 * failure could be caused by weak migration mode.
3177 */
3178 if (compaction_failed(compact_result)) {
3179 if (*migrate_mode == MIGRATE_ASYNC) {
3180 *migrate_mode = MIGRATE_SYNC_LIGHT;
3181 return true;
3182 }
3183 return false;
3184 }
3185
3186 /*
7854ea6c
MH
3187 * make sure the compaction wasn't deferred or didn't bail out early
3188 * due to locks contention before we declare that we should give up.
86a294a8
MH
3189 * But do not retry if the given zonelist is not suitable for
3190 * compaction.
33c2d214 3191 */
7854ea6c 3192 if (compaction_withdrawn(compact_result))
86a294a8 3193 return compaction_zonelist_suitable(ac, order, alloc_flags);
7854ea6c
MH
3194
3195 /*
3196 * !costly requests are much more important than __GFP_REPEAT
3197 * costly ones because they are de facto nofail and invoke OOM
3198 * killer to move on while costly can fail and users are ready
3199 * to cope with that. 1/4 retries is rather arbitrary but we
3200 * would need much more detailed feedback from compaction to
3201 * make a better decision.
3202 */
3203 if (order > PAGE_ALLOC_COSTLY_ORDER)
3204 max_retries /= 4;
3205 if (compaction_retries <= max_retries)
3206 return true;
33c2d214
MH
3207
3208 return false;
3209}
56de7263
MG
3210#else
3211static inline struct page *
3212__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3213 unsigned int alloc_flags, const struct alloc_context *ac,
c5d01d0d 3214 enum migrate_mode mode, enum compact_result *compact_result)
56de7263 3215{
33c2d214 3216 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3217 return NULL;
3218}
33c2d214
MH
3219
3220static inline bool
86a294a8
MH
3221should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3222 enum compact_result compact_result,
33c2d214
MH
3223 enum migrate_mode *migrate_mode,
3224 int compaction_retries)
3225{
31e49bfd
MH
3226 struct zone *zone;
3227 struct zoneref *z;
3228
3229 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3230 return false;
3231
3232 /*
3233 * There are setups with compaction disabled which would prefer to loop
3234 * inside the allocator rather than hit the oom killer prematurely.
3235 * Let's give them a good hope and keep retrying while the order-0
3236 * watermarks are OK.
3237 */
3238 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3239 ac->nodemask) {
3240 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3241 ac_classzone_idx(ac), alloc_flags))
3242 return true;
3243 }
33c2d214
MH
3244 return false;
3245}
56de7263
MG
3246#endif /* CONFIG_COMPACTION */
3247
bba90710
MS
3248/* Perform direct synchronous page reclaim */
3249static int
a9263751
VB
3250__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3251 const struct alloc_context *ac)
11e33f6a 3252{
11e33f6a 3253 struct reclaim_state reclaim_state;
bba90710 3254 int progress;
11e33f6a
MG
3255
3256 cond_resched();
3257
3258 /* We now go into synchronous reclaim */
3259 cpuset_memory_pressure_bump();
c06b1fca 3260 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3261 lockdep_set_current_reclaim_state(gfp_mask);
3262 reclaim_state.reclaimed_slab = 0;
c06b1fca 3263 current->reclaim_state = &reclaim_state;
11e33f6a 3264
a9263751
VB
3265 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3266 ac->nodemask);
11e33f6a 3267
c06b1fca 3268 current->reclaim_state = NULL;
11e33f6a 3269 lockdep_clear_current_reclaim_state();
c06b1fca 3270 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3271
3272 cond_resched();
3273
bba90710
MS
3274 return progress;
3275}
3276
3277/* The really slow allocator path where we enter direct reclaim */
3278static inline struct page *
3279__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3280 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3281 unsigned long *did_some_progress)
bba90710
MS
3282{
3283 struct page *page = NULL;
3284 bool drained = false;
3285
a9263751 3286 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3287 if (unlikely(!(*did_some_progress)))
3288 return NULL;
11e33f6a 3289
9ee493ce 3290retry:
a9263751
VB
3291 page = get_page_from_freelist(gfp_mask, order,
3292 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
9ee493ce
MG
3293
3294 /*
3295 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3296 * pages are pinned on the per-cpu lists or in high alloc reserves.
3297 * Shrink them them and try again
9ee493ce
MG
3298 */
3299 if (!page && !drained) {
0aaa29a5 3300 unreserve_highatomic_pageblock(ac);
93481ff0 3301 drain_all_pages(NULL);
9ee493ce
MG
3302 drained = true;
3303 goto retry;
3304 }
3305
11e33f6a
MG
3306 return page;
3307}
3308
a9263751 3309static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3310{
3311 struct zoneref *z;
3312 struct zone *zone;
e1a55637 3313 pg_data_t *last_pgdat = NULL;
3a025760 3314
a9263751 3315 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3316 ac->high_zoneidx, ac->nodemask) {
3317 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3318 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3319 last_pgdat = zone->zone_pgdat;
3320 }
3a025760
JW
3321}
3322
c603844b 3323static inline unsigned int
341ce06f
PZ
3324gfp_to_alloc_flags(gfp_t gfp_mask)
3325{
c603844b 3326 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3327
a56f57ff 3328 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3329 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3330
341ce06f
PZ
3331 /*
3332 * The caller may dip into page reserves a bit more if the caller
3333 * cannot run direct reclaim, or if the caller has realtime scheduling
3334 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3335 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3336 */
e6223a3b 3337 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3338
d0164adc 3339 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3340 /*
b104a35d
DR
3341 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3342 * if it can't schedule.
5c3240d9 3343 */
b104a35d 3344 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3345 alloc_flags |= ALLOC_HARDER;
523b9458 3346 /*
b104a35d 3347 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3348 * comment for __cpuset_node_allowed().
523b9458 3349 */
341ce06f 3350 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3351 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3352 alloc_flags |= ALLOC_HARDER;
3353
b37f1dd0
MG
3354 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3355 if (gfp_mask & __GFP_MEMALLOC)
3356 alloc_flags |= ALLOC_NO_WATERMARKS;
907aed48
MG
3357 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3358 alloc_flags |= ALLOC_NO_WATERMARKS;
3359 else if (!in_interrupt() &&
3360 ((current->flags & PF_MEMALLOC) ||
3361 unlikely(test_thread_flag(TIF_MEMDIE))))
341ce06f 3362 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 3363 }
d95ea5d1 3364#ifdef CONFIG_CMA
43e7a34d 3365 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3366 alloc_flags |= ALLOC_CMA;
3367#endif
341ce06f
PZ
3368 return alloc_flags;
3369}
3370
072bb0aa
MG
3371bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3372{
b37f1dd0 3373 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
072bb0aa
MG
3374}
3375
d0164adc
MG
3376static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3377{
3378 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3379}
3380
0a0337e0
MH
3381/*
3382 * Maximum number of reclaim retries without any progress before OOM killer
3383 * is consider as the only way to move forward.
3384 */
3385#define MAX_RECLAIM_RETRIES 16
3386
3387/*
3388 * Checks whether it makes sense to retry the reclaim to make a forward progress
3389 * for the given allocation request.
3390 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3391 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3392 * any progress in a row) is considered as well as the reclaimable pages on the
3393 * applicable zone list (with a backoff mechanism which is a function of
3394 * no_progress_loops).
0a0337e0
MH
3395 *
3396 * Returns true if a retry is viable or false to enter the oom path.
3397 */
3398static inline bool
3399should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3400 struct alloc_context *ac, int alloc_flags,
7854ea6c 3401 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3402{
3403 struct zone *zone;
3404 struct zoneref *z;
3405
3406 /*
3407 * Make sure we converge to OOM if we cannot make any progress
3408 * several times in the row.
3409 */
3410 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3411 return false;
3412
0a0337e0
MH
3413 /*
3414 * Keep reclaiming pages while there is a chance this will lead somewhere.
3415 * If none of the target zones can satisfy our allocation request even
3416 * if all reclaimable pages are considered then we are screwed and have
3417 * to go OOM.
3418 */
3419 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3420 ac->nodemask) {
3421 unsigned long available;
ede37713 3422 unsigned long reclaimable;
0a0337e0 3423
ede37713 3424 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3425 available -= DIV_ROUND_UP(no_progress_loops * available,
3426 MAX_RECLAIM_RETRIES);
3427 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3428
3429 /*
3430 * Would the allocation succeed if we reclaimed the whole
3431 * available?
3432 */
3433 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
ede37713
MH
3434 ac_classzone_idx(ac), alloc_flags, available)) {
3435 /*
3436 * If we didn't make any progress and have a lot of
3437 * dirty + writeback pages then we should wait for
3438 * an IO to complete to slow down the reclaim and
3439 * prevent from pre mature OOM
3440 */
3441 if (!did_some_progress) {
11fb9989 3442 unsigned long write_pending;
ede37713 3443
11fb9989
MG
3444 write_pending = zone_page_state_snapshot(zone,
3445 NR_ZONE_WRITE_PENDING);
ede37713 3446
11fb9989 3447 if (2 * write_pending > reclaimable) {
ede37713
MH
3448 congestion_wait(BLK_RW_ASYNC, HZ/10);
3449 return true;
3450 }
3451 }
3452
3453 /*
3454 * Memory allocation/reclaim might be called from a WQ
3455 * context and the current implementation of the WQ
3456 * concurrency control doesn't recognize that
3457 * a particular WQ is congested if the worker thread is
3458 * looping without ever sleeping. Therefore we have to
3459 * do a short sleep here rather than calling
3460 * cond_resched().
3461 */
3462 if (current->flags & PF_WQ_WORKER)
3463 schedule_timeout_uninterruptible(1);
3464 else
3465 cond_resched();
3466
0a0337e0
MH
3467 return true;
3468 }
3469 }
3470
3471 return false;
3472}
3473
11e33f6a
MG
3474static inline struct page *
3475__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3476 struct alloc_context *ac)
11e33f6a 3477{
d0164adc 3478 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3479 struct page *page = NULL;
c603844b 3480 unsigned int alloc_flags;
11e33f6a 3481 unsigned long did_some_progress;
e0b9daeb 3482 enum migrate_mode migration_mode = MIGRATE_ASYNC;
c5d01d0d 3483 enum compact_result compact_result;
33c2d214 3484 int compaction_retries = 0;
0a0337e0 3485 int no_progress_loops = 0;
1da177e4 3486
72807a74
MG
3487 /*
3488 * In the slowpath, we sanity check order to avoid ever trying to
3489 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3490 * be using allocators in order of preference for an area that is
3491 * too large.
3492 */
1fc28b70
MG
3493 if (order >= MAX_ORDER) {
3494 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3495 return NULL;
1fc28b70 3496 }
1da177e4 3497
d0164adc
MG
3498 /*
3499 * We also sanity check to catch abuse of atomic reserves being used by
3500 * callers that are not in atomic context.
3501 */
3502 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3503 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3504 gfp_mask &= ~__GFP_ATOMIC;
3505
9879de73 3506retry:
d0164adc 3507 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
a9263751 3508 wake_all_kswapds(order, ac);
1da177e4 3509
9bf2229f 3510 /*
7fb1d9fc
RS
3511 * OK, we're below the kswapd watermark and have kicked background
3512 * reclaim. Now things get more complex, so set up alloc_flags according
3513 * to how we want to proceed.
9bf2229f 3514 */
341ce06f 3515 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3516
e46e7b77
MG
3517 /*
3518 * Reset the zonelist iterators if memory policies can be ignored.
3519 * These allocations are high priority and system rather than user
3520 * orientated.
3521 */
3522 if ((alloc_flags & ALLOC_NO_WATERMARKS) || !(alloc_flags & ALLOC_CPUSET)) {
3523 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3524 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3525 ac->high_zoneidx, ac->nodemask);
3526 }
3527
341ce06f 3528 /* This is the last chance, in general, before the goto nopage. */
a9263751
VB
3529 page = get_page_from_freelist(gfp_mask, order,
3530 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
7fb1d9fc
RS
3531 if (page)
3532 goto got_pg;
1da177e4 3533
11e33f6a 3534 /* Allocate without watermarks if the context allows */
341ce06f 3535 if (alloc_flags & ALLOC_NO_WATERMARKS) {
33d53103
MH
3536 page = get_page_from_freelist(gfp_mask, order,
3537 ALLOC_NO_WATERMARKS, ac);
3538 if (page)
3539 goto got_pg;
1da177e4
LT
3540 }
3541
d0164adc
MG
3542 /* Caller is not willing to reclaim, we can't balance anything */
3543 if (!can_direct_reclaim) {
aed0a0e3 3544 /*
33d53103
MH
3545 * All existing users of the __GFP_NOFAIL are blockable, so warn
3546 * of any new users that actually allow this type of allocation
3547 * to fail.
aed0a0e3
DR
3548 */
3549 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3550 goto nopage;
aed0a0e3 3551 }
1da177e4 3552
341ce06f 3553 /* Avoid recursion of direct reclaim */
33d53103
MH
3554 if (current->flags & PF_MEMALLOC) {
3555 /*
3556 * __GFP_NOFAIL request from this context is rather bizarre
3557 * because we cannot reclaim anything and only can loop waiting
3558 * for somebody to do a work for us.
3559 */
3560 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3561 cond_resched();
3562 goto retry;
3563 }
341ce06f 3564 goto nopage;
33d53103 3565 }
341ce06f 3566
6583bb64
DR
3567 /* Avoid allocations with no watermarks from looping endlessly */
3568 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3569 goto nopage;
3570
77f1fe6b
MG
3571 /*
3572 * Try direct compaction. The first pass is asynchronous. Subsequent
3573 * attempts after direct reclaim are synchronous
3574 */
a9263751
VB
3575 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3576 migration_mode,
c5d01d0d 3577 &compact_result);
56de7263
MG
3578 if (page)
3579 goto got_pg;
75f30861 3580
1f9efdef 3581 /* Checks for THP-specific high-order allocations */
d0164adc 3582 if (is_thp_gfp_mask(gfp_mask)) {
1f9efdef
VB
3583 /*
3584 * If compaction is deferred for high-order allocations, it is
3585 * because sync compaction recently failed. If this is the case
3586 * and the caller requested a THP allocation, we do not want
3587 * to heavily disrupt the system, so we fail the allocation
3588 * instead of entering direct reclaim.
3589 */
c5d01d0d 3590 if (compact_result == COMPACT_DEFERRED)
1f9efdef
VB
3591 goto nopage;
3592
3593 /*
c5d01d0d
MH
3594 * Compaction is contended so rather back off than cause
3595 * excessive stalls.
1f9efdef 3596 */
c5d01d0d 3597 if(compact_result == COMPACT_CONTENDED)
1f9efdef
VB
3598 goto nopage;
3599 }
66199712 3600
33c2d214
MH
3601 if (order && compaction_made_progress(compact_result))
3602 compaction_retries++;
8fe78048 3603
11e33f6a 3604 /* Try direct reclaim and then allocating */
a9263751
VB
3605 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3606 &did_some_progress);
11e33f6a
MG
3607 if (page)
3608 goto got_pg;
1da177e4 3609
9083905a
JW
3610 /* Do not loop if specifically requested */
3611 if (gfp_mask & __GFP_NORETRY)
3612 goto noretry;
3613
0a0337e0
MH
3614 /*
3615 * Do not retry costly high order allocations unless they are
3616 * __GFP_REPEAT
3617 */
3618 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3619 goto noretry;
3620
7854ea6c
MH
3621 /*
3622 * Costly allocations might have made a progress but this doesn't mean
3623 * their order will become available due to high fragmentation so
3624 * always increment the no progress counter for them
3625 */
3626 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3627 no_progress_loops = 0;
7854ea6c 3628 else
0a0337e0 3629 no_progress_loops++;
1da177e4 3630
0a0337e0 3631 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3632 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3633 goto retry;
3634
33c2d214
MH
3635 /*
3636 * It doesn't make any sense to retry for the compaction if the order-0
3637 * reclaim is not able to make any progress because the current
3638 * implementation of the compaction depends on the sufficient amount
3639 * of free memory (see __compaction_suitable)
3640 */
3641 if (did_some_progress > 0 &&
86a294a8
MH
3642 should_compact_retry(ac, order, alloc_flags,
3643 compact_result, &migration_mode,
3644 compaction_retries))
33c2d214
MH
3645 goto retry;
3646
9083905a
JW
3647 /* Reclaim has failed us, start killing things */
3648 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3649 if (page)
3650 goto got_pg;
3651
3652 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3653 if (did_some_progress) {
3654 no_progress_loops = 0;
9083905a 3655 goto retry;
0a0337e0 3656 }
9083905a
JW
3657
3658noretry:
3659 /*
33c2d214
MH
3660 * High-order allocations do not necessarily loop after direct reclaim
3661 * and reclaim/compaction depends on compaction being called after
3662 * reclaim so call directly if necessary.
3663 * It can become very expensive to allocate transparent hugepages at
3664 * fault, so use asynchronous memory compaction for THP unless it is
3665 * khugepaged trying to collapse. All other requests should tolerate
3666 * at least light sync migration.
9083905a 3667 */
33c2d214
MH
3668 if (is_thp_gfp_mask(gfp_mask) && !(current->flags & PF_KTHREAD))
3669 migration_mode = MIGRATE_ASYNC;
3670 else
3671 migration_mode = MIGRATE_SYNC_LIGHT;
9083905a
JW
3672 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3673 ac, migration_mode,
c5d01d0d 3674 &compact_result);
9083905a
JW
3675 if (page)
3676 goto got_pg;
1da177e4 3677nopage:
a238ab5b 3678 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3679got_pg:
072bb0aa 3680 return page;
1da177e4 3681}
11e33f6a
MG
3682
3683/*
3684 * This is the 'heart' of the zoned buddy allocator.
3685 */
3686struct page *
3687__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3688 struct zonelist *zonelist, nodemask_t *nodemask)
3689{
5bb1b169 3690 struct page *page;
cc9a6c87 3691 unsigned int cpuset_mems_cookie;
e6cbd7f2 3692 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3693 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3694 struct alloc_context ac = {
3695 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3696 .zonelist = zonelist,
a9263751
VB
3697 .nodemask = nodemask,
3698 .migratetype = gfpflags_to_migratetype(gfp_mask),
3699 };
11e33f6a 3700
682a3385 3701 if (cpusets_enabled()) {
83d4ca81 3702 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3703 alloc_flags |= ALLOC_CPUSET;
3704 if (!ac.nodemask)
3705 ac.nodemask = &cpuset_current_mems_allowed;
3706 }
3707
dcce284a
BH
3708 gfp_mask &= gfp_allowed_mask;
3709
11e33f6a
MG
3710 lockdep_trace_alloc(gfp_mask);
3711
d0164adc 3712 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3713
3714 if (should_fail_alloc_page(gfp_mask, order))
3715 return NULL;
3716
3717 /*
3718 * Check the zones suitable for the gfp_mask contain at least one
3719 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3720 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3721 */
3722 if (unlikely(!zonelist->_zonerefs->zone))
3723 return NULL;
3724
a9263751 3725 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3726 alloc_flags |= ALLOC_CMA;
3727
cc9a6c87 3728retry_cpuset:
d26914d1 3729 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3730
c9ab0c4f
MG
3731 /* Dirty zone balancing only done in the fast path */
3732 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3733
e46e7b77
MG
3734 /*
3735 * The preferred zone is used for statistics but crucially it is
3736 * also used as the starting point for the zonelist iterator. It
3737 * may get reset for allocations that ignore memory policies.
3738 */
c33d6c06
MG
3739 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3740 ac.high_zoneidx, ac.nodemask);
3741 if (!ac.preferred_zoneref) {
5bb1b169 3742 page = NULL;
4fcb0971 3743 goto no_zone;
5bb1b169
MG
3744 }
3745
5117f45d 3746 /* First allocation attempt */
a9263751 3747 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3748 if (likely(page))
3749 goto out;
11e33f6a 3750
4fcb0971
MG
3751 /*
3752 * Runtime PM, block IO and its error handling path can deadlock
3753 * because I/O on the device might not complete.
3754 */
3755 alloc_mask = memalloc_noio_flags(gfp_mask);
3756 ac.spread_dirty_pages = false;
23f086f9 3757
4741526b
MG
3758 /*
3759 * Restore the original nodemask if it was potentially replaced with
3760 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3761 */
3762 if (cpusets_enabled())
3763 ac.nodemask = nodemask;
4fcb0971 3764 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3765
4fcb0971 3766no_zone:
cc9a6c87
MG
3767 /*
3768 * When updating a task's mems_allowed, it is possible to race with
3769 * parallel threads in such a way that an allocation can fail while
3770 * the mask is being updated. If a page allocation is about to fail,
3771 * check if the cpuset changed during allocation and if so, retry.
3772 */
83d4ca81
MG
3773 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3774 alloc_mask = gfp_mask;
cc9a6c87 3775 goto retry_cpuset;
83d4ca81 3776 }
cc9a6c87 3777
4fcb0971 3778out:
4949148a
VD
3779 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page) {
3780 if (unlikely(memcg_kmem_charge(page, gfp_mask, order))) {
3781 __free_pages(page, order);
3782 page = NULL;
3783 } else
3784 __SetPageKmemcg(page);
3785 }
3786
4fcb0971
MG
3787 if (kmemcheck_enabled && page)
3788 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3789
3790 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3791
11e33f6a 3792 return page;
1da177e4 3793}
d239171e 3794EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3795
3796/*
3797 * Common helper functions.
3798 */
920c7a5d 3799unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3800{
945a1113
AM
3801 struct page *page;
3802
3803 /*
3804 * __get_free_pages() returns a 32-bit address, which cannot represent
3805 * a highmem page
3806 */
3807 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3808
1da177e4
LT
3809 page = alloc_pages(gfp_mask, order);
3810 if (!page)
3811 return 0;
3812 return (unsigned long) page_address(page);
3813}
1da177e4
LT
3814EXPORT_SYMBOL(__get_free_pages);
3815
920c7a5d 3816unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3817{
945a1113 3818 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3819}
1da177e4
LT
3820EXPORT_SYMBOL(get_zeroed_page);
3821
920c7a5d 3822void __free_pages(struct page *page, unsigned int order)
1da177e4 3823{
b5810039 3824 if (put_page_testzero(page)) {
1da177e4 3825 if (order == 0)
b745bc85 3826 free_hot_cold_page(page, false);
1da177e4
LT
3827 else
3828 __free_pages_ok(page, order);
3829 }
3830}
3831
3832EXPORT_SYMBOL(__free_pages);
3833
920c7a5d 3834void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3835{
3836 if (addr != 0) {
725d704e 3837 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3838 __free_pages(virt_to_page((void *)addr), order);
3839 }
3840}
3841
3842EXPORT_SYMBOL(free_pages);
3843
b63ae8ca
AD
3844/*
3845 * Page Fragment:
3846 * An arbitrary-length arbitrary-offset area of memory which resides
3847 * within a 0 or higher order page. Multiple fragments within that page
3848 * are individually refcounted, in the page's reference counter.
3849 *
3850 * The page_frag functions below provide a simple allocation framework for
3851 * page fragments. This is used by the network stack and network device
3852 * drivers to provide a backing region of memory for use as either an
3853 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3854 */
3855static struct page *__page_frag_refill(struct page_frag_cache *nc,
3856 gfp_t gfp_mask)
3857{
3858 struct page *page = NULL;
3859 gfp_t gfp = gfp_mask;
3860
3861#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3862 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3863 __GFP_NOMEMALLOC;
3864 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3865 PAGE_FRAG_CACHE_MAX_ORDER);
3866 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3867#endif
3868 if (unlikely(!page))
3869 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3870
3871 nc->va = page ? page_address(page) : NULL;
3872
3873 return page;
3874}
3875
3876void *__alloc_page_frag(struct page_frag_cache *nc,
3877 unsigned int fragsz, gfp_t gfp_mask)
3878{
3879 unsigned int size = PAGE_SIZE;
3880 struct page *page;
3881 int offset;
3882
3883 if (unlikely(!nc->va)) {
3884refill:
3885 page = __page_frag_refill(nc, gfp_mask);
3886 if (!page)
3887 return NULL;
3888
3889#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3890 /* if size can vary use size else just use PAGE_SIZE */
3891 size = nc->size;
3892#endif
3893 /* Even if we own the page, we do not use atomic_set().
3894 * This would break get_page_unless_zero() users.
3895 */
fe896d18 3896 page_ref_add(page, size - 1);
b63ae8ca
AD
3897
3898 /* reset page count bias and offset to start of new frag */
2f064f34 3899 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3900 nc->pagecnt_bias = size;
3901 nc->offset = size;
3902 }
3903
3904 offset = nc->offset - fragsz;
3905 if (unlikely(offset < 0)) {
3906 page = virt_to_page(nc->va);
3907
fe896d18 3908 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3909 goto refill;
3910
3911#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3912 /* if size can vary use size else just use PAGE_SIZE */
3913 size = nc->size;
3914#endif
3915 /* OK, page count is 0, we can safely set it */
fe896d18 3916 set_page_count(page, size);
b63ae8ca
AD
3917
3918 /* reset page count bias and offset to start of new frag */
3919 nc->pagecnt_bias = size;
3920 offset = size - fragsz;
3921 }
3922
3923 nc->pagecnt_bias--;
3924 nc->offset = offset;
3925
3926 return nc->va + offset;
3927}
3928EXPORT_SYMBOL(__alloc_page_frag);
3929
3930/*
3931 * Frees a page fragment allocated out of either a compound or order 0 page.
3932 */
3933void __free_page_frag(void *addr)
3934{
3935 struct page *page = virt_to_head_page(addr);
3936
3937 if (unlikely(put_page_testzero(page)))
3938 __free_pages_ok(page, compound_order(page));
3939}
3940EXPORT_SYMBOL(__free_page_frag);
3941
d00181b9
KS
3942static void *make_alloc_exact(unsigned long addr, unsigned int order,
3943 size_t size)
ee85c2e1
AK
3944{
3945 if (addr) {
3946 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3947 unsigned long used = addr + PAGE_ALIGN(size);
3948
3949 split_page(virt_to_page((void *)addr), order);
3950 while (used < alloc_end) {
3951 free_page(used);
3952 used += PAGE_SIZE;
3953 }
3954 }
3955 return (void *)addr;
3956}
3957
2be0ffe2
TT
3958/**
3959 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3960 * @size: the number of bytes to allocate
3961 * @gfp_mask: GFP flags for the allocation
3962 *
3963 * This function is similar to alloc_pages(), except that it allocates the
3964 * minimum number of pages to satisfy the request. alloc_pages() can only
3965 * allocate memory in power-of-two pages.
3966 *
3967 * This function is also limited by MAX_ORDER.
3968 *
3969 * Memory allocated by this function must be released by free_pages_exact().
3970 */
3971void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3972{
3973 unsigned int order = get_order(size);
3974 unsigned long addr;
3975
3976 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3977 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3978}
3979EXPORT_SYMBOL(alloc_pages_exact);
3980
ee85c2e1
AK
3981/**
3982 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3983 * pages on a node.
b5e6ab58 3984 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3985 * @size: the number of bytes to allocate
3986 * @gfp_mask: GFP flags for the allocation
3987 *
3988 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3989 * back.
ee85c2e1 3990 */
e1931811 3991void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3992{
d00181b9 3993 unsigned int order = get_order(size);
ee85c2e1
AK
3994 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3995 if (!p)
3996 return NULL;
3997 return make_alloc_exact((unsigned long)page_address(p), order, size);
3998}
ee85c2e1 3999
2be0ffe2
TT
4000/**
4001 * free_pages_exact - release memory allocated via alloc_pages_exact()
4002 * @virt: the value returned by alloc_pages_exact.
4003 * @size: size of allocation, same value as passed to alloc_pages_exact().
4004 *
4005 * Release the memory allocated by a previous call to alloc_pages_exact.
4006 */
4007void free_pages_exact(void *virt, size_t size)
4008{
4009 unsigned long addr = (unsigned long)virt;
4010 unsigned long end = addr + PAGE_ALIGN(size);
4011
4012 while (addr < end) {
4013 free_page(addr);
4014 addr += PAGE_SIZE;
4015 }
4016}
4017EXPORT_SYMBOL(free_pages_exact);
4018
e0fb5815
ZY
4019/**
4020 * nr_free_zone_pages - count number of pages beyond high watermark
4021 * @offset: The zone index of the highest zone
4022 *
4023 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4024 * high watermark within all zones at or below a given zone index. For each
4025 * zone, the number of pages is calculated as:
834405c3 4026 * managed_pages - high_pages
e0fb5815 4027 */
ebec3862 4028static unsigned long nr_free_zone_pages(int offset)
1da177e4 4029{
dd1a239f 4030 struct zoneref *z;
54a6eb5c
MG
4031 struct zone *zone;
4032
e310fd43 4033 /* Just pick one node, since fallback list is circular */
ebec3862 4034 unsigned long sum = 0;
1da177e4 4035
0e88460d 4036 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4037
54a6eb5c 4038 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4039 unsigned long size = zone->managed_pages;
41858966 4040 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4041 if (size > high)
4042 sum += size - high;
1da177e4
LT
4043 }
4044
4045 return sum;
4046}
4047
e0fb5815
ZY
4048/**
4049 * nr_free_buffer_pages - count number of pages beyond high watermark
4050 *
4051 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4052 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4053 */
ebec3862 4054unsigned long nr_free_buffer_pages(void)
1da177e4 4055{
af4ca457 4056 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4057}
c2f1a551 4058EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4059
e0fb5815
ZY
4060/**
4061 * nr_free_pagecache_pages - count number of pages beyond high watermark
4062 *
4063 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4064 * high watermark within all zones.
1da177e4 4065 */
ebec3862 4066unsigned long nr_free_pagecache_pages(void)
1da177e4 4067{
2a1e274a 4068 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4069}
08e0f6a9
CL
4070
4071static inline void show_node(struct zone *zone)
1da177e4 4072{
e5adfffc 4073 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4074 printk("Node %d ", zone_to_nid(zone));
1da177e4 4075}
1da177e4 4076
d02bd27b
IR
4077long si_mem_available(void)
4078{
4079 long available;
4080 unsigned long pagecache;
4081 unsigned long wmark_low = 0;
4082 unsigned long pages[NR_LRU_LISTS];
4083 struct zone *zone;
4084 int lru;
4085
4086 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4087 pages[lru] = global_page_state(NR_LRU_BASE + lru);
4088
4089 for_each_zone(zone)
4090 wmark_low += zone->watermark[WMARK_LOW];
4091
4092 /*
4093 * Estimate the amount of memory available for userspace allocations,
4094 * without causing swapping.
4095 */
4096 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4097
4098 /*
4099 * Not all the page cache can be freed, otherwise the system will
4100 * start swapping. Assume at least half of the page cache, or the
4101 * low watermark worth of cache, needs to stay.
4102 */
4103 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4104 pagecache -= min(pagecache / 2, wmark_low);
4105 available += pagecache;
4106
4107 /*
4108 * Part of the reclaimable slab consists of items that are in use,
4109 * and cannot be freed. Cap this estimate at the low watermark.
4110 */
4111 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4112 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4113
4114 if (available < 0)
4115 available = 0;
4116 return available;
4117}
4118EXPORT_SYMBOL_GPL(si_mem_available);
4119
1da177e4
LT
4120void si_meminfo(struct sysinfo *val)
4121{
4122 val->totalram = totalram_pages;
11fb9989 4123 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4124 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4125 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4126 val->totalhigh = totalhigh_pages;
4127 val->freehigh = nr_free_highpages();
1da177e4
LT
4128 val->mem_unit = PAGE_SIZE;
4129}
4130
4131EXPORT_SYMBOL(si_meminfo);
4132
4133#ifdef CONFIG_NUMA
4134void si_meminfo_node(struct sysinfo *val, int nid)
4135{
cdd91a77
JL
4136 int zone_type; /* needs to be signed */
4137 unsigned long managed_pages = 0;
fc2bd799
JK
4138 unsigned long managed_highpages = 0;
4139 unsigned long free_highpages = 0;
1da177e4
LT
4140 pg_data_t *pgdat = NODE_DATA(nid);
4141
cdd91a77
JL
4142 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4143 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4144 val->totalram = managed_pages;
11fb9989 4145 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4146 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4147#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4148 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4149 struct zone *zone = &pgdat->node_zones[zone_type];
4150
4151 if (is_highmem(zone)) {
4152 managed_highpages += zone->managed_pages;
4153 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4154 }
4155 }
4156 val->totalhigh = managed_highpages;
4157 val->freehigh = free_highpages;
98d2b0eb 4158#else
fc2bd799
JK
4159 val->totalhigh = managed_highpages;
4160 val->freehigh = free_highpages;
98d2b0eb 4161#endif
1da177e4
LT
4162 val->mem_unit = PAGE_SIZE;
4163}
4164#endif
4165
ddd588b5 4166/*
7bf02ea2
DR
4167 * Determine whether the node should be displayed or not, depending on whether
4168 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4169 */
7bf02ea2 4170bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4171{
4172 bool ret = false;
cc9a6c87 4173 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4174
4175 if (!(flags & SHOW_MEM_FILTER_NODES))
4176 goto out;
4177
cc9a6c87 4178 do {
d26914d1 4179 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4180 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4181 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4182out:
4183 return ret;
4184}
4185
1da177e4
LT
4186#define K(x) ((x) << (PAGE_SHIFT-10))
4187
377e4f16
RV
4188static void show_migration_types(unsigned char type)
4189{
4190 static const char types[MIGRATE_TYPES] = {
4191 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4192 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4193 [MIGRATE_RECLAIMABLE] = 'E',
4194 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4195#ifdef CONFIG_CMA
4196 [MIGRATE_CMA] = 'C',
4197#endif
194159fb 4198#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4199 [MIGRATE_ISOLATE] = 'I',
194159fb 4200#endif
377e4f16
RV
4201 };
4202 char tmp[MIGRATE_TYPES + 1];
4203 char *p = tmp;
4204 int i;
4205
4206 for (i = 0; i < MIGRATE_TYPES; i++) {
4207 if (type & (1 << i))
4208 *p++ = types[i];
4209 }
4210
4211 *p = '\0';
4212 printk("(%s) ", tmp);
4213}
4214
1da177e4
LT
4215/*
4216 * Show free area list (used inside shift_scroll-lock stuff)
4217 * We also calculate the percentage fragmentation. We do this by counting the
4218 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4219 *
4220 * Bits in @filter:
4221 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4222 * cpuset.
1da177e4 4223 */
7bf02ea2 4224void show_free_areas(unsigned int filter)
1da177e4 4225{
d1bfcdb8 4226 unsigned long free_pcp = 0;
c7241913 4227 int cpu;
1da177e4 4228 struct zone *zone;
599d0c95 4229 pg_data_t *pgdat;
1da177e4 4230
ee99c71c 4231 for_each_populated_zone(zone) {
7bf02ea2 4232 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4233 continue;
d1bfcdb8 4234
761b0677
KK
4235 for_each_online_cpu(cpu)
4236 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4237 }
4238
a731286d
KM
4239 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4240 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4241 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4242 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4243 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4244 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4245 global_node_page_state(NR_ACTIVE_ANON),
4246 global_node_page_state(NR_INACTIVE_ANON),
4247 global_node_page_state(NR_ISOLATED_ANON),
4248 global_node_page_state(NR_ACTIVE_FILE),
4249 global_node_page_state(NR_INACTIVE_FILE),
4250 global_node_page_state(NR_ISOLATED_FILE),
4251 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4252 global_node_page_state(NR_FILE_DIRTY),
4253 global_node_page_state(NR_WRITEBACK),
4254 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4255 global_page_state(NR_SLAB_RECLAIMABLE),
4256 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4257 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4258 global_node_page_state(NR_SHMEM),
a25700a5 4259 global_page_state(NR_PAGETABLE),
d1ce749a 4260 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4261 global_page_state(NR_FREE_PAGES),
4262 free_pcp,
d1ce749a 4263 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4264
599d0c95
MG
4265 for_each_online_pgdat(pgdat) {
4266 printk("Node %d"
4267 " active_anon:%lukB"
4268 " inactive_anon:%lukB"
4269 " active_file:%lukB"
4270 " inactive_file:%lukB"
4271 " unevictable:%lukB"
4272 " isolated(anon):%lukB"
4273 " isolated(file):%lukB"
50658e2e 4274 " mapped:%lukB"
11fb9989
MG
4275 " dirty:%lukB"
4276 " writeback:%lukB"
4277 " shmem:%lukB"
4278#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4279 " shmem_thp: %lukB"
4280 " shmem_pmdmapped: %lukB"
4281 " anon_thp: %lukB"
4282#endif
4283 " writeback_tmp:%lukB"
4284 " unstable:%lukB"
599d0c95
MG
4285 " all_unreclaimable? %s"
4286 "\n",
4287 pgdat->node_id,
4288 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4289 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4290 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4291 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4292 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4293 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4294 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4295 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4296 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4297 K(node_page_state(pgdat, NR_WRITEBACK)),
4298#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4299 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4300 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4301 * HPAGE_PMD_NR),
4302 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4303#endif
4304 K(node_page_state(pgdat, NR_SHMEM)),
4305 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4306 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
599d0c95
MG
4307 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4308 }
4309
ee99c71c 4310 for_each_populated_zone(zone) {
1da177e4
LT
4311 int i;
4312
7bf02ea2 4313 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4314 continue;
d1bfcdb8
KK
4315
4316 free_pcp = 0;
4317 for_each_online_cpu(cpu)
4318 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4319
1da177e4
LT
4320 show_node(zone);
4321 printk("%s"
4322 " free:%lukB"
4323 " min:%lukB"
4324 " low:%lukB"
4325 " high:%lukB"
1da177e4 4326 " present:%lukB"
9feedc9d 4327 " managed:%lukB"
4a0aa73f 4328 " mlocked:%lukB"
4a0aa73f
KM
4329 " slab_reclaimable:%lukB"
4330 " slab_unreclaimable:%lukB"
c6a7f572 4331 " kernel_stack:%lukB"
4a0aa73f 4332 " pagetables:%lukB"
4a0aa73f 4333 " bounce:%lukB"
d1bfcdb8
KK
4334 " free_pcp:%lukB"
4335 " local_pcp:%ukB"
d1ce749a 4336 " free_cma:%lukB"
599d0c95 4337 " node_pages_scanned:%lu"
1da177e4
LT
4338 "\n",
4339 zone->name,
88f5acf8 4340 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4341 K(min_wmark_pages(zone)),
4342 K(low_wmark_pages(zone)),
4343 K(high_wmark_pages(zone)),
1da177e4 4344 K(zone->present_pages),
9feedc9d 4345 K(zone->managed_pages),
4a0aa73f 4346 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4347 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4348 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
4349 zone_page_state(zone, NR_KERNEL_STACK) *
4350 THREAD_SIZE / 1024,
4a0aa73f 4351 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4352 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4353 K(free_pcp),
4354 K(this_cpu_read(zone->pageset->pcp.count)),
d1ce749a 4355 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
599d0c95 4356 K(node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED)));
1da177e4
LT
4357 printk("lowmem_reserve[]:");
4358 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4359 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4360 printk("\n");
4361 }
4362
ee99c71c 4363 for_each_populated_zone(zone) {
d00181b9
KS
4364 unsigned int order;
4365 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4366 unsigned char types[MAX_ORDER];
1da177e4 4367
7bf02ea2 4368 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4369 continue;
1da177e4
LT
4370 show_node(zone);
4371 printk("%s: ", zone->name);
1da177e4
LT
4372
4373 spin_lock_irqsave(&zone->lock, flags);
4374 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4375 struct free_area *area = &zone->free_area[order];
4376 int type;
4377
4378 nr[order] = area->nr_free;
8f9de51a 4379 total += nr[order] << order;
377e4f16
RV
4380
4381 types[order] = 0;
4382 for (type = 0; type < MIGRATE_TYPES; type++) {
4383 if (!list_empty(&area->free_list[type]))
4384 types[order] |= 1 << type;
4385 }
1da177e4
LT
4386 }
4387 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4388 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4389 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4390 if (nr[order])
4391 show_migration_types(types[order]);
4392 }
1da177e4
LT
4393 printk("= %lukB\n", K(total));
4394 }
4395
949f7ec5
DR
4396 hugetlb_show_meminfo();
4397
11fb9989 4398 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4399
1da177e4
LT
4400 show_swap_cache_info();
4401}
4402
19770b32
MG
4403static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4404{
4405 zoneref->zone = zone;
4406 zoneref->zone_idx = zone_idx(zone);
4407}
4408
1da177e4
LT
4409/*
4410 * Builds allocation fallback zone lists.
1a93205b
CL
4411 *
4412 * Add all populated zones of a node to the zonelist.
1da177e4 4413 */
f0c0b2b8 4414static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4415 int nr_zones)
1da177e4 4416{
1a93205b 4417 struct zone *zone;
bc732f1d 4418 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4419
4420 do {
2f6726e5 4421 zone_type--;
070f8032 4422 zone = pgdat->node_zones + zone_type;
1a93205b 4423 if (populated_zone(zone)) {
dd1a239f
MG
4424 zoneref_set_zone(zone,
4425 &zonelist->_zonerefs[nr_zones++]);
070f8032 4426 check_highest_zone(zone_type);
1da177e4 4427 }
2f6726e5 4428 } while (zone_type);
bc732f1d 4429
070f8032 4430 return nr_zones;
1da177e4
LT
4431}
4432
f0c0b2b8
KH
4433
4434/*
4435 * zonelist_order:
4436 * 0 = automatic detection of better ordering.
4437 * 1 = order by ([node] distance, -zonetype)
4438 * 2 = order by (-zonetype, [node] distance)
4439 *
4440 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4441 * the same zonelist. So only NUMA can configure this param.
4442 */
4443#define ZONELIST_ORDER_DEFAULT 0
4444#define ZONELIST_ORDER_NODE 1
4445#define ZONELIST_ORDER_ZONE 2
4446
4447/* zonelist order in the kernel.
4448 * set_zonelist_order() will set this to NODE or ZONE.
4449 */
4450static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4451static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4452
4453
1da177e4 4454#ifdef CONFIG_NUMA
f0c0b2b8
KH
4455/* The value user specified ....changed by config */
4456static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4457/* string for sysctl */
4458#define NUMA_ZONELIST_ORDER_LEN 16
4459char numa_zonelist_order[16] = "default";
4460
4461/*
4462 * interface for configure zonelist ordering.
4463 * command line option "numa_zonelist_order"
4464 * = "[dD]efault - default, automatic configuration.
4465 * = "[nN]ode - order by node locality, then by zone within node
4466 * = "[zZ]one - order by zone, then by locality within zone
4467 */
4468
4469static int __parse_numa_zonelist_order(char *s)
4470{
4471 if (*s == 'd' || *s == 'D') {
4472 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4473 } else if (*s == 'n' || *s == 'N') {
4474 user_zonelist_order = ZONELIST_ORDER_NODE;
4475 } else if (*s == 'z' || *s == 'Z') {
4476 user_zonelist_order = ZONELIST_ORDER_ZONE;
4477 } else {
1170532b 4478 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4479 return -EINVAL;
4480 }
4481 return 0;
4482}
4483
4484static __init int setup_numa_zonelist_order(char *s)
4485{
ecb256f8
VL
4486 int ret;
4487
4488 if (!s)
4489 return 0;
4490
4491 ret = __parse_numa_zonelist_order(s);
4492 if (ret == 0)
4493 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4494
4495 return ret;
f0c0b2b8
KH
4496}
4497early_param("numa_zonelist_order", setup_numa_zonelist_order);
4498
4499/*
4500 * sysctl handler for numa_zonelist_order
4501 */
cccad5b9 4502int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4503 void __user *buffer, size_t *length,
f0c0b2b8
KH
4504 loff_t *ppos)
4505{
4506 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4507 int ret;
443c6f14 4508 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4509
443c6f14 4510 mutex_lock(&zl_order_mutex);
dacbde09
CG
4511 if (write) {
4512 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4513 ret = -EINVAL;
4514 goto out;
4515 }
4516 strcpy(saved_string, (char *)table->data);
4517 }
8d65af78 4518 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4519 if (ret)
443c6f14 4520 goto out;
f0c0b2b8
KH
4521 if (write) {
4522 int oldval = user_zonelist_order;
dacbde09
CG
4523
4524 ret = __parse_numa_zonelist_order((char *)table->data);
4525 if (ret) {
f0c0b2b8
KH
4526 /*
4527 * bogus value. restore saved string
4528 */
dacbde09 4529 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4530 NUMA_ZONELIST_ORDER_LEN);
4531 user_zonelist_order = oldval;
4eaf3f64
HL
4532 } else if (oldval != user_zonelist_order) {
4533 mutex_lock(&zonelists_mutex);
9adb62a5 4534 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4535 mutex_unlock(&zonelists_mutex);
4536 }
f0c0b2b8 4537 }
443c6f14
AK
4538out:
4539 mutex_unlock(&zl_order_mutex);
4540 return ret;
f0c0b2b8
KH
4541}
4542
4543
62bc62a8 4544#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4545static int node_load[MAX_NUMNODES];
4546
1da177e4 4547/**
4dc3b16b 4548 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4549 * @node: node whose fallback list we're appending
4550 * @used_node_mask: nodemask_t of already used nodes
4551 *
4552 * We use a number of factors to determine which is the next node that should
4553 * appear on a given node's fallback list. The node should not have appeared
4554 * already in @node's fallback list, and it should be the next closest node
4555 * according to the distance array (which contains arbitrary distance values
4556 * from each node to each node in the system), and should also prefer nodes
4557 * with no CPUs, since presumably they'll have very little allocation pressure
4558 * on them otherwise.
4559 * It returns -1 if no node is found.
4560 */
f0c0b2b8 4561static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4562{
4cf808eb 4563 int n, val;
1da177e4 4564 int min_val = INT_MAX;
00ef2d2f 4565 int best_node = NUMA_NO_NODE;
a70f7302 4566 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4567
4cf808eb
LT
4568 /* Use the local node if we haven't already */
4569 if (!node_isset(node, *used_node_mask)) {
4570 node_set(node, *used_node_mask);
4571 return node;
4572 }
1da177e4 4573
4b0ef1fe 4574 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4575
4576 /* Don't want a node to appear more than once */
4577 if (node_isset(n, *used_node_mask))
4578 continue;
4579
1da177e4
LT
4580 /* Use the distance array to find the distance */
4581 val = node_distance(node, n);
4582
4cf808eb
LT
4583 /* Penalize nodes under us ("prefer the next node") */
4584 val += (n < node);
4585
1da177e4 4586 /* Give preference to headless and unused nodes */
a70f7302
RR
4587 tmp = cpumask_of_node(n);
4588 if (!cpumask_empty(tmp))
1da177e4
LT
4589 val += PENALTY_FOR_NODE_WITH_CPUS;
4590
4591 /* Slight preference for less loaded node */
4592 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4593 val += node_load[n];
4594
4595 if (val < min_val) {
4596 min_val = val;
4597 best_node = n;
4598 }
4599 }
4600
4601 if (best_node >= 0)
4602 node_set(best_node, *used_node_mask);
4603
4604 return best_node;
4605}
4606
f0c0b2b8
KH
4607
4608/*
4609 * Build zonelists ordered by node and zones within node.
4610 * This results in maximum locality--normal zone overflows into local
4611 * DMA zone, if any--but risks exhausting DMA zone.
4612 */
4613static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4614{
f0c0b2b8 4615 int j;
1da177e4 4616 struct zonelist *zonelist;
f0c0b2b8 4617
54a6eb5c 4618 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4619 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4620 ;
bc732f1d 4621 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4622 zonelist->_zonerefs[j].zone = NULL;
4623 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4624}
4625
523b9458
CL
4626/*
4627 * Build gfp_thisnode zonelists
4628 */
4629static void build_thisnode_zonelists(pg_data_t *pgdat)
4630{
523b9458
CL
4631 int j;
4632 struct zonelist *zonelist;
4633
54a6eb5c 4634 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4635 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4636 zonelist->_zonerefs[j].zone = NULL;
4637 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4638}
4639
f0c0b2b8
KH
4640/*
4641 * Build zonelists ordered by zone and nodes within zones.
4642 * This results in conserving DMA zone[s] until all Normal memory is
4643 * exhausted, but results in overflowing to remote node while memory
4644 * may still exist in local DMA zone.
4645 */
4646static int node_order[MAX_NUMNODES];
4647
4648static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4649{
f0c0b2b8
KH
4650 int pos, j, node;
4651 int zone_type; /* needs to be signed */
4652 struct zone *z;
4653 struct zonelist *zonelist;
4654
54a6eb5c
MG
4655 zonelist = &pgdat->node_zonelists[0];
4656 pos = 0;
4657 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4658 for (j = 0; j < nr_nodes; j++) {
4659 node = node_order[j];
4660 z = &NODE_DATA(node)->node_zones[zone_type];
4661 if (populated_zone(z)) {
dd1a239f
MG
4662 zoneref_set_zone(z,
4663 &zonelist->_zonerefs[pos++]);
54a6eb5c 4664 check_highest_zone(zone_type);
f0c0b2b8
KH
4665 }
4666 }
f0c0b2b8 4667 }
dd1a239f
MG
4668 zonelist->_zonerefs[pos].zone = NULL;
4669 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4670}
4671
3193913c
MG
4672#if defined(CONFIG_64BIT)
4673/*
4674 * Devices that require DMA32/DMA are relatively rare and do not justify a
4675 * penalty to every machine in case the specialised case applies. Default
4676 * to Node-ordering on 64-bit NUMA machines
4677 */
4678static int default_zonelist_order(void)
4679{
4680 return ZONELIST_ORDER_NODE;
4681}
4682#else
4683/*
4684 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4685 * by the kernel. If processes running on node 0 deplete the low memory zone
4686 * then reclaim will occur more frequency increasing stalls and potentially
4687 * be easier to OOM if a large percentage of the zone is under writeback or
4688 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4689 * Hence, default to zone ordering on 32-bit.
4690 */
f0c0b2b8
KH
4691static int default_zonelist_order(void)
4692{
f0c0b2b8
KH
4693 return ZONELIST_ORDER_ZONE;
4694}
3193913c 4695#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4696
4697static void set_zonelist_order(void)
4698{
4699 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4700 current_zonelist_order = default_zonelist_order();
4701 else
4702 current_zonelist_order = user_zonelist_order;
4703}
4704
4705static void build_zonelists(pg_data_t *pgdat)
4706{
c00eb15a 4707 int i, node, load;
1da177e4 4708 nodemask_t used_mask;
f0c0b2b8
KH
4709 int local_node, prev_node;
4710 struct zonelist *zonelist;
d00181b9 4711 unsigned int order = current_zonelist_order;
1da177e4
LT
4712
4713 /* initialize zonelists */
523b9458 4714 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4715 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4716 zonelist->_zonerefs[0].zone = NULL;
4717 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4718 }
4719
4720 /* NUMA-aware ordering of nodes */
4721 local_node = pgdat->node_id;
62bc62a8 4722 load = nr_online_nodes;
1da177e4
LT
4723 prev_node = local_node;
4724 nodes_clear(used_mask);
f0c0b2b8 4725
f0c0b2b8 4726 memset(node_order, 0, sizeof(node_order));
c00eb15a 4727 i = 0;
f0c0b2b8 4728
1da177e4
LT
4729 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4730 /*
4731 * We don't want to pressure a particular node.
4732 * So adding penalty to the first node in same
4733 * distance group to make it round-robin.
4734 */
957f822a
DR
4735 if (node_distance(local_node, node) !=
4736 node_distance(local_node, prev_node))
f0c0b2b8
KH
4737 node_load[node] = load;
4738
1da177e4
LT
4739 prev_node = node;
4740 load--;
f0c0b2b8
KH
4741 if (order == ZONELIST_ORDER_NODE)
4742 build_zonelists_in_node_order(pgdat, node);
4743 else
c00eb15a 4744 node_order[i++] = node; /* remember order */
f0c0b2b8 4745 }
1da177e4 4746
f0c0b2b8
KH
4747 if (order == ZONELIST_ORDER_ZONE) {
4748 /* calculate node order -- i.e., DMA last! */
c00eb15a 4749 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4750 }
523b9458
CL
4751
4752 build_thisnode_zonelists(pgdat);
1da177e4
LT
4753}
4754
7aac7898
LS
4755#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4756/*
4757 * Return node id of node used for "local" allocations.
4758 * I.e., first node id of first zone in arg node's generic zonelist.
4759 * Used for initializing percpu 'numa_mem', which is used primarily
4760 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4761 */
4762int local_memory_node(int node)
4763{
c33d6c06 4764 struct zoneref *z;
7aac7898 4765
c33d6c06 4766 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4767 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4768 NULL);
4769 return z->zone->node;
7aac7898
LS
4770}
4771#endif
f0c0b2b8 4772
1da177e4
LT
4773#else /* CONFIG_NUMA */
4774
f0c0b2b8
KH
4775static void set_zonelist_order(void)
4776{
4777 current_zonelist_order = ZONELIST_ORDER_ZONE;
4778}
4779
4780static void build_zonelists(pg_data_t *pgdat)
1da177e4 4781{
19655d34 4782 int node, local_node;
54a6eb5c
MG
4783 enum zone_type j;
4784 struct zonelist *zonelist;
1da177e4
LT
4785
4786 local_node = pgdat->node_id;
1da177e4 4787
54a6eb5c 4788 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4789 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4790
54a6eb5c
MG
4791 /*
4792 * Now we build the zonelist so that it contains the zones
4793 * of all the other nodes.
4794 * We don't want to pressure a particular node, so when
4795 * building the zones for node N, we make sure that the
4796 * zones coming right after the local ones are those from
4797 * node N+1 (modulo N)
4798 */
4799 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4800 if (!node_online(node))
4801 continue;
bc732f1d 4802 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4803 }
54a6eb5c
MG
4804 for (node = 0; node < local_node; node++) {
4805 if (!node_online(node))
4806 continue;
bc732f1d 4807 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4808 }
4809
dd1a239f
MG
4810 zonelist->_zonerefs[j].zone = NULL;
4811 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4812}
4813
4814#endif /* CONFIG_NUMA */
4815
99dcc3e5
CL
4816/*
4817 * Boot pageset table. One per cpu which is going to be used for all
4818 * zones and all nodes. The parameters will be set in such a way
4819 * that an item put on a list will immediately be handed over to
4820 * the buddy list. This is safe since pageset manipulation is done
4821 * with interrupts disabled.
4822 *
4823 * The boot_pagesets must be kept even after bootup is complete for
4824 * unused processors and/or zones. They do play a role for bootstrapping
4825 * hotplugged processors.
4826 *
4827 * zoneinfo_show() and maybe other functions do
4828 * not check if the processor is online before following the pageset pointer.
4829 * Other parts of the kernel may not check if the zone is available.
4830 */
4831static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4832static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4833static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4834
4eaf3f64
HL
4835/*
4836 * Global mutex to protect against size modification of zonelists
4837 * as well as to serialize pageset setup for the new populated zone.
4838 */
4839DEFINE_MUTEX(zonelists_mutex);
4840
9b1a4d38 4841/* return values int ....just for stop_machine() */
4ed7e022 4842static int __build_all_zonelists(void *data)
1da177e4 4843{
6811378e 4844 int nid;
99dcc3e5 4845 int cpu;
9adb62a5 4846 pg_data_t *self = data;
9276b1bc 4847
7f9cfb31
BL
4848#ifdef CONFIG_NUMA
4849 memset(node_load, 0, sizeof(node_load));
4850#endif
9adb62a5
JL
4851
4852 if (self && !node_online(self->node_id)) {
4853 build_zonelists(self);
9adb62a5
JL
4854 }
4855
9276b1bc 4856 for_each_online_node(nid) {
7ea1530a
CL
4857 pg_data_t *pgdat = NODE_DATA(nid);
4858
4859 build_zonelists(pgdat);
9276b1bc 4860 }
99dcc3e5
CL
4861
4862 /*
4863 * Initialize the boot_pagesets that are going to be used
4864 * for bootstrapping processors. The real pagesets for
4865 * each zone will be allocated later when the per cpu
4866 * allocator is available.
4867 *
4868 * boot_pagesets are used also for bootstrapping offline
4869 * cpus if the system is already booted because the pagesets
4870 * are needed to initialize allocators on a specific cpu too.
4871 * F.e. the percpu allocator needs the page allocator which
4872 * needs the percpu allocator in order to allocate its pagesets
4873 * (a chicken-egg dilemma).
4874 */
7aac7898 4875 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4876 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4877
7aac7898
LS
4878#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4879 /*
4880 * We now know the "local memory node" for each node--
4881 * i.e., the node of the first zone in the generic zonelist.
4882 * Set up numa_mem percpu variable for on-line cpus. During
4883 * boot, only the boot cpu should be on-line; we'll init the
4884 * secondary cpus' numa_mem as they come on-line. During
4885 * node/memory hotplug, we'll fixup all on-line cpus.
4886 */
4887 if (cpu_online(cpu))
4888 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4889#endif
4890 }
4891
6811378e
YG
4892 return 0;
4893}
4894
061f67bc
RV
4895static noinline void __init
4896build_all_zonelists_init(void)
4897{
4898 __build_all_zonelists(NULL);
4899 mminit_verify_zonelist();
4900 cpuset_init_current_mems_allowed();
4901}
4902
4eaf3f64
HL
4903/*
4904 * Called with zonelists_mutex held always
4905 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4906 *
4907 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4908 * [we're only called with non-NULL zone through __meminit paths] and
4909 * (2) call of __init annotated helper build_all_zonelists_init
4910 * [protected by SYSTEM_BOOTING].
4eaf3f64 4911 */
9adb62a5 4912void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4913{
f0c0b2b8
KH
4914 set_zonelist_order();
4915
6811378e 4916 if (system_state == SYSTEM_BOOTING) {
061f67bc 4917 build_all_zonelists_init();
6811378e 4918 } else {
e9959f0f 4919#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4920 if (zone)
4921 setup_zone_pageset(zone);
e9959f0f 4922#endif
dd1895e2
CS
4923 /* we have to stop all cpus to guarantee there is no user
4924 of zonelist */
9adb62a5 4925 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4926 /* cpuset refresh routine should be here */
4927 }
bd1e22b8 4928 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4929 /*
4930 * Disable grouping by mobility if the number of pages in the
4931 * system is too low to allow the mechanism to work. It would be
4932 * more accurate, but expensive to check per-zone. This check is
4933 * made on memory-hotadd so a system can start with mobility
4934 * disabled and enable it later
4935 */
d9c23400 4936 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4937 page_group_by_mobility_disabled = 1;
4938 else
4939 page_group_by_mobility_disabled = 0;
4940
756a025f
JP
4941 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4942 nr_online_nodes,
4943 zonelist_order_name[current_zonelist_order],
4944 page_group_by_mobility_disabled ? "off" : "on",
4945 vm_total_pages);
f0c0b2b8 4946#ifdef CONFIG_NUMA
f88dfff5 4947 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4948#endif
1da177e4
LT
4949}
4950
4951/*
4952 * Helper functions to size the waitqueue hash table.
4953 * Essentially these want to choose hash table sizes sufficiently
4954 * large so that collisions trying to wait on pages are rare.
4955 * But in fact, the number of active page waitqueues on typical
4956 * systems is ridiculously low, less than 200. So this is even
4957 * conservative, even though it seems large.
4958 *
4959 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4960 * waitqueues, i.e. the size of the waitq table given the number of pages.
4961 */
4962#define PAGES_PER_WAITQUEUE 256
4963
cca448fe 4964#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4965static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4966{
4967 unsigned long size = 1;
4968
4969 pages /= PAGES_PER_WAITQUEUE;
4970
4971 while (size < pages)
4972 size <<= 1;
4973
4974 /*
4975 * Once we have dozens or even hundreds of threads sleeping
4976 * on IO we've got bigger problems than wait queue collision.
4977 * Limit the size of the wait table to a reasonable size.
4978 */
4979 size = min(size, 4096UL);
4980
4981 return max(size, 4UL);
4982}
cca448fe
YG
4983#else
4984/*
4985 * A zone's size might be changed by hot-add, so it is not possible to determine
4986 * a suitable size for its wait_table. So we use the maximum size now.
4987 *
4988 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4989 *
4990 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4991 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4992 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4993 *
4994 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4995 * or more by the traditional way. (See above). It equals:
4996 *
4997 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4998 * ia64(16K page size) : = ( 8G + 4M)byte.
4999 * powerpc (64K page size) : = (32G +16M)byte.
5000 */
5001static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
5002{
5003 return 4096UL;
5004}
5005#endif
1da177e4
LT
5006
5007/*
5008 * This is an integer logarithm so that shifts can be used later
5009 * to extract the more random high bits from the multiplicative
5010 * hash function before the remainder is taken.
5011 */
5012static inline unsigned long wait_table_bits(unsigned long size)
5013{
5014 return ffz(~size);
5015}
5016
1da177e4
LT
5017/*
5018 * Initially all pages are reserved - free ones are freed
5019 * up by free_all_bootmem() once the early boot process is
5020 * done. Non-atomic initialization, single-pass.
5021 */
c09b4240 5022void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5023 unsigned long start_pfn, enum memmap_context context)
1da177e4 5024{
4b94ffdc 5025 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5026 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5027 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5028 unsigned long pfn;
3a80a7fa 5029 unsigned long nr_initialised = 0;
342332e6
TI
5030#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5031 struct memblock_region *r = NULL, *tmp;
5032#endif
1da177e4 5033
22b31eec
HD
5034 if (highest_memmap_pfn < end_pfn - 1)
5035 highest_memmap_pfn = end_pfn - 1;
5036
4b94ffdc
DW
5037 /*
5038 * Honor reservation requested by the driver for this ZONE_DEVICE
5039 * memory
5040 */
5041 if (altmap && start_pfn == altmap->base_pfn)
5042 start_pfn += altmap->reserve;
5043
cbe8dd4a 5044 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5045 /*
b72d0ffb
AM
5046 * There can be holes in boot-time mem_map[]s handed to this
5047 * function. They do not exist on hotplugged memory.
a2f3aa02 5048 */
b72d0ffb
AM
5049 if (context != MEMMAP_EARLY)
5050 goto not_early;
5051
5052 if (!early_pfn_valid(pfn))
5053 continue;
5054 if (!early_pfn_in_nid(pfn, nid))
5055 continue;
5056 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5057 break;
342332e6
TI
5058
5059#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5060 /*
5061 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5062 * from zone_movable_pfn[nid] to end of each node should be
5063 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5064 */
5065 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5066 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5067 continue;
342332e6 5068
b72d0ffb
AM
5069 /*
5070 * Check given memblock attribute by firmware which can affect
5071 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5072 * mirrored, it's an overlapped memmap init. skip it.
5073 */
5074 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5075 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5076 for_each_memblock(memory, tmp)
5077 if (pfn < memblock_region_memory_end_pfn(tmp))
5078 break;
5079 r = tmp;
5080 }
5081 if (pfn >= memblock_region_memory_base_pfn(r) &&
5082 memblock_is_mirror(r)) {
5083 /* already initialized as NORMAL */
5084 pfn = memblock_region_memory_end_pfn(r);
5085 continue;
342332e6 5086 }
a2f3aa02 5087 }
b72d0ffb 5088#endif
ac5d2539 5089
b72d0ffb 5090not_early:
ac5d2539
MG
5091 /*
5092 * Mark the block movable so that blocks are reserved for
5093 * movable at startup. This will force kernel allocations
5094 * to reserve their blocks rather than leaking throughout
5095 * the address space during boot when many long-lived
974a786e 5096 * kernel allocations are made.
ac5d2539
MG
5097 *
5098 * bitmap is created for zone's valid pfn range. but memmap
5099 * can be created for invalid pages (for alignment)
5100 * check here not to call set_pageblock_migratetype() against
5101 * pfn out of zone.
5102 */
5103 if (!(pfn & (pageblock_nr_pages - 1))) {
5104 struct page *page = pfn_to_page(pfn);
5105
5106 __init_single_page(page, pfn, zone, nid);
5107 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5108 } else {
5109 __init_single_pfn(pfn, zone, nid);
5110 }
1da177e4
LT
5111 }
5112}
5113
1e548deb 5114static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5115{
7aeb09f9 5116 unsigned int order, t;
b2a0ac88
MG
5117 for_each_migratetype_order(order, t) {
5118 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5119 zone->free_area[order].nr_free = 0;
5120 }
5121}
5122
5123#ifndef __HAVE_ARCH_MEMMAP_INIT
5124#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5125 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5126#endif
5127
7cd2b0a3 5128static int zone_batchsize(struct zone *zone)
e7c8d5c9 5129{
3a6be87f 5130#ifdef CONFIG_MMU
e7c8d5c9
CL
5131 int batch;
5132
5133 /*
5134 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5135 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5136 *
5137 * OK, so we don't know how big the cache is. So guess.
5138 */
b40da049 5139 batch = zone->managed_pages / 1024;
ba56e91c
SR
5140 if (batch * PAGE_SIZE > 512 * 1024)
5141 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5142 batch /= 4; /* We effectively *= 4 below */
5143 if (batch < 1)
5144 batch = 1;
5145
5146 /*
0ceaacc9
NP
5147 * Clamp the batch to a 2^n - 1 value. Having a power
5148 * of 2 value was found to be more likely to have
5149 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5150 *
0ceaacc9
NP
5151 * For example if 2 tasks are alternately allocating
5152 * batches of pages, one task can end up with a lot
5153 * of pages of one half of the possible page colors
5154 * and the other with pages of the other colors.
e7c8d5c9 5155 */
9155203a 5156 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5157
e7c8d5c9 5158 return batch;
3a6be87f
DH
5159
5160#else
5161 /* The deferral and batching of frees should be suppressed under NOMMU
5162 * conditions.
5163 *
5164 * The problem is that NOMMU needs to be able to allocate large chunks
5165 * of contiguous memory as there's no hardware page translation to
5166 * assemble apparent contiguous memory from discontiguous pages.
5167 *
5168 * Queueing large contiguous runs of pages for batching, however,
5169 * causes the pages to actually be freed in smaller chunks. As there
5170 * can be a significant delay between the individual batches being
5171 * recycled, this leads to the once large chunks of space being
5172 * fragmented and becoming unavailable for high-order allocations.
5173 */
5174 return 0;
5175#endif
e7c8d5c9
CL
5176}
5177
8d7a8fa9
CS
5178/*
5179 * pcp->high and pcp->batch values are related and dependent on one another:
5180 * ->batch must never be higher then ->high.
5181 * The following function updates them in a safe manner without read side
5182 * locking.
5183 *
5184 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5185 * those fields changing asynchronously (acording the the above rule).
5186 *
5187 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5188 * outside of boot time (or some other assurance that no concurrent updaters
5189 * exist).
5190 */
5191static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5192 unsigned long batch)
5193{
5194 /* start with a fail safe value for batch */
5195 pcp->batch = 1;
5196 smp_wmb();
5197
5198 /* Update high, then batch, in order */
5199 pcp->high = high;
5200 smp_wmb();
5201
5202 pcp->batch = batch;
5203}
5204
3664033c 5205/* a companion to pageset_set_high() */
4008bab7
CS
5206static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5207{
8d7a8fa9 5208 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5209}
5210
88c90dbc 5211static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5212{
5213 struct per_cpu_pages *pcp;
5f8dcc21 5214 int migratetype;
2caaad41 5215
1c6fe946
MD
5216 memset(p, 0, sizeof(*p));
5217
3dfa5721 5218 pcp = &p->pcp;
2caaad41 5219 pcp->count = 0;
5f8dcc21
MG
5220 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5221 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5222}
5223
88c90dbc
CS
5224static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5225{
5226 pageset_init(p);
5227 pageset_set_batch(p, batch);
5228}
5229
8ad4b1fb 5230/*
3664033c 5231 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5232 * to the value high for the pageset p.
5233 */
3664033c 5234static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5235 unsigned long high)
5236{
8d7a8fa9
CS
5237 unsigned long batch = max(1UL, high / 4);
5238 if ((high / 4) > (PAGE_SHIFT * 8))
5239 batch = PAGE_SHIFT * 8;
8ad4b1fb 5240
8d7a8fa9 5241 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5242}
5243
7cd2b0a3
DR
5244static void pageset_set_high_and_batch(struct zone *zone,
5245 struct per_cpu_pageset *pcp)
56cef2b8 5246{
56cef2b8 5247 if (percpu_pagelist_fraction)
3664033c 5248 pageset_set_high(pcp,
56cef2b8
CS
5249 (zone->managed_pages /
5250 percpu_pagelist_fraction));
5251 else
5252 pageset_set_batch(pcp, zone_batchsize(zone));
5253}
5254
169f6c19
CS
5255static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5256{
5257 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5258
5259 pageset_init(pcp);
5260 pageset_set_high_and_batch(zone, pcp);
5261}
5262
4ed7e022 5263static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5264{
5265 int cpu;
319774e2 5266 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5267 for_each_possible_cpu(cpu)
5268 zone_pageset_init(zone, cpu);
75ef7184
MG
5269
5270 if (!zone->zone_pgdat->per_cpu_nodestats) {
5271 zone->zone_pgdat->per_cpu_nodestats =
5272 alloc_percpu(struct per_cpu_nodestat);
5273 }
319774e2
WF
5274}
5275
2caaad41 5276/*
99dcc3e5
CL
5277 * Allocate per cpu pagesets and initialize them.
5278 * Before this call only boot pagesets were available.
e7c8d5c9 5279 */
99dcc3e5 5280void __init setup_per_cpu_pageset(void)
e7c8d5c9 5281{
99dcc3e5 5282 struct zone *zone;
e7c8d5c9 5283
319774e2
WF
5284 for_each_populated_zone(zone)
5285 setup_zone_pageset(zone);
e7c8d5c9
CL
5286}
5287
577a32f6 5288static noinline __init_refok
cca448fe 5289int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5290{
5291 int i;
cca448fe 5292 size_t alloc_size;
ed8ece2e
DH
5293
5294 /*
5295 * The per-page waitqueue mechanism uses hashed waitqueues
5296 * per zone.
5297 */
02b694de
YG
5298 zone->wait_table_hash_nr_entries =
5299 wait_table_hash_nr_entries(zone_size_pages);
5300 zone->wait_table_bits =
5301 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5302 alloc_size = zone->wait_table_hash_nr_entries
5303 * sizeof(wait_queue_head_t);
5304
cd94b9db 5305 if (!slab_is_available()) {
cca448fe 5306 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5307 memblock_virt_alloc_node_nopanic(
5308 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5309 } else {
5310 /*
5311 * This case means that a zone whose size was 0 gets new memory
5312 * via memory hot-add.
5313 * But it may be the case that a new node was hot-added. In
5314 * this case vmalloc() will not be able to use this new node's
5315 * memory - this wait_table must be initialized to use this new
5316 * node itself as well.
5317 * To use this new node's memory, further consideration will be
5318 * necessary.
5319 */
8691f3a7 5320 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5321 }
5322 if (!zone->wait_table)
5323 return -ENOMEM;
ed8ece2e 5324
b8af2941 5325 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5326 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5327
5328 return 0;
ed8ece2e
DH
5329}
5330
c09b4240 5331static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5332{
99dcc3e5
CL
5333 /*
5334 * per cpu subsystem is not up at this point. The following code
5335 * relies on the ability of the linker to provide the
5336 * offset of a (static) per cpu variable into the per cpu area.
5337 */
5338 zone->pageset = &boot_pageset;
ed8ece2e 5339
b38a8725 5340 if (populated_zone(zone))
99dcc3e5
CL
5341 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5342 zone->name, zone->present_pages,
5343 zone_batchsize(zone));
ed8ece2e
DH
5344}
5345
4ed7e022 5346int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5347 unsigned long zone_start_pfn,
b171e409 5348 unsigned long size)
ed8ece2e
DH
5349{
5350 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5351 int ret;
5352 ret = zone_wait_table_init(zone, size);
5353 if (ret)
5354 return ret;
ed8ece2e
DH
5355 pgdat->nr_zones = zone_idx(zone) + 1;
5356
ed8ece2e
DH
5357 zone->zone_start_pfn = zone_start_pfn;
5358
708614e6
MG
5359 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5360 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5361 pgdat->node_id,
5362 (unsigned long)zone_idx(zone),
5363 zone_start_pfn, (zone_start_pfn + size));
5364
1e548deb 5365 zone_init_free_lists(zone);
718127cc
YG
5366
5367 return 0;
ed8ece2e
DH
5368}
5369
0ee332c1 5370#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5371#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5372
c713216d
MG
5373/*
5374 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5375 */
8a942fde
MG
5376int __meminit __early_pfn_to_nid(unsigned long pfn,
5377 struct mminit_pfnnid_cache *state)
c713216d 5378{
c13291a5 5379 unsigned long start_pfn, end_pfn;
e76b63f8 5380 int nid;
7c243c71 5381
8a942fde
MG
5382 if (state->last_start <= pfn && pfn < state->last_end)
5383 return state->last_nid;
c713216d 5384
e76b63f8
YL
5385 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5386 if (nid != -1) {
8a942fde
MG
5387 state->last_start = start_pfn;
5388 state->last_end = end_pfn;
5389 state->last_nid = nid;
e76b63f8
YL
5390 }
5391
5392 return nid;
c713216d
MG
5393}
5394#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5395
c713216d 5396/**
6782832e 5397 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5398 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5399 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5400 *
7d018176
ZZ
5401 * If an architecture guarantees that all ranges registered contain no holes
5402 * and may be freed, this this function may be used instead of calling
5403 * memblock_free_early_nid() manually.
c713216d 5404 */
c13291a5 5405void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5406{
c13291a5
TH
5407 unsigned long start_pfn, end_pfn;
5408 int i, this_nid;
edbe7d23 5409
c13291a5
TH
5410 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5411 start_pfn = min(start_pfn, max_low_pfn);
5412 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5413
c13291a5 5414 if (start_pfn < end_pfn)
6782832e
SS
5415 memblock_free_early_nid(PFN_PHYS(start_pfn),
5416 (end_pfn - start_pfn) << PAGE_SHIFT,
5417 this_nid);
edbe7d23 5418 }
edbe7d23 5419}
edbe7d23 5420
c713216d
MG
5421/**
5422 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5423 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5424 *
7d018176
ZZ
5425 * If an architecture guarantees that all ranges registered contain no holes and may
5426 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5427 */
5428void __init sparse_memory_present_with_active_regions(int nid)
5429{
c13291a5
TH
5430 unsigned long start_pfn, end_pfn;
5431 int i, this_nid;
c713216d 5432
c13291a5
TH
5433 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5434 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5435}
5436
5437/**
5438 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5439 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5440 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5441 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5442 *
5443 * It returns the start and end page frame of a node based on information
7d018176 5444 * provided by memblock_set_node(). If called for a node
c713216d 5445 * with no available memory, a warning is printed and the start and end
88ca3b94 5446 * PFNs will be 0.
c713216d 5447 */
a3142c8e 5448void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5449 unsigned long *start_pfn, unsigned long *end_pfn)
5450{
c13291a5 5451 unsigned long this_start_pfn, this_end_pfn;
c713216d 5452 int i;
c13291a5 5453
c713216d
MG
5454 *start_pfn = -1UL;
5455 *end_pfn = 0;
5456
c13291a5
TH
5457 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5458 *start_pfn = min(*start_pfn, this_start_pfn);
5459 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5460 }
5461
633c0666 5462 if (*start_pfn == -1UL)
c713216d 5463 *start_pfn = 0;
c713216d
MG
5464}
5465
2a1e274a
MG
5466/*
5467 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5468 * assumption is made that zones within a node are ordered in monotonic
5469 * increasing memory addresses so that the "highest" populated zone is used
5470 */
b69a7288 5471static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5472{
5473 int zone_index;
5474 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5475 if (zone_index == ZONE_MOVABLE)
5476 continue;
5477
5478 if (arch_zone_highest_possible_pfn[zone_index] >
5479 arch_zone_lowest_possible_pfn[zone_index])
5480 break;
5481 }
5482
5483 VM_BUG_ON(zone_index == -1);
5484 movable_zone = zone_index;
5485}
5486
5487/*
5488 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5489 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5490 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5491 * in each node depending on the size of each node and how evenly kernelcore
5492 * is distributed. This helper function adjusts the zone ranges
5493 * provided by the architecture for a given node by using the end of the
5494 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5495 * zones within a node are in order of monotonic increases memory addresses
5496 */
b69a7288 5497static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5498 unsigned long zone_type,
5499 unsigned long node_start_pfn,
5500 unsigned long node_end_pfn,
5501 unsigned long *zone_start_pfn,
5502 unsigned long *zone_end_pfn)
5503{
5504 /* Only adjust if ZONE_MOVABLE is on this node */
5505 if (zone_movable_pfn[nid]) {
5506 /* Size ZONE_MOVABLE */
5507 if (zone_type == ZONE_MOVABLE) {
5508 *zone_start_pfn = zone_movable_pfn[nid];
5509 *zone_end_pfn = min(node_end_pfn,
5510 arch_zone_highest_possible_pfn[movable_zone]);
5511
2a1e274a
MG
5512 /* Check if this whole range is within ZONE_MOVABLE */
5513 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5514 *zone_start_pfn = *zone_end_pfn;
5515 }
5516}
5517
c713216d
MG
5518/*
5519 * Return the number of pages a zone spans in a node, including holes
5520 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5521 */
6ea6e688 5522static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5523 unsigned long zone_type,
7960aedd
ZY
5524 unsigned long node_start_pfn,
5525 unsigned long node_end_pfn,
d91749c1
TI
5526 unsigned long *zone_start_pfn,
5527 unsigned long *zone_end_pfn,
c713216d
MG
5528 unsigned long *ignored)
5529{
b5685e92 5530 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5531 if (!node_start_pfn && !node_end_pfn)
5532 return 0;
5533
7960aedd 5534 /* Get the start and end of the zone */
d91749c1
TI
5535 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5536 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5537 adjust_zone_range_for_zone_movable(nid, zone_type,
5538 node_start_pfn, node_end_pfn,
d91749c1 5539 zone_start_pfn, zone_end_pfn);
c713216d
MG
5540
5541 /* Check that this node has pages within the zone's required range */
d91749c1 5542 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5543 return 0;
5544
5545 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5546 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5547 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5548
5549 /* Return the spanned pages */
d91749c1 5550 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5551}
5552
5553/*
5554 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5555 * then all holes in the requested range will be accounted for.
c713216d 5556 */
32996250 5557unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5558 unsigned long range_start_pfn,
5559 unsigned long range_end_pfn)
5560{
96e907d1
TH
5561 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5562 unsigned long start_pfn, end_pfn;
5563 int i;
c713216d 5564
96e907d1
TH
5565 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5566 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5567 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5568 nr_absent -= end_pfn - start_pfn;
c713216d 5569 }
96e907d1 5570 return nr_absent;
c713216d
MG
5571}
5572
5573/**
5574 * absent_pages_in_range - Return number of page frames in holes within a range
5575 * @start_pfn: The start PFN to start searching for holes
5576 * @end_pfn: The end PFN to stop searching for holes
5577 *
88ca3b94 5578 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5579 */
5580unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5581 unsigned long end_pfn)
5582{
5583 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5584}
5585
5586/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5587static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5588 unsigned long zone_type,
7960aedd
ZY
5589 unsigned long node_start_pfn,
5590 unsigned long node_end_pfn,
c713216d
MG
5591 unsigned long *ignored)
5592{
96e907d1
TH
5593 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5594 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5595 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5596 unsigned long nr_absent;
9c7cd687 5597
b5685e92 5598 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5599 if (!node_start_pfn && !node_end_pfn)
5600 return 0;
5601
96e907d1
TH
5602 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5603 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5604
2a1e274a
MG
5605 adjust_zone_range_for_zone_movable(nid, zone_type,
5606 node_start_pfn, node_end_pfn,
5607 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5608 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5609
5610 /*
5611 * ZONE_MOVABLE handling.
5612 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5613 * and vice versa.
5614 */
5615 if (zone_movable_pfn[nid]) {
5616 if (mirrored_kernelcore) {
5617 unsigned long start_pfn, end_pfn;
5618 struct memblock_region *r;
5619
5620 for_each_memblock(memory, r) {
5621 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5622 zone_start_pfn, zone_end_pfn);
5623 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5624 zone_start_pfn, zone_end_pfn);
5625
5626 if (zone_type == ZONE_MOVABLE &&
5627 memblock_is_mirror(r))
5628 nr_absent += end_pfn - start_pfn;
5629
5630 if (zone_type == ZONE_NORMAL &&
5631 !memblock_is_mirror(r))
5632 nr_absent += end_pfn - start_pfn;
5633 }
5634 } else {
5635 if (zone_type == ZONE_NORMAL)
5636 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5637 }
5638 }
5639
5640 return nr_absent;
c713216d 5641}
0e0b864e 5642
0ee332c1 5643#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5644static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5645 unsigned long zone_type,
7960aedd
ZY
5646 unsigned long node_start_pfn,
5647 unsigned long node_end_pfn,
d91749c1
TI
5648 unsigned long *zone_start_pfn,
5649 unsigned long *zone_end_pfn,
c713216d
MG
5650 unsigned long *zones_size)
5651{
d91749c1
TI
5652 unsigned int zone;
5653
5654 *zone_start_pfn = node_start_pfn;
5655 for (zone = 0; zone < zone_type; zone++)
5656 *zone_start_pfn += zones_size[zone];
5657
5658 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5659
c713216d
MG
5660 return zones_size[zone_type];
5661}
5662
6ea6e688 5663static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5664 unsigned long zone_type,
7960aedd
ZY
5665 unsigned long node_start_pfn,
5666 unsigned long node_end_pfn,
c713216d
MG
5667 unsigned long *zholes_size)
5668{
5669 if (!zholes_size)
5670 return 0;
5671
5672 return zholes_size[zone_type];
5673}
20e6926d 5674
0ee332c1 5675#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5676
a3142c8e 5677static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5678 unsigned long node_start_pfn,
5679 unsigned long node_end_pfn,
5680 unsigned long *zones_size,
5681 unsigned long *zholes_size)
c713216d 5682{
febd5949 5683 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5684 enum zone_type i;
5685
febd5949
GZ
5686 for (i = 0; i < MAX_NR_ZONES; i++) {
5687 struct zone *zone = pgdat->node_zones + i;
d91749c1 5688 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5689 unsigned long size, real_size;
c713216d 5690
febd5949
GZ
5691 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5692 node_start_pfn,
5693 node_end_pfn,
d91749c1
TI
5694 &zone_start_pfn,
5695 &zone_end_pfn,
febd5949
GZ
5696 zones_size);
5697 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5698 node_start_pfn, node_end_pfn,
5699 zholes_size);
d91749c1
TI
5700 if (size)
5701 zone->zone_start_pfn = zone_start_pfn;
5702 else
5703 zone->zone_start_pfn = 0;
febd5949
GZ
5704 zone->spanned_pages = size;
5705 zone->present_pages = real_size;
5706
5707 totalpages += size;
5708 realtotalpages += real_size;
5709 }
5710
5711 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5712 pgdat->node_present_pages = realtotalpages;
5713 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5714 realtotalpages);
5715}
5716
835c134e
MG
5717#ifndef CONFIG_SPARSEMEM
5718/*
5719 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5720 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5721 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5722 * round what is now in bits to nearest long in bits, then return it in
5723 * bytes.
5724 */
7c45512d 5725static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5726{
5727 unsigned long usemapsize;
5728
7c45512d 5729 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5730 usemapsize = roundup(zonesize, pageblock_nr_pages);
5731 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5732 usemapsize *= NR_PAGEBLOCK_BITS;
5733 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5734
5735 return usemapsize / 8;
5736}
5737
5738static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5739 struct zone *zone,
5740 unsigned long zone_start_pfn,
5741 unsigned long zonesize)
835c134e 5742{
7c45512d 5743 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5744 zone->pageblock_flags = NULL;
58a01a45 5745 if (usemapsize)
6782832e
SS
5746 zone->pageblock_flags =
5747 memblock_virt_alloc_node_nopanic(usemapsize,
5748 pgdat->node_id);
835c134e
MG
5749}
5750#else
7c45512d
LT
5751static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5752 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5753#endif /* CONFIG_SPARSEMEM */
5754
d9c23400 5755#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5756
d9c23400 5757/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5758void __paginginit set_pageblock_order(void)
d9c23400 5759{
955c1cd7
AM
5760 unsigned int order;
5761
d9c23400
MG
5762 /* Check that pageblock_nr_pages has not already been setup */
5763 if (pageblock_order)
5764 return;
5765
955c1cd7
AM
5766 if (HPAGE_SHIFT > PAGE_SHIFT)
5767 order = HUGETLB_PAGE_ORDER;
5768 else
5769 order = MAX_ORDER - 1;
5770
d9c23400
MG
5771 /*
5772 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5773 * This value may be variable depending on boot parameters on IA64 and
5774 * powerpc.
d9c23400
MG
5775 */
5776 pageblock_order = order;
5777}
5778#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5779
ba72cb8c
MG
5780/*
5781 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5782 * is unused as pageblock_order is set at compile-time. See
5783 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5784 * the kernel config
ba72cb8c 5785 */
15ca220e 5786void __paginginit set_pageblock_order(void)
ba72cb8c 5787{
ba72cb8c 5788}
d9c23400
MG
5789
5790#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5791
01cefaef
JL
5792static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5793 unsigned long present_pages)
5794{
5795 unsigned long pages = spanned_pages;
5796
5797 /*
5798 * Provide a more accurate estimation if there are holes within
5799 * the zone and SPARSEMEM is in use. If there are holes within the
5800 * zone, each populated memory region may cost us one or two extra
5801 * memmap pages due to alignment because memmap pages for each
5802 * populated regions may not naturally algined on page boundary.
5803 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5804 */
5805 if (spanned_pages > present_pages + (present_pages >> 4) &&
5806 IS_ENABLED(CONFIG_SPARSEMEM))
5807 pages = present_pages;
5808
5809 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5810}
5811
1da177e4
LT
5812/*
5813 * Set up the zone data structures:
5814 * - mark all pages reserved
5815 * - mark all memory queues empty
5816 * - clear the memory bitmaps
6527af5d
MK
5817 *
5818 * NOTE: pgdat should get zeroed by caller.
1da177e4 5819 */
7f3eb55b 5820static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5821{
2f1b6248 5822 enum zone_type j;
ed8ece2e 5823 int nid = pgdat->node_id;
718127cc 5824 int ret;
1da177e4 5825
208d54e5 5826 pgdat_resize_init(pgdat);
8177a420
AA
5827#ifdef CONFIG_NUMA_BALANCING
5828 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5829 pgdat->numabalancing_migrate_nr_pages = 0;
5830 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5831#endif
5832#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5833 spin_lock_init(&pgdat->split_queue_lock);
5834 INIT_LIST_HEAD(&pgdat->split_queue);
5835 pgdat->split_queue_len = 0;
8177a420 5836#endif
1da177e4 5837 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5838 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5839#ifdef CONFIG_COMPACTION
5840 init_waitqueue_head(&pgdat->kcompactd_wait);
5841#endif
eefa864b 5842 pgdat_page_ext_init(pgdat);
a52633d8 5843 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5844 lruvec_init(node_lruvec(pgdat));
5f63b720 5845
1da177e4
LT
5846 for (j = 0; j < MAX_NR_ZONES; j++) {
5847 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5848 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5849 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5850
febd5949
GZ
5851 size = zone->spanned_pages;
5852 realsize = freesize = zone->present_pages;
1da177e4 5853
0e0b864e 5854 /*
9feedc9d 5855 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5856 * is used by this zone for memmap. This affects the watermark
5857 * and per-cpu initialisations
5858 */
01cefaef 5859 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5860 if (!is_highmem_idx(j)) {
5861 if (freesize >= memmap_pages) {
5862 freesize -= memmap_pages;
5863 if (memmap_pages)
5864 printk(KERN_DEBUG
5865 " %s zone: %lu pages used for memmap\n",
5866 zone_names[j], memmap_pages);
5867 } else
1170532b 5868 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5869 zone_names[j], memmap_pages, freesize);
5870 }
0e0b864e 5871
6267276f 5872 /* Account for reserved pages */
9feedc9d
JL
5873 if (j == 0 && freesize > dma_reserve) {
5874 freesize -= dma_reserve;
d903ef9f 5875 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5876 zone_names[0], dma_reserve);
0e0b864e
MG
5877 }
5878
98d2b0eb 5879 if (!is_highmem_idx(j))
9feedc9d 5880 nr_kernel_pages += freesize;
01cefaef
JL
5881 /* Charge for highmem memmap if there are enough kernel pages */
5882 else if (nr_kernel_pages > memmap_pages * 2)
5883 nr_kernel_pages -= memmap_pages;
9feedc9d 5884 nr_all_pages += freesize;
1da177e4 5885
9feedc9d
JL
5886 /*
5887 * Set an approximate value for lowmem here, it will be adjusted
5888 * when the bootmem allocator frees pages into the buddy system.
5889 * And all highmem pages will be managed by the buddy system.
5890 */
5891 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5892#ifdef CONFIG_NUMA
d5f541ed 5893 zone->node = nid;
a5f5f91d 5894 pgdat->min_unmapped_pages += (freesize*sysctl_min_unmapped_ratio)
9614634f 5895 / 100;
a5f5f91d 5896 pgdat->min_slab_pages += (freesize * sysctl_min_slab_ratio) / 100;
9614634f 5897#endif
1da177e4 5898 zone->name = zone_names[j];
a52633d8 5899 zone->zone_pgdat = pgdat;
1da177e4 5900 spin_lock_init(&zone->lock);
bdc8cb98 5901 zone_seqlock_init(zone);
ed8ece2e 5902 zone_pcp_init(zone);
81c0a2bb 5903
1da177e4
LT
5904 if (!size)
5905 continue;
5906
955c1cd7 5907 set_pageblock_order();
7c45512d 5908 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5909 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5910 BUG_ON(ret);
76cdd58e 5911 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5912 }
5913}
5914
577a32f6 5915static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5916{
b0aeba74 5917 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5918 unsigned long __maybe_unused offset = 0;
5919
1da177e4
LT
5920 /* Skip empty nodes */
5921 if (!pgdat->node_spanned_pages)
5922 return;
5923
d41dee36 5924#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5925 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5926 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5927 /* ia64 gets its own node_mem_map, before this, without bootmem */
5928 if (!pgdat->node_mem_map) {
b0aeba74 5929 unsigned long size, end;
d41dee36
AW
5930 struct page *map;
5931
e984bb43
BP
5932 /*
5933 * The zone's endpoints aren't required to be MAX_ORDER
5934 * aligned but the node_mem_map endpoints must be in order
5935 * for the buddy allocator to function correctly.
5936 */
108bcc96 5937 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5938 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5939 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5940 map = alloc_remap(pgdat->node_id, size);
5941 if (!map)
6782832e
SS
5942 map = memblock_virt_alloc_node_nopanic(size,
5943 pgdat->node_id);
a1c34a3b 5944 pgdat->node_mem_map = map + offset;
1da177e4 5945 }
12d810c1 5946#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5947 /*
5948 * With no DISCONTIG, the global mem_map is just set as node 0's
5949 */
c713216d 5950 if (pgdat == NODE_DATA(0)) {
1da177e4 5951 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5952#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5953 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5954 mem_map -= offset;
0ee332c1 5955#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5956 }
1da177e4 5957#endif
d41dee36 5958#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5959}
5960
9109fb7b
JW
5961void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5962 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5963{
9109fb7b 5964 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5965 unsigned long start_pfn = 0;
5966 unsigned long end_pfn = 0;
9109fb7b 5967
88fdf75d 5968 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5969 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5970
3a80a7fa 5971 reset_deferred_meminit(pgdat);
1da177e4
LT
5972 pgdat->node_id = nid;
5973 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5974 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5975#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5976 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5977 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5978 (u64)start_pfn << PAGE_SHIFT,
5979 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5980#else
5981 start_pfn = node_start_pfn;
7960aedd
ZY
5982#endif
5983 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5984 zones_size, zholes_size);
1da177e4
LT
5985
5986 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5987#ifdef CONFIG_FLAT_NODE_MEM_MAP
5988 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5989 nid, (unsigned long)pgdat,
5990 (unsigned long)pgdat->node_mem_map);
5991#endif
1da177e4 5992
7f3eb55b 5993 free_area_init_core(pgdat);
1da177e4
LT
5994}
5995
0ee332c1 5996#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5997
5998#if MAX_NUMNODES > 1
5999/*
6000 * Figure out the number of possible node ids.
6001 */
f9872caf 6002void __init setup_nr_node_ids(void)
418508c1 6003{
904a9553 6004 unsigned int highest;
418508c1 6005
904a9553 6006 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6007 nr_node_ids = highest + 1;
6008}
418508c1
MS
6009#endif
6010
1e01979c
TH
6011/**
6012 * node_map_pfn_alignment - determine the maximum internode alignment
6013 *
6014 * This function should be called after node map is populated and sorted.
6015 * It calculates the maximum power of two alignment which can distinguish
6016 * all the nodes.
6017 *
6018 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6019 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6020 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6021 * shifted, 1GiB is enough and this function will indicate so.
6022 *
6023 * This is used to test whether pfn -> nid mapping of the chosen memory
6024 * model has fine enough granularity to avoid incorrect mapping for the
6025 * populated node map.
6026 *
6027 * Returns the determined alignment in pfn's. 0 if there is no alignment
6028 * requirement (single node).
6029 */
6030unsigned long __init node_map_pfn_alignment(void)
6031{
6032 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6033 unsigned long start, end, mask;
1e01979c 6034 int last_nid = -1;
c13291a5 6035 int i, nid;
1e01979c 6036
c13291a5 6037 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6038 if (!start || last_nid < 0 || last_nid == nid) {
6039 last_nid = nid;
6040 last_end = end;
6041 continue;
6042 }
6043
6044 /*
6045 * Start with a mask granular enough to pin-point to the
6046 * start pfn and tick off bits one-by-one until it becomes
6047 * too coarse to separate the current node from the last.
6048 */
6049 mask = ~((1 << __ffs(start)) - 1);
6050 while (mask && last_end <= (start & (mask << 1)))
6051 mask <<= 1;
6052
6053 /* accumulate all internode masks */
6054 accl_mask |= mask;
6055 }
6056
6057 /* convert mask to number of pages */
6058 return ~accl_mask + 1;
6059}
6060
a6af2bc3 6061/* Find the lowest pfn for a node */
b69a7288 6062static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6063{
a6af2bc3 6064 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6065 unsigned long start_pfn;
6066 int i;
1abbfb41 6067
c13291a5
TH
6068 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6069 min_pfn = min(min_pfn, start_pfn);
c713216d 6070
a6af2bc3 6071 if (min_pfn == ULONG_MAX) {
1170532b 6072 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6073 return 0;
6074 }
6075
6076 return min_pfn;
c713216d
MG
6077}
6078
6079/**
6080 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6081 *
6082 * It returns the minimum PFN based on information provided via
7d018176 6083 * memblock_set_node().
c713216d
MG
6084 */
6085unsigned long __init find_min_pfn_with_active_regions(void)
6086{
6087 return find_min_pfn_for_node(MAX_NUMNODES);
6088}
6089
37b07e41
LS
6090/*
6091 * early_calculate_totalpages()
6092 * Sum pages in active regions for movable zone.
4b0ef1fe 6093 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6094 */
484f51f8 6095static unsigned long __init early_calculate_totalpages(void)
7e63efef 6096{
7e63efef 6097 unsigned long totalpages = 0;
c13291a5
TH
6098 unsigned long start_pfn, end_pfn;
6099 int i, nid;
6100
6101 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6102 unsigned long pages = end_pfn - start_pfn;
7e63efef 6103
37b07e41
LS
6104 totalpages += pages;
6105 if (pages)
4b0ef1fe 6106 node_set_state(nid, N_MEMORY);
37b07e41 6107 }
b8af2941 6108 return totalpages;
7e63efef
MG
6109}
6110
2a1e274a
MG
6111/*
6112 * Find the PFN the Movable zone begins in each node. Kernel memory
6113 * is spread evenly between nodes as long as the nodes have enough
6114 * memory. When they don't, some nodes will have more kernelcore than
6115 * others
6116 */
b224ef85 6117static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6118{
6119 int i, nid;
6120 unsigned long usable_startpfn;
6121 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6122 /* save the state before borrow the nodemask */
4b0ef1fe 6123 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6124 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6125 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6126 struct memblock_region *r;
b2f3eebe
TC
6127
6128 /* Need to find movable_zone earlier when movable_node is specified. */
6129 find_usable_zone_for_movable();
6130
6131 /*
6132 * If movable_node is specified, ignore kernelcore and movablecore
6133 * options.
6134 */
6135 if (movable_node_is_enabled()) {
136199f0
EM
6136 for_each_memblock(memory, r) {
6137 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6138 continue;
6139
136199f0 6140 nid = r->nid;
b2f3eebe 6141
136199f0 6142 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6143 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6144 min(usable_startpfn, zone_movable_pfn[nid]) :
6145 usable_startpfn;
6146 }
6147
6148 goto out2;
6149 }
2a1e274a 6150
342332e6
TI
6151 /*
6152 * If kernelcore=mirror is specified, ignore movablecore option
6153 */
6154 if (mirrored_kernelcore) {
6155 bool mem_below_4gb_not_mirrored = false;
6156
6157 for_each_memblock(memory, r) {
6158 if (memblock_is_mirror(r))
6159 continue;
6160
6161 nid = r->nid;
6162
6163 usable_startpfn = memblock_region_memory_base_pfn(r);
6164
6165 if (usable_startpfn < 0x100000) {
6166 mem_below_4gb_not_mirrored = true;
6167 continue;
6168 }
6169
6170 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6171 min(usable_startpfn, zone_movable_pfn[nid]) :
6172 usable_startpfn;
6173 }
6174
6175 if (mem_below_4gb_not_mirrored)
6176 pr_warn("This configuration results in unmirrored kernel memory.");
6177
6178 goto out2;
6179 }
6180
7e63efef 6181 /*
b2f3eebe 6182 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6183 * kernelcore that corresponds so that memory usable for
6184 * any allocation type is evenly spread. If both kernelcore
6185 * and movablecore are specified, then the value of kernelcore
6186 * will be used for required_kernelcore if it's greater than
6187 * what movablecore would have allowed.
6188 */
6189 if (required_movablecore) {
7e63efef
MG
6190 unsigned long corepages;
6191
6192 /*
6193 * Round-up so that ZONE_MOVABLE is at least as large as what
6194 * was requested by the user
6195 */
6196 required_movablecore =
6197 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6198 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6199 corepages = totalpages - required_movablecore;
6200
6201 required_kernelcore = max(required_kernelcore, corepages);
6202 }
6203
bde304bd
XQ
6204 /*
6205 * If kernelcore was not specified or kernelcore size is larger
6206 * than totalpages, there is no ZONE_MOVABLE.
6207 */
6208 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6209 goto out;
2a1e274a
MG
6210
6211 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6212 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6213
6214restart:
6215 /* Spread kernelcore memory as evenly as possible throughout nodes */
6216 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6217 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6218 unsigned long start_pfn, end_pfn;
6219
2a1e274a
MG
6220 /*
6221 * Recalculate kernelcore_node if the division per node
6222 * now exceeds what is necessary to satisfy the requested
6223 * amount of memory for the kernel
6224 */
6225 if (required_kernelcore < kernelcore_node)
6226 kernelcore_node = required_kernelcore / usable_nodes;
6227
6228 /*
6229 * As the map is walked, we track how much memory is usable
6230 * by the kernel using kernelcore_remaining. When it is
6231 * 0, the rest of the node is usable by ZONE_MOVABLE
6232 */
6233 kernelcore_remaining = kernelcore_node;
6234
6235 /* Go through each range of PFNs within this node */
c13291a5 6236 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6237 unsigned long size_pages;
6238
c13291a5 6239 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6240 if (start_pfn >= end_pfn)
6241 continue;
6242
6243 /* Account for what is only usable for kernelcore */
6244 if (start_pfn < usable_startpfn) {
6245 unsigned long kernel_pages;
6246 kernel_pages = min(end_pfn, usable_startpfn)
6247 - start_pfn;
6248
6249 kernelcore_remaining -= min(kernel_pages,
6250 kernelcore_remaining);
6251 required_kernelcore -= min(kernel_pages,
6252 required_kernelcore);
6253
6254 /* Continue if range is now fully accounted */
6255 if (end_pfn <= usable_startpfn) {
6256
6257 /*
6258 * Push zone_movable_pfn to the end so
6259 * that if we have to rebalance
6260 * kernelcore across nodes, we will
6261 * not double account here
6262 */
6263 zone_movable_pfn[nid] = end_pfn;
6264 continue;
6265 }
6266 start_pfn = usable_startpfn;
6267 }
6268
6269 /*
6270 * The usable PFN range for ZONE_MOVABLE is from
6271 * start_pfn->end_pfn. Calculate size_pages as the
6272 * number of pages used as kernelcore
6273 */
6274 size_pages = end_pfn - start_pfn;
6275 if (size_pages > kernelcore_remaining)
6276 size_pages = kernelcore_remaining;
6277 zone_movable_pfn[nid] = start_pfn + size_pages;
6278
6279 /*
6280 * Some kernelcore has been met, update counts and
6281 * break if the kernelcore for this node has been
b8af2941 6282 * satisfied
2a1e274a
MG
6283 */
6284 required_kernelcore -= min(required_kernelcore,
6285 size_pages);
6286 kernelcore_remaining -= size_pages;
6287 if (!kernelcore_remaining)
6288 break;
6289 }
6290 }
6291
6292 /*
6293 * If there is still required_kernelcore, we do another pass with one
6294 * less node in the count. This will push zone_movable_pfn[nid] further
6295 * along on the nodes that still have memory until kernelcore is
b8af2941 6296 * satisfied
2a1e274a
MG
6297 */
6298 usable_nodes--;
6299 if (usable_nodes && required_kernelcore > usable_nodes)
6300 goto restart;
6301
b2f3eebe 6302out2:
2a1e274a
MG
6303 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6304 for (nid = 0; nid < MAX_NUMNODES; nid++)
6305 zone_movable_pfn[nid] =
6306 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6307
20e6926d 6308out:
66918dcd 6309 /* restore the node_state */
4b0ef1fe 6310 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6311}
6312
4b0ef1fe
LJ
6313/* Any regular or high memory on that node ? */
6314static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6315{
37b07e41
LS
6316 enum zone_type zone_type;
6317
4b0ef1fe
LJ
6318 if (N_MEMORY == N_NORMAL_MEMORY)
6319 return;
6320
6321 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6322 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6323 if (populated_zone(zone)) {
4b0ef1fe
LJ
6324 node_set_state(nid, N_HIGH_MEMORY);
6325 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6326 zone_type <= ZONE_NORMAL)
6327 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6328 break;
6329 }
37b07e41 6330 }
37b07e41
LS
6331}
6332
c713216d
MG
6333/**
6334 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6335 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6336 *
6337 * This will call free_area_init_node() for each active node in the system.
7d018176 6338 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6339 * zone in each node and their holes is calculated. If the maximum PFN
6340 * between two adjacent zones match, it is assumed that the zone is empty.
6341 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6342 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6343 * starts where the previous one ended. For example, ZONE_DMA32 starts
6344 * at arch_max_dma_pfn.
6345 */
6346void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6347{
c13291a5
TH
6348 unsigned long start_pfn, end_pfn;
6349 int i, nid;
a6af2bc3 6350
c713216d
MG
6351 /* Record where the zone boundaries are */
6352 memset(arch_zone_lowest_possible_pfn, 0,
6353 sizeof(arch_zone_lowest_possible_pfn));
6354 memset(arch_zone_highest_possible_pfn, 0,
6355 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6356
6357 start_pfn = find_min_pfn_with_active_regions();
6358
6359 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6360 if (i == ZONE_MOVABLE)
6361 continue;
90cae1fe
OH
6362
6363 end_pfn = max(max_zone_pfn[i], start_pfn);
6364 arch_zone_lowest_possible_pfn[i] = start_pfn;
6365 arch_zone_highest_possible_pfn[i] = end_pfn;
6366
6367 start_pfn = end_pfn;
c713216d 6368 }
2a1e274a
MG
6369 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6370 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6371
6372 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6373 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6374 find_zone_movable_pfns_for_nodes();
c713216d 6375
c713216d 6376 /* Print out the zone ranges */
f88dfff5 6377 pr_info("Zone ranges:\n");
2a1e274a
MG
6378 for (i = 0; i < MAX_NR_ZONES; i++) {
6379 if (i == ZONE_MOVABLE)
6380 continue;
f88dfff5 6381 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6382 if (arch_zone_lowest_possible_pfn[i] ==
6383 arch_zone_highest_possible_pfn[i])
f88dfff5 6384 pr_cont("empty\n");
72f0ba02 6385 else
8d29e18a
JG
6386 pr_cont("[mem %#018Lx-%#018Lx]\n",
6387 (u64)arch_zone_lowest_possible_pfn[i]
6388 << PAGE_SHIFT,
6389 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6390 << PAGE_SHIFT) - 1);
2a1e274a
MG
6391 }
6392
6393 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6394 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6395 for (i = 0; i < MAX_NUMNODES; i++) {
6396 if (zone_movable_pfn[i])
8d29e18a
JG
6397 pr_info(" Node %d: %#018Lx\n", i,
6398 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6399 }
c713216d 6400
f2d52fe5 6401 /* Print out the early node map */
f88dfff5 6402 pr_info("Early memory node ranges\n");
c13291a5 6403 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6404 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6405 (u64)start_pfn << PAGE_SHIFT,
6406 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6407
6408 /* Initialise every node */
708614e6 6409 mminit_verify_pageflags_layout();
8ef82866 6410 setup_nr_node_ids();
c713216d
MG
6411 for_each_online_node(nid) {
6412 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6413 free_area_init_node(nid, NULL,
c713216d 6414 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6415
6416 /* Any memory on that node */
6417 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6418 node_set_state(nid, N_MEMORY);
6419 check_for_memory(pgdat, nid);
c713216d
MG
6420 }
6421}
2a1e274a 6422
7e63efef 6423static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6424{
6425 unsigned long long coremem;
6426 if (!p)
6427 return -EINVAL;
6428
6429 coremem = memparse(p, &p);
7e63efef 6430 *core = coremem >> PAGE_SHIFT;
2a1e274a 6431
7e63efef 6432 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6433 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6434
6435 return 0;
6436}
ed7ed365 6437
7e63efef
MG
6438/*
6439 * kernelcore=size sets the amount of memory for use for allocations that
6440 * cannot be reclaimed or migrated.
6441 */
6442static int __init cmdline_parse_kernelcore(char *p)
6443{
342332e6
TI
6444 /* parse kernelcore=mirror */
6445 if (parse_option_str(p, "mirror")) {
6446 mirrored_kernelcore = true;
6447 return 0;
6448 }
6449
7e63efef
MG
6450 return cmdline_parse_core(p, &required_kernelcore);
6451}
6452
6453/*
6454 * movablecore=size sets the amount of memory for use for allocations that
6455 * can be reclaimed or migrated.
6456 */
6457static int __init cmdline_parse_movablecore(char *p)
6458{
6459 return cmdline_parse_core(p, &required_movablecore);
6460}
6461
ed7ed365 6462early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6463early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6464
0ee332c1 6465#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6466
c3d5f5f0
JL
6467void adjust_managed_page_count(struct page *page, long count)
6468{
6469 spin_lock(&managed_page_count_lock);
6470 page_zone(page)->managed_pages += count;
6471 totalram_pages += count;
3dcc0571
JL
6472#ifdef CONFIG_HIGHMEM
6473 if (PageHighMem(page))
6474 totalhigh_pages += count;
6475#endif
c3d5f5f0
JL
6476 spin_unlock(&managed_page_count_lock);
6477}
3dcc0571 6478EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6479
11199692 6480unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6481{
11199692
JL
6482 void *pos;
6483 unsigned long pages = 0;
69afade7 6484
11199692
JL
6485 start = (void *)PAGE_ALIGN((unsigned long)start);
6486 end = (void *)((unsigned long)end & PAGE_MASK);
6487 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6488 if ((unsigned int)poison <= 0xFF)
11199692
JL
6489 memset(pos, poison, PAGE_SIZE);
6490 free_reserved_page(virt_to_page(pos));
69afade7
JL
6491 }
6492
6493 if (pages && s)
11199692 6494 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6495 s, pages << (PAGE_SHIFT - 10), start, end);
6496
6497 return pages;
6498}
11199692 6499EXPORT_SYMBOL(free_reserved_area);
69afade7 6500
cfa11e08
JL
6501#ifdef CONFIG_HIGHMEM
6502void free_highmem_page(struct page *page)
6503{
6504 __free_reserved_page(page);
6505 totalram_pages++;
7b4b2a0d 6506 page_zone(page)->managed_pages++;
cfa11e08
JL
6507 totalhigh_pages++;
6508}
6509#endif
6510
7ee3d4e8
JL
6511
6512void __init mem_init_print_info(const char *str)
6513{
6514 unsigned long physpages, codesize, datasize, rosize, bss_size;
6515 unsigned long init_code_size, init_data_size;
6516
6517 physpages = get_num_physpages();
6518 codesize = _etext - _stext;
6519 datasize = _edata - _sdata;
6520 rosize = __end_rodata - __start_rodata;
6521 bss_size = __bss_stop - __bss_start;
6522 init_data_size = __init_end - __init_begin;
6523 init_code_size = _einittext - _sinittext;
6524
6525 /*
6526 * Detect special cases and adjust section sizes accordingly:
6527 * 1) .init.* may be embedded into .data sections
6528 * 2) .init.text.* may be out of [__init_begin, __init_end],
6529 * please refer to arch/tile/kernel/vmlinux.lds.S.
6530 * 3) .rodata.* may be embedded into .text or .data sections.
6531 */
6532#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6533 do { \
6534 if (start <= pos && pos < end && size > adj) \
6535 size -= adj; \
6536 } while (0)
7ee3d4e8
JL
6537
6538 adj_init_size(__init_begin, __init_end, init_data_size,
6539 _sinittext, init_code_size);
6540 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6541 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6542 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6543 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6544
6545#undef adj_init_size
6546
756a025f 6547 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6548#ifdef CONFIG_HIGHMEM
756a025f 6549 ", %luK highmem"
7ee3d4e8 6550#endif
756a025f
JP
6551 "%s%s)\n",
6552 nr_free_pages() << (PAGE_SHIFT - 10),
6553 physpages << (PAGE_SHIFT - 10),
6554 codesize >> 10, datasize >> 10, rosize >> 10,
6555 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6556 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6557 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6558#ifdef CONFIG_HIGHMEM
756a025f 6559 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6560#endif
756a025f 6561 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6562}
6563
0e0b864e 6564/**
88ca3b94
RD
6565 * set_dma_reserve - set the specified number of pages reserved in the first zone
6566 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6567 *
013110a7 6568 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6569 * In the DMA zone, a significant percentage may be consumed by kernel image
6570 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6571 * function may optionally be used to account for unfreeable pages in the
6572 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6573 * smaller per-cpu batchsize.
0e0b864e
MG
6574 */
6575void __init set_dma_reserve(unsigned long new_dma_reserve)
6576{
6577 dma_reserve = new_dma_reserve;
6578}
6579
1da177e4
LT
6580void __init free_area_init(unsigned long *zones_size)
6581{
9109fb7b 6582 free_area_init_node(0, zones_size,
1da177e4
LT
6583 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6584}
1da177e4 6585
1da177e4
LT
6586static int page_alloc_cpu_notify(struct notifier_block *self,
6587 unsigned long action, void *hcpu)
6588{
6589 int cpu = (unsigned long)hcpu;
1da177e4 6590
8bb78442 6591 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6592 lru_add_drain_cpu(cpu);
9f8f2172
CL
6593 drain_pages(cpu);
6594
6595 /*
6596 * Spill the event counters of the dead processor
6597 * into the current processors event counters.
6598 * This artificially elevates the count of the current
6599 * processor.
6600 */
f8891e5e 6601 vm_events_fold_cpu(cpu);
9f8f2172
CL
6602
6603 /*
6604 * Zero the differential counters of the dead processor
6605 * so that the vm statistics are consistent.
6606 *
6607 * This is only okay since the processor is dead and cannot
6608 * race with what we are doing.
6609 */
2bb921e5 6610 cpu_vm_stats_fold(cpu);
1da177e4
LT
6611 }
6612 return NOTIFY_OK;
6613}
1da177e4
LT
6614
6615void __init page_alloc_init(void)
6616{
6617 hotcpu_notifier(page_alloc_cpu_notify, 0);
6618}
6619
cb45b0e9 6620/*
34b10060 6621 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6622 * or min_free_kbytes changes.
6623 */
6624static void calculate_totalreserve_pages(void)
6625{
6626 struct pglist_data *pgdat;
6627 unsigned long reserve_pages = 0;
2f6726e5 6628 enum zone_type i, j;
cb45b0e9
HA
6629
6630 for_each_online_pgdat(pgdat) {
281e3726
MG
6631
6632 pgdat->totalreserve_pages = 0;
6633
cb45b0e9
HA
6634 for (i = 0; i < MAX_NR_ZONES; i++) {
6635 struct zone *zone = pgdat->node_zones + i;
3484b2de 6636 long max = 0;
cb45b0e9
HA
6637
6638 /* Find valid and maximum lowmem_reserve in the zone */
6639 for (j = i; j < MAX_NR_ZONES; j++) {
6640 if (zone->lowmem_reserve[j] > max)
6641 max = zone->lowmem_reserve[j];
6642 }
6643
41858966
MG
6644 /* we treat the high watermark as reserved pages. */
6645 max += high_wmark_pages(zone);
cb45b0e9 6646
b40da049
JL
6647 if (max > zone->managed_pages)
6648 max = zone->managed_pages;
a8d01437 6649
281e3726 6650 pgdat->totalreserve_pages += max;
a8d01437 6651
cb45b0e9
HA
6652 reserve_pages += max;
6653 }
6654 }
6655 totalreserve_pages = reserve_pages;
6656}
6657
1da177e4
LT
6658/*
6659 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6660 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6661 * has a correct pages reserved value, so an adequate number of
6662 * pages are left in the zone after a successful __alloc_pages().
6663 */
6664static void setup_per_zone_lowmem_reserve(void)
6665{
6666 struct pglist_data *pgdat;
2f6726e5 6667 enum zone_type j, idx;
1da177e4 6668
ec936fc5 6669 for_each_online_pgdat(pgdat) {
1da177e4
LT
6670 for (j = 0; j < MAX_NR_ZONES; j++) {
6671 struct zone *zone = pgdat->node_zones + j;
b40da049 6672 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6673
6674 zone->lowmem_reserve[j] = 0;
6675
2f6726e5
CL
6676 idx = j;
6677 while (idx) {
1da177e4
LT
6678 struct zone *lower_zone;
6679
2f6726e5
CL
6680 idx--;
6681
1da177e4
LT
6682 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6683 sysctl_lowmem_reserve_ratio[idx] = 1;
6684
6685 lower_zone = pgdat->node_zones + idx;
b40da049 6686 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6687 sysctl_lowmem_reserve_ratio[idx];
b40da049 6688 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6689 }
6690 }
6691 }
cb45b0e9
HA
6692
6693 /* update totalreserve_pages */
6694 calculate_totalreserve_pages();
1da177e4
LT
6695}
6696
cfd3da1e 6697static void __setup_per_zone_wmarks(void)
1da177e4
LT
6698{
6699 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6700 unsigned long lowmem_pages = 0;
6701 struct zone *zone;
6702 unsigned long flags;
6703
6704 /* Calculate total number of !ZONE_HIGHMEM pages */
6705 for_each_zone(zone) {
6706 if (!is_highmem(zone))
b40da049 6707 lowmem_pages += zone->managed_pages;
1da177e4
LT
6708 }
6709
6710 for_each_zone(zone) {
ac924c60
AM
6711 u64 tmp;
6712
1125b4e3 6713 spin_lock_irqsave(&zone->lock, flags);
b40da049 6714 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6715 do_div(tmp, lowmem_pages);
1da177e4
LT
6716 if (is_highmem(zone)) {
6717 /*
669ed175
NP
6718 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6719 * need highmem pages, so cap pages_min to a small
6720 * value here.
6721 *
41858966 6722 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6723 * deltas control asynch page reclaim, and so should
669ed175 6724 * not be capped for highmem.
1da177e4 6725 */
90ae8d67 6726 unsigned long min_pages;
1da177e4 6727
b40da049 6728 min_pages = zone->managed_pages / 1024;
90ae8d67 6729 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6730 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6731 } else {
669ed175
NP
6732 /*
6733 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6734 * proportionate to the zone's size.
6735 */
41858966 6736 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6737 }
6738
795ae7a0
JW
6739 /*
6740 * Set the kswapd watermarks distance according to the
6741 * scale factor in proportion to available memory, but
6742 * ensure a minimum size on small systems.
6743 */
6744 tmp = max_t(u64, tmp >> 2,
6745 mult_frac(zone->managed_pages,
6746 watermark_scale_factor, 10000));
6747
6748 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6749 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6750
1125b4e3 6751 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6752 }
cb45b0e9
HA
6753
6754 /* update totalreserve_pages */
6755 calculate_totalreserve_pages();
1da177e4
LT
6756}
6757
cfd3da1e
MG
6758/**
6759 * setup_per_zone_wmarks - called when min_free_kbytes changes
6760 * or when memory is hot-{added|removed}
6761 *
6762 * Ensures that the watermark[min,low,high] values for each zone are set
6763 * correctly with respect to min_free_kbytes.
6764 */
6765void setup_per_zone_wmarks(void)
6766{
6767 mutex_lock(&zonelists_mutex);
6768 __setup_per_zone_wmarks();
6769 mutex_unlock(&zonelists_mutex);
6770}
6771
1da177e4
LT
6772/*
6773 * Initialise min_free_kbytes.
6774 *
6775 * For small machines we want it small (128k min). For large machines
6776 * we want it large (64MB max). But it is not linear, because network
6777 * bandwidth does not increase linearly with machine size. We use
6778 *
b8af2941 6779 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6780 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6781 *
6782 * which yields
6783 *
6784 * 16MB: 512k
6785 * 32MB: 724k
6786 * 64MB: 1024k
6787 * 128MB: 1448k
6788 * 256MB: 2048k
6789 * 512MB: 2896k
6790 * 1024MB: 4096k
6791 * 2048MB: 5792k
6792 * 4096MB: 8192k
6793 * 8192MB: 11584k
6794 * 16384MB: 16384k
6795 */
1b79acc9 6796int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6797{
6798 unsigned long lowmem_kbytes;
5f12733e 6799 int new_min_free_kbytes;
1da177e4
LT
6800
6801 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6802 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6803
6804 if (new_min_free_kbytes > user_min_free_kbytes) {
6805 min_free_kbytes = new_min_free_kbytes;
6806 if (min_free_kbytes < 128)
6807 min_free_kbytes = 128;
6808 if (min_free_kbytes > 65536)
6809 min_free_kbytes = 65536;
6810 } else {
6811 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6812 new_min_free_kbytes, user_min_free_kbytes);
6813 }
bc75d33f 6814 setup_per_zone_wmarks();
a6cccdc3 6815 refresh_zone_stat_thresholds();
1da177e4
LT
6816 setup_per_zone_lowmem_reserve();
6817 return 0;
6818}
bc22af74 6819core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6820
6821/*
b8af2941 6822 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6823 * that we can call two helper functions whenever min_free_kbytes
6824 * changes.
6825 */
cccad5b9 6826int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6827 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6828{
da8c757b
HP
6829 int rc;
6830
6831 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6832 if (rc)
6833 return rc;
6834
5f12733e
MH
6835 if (write) {
6836 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6837 setup_per_zone_wmarks();
5f12733e 6838 }
1da177e4
LT
6839 return 0;
6840}
6841
795ae7a0
JW
6842int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6843 void __user *buffer, size_t *length, loff_t *ppos)
6844{
6845 int rc;
6846
6847 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6848 if (rc)
6849 return rc;
6850
6851 if (write)
6852 setup_per_zone_wmarks();
6853
6854 return 0;
6855}
6856
9614634f 6857#ifdef CONFIG_NUMA
cccad5b9 6858int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6859 void __user *buffer, size_t *length, loff_t *ppos)
9614634f 6860{
a5f5f91d 6861 struct pglist_data *pgdat;
9614634f
CL
6862 struct zone *zone;
6863 int rc;
6864
8d65af78 6865 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
6866 if (rc)
6867 return rc;
6868
a5f5f91d
MG
6869 for_each_online_pgdat(pgdat)
6870 pgdat->min_slab_pages = 0;
6871
9614634f 6872 for_each_zone(zone)
a5f5f91d 6873 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f
CL
6874 sysctl_min_unmapped_ratio) / 100;
6875 return 0;
6876}
0ff38490 6877
cccad5b9 6878int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6879 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6880{
a5f5f91d 6881 struct pglist_data *pgdat;
0ff38490
CL
6882 struct zone *zone;
6883 int rc;
6884
8d65af78 6885 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6886 if (rc)
6887 return rc;
6888
a5f5f91d
MG
6889 for_each_online_pgdat(pgdat)
6890 pgdat->min_slab_pages = 0;
6891
0ff38490 6892 for_each_zone(zone)
a5f5f91d 6893 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490
CL
6894 sysctl_min_slab_ratio) / 100;
6895 return 0;
6896}
9614634f
CL
6897#endif
6898
1da177e4
LT
6899/*
6900 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6901 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6902 * whenever sysctl_lowmem_reserve_ratio changes.
6903 *
6904 * The reserve ratio obviously has absolutely no relation with the
41858966 6905 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6906 * if in function of the boot time zone sizes.
6907 */
cccad5b9 6908int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6909 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6910{
8d65af78 6911 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6912 setup_per_zone_lowmem_reserve();
6913 return 0;
6914}
6915
8ad4b1fb
RS
6916/*
6917 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6918 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6919 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6920 */
cccad5b9 6921int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6922 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6923{
6924 struct zone *zone;
7cd2b0a3 6925 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6926 int ret;
6927
7cd2b0a3
DR
6928 mutex_lock(&pcp_batch_high_lock);
6929 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6930
8d65af78 6931 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6932 if (!write || ret < 0)
6933 goto out;
6934
6935 /* Sanity checking to avoid pcp imbalance */
6936 if (percpu_pagelist_fraction &&
6937 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6938 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6939 ret = -EINVAL;
6940 goto out;
6941 }
6942
6943 /* No change? */
6944 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6945 goto out;
c8e251fa 6946
364df0eb 6947 for_each_populated_zone(zone) {
7cd2b0a3
DR
6948 unsigned int cpu;
6949
22a7f12b 6950 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6951 pageset_set_high_and_batch(zone,
6952 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6953 }
7cd2b0a3 6954out:
c8e251fa 6955 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6956 return ret;
8ad4b1fb
RS
6957}
6958
a9919c79 6959#ifdef CONFIG_NUMA
f034b5d4 6960int hashdist = HASHDIST_DEFAULT;
1da177e4 6961
1da177e4
LT
6962static int __init set_hashdist(char *str)
6963{
6964 if (!str)
6965 return 0;
6966 hashdist = simple_strtoul(str, &str, 0);
6967 return 1;
6968}
6969__setup("hashdist=", set_hashdist);
6970#endif
6971
6972/*
6973 * allocate a large system hash table from bootmem
6974 * - it is assumed that the hash table must contain an exact power-of-2
6975 * quantity of entries
6976 * - limit is the number of hash buckets, not the total allocation size
6977 */
6978void *__init alloc_large_system_hash(const char *tablename,
6979 unsigned long bucketsize,
6980 unsigned long numentries,
6981 int scale,
6982 int flags,
6983 unsigned int *_hash_shift,
6984 unsigned int *_hash_mask,
31fe62b9
TB
6985 unsigned long low_limit,
6986 unsigned long high_limit)
1da177e4 6987{
31fe62b9 6988 unsigned long long max = high_limit;
1da177e4
LT
6989 unsigned long log2qty, size;
6990 void *table = NULL;
6991
6992 /* allow the kernel cmdline to have a say */
6993 if (!numentries) {
6994 /* round applicable memory size up to nearest megabyte */
04903664 6995 numentries = nr_kernel_pages;
a7e83318
JZ
6996
6997 /* It isn't necessary when PAGE_SIZE >= 1MB */
6998 if (PAGE_SHIFT < 20)
6999 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7000
7001 /* limit to 1 bucket per 2^scale bytes of low memory */
7002 if (scale > PAGE_SHIFT)
7003 numentries >>= (scale - PAGE_SHIFT);
7004 else
7005 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7006
7007 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7008 if (unlikely(flags & HASH_SMALL)) {
7009 /* Makes no sense without HASH_EARLY */
7010 WARN_ON(!(flags & HASH_EARLY));
7011 if (!(numentries >> *_hash_shift)) {
7012 numentries = 1UL << *_hash_shift;
7013 BUG_ON(!numentries);
7014 }
7015 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7016 numentries = PAGE_SIZE / bucketsize;
1da177e4 7017 }
6e692ed3 7018 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7019
7020 /* limit allocation size to 1/16 total memory by default */
7021 if (max == 0) {
7022 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7023 do_div(max, bucketsize);
7024 }
074b8517 7025 max = min(max, 0x80000000ULL);
1da177e4 7026
31fe62b9
TB
7027 if (numentries < low_limit)
7028 numentries = low_limit;
1da177e4
LT
7029 if (numentries > max)
7030 numentries = max;
7031
f0d1b0b3 7032 log2qty = ilog2(numentries);
1da177e4
LT
7033
7034 do {
7035 size = bucketsize << log2qty;
7036 if (flags & HASH_EARLY)
6782832e 7037 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7038 else if (hashdist)
7039 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7040 else {
1037b83b
ED
7041 /*
7042 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7043 * some pages at the end of hash table which
7044 * alloc_pages_exact() automatically does
1037b83b 7045 */
264ef8a9 7046 if (get_order(size) < MAX_ORDER) {
a1dd268c 7047 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7048 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7049 }
1da177e4
LT
7050 }
7051 } while (!table && size > PAGE_SIZE && --log2qty);
7052
7053 if (!table)
7054 panic("Failed to allocate %s hash table\n", tablename);
7055
1170532b
JP
7056 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7057 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7058
7059 if (_hash_shift)
7060 *_hash_shift = log2qty;
7061 if (_hash_mask)
7062 *_hash_mask = (1 << log2qty) - 1;
7063
7064 return table;
7065}
a117e66e 7066
a5d76b54 7067/*
80934513
MK
7068 * This function checks whether pageblock includes unmovable pages or not.
7069 * If @count is not zero, it is okay to include less @count unmovable pages
7070 *
b8af2941 7071 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7072 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7073 * expect this function should be exact.
a5d76b54 7074 */
b023f468
WC
7075bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7076 bool skip_hwpoisoned_pages)
49ac8255
KH
7077{
7078 unsigned long pfn, iter, found;
47118af0
MN
7079 int mt;
7080
49ac8255
KH
7081 /*
7082 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7083 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7084 */
7085 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7086 return false;
47118af0
MN
7087 mt = get_pageblock_migratetype(page);
7088 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7089 return false;
49ac8255
KH
7090
7091 pfn = page_to_pfn(page);
7092 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7093 unsigned long check = pfn + iter;
7094
29723fcc 7095 if (!pfn_valid_within(check))
49ac8255 7096 continue;
29723fcc 7097
49ac8255 7098 page = pfn_to_page(check);
c8721bbb
NH
7099
7100 /*
7101 * Hugepages are not in LRU lists, but they're movable.
7102 * We need not scan over tail pages bacause we don't
7103 * handle each tail page individually in migration.
7104 */
7105 if (PageHuge(page)) {
7106 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7107 continue;
7108 }
7109
97d255c8
MK
7110 /*
7111 * We can't use page_count without pin a page
7112 * because another CPU can free compound page.
7113 * This check already skips compound tails of THP
0139aa7b 7114 * because their page->_refcount is zero at all time.
97d255c8 7115 */
fe896d18 7116 if (!page_ref_count(page)) {
49ac8255
KH
7117 if (PageBuddy(page))
7118 iter += (1 << page_order(page)) - 1;
7119 continue;
7120 }
97d255c8 7121
b023f468
WC
7122 /*
7123 * The HWPoisoned page may be not in buddy system, and
7124 * page_count() is not 0.
7125 */
7126 if (skip_hwpoisoned_pages && PageHWPoison(page))
7127 continue;
7128
49ac8255
KH
7129 if (!PageLRU(page))
7130 found++;
7131 /*
6b4f7799
JW
7132 * If there are RECLAIMABLE pages, we need to check
7133 * it. But now, memory offline itself doesn't call
7134 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7135 */
7136 /*
7137 * If the page is not RAM, page_count()should be 0.
7138 * we don't need more check. This is an _used_ not-movable page.
7139 *
7140 * The problematic thing here is PG_reserved pages. PG_reserved
7141 * is set to both of a memory hole page and a _used_ kernel
7142 * page at boot.
7143 */
7144 if (found > count)
80934513 7145 return true;
49ac8255 7146 }
80934513 7147 return false;
49ac8255
KH
7148}
7149
7150bool is_pageblock_removable_nolock(struct page *page)
7151{
656a0706
MH
7152 struct zone *zone;
7153 unsigned long pfn;
687875fb
MH
7154
7155 /*
7156 * We have to be careful here because we are iterating over memory
7157 * sections which are not zone aware so we might end up outside of
7158 * the zone but still within the section.
656a0706
MH
7159 * We have to take care about the node as well. If the node is offline
7160 * its NODE_DATA will be NULL - see page_zone.
687875fb 7161 */
656a0706
MH
7162 if (!node_online(page_to_nid(page)))
7163 return false;
7164
7165 zone = page_zone(page);
7166 pfn = page_to_pfn(page);
108bcc96 7167 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7168 return false;
7169
b023f468 7170 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7171}
0c0e6195 7172
080fe206 7173#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7174
7175static unsigned long pfn_max_align_down(unsigned long pfn)
7176{
7177 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7178 pageblock_nr_pages) - 1);
7179}
7180
7181static unsigned long pfn_max_align_up(unsigned long pfn)
7182{
7183 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7184 pageblock_nr_pages));
7185}
7186
041d3a8c 7187/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7188static int __alloc_contig_migrate_range(struct compact_control *cc,
7189 unsigned long start, unsigned long end)
041d3a8c
MN
7190{
7191 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7192 unsigned long nr_reclaimed;
041d3a8c
MN
7193 unsigned long pfn = start;
7194 unsigned int tries = 0;
7195 int ret = 0;
7196
be49a6e1 7197 migrate_prep();
041d3a8c 7198
bb13ffeb 7199 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7200 if (fatal_signal_pending(current)) {
7201 ret = -EINTR;
7202 break;
7203 }
7204
bb13ffeb
MG
7205 if (list_empty(&cc->migratepages)) {
7206 cc->nr_migratepages = 0;
edc2ca61 7207 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7208 if (!pfn) {
7209 ret = -EINTR;
7210 break;
7211 }
7212 tries = 0;
7213 } else if (++tries == 5) {
7214 ret = ret < 0 ? ret : -EBUSY;
7215 break;
7216 }
7217
beb51eaa
MK
7218 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7219 &cc->migratepages);
7220 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7221
9c620e2b 7222 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7223 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7224 }
2a6f5124
SP
7225 if (ret < 0) {
7226 putback_movable_pages(&cc->migratepages);
7227 return ret;
7228 }
7229 return 0;
041d3a8c
MN
7230}
7231
7232/**
7233 * alloc_contig_range() -- tries to allocate given range of pages
7234 * @start: start PFN to allocate
7235 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7236 * @migratetype: migratetype of the underlaying pageblocks (either
7237 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7238 * in range must have the same migratetype and it must
7239 * be either of the two.
041d3a8c
MN
7240 *
7241 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7242 * aligned, however it's the caller's responsibility to guarantee that
7243 * we are the only thread that changes migrate type of pageblocks the
7244 * pages fall in.
7245 *
7246 * The PFN range must belong to a single zone.
7247 *
7248 * Returns zero on success or negative error code. On success all
7249 * pages which PFN is in [start, end) are allocated for the caller and
7250 * need to be freed with free_contig_range().
7251 */
0815f3d8
MN
7252int alloc_contig_range(unsigned long start, unsigned long end,
7253 unsigned migratetype)
041d3a8c 7254{
041d3a8c 7255 unsigned long outer_start, outer_end;
d00181b9
KS
7256 unsigned int order;
7257 int ret = 0;
041d3a8c 7258
bb13ffeb
MG
7259 struct compact_control cc = {
7260 .nr_migratepages = 0,
7261 .order = -1,
7262 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7263 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7264 .ignore_skip_hint = true,
7265 };
7266 INIT_LIST_HEAD(&cc.migratepages);
7267
041d3a8c
MN
7268 /*
7269 * What we do here is we mark all pageblocks in range as
7270 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7271 * have different sizes, and due to the way page allocator
7272 * work, we align the range to biggest of the two pages so
7273 * that page allocator won't try to merge buddies from
7274 * different pageblocks and change MIGRATE_ISOLATE to some
7275 * other migration type.
7276 *
7277 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7278 * migrate the pages from an unaligned range (ie. pages that
7279 * we are interested in). This will put all the pages in
7280 * range back to page allocator as MIGRATE_ISOLATE.
7281 *
7282 * When this is done, we take the pages in range from page
7283 * allocator removing them from the buddy system. This way
7284 * page allocator will never consider using them.
7285 *
7286 * This lets us mark the pageblocks back as
7287 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7288 * aligned range but not in the unaligned, original range are
7289 * put back to page allocator so that buddy can use them.
7290 */
7291
7292 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7293 pfn_max_align_up(end), migratetype,
7294 false);
041d3a8c 7295 if (ret)
86a595f9 7296 return ret;
041d3a8c 7297
8ef5849f
JK
7298 /*
7299 * In case of -EBUSY, we'd like to know which page causes problem.
7300 * So, just fall through. We will check it in test_pages_isolated().
7301 */
bb13ffeb 7302 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7303 if (ret && ret != -EBUSY)
041d3a8c
MN
7304 goto done;
7305
7306 /*
7307 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7308 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7309 * more, all pages in [start, end) are free in page allocator.
7310 * What we are going to do is to allocate all pages from
7311 * [start, end) (that is remove them from page allocator).
7312 *
7313 * The only problem is that pages at the beginning and at the
7314 * end of interesting range may be not aligned with pages that
7315 * page allocator holds, ie. they can be part of higher order
7316 * pages. Because of this, we reserve the bigger range and
7317 * once this is done free the pages we are not interested in.
7318 *
7319 * We don't have to hold zone->lock here because the pages are
7320 * isolated thus they won't get removed from buddy.
7321 */
7322
7323 lru_add_drain_all();
510f5507 7324 drain_all_pages(cc.zone);
041d3a8c
MN
7325
7326 order = 0;
7327 outer_start = start;
7328 while (!PageBuddy(pfn_to_page(outer_start))) {
7329 if (++order >= MAX_ORDER) {
8ef5849f
JK
7330 outer_start = start;
7331 break;
041d3a8c
MN
7332 }
7333 outer_start &= ~0UL << order;
7334 }
7335
8ef5849f
JK
7336 if (outer_start != start) {
7337 order = page_order(pfn_to_page(outer_start));
7338
7339 /*
7340 * outer_start page could be small order buddy page and
7341 * it doesn't include start page. Adjust outer_start
7342 * in this case to report failed page properly
7343 * on tracepoint in test_pages_isolated()
7344 */
7345 if (outer_start + (1UL << order) <= start)
7346 outer_start = start;
7347 }
7348
041d3a8c 7349 /* Make sure the range is really isolated. */
b023f468 7350 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7351 pr_info("%s: [%lx, %lx) PFNs busy\n",
7352 __func__, outer_start, end);
041d3a8c
MN
7353 ret = -EBUSY;
7354 goto done;
7355 }
7356
49f223a9 7357 /* Grab isolated pages from freelists. */
bb13ffeb 7358 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7359 if (!outer_end) {
7360 ret = -EBUSY;
7361 goto done;
7362 }
7363
7364 /* Free head and tail (if any) */
7365 if (start != outer_start)
7366 free_contig_range(outer_start, start - outer_start);
7367 if (end != outer_end)
7368 free_contig_range(end, outer_end - end);
7369
7370done:
7371 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7372 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7373 return ret;
7374}
7375
7376void free_contig_range(unsigned long pfn, unsigned nr_pages)
7377{
bcc2b02f
MS
7378 unsigned int count = 0;
7379
7380 for (; nr_pages--; pfn++) {
7381 struct page *page = pfn_to_page(pfn);
7382
7383 count += page_count(page) != 1;
7384 __free_page(page);
7385 }
7386 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7387}
7388#endif
7389
4ed7e022 7390#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7391/*
7392 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7393 * page high values need to be recalulated.
7394 */
4ed7e022
JL
7395void __meminit zone_pcp_update(struct zone *zone)
7396{
0a647f38 7397 unsigned cpu;
c8e251fa 7398 mutex_lock(&pcp_batch_high_lock);
0a647f38 7399 for_each_possible_cpu(cpu)
169f6c19
CS
7400 pageset_set_high_and_batch(zone,
7401 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7402 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7403}
7404#endif
7405
340175b7
JL
7406void zone_pcp_reset(struct zone *zone)
7407{
7408 unsigned long flags;
5a883813
MK
7409 int cpu;
7410 struct per_cpu_pageset *pset;
340175b7
JL
7411
7412 /* avoid races with drain_pages() */
7413 local_irq_save(flags);
7414 if (zone->pageset != &boot_pageset) {
5a883813
MK
7415 for_each_online_cpu(cpu) {
7416 pset = per_cpu_ptr(zone->pageset, cpu);
7417 drain_zonestat(zone, pset);
7418 }
340175b7
JL
7419 free_percpu(zone->pageset);
7420 zone->pageset = &boot_pageset;
7421 }
7422 local_irq_restore(flags);
7423}
7424
6dcd73d7 7425#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7426/*
b9eb6319
JK
7427 * All pages in the range must be in a single zone and isolated
7428 * before calling this.
0c0e6195
KH
7429 */
7430void
7431__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7432{
7433 struct page *page;
7434 struct zone *zone;
7aeb09f9 7435 unsigned int order, i;
0c0e6195
KH
7436 unsigned long pfn;
7437 unsigned long flags;
7438 /* find the first valid pfn */
7439 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7440 if (pfn_valid(pfn))
7441 break;
7442 if (pfn == end_pfn)
7443 return;
7444 zone = page_zone(pfn_to_page(pfn));
7445 spin_lock_irqsave(&zone->lock, flags);
7446 pfn = start_pfn;
7447 while (pfn < end_pfn) {
7448 if (!pfn_valid(pfn)) {
7449 pfn++;
7450 continue;
7451 }
7452 page = pfn_to_page(pfn);
b023f468
WC
7453 /*
7454 * The HWPoisoned page may be not in buddy system, and
7455 * page_count() is not 0.
7456 */
7457 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7458 pfn++;
7459 SetPageReserved(page);
7460 continue;
7461 }
7462
0c0e6195
KH
7463 BUG_ON(page_count(page));
7464 BUG_ON(!PageBuddy(page));
7465 order = page_order(page);
7466#ifdef CONFIG_DEBUG_VM
1170532b
JP
7467 pr_info("remove from free list %lx %d %lx\n",
7468 pfn, 1 << order, end_pfn);
0c0e6195
KH
7469#endif
7470 list_del(&page->lru);
7471 rmv_page_order(page);
7472 zone->free_area[order].nr_free--;
0c0e6195
KH
7473 for (i = 0; i < (1 << order); i++)
7474 SetPageReserved((page+i));
7475 pfn += (1 << order);
7476 }
7477 spin_unlock_irqrestore(&zone->lock, flags);
7478}
7479#endif
8d22ba1b 7480
8d22ba1b
WF
7481bool is_free_buddy_page(struct page *page)
7482{
7483 struct zone *zone = page_zone(page);
7484 unsigned long pfn = page_to_pfn(page);
7485 unsigned long flags;
7aeb09f9 7486 unsigned int order;
8d22ba1b
WF
7487
7488 spin_lock_irqsave(&zone->lock, flags);
7489 for (order = 0; order < MAX_ORDER; order++) {
7490 struct page *page_head = page - (pfn & ((1 << order) - 1));
7491
7492 if (PageBuddy(page_head) && page_order(page_head) >= order)
7493 break;
7494 }
7495 spin_unlock_irqrestore(&zone->lock, flags);
7496
7497 return order < MAX_ORDER;
7498}