ARC: fix build warnings with !CONFIG_KPROBES
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
1da177e4 68
7ee3d4e8 69#include <asm/sections.h>
1da177e4 70#include <asm/tlbflush.h>
ac924c60 71#include <asm/div64.h>
1da177e4
LT
72#include "internal.h"
73
c8e251fa
CS
74/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 76#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 77
72812019
LS
78#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79DEFINE_PER_CPU(int, numa_node);
80EXPORT_PER_CPU_SYMBOL(numa_node);
81#endif
82
7aac7898
LS
83#ifdef CONFIG_HAVE_MEMORYLESS_NODES
84/*
85 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88 * defined in <linux/topology.h>.
89 */
90DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
91EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 92int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
93#endif
94
bd233f53
MG
95/* work_structs for global per-cpu drains */
96DEFINE_MUTEX(pcpu_drain_mutex);
97DEFINE_PER_CPU(struct work_struct, pcpu_drain);
98
38addce8 99#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 100volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
101EXPORT_SYMBOL(latent_entropy);
102#endif
103
1da177e4 104/*
13808910 105 * Array of node states.
1da177e4 106 */
13808910
CL
107nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 [N_POSSIBLE] = NODE_MASK_ALL,
109 [N_ONLINE] = { { [0] = 1UL } },
110#ifndef CONFIG_NUMA
111 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
112#ifdef CONFIG_HIGHMEM
113 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
114#endif
115#ifdef CONFIG_MOVABLE_NODE
116 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
117#endif
118 [N_CPU] = { { [0] = 1UL } },
119#endif /* NUMA */
120};
121EXPORT_SYMBOL(node_states);
122
c3d5f5f0
JL
123/* Protect totalram_pages and zone->managed_pages */
124static DEFINE_SPINLOCK(managed_page_count_lock);
125
6c231b7b 126unsigned long totalram_pages __read_mostly;
cb45b0e9 127unsigned long totalreserve_pages __read_mostly;
e48322ab 128unsigned long totalcma_pages __read_mostly;
ab8fabd4 129
1b76b02f 130int percpu_pagelist_fraction;
dcce284a 131gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 132
bb14c2c7
VB
133/*
134 * A cached value of the page's pageblock's migratetype, used when the page is
135 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137 * Also the migratetype set in the page does not necessarily match the pcplist
138 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139 * other index - this ensures that it will be put on the correct CMA freelist.
140 */
141static inline int get_pcppage_migratetype(struct page *page)
142{
143 return page->index;
144}
145
146static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147{
148 page->index = migratetype;
149}
150
452aa699
RW
151#ifdef CONFIG_PM_SLEEP
152/*
153 * The following functions are used by the suspend/hibernate code to temporarily
154 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155 * while devices are suspended. To avoid races with the suspend/hibernate code,
156 * they should always be called with pm_mutex held (gfp_allowed_mask also should
157 * only be modified with pm_mutex held, unless the suspend/hibernate code is
158 * guaranteed not to run in parallel with that modification).
159 */
c9e664f1
RW
160
161static gfp_t saved_gfp_mask;
162
163void pm_restore_gfp_mask(void)
452aa699
RW
164{
165 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
166 if (saved_gfp_mask) {
167 gfp_allowed_mask = saved_gfp_mask;
168 saved_gfp_mask = 0;
169 }
452aa699
RW
170}
171
c9e664f1 172void pm_restrict_gfp_mask(void)
452aa699 173{
452aa699 174 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
175 WARN_ON(saved_gfp_mask);
176 saved_gfp_mask = gfp_allowed_mask;
d0164adc 177 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 178}
f90ac398
MG
179
180bool pm_suspended_storage(void)
181{
d0164adc 182 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
183 return false;
184 return true;
185}
452aa699
RW
186#endif /* CONFIG_PM_SLEEP */
187
d9c23400 188#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 189unsigned int pageblock_order __read_mostly;
d9c23400
MG
190#endif
191
d98c7a09 192static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 193
1da177e4
LT
194/*
195 * results with 256, 32 in the lowmem_reserve sysctl:
196 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197 * 1G machine -> (16M dma, 784M normal, 224M high)
198 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 200 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
201 *
202 * TBD: should special case ZONE_DMA32 machines here - in those we normally
203 * don't need any ZONE_NORMAL reservation
1da177e4 204 */
2f1b6248 205int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 206#ifdef CONFIG_ZONE_DMA
2f1b6248 207 256,
4b51d669 208#endif
fb0e7942 209#ifdef CONFIG_ZONE_DMA32
2f1b6248 210 256,
fb0e7942 211#endif
e53ef38d 212#ifdef CONFIG_HIGHMEM
2a1e274a 213 32,
e53ef38d 214#endif
2a1e274a 215 32,
2f1b6248 216};
1da177e4
LT
217
218EXPORT_SYMBOL(totalram_pages);
1da177e4 219
15ad7cdc 220static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 221#ifdef CONFIG_ZONE_DMA
2f1b6248 222 "DMA",
4b51d669 223#endif
fb0e7942 224#ifdef CONFIG_ZONE_DMA32
2f1b6248 225 "DMA32",
fb0e7942 226#endif
2f1b6248 227 "Normal",
e53ef38d 228#ifdef CONFIG_HIGHMEM
2a1e274a 229 "HighMem",
e53ef38d 230#endif
2a1e274a 231 "Movable",
033fbae9
DW
232#ifdef CONFIG_ZONE_DEVICE
233 "Device",
234#endif
2f1b6248
CL
235};
236
60f30350
VB
237char * const migratetype_names[MIGRATE_TYPES] = {
238 "Unmovable",
239 "Movable",
240 "Reclaimable",
241 "HighAtomic",
242#ifdef CONFIG_CMA
243 "CMA",
244#endif
245#ifdef CONFIG_MEMORY_ISOLATION
246 "Isolate",
247#endif
248};
249
f1e61557
KS
250compound_page_dtor * const compound_page_dtors[] = {
251 NULL,
252 free_compound_page,
253#ifdef CONFIG_HUGETLB_PAGE
254 free_huge_page,
255#endif
9a982250
KS
256#ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 free_transhuge_page,
258#endif
f1e61557
KS
259};
260
1da177e4 261int min_free_kbytes = 1024;
42aa83cb 262int user_min_free_kbytes = -1;
795ae7a0 263int watermark_scale_factor = 10;
1da177e4 264
2c85f51d
JB
265static unsigned long __meminitdata nr_kernel_pages;
266static unsigned long __meminitdata nr_all_pages;
a3142c8e 267static unsigned long __meminitdata dma_reserve;
1da177e4 268
0ee332c1
TH
269#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272static unsigned long __initdata required_kernelcore;
273static unsigned long __initdata required_movablecore;
274static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 275static bool mirrored_kernelcore;
0ee332c1
TH
276
277/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278int movable_zone;
279EXPORT_SYMBOL(movable_zone);
280#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 281
418508c1
MS
282#if MAX_NUMNODES > 1
283int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 284int nr_online_nodes __read_mostly = 1;
418508c1 285EXPORT_SYMBOL(nr_node_ids);
62bc62a8 286EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
287#endif
288
9ef9acb0
MG
289int page_group_by_mobility_disabled __read_mostly;
290
3a80a7fa
MG
291#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292static inline void reset_deferred_meminit(pg_data_t *pgdat)
293{
294 pgdat->first_deferred_pfn = ULONG_MAX;
295}
296
297/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 299{
ef70b6f4
MG
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
303 return true;
304
305 return false;
306}
307
308/*
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
315{
987b3095
LZ
316 unsigned long max_initialise;
317
3a80a7fa
MG
318 /* Always populate low zones for address-contrained allocations */
319 if (zone_end < pgdat_end_pfn(pgdat))
320 return true;
987b3095
LZ
321 /*
322 * Initialise at least 2G of a node but also take into account that
323 * two large system hashes that can take up 1GB for 0.25TB/node.
324 */
325 max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 (pgdat->node_spanned_pages >> 8));
3a80a7fa 327
3a80a7fa 328 (*nr_initialised)++;
987b3095 329 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
330 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 pgdat->first_deferred_pfn = pfn;
332 return false;
333 }
334
335 return true;
336}
337#else
338static inline void reset_deferred_meminit(pg_data_t *pgdat)
339{
340}
341
342static inline bool early_page_uninitialised(unsigned long pfn)
343{
344 return false;
345}
346
347static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350{
351 return true;
352}
353#endif
354
0b423ca2
MG
355/* Return a pointer to the bitmap storing bits affecting a block of pages */
356static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358{
359#ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361#else
362 return page_zone(page)->pageblock_flags;
363#endif /* CONFIG_SPARSEMEM */
364}
365
366static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367{
368#ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371#else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374#endif /* CONFIG_SPARSEMEM */
375}
376
377/**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390{
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403}
404
405unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408{
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410}
411
412static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413{
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415}
416
417/**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429{
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454}
3a80a7fa 455
ee6f509c 456void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 457{
5d0f3f72
KM
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
460 migratetype = MIGRATE_UNMOVABLE;
461
b2a0ac88
MG
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464}
465
13e7444b 466#ifdef CONFIG_DEBUG_VM
c6a57e19 467static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 468{
bdc8cb98
DH
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 472 unsigned long sp, start_pfn;
c6a57e19 473
bdc8cb98
DH
474 do {
475 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
108bcc96 478 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
b5e6a5a2 482 if (ret)
613813e8
DH
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
b5e6a5a2 486
bdc8cb98 487 return ret;
c6a57e19
DH
488}
489
490static int page_is_consistent(struct zone *zone, struct page *page)
491{
14e07298 492 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 493 return 0;
1da177e4 494 if (zone != page_zone(page))
c6a57e19
DH
495 return 0;
496
497 return 1;
498}
499/*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502static int bad_range(struct zone *zone, struct page *page)
503{
504 if (page_outside_zone_boundaries(zone, page))
1da177e4 505 return 1;
c6a57e19
DH
506 if (!page_is_consistent(zone, page))
507 return 1;
508
1da177e4
LT
509 return 0;
510}
13e7444b
NP
511#else
512static inline int bad_range(struct zone *zone, struct page *page)
513{
514 return 0;
515}
516#endif
517
d230dec1
KS
518static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
1da177e4 520{
d936cf9b
HD
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /*
526 * Allow a burst of 60 reports, then keep quiet for that minute;
527 * or allow a steady drip of one report per second.
528 */
529 if (nr_shown == 60) {
530 if (time_before(jiffies, resume)) {
531 nr_unshown++;
532 goto out;
533 }
534 if (nr_unshown) {
ff8e8116 535 pr_alert(
1e9e6365 536 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
537 nr_unshown);
538 nr_unshown = 0;
539 }
540 nr_shown = 0;
541 }
542 if (nr_shown++ == 0)
543 resume = jiffies + 60 * HZ;
544
ff8e8116 545 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 546 current->comm, page_to_pfn(page));
ff8e8116
VB
547 __dump_page(page, reason);
548 bad_flags &= page->flags;
549 if (bad_flags)
550 pr_alert("bad because of flags: %#lx(%pGp)\n",
551 bad_flags, &bad_flags);
4e462112 552 dump_page_owner(page);
3dc14741 553
4f31888c 554 print_modules();
1da177e4 555 dump_stack();
d936cf9b 556out:
8cc3b392 557 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 558 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 559 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
560}
561
1da177e4
LT
562/*
563 * Higher-order pages are called "compound pages". They are structured thusly:
564 *
1d798ca3 565 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 566 *
1d798ca3
KS
567 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 569 *
1d798ca3
KS
570 * The first tail page's ->compound_dtor holds the offset in array of compound
571 * page destructors. See compound_page_dtors.
1da177e4 572 *
1d798ca3 573 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 574 * This usage means that zero-order pages may not be compound.
1da177e4 575 */
d98c7a09 576
9a982250 577void free_compound_page(struct page *page)
d98c7a09 578{
d85f3385 579 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
580}
581
d00181b9 582void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
583{
584 int i;
585 int nr_pages = 1 << order;
586
f1e61557 587 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
588 set_compound_order(page, order);
589 __SetPageHead(page);
590 for (i = 1; i < nr_pages; i++) {
591 struct page *p = page + i;
58a84aa9 592 set_page_count(p, 0);
1c290f64 593 p->mapping = TAIL_MAPPING;
1d798ca3 594 set_compound_head(p, page);
18229df5 595 }
53f9263b 596 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
597}
598
c0a32fc5
SG
599#ifdef CONFIG_DEBUG_PAGEALLOC
600unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
601bool _debug_pagealloc_enabled __read_mostly
602 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 603EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
604bool _debug_guardpage_enabled __read_mostly;
605
031bc574
JK
606static int __init early_debug_pagealloc(char *buf)
607{
608 if (!buf)
609 return -EINVAL;
2a138dc7 610 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
611}
612early_param("debug_pagealloc", early_debug_pagealloc);
613
e30825f1
JK
614static bool need_debug_guardpage(void)
615{
031bc574
JK
616 /* If we don't use debug_pagealloc, we don't need guard page */
617 if (!debug_pagealloc_enabled())
618 return false;
619
f1c1e9f7
JK
620 if (!debug_guardpage_minorder())
621 return false;
622
e30825f1
JK
623 return true;
624}
625
626static void init_debug_guardpage(void)
627{
031bc574
JK
628 if (!debug_pagealloc_enabled())
629 return;
630
f1c1e9f7
JK
631 if (!debug_guardpage_minorder())
632 return;
633
e30825f1
JK
634 _debug_guardpage_enabled = true;
635}
636
637struct page_ext_operations debug_guardpage_ops = {
638 .need = need_debug_guardpage,
639 .init = init_debug_guardpage,
640};
c0a32fc5
SG
641
642static int __init debug_guardpage_minorder_setup(char *buf)
643{
644 unsigned long res;
645
646 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 647 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
648 return 0;
649 }
650 _debug_guardpage_minorder = res;
1170532b 651 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
652 return 0;
653}
f1c1e9f7 654early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 655
acbc15a4 656static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 657 unsigned int order, int migratetype)
c0a32fc5 658{
e30825f1
JK
659 struct page_ext *page_ext;
660
661 if (!debug_guardpage_enabled())
acbc15a4
JK
662 return false;
663
664 if (order >= debug_guardpage_minorder())
665 return false;
e30825f1
JK
666
667 page_ext = lookup_page_ext(page);
f86e4271 668 if (unlikely(!page_ext))
acbc15a4 669 return false;
f86e4271 670
e30825f1
JK
671 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
672
2847cf95
JK
673 INIT_LIST_HEAD(&page->lru);
674 set_page_private(page, order);
675 /* Guard pages are not available for any usage */
676 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
677
678 return true;
c0a32fc5
SG
679}
680
2847cf95
JK
681static inline void clear_page_guard(struct zone *zone, struct page *page,
682 unsigned int order, int migratetype)
c0a32fc5 683{
e30825f1
JK
684 struct page_ext *page_ext;
685
686 if (!debug_guardpage_enabled())
687 return;
688
689 page_ext = lookup_page_ext(page);
f86e4271
YS
690 if (unlikely(!page_ext))
691 return;
692
e30825f1
JK
693 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694
2847cf95
JK
695 set_page_private(page, 0);
696 if (!is_migrate_isolate(migratetype))
697 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
698}
699#else
980ac167 700struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
701static inline bool set_page_guard(struct zone *zone, struct page *page,
702 unsigned int order, int migratetype) { return false; }
2847cf95
JK
703static inline void clear_page_guard(struct zone *zone, struct page *page,
704 unsigned int order, int migratetype) {}
c0a32fc5
SG
705#endif
706
7aeb09f9 707static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 708{
4c21e2f2 709 set_page_private(page, order);
676165a8 710 __SetPageBuddy(page);
1da177e4
LT
711}
712
713static inline void rmv_page_order(struct page *page)
714{
676165a8 715 __ClearPageBuddy(page);
4c21e2f2 716 set_page_private(page, 0);
1da177e4
LT
717}
718
1da177e4
LT
719/*
720 * This function checks whether a page is free && is the buddy
721 * we can do coalesce a page and its buddy if
13ad59df 722 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 723 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
724 * (c) a page and its buddy have the same order &&
725 * (d) a page and its buddy are in the same zone.
676165a8 726 *
cf6fe945
WSH
727 * For recording whether a page is in the buddy system, we set ->_mapcount
728 * PAGE_BUDDY_MAPCOUNT_VALUE.
729 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730 * serialized by zone->lock.
1da177e4 731 *
676165a8 732 * For recording page's order, we use page_private(page).
1da177e4 733 */
cb2b95e1 734static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 735 unsigned int order)
1da177e4 736{
c0a32fc5 737 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
738 if (page_zone_id(page) != page_zone_id(buddy))
739 return 0;
740
4c5018ce
WY
741 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742
c0a32fc5
SG
743 return 1;
744 }
745
cb2b95e1 746 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
747 /*
748 * zone check is done late to avoid uselessly
749 * calculating zone/node ids for pages that could
750 * never merge.
751 */
752 if (page_zone_id(page) != page_zone_id(buddy))
753 return 0;
754
4c5018ce
WY
755 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756
6aa3001b 757 return 1;
676165a8 758 }
6aa3001b 759 return 0;
1da177e4
LT
760}
761
762/*
763 * Freeing function for a buddy system allocator.
764 *
765 * The concept of a buddy system is to maintain direct-mapped table
766 * (containing bit values) for memory blocks of various "orders".
767 * The bottom level table contains the map for the smallest allocatable
768 * units of memory (here, pages), and each level above it describes
769 * pairs of units from the levels below, hence, "buddies".
770 * At a high level, all that happens here is marking the table entry
771 * at the bottom level available, and propagating the changes upward
772 * as necessary, plus some accounting needed to play nicely with other
773 * parts of the VM system.
774 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
775 * free pages of length of (1 << order) and marked with _mapcount
776 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777 * field.
1da177e4 778 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
779 * other. That is, if we allocate a small block, and both were
780 * free, the remainder of the region must be split into blocks.
1da177e4 781 * If a block is freed, and its buddy is also free, then this
5f63b720 782 * triggers coalescing into a block of larger size.
1da177e4 783 *
6d49e352 784 * -- nyc
1da177e4
LT
785 */
786
48db57f8 787static inline void __free_one_page(struct page *page,
dc4b0caf 788 unsigned long pfn,
ed0ae21d
MG
789 struct zone *zone, unsigned int order,
790 int migratetype)
1da177e4 791{
76741e77
VB
792 unsigned long combined_pfn;
793 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 794 struct page *buddy;
d9dddbf5
VB
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 798
d29bb978 799 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 801
ed0ae21d 802 VM_BUG_ON(migratetype == -1);
d9dddbf5 803 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 805
76741e77 806 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 807 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 808
d9dddbf5 809continue_merging:
3c605096 810 while (order < max_order - 1) {
76741e77
VB
811 buddy_pfn = __find_buddy_pfn(pfn, order);
812 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
813
814 if (!pfn_valid_within(buddy_pfn))
815 goto done_merging;
cb2b95e1 816 if (!page_is_buddy(page, buddy, order))
d9dddbf5 817 goto done_merging;
c0a32fc5
SG
818 /*
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
821 */
822 if (page_is_guard(buddy)) {
2847cf95 823 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
824 } else {
825 list_del(&buddy->lru);
826 zone->free_area[order].nr_free--;
827 rmv_page_order(buddy);
828 }
76741e77
VB
829 combined_pfn = buddy_pfn & pfn;
830 page = page + (combined_pfn - pfn);
831 pfn = combined_pfn;
1da177e4
LT
832 order++;
833 }
d9dddbf5
VB
834 if (max_order < MAX_ORDER) {
835 /* If we are here, it means order is >= pageblock_order.
836 * We want to prevent merge between freepages on isolate
837 * pageblock and normal pageblock. Without this, pageblock
838 * isolation could cause incorrect freepage or CMA accounting.
839 *
840 * We don't want to hit this code for the more frequent
841 * low-order merging.
842 */
843 if (unlikely(has_isolate_pageblock(zone))) {
844 int buddy_mt;
845
76741e77
VB
846 buddy_pfn = __find_buddy_pfn(pfn, order);
847 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
848 buddy_mt = get_pageblock_migratetype(buddy);
849
850 if (migratetype != buddy_mt
851 && (is_migrate_isolate(migratetype) ||
852 is_migrate_isolate(buddy_mt)))
853 goto done_merging;
854 }
855 max_order++;
856 goto continue_merging;
857 }
858
859done_merging:
1da177e4 860 set_page_order(page, order);
6dda9d55
CZ
861
862 /*
863 * If this is not the largest possible page, check if the buddy
864 * of the next-highest order is free. If it is, it's possible
865 * that pages are being freed that will coalesce soon. In case,
866 * that is happening, add the free page to the tail of the list
867 * so it's less likely to be used soon and more likely to be merged
868 * as a higher order page
869 */
13ad59df 870 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 871 struct page *higher_page, *higher_buddy;
76741e77
VB
872 combined_pfn = buddy_pfn & pfn;
873 higher_page = page + (combined_pfn - pfn);
874 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
6dda9d55
CZ
876 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
877 list_add_tail(&page->lru,
878 &zone->free_area[order].free_list[migratetype]);
879 goto out;
880 }
881 }
882
883 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
884out:
1da177e4
LT
885 zone->free_area[order].nr_free++;
886}
887
7bfec6f4
MG
888/*
889 * A bad page could be due to a number of fields. Instead of multiple branches,
890 * try and check multiple fields with one check. The caller must do a detailed
891 * check if necessary.
892 */
893static inline bool page_expected_state(struct page *page,
894 unsigned long check_flags)
895{
896 if (unlikely(atomic_read(&page->_mapcount) != -1))
897 return false;
898
899 if (unlikely((unsigned long)page->mapping |
900 page_ref_count(page) |
901#ifdef CONFIG_MEMCG
902 (unsigned long)page->mem_cgroup |
903#endif
904 (page->flags & check_flags)))
905 return false;
906
907 return true;
908}
909
bb552ac6 910static void free_pages_check_bad(struct page *page)
1da177e4 911{
7bfec6f4
MG
912 const char *bad_reason;
913 unsigned long bad_flags;
914
7bfec6f4
MG
915 bad_reason = NULL;
916 bad_flags = 0;
f0b791a3 917
53f9263b 918 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
919 bad_reason = "nonzero mapcount";
920 if (unlikely(page->mapping != NULL))
921 bad_reason = "non-NULL mapping";
fe896d18 922 if (unlikely(page_ref_count(page) != 0))
0139aa7b 923 bad_reason = "nonzero _refcount";
f0b791a3
DH
924 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
925 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
926 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
927 }
9edad6ea
JW
928#ifdef CONFIG_MEMCG
929 if (unlikely(page->mem_cgroup))
930 bad_reason = "page still charged to cgroup";
931#endif
7bfec6f4 932 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
933}
934
935static inline int free_pages_check(struct page *page)
936{
da838d4f 937 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 938 return 0;
bb552ac6
MG
939
940 /* Something has gone sideways, find it */
941 free_pages_check_bad(page);
7bfec6f4 942 return 1;
1da177e4
LT
943}
944
4db7548c
MG
945static int free_tail_pages_check(struct page *head_page, struct page *page)
946{
947 int ret = 1;
948
949 /*
950 * We rely page->lru.next never has bit 0 set, unless the page
951 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
952 */
953 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
954
955 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
956 ret = 0;
957 goto out;
958 }
959 switch (page - head_page) {
960 case 1:
961 /* the first tail page: ->mapping is compound_mapcount() */
962 if (unlikely(compound_mapcount(page))) {
963 bad_page(page, "nonzero compound_mapcount", 0);
964 goto out;
965 }
966 break;
967 case 2:
968 /*
969 * the second tail page: ->mapping is
970 * page_deferred_list().next -- ignore value.
971 */
972 break;
973 default:
974 if (page->mapping != TAIL_MAPPING) {
975 bad_page(page, "corrupted mapping in tail page", 0);
976 goto out;
977 }
978 break;
979 }
980 if (unlikely(!PageTail(page))) {
981 bad_page(page, "PageTail not set", 0);
982 goto out;
983 }
984 if (unlikely(compound_head(page) != head_page)) {
985 bad_page(page, "compound_head not consistent", 0);
986 goto out;
987 }
988 ret = 0;
989out:
990 page->mapping = NULL;
991 clear_compound_head(page);
992 return ret;
993}
994
e2769dbd
MG
995static __always_inline bool free_pages_prepare(struct page *page,
996 unsigned int order, bool check_free)
4db7548c 997{
e2769dbd 998 int bad = 0;
4db7548c 999
4db7548c
MG
1000 VM_BUG_ON_PAGE(PageTail(page), page);
1001
e2769dbd
MG
1002 trace_mm_page_free(page, order);
1003 kmemcheck_free_shadow(page, order);
e2769dbd
MG
1004
1005 /*
1006 * Check tail pages before head page information is cleared to
1007 * avoid checking PageCompound for order-0 pages.
1008 */
1009 if (unlikely(order)) {
1010 bool compound = PageCompound(page);
1011 int i;
1012
1013 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1014
9a73f61b
KS
1015 if (compound)
1016 ClearPageDoubleMap(page);
e2769dbd
MG
1017 for (i = 1; i < (1 << order); i++) {
1018 if (compound)
1019 bad += free_tail_pages_check(page, page + i);
1020 if (unlikely(free_pages_check(page + i))) {
1021 bad++;
1022 continue;
1023 }
1024 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1025 }
1026 }
bda807d4 1027 if (PageMappingFlags(page))
4db7548c 1028 page->mapping = NULL;
c4159a75 1029 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1030 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1031 if (check_free)
1032 bad += free_pages_check(page);
1033 if (bad)
1034 return false;
4db7548c 1035
e2769dbd
MG
1036 page_cpupid_reset_last(page);
1037 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1038 reset_page_owner(page, order);
4db7548c
MG
1039
1040 if (!PageHighMem(page)) {
1041 debug_check_no_locks_freed(page_address(page),
e2769dbd 1042 PAGE_SIZE << order);
4db7548c 1043 debug_check_no_obj_freed(page_address(page),
e2769dbd 1044 PAGE_SIZE << order);
4db7548c 1045 }
e2769dbd
MG
1046 arch_free_page(page, order);
1047 kernel_poison_pages(page, 1 << order, 0);
1048 kernel_map_pages(page, 1 << order, 0);
29b52de1 1049 kasan_free_pages(page, order);
4db7548c 1050
4db7548c
MG
1051 return true;
1052}
1053
e2769dbd
MG
1054#ifdef CONFIG_DEBUG_VM
1055static inline bool free_pcp_prepare(struct page *page)
1056{
1057 return free_pages_prepare(page, 0, true);
1058}
1059
1060static inline bool bulkfree_pcp_prepare(struct page *page)
1061{
1062 return false;
1063}
1064#else
1065static bool free_pcp_prepare(struct page *page)
1066{
1067 return free_pages_prepare(page, 0, false);
1068}
1069
4db7548c
MG
1070static bool bulkfree_pcp_prepare(struct page *page)
1071{
1072 return free_pages_check(page);
1073}
1074#endif /* CONFIG_DEBUG_VM */
1075
1da177e4 1076/*
5f8dcc21 1077 * Frees a number of pages from the PCP lists
1da177e4 1078 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1079 * count is the number of pages to free.
1da177e4
LT
1080 *
1081 * If the zone was previously in an "all pages pinned" state then look to
1082 * see if this freeing clears that state.
1083 *
1084 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1085 * pinned" detection logic.
1086 */
5f8dcc21
MG
1087static void free_pcppages_bulk(struct zone *zone, int count,
1088 struct per_cpu_pages *pcp)
1da177e4 1089{
5f8dcc21 1090 int migratetype = 0;
a6f9edd6 1091 int batch_free = 0;
374ad05a 1092 unsigned long nr_scanned, flags;
3777999d 1093 bool isolated_pageblocks;
5f8dcc21 1094
374ad05a 1095 spin_lock_irqsave(&zone->lock, flags);
3777999d 1096 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1097 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1098 if (nr_scanned)
599d0c95 1099 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1100
e5b31ac2 1101 while (count) {
48db57f8 1102 struct page *page;
5f8dcc21
MG
1103 struct list_head *list;
1104
1105 /*
a6f9edd6
MG
1106 * Remove pages from lists in a round-robin fashion. A
1107 * batch_free count is maintained that is incremented when an
1108 * empty list is encountered. This is so more pages are freed
1109 * off fuller lists instead of spinning excessively around empty
1110 * lists
5f8dcc21
MG
1111 */
1112 do {
a6f9edd6 1113 batch_free++;
5f8dcc21
MG
1114 if (++migratetype == MIGRATE_PCPTYPES)
1115 migratetype = 0;
1116 list = &pcp->lists[migratetype];
1117 } while (list_empty(list));
48db57f8 1118
1d16871d
NK
1119 /* This is the only non-empty list. Free them all. */
1120 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1121 batch_free = count;
1d16871d 1122
a6f9edd6 1123 do {
770c8aaa
BZ
1124 int mt; /* migratetype of the to-be-freed page */
1125
a16601c5 1126 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1127 /* must delete as __free_one_page list manipulates */
1128 list_del(&page->lru);
aa016d14 1129
bb14c2c7 1130 mt = get_pcppage_migratetype(page);
aa016d14
VB
1131 /* MIGRATE_ISOLATE page should not go to pcplists */
1132 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1133 /* Pageblock could have been isolated meanwhile */
3777999d 1134 if (unlikely(isolated_pageblocks))
51bb1a40 1135 mt = get_pageblock_migratetype(page);
51bb1a40 1136
4db7548c
MG
1137 if (bulkfree_pcp_prepare(page))
1138 continue;
1139
dc4b0caf 1140 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1141 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1142 } while (--count && --batch_free && !list_empty(list));
1da177e4 1143 }
374ad05a 1144 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4
LT
1145}
1146
dc4b0caf
MG
1147static void free_one_page(struct zone *zone,
1148 struct page *page, unsigned long pfn,
7aeb09f9 1149 unsigned int order,
ed0ae21d 1150 int migratetype)
1da177e4 1151{
374ad05a
MG
1152 unsigned long nr_scanned, flags;
1153 spin_lock_irqsave(&zone->lock, flags);
1154 __count_vm_events(PGFREE, 1 << order);
599d0c95 1155 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1156 if (nr_scanned)
599d0c95 1157 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1158
ad53f92e
JK
1159 if (unlikely(has_isolate_pageblock(zone) ||
1160 is_migrate_isolate(migratetype))) {
1161 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1162 }
dc4b0caf 1163 __free_one_page(page, pfn, zone, order, migratetype);
374ad05a 1164 spin_unlock_irqrestore(&zone->lock, flags);
48db57f8
NP
1165}
1166
1e8ce83c
RH
1167static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1168 unsigned long zone, int nid)
1169{
1e8ce83c 1170 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1171 init_page_count(page);
1172 page_mapcount_reset(page);
1173 page_cpupid_reset_last(page);
1e8ce83c 1174
1e8ce83c
RH
1175 INIT_LIST_HEAD(&page->lru);
1176#ifdef WANT_PAGE_VIRTUAL
1177 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1178 if (!is_highmem_idx(zone))
1179 set_page_address(page, __va(pfn << PAGE_SHIFT));
1180#endif
1181}
1182
1183static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1184 int nid)
1185{
1186 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1187}
1188
7e18adb4
MG
1189#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1190static void init_reserved_page(unsigned long pfn)
1191{
1192 pg_data_t *pgdat;
1193 int nid, zid;
1194
1195 if (!early_page_uninitialised(pfn))
1196 return;
1197
1198 nid = early_pfn_to_nid(pfn);
1199 pgdat = NODE_DATA(nid);
1200
1201 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1202 struct zone *zone = &pgdat->node_zones[zid];
1203
1204 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1205 break;
1206 }
1207 __init_single_pfn(pfn, zid, nid);
1208}
1209#else
1210static inline void init_reserved_page(unsigned long pfn)
1211{
1212}
1213#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1214
92923ca3
NZ
1215/*
1216 * Initialised pages do not have PageReserved set. This function is
1217 * called for each range allocated by the bootmem allocator and
1218 * marks the pages PageReserved. The remaining valid pages are later
1219 * sent to the buddy page allocator.
1220 */
4b50bcc7 1221void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1222{
1223 unsigned long start_pfn = PFN_DOWN(start);
1224 unsigned long end_pfn = PFN_UP(end);
1225
7e18adb4
MG
1226 for (; start_pfn < end_pfn; start_pfn++) {
1227 if (pfn_valid(start_pfn)) {
1228 struct page *page = pfn_to_page(start_pfn);
1229
1230 init_reserved_page(start_pfn);
1d798ca3
KS
1231
1232 /* Avoid false-positive PageTail() */
1233 INIT_LIST_HEAD(&page->lru);
1234
7e18adb4
MG
1235 SetPageReserved(page);
1236 }
1237 }
92923ca3
NZ
1238}
1239
ec95f53a
KM
1240static void __free_pages_ok(struct page *page, unsigned int order)
1241{
95e34412 1242 int migratetype;
dc4b0caf 1243 unsigned long pfn = page_to_pfn(page);
ec95f53a 1244
e2769dbd 1245 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1246 return;
1247
cfc47a28 1248 migratetype = get_pfnblock_migratetype(page, pfn);
dc4b0caf 1249 free_one_page(page_zone(page), page, pfn, order, migratetype);
1da177e4
LT
1250}
1251
949698a3 1252static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1253{
c3993076 1254 unsigned int nr_pages = 1 << order;
e2d0bd2b 1255 struct page *p = page;
c3993076 1256 unsigned int loop;
a226f6c8 1257
e2d0bd2b
YL
1258 prefetchw(p);
1259 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1260 prefetchw(p + 1);
c3993076
JW
1261 __ClearPageReserved(p);
1262 set_page_count(p, 0);
a226f6c8 1263 }
e2d0bd2b
YL
1264 __ClearPageReserved(p);
1265 set_page_count(p, 0);
c3993076 1266
e2d0bd2b 1267 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1268 set_page_refcounted(page);
1269 __free_pages(page, order);
a226f6c8
DH
1270}
1271
75a592a4
MG
1272#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1273 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1274
75a592a4
MG
1275static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1276
1277int __meminit early_pfn_to_nid(unsigned long pfn)
1278{
7ace9917 1279 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1280 int nid;
1281
7ace9917 1282 spin_lock(&early_pfn_lock);
75a592a4 1283 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1284 if (nid < 0)
e4568d38 1285 nid = first_online_node;
7ace9917
MG
1286 spin_unlock(&early_pfn_lock);
1287
1288 return nid;
75a592a4
MG
1289}
1290#endif
1291
1292#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1293static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1294 struct mminit_pfnnid_cache *state)
1295{
1296 int nid;
1297
1298 nid = __early_pfn_to_nid(pfn, state);
1299 if (nid >= 0 && nid != node)
1300 return false;
1301 return true;
1302}
1303
1304/* Only safe to use early in boot when initialisation is single-threaded */
1305static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1306{
1307 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1308}
1309
1310#else
1311
1312static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1313{
1314 return true;
1315}
1316static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1317 struct mminit_pfnnid_cache *state)
1318{
1319 return true;
1320}
1321#endif
1322
1323
0e1cc95b 1324void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1325 unsigned int order)
1326{
1327 if (early_page_uninitialised(pfn))
1328 return;
949698a3 1329 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1330}
1331
7cf91a98
JK
1332/*
1333 * Check that the whole (or subset of) a pageblock given by the interval of
1334 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1335 * with the migration of free compaction scanner. The scanners then need to
1336 * use only pfn_valid_within() check for arches that allow holes within
1337 * pageblocks.
1338 *
1339 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1340 *
1341 * It's possible on some configurations to have a setup like node0 node1 node0
1342 * i.e. it's possible that all pages within a zones range of pages do not
1343 * belong to a single zone. We assume that a border between node0 and node1
1344 * can occur within a single pageblock, but not a node0 node1 node0
1345 * interleaving within a single pageblock. It is therefore sufficient to check
1346 * the first and last page of a pageblock and avoid checking each individual
1347 * page in a pageblock.
1348 */
1349struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1350 unsigned long end_pfn, struct zone *zone)
1351{
1352 struct page *start_page;
1353 struct page *end_page;
1354
1355 /* end_pfn is one past the range we are checking */
1356 end_pfn--;
1357
1358 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1359 return NULL;
1360
1361 start_page = pfn_to_page(start_pfn);
1362
1363 if (page_zone(start_page) != zone)
1364 return NULL;
1365
1366 end_page = pfn_to_page(end_pfn);
1367
1368 /* This gives a shorter code than deriving page_zone(end_page) */
1369 if (page_zone_id(start_page) != page_zone_id(end_page))
1370 return NULL;
1371
1372 return start_page;
1373}
1374
1375void set_zone_contiguous(struct zone *zone)
1376{
1377 unsigned long block_start_pfn = zone->zone_start_pfn;
1378 unsigned long block_end_pfn;
1379
1380 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1381 for (; block_start_pfn < zone_end_pfn(zone);
1382 block_start_pfn = block_end_pfn,
1383 block_end_pfn += pageblock_nr_pages) {
1384
1385 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1386
1387 if (!__pageblock_pfn_to_page(block_start_pfn,
1388 block_end_pfn, zone))
1389 return;
1390 }
1391
1392 /* We confirm that there is no hole */
1393 zone->contiguous = true;
1394}
1395
1396void clear_zone_contiguous(struct zone *zone)
1397{
1398 zone->contiguous = false;
1399}
1400
7e18adb4 1401#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1402static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1403 unsigned long pfn, int nr_pages)
1404{
1405 int i;
1406
1407 if (!page)
1408 return;
1409
1410 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1411 if (nr_pages == pageblock_nr_pages &&
1412 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1413 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1414 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1415 return;
1416 }
1417
e780149b
XQ
1418 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1419 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1420 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1421 __free_pages_boot_core(page, 0);
e780149b 1422 }
a4de83dd
MG
1423}
1424
d3cd131d
NS
1425/* Completion tracking for deferred_init_memmap() threads */
1426static atomic_t pgdat_init_n_undone __initdata;
1427static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1428
1429static inline void __init pgdat_init_report_one_done(void)
1430{
1431 if (atomic_dec_and_test(&pgdat_init_n_undone))
1432 complete(&pgdat_init_all_done_comp);
1433}
0e1cc95b 1434
7e18adb4 1435/* Initialise remaining memory on a node */
0e1cc95b 1436static int __init deferred_init_memmap(void *data)
7e18adb4 1437{
0e1cc95b
MG
1438 pg_data_t *pgdat = data;
1439 int nid = pgdat->node_id;
7e18adb4
MG
1440 struct mminit_pfnnid_cache nid_init_state = { };
1441 unsigned long start = jiffies;
1442 unsigned long nr_pages = 0;
1443 unsigned long walk_start, walk_end;
1444 int i, zid;
1445 struct zone *zone;
7e18adb4 1446 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1447 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1448
0e1cc95b 1449 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1450 pgdat_init_report_one_done();
0e1cc95b
MG
1451 return 0;
1452 }
1453
1454 /* Bind memory initialisation thread to a local node if possible */
1455 if (!cpumask_empty(cpumask))
1456 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1457
1458 /* Sanity check boundaries */
1459 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1460 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1461 pgdat->first_deferred_pfn = ULONG_MAX;
1462
1463 /* Only the highest zone is deferred so find it */
1464 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1465 zone = pgdat->node_zones + zid;
1466 if (first_init_pfn < zone_end_pfn(zone))
1467 break;
1468 }
1469
1470 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1471 unsigned long pfn, end_pfn;
54608c3f 1472 struct page *page = NULL;
a4de83dd
MG
1473 struct page *free_base_page = NULL;
1474 unsigned long free_base_pfn = 0;
1475 int nr_to_free = 0;
7e18adb4
MG
1476
1477 end_pfn = min(walk_end, zone_end_pfn(zone));
1478 pfn = first_init_pfn;
1479 if (pfn < walk_start)
1480 pfn = walk_start;
1481 if (pfn < zone->zone_start_pfn)
1482 pfn = zone->zone_start_pfn;
1483
1484 for (; pfn < end_pfn; pfn++) {
54608c3f 1485 if (!pfn_valid_within(pfn))
a4de83dd 1486 goto free_range;
7e18adb4 1487
54608c3f
MG
1488 /*
1489 * Ensure pfn_valid is checked every
e780149b 1490 * pageblock_nr_pages for memory holes
54608c3f 1491 */
e780149b 1492 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1493 if (!pfn_valid(pfn)) {
1494 page = NULL;
a4de83dd 1495 goto free_range;
54608c3f
MG
1496 }
1497 }
1498
1499 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1500 page = NULL;
a4de83dd 1501 goto free_range;
54608c3f
MG
1502 }
1503
1504 /* Minimise pfn page lookups and scheduler checks */
e780149b 1505 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1506 page++;
1507 } else {
a4de83dd
MG
1508 nr_pages += nr_to_free;
1509 deferred_free_range(free_base_page,
1510 free_base_pfn, nr_to_free);
1511 free_base_page = NULL;
1512 free_base_pfn = nr_to_free = 0;
1513
54608c3f
MG
1514 page = pfn_to_page(pfn);
1515 cond_resched();
1516 }
7e18adb4
MG
1517
1518 if (page->flags) {
1519 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1520 goto free_range;
7e18adb4
MG
1521 }
1522
1523 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1524 if (!free_base_page) {
1525 free_base_page = page;
1526 free_base_pfn = pfn;
1527 nr_to_free = 0;
1528 }
1529 nr_to_free++;
1530
1531 /* Where possible, batch up pages for a single free */
1532 continue;
1533free_range:
1534 /* Free the current block of pages to allocator */
1535 nr_pages += nr_to_free;
1536 deferred_free_range(free_base_page, free_base_pfn,
1537 nr_to_free);
1538 free_base_page = NULL;
1539 free_base_pfn = nr_to_free = 0;
7e18adb4 1540 }
e780149b
XQ
1541 /* Free the last block of pages to allocator */
1542 nr_pages += nr_to_free;
1543 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1544
7e18adb4
MG
1545 first_init_pfn = max(end_pfn, first_init_pfn);
1546 }
1547
1548 /* Sanity check that the next zone really is unpopulated */
1549 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1550
0e1cc95b 1551 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1552 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1553
1554 pgdat_init_report_one_done();
0e1cc95b
MG
1555 return 0;
1556}
7cf91a98 1557#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1558
1559void __init page_alloc_init_late(void)
1560{
7cf91a98
JK
1561 struct zone *zone;
1562
1563#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1564 int nid;
1565
d3cd131d
NS
1566 /* There will be num_node_state(N_MEMORY) threads */
1567 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1568 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1569 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1570 }
1571
1572 /* Block until all are initialised */
d3cd131d 1573 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1574
1575 /* Reinit limits that are based on free pages after the kernel is up */
1576 files_maxfiles_init();
7cf91a98
JK
1577#endif
1578
1579 for_each_populated_zone(zone)
1580 set_zone_contiguous(zone);
7e18adb4 1581}
7e18adb4 1582
47118af0 1583#ifdef CONFIG_CMA
9cf510a5 1584/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1585void __init init_cma_reserved_pageblock(struct page *page)
1586{
1587 unsigned i = pageblock_nr_pages;
1588 struct page *p = page;
1589
1590 do {
1591 __ClearPageReserved(p);
1592 set_page_count(p, 0);
1593 } while (++p, --i);
1594
47118af0 1595 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1596
1597 if (pageblock_order >= MAX_ORDER) {
1598 i = pageblock_nr_pages;
1599 p = page;
1600 do {
1601 set_page_refcounted(p);
1602 __free_pages(p, MAX_ORDER - 1);
1603 p += MAX_ORDER_NR_PAGES;
1604 } while (i -= MAX_ORDER_NR_PAGES);
1605 } else {
1606 set_page_refcounted(page);
1607 __free_pages(page, pageblock_order);
1608 }
1609
3dcc0571 1610 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1611}
1612#endif
1da177e4
LT
1613
1614/*
1615 * The order of subdivision here is critical for the IO subsystem.
1616 * Please do not alter this order without good reasons and regression
1617 * testing. Specifically, as large blocks of memory are subdivided,
1618 * the order in which smaller blocks are delivered depends on the order
1619 * they're subdivided in this function. This is the primary factor
1620 * influencing the order in which pages are delivered to the IO
1621 * subsystem according to empirical testing, and this is also justified
1622 * by considering the behavior of a buddy system containing a single
1623 * large block of memory acted on by a series of small allocations.
1624 * This behavior is a critical factor in sglist merging's success.
1625 *
6d49e352 1626 * -- nyc
1da177e4 1627 */
085cc7d5 1628static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1629 int low, int high, struct free_area *area,
1630 int migratetype)
1da177e4
LT
1631{
1632 unsigned long size = 1 << high;
1633
1634 while (high > low) {
1635 area--;
1636 high--;
1637 size >>= 1;
309381fe 1638 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1639
acbc15a4
JK
1640 /*
1641 * Mark as guard pages (or page), that will allow to
1642 * merge back to allocator when buddy will be freed.
1643 * Corresponding page table entries will not be touched,
1644 * pages will stay not present in virtual address space
1645 */
1646 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1647 continue;
acbc15a4 1648
b2a0ac88 1649 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1650 area->nr_free++;
1651 set_page_order(&page[size], high);
1652 }
1da177e4
LT
1653}
1654
4e611801 1655static void check_new_page_bad(struct page *page)
1da177e4 1656{
4e611801
VB
1657 const char *bad_reason = NULL;
1658 unsigned long bad_flags = 0;
7bfec6f4 1659
53f9263b 1660 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1661 bad_reason = "nonzero mapcount";
1662 if (unlikely(page->mapping != NULL))
1663 bad_reason = "non-NULL mapping";
fe896d18 1664 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1665 bad_reason = "nonzero _count";
f4c18e6f
NH
1666 if (unlikely(page->flags & __PG_HWPOISON)) {
1667 bad_reason = "HWPoisoned (hardware-corrupted)";
1668 bad_flags = __PG_HWPOISON;
e570f56c
NH
1669 /* Don't complain about hwpoisoned pages */
1670 page_mapcount_reset(page); /* remove PageBuddy */
1671 return;
f4c18e6f 1672 }
f0b791a3
DH
1673 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1674 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1675 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1676 }
9edad6ea
JW
1677#ifdef CONFIG_MEMCG
1678 if (unlikely(page->mem_cgroup))
1679 bad_reason = "page still charged to cgroup";
1680#endif
4e611801
VB
1681 bad_page(page, bad_reason, bad_flags);
1682}
1683
1684/*
1685 * This page is about to be returned from the page allocator
1686 */
1687static inline int check_new_page(struct page *page)
1688{
1689 if (likely(page_expected_state(page,
1690 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1691 return 0;
1692
1693 check_new_page_bad(page);
1694 return 1;
2a7684a2
WF
1695}
1696
1414c7f4
LA
1697static inline bool free_pages_prezeroed(bool poisoned)
1698{
1699 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1700 page_poisoning_enabled() && poisoned;
1701}
1702
479f854a
MG
1703#ifdef CONFIG_DEBUG_VM
1704static bool check_pcp_refill(struct page *page)
1705{
1706 return false;
1707}
1708
1709static bool check_new_pcp(struct page *page)
1710{
1711 return check_new_page(page);
1712}
1713#else
1714static bool check_pcp_refill(struct page *page)
1715{
1716 return check_new_page(page);
1717}
1718static bool check_new_pcp(struct page *page)
1719{
1720 return false;
1721}
1722#endif /* CONFIG_DEBUG_VM */
1723
1724static bool check_new_pages(struct page *page, unsigned int order)
1725{
1726 int i;
1727 for (i = 0; i < (1 << order); i++) {
1728 struct page *p = page + i;
1729
1730 if (unlikely(check_new_page(p)))
1731 return true;
1732 }
1733
1734 return false;
1735}
1736
46f24fd8
JK
1737inline void post_alloc_hook(struct page *page, unsigned int order,
1738 gfp_t gfp_flags)
1739{
1740 set_page_private(page, 0);
1741 set_page_refcounted(page);
1742
1743 arch_alloc_page(page, order);
1744 kernel_map_pages(page, 1 << order, 1);
1745 kernel_poison_pages(page, 1 << order, 1);
1746 kasan_alloc_pages(page, order);
1747 set_page_owner(page, order, gfp_flags);
1748}
1749
479f854a 1750static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1751 unsigned int alloc_flags)
2a7684a2
WF
1752{
1753 int i;
1414c7f4 1754 bool poisoned = true;
2a7684a2
WF
1755
1756 for (i = 0; i < (1 << order); i++) {
1757 struct page *p = page + i;
1414c7f4
LA
1758 if (poisoned)
1759 poisoned &= page_is_poisoned(p);
2a7684a2 1760 }
689bcebf 1761
46f24fd8 1762 post_alloc_hook(page, order, gfp_flags);
17cf4406 1763
1414c7f4 1764 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1765 for (i = 0; i < (1 << order); i++)
1766 clear_highpage(page + i);
17cf4406
NP
1767
1768 if (order && (gfp_flags & __GFP_COMP))
1769 prep_compound_page(page, order);
1770
75379191 1771 /*
2f064f34 1772 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1773 * allocate the page. The expectation is that the caller is taking
1774 * steps that will free more memory. The caller should avoid the page
1775 * being used for !PFMEMALLOC purposes.
1776 */
2f064f34
MH
1777 if (alloc_flags & ALLOC_NO_WATERMARKS)
1778 set_page_pfmemalloc(page);
1779 else
1780 clear_page_pfmemalloc(page);
1da177e4
LT
1781}
1782
56fd56b8
MG
1783/*
1784 * Go through the free lists for the given migratetype and remove
1785 * the smallest available page from the freelists
1786 */
728ec980
MG
1787static inline
1788struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1789 int migratetype)
1790{
1791 unsigned int current_order;
b8af2941 1792 struct free_area *area;
56fd56b8
MG
1793 struct page *page;
1794
1795 /* Find a page of the appropriate size in the preferred list */
1796 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1797 area = &(zone->free_area[current_order]);
a16601c5 1798 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1799 struct page, lru);
a16601c5
GT
1800 if (!page)
1801 continue;
56fd56b8
MG
1802 list_del(&page->lru);
1803 rmv_page_order(page);
1804 area->nr_free--;
56fd56b8 1805 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1806 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1807 return page;
1808 }
1809
1810 return NULL;
1811}
1812
1813
b2a0ac88
MG
1814/*
1815 * This array describes the order lists are fallen back to when
1816 * the free lists for the desirable migrate type are depleted
1817 */
47118af0 1818static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1819 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1820 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1821 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1822#ifdef CONFIG_CMA
974a786e 1823 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1824#endif
194159fb 1825#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1826 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1827#endif
b2a0ac88
MG
1828};
1829
dc67647b
JK
1830#ifdef CONFIG_CMA
1831static struct page *__rmqueue_cma_fallback(struct zone *zone,
1832 unsigned int order)
1833{
1834 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1835}
1836#else
1837static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1838 unsigned int order) { return NULL; }
1839#endif
1840
c361be55
MG
1841/*
1842 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1843 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1844 * boundary. If alignment is required, use move_freepages_block()
1845 */
435b405c 1846int move_freepages(struct zone *zone,
b69a7288
AB
1847 struct page *start_page, struct page *end_page,
1848 int migratetype)
c361be55
MG
1849{
1850 struct page *page;
d00181b9 1851 unsigned int order;
d100313f 1852 int pages_moved = 0;
c361be55
MG
1853
1854#ifndef CONFIG_HOLES_IN_ZONE
1855 /*
1856 * page_zone is not safe to call in this context when
1857 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1858 * anyway as we check zone boundaries in move_freepages_block().
1859 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1860 * grouping pages by mobility
c361be55 1861 */
97ee4ba7 1862 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1863#endif
1864
1865 for (page = start_page; page <= end_page;) {
1866 if (!pfn_valid_within(page_to_pfn(page))) {
1867 page++;
1868 continue;
1869 }
1870
f073bdc5
AB
1871 /* Make sure we are not inadvertently changing nodes */
1872 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1873
c361be55
MG
1874 if (!PageBuddy(page)) {
1875 page++;
1876 continue;
1877 }
1878
1879 order = page_order(page);
84be48d8
KS
1880 list_move(&page->lru,
1881 &zone->free_area[order].free_list[migratetype]);
c361be55 1882 page += 1 << order;
d100313f 1883 pages_moved += 1 << order;
c361be55
MG
1884 }
1885
d100313f 1886 return pages_moved;
c361be55
MG
1887}
1888
ee6f509c 1889int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1890 int migratetype)
c361be55
MG
1891{
1892 unsigned long start_pfn, end_pfn;
1893 struct page *start_page, *end_page;
1894
1895 start_pfn = page_to_pfn(page);
d9c23400 1896 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1897 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1898 end_page = start_page + pageblock_nr_pages - 1;
1899 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1900
1901 /* Do not cross zone boundaries */
108bcc96 1902 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1903 start_page = page;
108bcc96 1904 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1905 return 0;
1906
1907 return move_freepages(zone, start_page, end_page, migratetype);
1908}
1909
2f66a68f
MG
1910static void change_pageblock_range(struct page *pageblock_page,
1911 int start_order, int migratetype)
1912{
1913 int nr_pageblocks = 1 << (start_order - pageblock_order);
1914
1915 while (nr_pageblocks--) {
1916 set_pageblock_migratetype(pageblock_page, migratetype);
1917 pageblock_page += pageblock_nr_pages;
1918 }
1919}
1920
fef903ef 1921/*
9c0415eb
VB
1922 * When we are falling back to another migratetype during allocation, try to
1923 * steal extra free pages from the same pageblocks to satisfy further
1924 * allocations, instead of polluting multiple pageblocks.
1925 *
1926 * If we are stealing a relatively large buddy page, it is likely there will
1927 * be more free pages in the pageblock, so try to steal them all. For
1928 * reclaimable and unmovable allocations, we steal regardless of page size,
1929 * as fragmentation caused by those allocations polluting movable pageblocks
1930 * is worse than movable allocations stealing from unmovable and reclaimable
1931 * pageblocks.
fef903ef 1932 */
4eb7dce6
JK
1933static bool can_steal_fallback(unsigned int order, int start_mt)
1934{
1935 /*
1936 * Leaving this order check is intended, although there is
1937 * relaxed order check in next check. The reason is that
1938 * we can actually steal whole pageblock if this condition met,
1939 * but, below check doesn't guarantee it and that is just heuristic
1940 * so could be changed anytime.
1941 */
1942 if (order >= pageblock_order)
1943 return true;
1944
1945 if (order >= pageblock_order / 2 ||
1946 start_mt == MIGRATE_RECLAIMABLE ||
1947 start_mt == MIGRATE_UNMOVABLE ||
1948 page_group_by_mobility_disabled)
1949 return true;
1950
1951 return false;
1952}
1953
1954/*
1955 * This function implements actual steal behaviour. If order is large enough,
1956 * we can steal whole pageblock. If not, we first move freepages in this
1957 * pageblock and check whether half of pages are moved or not. If half of
1958 * pages are moved, we can change migratetype of pageblock and permanently
1959 * use it's pages as requested migratetype in the future.
1960 */
1961static void steal_suitable_fallback(struct zone *zone, struct page *page,
1962 int start_type)
fef903ef 1963{
d00181b9 1964 unsigned int current_order = page_order(page);
4eb7dce6 1965 int pages;
fef903ef 1966
fef903ef
SB
1967 /* Take ownership for orders >= pageblock_order */
1968 if (current_order >= pageblock_order) {
1969 change_pageblock_range(page, current_order, start_type);
3a1086fb 1970 return;
fef903ef
SB
1971 }
1972
4eb7dce6 1973 pages = move_freepages_block(zone, page, start_type);
fef903ef 1974
4eb7dce6
JK
1975 /* Claim the whole block if over half of it is free */
1976 if (pages >= (1 << (pageblock_order-1)) ||
1977 page_group_by_mobility_disabled)
1978 set_pageblock_migratetype(page, start_type);
1979}
1980
2149cdae
JK
1981/*
1982 * Check whether there is a suitable fallback freepage with requested order.
1983 * If only_stealable is true, this function returns fallback_mt only if
1984 * we can steal other freepages all together. This would help to reduce
1985 * fragmentation due to mixed migratetype pages in one pageblock.
1986 */
1987int find_suitable_fallback(struct free_area *area, unsigned int order,
1988 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1989{
1990 int i;
1991 int fallback_mt;
1992
1993 if (area->nr_free == 0)
1994 return -1;
1995
1996 *can_steal = false;
1997 for (i = 0;; i++) {
1998 fallback_mt = fallbacks[migratetype][i];
974a786e 1999 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2000 break;
2001
2002 if (list_empty(&area->free_list[fallback_mt]))
2003 continue;
fef903ef 2004
4eb7dce6
JK
2005 if (can_steal_fallback(order, migratetype))
2006 *can_steal = true;
2007
2149cdae
JK
2008 if (!only_stealable)
2009 return fallback_mt;
2010
2011 if (*can_steal)
2012 return fallback_mt;
fef903ef 2013 }
4eb7dce6
JK
2014
2015 return -1;
fef903ef
SB
2016}
2017
0aaa29a5
MG
2018/*
2019 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2020 * there are no empty page blocks that contain a page with a suitable order
2021 */
2022static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2023 unsigned int alloc_order)
2024{
2025 int mt;
2026 unsigned long max_managed, flags;
2027
2028 /*
2029 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2030 * Check is race-prone but harmless.
2031 */
2032 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2033 if (zone->nr_reserved_highatomic >= max_managed)
2034 return;
2035
2036 spin_lock_irqsave(&zone->lock, flags);
2037
2038 /* Recheck the nr_reserved_highatomic limit under the lock */
2039 if (zone->nr_reserved_highatomic >= max_managed)
2040 goto out_unlock;
2041
2042 /* Yoink! */
2043 mt = get_pageblock_migratetype(page);
2044 if (mt != MIGRATE_HIGHATOMIC &&
2045 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2046 zone->nr_reserved_highatomic += pageblock_nr_pages;
2047 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2048 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2049 }
2050
2051out_unlock:
2052 spin_unlock_irqrestore(&zone->lock, flags);
2053}
2054
2055/*
2056 * Used when an allocation is about to fail under memory pressure. This
2057 * potentially hurts the reliability of high-order allocations when under
2058 * intense memory pressure but failed atomic allocations should be easier
2059 * to recover from than an OOM.
29fac03b
MK
2060 *
2061 * If @force is true, try to unreserve a pageblock even though highatomic
2062 * pageblock is exhausted.
0aaa29a5 2063 */
29fac03b
MK
2064static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2065 bool force)
0aaa29a5
MG
2066{
2067 struct zonelist *zonelist = ac->zonelist;
2068 unsigned long flags;
2069 struct zoneref *z;
2070 struct zone *zone;
2071 struct page *page;
2072 int order;
04c8716f 2073 bool ret;
0aaa29a5
MG
2074
2075 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2076 ac->nodemask) {
29fac03b
MK
2077 /*
2078 * Preserve at least one pageblock unless memory pressure
2079 * is really high.
2080 */
2081 if (!force && zone->nr_reserved_highatomic <=
2082 pageblock_nr_pages)
0aaa29a5
MG
2083 continue;
2084
2085 spin_lock_irqsave(&zone->lock, flags);
2086 for (order = 0; order < MAX_ORDER; order++) {
2087 struct free_area *area = &(zone->free_area[order]);
2088
a16601c5
GT
2089 page = list_first_entry_or_null(
2090 &area->free_list[MIGRATE_HIGHATOMIC],
2091 struct page, lru);
2092 if (!page)
0aaa29a5
MG
2093 continue;
2094
0aaa29a5 2095 /*
4855e4a7
MK
2096 * In page freeing path, migratetype change is racy so
2097 * we can counter several free pages in a pageblock
2098 * in this loop althoug we changed the pageblock type
2099 * from highatomic to ac->migratetype. So we should
2100 * adjust the count once.
0aaa29a5 2101 */
4855e4a7
MK
2102 if (get_pageblock_migratetype(page) ==
2103 MIGRATE_HIGHATOMIC) {
2104 /*
2105 * It should never happen but changes to
2106 * locking could inadvertently allow a per-cpu
2107 * drain to add pages to MIGRATE_HIGHATOMIC
2108 * while unreserving so be safe and watch for
2109 * underflows.
2110 */
2111 zone->nr_reserved_highatomic -= min(
2112 pageblock_nr_pages,
2113 zone->nr_reserved_highatomic);
2114 }
0aaa29a5
MG
2115
2116 /*
2117 * Convert to ac->migratetype and avoid the normal
2118 * pageblock stealing heuristics. Minimally, the caller
2119 * is doing the work and needs the pages. More
2120 * importantly, if the block was always converted to
2121 * MIGRATE_UNMOVABLE or another type then the number
2122 * of pageblocks that cannot be completely freed
2123 * may increase.
2124 */
2125 set_pageblock_migratetype(page, ac->migratetype);
04c8716f 2126 ret = move_freepages_block(zone, page, ac->migratetype);
29fac03b
MK
2127 if (ret) {
2128 spin_unlock_irqrestore(&zone->lock, flags);
2129 return ret;
2130 }
0aaa29a5
MG
2131 }
2132 spin_unlock_irqrestore(&zone->lock, flags);
2133 }
04c8716f
MK
2134
2135 return false;
0aaa29a5
MG
2136}
2137
b2a0ac88 2138/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2139static inline struct page *
7aeb09f9 2140__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2141{
b8af2941 2142 struct free_area *area;
7aeb09f9 2143 unsigned int current_order;
b2a0ac88 2144 struct page *page;
4eb7dce6
JK
2145 int fallback_mt;
2146 bool can_steal;
b2a0ac88
MG
2147
2148 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2149 for (current_order = MAX_ORDER-1;
2150 current_order >= order && current_order <= MAX_ORDER-1;
2151 --current_order) {
4eb7dce6
JK
2152 area = &(zone->free_area[current_order]);
2153 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2154 start_migratetype, false, &can_steal);
4eb7dce6
JK
2155 if (fallback_mt == -1)
2156 continue;
b2a0ac88 2157
a16601c5 2158 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6 2159 struct page, lru);
88ed365e
MK
2160 if (can_steal &&
2161 get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
4eb7dce6 2162 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2163
4eb7dce6
JK
2164 /* Remove the page from the freelists */
2165 area->nr_free--;
2166 list_del(&page->lru);
2167 rmv_page_order(page);
3a1086fb 2168
4eb7dce6
JK
2169 expand(zone, page, order, current_order, area,
2170 start_migratetype);
2171 /*
bb14c2c7 2172 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2173 * migratetype depending on the decisions in
bb14c2c7
VB
2174 * find_suitable_fallback(). This is OK as long as it does not
2175 * differ for MIGRATE_CMA pageblocks. Those can be used as
2176 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2177 */
bb14c2c7 2178 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2179
4eb7dce6
JK
2180 trace_mm_page_alloc_extfrag(page, order, current_order,
2181 start_migratetype, fallback_mt);
e0fff1bd 2182
4eb7dce6 2183 return page;
b2a0ac88
MG
2184 }
2185
728ec980 2186 return NULL;
b2a0ac88
MG
2187}
2188
56fd56b8 2189/*
1da177e4
LT
2190 * Do the hard work of removing an element from the buddy allocator.
2191 * Call me with the zone->lock already held.
2192 */
b2a0ac88 2193static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2194 int migratetype)
1da177e4 2195{
1da177e4
LT
2196 struct page *page;
2197
56fd56b8 2198 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2199 if (unlikely(!page)) {
dc67647b
JK
2200 if (migratetype == MIGRATE_MOVABLE)
2201 page = __rmqueue_cma_fallback(zone, order);
2202
2203 if (!page)
2204 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2205 }
2206
0d3d062a 2207 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2208 return page;
1da177e4
LT
2209}
2210
5f63b720 2211/*
1da177e4
LT
2212 * Obtain a specified number of elements from the buddy allocator, all under
2213 * a single hold of the lock, for efficiency. Add them to the supplied list.
2214 * Returns the number of new pages which were placed at *list.
2215 */
5f63b720 2216static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2217 unsigned long count, struct list_head *list,
b745bc85 2218 int migratetype, bool cold)
1da177e4 2219{
a6de734b 2220 int i, alloced = 0;
374ad05a 2221 unsigned long flags;
5f63b720 2222
374ad05a 2223 spin_lock_irqsave(&zone->lock, flags);
1da177e4 2224 for (i = 0; i < count; ++i) {
6ac0206b 2225 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2226 if (unlikely(page == NULL))
1da177e4 2227 break;
81eabcbe 2228
479f854a
MG
2229 if (unlikely(check_pcp_refill(page)))
2230 continue;
2231
81eabcbe
MG
2232 /*
2233 * Split buddy pages returned by expand() are received here
2234 * in physical page order. The page is added to the callers and
2235 * list and the list head then moves forward. From the callers
2236 * perspective, the linked list is ordered by page number in
2237 * some conditions. This is useful for IO devices that can
2238 * merge IO requests if the physical pages are ordered
2239 * properly.
2240 */
b745bc85 2241 if (likely(!cold))
e084b2d9
MG
2242 list_add(&page->lru, list);
2243 else
2244 list_add_tail(&page->lru, list);
81eabcbe 2245 list = &page->lru;
a6de734b 2246 alloced++;
bb14c2c7 2247 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2248 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2249 -(1 << order));
1da177e4 2250 }
a6de734b
MG
2251
2252 /*
2253 * i pages were removed from the buddy list even if some leak due
2254 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2255 * on i. Do not confuse with 'alloced' which is the number of
2256 * pages added to the pcp list.
2257 */
f2260e6b 2258 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
374ad05a 2259 spin_unlock_irqrestore(&zone->lock, flags);
a6de734b 2260 return alloced;
1da177e4
LT
2261}
2262
4ae7c039 2263#ifdef CONFIG_NUMA
8fce4d8e 2264/*
4037d452
CL
2265 * Called from the vmstat counter updater to drain pagesets of this
2266 * currently executing processor on remote nodes after they have
2267 * expired.
2268 *
879336c3
CL
2269 * Note that this function must be called with the thread pinned to
2270 * a single processor.
8fce4d8e 2271 */
4037d452 2272void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2273{
4ae7c039 2274 unsigned long flags;
7be12fc9 2275 int to_drain, batch;
4ae7c039 2276
4037d452 2277 local_irq_save(flags);
4db0c3c2 2278 batch = READ_ONCE(pcp->batch);
7be12fc9 2279 to_drain = min(pcp->count, batch);
2a13515c
KM
2280 if (to_drain > 0) {
2281 free_pcppages_bulk(zone, to_drain, pcp);
2282 pcp->count -= to_drain;
2283 }
4037d452 2284 local_irq_restore(flags);
4ae7c039
CL
2285}
2286#endif
2287
9f8f2172 2288/*
93481ff0 2289 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2290 *
2291 * The processor must either be the current processor and the
2292 * thread pinned to the current processor or a processor that
2293 * is not online.
2294 */
93481ff0 2295static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2296{
c54ad30c 2297 unsigned long flags;
93481ff0
VB
2298 struct per_cpu_pageset *pset;
2299 struct per_cpu_pages *pcp;
1da177e4 2300
93481ff0
VB
2301 local_irq_save(flags);
2302 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2303
93481ff0
VB
2304 pcp = &pset->pcp;
2305 if (pcp->count) {
2306 free_pcppages_bulk(zone, pcp->count, pcp);
2307 pcp->count = 0;
2308 }
2309 local_irq_restore(flags);
2310}
3dfa5721 2311
93481ff0
VB
2312/*
2313 * Drain pcplists of all zones on the indicated processor.
2314 *
2315 * The processor must either be the current processor and the
2316 * thread pinned to the current processor or a processor that
2317 * is not online.
2318 */
2319static void drain_pages(unsigned int cpu)
2320{
2321 struct zone *zone;
2322
2323 for_each_populated_zone(zone) {
2324 drain_pages_zone(cpu, zone);
1da177e4
LT
2325 }
2326}
1da177e4 2327
9f8f2172
CL
2328/*
2329 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2330 *
2331 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2332 * the single zone's pages.
9f8f2172 2333 */
93481ff0 2334void drain_local_pages(struct zone *zone)
9f8f2172 2335{
93481ff0
VB
2336 int cpu = smp_processor_id();
2337
2338 if (zone)
2339 drain_pages_zone(cpu, zone);
2340 else
2341 drain_pages(cpu);
9f8f2172
CL
2342}
2343
0ccce3b9
MG
2344static void drain_local_pages_wq(struct work_struct *work)
2345{
a459eeb7
MH
2346 /*
2347 * drain_all_pages doesn't use proper cpu hotplug protection so
2348 * we can race with cpu offline when the WQ can move this from
2349 * a cpu pinned worker to an unbound one. We can operate on a different
2350 * cpu which is allright but we also have to make sure to not move to
2351 * a different one.
2352 */
2353 preempt_disable();
0ccce3b9 2354 drain_local_pages(NULL);
a459eeb7 2355 preempt_enable();
0ccce3b9
MG
2356}
2357
9f8f2172 2358/*
74046494
GBY
2359 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2360 *
93481ff0
VB
2361 * When zone parameter is non-NULL, spill just the single zone's pages.
2362 *
0ccce3b9 2363 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2364 */
93481ff0 2365void drain_all_pages(struct zone *zone)
9f8f2172 2366{
74046494 2367 int cpu;
74046494
GBY
2368
2369 /*
2370 * Allocate in the BSS so we wont require allocation in
2371 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2372 */
2373 static cpumask_t cpus_with_pcps;
2374
0ccce3b9
MG
2375 /* Workqueues cannot recurse */
2376 if (current->flags & PF_WQ_WORKER)
2377 return;
2378
bd233f53
MG
2379 /*
2380 * Do not drain if one is already in progress unless it's specific to
2381 * a zone. Such callers are primarily CMA and memory hotplug and need
2382 * the drain to be complete when the call returns.
2383 */
2384 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2385 if (!zone)
2386 return;
2387 mutex_lock(&pcpu_drain_mutex);
2388 }
0ccce3b9 2389
74046494
GBY
2390 /*
2391 * We don't care about racing with CPU hotplug event
2392 * as offline notification will cause the notified
2393 * cpu to drain that CPU pcps and on_each_cpu_mask
2394 * disables preemption as part of its processing
2395 */
2396 for_each_online_cpu(cpu) {
93481ff0
VB
2397 struct per_cpu_pageset *pcp;
2398 struct zone *z;
74046494 2399 bool has_pcps = false;
93481ff0
VB
2400
2401 if (zone) {
74046494 2402 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2403 if (pcp->pcp.count)
74046494 2404 has_pcps = true;
93481ff0
VB
2405 } else {
2406 for_each_populated_zone(z) {
2407 pcp = per_cpu_ptr(z->pageset, cpu);
2408 if (pcp->pcp.count) {
2409 has_pcps = true;
2410 break;
2411 }
74046494
GBY
2412 }
2413 }
93481ff0 2414
74046494
GBY
2415 if (has_pcps)
2416 cpumask_set_cpu(cpu, &cpus_with_pcps);
2417 else
2418 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2419 }
0ccce3b9 2420
bd233f53
MG
2421 for_each_cpu(cpu, &cpus_with_pcps) {
2422 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2423 INIT_WORK(work, drain_local_pages_wq);
2424 schedule_work_on(cpu, work);
0ccce3b9 2425 }
bd233f53
MG
2426 for_each_cpu(cpu, &cpus_with_pcps)
2427 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2428
2429 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2430}
2431
296699de 2432#ifdef CONFIG_HIBERNATION
1da177e4
LT
2433
2434void mark_free_pages(struct zone *zone)
2435{
f623f0db
RW
2436 unsigned long pfn, max_zone_pfn;
2437 unsigned long flags;
7aeb09f9 2438 unsigned int order, t;
86760a2c 2439 struct page *page;
1da177e4 2440
8080fc03 2441 if (zone_is_empty(zone))
1da177e4
LT
2442 return;
2443
2444 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2445
108bcc96 2446 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2447 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2448 if (pfn_valid(pfn)) {
86760a2c 2449 page = pfn_to_page(pfn);
ba6b0979
JK
2450
2451 if (page_zone(page) != zone)
2452 continue;
2453
7be98234
RW
2454 if (!swsusp_page_is_forbidden(page))
2455 swsusp_unset_page_free(page);
f623f0db 2456 }
1da177e4 2457
b2a0ac88 2458 for_each_migratetype_order(order, t) {
86760a2c
GT
2459 list_for_each_entry(page,
2460 &zone->free_area[order].free_list[t], lru) {
f623f0db 2461 unsigned long i;
1da177e4 2462
86760a2c 2463 pfn = page_to_pfn(page);
f623f0db 2464 for (i = 0; i < (1UL << order); i++)
7be98234 2465 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2466 }
b2a0ac88 2467 }
1da177e4
LT
2468 spin_unlock_irqrestore(&zone->lock, flags);
2469}
e2c55dc8 2470#endif /* CONFIG_PM */
1da177e4 2471
1da177e4
LT
2472/*
2473 * Free a 0-order page
b745bc85 2474 * cold == true ? free a cold page : free a hot page
1da177e4 2475 */
b745bc85 2476void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2477{
2478 struct zone *zone = page_zone(page);
2479 struct per_cpu_pages *pcp;
dc4b0caf 2480 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2481 int migratetype;
1da177e4 2482
374ad05a
MG
2483 if (in_interrupt()) {
2484 __free_pages_ok(page, 0);
2485 return;
2486 }
2487
4db7548c 2488 if (!free_pcp_prepare(page))
689bcebf
HD
2489 return;
2490
dc4b0caf 2491 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2492 set_pcppage_migratetype(page, migratetype);
374ad05a 2493 preempt_disable();
da456f14 2494
5f8dcc21
MG
2495 /*
2496 * We only track unmovable, reclaimable and movable on pcp lists.
2497 * Free ISOLATE pages back to the allocator because they are being
2498 * offlined but treat RESERVE as movable pages so we can get those
2499 * areas back if necessary. Otherwise, we may have to free
2500 * excessively into the page allocator
2501 */
2502 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2503 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2504 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2505 goto out;
2506 }
2507 migratetype = MIGRATE_MOVABLE;
2508 }
2509
374ad05a 2510 __count_vm_event(PGFREE);
99dcc3e5 2511 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2512 if (!cold)
5f8dcc21 2513 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2514 else
2515 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2516 pcp->count++;
48db57f8 2517 if (pcp->count >= pcp->high) {
4db0c3c2 2518 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2519 free_pcppages_bulk(zone, batch, pcp);
2520 pcp->count -= batch;
48db57f8 2521 }
5f8dcc21
MG
2522
2523out:
374ad05a 2524 preempt_enable();
1da177e4
LT
2525}
2526
cc59850e
KK
2527/*
2528 * Free a list of 0-order pages
2529 */
b745bc85 2530void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2531{
2532 struct page *page, *next;
2533
2534 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2535 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2536 free_hot_cold_page(page, cold);
2537 }
2538}
2539
8dfcc9ba
NP
2540/*
2541 * split_page takes a non-compound higher-order page, and splits it into
2542 * n (1<<order) sub-pages: page[0..n]
2543 * Each sub-page must be freed individually.
2544 *
2545 * Note: this is probably too low level an operation for use in drivers.
2546 * Please consult with lkml before using this in your driver.
2547 */
2548void split_page(struct page *page, unsigned int order)
2549{
2550 int i;
2551
309381fe
SL
2552 VM_BUG_ON_PAGE(PageCompound(page), page);
2553 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2554
2555#ifdef CONFIG_KMEMCHECK
2556 /*
2557 * Split shadow pages too, because free(page[0]) would
2558 * otherwise free the whole shadow.
2559 */
2560 if (kmemcheck_page_is_tracked(page))
2561 split_page(virt_to_page(page[0].shadow), order);
2562#endif
2563
a9627bc5 2564 for (i = 1; i < (1 << order); i++)
7835e98b 2565 set_page_refcounted(page + i);
a9627bc5 2566 split_page_owner(page, order);
8dfcc9ba 2567}
5853ff23 2568EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2569
3c605096 2570int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2571{
748446bb
MG
2572 unsigned long watermark;
2573 struct zone *zone;
2139cbe6 2574 int mt;
748446bb
MG
2575
2576 BUG_ON(!PageBuddy(page));
2577
2578 zone = page_zone(page);
2e30abd1 2579 mt = get_pageblock_migratetype(page);
748446bb 2580
194159fb 2581 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2582 /*
2583 * Obey watermarks as if the page was being allocated. We can
2584 * emulate a high-order watermark check with a raised order-0
2585 * watermark, because we already know our high-order page
2586 * exists.
2587 */
2588 watermark = min_wmark_pages(zone) + (1UL << order);
984fdba6 2589 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2590 return 0;
2591
8fb74b9f 2592 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2593 }
748446bb
MG
2594
2595 /* Remove page from free list */
2596 list_del(&page->lru);
2597 zone->free_area[order].nr_free--;
2598 rmv_page_order(page);
2139cbe6 2599
400bc7fd 2600 /*
2601 * Set the pageblock if the isolated page is at least half of a
2602 * pageblock
2603 */
748446bb
MG
2604 if (order >= pageblock_order - 1) {
2605 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2606 for (; page < endpage; page += pageblock_nr_pages) {
2607 int mt = get_pageblock_migratetype(page);
88ed365e
MK
2608 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2609 && mt != MIGRATE_HIGHATOMIC)
47118af0
MN
2610 set_pageblock_migratetype(page,
2611 MIGRATE_MOVABLE);
2612 }
748446bb
MG
2613 }
2614
f3a14ced 2615
8fb74b9f 2616 return 1UL << order;
1fb3f8ca
MG
2617}
2618
060e7417
MG
2619/*
2620 * Update NUMA hit/miss statistics
2621 *
2622 * Must be called with interrupts disabled.
060e7417 2623 */
41b6167e 2624static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2625{
2626#ifdef CONFIG_NUMA
060e7417
MG
2627 enum zone_stat_item local_stat = NUMA_LOCAL;
2628
2df26639 2629 if (z->node != numa_node_id())
060e7417 2630 local_stat = NUMA_OTHER;
060e7417 2631
2df26639 2632 if (z->node == preferred_zone->node)
060e7417 2633 __inc_zone_state(z, NUMA_HIT);
2df26639 2634 else {
060e7417
MG
2635 __inc_zone_state(z, NUMA_MISS);
2636 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2637 }
2df26639 2638 __inc_zone_state(z, local_stat);
060e7417
MG
2639#endif
2640}
2641
066b2393
MG
2642/* Remove page from the per-cpu list, caller must protect the list */
2643static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2644 bool cold, struct per_cpu_pages *pcp,
2645 struct list_head *list)
2646{
2647 struct page *page;
2648
374ad05a
MG
2649 VM_BUG_ON(in_interrupt());
2650
066b2393
MG
2651 do {
2652 if (list_empty(list)) {
2653 pcp->count += rmqueue_bulk(zone, 0,
2654 pcp->batch, list,
2655 migratetype, cold);
2656 if (unlikely(list_empty(list)))
2657 return NULL;
2658 }
2659
2660 if (cold)
2661 page = list_last_entry(list, struct page, lru);
2662 else
2663 page = list_first_entry(list, struct page, lru);
2664
2665 list_del(&page->lru);
2666 pcp->count--;
2667 } while (check_new_pcp(page));
2668
2669 return page;
2670}
2671
2672/* Lock and remove page from the per-cpu list */
2673static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2674 struct zone *zone, unsigned int order,
2675 gfp_t gfp_flags, int migratetype)
2676{
2677 struct per_cpu_pages *pcp;
2678 struct list_head *list;
2679 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2680 struct page *page;
066b2393 2681
374ad05a 2682 preempt_disable();
066b2393
MG
2683 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2684 list = &pcp->lists[migratetype];
2685 page = __rmqueue_pcplist(zone, migratetype, cold, pcp, list);
2686 if (page) {
2687 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2688 zone_statistics(preferred_zone, zone);
2689 }
374ad05a 2690 preempt_enable();
066b2393
MG
2691 return page;
2692}
2693
1da177e4 2694/*
75379191 2695 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2696 */
0a15c3e9 2697static inline
066b2393 2698struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2699 struct zone *zone, unsigned int order,
c603844b
MG
2700 gfp_t gfp_flags, unsigned int alloc_flags,
2701 int migratetype)
1da177e4
LT
2702{
2703 unsigned long flags;
689bcebf 2704 struct page *page;
1da177e4 2705
374ad05a 2706 if (likely(order == 0) && !in_interrupt()) {
066b2393
MG
2707 page = rmqueue_pcplist(preferred_zone, zone, order,
2708 gfp_flags, migratetype);
2709 goto out;
2710 }
83b9355b 2711
066b2393
MG
2712 /*
2713 * We most definitely don't want callers attempting to
2714 * allocate greater than order-1 page units with __GFP_NOFAIL.
2715 */
2716 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2717 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2718
066b2393
MG
2719 do {
2720 page = NULL;
2721 if (alloc_flags & ALLOC_HARDER) {
2722 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2723 if (page)
2724 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2725 }
a74609fa 2726 if (!page)
066b2393
MG
2727 page = __rmqueue(zone, order, migratetype);
2728 } while (page && check_new_pages(page, order));
2729 spin_unlock(&zone->lock);
2730 if (!page)
2731 goto failed;
2732 __mod_zone_freepage_state(zone, -(1 << order),
2733 get_pcppage_migratetype(page));
1da177e4 2734
16709d1d 2735 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2736 zone_statistics(preferred_zone, zone);
a74609fa 2737 local_irq_restore(flags);
1da177e4 2738
066b2393
MG
2739out:
2740 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2741 return page;
a74609fa
NP
2742
2743failed:
2744 local_irq_restore(flags);
a74609fa 2745 return NULL;
1da177e4
LT
2746}
2747
933e312e
AM
2748#ifdef CONFIG_FAIL_PAGE_ALLOC
2749
b2588c4b 2750static struct {
933e312e
AM
2751 struct fault_attr attr;
2752
621a5f7a 2753 bool ignore_gfp_highmem;
71baba4b 2754 bool ignore_gfp_reclaim;
54114994 2755 u32 min_order;
933e312e
AM
2756} fail_page_alloc = {
2757 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2758 .ignore_gfp_reclaim = true,
621a5f7a 2759 .ignore_gfp_highmem = true,
54114994 2760 .min_order = 1,
933e312e
AM
2761};
2762
2763static int __init setup_fail_page_alloc(char *str)
2764{
2765 return setup_fault_attr(&fail_page_alloc.attr, str);
2766}
2767__setup("fail_page_alloc=", setup_fail_page_alloc);
2768
deaf386e 2769static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2770{
54114994 2771 if (order < fail_page_alloc.min_order)
deaf386e 2772 return false;
933e312e 2773 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2774 return false;
933e312e 2775 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2776 return false;
71baba4b
MG
2777 if (fail_page_alloc.ignore_gfp_reclaim &&
2778 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2779 return false;
933e312e
AM
2780
2781 return should_fail(&fail_page_alloc.attr, 1 << order);
2782}
2783
2784#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2785
2786static int __init fail_page_alloc_debugfs(void)
2787{
f4ae40a6 2788 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2789 struct dentry *dir;
933e312e 2790
dd48c085
AM
2791 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2792 &fail_page_alloc.attr);
2793 if (IS_ERR(dir))
2794 return PTR_ERR(dir);
933e312e 2795
b2588c4b 2796 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2797 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2798 goto fail;
2799 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2800 &fail_page_alloc.ignore_gfp_highmem))
2801 goto fail;
2802 if (!debugfs_create_u32("min-order", mode, dir,
2803 &fail_page_alloc.min_order))
2804 goto fail;
2805
2806 return 0;
2807fail:
dd48c085 2808 debugfs_remove_recursive(dir);
933e312e 2809
b2588c4b 2810 return -ENOMEM;
933e312e
AM
2811}
2812
2813late_initcall(fail_page_alloc_debugfs);
2814
2815#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2816
2817#else /* CONFIG_FAIL_PAGE_ALLOC */
2818
deaf386e 2819static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2820{
deaf386e 2821 return false;
933e312e
AM
2822}
2823
2824#endif /* CONFIG_FAIL_PAGE_ALLOC */
2825
1da177e4 2826/*
97a16fc8
MG
2827 * Return true if free base pages are above 'mark'. For high-order checks it
2828 * will return true of the order-0 watermark is reached and there is at least
2829 * one free page of a suitable size. Checking now avoids taking the zone lock
2830 * to check in the allocation paths if no pages are free.
1da177e4 2831 */
86a294a8
MH
2832bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2833 int classzone_idx, unsigned int alloc_flags,
2834 long free_pages)
1da177e4 2835{
d23ad423 2836 long min = mark;
1da177e4 2837 int o;
c603844b 2838 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2839
0aaa29a5 2840 /* free_pages may go negative - that's OK */
df0a6daa 2841 free_pages -= (1 << order) - 1;
0aaa29a5 2842
7fb1d9fc 2843 if (alloc_flags & ALLOC_HIGH)
1da177e4 2844 min -= min / 2;
0aaa29a5
MG
2845
2846 /*
2847 * If the caller does not have rights to ALLOC_HARDER then subtract
2848 * the high-atomic reserves. This will over-estimate the size of the
2849 * atomic reserve but it avoids a search.
2850 */
97a16fc8 2851 if (likely(!alloc_harder))
0aaa29a5
MG
2852 free_pages -= z->nr_reserved_highatomic;
2853 else
1da177e4 2854 min -= min / 4;
e2b19197 2855
d95ea5d1
BZ
2856#ifdef CONFIG_CMA
2857 /* If allocation can't use CMA areas don't use free CMA pages */
2858 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2859 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2860#endif
026b0814 2861
97a16fc8
MG
2862 /*
2863 * Check watermarks for an order-0 allocation request. If these
2864 * are not met, then a high-order request also cannot go ahead
2865 * even if a suitable page happened to be free.
2866 */
2867 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2868 return false;
1da177e4 2869
97a16fc8
MG
2870 /* If this is an order-0 request then the watermark is fine */
2871 if (!order)
2872 return true;
2873
2874 /* For a high-order request, check at least one suitable page is free */
2875 for (o = order; o < MAX_ORDER; o++) {
2876 struct free_area *area = &z->free_area[o];
2877 int mt;
2878
2879 if (!area->nr_free)
2880 continue;
2881
2882 if (alloc_harder)
2883 return true;
1da177e4 2884
97a16fc8
MG
2885 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2886 if (!list_empty(&area->free_list[mt]))
2887 return true;
2888 }
2889
2890#ifdef CONFIG_CMA
2891 if ((alloc_flags & ALLOC_CMA) &&
2892 !list_empty(&area->free_list[MIGRATE_CMA])) {
2893 return true;
2894 }
2895#endif
1da177e4 2896 }
97a16fc8 2897 return false;
88f5acf8
MG
2898}
2899
7aeb09f9 2900bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2901 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2902{
2903 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2904 zone_page_state(z, NR_FREE_PAGES));
2905}
2906
48ee5f36
MG
2907static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2908 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2909{
2910 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2911 long cma_pages = 0;
2912
2913#ifdef CONFIG_CMA
2914 /* If allocation can't use CMA areas don't use free CMA pages */
2915 if (!(alloc_flags & ALLOC_CMA))
2916 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2917#endif
2918
2919 /*
2920 * Fast check for order-0 only. If this fails then the reserves
2921 * need to be calculated. There is a corner case where the check
2922 * passes but only the high-order atomic reserve are free. If
2923 * the caller is !atomic then it'll uselessly search the free
2924 * list. That corner case is then slower but it is harmless.
2925 */
2926 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2927 return true;
2928
2929 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2930 free_pages);
2931}
2932
7aeb09f9 2933bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2934 unsigned long mark, int classzone_idx)
88f5acf8
MG
2935{
2936 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2937
2938 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2939 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2940
e2b19197 2941 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2942 free_pages);
1da177e4
LT
2943}
2944
9276b1bc 2945#ifdef CONFIG_NUMA
957f822a
DR
2946static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2947{
e02dc017 2948 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 2949 RECLAIM_DISTANCE;
957f822a 2950}
9276b1bc 2951#else /* CONFIG_NUMA */
957f822a
DR
2952static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2953{
2954 return true;
2955}
9276b1bc
PJ
2956#endif /* CONFIG_NUMA */
2957
7fb1d9fc 2958/*
0798e519 2959 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2960 * a page.
2961 */
2962static struct page *
a9263751
VB
2963get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2964 const struct alloc_context *ac)
753ee728 2965{
c33d6c06 2966 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2967 struct zone *zone;
3b8c0be4
MG
2968 struct pglist_data *last_pgdat_dirty_limit = NULL;
2969
7fb1d9fc 2970 /*
9276b1bc 2971 * Scan zonelist, looking for a zone with enough free.
344736f2 2972 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2973 */
c33d6c06 2974 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2975 ac->nodemask) {
be06af00 2976 struct page *page;
e085dbc5
JW
2977 unsigned long mark;
2978
664eedde
MG
2979 if (cpusets_enabled() &&
2980 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2981 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2982 continue;
a756cf59
JW
2983 /*
2984 * When allocating a page cache page for writing, we
281e3726
MG
2985 * want to get it from a node that is within its dirty
2986 * limit, such that no single node holds more than its
a756cf59 2987 * proportional share of globally allowed dirty pages.
281e3726 2988 * The dirty limits take into account the node's
a756cf59
JW
2989 * lowmem reserves and high watermark so that kswapd
2990 * should be able to balance it without having to
2991 * write pages from its LRU list.
2992 *
a756cf59 2993 * XXX: For now, allow allocations to potentially
281e3726 2994 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2995 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2996 * which is important when on a NUMA setup the allowed
281e3726 2997 * nodes are together not big enough to reach the
a756cf59 2998 * global limit. The proper fix for these situations
281e3726 2999 * will require awareness of nodes in the
a756cf59
JW
3000 * dirty-throttling and the flusher threads.
3001 */
3b8c0be4
MG
3002 if (ac->spread_dirty_pages) {
3003 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3004 continue;
3005
3006 if (!node_dirty_ok(zone->zone_pgdat)) {
3007 last_pgdat_dirty_limit = zone->zone_pgdat;
3008 continue;
3009 }
3010 }
7fb1d9fc 3011
e085dbc5 3012 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3013 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3014 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3015 int ret;
3016
5dab2911
MG
3017 /* Checked here to keep the fast path fast */
3018 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3019 if (alloc_flags & ALLOC_NO_WATERMARKS)
3020 goto try_this_zone;
3021
a5f5f91d 3022 if (node_reclaim_mode == 0 ||
c33d6c06 3023 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3024 continue;
3025
a5f5f91d 3026 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3027 switch (ret) {
a5f5f91d 3028 case NODE_RECLAIM_NOSCAN:
fa5e084e 3029 /* did not scan */
cd38b115 3030 continue;
a5f5f91d 3031 case NODE_RECLAIM_FULL:
fa5e084e 3032 /* scanned but unreclaimable */
cd38b115 3033 continue;
fa5e084e
MG
3034 default:
3035 /* did we reclaim enough */
fed2719e 3036 if (zone_watermark_ok(zone, order, mark,
93ea9964 3037 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3038 goto try_this_zone;
3039
fed2719e 3040 continue;
0798e519 3041 }
7fb1d9fc
RS
3042 }
3043
fa5e084e 3044try_this_zone:
066b2393 3045 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3046 gfp_mask, alloc_flags, ac->migratetype);
75379191 3047 if (page) {
479f854a 3048 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3049
3050 /*
3051 * If this is a high-order atomic allocation then check
3052 * if the pageblock should be reserved for the future
3053 */
3054 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3055 reserve_highatomic_pageblock(page, zone, order);
3056
75379191
VB
3057 return page;
3058 }
54a6eb5c 3059 }
9276b1bc 3060
4ffeaf35 3061 return NULL;
753ee728
MH
3062}
3063
29423e77
DR
3064/*
3065 * Large machines with many possible nodes should not always dump per-node
3066 * meminfo in irq context.
3067 */
3068static inline bool should_suppress_show_mem(void)
3069{
3070 bool ret = false;
3071
3072#if NODES_SHIFT > 8
3073 ret = in_interrupt();
3074#endif
3075 return ret;
3076}
3077
9af744d7 3078static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3079{
a238ab5b 3080 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3081 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3082
aa187507 3083 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3084 return;
3085
3086 /*
3087 * This documents exceptions given to allocations in certain
3088 * contexts that are allowed to allocate outside current's set
3089 * of allowed nodes.
3090 */
3091 if (!(gfp_mask & __GFP_NOMEMALLOC))
3092 if (test_thread_flag(TIF_MEMDIE) ||
3093 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3094 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3095 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3096 filter &= ~SHOW_MEM_FILTER_NODES;
3097
9af744d7 3098 show_mem(filter, nodemask);
aa187507
MH
3099}
3100
a8e99259 3101void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3102{
3103 struct va_format vaf;
3104 va_list args;
3105 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3106 DEFAULT_RATELIMIT_BURST);
3107
3108 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3109 debug_guardpage_minorder() > 0)
3110 return;
3111
7877cdcc 3112 pr_warn("%s: ", current->comm);
3ee9a4f0 3113
7877cdcc
MH
3114 va_start(args, fmt);
3115 vaf.fmt = fmt;
3116 vaf.va = &args;
3117 pr_cont("%pV", &vaf);
3118 va_end(args);
3ee9a4f0 3119
685dbf6f
DR
3120 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3121 if (nodemask)
3122 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3123 else
3124 pr_cont("(null)\n");
3125
a8e99259 3126 cpuset_print_current_mems_allowed();
3ee9a4f0 3127
a238ab5b 3128 dump_stack();
685dbf6f 3129 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3130}
3131
6c18ba7a
MH
3132static inline struct page *
3133__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3134 unsigned int alloc_flags,
3135 const struct alloc_context *ac)
3136{
3137 struct page *page;
3138
3139 page = get_page_from_freelist(gfp_mask, order,
3140 alloc_flags|ALLOC_CPUSET, ac);
3141 /*
3142 * fallback to ignore cpuset restriction if our nodes
3143 * are depleted
3144 */
3145 if (!page)
3146 page = get_page_from_freelist(gfp_mask, order,
3147 alloc_flags, ac);
3148
3149 return page;
3150}
3151
11e33f6a
MG
3152static inline struct page *
3153__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3154 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3155{
6e0fc46d
DR
3156 struct oom_control oc = {
3157 .zonelist = ac->zonelist,
3158 .nodemask = ac->nodemask,
2a966b77 3159 .memcg = NULL,
6e0fc46d
DR
3160 .gfp_mask = gfp_mask,
3161 .order = order,
6e0fc46d 3162 };
11e33f6a
MG
3163 struct page *page;
3164
9879de73
JW
3165 *did_some_progress = 0;
3166
9879de73 3167 /*
dc56401f
JW
3168 * Acquire the oom lock. If that fails, somebody else is
3169 * making progress for us.
9879de73 3170 */
dc56401f 3171 if (!mutex_trylock(&oom_lock)) {
9879de73 3172 *did_some_progress = 1;
11e33f6a 3173 schedule_timeout_uninterruptible(1);
1da177e4
LT
3174 return NULL;
3175 }
6b1de916 3176
11e33f6a
MG
3177 /*
3178 * Go through the zonelist yet one more time, keep very high watermark
3179 * here, this is only to catch a parallel oom killing, we must fail if
3180 * we're still under heavy pressure.
3181 */
a9263751
VB
3182 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3183 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3184 if (page)
11e33f6a
MG
3185 goto out;
3186
06ad276a
MH
3187 /* Coredumps can quickly deplete all memory reserves */
3188 if (current->flags & PF_DUMPCORE)
3189 goto out;
3190 /* The OOM killer will not help higher order allocs */
3191 if (order > PAGE_ALLOC_COSTLY_ORDER)
3192 goto out;
3193 /* The OOM killer does not needlessly kill tasks for lowmem */
3194 if (ac->high_zoneidx < ZONE_NORMAL)
3195 goto out;
3196 if (pm_suspended_storage())
3197 goto out;
3198 /*
3199 * XXX: GFP_NOFS allocations should rather fail than rely on
3200 * other request to make a forward progress.
3201 * We are in an unfortunate situation where out_of_memory cannot
3202 * do much for this context but let's try it to at least get
3203 * access to memory reserved if the current task is killed (see
3204 * out_of_memory). Once filesystems are ready to handle allocation
3205 * failures more gracefully we should just bail out here.
3206 */
3207
3208 /* The OOM killer may not free memory on a specific node */
3209 if (gfp_mask & __GFP_THISNODE)
3210 goto out;
3da88fb3 3211
11e33f6a 3212 /* Exhausted what can be done so it's blamo time */
5020e285 3213 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3214 *did_some_progress = 1;
5020e285 3215
6c18ba7a
MH
3216 /*
3217 * Help non-failing allocations by giving them access to memory
3218 * reserves
3219 */
3220 if (gfp_mask & __GFP_NOFAIL)
3221 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3222 ALLOC_NO_WATERMARKS, ac);
5020e285 3223 }
11e33f6a 3224out:
dc56401f 3225 mutex_unlock(&oom_lock);
11e33f6a
MG
3226 return page;
3227}
3228
33c2d214
MH
3229/*
3230 * Maximum number of compaction retries wit a progress before OOM
3231 * killer is consider as the only way to move forward.
3232 */
3233#define MAX_COMPACT_RETRIES 16
3234
56de7263
MG
3235#ifdef CONFIG_COMPACTION
3236/* Try memory compaction for high-order allocations before reclaim */
3237static struct page *
3238__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3239 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3240 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3241{
98dd3b48 3242 struct page *page;
53853e2d
VB
3243
3244 if (!order)
66199712 3245 return NULL;
66199712 3246
c06b1fca 3247 current->flags |= PF_MEMALLOC;
c5d01d0d 3248 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3249 prio);
c06b1fca 3250 current->flags &= ~PF_MEMALLOC;
56de7263 3251
c5d01d0d 3252 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3253 return NULL;
53853e2d 3254
98dd3b48
VB
3255 /*
3256 * At least in one zone compaction wasn't deferred or skipped, so let's
3257 * count a compaction stall
3258 */
3259 count_vm_event(COMPACTSTALL);
8fb74b9f 3260
31a6c190 3261 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3262
98dd3b48
VB
3263 if (page) {
3264 struct zone *zone = page_zone(page);
53853e2d 3265
98dd3b48
VB
3266 zone->compact_blockskip_flush = false;
3267 compaction_defer_reset(zone, order, true);
3268 count_vm_event(COMPACTSUCCESS);
3269 return page;
3270 }
56de7263 3271
98dd3b48
VB
3272 /*
3273 * It's bad if compaction run occurs and fails. The most likely reason
3274 * is that pages exist, but not enough to satisfy watermarks.
3275 */
3276 count_vm_event(COMPACTFAIL);
66199712 3277
98dd3b48 3278 cond_resched();
56de7263
MG
3279
3280 return NULL;
3281}
33c2d214 3282
3250845d
VB
3283static inline bool
3284should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3285 enum compact_result compact_result,
3286 enum compact_priority *compact_priority,
d9436498 3287 int *compaction_retries)
3250845d
VB
3288{
3289 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3290 int min_priority;
65190cff
MH
3291 bool ret = false;
3292 int retries = *compaction_retries;
3293 enum compact_priority priority = *compact_priority;
3250845d
VB
3294
3295 if (!order)
3296 return false;
3297
d9436498
VB
3298 if (compaction_made_progress(compact_result))
3299 (*compaction_retries)++;
3300
3250845d
VB
3301 /*
3302 * compaction considers all the zone as desperately out of memory
3303 * so it doesn't really make much sense to retry except when the
3304 * failure could be caused by insufficient priority
3305 */
d9436498
VB
3306 if (compaction_failed(compact_result))
3307 goto check_priority;
3250845d
VB
3308
3309 /*
3310 * make sure the compaction wasn't deferred or didn't bail out early
3311 * due to locks contention before we declare that we should give up.
3312 * But do not retry if the given zonelist is not suitable for
3313 * compaction.
3314 */
65190cff
MH
3315 if (compaction_withdrawn(compact_result)) {
3316 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3317 goto out;
3318 }
3250845d
VB
3319
3320 /*
3321 * !costly requests are much more important than __GFP_REPEAT
3322 * costly ones because they are de facto nofail and invoke OOM
3323 * killer to move on while costly can fail and users are ready
3324 * to cope with that. 1/4 retries is rather arbitrary but we
3325 * would need much more detailed feedback from compaction to
3326 * make a better decision.
3327 */
3328 if (order > PAGE_ALLOC_COSTLY_ORDER)
3329 max_retries /= 4;
65190cff
MH
3330 if (*compaction_retries <= max_retries) {
3331 ret = true;
3332 goto out;
3333 }
3250845d 3334
d9436498
VB
3335 /*
3336 * Make sure there are attempts at the highest priority if we exhausted
3337 * all retries or failed at the lower priorities.
3338 */
3339check_priority:
c2033b00
VB
3340 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3341 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3342
c2033b00 3343 if (*compact_priority > min_priority) {
d9436498
VB
3344 (*compact_priority)--;
3345 *compaction_retries = 0;
65190cff 3346 ret = true;
d9436498 3347 }
65190cff
MH
3348out:
3349 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3350 return ret;
3250845d 3351}
56de7263
MG
3352#else
3353static inline struct page *
3354__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3355 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3356 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3357{
33c2d214 3358 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3359 return NULL;
3360}
33c2d214
MH
3361
3362static inline bool
86a294a8
MH
3363should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3364 enum compact_result compact_result,
a5508cd8 3365 enum compact_priority *compact_priority,
d9436498 3366 int *compaction_retries)
33c2d214 3367{
31e49bfd
MH
3368 struct zone *zone;
3369 struct zoneref *z;
3370
3371 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3372 return false;
3373
3374 /*
3375 * There are setups with compaction disabled which would prefer to loop
3376 * inside the allocator rather than hit the oom killer prematurely.
3377 * Let's give them a good hope and keep retrying while the order-0
3378 * watermarks are OK.
3379 */
3380 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3381 ac->nodemask) {
3382 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3383 ac_classzone_idx(ac), alloc_flags))
3384 return true;
3385 }
33c2d214
MH
3386 return false;
3387}
3250845d 3388#endif /* CONFIG_COMPACTION */
56de7263 3389
bba90710
MS
3390/* Perform direct synchronous page reclaim */
3391static int
a9263751
VB
3392__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3393 const struct alloc_context *ac)
11e33f6a 3394{
11e33f6a 3395 struct reclaim_state reclaim_state;
bba90710 3396 int progress;
11e33f6a
MG
3397
3398 cond_resched();
3399
3400 /* We now go into synchronous reclaim */
3401 cpuset_memory_pressure_bump();
c06b1fca 3402 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3403 lockdep_set_current_reclaim_state(gfp_mask);
3404 reclaim_state.reclaimed_slab = 0;
c06b1fca 3405 current->reclaim_state = &reclaim_state;
11e33f6a 3406
a9263751
VB
3407 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3408 ac->nodemask);
11e33f6a 3409
c06b1fca 3410 current->reclaim_state = NULL;
11e33f6a 3411 lockdep_clear_current_reclaim_state();
c06b1fca 3412 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3413
3414 cond_resched();
3415
bba90710
MS
3416 return progress;
3417}
3418
3419/* The really slow allocator path where we enter direct reclaim */
3420static inline struct page *
3421__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3422 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3423 unsigned long *did_some_progress)
bba90710
MS
3424{
3425 struct page *page = NULL;
3426 bool drained = false;
3427
a9263751 3428 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3429 if (unlikely(!(*did_some_progress)))
3430 return NULL;
11e33f6a 3431
9ee493ce 3432retry:
31a6c190 3433 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3434
3435 /*
3436 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3437 * pages are pinned on the per-cpu lists or in high alloc reserves.
3438 * Shrink them them and try again
9ee493ce
MG
3439 */
3440 if (!page && !drained) {
29fac03b 3441 unreserve_highatomic_pageblock(ac, false);
93481ff0 3442 drain_all_pages(NULL);
9ee493ce
MG
3443 drained = true;
3444 goto retry;
3445 }
3446
11e33f6a
MG
3447 return page;
3448}
3449
a9263751 3450static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3451{
3452 struct zoneref *z;
3453 struct zone *zone;
e1a55637 3454 pg_data_t *last_pgdat = NULL;
3a025760 3455
a9263751 3456 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3457 ac->high_zoneidx, ac->nodemask) {
3458 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3459 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3460 last_pgdat = zone->zone_pgdat;
3461 }
3a025760
JW
3462}
3463
c603844b 3464static inline unsigned int
341ce06f
PZ
3465gfp_to_alloc_flags(gfp_t gfp_mask)
3466{
c603844b 3467 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3468
a56f57ff 3469 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3470 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3471
341ce06f
PZ
3472 /*
3473 * The caller may dip into page reserves a bit more if the caller
3474 * cannot run direct reclaim, or if the caller has realtime scheduling
3475 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3476 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3477 */
e6223a3b 3478 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3479
d0164adc 3480 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3481 /*
b104a35d
DR
3482 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3483 * if it can't schedule.
5c3240d9 3484 */
b104a35d 3485 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3486 alloc_flags |= ALLOC_HARDER;
523b9458 3487 /*
b104a35d 3488 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3489 * comment for __cpuset_node_allowed().
523b9458 3490 */
341ce06f 3491 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3492 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3493 alloc_flags |= ALLOC_HARDER;
3494
d95ea5d1 3495#ifdef CONFIG_CMA
43e7a34d 3496 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3497 alloc_flags |= ALLOC_CMA;
3498#endif
341ce06f
PZ
3499 return alloc_flags;
3500}
3501
072bb0aa
MG
3502bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3503{
31a6c190
VB
3504 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3505 return false;
3506
3507 if (gfp_mask & __GFP_MEMALLOC)
3508 return true;
3509 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3510 return true;
3511 if (!in_interrupt() &&
3512 ((current->flags & PF_MEMALLOC) ||
3513 unlikely(test_thread_flag(TIF_MEMDIE))))
3514 return true;
3515
3516 return false;
072bb0aa
MG
3517}
3518
0a0337e0
MH
3519/*
3520 * Maximum number of reclaim retries without any progress before OOM killer
3521 * is consider as the only way to move forward.
3522 */
3523#define MAX_RECLAIM_RETRIES 16
3524
3525/*
3526 * Checks whether it makes sense to retry the reclaim to make a forward progress
3527 * for the given allocation request.
3528 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3529 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3530 * any progress in a row) is considered as well as the reclaimable pages on the
3531 * applicable zone list (with a backoff mechanism which is a function of
3532 * no_progress_loops).
0a0337e0
MH
3533 *
3534 * Returns true if a retry is viable or false to enter the oom path.
3535 */
3536static inline bool
3537should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3538 struct alloc_context *ac, int alloc_flags,
423b452e 3539 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3540{
3541 struct zone *zone;
3542 struct zoneref *z;
3543
423b452e
VB
3544 /*
3545 * Costly allocations might have made a progress but this doesn't mean
3546 * their order will become available due to high fragmentation so
3547 * always increment the no progress counter for them
3548 */
3549 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3550 *no_progress_loops = 0;
3551 else
3552 (*no_progress_loops)++;
3553
0a0337e0
MH
3554 /*
3555 * Make sure we converge to OOM if we cannot make any progress
3556 * several times in the row.
3557 */
04c8716f
MK
3558 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3559 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3560 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3561 }
0a0337e0 3562
bca67592
MG
3563 /*
3564 * Keep reclaiming pages while there is a chance this will lead
3565 * somewhere. If none of the target zones can satisfy our allocation
3566 * request even if all reclaimable pages are considered then we are
3567 * screwed and have to go OOM.
0a0337e0
MH
3568 */
3569 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3570 ac->nodemask) {
3571 unsigned long available;
ede37713 3572 unsigned long reclaimable;
d379f01d
MH
3573 unsigned long min_wmark = min_wmark_pages(zone);
3574 bool wmark;
0a0337e0 3575
5a1c84b4 3576 available = reclaimable = zone_reclaimable_pages(zone);
423b452e 3577 available -= DIV_ROUND_UP((*no_progress_loops) * available,
0a0337e0 3578 MAX_RECLAIM_RETRIES);
5a1c84b4 3579 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3580
3581 /*
3582 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3583 * available?
0a0337e0 3584 */
d379f01d
MH
3585 wmark = __zone_watermark_ok(zone, order, min_wmark,
3586 ac_classzone_idx(ac), alloc_flags, available);
3587 trace_reclaim_retry_zone(z, order, reclaimable,
3588 available, min_wmark, *no_progress_loops, wmark);
3589 if (wmark) {
ede37713
MH
3590 /*
3591 * If we didn't make any progress and have a lot of
3592 * dirty + writeback pages then we should wait for
3593 * an IO to complete to slow down the reclaim and
3594 * prevent from pre mature OOM
3595 */
3596 if (!did_some_progress) {
11fb9989 3597 unsigned long write_pending;
ede37713 3598
5a1c84b4
MG
3599 write_pending = zone_page_state_snapshot(zone,
3600 NR_ZONE_WRITE_PENDING);
ede37713 3601
11fb9989 3602 if (2 * write_pending > reclaimable) {
ede37713
MH
3603 congestion_wait(BLK_RW_ASYNC, HZ/10);
3604 return true;
3605 }
3606 }
5a1c84b4 3607
ede37713
MH
3608 /*
3609 * Memory allocation/reclaim might be called from a WQ
3610 * context and the current implementation of the WQ
3611 * concurrency control doesn't recognize that
3612 * a particular WQ is congested if the worker thread is
3613 * looping without ever sleeping. Therefore we have to
3614 * do a short sleep here rather than calling
3615 * cond_resched().
3616 */
3617 if (current->flags & PF_WQ_WORKER)
3618 schedule_timeout_uninterruptible(1);
3619 else
3620 cond_resched();
3621
0a0337e0
MH
3622 return true;
3623 }
3624 }
3625
3626 return false;
3627}
3628
11e33f6a
MG
3629static inline struct page *
3630__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3631 struct alloc_context *ac)
11e33f6a 3632{
d0164adc 3633 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3634 struct page *page = NULL;
c603844b 3635 unsigned int alloc_flags;
11e33f6a 3636 unsigned long did_some_progress;
5ce9bfef 3637 enum compact_priority compact_priority;
c5d01d0d 3638 enum compact_result compact_result;
5ce9bfef
VB
3639 int compaction_retries;
3640 int no_progress_loops;
63f53dea
MH
3641 unsigned long alloc_start = jiffies;
3642 unsigned int stall_timeout = 10 * HZ;
5ce9bfef 3643 unsigned int cpuset_mems_cookie;
1da177e4 3644
72807a74
MG
3645 /*
3646 * In the slowpath, we sanity check order to avoid ever trying to
3647 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3648 * be using allocators in order of preference for an area that is
3649 * too large.
3650 */
1fc28b70
MG
3651 if (order >= MAX_ORDER) {
3652 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3653 return NULL;
1fc28b70 3654 }
1da177e4 3655
d0164adc
MG
3656 /*
3657 * We also sanity check to catch abuse of atomic reserves being used by
3658 * callers that are not in atomic context.
3659 */
3660 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3661 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3662 gfp_mask &= ~__GFP_ATOMIC;
3663
5ce9bfef
VB
3664retry_cpuset:
3665 compaction_retries = 0;
3666 no_progress_loops = 0;
3667 compact_priority = DEF_COMPACT_PRIORITY;
3668 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3669
3670 /*
3671 * The fast path uses conservative alloc_flags to succeed only until
3672 * kswapd needs to be woken up, and to avoid the cost of setting up
3673 * alloc_flags precisely. So we do that now.
3674 */
3675 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3676
e47483bc
VB
3677 /*
3678 * We need to recalculate the starting point for the zonelist iterator
3679 * because we might have used different nodemask in the fast path, or
3680 * there was a cpuset modification and we are retrying - otherwise we
3681 * could end up iterating over non-eligible zones endlessly.
3682 */
3683 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3684 ac->high_zoneidx, ac->nodemask);
3685 if (!ac->preferred_zoneref->zone)
3686 goto nopage;
3687
23771235
VB
3688 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3689 wake_all_kswapds(order, ac);
3690
3691 /*
3692 * The adjusted alloc_flags might result in immediate success, so try
3693 * that first
3694 */
3695 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3696 if (page)
3697 goto got_pg;
3698
a8161d1e
VB
3699 /*
3700 * For costly allocations, try direct compaction first, as it's likely
3701 * that we have enough base pages and don't need to reclaim. Don't try
3702 * that for allocations that are allowed to ignore watermarks, as the
3703 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3704 */
3705 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3706 !gfp_pfmemalloc_allowed(gfp_mask)) {
3707 page = __alloc_pages_direct_compact(gfp_mask, order,
3708 alloc_flags, ac,
a5508cd8 3709 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3710 &compact_result);
3711 if (page)
3712 goto got_pg;
3713
3eb2771b
VB
3714 /*
3715 * Checks for costly allocations with __GFP_NORETRY, which
3716 * includes THP page fault allocations
3717 */
3718 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3719 /*
3720 * If compaction is deferred for high-order allocations,
3721 * it is because sync compaction recently failed. If
3722 * this is the case and the caller requested a THP
3723 * allocation, we do not want to heavily disrupt the
3724 * system, so we fail the allocation instead of entering
3725 * direct reclaim.
3726 */
3727 if (compact_result == COMPACT_DEFERRED)
3728 goto nopage;
3729
a8161d1e 3730 /*
3eb2771b
VB
3731 * Looks like reclaim/compaction is worth trying, but
3732 * sync compaction could be very expensive, so keep
25160354 3733 * using async compaction.
a8161d1e 3734 */
a5508cd8 3735 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3736 }
3737 }
23771235 3738
31a6c190 3739retry:
23771235 3740 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3741 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3742 wake_all_kswapds(order, ac);
3743
23771235
VB
3744 if (gfp_pfmemalloc_allowed(gfp_mask))
3745 alloc_flags = ALLOC_NO_WATERMARKS;
3746
e46e7b77
MG
3747 /*
3748 * Reset the zonelist iterators if memory policies can be ignored.
3749 * These allocations are high priority and system rather than user
3750 * orientated.
3751 */
23771235 3752 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3753 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3754 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3755 ac->high_zoneidx, ac->nodemask);
3756 }
3757
23771235 3758 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3759 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3760 if (page)
3761 goto got_pg;
1da177e4 3762
d0164adc 3763 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 3764 if (!can_direct_reclaim)
1da177e4
LT
3765 goto nopage;
3766
9a67f648
MH
3767 /* Make sure we know about allocations which stall for too long */
3768 if (time_after(jiffies, alloc_start + stall_timeout)) {
3769 warn_alloc(gfp_mask, ac->nodemask,
3770 "page allocation stalls for %ums, order:%u",
3771 jiffies_to_msecs(jiffies-alloc_start), order);
3772 stall_timeout += 10 * HZ;
33d53103 3773 }
341ce06f 3774
9a67f648
MH
3775 /* Avoid recursion of direct reclaim */
3776 if (current->flags & PF_MEMALLOC)
6583bb64
DR
3777 goto nopage;
3778
a8161d1e
VB
3779 /* Try direct reclaim and then allocating */
3780 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3781 &did_some_progress);
3782 if (page)
3783 goto got_pg;
3784
3785 /* Try direct compaction and then allocating */
a9263751 3786 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3787 compact_priority, &compact_result);
56de7263
MG
3788 if (page)
3789 goto got_pg;
75f30861 3790
9083905a
JW
3791 /* Do not loop if specifically requested */
3792 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3793 goto nopage;
9083905a 3794
0a0337e0
MH
3795 /*
3796 * Do not retry costly high order allocations unless they are
3797 * __GFP_REPEAT
3798 */
3799 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3800 goto nopage;
0a0337e0 3801
0a0337e0 3802 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 3803 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
3804 goto retry;
3805
33c2d214
MH
3806 /*
3807 * It doesn't make any sense to retry for the compaction if the order-0
3808 * reclaim is not able to make any progress because the current
3809 * implementation of the compaction depends on the sufficient amount
3810 * of free memory (see __compaction_suitable)
3811 */
3812 if (did_some_progress > 0 &&
86a294a8 3813 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3814 compact_result, &compact_priority,
d9436498 3815 &compaction_retries))
33c2d214
MH
3816 goto retry;
3817
e47483bc
VB
3818 /*
3819 * It's possible we raced with cpuset update so the OOM would be
3820 * premature (see below the nopage: label for full explanation).
3821 */
3822 if (read_mems_allowed_retry(cpuset_mems_cookie))
3823 goto retry_cpuset;
3824
9083905a
JW
3825 /* Reclaim has failed us, start killing things */
3826 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3827 if (page)
3828 goto got_pg;
3829
9a67f648
MH
3830 /* Avoid allocations with no watermarks from looping endlessly */
3831 if (test_thread_flag(TIF_MEMDIE))
3832 goto nopage;
3833
9083905a 3834 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3835 if (did_some_progress) {
3836 no_progress_loops = 0;
9083905a 3837 goto retry;
0a0337e0 3838 }
9083905a 3839
1da177e4 3840nopage:
5ce9bfef 3841 /*
e47483bc
VB
3842 * When updating a task's mems_allowed or mempolicy nodemask, it is
3843 * possible to race with parallel threads in such a way that our
3844 * allocation can fail while the mask is being updated. If we are about
3845 * to fail, check if the cpuset changed during allocation and if so,
3846 * retry.
5ce9bfef
VB
3847 */
3848 if (read_mems_allowed_retry(cpuset_mems_cookie))
3849 goto retry_cpuset;
3850
9a67f648
MH
3851 /*
3852 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3853 * we always retry
3854 */
3855 if (gfp_mask & __GFP_NOFAIL) {
3856 /*
3857 * All existing users of the __GFP_NOFAIL are blockable, so warn
3858 * of any new users that actually require GFP_NOWAIT
3859 */
3860 if (WARN_ON_ONCE(!can_direct_reclaim))
3861 goto fail;
3862
3863 /*
3864 * PF_MEMALLOC request from this context is rather bizarre
3865 * because we cannot reclaim anything and only can loop waiting
3866 * for somebody to do a work for us
3867 */
3868 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3869
3870 /*
3871 * non failing costly orders are a hard requirement which we
3872 * are not prepared for much so let's warn about these users
3873 * so that we can identify them and convert them to something
3874 * else.
3875 */
3876 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3877
6c18ba7a
MH
3878 /*
3879 * Help non-failing allocations by giving them access to memory
3880 * reserves but do not use ALLOC_NO_WATERMARKS because this
3881 * could deplete whole memory reserves which would just make
3882 * the situation worse
3883 */
3884 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3885 if (page)
3886 goto got_pg;
3887
9a67f648
MH
3888 cond_resched();
3889 goto retry;
3890 }
3891fail:
a8e99259 3892 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 3893 "page allocation failure: order:%u", order);
1da177e4 3894got_pg:
072bb0aa 3895 return page;
1da177e4 3896}
11e33f6a 3897
9cd75558
MG
3898static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3899 struct zonelist *zonelist, nodemask_t *nodemask,
3900 struct alloc_context *ac, gfp_t *alloc_mask,
3901 unsigned int *alloc_flags)
11e33f6a 3902{
9cd75558
MG
3903 ac->high_zoneidx = gfp_zone(gfp_mask);
3904 ac->zonelist = zonelist;
3905 ac->nodemask = nodemask;
3906 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 3907
682a3385 3908 if (cpusets_enabled()) {
9cd75558 3909 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
3910 if (!ac->nodemask)
3911 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
3912 else
3913 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
3914 }
3915
11e33f6a
MG
3916 lockdep_trace_alloc(gfp_mask);
3917
d0164adc 3918 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3919
3920 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 3921 return false;
11e33f6a 3922
9cd75558
MG
3923 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3924 *alloc_flags |= ALLOC_CMA;
3925
3926 return true;
3927}
21bb9bd1 3928
9cd75558
MG
3929/* Determine whether to spread dirty pages and what the first usable zone */
3930static inline void finalise_ac(gfp_t gfp_mask,
3931 unsigned int order, struct alloc_context *ac)
3932{
c9ab0c4f 3933 /* Dirty zone balancing only done in the fast path */
9cd75558 3934 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 3935
e46e7b77
MG
3936 /*
3937 * The preferred zone is used for statistics but crucially it is
3938 * also used as the starting point for the zonelist iterator. It
3939 * may get reset for allocations that ignore memory policies.
3940 */
9cd75558
MG
3941 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3942 ac->high_zoneidx, ac->nodemask);
3943}
3944
3945/*
3946 * This is the 'heart' of the zoned buddy allocator.
3947 */
3948struct page *
3949__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3950 struct zonelist *zonelist, nodemask_t *nodemask)
3951{
3952 struct page *page;
3953 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3954 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3955 struct alloc_context ac = { };
3956
3957 gfp_mask &= gfp_allowed_mask;
3958 if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3959 return NULL;
3960
3961 finalise_ac(gfp_mask, order, &ac);
5bb1b169 3962
5117f45d 3963 /* First allocation attempt */
a9263751 3964 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3965 if (likely(page))
3966 goto out;
11e33f6a 3967
4fcb0971
MG
3968 /*
3969 * Runtime PM, block IO and its error handling path can deadlock
3970 * because I/O on the device might not complete.
3971 */
3972 alloc_mask = memalloc_noio_flags(gfp_mask);
3973 ac.spread_dirty_pages = false;
23f086f9 3974
4741526b
MG
3975 /*
3976 * Restore the original nodemask if it was potentially replaced with
3977 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3978 */
e47483bc 3979 if (unlikely(ac.nodemask != nodemask))
4741526b 3980 ac.nodemask = nodemask;
16096c25 3981
4fcb0971 3982 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3983
4fcb0971 3984out:
c4159a75
VD
3985 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3986 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3987 __free_pages(page, order);
3988 page = NULL;
4949148a
VD
3989 }
3990
4fcb0971
MG
3991 if (kmemcheck_enabled && page)
3992 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3993
3994 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3995
11e33f6a 3996 return page;
1da177e4 3997}
d239171e 3998EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3999
4000/*
4001 * Common helper functions.
4002 */
920c7a5d 4003unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4004{
945a1113
AM
4005 struct page *page;
4006
4007 /*
4008 * __get_free_pages() returns a 32-bit address, which cannot represent
4009 * a highmem page
4010 */
4011 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4012
1da177e4
LT
4013 page = alloc_pages(gfp_mask, order);
4014 if (!page)
4015 return 0;
4016 return (unsigned long) page_address(page);
4017}
1da177e4
LT
4018EXPORT_SYMBOL(__get_free_pages);
4019
920c7a5d 4020unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4021{
945a1113 4022 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4023}
1da177e4
LT
4024EXPORT_SYMBOL(get_zeroed_page);
4025
920c7a5d 4026void __free_pages(struct page *page, unsigned int order)
1da177e4 4027{
b5810039 4028 if (put_page_testzero(page)) {
1da177e4 4029 if (order == 0)
b745bc85 4030 free_hot_cold_page(page, false);
1da177e4
LT
4031 else
4032 __free_pages_ok(page, order);
4033 }
4034}
4035
4036EXPORT_SYMBOL(__free_pages);
4037
920c7a5d 4038void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4039{
4040 if (addr != 0) {
725d704e 4041 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4042 __free_pages(virt_to_page((void *)addr), order);
4043 }
4044}
4045
4046EXPORT_SYMBOL(free_pages);
4047
b63ae8ca
AD
4048/*
4049 * Page Fragment:
4050 * An arbitrary-length arbitrary-offset area of memory which resides
4051 * within a 0 or higher order page. Multiple fragments within that page
4052 * are individually refcounted, in the page's reference counter.
4053 *
4054 * The page_frag functions below provide a simple allocation framework for
4055 * page fragments. This is used by the network stack and network device
4056 * drivers to provide a backing region of memory for use as either an
4057 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4058 */
2976db80
AD
4059static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4060 gfp_t gfp_mask)
b63ae8ca
AD
4061{
4062 struct page *page = NULL;
4063 gfp_t gfp = gfp_mask;
4064
4065#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4066 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4067 __GFP_NOMEMALLOC;
4068 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4069 PAGE_FRAG_CACHE_MAX_ORDER);
4070 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4071#endif
4072 if (unlikely(!page))
4073 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4074
4075 nc->va = page ? page_address(page) : NULL;
4076
4077 return page;
4078}
4079
2976db80 4080void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4081{
4082 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4083
4084 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4085 unsigned int order = compound_order(page);
4086
44fdffd7
AD
4087 if (order == 0)
4088 free_hot_cold_page(page, false);
4089 else
4090 __free_pages_ok(page, order);
4091 }
4092}
2976db80 4093EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4094
8c2dd3e4
AD
4095void *page_frag_alloc(struct page_frag_cache *nc,
4096 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4097{
4098 unsigned int size = PAGE_SIZE;
4099 struct page *page;
4100 int offset;
4101
4102 if (unlikely(!nc->va)) {
4103refill:
2976db80 4104 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4105 if (!page)
4106 return NULL;
4107
4108#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4109 /* if size can vary use size else just use PAGE_SIZE */
4110 size = nc->size;
4111#endif
4112 /* Even if we own the page, we do not use atomic_set().
4113 * This would break get_page_unless_zero() users.
4114 */
fe896d18 4115 page_ref_add(page, size - 1);
b63ae8ca
AD
4116
4117 /* reset page count bias and offset to start of new frag */
2f064f34 4118 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4119 nc->pagecnt_bias = size;
4120 nc->offset = size;
4121 }
4122
4123 offset = nc->offset - fragsz;
4124 if (unlikely(offset < 0)) {
4125 page = virt_to_page(nc->va);
4126
fe896d18 4127 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4128 goto refill;
4129
4130#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4131 /* if size can vary use size else just use PAGE_SIZE */
4132 size = nc->size;
4133#endif
4134 /* OK, page count is 0, we can safely set it */
fe896d18 4135 set_page_count(page, size);
b63ae8ca
AD
4136
4137 /* reset page count bias and offset to start of new frag */
4138 nc->pagecnt_bias = size;
4139 offset = size - fragsz;
4140 }
4141
4142 nc->pagecnt_bias--;
4143 nc->offset = offset;
4144
4145 return nc->va + offset;
4146}
8c2dd3e4 4147EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4148
4149/*
4150 * Frees a page fragment allocated out of either a compound or order 0 page.
4151 */
8c2dd3e4 4152void page_frag_free(void *addr)
b63ae8ca
AD
4153{
4154 struct page *page = virt_to_head_page(addr);
4155
4156 if (unlikely(put_page_testzero(page)))
4157 __free_pages_ok(page, compound_order(page));
4158}
8c2dd3e4 4159EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4160
d00181b9
KS
4161static void *make_alloc_exact(unsigned long addr, unsigned int order,
4162 size_t size)
ee85c2e1
AK
4163{
4164 if (addr) {
4165 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4166 unsigned long used = addr + PAGE_ALIGN(size);
4167
4168 split_page(virt_to_page((void *)addr), order);
4169 while (used < alloc_end) {
4170 free_page(used);
4171 used += PAGE_SIZE;
4172 }
4173 }
4174 return (void *)addr;
4175}
4176
2be0ffe2
TT
4177/**
4178 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4179 * @size: the number of bytes to allocate
4180 * @gfp_mask: GFP flags for the allocation
4181 *
4182 * This function is similar to alloc_pages(), except that it allocates the
4183 * minimum number of pages to satisfy the request. alloc_pages() can only
4184 * allocate memory in power-of-two pages.
4185 *
4186 * This function is also limited by MAX_ORDER.
4187 *
4188 * Memory allocated by this function must be released by free_pages_exact().
4189 */
4190void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4191{
4192 unsigned int order = get_order(size);
4193 unsigned long addr;
4194
4195 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4196 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4197}
4198EXPORT_SYMBOL(alloc_pages_exact);
4199
ee85c2e1
AK
4200/**
4201 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4202 * pages on a node.
b5e6ab58 4203 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4204 * @size: the number of bytes to allocate
4205 * @gfp_mask: GFP flags for the allocation
4206 *
4207 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4208 * back.
ee85c2e1 4209 */
e1931811 4210void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4211{
d00181b9 4212 unsigned int order = get_order(size);
ee85c2e1
AK
4213 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4214 if (!p)
4215 return NULL;
4216 return make_alloc_exact((unsigned long)page_address(p), order, size);
4217}
ee85c2e1 4218
2be0ffe2
TT
4219/**
4220 * free_pages_exact - release memory allocated via alloc_pages_exact()
4221 * @virt: the value returned by alloc_pages_exact.
4222 * @size: size of allocation, same value as passed to alloc_pages_exact().
4223 *
4224 * Release the memory allocated by a previous call to alloc_pages_exact.
4225 */
4226void free_pages_exact(void *virt, size_t size)
4227{
4228 unsigned long addr = (unsigned long)virt;
4229 unsigned long end = addr + PAGE_ALIGN(size);
4230
4231 while (addr < end) {
4232 free_page(addr);
4233 addr += PAGE_SIZE;
4234 }
4235}
4236EXPORT_SYMBOL(free_pages_exact);
4237
e0fb5815
ZY
4238/**
4239 * nr_free_zone_pages - count number of pages beyond high watermark
4240 * @offset: The zone index of the highest zone
4241 *
4242 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4243 * high watermark within all zones at or below a given zone index. For each
4244 * zone, the number of pages is calculated as:
834405c3 4245 * managed_pages - high_pages
e0fb5815 4246 */
ebec3862 4247static unsigned long nr_free_zone_pages(int offset)
1da177e4 4248{
dd1a239f 4249 struct zoneref *z;
54a6eb5c
MG
4250 struct zone *zone;
4251
e310fd43 4252 /* Just pick one node, since fallback list is circular */
ebec3862 4253 unsigned long sum = 0;
1da177e4 4254
0e88460d 4255 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4256
54a6eb5c 4257 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4258 unsigned long size = zone->managed_pages;
41858966 4259 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4260 if (size > high)
4261 sum += size - high;
1da177e4
LT
4262 }
4263
4264 return sum;
4265}
4266
e0fb5815
ZY
4267/**
4268 * nr_free_buffer_pages - count number of pages beyond high watermark
4269 *
4270 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4271 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4272 */
ebec3862 4273unsigned long nr_free_buffer_pages(void)
1da177e4 4274{
af4ca457 4275 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4276}
c2f1a551 4277EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4278
e0fb5815
ZY
4279/**
4280 * nr_free_pagecache_pages - count number of pages beyond high watermark
4281 *
4282 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4283 * high watermark within all zones.
1da177e4 4284 */
ebec3862 4285unsigned long nr_free_pagecache_pages(void)
1da177e4 4286{
2a1e274a 4287 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4288}
08e0f6a9
CL
4289
4290static inline void show_node(struct zone *zone)
1da177e4 4291{
e5adfffc 4292 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4293 printk("Node %d ", zone_to_nid(zone));
1da177e4 4294}
1da177e4 4295
d02bd27b
IR
4296long si_mem_available(void)
4297{
4298 long available;
4299 unsigned long pagecache;
4300 unsigned long wmark_low = 0;
4301 unsigned long pages[NR_LRU_LISTS];
4302 struct zone *zone;
4303 int lru;
4304
4305 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4306 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4307
4308 for_each_zone(zone)
4309 wmark_low += zone->watermark[WMARK_LOW];
4310
4311 /*
4312 * Estimate the amount of memory available for userspace allocations,
4313 * without causing swapping.
4314 */
4315 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4316
4317 /*
4318 * Not all the page cache can be freed, otherwise the system will
4319 * start swapping. Assume at least half of the page cache, or the
4320 * low watermark worth of cache, needs to stay.
4321 */
4322 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4323 pagecache -= min(pagecache / 2, wmark_low);
4324 available += pagecache;
4325
4326 /*
4327 * Part of the reclaimable slab consists of items that are in use,
4328 * and cannot be freed. Cap this estimate at the low watermark.
4329 */
4330 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4331 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4332
4333 if (available < 0)
4334 available = 0;
4335 return available;
4336}
4337EXPORT_SYMBOL_GPL(si_mem_available);
4338
1da177e4
LT
4339void si_meminfo(struct sysinfo *val)
4340{
4341 val->totalram = totalram_pages;
11fb9989 4342 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4343 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4344 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4345 val->totalhigh = totalhigh_pages;
4346 val->freehigh = nr_free_highpages();
1da177e4
LT
4347 val->mem_unit = PAGE_SIZE;
4348}
4349
4350EXPORT_SYMBOL(si_meminfo);
4351
4352#ifdef CONFIG_NUMA
4353void si_meminfo_node(struct sysinfo *val, int nid)
4354{
cdd91a77
JL
4355 int zone_type; /* needs to be signed */
4356 unsigned long managed_pages = 0;
fc2bd799
JK
4357 unsigned long managed_highpages = 0;
4358 unsigned long free_highpages = 0;
1da177e4
LT
4359 pg_data_t *pgdat = NODE_DATA(nid);
4360
cdd91a77
JL
4361 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4362 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4363 val->totalram = managed_pages;
11fb9989 4364 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4365 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4366#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4367 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4368 struct zone *zone = &pgdat->node_zones[zone_type];
4369
4370 if (is_highmem(zone)) {
4371 managed_highpages += zone->managed_pages;
4372 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4373 }
4374 }
4375 val->totalhigh = managed_highpages;
4376 val->freehigh = free_highpages;
98d2b0eb 4377#else
fc2bd799
JK
4378 val->totalhigh = managed_highpages;
4379 val->freehigh = free_highpages;
98d2b0eb 4380#endif
1da177e4
LT
4381 val->mem_unit = PAGE_SIZE;
4382}
4383#endif
4384
ddd588b5 4385/*
7bf02ea2
DR
4386 * Determine whether the node should be displayed or not, depending on whether
4387 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4388 */
9af744d7 4389static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4390{
ddd588b5 4391 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4392 return false;
ddd588b5 4393
9af744d7
MH
4394 /*
4395 * no node mask - aka implicit memory numa policy. Do not bother with
4396 * the synchronization - read_mems_allowed_begin - because we do not
4397 * have to be precise here.
4398 */
4399 if (!nodemask)
4400 nodemask = &cpuset_current_mems_allowed;
4401
4402 return !node_isset(nid, *nodemask);
ddd588b5
DR
4403}
4404
1da177e4
LT
4405#define K(x) ((x) << (PAGE_SHIFT-10))
4406
377e4f16
RV
4407static void show_migration_types(unsigned char type)
4408{
4409 static const char types[MIGRATE_TYPES] = {
4410 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4411 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4412 [MIGRATE_RECLAIMABLE] = 'E',
4413 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4414#ifdef CONFIG_CMA
4415 [MIGRATE_CMA] = 'C',
4416#endif
194159fb 4417#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4418 [MIGRATE_ISOLATE] = 'I',
194159fb 4419#endif
377e4f16
RV
4420 };
4421 char tmp[MIGRATE_TYPES + 1];
4422 char *p = tmp;
4423 int i;
4424
4425 for (i = 0; i < MIGRATE_TYPES; i++) {
4426 if (type & (1 << i))
4427 *p++ = types[i];
4428 }
4429
4430 *p = '\0';
1f84a18f 4431 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4432}
4433
1da177e4
LT
4434/*
4435 * Show free area list (used inside shift_scroll-lock stuff)
4436 * We also calculate the percentage fragmentation. We do this by counting the
4437 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4438 *
4439 * Bits in @filter:
4440 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4441 * cpuset.
1da177e4 4442 */
9af744d7 4443void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4444{
d1bfcdb8 4445 unsigned long free_pcp = 0;
c7241913 4446 int cpu;
1da177e4 4447 struct zone *zone;
599d0c95 4448 pg_data_t *pgdat;
1da177e4 4449
ee99c71c 4450 for_each_populated_zone(zone) {
9af744d7 4451 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4452 continue;
d1bfcdb8 4453
761b0677
KK
4454 for_each_online_cpu(cpu)
4455 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4456 }
4457
a731286d
KM
4458 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4459 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4460 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4461 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4462 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4463 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4464 global_node_page_state(NR_ACTIVE_ANON),
4465 global_node_page_state(NR_INACTIVE_ANON),
4466 global_node_page_state(NR_ISOLATED_ANON),
4467 global_node_page_state(NR_ACTIVE_FILE),
4468 global_node_page_state(NR_INACTIVE_FILE),
4469 global_node_page_state(NR_ISOLATED_FILE),
4470 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4471 global_node_page_state(NR_FILE_DIRTY),
4472 global_node_page_state(NR_WRITEBACK),
4473 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4474 global_page_state(NR_SLAB_RECLAIMABLE),
4475 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4476 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4477 global_node_page_state(NR_SHMEM),
a25700a5 4478 global_page_state(NR_PAGETABLE),
d1ce749a 4479 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4480 global_page_state(NR_FREE_PAGES),
4481 free_pcp,
d1ce749a 4482 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4483
599d0c95 4484 for_each_online_pgdat(pgdat) {
9af744d7 4485 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4486 continue;
4487
599d0c95
MG
4488 printk("Node %d"
4489 " active_anon:%lukB"
4490 " inactive_anon:%lukB"
4491 " active_file:%lukB"
4492 " inactive_file:%lukB"
4493 " unevictable:%lukB"
4494 " isolated(anon):%lukB"
4495 " isolated(file):%lukB"
50658e2e 4496 " mapped:%lukB"
11fb9989
MG
4497 " dirty:%lukB"
4498 " writeback:%lukB"
4499 " shmem:%lukB"
4500#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4501 " shmem_thp: %lukB"
4502 " shmem_pmdmapped: %lukB"
4503 " anon_thp: %lukB"
4504#endif
4505 " writeback_tmp:%lukB"
4506 " unstable:%lukB"
33e077bd 4507 " pages_scanned:%lu"
599d0c95
MG
4508 " all_unreclaimable? %s"
4509 "\n",
4510 pgdat->node_id,
4511 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4512 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4513 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4514 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4515 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4516 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4517 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4518 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4519 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4520 K(node_page_state(pgdat, NR_WRITEBACK)),
4521#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4522 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4523 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4524 * HPAGE_PMD_NR),
4525 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4526#endif
4527 K(node_page_state(pgdat, NR_SHMEM)),
4528 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4529 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4530 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4531 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4532 }
4533
ee99c71c 4534 for_each_populated_zone(zone) {
1da177e4
LT
4535 int i;
4536
9af744d7 4537 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4538 continue;
d1bfcdb8
KK
4539
4540 free_pcp = 0;
4541 for_each_online_cpu(cpu)
4542 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4543
1da177e4 4544 show_node(zone);
1f84a18f
JP
4545 printk(KERN_CONT
4546 "%s"
1da177e4
LT
4547 " free:%lukB"
4548 " min:%lukB"
4549 " low:%lukB"
4550 " high:%lukB"
71c799f4
MK
4551 " active_anon:%lukB"
4552 " inactive_anon:%lukB"
4553 " active_file:%lukB"
4554 " inactive_file:%lukB"
4555 " unevictable:%lukB"
5a1c84b4 4556 " writepending:%lukB"
1da177e4 4557 " present:%lukB"
9feedc9d 4558 " managed:%lukB"
4a0aa73f 4559 " mlocked:%lukB"
4a0aa73f
KM
4560 " slab_reclaimable:%lukB"
4561 " slab_unreclaimable:%lukB"
c6a7f572 4562 " kernel_stack:%lukB"
4a0aa73f 4563 " pagetables:%lukB"
4a0aa73f 4564 " bounce:%lukB"
d1bfcdb8
KK
4565 " free_pcp:%lukB"
4566 " local_pcp:%ukB"
d1ce749a 4567 " free_cma:%lukB"
1da177e4
LT
4568 "\n",
4569 zone->name,
88f5acf8 4570 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4571 K(min_wmark_pages(zone)),
4572 K(low_wmark_pages(zone)),
4573 K(high_wmark_pages(zone)),
71c799f4
MK
4574 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4575 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4576 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4577 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4578 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4579 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4580 K(zone->present_pages),
9feedc9d 4581 K(zone->managed_pages),
4a0aa73f 4582 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4583 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4584 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4585 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4586 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4587 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4588 K(free_pcp),
4589 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4590 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4591 printk("lowmem_reserve[]:");
4592 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4593 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4594 printk(KERN_CONT "\n");
1da177e4
LT
4595 }
4596
ee99c71c 4597 for_each_populated_zone(zone) {
d00181b9
KS
4598 unsigned int order;
4599 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4600 unsigned char types[MAX_ORDER];
1da177e4 4601
9af744d7 4602 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4603 continue;
1da177e4 4604 show_node(zone);
1f84a18f 4605 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4606
4607 spin_lock_irqsave(&zone->lock, flags);
4608 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4609 struct free_area *area = &zone->free_area[order];
4610 int type;
4611
4612 nr[order] = area->nr_free;
8f9de51a 4613 total += nr[order] << order;
377e4f16
RV
4614
4615 types[order] = 0;
4616 for (type = 0; type < MIGRATE_TYPES; type++) {
4617 if (!list_empty(&area->free_list[type]))
4618 types[order] |= 1 << type;
4619 }
1da177e4
LT
4620 }
4621 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4622 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4623 printk(KERN_CONT "%lu*%lukB ",
4624 nr[order], K(1UL) << order);
377e4f16
RV
4625 if (nr[order])
4626 show_migration_types(types[order]);
4627 }
1f84a18f 4628 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4629 }
4630
949f7ec5
DR
4631 hugetlb_show_meminfo();
4632
11fb9989 4633 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4634
1da177e4
LT
4635 show_swap_cache_info();
4636}
4637
19770b32
MG
4638static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4639{
4640 zoneref->zone = zone;
4641 zoneref->zone_idx = zone_idx(zone);
4642}
4643
1da177e4
LT
4644/*
4645 * Builds allocation fallback zone lists.
1a93205b
CL
4646 *
4647 * Add all populated zones of a node to the zonelist.
1da177e4 4648 */
f0c0b2b8 4649static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4650 int nr_zones)
1da177e4 4651{
1a93205b 4652 struct zone *zone;
bc732f1d 4653 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4654
4655 do {
2f6726e5 4656 zone_type--;
070f8032 4657 zone = pgdat->node_zones + zone_type;
6aa303de 4658 if (managed_zone(zone)) {
dd1a239f
MG
4659 zoneref_set_zone(zone,
4660 &zonelist->_zonerefs[nr_zones++]);
070f8032 4661 check_highest_zone(zone_type);
1da177e4 4662 }
2f6726e5 4663 } while (zone_type);
bc732f1d 4664
070f8032 4665 return nr_zones;
1da177e4
LT
4666}
4667
f0c0b2b8
KH
4668
4669/*
4670 * zonelist_order:
4671 * 0 = automatic detection of better ordering.
4672 * 1 = order by ([node] distance, -zonetype)
4673 * 2 = order by (-zonetype, [node] distance)
4674 *
4675 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4676 * the same zonelist. So only NUMA can configure this param.
4677 */
4678#define ZONELIST_ORDER_DEFAULT 0
4679#define ZONELIST_ORDER_NODE 1
4680#define ZONELIST_ORDER_ZONE 2
4681
4682/* zonelist order in the kernel.
4683 * set_zonelist_order() will set this to NODE or ZONE.
4684 */
4685static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4686static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4687
4688
1da177e4 4689#ifdef CONFIG_NUMA
f0c0b2b8
KH
4690/* The value user specified ....changed by config */
4691static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4692/* string for sysctl */
4693#define NUMA_ZONELIST_ORDER_LEN 16
4694char numa_zonelist_order[16] = "default";
4695
4696/*
4697 * interface for configure zonelist ordering.
4698 * command line option "numa_zonelist_order"
4699 * = "[dD]efault - default, automatic configuration.
4700 * = "[nN]ode - order by node locality, then by zone within node
4701 * = "[zZ]one - order by zone, then by locality within zone
4702 */
4703
4704static int __parse_numa_zonelist_order(char *s)
4705{
4706 if (*s == 'd' || *s == 'D') {
4707 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4708 } else if (*s == 'n' || *s == 'N') {
4709 user_zonelist_order = ZONELIST_ORDER_NODE;
4710 } else if (*s == 'z' || *s == 'Z') {
4711 user_zonelist_order = ZONELIST_ORDER_ZONE;
4712 } else {
1170532b 4713 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4714 return -EINVAL;
4715 }
4716 return 0;
4717}
4718
4719static __init int setup_numa_zonelist_order(char *s)
4720{
ecb256f8
VL
4721 int ret;
4722
4723 if (!s)
4724 return 0;
4725
4726 ret = __parse_numa_zonelist_order(s);
4727 if (ret == 0)
4728 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4729
4730 return ret;
f0c0b2b8
KH
4731}
4732early_param("numa_zonelist_order", setup_numa_zonelist_order);
4733
4734/*
4735 * sysctl handler for numa_zonelist_order
4736 */
cccad5b9 4737int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4738 void __user *buffer, size_t *length,
f0c0b2b8
KH
4739 loff_t *ppos)
4740{
4741 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4742 int ret;
443c6f14 4743 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4744
443c6f14 4745 mutex_lock(&zl_order_mutex);
dacbde09
CG
4746 if (write) {
4747 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4748 ret = -EINVAL;
4749 goto out;
4750 }
4751 strcpy(saved_string, (char *)table->data);
4752 }
8d65af78 4753 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4754 if (ret)
443c6f14 4755 goto out;
f0c0b2b8
KH
4756 if (write) {
4757 int oldval = user_zonelist_order;
dacbde09
CG
4758
4759 ret = __parse_numa_zonelist_order((char *)table->data);
4760 if (ret) {
f0c0b2b8
KH
4761 /*
4762 * bogus value. restore saved string
4763 */
dacbde09 4764 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4765 NUMA_ZONELIST_ORDER_LEN);
4766 user_zonelist_order = oldval;
4eaf3f64
HL
4767 } else if (oldval != user_zonelist_order) {
4768 mutex_lock(&zonelists_mutex);
9adb62a5 4769 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4770 mutex_unlock(&zonelists_mutex);
4771 }
f0c0b2b8 4772 }
443c6f14
AK
4773out:
4774 mutex_unlock(&zl_order_mutex);
4775 return ret;
f0c0b2b8
KH
4776}
4777
4778
62bc62a8 4779#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4780static int node_load[MAX_NUMNODES];
4781
1da177e4 4782/**
4dc3b16b 4783 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4784 * @node: node whose fallback list we're appending
4785 * @used_node_mask: nodemask_t of already used nodes
4786 *
4787 * We use a number of factors to determine which is the next node that should
4788 * appear on a given node's fallback list. The node should not have appeared
4789 * already in @node's fallback list, and it should be the next closest node
4790 * according to the distance array (which contains arbitrary distance values
4791 * from each node to each node in the system), and should also prefer nodes
4792 * with no CPUs, since presumably they'll have very little allocation pressure
4793 * on them otherwise.
4794 * It returns -1 if no node is found.
4795 */
f0c0b2b8 4796static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4797{
4cf808eb 4798 int n, val;
1da177e4 4799 int min_val = INT_MAX;
00ef2d2f 4800 int best_node = NUMA_NO_NODE;
a70f7302 4801 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4802
4cf808eb
LT
4803 /* Use the local node if we haven't already */
4804 if (!node_isset(node, *used_node_mask)) {
4805 node_set(node, *used_node_mask);
4806 return node;
4807 }
1da177e4 4808
4b0ef1fe 4809 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4810
4811 /* Don't want a node to appear more than once */
4812 if (node_isset(n, *used_node_mask))
4813 continue;
4814
1da177e4
LT
4815 /* Use the distance array to find the distance */
4816 val = node_distance(node, n);
4817
4cf808eb
LT
4818 /* Penalize nodes under us ("prefer the next node") */
4819 val += (n < node);
4820
1da177e4 4821 /* Give preference to headless and unused nodes */
a70f7302
RR
4822 tmp = cpumask_of_node(n);
4823 if (!cpumask_empty(tmp))
1da177e4
LT
4824 val += PENALTY_FOR_NODE_WITH_CPUS;
4825
4826 /* Slight preference for less loaded node */
4827 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4828 val += node_load[n];
4829
4830 if (val < min_val) {
4831 min_val = val;
4832 best_node = n;
4833 }
4834 }
4835
4836 if (best_node >= 0)
4837 node_set(best_node, *used_node_mask);
4838
4839 return best_node;
4840}
4841
f0c0b2b8
KH
4842
4843/*
4844 * Build zonelists ordered by node and zones within node.
4845 * This results in maximum locality--normal zone overflows into local
4846 * DMA zone, if any--but risks exhausting DMA zone.
4847 */
4848static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4849{
f0c0b2b8 4850 int j;
1da177e4 4851 struct zonelist *zonelist;
f0c0b2b8 4852
c9634cf0 4853 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
dd1a239f 4854 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4855 ;
bc732f1d 4856 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4857 zonelist->_zonerefs[j].zone = NULL;
4858 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4859}
4860
523b9458
CL
4861/*
4862 * Build gfp_thisnode zonelists
4863 */
4864static void build_thisnode_zonelists(pg_data_t *pgdat)
4865{
523b9458
CL
4866 int j;
4867 struct zonelist *zonelist;
4868
c9634cf0 4869 zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
bc732f1d 4870 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4871 zonelist->_zonerefs[j].zone = NULL;
4872 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4873}
4874
f0c0b2b8
KH
4875/*
4876 * Build zonelists ordered by zone and nodes within zones.
4877 * This results in conserving DMA zone[s] until all Normal memory is
4878 * exhausted, but results in overflowing to remote node while memory
4879 * may still exist in local DMA zone.
4880 */
4881static int node_order[MAX_NUMNODES];
4882
4883static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4884{
f0c0b2b8
KH
4885 int pos, j, node;
4886 int zone_type; /* needs to be signed */
4887 struct zone *z;
4888 struct zonelist *zonelist;
4889
c9634cf0 4890 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
54a6eb5c
MG
4891 pos = 0;
4892 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4893 for (j = 0; j < nr_nodes; j++) {
4894 node = node_order[j];
4895 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4896 if (managed_zone(z)) {
dd1a239f
MG
4897 zoneref_set_zone(z,
4898 &zonelist->_zonerefs[pos++]);
54a6eb5c 4899 check_highest_zone(zone_type);
f0c0b2b8
KH
4900 }
4901 }
f0c0b2b8 4902 }
dd1a239f
MG
4903 zonelist->_zonerefs[pos].zone = NULL;
4904 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4905}
4906
3193913c
MG
4907#if defined(CONFIG_64BIT)
4908/*
4909 * Devices that require DMA32/DMA are relatively rare and do not justify a
4910 * penalty to every machine in case the specialised case applies. Default
4911 * to Node-ordering on 64-bit NUMA machines
4912 */
4913static int default_zonelist_order(void)
4914{
4915 return ZONELIST_ORDER_NODE;
4916}
4917#else
4918/*
4919 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4920 * by the kernel. If processes running on node 0 deplete the low memory zone
4921 * then reclaim will occur more frequency increasing stalls and potentially
4922 * be easier to OOM if a large percentage of the zone is under writeback or
4923 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4924 * Hence, default to zone ordering on 32-bit.
4925 */
f0c0b2b8
KH
4926static int default_zonelist_order(void)
4927{
f0c0b2b8
KH
4928 return ZONELIST_ORDER_ZONE;
4929}
3193913c 4930#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4931
4932static void set_zonelist_order(void)
4933{
4934 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4935 current_zonelist_order = default_zonelist_order();
4936 else
4937 current_zonelist_order = user_zonelist_order;
4938}
4939
4940static void build_zonelists(pg_data_t *pgdat)
4941{
c00eb15a 4942 int i, node, load;
1da177e4 4943 nodemask_t used_mask;
f0c0b2b8
KH
4944 int local_node, prev_node;
4945 struct zonelist *zonelist;
d00181b9 4946 unsigned int order = current_zonelist_order;
1da177e4
LT
4947
4948 /* initialize zonelists */
523b9458 4949 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4950 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4951 zonelist->_zonerefs[0].zone = NULL;
4952 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4953 }
4954
4955 /* NUMA-aware ordering of nodes */
4956 local_node = pgdat->node_id;
62bc62a8 4957 load = nr_online_nodes;
1da177e4
LT
4958 prev_node = local_node;
4959 nodes_clear(used_mask);
f0c0b2b8 4960
f0c0b2b8 4961 memset(node_order, 0, sizeof(node_order));
c00eb15a 4962 i = 0;
f0c0b2b8 4963
1da177e4
LT
4964 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4965 /*
4966 * We don't want to pressure a particular node.
4967 * So adding penalty to the first node in same
4968 * distance group to make it round-robin.
4969 */
957f822a
DR
4970 if (node_distance(local_node, node) !=
4971 node_distance(local_node, prev_node))
f0c0b2b8
KH
4972 node_load[node] = load;
4973
1da177e4
LT
4974 prev_node = node;
4975 load--;
f0c0b2b8
KH
4976 if (order == ZONELIST_ORDER_NODE)
4977 build_zonelists_in_node_order(pgdat, node);
4978 else
c00eb15a 4979 node_order[i++] = node; /* remember order */
f0c0b2b8 4980 }
1da177e4 4981
f0c0b2b8
KH
4982 if (order == ZONELIST_ORDER_ZONE) {
4983 /* calculate node order -- i.e., DMA last! */
c00eb15a 4984 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4985 }
523b9458
CL
4986
4987 build_thisnode_zonelists(pgdat);
1da177e4
LT
4988}
4989
7aac7898
LS
4990#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4991/*
4992 * Return node id of node used for "local" allocations.
4993 * I.e., first node id of first zone in arg node's generic zonelist.
4994 * Used for initializing percpu 'numa_mem', which is used primarily
4995 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4996 */
4997int local_memory_node(int node)
4998{
c33d6c06 4999 struct zoneref *z;
7aac7898 5000
c33d6c06 5001 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5002 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5003 NULL);
5004 return z->zone->node;
7aac7898
LS
5005}
5006#endif
f0c0b2b8 5007
6423aa81
JK
5008static void setup_min_unmapped_ratio(void);
5009static void setup_min_slab_ratio(void);
1da177e4
LT
5010#else /* CONFIG_NUMA */
5011
f0c0b2b8
KH
5012static void set_zonelist_order(void)
5013{
5014 current_zonelist_order = ZONELIST_ORDER_ZONE;
5015}
5016
5017static void build_zonelists(pg_data_t *pgdat)
1da177e4 5018{
19655d34 5019 int node, local_node;
54a6eb5c
MG
5020 enum zone_type j;
5021 struct zonelist *zonelist;
1da177e4
LT
5022
5023 local_node = pgdat->node_id;
1da177e4 5024
c9634cf0 5025 zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
bc732f1d 5026 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 5027
54a6eb5c
MG
5028 /*
5029 * Now we build the zonelist so that it contains the zones
5030 * of all the other nodes.
5031 * We don't want to pressure a particular node, so when
5032 * building the zones for node N, we make sure that the
5033 * zones coming right after the local ones are those from
5034 * node N+1 (modulo N)
5035 */
5036 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5037 if (!node_online(node))
5038 continue;
bc732f1d 5039 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 5040 }
54a6eb5c
MG
5041 for (node = 0; node < local_node; node++) {
5042 if (!node_online(node))
5043 continue;
bc732f1d 5044 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
5045 }
5046
dd1a239f
MG
5047 zonelist->_zonerefs[j].zone = NULL;
5048 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
5049}
5050
5051#endif /* CONFIG_NUMA */
5052
99dcc3e5
CL
5053/*
5054 * Boot pageset table. One per cpu which is going to be used for all
5055 * zones and all nodes. The parameters will be set in such a way
5056 * that an item put on a list will immediately be handed over to
5057 * the buddy list. This is safe since pageset manipulation is done
5058 * with interrupts disabled.
5059 *
5060 * The boot_pagesets must be kept even after bootup is complete for
5061 * unused processors and/or zones. They do play a role for bootstrapping
5062 * hotplugged processors.
5063 *
5064 * zoneinfo_show() and maybe other functions do
5065 * not check if the processor is online before following the pageset pointer.
5066 * Other parts of the kernel may not check if the zone is available.
5067 */
5068static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5069static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 5070static void setup_zone_pageset(struct zone *zone);
99dcc3e5 5071
4eaf3f64
HL
5072/*
5073 * Global mutex to protect against size modification of zonelists
5074 * as well as to serialize pageset setup for the new populated zone.
5075 */
5076DEFINE_MUTEX(zonelists_mutex);
5077
9b1a4d38 5078/* return values int ....just for stop_machine() */
4ed7e022 5079static int __build_all_zonelists(void *data)
1da177e4 5080{
6811378e 5081 int nid;
99dcc3e5 5082 int cpu;
9adb62a5 5083 pg_data_t *self = data;
9276b1bc 5084
7f9cfb31
BL
5085#ifdef CONFIG_NUMA
5086 memset(node_load, 0, sizeof(node_load));
5087#endif
9adb62a5
JL
5088
5089 if (self && !node_online(self->node_id)) {
5090 build_zonelists(self);
9adb62a5
JL
5091 }
5092
9276b1bc 5093 for_each_online_node(nid) {
7ea1530a
CL
5094 pg_data_t *pgdat = NODE_DATA(nid);
5095
5096 build_zonelists(pgdat);
9276b1bc 5097 }
99dcc3e5
CL
5098
5099 /*
5100 * Initialize the boot_pagesets that are going to be used
5101 * for bootstrapping processors. The real pagesets for
5102 * each zone will be allocated later when the per cpu
5103 * allocator is available.
5104 *
5105 * boot_pagesets are used also for bootstrapping offline
5106 * cpus if the system is already booted because the pagesets
5107 * are needed to initialize allocators on a specific cpu too.
5108 * F.e. the percpu allocator needs the page allocator which
5109 * needs the percpu allocator in order to allocate its pagesets
5110 * (a chicken-egg dilemma).
5111 */
7aac7898 5112 for_each_possible_cpu(cpu) {
99dcc3e5
CL
5113 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5114
7aac7898
LS
5115#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5116 /*
5117 * We now know the "local memory node" for each node--
5118 * i.e., the node of the first zone in the generic zonelist.
5119 * Set up numa_mem percpu variable for on-line cpus. During
5120 * boot, only the boot cpu should be on-line; we'll init the
5121 * secondary cpus' numa_mem as they come on-line. During
5122 * node/memory hotplug, we'll fixup all on-line cpus.
5123 */
5124 if (cpu_online(cpu))
5125 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5126#endif
5127 }
5128
6811378e
YG
5129 return 0;
5130}
5131
061f67bc
RV
5132static noinline void __init
5133build_all_zonelists_init(void)
5134{
5135 __build_all_zonelists(NULL);
5136 mminit_verify_zonelist();
5137 cpuset_init_current_mems_allowed();
5138}
5139
4eaf3f64
HL
5140/*
5141 * Called with zonelists_mutex held always
5142 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
5143 *
5144 * __ref due to (1) call of __meminit annotated setup_zone_pageset
5145 * [we're only called with non-NULL zone through __meminit paths] and
5146 * (2) call of __init annotated helper build_all_zonelists_init
5147 * [protected by SYSTEM_BOOTING].
4eaf3f64 5148 */
9adb62a5 5149void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 5150{
f0c0b2b8
KH
5151 set_zonelist_order();
5152
6811378e 5153 if (system_state == SYSTEM_BOOTING) {
061f67bc 5154 build_all_zonelists_init();
6811378e 5155 } else {
e9959f0f 5156#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
5157 if (zone)
5158 setup_zone_pageset(zone);
e9959f0f 5159#endif
dd1895e2
CS
5160 /* we have to stop all cpus to guarantee there is no user
5161 of zonelist */
9adb62a5 5162 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
5163 /* cpuset refresh routine should be here */
5164 }
bd1e22b8 5165 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5166 /*
5167 * Disable grouping by mobility if the number of pages in the
5168 * system is too low to allow the mechanism to work. It would be
5169 * more accurate, but expensive to check per-zone. This check is
5170 * made on memory-hotadd so a system can start with mobility
5171 * disabled and enable it later
5172 */
d9c23400 5173 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5174 page_group_by_mobility_disabled = 1;
5175 else
5176 page_group_by_mobility_disabled = 0;
5177
756a025f
JP
5178 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
5179 nr_online_nodes,
5180 zonelist_order_name[current_zonelist_order],
5181 page_group_by_mobility_disabled ? "off" : "on",
5182 vm_total_pages);
f0c0b2b8 5183#ifdef CONFIG_NUMA
f88dfff5 5184 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5185#endif
1da177e4
LT
5186}
5187
1da177e4
LT
5188/*
5189 * Initially all pages are reserved - free ones are freed
5190 * up by free_all_bootmem() once the early boot process is
5191 * done. Non-atomic initialization, single-pass.
5192 */
c09b4240 5193void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5194 unsigned long start_pfn, enum memmap_context context)
1da177e4 5195{
4b94ffdc 5196 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5197 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5198 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5199 unsigned long pfn;
3a80a7fa 5200 unsigned long nr_initialised = 0;
342332e6
TI
5201#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5202 struct memblock_region *r = NULL, *tmp;
5203#endif
1da177e4 5204
22b31eec
HD
5205 if (highest_memmap_pfn < end_pfn - 1)
5206 highest_memmap_pfn = end_pfn - 1;
5207
4b94ffdc
DW
5208 /*
5209 * Honor reservation requested by the driver for this ZONE_DEVICE
5210 * memory
5211 */
5212 if (altmap && start_pfn == altmap->base_pfn)
5213 start_pfn += altmap->reserve;
5214
cbe8dd4a 5215 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5216 /*
b72d0ffb
AM
5217 * There can be holes in boot-time mem_map[]s handed to this
5218 * function. They do not exist on hotplugged memory.
a2f3aa02 5219 */
b72d0ffb
AM
5220 if (context != MEMMAP_EARLY)
5221 goto not_early;
5222
b92df1de
PB
5223 if (!early_pfn_valid(pfn)) {
5224#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5225 /*
5226 * Skip to the pfn preceding the next valid one (or
5227 * end_pfn), such that we hit a valid pfn (or end_pfn)
5228 * on our next iteration of the loop.
5229 */
5230 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5231#endif
b72d0ffb 5232 continue;
b92df1de 5233 }
b72d0ffb
AM
5234 if (!early_pfn_in_nid(pfn, nid))
5235 continue;
5236 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5237 break;
342332e6
TI
5238
5239#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5240 /*
5241 * Check given memblock attribute by firmware which can affect
5242 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5243 * mirrored, it's an overlapped memmap init. skip it.
5244 */
5245 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5246 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5247 for_each_memblock(memory, tmp)
5248 if (pfn < memblock_region_memory_end_pfn(tmp))
5249 break;
5250 r = tmp;
5251 }
5252 if (pfn >= memblock_region_memory_base_pfn(r) &&
5253 memblock_is_mirror(r)) {
5254 /* already initialized as NORMAL */
5255 pfn = memblock_region_memory_end_pfn(r);
5256 continue;
342332e6 5257 }
a2f3aa02 5258 }
b72d0ffb 5259#endif
ac5d2539 5260
b72d0ffb 5261not_early:
ac5d2539
MG
5262 /*
5263 * Mark the block movable so that blocks are reserved for
5264 * movable at startup. This will force kernel allocations
5265 * to reserve their blocks rather than leaking throughout
5266 * the address space during boot when many long-lived
974a786e 5267 * kernel allocations are made.
ac5d2539
MG
5268 *
5269 * bitmap is created for zone's valid pfn range. but memmap
5270 * can be created for invalid pages (for alignment)
5271 * check here not to call set_pageblock_migratetype() against
5272 * pfn out of zone.
5273 */
5274 if (!(pfn & (pageblock_nr_pages - 1))) {
5275 struct page *page = pfn_to_page(pfn);
5276
5277 __init_single_page(page, pfn, zone, nid);
5278 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5279 } else {
5280 __init_single_pfn(pfn, zone, nid);
5281 }
1da177e4
LT
5282 }
5283}
5284
1e548deb 5285static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5286{
7aeb09f9 5287 unsigned int order, t;
b2a0ac88
MG
5288 for_each_migratetype_order(order, t) {
5289 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5290 zone->free_area[order].nr_free = 0;
5291 }
5292}
5293
5294#ifndef __HAVE_ARCH_MEMMAP_INIT
5295#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5296 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5297#endif
5298
7cd2b0a3 5299static int zone_batchsize(struct zone *zone)
e7c8d5c9 5300{
3a6be87f 5301#ifdef CONFIG_MMU
e7c8d5c9
CL
5302 int batch;
5303
5304 /*
5305 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5306 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5307 *
5308 * OK, so we don't know how big the cache is. So guess.
5309 */
b40da049 5310 batch = zone->managed_pages / 1024;
ba56e91c
SR
5311 if (batch * PAGE_SIZE > 512 * 1024)
5312 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5313 batch /= 4; /* We effectively *= 4 below */
5314 if (batch < 1)
5315 batch = 1;
5316
5317 /*
0ceaacc9
NP
5318 * Clamp the batch to a 2^n - 1 value. Having a power
5319 * of 2 value was found to be more likely to have
5320 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5321 *
0ceaacc9
NP
5322 * For example if 2 tasks are alternately allocating
5323 * batches of pages, one task can end up with a lot
5324 * of pages of one half of the possible page colors
5325 * and the other with pages of the other colors.
e7c8d5c9 5326 */
9155203a 5327 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5328
e7c8d5c9 5329 return batch;
3a6be87f
DH
5330
5331#else
5332 /* The deferral and batching of frees should be suppressed under NOMMU
5333 * conditions.
5334 *
5335 * The problem is that NOMMU needs to be able to allocate large chunks
5336 * of contiguous memory as there's no hardware page translation to
5337 * assemble apparent contiguous memory from discontiguous pages.
5338 *
5339 * Queueing large contiguous runs of pages for batching, however,
5340 * causes the pages to actually be freed in smaller chunks. As there
5341 * can be a significant delay between the individual batches being
5342 * recycled, this leads to the once large chunks of space being
5343 * fragmented and becoming unavailable for high-order allocations.
5344 */
5345 return 0;
5346#endif
e7c8d5c9
CL
5347}
5348
8d7a8fa9
CS
5349/*
5350 * pcp->high and pcp->batch values are related and dependent on one another:
5351 * ->batch must never be higher then ->high.
5352 * The following function updates them in a safe manner without read side
5353 * locking.
5354 *
5355 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5356 * those fields changing asynchronously (acording the the above rule).
5357 *
5358 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5359 * outside of boot time (or some other assurance that no concurrent updaters
5360 * exist).
5361 */
5362static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5363 unsigned long batch)
5364{
5365 /* start with a fail safe value for batch */
5366 pcp->batch = 1;
5367 smp_wmb();
5368
5369 /* Update high, then batch, in order */
5370 pcp->high = high;
5371 smp_wmb();
5372
5373 pcp->batch = batch;
5374}
5375
3664033c 5376/* a companion to pageset_set_high() */
4008bab7
CS
5377static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5378{
8d7a8fa9 5379 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5380}
5381
88c90dbc 5382static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5383{
5384 struct per_cpu_pages *pcp;
5f8dcc21 5385 int migratetype;
2caaad41 5386
1c6fe946
MD
5387 memset(p, 0, sizeof(*p));
5388
3dfa5721 5389 pcp = &p->pcp;
2caaad41 5390 pcp->count = 0;
5f8dcc21
MG
5391 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5392 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5393}
5394
88c90dbc
CS
5395static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5396{
5397 pageset_init(p);
5398 pageset_set_batch(p, batch);
5399}
5400
8ad4b1fb 5401/*
3664033c 5402 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5403 * to the value high for the pageset p.
5404 */
3664033c 5405static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5406 unsigned long high)
5407{
8d7a8fa9
CS
5408 unsigned long batch = max(1UL, high / 4);
5409 if ((high / 4) > (PAGE_SHIFT * 8))
5410 batch = PAGE_SHIFT * 8;
8ad4b1fb 5411
8d7a8fa9 5412 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5413}
5414
7cd2b0a3
DR
5415static void pageset_set_high_and_batch(struct zone *zone,
5416 struct per_cpu_pageset *pcp)
56cef2b8 5417{
56cef2b8 5418 if (percpu_pagelist_fraction)
3664033c 5419 pageset_set_high(pcp,
56cef2b8
CS
5420 (zone->managed_pages /
5421 percpu_pagelist_fraction));
5422 else
5423 pageset_set_batch(pcp, zone_batchsize(zone));
5424}
5425
169f6c19
CS
5426static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5427{
5428 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5429
5430 pageset_init(pcp);
5431 pageset_set_high_and_batch(zone, pcp);
5432}
5433
4ed7e022 5434static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5435{
5436 int cpu;
319774e2 5437 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5438 for_each_possible_cpu(cpu)
5439 zone_pageset_init(zone, cpu);
319774e2
WF
5440}
5441
2caaad41 5442/*
99dcc3e5
CL
5443 * Allocate per cpu pagesets and initialize them.
5444 * Before this call only boot pagesets were available.
e7c8d5c9 5445 */
99dcc3e5 5446void __init setup_per_cpu_pageset(void)
e7c8d5c9 5447{
b4911ea2 5448 struct pglist_data *pgdat;
99dcc3e5 5449 struct zone *zone;
e7c8d5c9 5450
319774e2
WF
5451 for_each_populated_zone(zone)
5452 setup_zone_pageset(zone);
b4911ea2
MG
5453
5454 for_each_online_pgdat(pgdat)
5455 pgdat->per_cpu_nodestats =
5456 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5457}
5458
c09b4240 5459static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5460{
99dcc3e5
CL
5461 /*
5462 * per cpu subsystem is not up at this point. The following code
5463 * relies on the ability of the linker to provide the
5464 * offset of a (static) per cpu variable into the per cpu area.
5465 */
5466 zone->pageset = &boot_pageset;
ed8ece2e 5467
b38a8725 5468 if (populated_zone(zone))
99dcc3e5
CL
5469 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5470 zone->name, zone->present_pages,
5471 zone_batchsize(zone));
ed8ece2e
DH
5472}
5473
4ed7e022 5474int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5475 unsigned long zone_start_pfn,
b171e409 5476 unsigned long size)
ed8ece2e
DH
5477{
5478 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5479
ed8ece2e
DH
5480 pgdat->nr_zones = zone_idx(zone) + 1;
5481
ed8ece2e
DH
5482 zone->zone_start_pfn = zone_start_pfn;
5483
708614e6
MG
5484 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5485 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5486 pgdat->node_id,
5487 (unsigned long)zone_idx(zone),
5488 zone_start_pfn, (zone_start_pfn + size));
5489
1e548deb 5490 zone_init_free_lists(zone);
9dcb8b68 5491 zone->initialized = 1;
718127cc
YG
5492
5493 return 0;
ed8ece2e
DH
5494}
5495
0ee332c1 5496#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5497#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5498
c713216d
MG
5499/*
5500 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5501 */
8a942fde
MG
5502int __meminit __early_pfn_to_nid(unsigned long pfn,
5503 struct mminit_pfnnid_cache *state)
c713216d 5504{
c13291a5 5505 unsigned long start_pfn, end_pfn;
e76b63f8 5506 int nid;
7c243c71 5507
8a942fde
MG
5508 if (state->last_start <= pfn && pfn < state->last_end)
5509 return state->last_nid;
c713216d 5510
e76b63f8
YL
5511 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5512 if (nid != -1) {
8a942fde
MG
5513 state->last_start = start_pfn;
5514 state->last_end = end_pfn;
5515 state->last_nid = nid;
e76b63f8
YL
5516 }
5517
5518 return nid;
c713216d
MG
5519}
5520#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5521
c713216d 5522/**
6782832e 5523 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5524 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5525 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5526 *
7d018176
ZZ
5527 * If an architecture guarantees that all ranges registered contain no holes
5528 * and may be freed, this this function may be used instead of calling
5529 * memblock_free_early_nid() manually.
c713216d 5530 */
c13291a5 5531void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5532{
c13291a5
TH
5533 unsigned long start_pfn, end_pfn;
5534 int i, this_nid;
edbe7d23 5535
c13291a5
TH
5536 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5537 start_pfn = min(start_pfn, max_low_pfn);
5538 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5539
c13291a5 5540 if (start_pfn < end_pfn)
6782832e
SS
5541 memblock_free_early_nid(PFN_PHYS(start_pfn),
5542 (end_pfn - start_pfn) << PAGE_SHIFT,
5543 this_nid);
edbe7d23 5544 }
edbe7d23 5545}
edbe7d23 5546
c713216d
MG
5547/**
5548 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5549 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5550 *
7d018176
ZZ
5551 * If an architecture guarantees that all ranges registered contain no holes and may
5552 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5553 */
5554void __init sparse_memory_present_with_active_regions(int nid)
5555{
c13291a5
TH
5556 unsigned long start_pfn, end_pfn;
5557 int i, this_nid;
c713216d 5558
c13291a5
TH
5559 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5560 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5561}
5562
5563/**
5564 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5565 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5566 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5567 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5568 *
5569 * It returns the start and end page frame of a node based on information
7d018176 5570 * provided by memblock_set_node(). If called for a node
c713216d 5571 * with no available memory, a warning is printed and the start and end
88ca3b94 5572 * PFNs will be 0.
c713216d 5573 */
a3142c8e 5574void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5575 unsigned long *start_pfn, unsigned long *end_pfn)
5576{
c13291a5 5577 unsigned long this_start_pfn, this_end_pfn;
c713216d 5578 int i;
c13291a5 5579
c713216d
MG
5580 *start_pfn = -1UL;
5581 *end_pfn = 0;
5582
c13291a5
TH
5583 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5584 *start_pfn = min(*start_pfn, this_start_pfn);
5585 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5586 }
5587
633c0666 5588 if (*start_pfn == -1UL)
c713216d 5589 *start_pfn = 0;
c713216d
MG
5590}
5591
2a1e274a
MG
5592/*
5593 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5594 * assumption is made that zones within a node are ordered in monotonic
5595 * increasing memory addresses so that the "highest" populated zone is used
5596 */
b69a7288 5597static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5598{
5599 int zone_index;
5600 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5601 if (zone_index == ZONE_MOVABLE)
5602 continue;
5603
5604 if (arch_zone_highest_possible_pfn[zone_index] >
5605 arch_zone_lowest_possible_pfn[zone_index])
5606 break;
5607 }
5608
5609 VM_BUG_ON(zone_index == -1);
5610 movable_zone = zone_index;
5611}
5612
5613/*
5614 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5615 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5616 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5617 * in each node depending on the size of each node and how evenly kernelcore
5618 * is distributed. This helper function adjusts the zone ranges
5619 * provided by the architecture for a given node by using the end of the
5620 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5621 * zones within a node are in order of monotonic increases memory addresses
5622 */
b69a7288 5623static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5624 unsigned long zone_type,
5625 unsigned long node_start_pfn,
5626 unsigned long node_end_pfn,
5627 unsigned long *zone_start_pfn,
5628 unsigned long *zone_end_pfn)
5629{
5630 /* Only adjust if ZONE_MOVABLE is on this node */
5631 if (zone_movable_pfn[nid]) {
5632 /* Size ZONE_MOVABLE */
5633 if (zone_type == ZONE_MOVABLE) {
5634 *zone_start_pfn = zone_movable_pfn[nid];
5635 *zone_end_pfn = min(node_end_pfn,
5636 arch_zone_highest_possible_pfn[movable_zone]);
5637
e506b996
XQ
5638 /* Adjust for ZONE_MOVABLE starting within this range */
5639 } else if (!mirrored_kernelcore &&
5640 *zone_start_pfn < zone_movable_pfn[nid] &&
5641 *zone_end_pfn > zone_movable_pfn[nid]) {
5642 *zone_end_pfn = zone_movable_pfn[nid];
5643
2a1e274a
MG
5644 /* Check if this whole range is within ZONE_MOVABLE */
5645 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5646 *zone_start_pfn = *zone_end_pfn;
5647 }
5648}
5649
c713216d
MG
5650/*
5651 * Return the number of pages a zone spans in a node, including holes
5652 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5653 */
6ea6e688 5654static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5655 unsigned long zone_type,
7960aedd
ZY
5656 unsigned long node_start_pfn,
5657 unsigned long node_end_pfn,
d91749c1
TI
5658 unsigned long *zone_start_pfn,
5659 unsigned long *zone_end_pfn,
c713216d
MG
5660 unsigned long *ignored)
5661{
b5685e92 5662 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5663 if (!node_start_pfn && !node_end_pfn)
5664 return 0;
5665
7960aedd 5666 /* Get the start and end of the zone */
d91749c1
TI
5667 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5668 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5669 adjust_zone_range_for_zone_movable(nid, zone_type,
5670 node_start_pfn, node_end_pfn,
d91749c1 5671 zone_start_pfn, zone_end_pfn);
c713216d
MG
5672
5673 /* Check that this node has pages within the zone's required range */
d91749c1 5674 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5675 return 0;
5676
5677 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5678 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5679 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5680
5681 /* Return the spanned pages */
d91749c1 5682 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5683}
5684
5685/*
5686 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5687 * then all holes in the requested range will be accounted for.
c713216d 5688 */
32996250 5689unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5690 unsigned long range_start_pfn,
5691 unsigned long range_end_pfn)
5692{
96e907d1
TH
5693 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5694 unsigned long start_pfn, end_pfn;
5695 int i;
c713216d 5696
96e907d1
TH
5697 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5698 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5699 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5700 nr_absent -= end_pfn - start_pfn;
c713216d 5701 }
96e907d1 5702 return nr_absent;
c713216d
MG
5703}
5704
5705/**
5706 * absent_pages_in_range - Return number of page frames in holes within a range
5707 * @start_pfn: The start PFN to start searching for holes
5708 * @end_pfn: The end PFN to stop searching for holes
5709 *
88ca3b94 5710 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5711 */
5712unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5713 unsigned long end_pfn)
5714{
5715 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5716}
5717
5718/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5719static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5720 unsigned long zone_type,
7960aedd
ZY
5721 unsigned long node_start_pfn,
5722 unsigned long node_end_pfn,
c713216d
MG
5723 unsigned long *ignored)
5724{
96e907d1
TH
5725 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5726 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5727 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5728 unsigned long nr_absent;
9c7cd687 5729
b5685e92 5730 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5731 if (!node_start_pfn && !node_end_pfn)
5732 return 0;
5733
96e907d1
TH
5734 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5735 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5736
2a1e274a
MG
5737 adjust_zone_range_for_zone_movable(nid, zone_type,
5738 node_start_pfn, node_end_pfn,
5739 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5740 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5741
5742 /*
5743 * ZONE_MOVABLE handling.
5744 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5745 * and vice versa.
5746 */
e506b996
XQ
5747 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5748 unsigned long start_pfn, end_pfn;
5749 struct memblock_region *r;
5750
5751 for_each_memblock(memory, r) {
5752 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5753 zone_start_pfn, zone_end_pfn);
5754 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5755 zone_start_pfn, zone_end_pfn);
5756
5757 if (zone_type == ZONE_MOVABLE &&
5758 memblock_is_mirror(r))
5759 nr_absent += end_pfn - start_pfn;
5760
5761 if (zone_type == ZONE_NORMAL &&
5762 !memblock_is_mirror(r))
5763 nr_absent += end_pfn - start_pfn;
342332e6
TI
5764 }
5765 }
5766
5767 return nr_absent;
c713216d 5768}
0e0b864e 5769
0ee332c1 5770#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5771static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5772 unsigned long zone_type,
7960aedd
ZY
5773 unsigned long node_start_pfn,
5774 unsigned long node_end_pfn,
d91749c1
TI
5775 unsigned long *zone_start_pfn,
5776 unsigned long *zone_end_pfn,
c713216d
MG
5777 unsigned long *zones_size)
5778{
d91749c1
TI
5779 unsigned int zone;
5780
5781 *zone_start_pfn = node_start_pfn;
5782 for (zone = 0; zone < zone_type; zone++)
5783 *zone_start_pfn += zones_size[zone];
5784
5785 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5786
c713216d
MG
5787 return zones_size[zone_type];
5788}
5789
6ea6e688 5790static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5791 unsigned long zone_type,
7960aedd
ZY
5792 unsigned long node_start_pfn,
5793 unsigned long node_end_pfn,
c713216d
MG
5794 unsigned long *zholes_size)
5795{
5796 if (!zholes_size)
5797 return 0;
5798
5799 return zholes_size[zone_type];
5800}
20e6926d 5801
0ee332c1 5802#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5803
a3142c8e 5804static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5805 unsigned long node_start_pfn,
5806 unsigned long node_end_pfn,
5807 unsigned long *zones_size,
5808 unsigned long *zholes_size)
c713216d 5809{
febd5949 5810 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5811 enum zone_type i;
5812
febd5949
GZ
5813 for (i = 0; i < MAX_NR_ZONES; i++) {
5814 struct zone *zone = pgdat->node_zones + i;
d91749c1 5815 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5816 unsigned long size, real_size;
c713216d 5817
febd5949
GZ
5818 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5819 node_start_pfn,
5820 node_end_pfn,
d91749c1
TI
5821 &zone_start_pfn,
5822 &zone_end_pfn,
febd5949
GZ
5823 zones_size);
5824 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5825 node_start_pfn, node_end_pfn,
5826 zholes_size);
d91749c1
TI
5827 if (size)
5828 zone->zone_start_pfn = zone_start_pfn;
5829 else
5830 zone->zone_start_pfn = 0;
febd5949
GZ
5831 zone->spanned_pages = size;
5832 zone->present_pages = real_size;
5833
5834 totalpages += size;
5835 realtotalpages += real_size;
5836 }
5837
5838 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5839 pgdat->node_present_pages = realtotalpages;
5840 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5841 realtotalpages);
5842}
5843
835c134e
MG
5844#ifndef CONFIG_SPARSEMEM
5845/*
5846 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5847 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5848 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5849 * round what is now in bits to nearest long in bits, then return it in
5850 * bytes.
5851 */
7c45512d 5852static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5853{
5854 unsigned long usemapsize;
5855
7c45512d 5856 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5857 usemapsize = roundup(zonesize, pageblock_nr_pages);
5858 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5859 usemapsize *= NR_PAGEBLOCK_BITS;
5860 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5861
5862 return usemapsize / 8;
5863}
5864
5865static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5866 struct zone *zone,
5867 unsigned long zone_start_pfn,
5868 unsigned long zonesize)
835c134e 5869{
7c45512d 5870 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5871 zone->pageblock_flags = NULL;
58a01a45 5872 if (usemapsize)
6782832e
SS
5873 zone->pageblock_flags =
5874 memblock_virt_alloc_node_nopanic(usemapsize,
5875 pgdat->node_id);
835c134e
MG
5876}
5877#else
7c45512d
LT
5878static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5879 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5880#endif /* CONFIG_SPARSEMEM */
5881
d9c23400 5882#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5883
d9c23400 5884/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5885void __paginginit set_pageblock_order(void)
d9c23400 5886{
955c1cd7
AM
5887 unsigned int order;
5888
d9c23400
MG
5889 /* Check that pageblock_nr_pages has not already been setup */
5890 if (pageblock_order)
5891 return;
5892
955c1cd7
AM
5893 if (HPAGE_SHIFT > PAGE_SHIFT)
5894 order = HUGETLB_PAGE_ORDER;
5895 else
5896 order = MAX_ORDER - 1;
5897
d9c23400
MG
5898 /*
5899 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5900 * This value may be variable depending on boot parameters on IA64 and
5901 * powerpc.
d9c23400
MG
5902 */
5903 pageblock_order = order;
5904}
5905#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5906
ba72cb8c
MG
5907/*
5908 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5909 * is unused as pageblock_order is set at compile-time. See
5910 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5911 * the kernel config
ba72cb8c 5912 */
15ca220e 5913void __paginginit set_pageblock_order(void)
ba72cb8c 5914{
ba72cb8c 5915}
d9c23400
MG
5916
5917#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5918
01cefaef
JL
5919static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5920 unsigned long present_pages)
5921{
5922 unsigned long pages = spanned_pages;
5923
5924 /*
5925 * Provide a more accurate estimation if there are holes within
5926 * the zone and SPARSEMEM is in use. If there are holes within the
5927 * zone, each populated memory region may cost us one or two extra
5928 * memmap pages due to alignment because memmap pages for each
89d790ab 5929 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
5930 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5931 */
5932 if (spanned_pages > present_pages + (present_pages >> 4) &&
5933 IS_ENABLED(CONFIG_SPARSEMEM))
5934 pages = present_pages;
5935
5936 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5937}
5938
1da177e4
LT
5939/*
5940 * Set up the zone data structures:
5941 * - mark all pages reserved
5942 * - mark all memory queues empty
5943 * - clear the memory bitmaps
6527af5d
MK
5944 *
5945 * NOTE: pgdat should get zeroed by caller.
1da177e4 5946 */
7f3eb55b 5947static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5948{
2f1b6248 5949 enum zone_type j;
ed8ece2e 5950 int nid = pgdat->node_id;
718127cc 5951 int ret;
1da177e4 5952
208d54e5 5953 pgdat_resize_init(pgdat);
8177a420
AA
5954#ifdef CONFIG_NUMA_BALANCING
5955 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5956 pgdat->numabalancing_migrate_nr_pages = 0;
5957 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5958#endif
5959#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5960 spin_lock_init(&pgdat->split_queue_lock);
5961 INIT_LIST_HEAD(&pgdat->split_queue);
5962 pgdat->split_queue_len = 0;
8177a420 5963#endif
1da177e4 5964 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5965 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5966#ifdef CONFIG_COMPACTION
5967 init_waitqueue_head(&pgdat->kcompactd_wait);
5968#endif
eefa864b 5969 pgdat_page_ext_init(pgdat);
a52633d8 5970 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5971 lruvec_init(node_lruvec(pgdat));
5f63b720 5972
1da177e4
LT
5973 for (j = 0; j < MAX_NR_ZONES; j++) {
5974 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5975 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5976 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5977
febd5949
GZ
5978 size = zone->spanned_pages;
5979 realsize = freesize = zone->present_pages;
1da177e4 5980
0e0b864e 5981 /*
9feedc9d 5982 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5983 * is used by this zone for memmap. This affects the watermark
5984 * and per-cpu initialisations
5985 */
01cefaef 5986 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5987 if (!is_highmem_idx(j)) {
5988 if (freesize >= memmap_pages) {
5989 freesize -= memmap_pages;
5990 if (memmap_pages)
5991 printk(KERN_DEBUG
5992 " %s zone: %lu pages used for memmap\n",
5993 zone_names[j], memmap_pages);
5994 } else
1170532b 5995 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5996 zone_names[j], memmap_pages, freesize);
5997 }
0e0b864e 5998
6267276f 5999 /* Account for reserved pages */
9feedc9d
JL
6000 if (j == 0 && freesize > dma_reserve) {
6001 freesize -= dma_reserve;
d903ef9f 6002 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6003 zone_names[0], dma_reserve);
0e0b864e
MG
6004 }
6005
98d2b0eb 6006 if (!is_highmem_idx(j))
9feedc9d 6007 nr_kernel_pages += freesize;
01cefaef
JL
6008 /* Charge for highmem memmap if there are enough kernel pages */
6009 else if (nr_kernel_pages > memmap_pages * 2)
6010 nr_kernel_pages -= memmap_pages;
9feedc9d 6011 nr_all_pages += freesize;
1da177e4 6012
9feedc9d
JL
6013 /*
6014 * Set an approximate value for lowmem here, it will be adjusted
6015 * when the bootmem allocator frees pages into the buddy system.
6016 * And all highmem pages will be managed by the buddy system.
6017 */
6018 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6019#ifdef CONFIG_NUMA
d5f541ed 6020 zone->node = nid;
9614634f 6021#endif
1da177e4 6022 zone->name = zone_names[j];
a52633d8 6023 zone->zone_pgdat = pgdat;
1da177e4 6024 spin_lock_init(&zone->lock);
bdc8cb98 6025 zone_seqlock_init(zone);
ed8ece2e 6026 zone_pcp_init(zone);
81c0a2bb 6027
1da177e4
LT
6028 if (!size)
6029 continue;
6030
955c1cd7 6031 set_pageblock_order();
7c45512d 6032 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 6033 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 6034 BUG_ON(ret);
76cdd58e 6035 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6036 }
6037}
6038
bd721ea7 6039static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6040{
b0aeba74 6041 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6042 unsigned long __maybe_unused offset = 0;
6043
1da177e4
LT
6044 /* Skip empty nodes */
6045 if (!pgdat->node_spanned_pages)
6046 return;
6047
d41dee36 6048#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6049 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6050 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6051 /* ia64 gets its own node_mem_map, before this, without bootmem */
6052 if (!pgdat->node_mem_map) {
b0aeba74 6053 unsigned long size, end;
d41dee36
AW
6054 struct page *map;
6055
e984bb43
BP
6056 /*
6057 * The zone's endpoints aren't required to be MAX_ORDER
6058 * aligned but the node_mem_map endpoints must be in order
6059 * for the buddy allocator to function correctly.
6060 */
108bcc96 6061 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6062 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6063 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6064 map = alloc_remap(pgdat->node_id, size);
6065 if (!map)
6782832e
SS
6066 map = memblock_virt_alloc_node_nopanic(size,
6067 pgdat->node_id);
a1c34a3b 6068 pgdat->node_mem_map = map + offset;
1da177e4 6069 }
12d810c1 6070#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6071 /*
6072 * With no DISCONTIG, the global mem_map is just set as node 0's
6073 */
c713216d 6074 if (pgdat == NODE_DATA(0)) {
1da177e4 6075 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6076#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6077 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6078 mem_map -= offset;
0ee332c1 6079#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6080 }
1da177e4 6081#endif
d41dee36 6082#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6083}
6084
9109fb7b
JW
6085void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6086 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6087{
9109fb7b 6088 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6089 unsigned long start_pfn = 0;
6090 unsigned long end_pfn = 0;
9109fb7b 6091
88fdf75d 6092 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6093 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6094
3a80a7fa 6095 reset_deferred_meminit(pgdat);
1da177e4
LT
6096 pgdat->node_id = nid;
6097 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6098 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6099#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6100 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6101 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6102 (u64)start_pfn << PAGE_SHIFT,
6103 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6104#else
6105 start_pfn = node_start_pfn;
7960aedd
ZY
6106#endif
6107 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6108 zones_size, zholes_size);
1da177e4
LT
6109
6110 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6111#ifdef CONFIG_FLAT_NODE_MEM_MAP
6112 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6113 nid, (unsigned long)pgdat,
6114 (unsigned long)pgdat->node_mem_map);
6115#endif
1da177e4 6116
7f3eb55b 6117 free_area_init_core(pgdat);
1da177e4
LT
6118}
6119
0ee332c1 6120#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6121
6122#if MAX_NUMNODES > 1
6123/*
6124 * Figure out the number of possible node ids.
6125 */
f9872caf 6126void __init setup_nr_node_ids(void)
418508c1 6127{
904a9553 6128 unsigned int highest;
418508c1 6129
904a9553 6130 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6131 nr_node_ids = highest + 1;
6132}
418508c1
MS
6133#endif
6134
1e01979c
TH
6135/**
6136 * node_map_pfn_alignment - determine the maximum internode alignment
6137 *
6138 * This function should be called after node map is populated and sorted.
6139 * It calculates the maximum power of two alignment which can distinguish
6140 * all the nodes.
6141 *
6142 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6143 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6144 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6145 * shifted, 1GiB is enough and this function will indicate so.
6146 *
6147 * This is used to test whether pfn -> nid mapping of the chosen memory
6148 * model has fine enough granularity to avoid incorrect mapping for the
6149 * populated node map.
6150 *
6151 * Returns the determined alignment in pfn's. 0 if there is no alignment
6152 * requirement (single node).
6153 */
6154unsigned long __init node_map_pfn_alignment(void)
6155{
6156 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6157 unsigned long start, end, mask;
1e01979c 6158 int last_nid = -1;
c13291a5 6159 int i, nid;
1e01979c 6160
c13291a5 6161 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6162 if (!start || last_nid < 0 || last_nid == nid) {
6163 last_nid = nid;
6164 last_end = end;
6165 continue;
6166 }
6167
6168 /*
6169 * Start with a mask granular enough to pin-point to the
6170 * start pfn and tick off bits one-by-one until it becomes
6171 * too coarse to separate the current node from the last.
6172 */
6173 mask = ~((1 << __ffs(start)) - 1);
6174 while (mask && last_end <= (start & (mask << 1)))
6175 mask <<= 1;
6176
6177 /* accumulate all internode masks */
6178 accl_mask |= mask;
6179 }
6180
6181 /* convert mask to number of pages */
6182 return ~accl_mask + 1;
6183}
6184
a6af2bc3 6185/* Find the lowest pfn for a node */
b69a7288 6186static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6187{
a6af2bc3 6188 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6189 unsigned long start_pfn;
6190 int i;
1abbfb41 6191
c13291a5
TH
6192 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6193 min_pfn = min(min_pfn, start_pfn);
c713216d 6194
a6af2bc3 6195 if (min_pfn == ULONG_MAX) {
1170532b 6196 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6197 return 0;
6198 }
6199
6200 return min_pfn;
c713216d
MG
6201}
6202
6203/**
6204 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6205 *
6206 * It returns the minimum PFN based on information provided via
7d018176 6207 * memblock_set_node().
c713216d
MG
6208 */
6209unsigned long __init find_min_pfn_with_active_regions(void)
6210{
6211 return find_min_pfn_for_node(MAX_NUMNODES);
6212}
6213
37b07e41
LS
6214/*
6215 * early_calculate_totalpages()
6216 * Sum pages in active regions for movable zone.
4b0ef1fe 6217 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6218 */
484f51f8 6219static unsigned long __init early_calculate_totalpages(void)
7e63efef 6220{
7e63efef 6221 unsigned long totalpages = 0;
c13291a5
TH
6222 unsigned long start_pfn, end_pfn;
6223 int i, nid;
6224
6225 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6226 unsigned long pages = end_pfn - start_pfn;
7e63efef 6227
37b07e41
LS
6228 totalpages += pages;
6229 if (pages)
4b0ef1fe 6230 node_set_state(nid, N_MEMORY);
37b07e41 6231 }
b8af2941 6232 return totalpages;
7e63efef
MG
6233}
6234
2a1e274a
MG
6235/*
6236 * Find the PFN the Movable zone begins in each node. Kernel memory
6237 * is spread evenly between nodes as long as the nodes have enough
6238 * memory. When they don't, some nodes will have more kernelcore than
6239 * others
6240 */
b224ef85 6241static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6242{
6243 int i, nid;
6244 unsigned long usable_startpfn;
6245 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6246 /* save the state before borrow the nodemask */
4b0ef1fe 6247 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6248 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6249 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6250 struct memblock_region *r;
b2f3eebe
TC
6251
6252 /* Need to find movable_zone earlier when movable_node is specified. */
6253 find_usable_zone_for_movable();
6254
6255 /*
6256 * If movable_node is specified, ignore kernelcore and movablecore
6257 * options.
6258 */
6259 if (movable_node_is_enabled()) {
136199f0
EM
6260 for_each_memblock(memory, r) {
6261 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6262 continue;
6263
136199f0 6264 nid = r->nid;
b2f3eebe 6265
136199f0 6266 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6267 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6268 min(usable_startpfn, zone_movable_pfn[nid]) :
6269 usable_startpfn;
6270 }
6271
6272 goto out2;
6273 }
2a1e274a 6274
342332e6
TI
6275 /*
6276 * If kernelcore=mirror is specified, ignore movablecore option
6277 */
6278 if (mirrored_kernelcore) {
6279 bool mem_below_4gb_not_mirrored = false;
6280
6281 for_each_memblock(memory, r) {
6282 if (memblock_is_mirror(r))
6283 continue;
6284
6285 nid = r->nid;
6286
6287 usable_startpfn = memblock_region_memory_base_pfn(r);
6288
6289 if (usable_startpfn < 0x100000) {
6290 mem_below_4gb_not_mirrored = true;
6291 continue;
6292 }
6293
6294 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6295 min(usable_startpfn, zone_movable_pfn[nid]) :
6296 usable_startpfn;
6297 }
6298
6299 if (mem_below_4gb_not_mirrored)
6300 pr_warn("This configuration results in unmirrored kernel memory.");
6301
6302 goto out2;
6303 }
6304
7e63efef 6305 /*
b2f3eebe 6306 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6307 * kernelcore that corresponds so that memory usable for
6308 * any allocation type is evenly spread. If both kernelcore
6309 * and movablecore are specified, then the value of kernelcore
6310 * will be used for required_kernelcore if it's greater than
6311 * what movablecore would have allowed.
6312 */
6313 if (required_movablecore) {
7e63efef
MG
6314 unsigned long corepages;
6315
6316 /*
6317 * Round-up so that ZONE_MOVABLE is at least as large as what
6318 * was requested by the user
6319 */
6320 required_movablecore =
6321 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6322 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6323 corepages = totalpages - required_movablecore;
6324
6325 required_kernelcore = max(required_kernelcore, corepages);
6326 }
6327
bde304bd
XQ
6328 /*
6329 * If kernelcore was not specified or kernelcore size is larger
6330 * than totalpages, there is no ZONE_MOVABLE.
6331 */
6332 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6333 goto out;
2a1e274a
MG
6334
6335 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6336 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6337
6338restart:
6339 /* Spread kernelcore memory as evenly as possible throughout nodes */
6340 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6341 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6342 unsigned long start_pfn, end_pfn;
6343
2a1e274a
MG
6344 /*
6345 * Recalculate kernelcore_node if the division per node
6346 * now exceeds what is necessary to satisfy the requested
6347 * amount of memory for the kernel
6348 */
6349 if (required_kernelcore < kernelcore_node)
6350 kernelcore_node = required_kernelcore / usable_nodes;
6351
6352 /*
6353 * As the map is walked, we track how much memory is usable
6354 * by the kernel using kernelcore_remaining. When it is
6355 * 0, the rest of the node is usable by ZONE_MOVABLE
6356 */
6357 kernelcore_remaining = kernelcore_node;
6358
6359 /* Go through each range of PFNs within this node */
c13291a5 6360 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6361 unsigned long size_pages;
6362
c13291a5 6363 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6364 if (start_pfn >= end_pfn)
6365 continue;
6366
6367 /* Account for what is only usable for kernelcore */
6368 if (start_pfn < usable_startpfn) {
6369 unsigned long kernel_pages;
6370 kernel_pages = min(end_pfn, usable_startpfn)
6371 - start_pfn;
6372
6373 kernelcore_remaining -= min(kernel_pages,
6374 kernelcore_remaining);
6375 required_kernelcore -= min(kernel_pages,
6376 required_kernelcore);
6377
6378 /* Continue if range is now fully accounted */
6379 if (end_pfn <= usable_startpfn) {
6380
6381 /*
6382 * Push zone_movable_pfn to the end so
6383 * that if we have to rebalance
6384 * kernelcore across nodes, we will
6385 * not double account here
6386 */
6387 zone_movable_pfn[nid] = end_pfn;
6388 continue;
6389 }
6390 start_pfn = usable_startpfn;
6391 }
6392
6393 /*
6394 * The usable PFN range for ZONE_MOVABLE is from
6395 * start_pfn->end_pfn. Calculate size_pages as the
6396 * number of pages used as kernelcore
6397 */
6398 size_pages = end_pfn - start_pfn;
6399 if (size_pages > kernelcore_remaining)
6400 size_pages = kernelcore_remaining;
6401 zone_movable_pfn[nid] = start_pfn + size_pages;
6402
6403 /*
6404 * Some kernelcore has been met, update counts and
6405 * break if the kernelcore for this node has been
b8af2941 6406 * satisfied
2a1e274a
MG
6407 */
6408 required_kernelcore -= min(required_kernelcore,
6409 size_pages);
6410 kernelcore_remaining -= size_pages;
6411 if (!kernelcore_remaining)
6412 break;
6413 }
6414 }
6415
6416 /*
6417 * If there is still required_kernelcore, we do another pass with one
6418 * less node in the count. This will push zone_movable_pfn[nid] further
6419 * along on the nodes that still have memory until kernelcore is
b8af2941 6420 * satisfied
2a1e274a
MG
6421 */
6422 usable_nodes--;
6423 if (usable_nodes && required_kernelcore > usable_nodes)
6424 goto restart;
6425
b2f3eebe 6426out2:
2a1e274a
MG
6427 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6428 for (nid = 0; nid < MAX_NUMNODES; nid++)
6429 zone_movable_pfn[nid] =
6430 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6431
20e6926d 6432out:
66918dcd 6433 /* restore the node_state */
4b0ef1fe 6434 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6435}
6436
4b0ef1fe
LJ
6437/* Any regular or high memory on that node ? */
6438static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6439{
37b07e41
LS
6440 enum zone_type zone_type;
6441
4b0ef1fe
LJ
6442 if (N_MEMORY == N_NORMAL_MEMORY)
6443 return;
6444
6445 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6446 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6447 if (populated_zone(zone)) {
4b0ef1fe
LJ
6448 node_set_state(nid, N_HIGH_MEMORY);
6449 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6450 zone_type <= ZONE_NORMAL)
6451 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6452 break;
6453 }
37b07e41 6454 }
37b07e41
LS
6455}
6456
c713216d
MG
6457/**
6458 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6459 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6460 *
6461 * This will call free_area_init_node() for each active node in the system.
7d018176 6462 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6463 * zone in each node and their holes is calculated. If the maximum PFN
6464 * between two adjacent zones match, it is assumed that the zone is empty.
6465 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6466 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6467 * starts where the previous one ended. For example, ZONE_DMA32 starts
6468 * at arch_max_dma_pfn.
6469 */
6470void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6471{
c13291a5
TH
6472 unsigned long start_pfn, end_pfn;
6473 int i, nid;
a6af2bc3 6474
c713216d
MG
6475 /* Record where the zone boundaries are */
6476 memset(arch_zone_lowest_possible_pfn, 0,
6477 sizeof(arch_zone_lowest_possible_pfn));
6478 memset(arch_zone_highest_possible_pfn, 0,
6479 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6480
6481 start_pfn = find_min_pfn_with_active_regions();
6482
6483 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6484 if (i == ZONE_MOVABLE)
6485 continue;
90cae1fe
OH
6486
6487 end_pfn = max(max_zone_pfn[i], start_pfn);
6488 arch_zone_lowest_possible_pfn[i] = start_pfn;
6489 arch_zone_highest_possible_pfn[i] = end_pfn;
6490
6491 start_pfn = end_pfn;
c713216d 6492 }
2a1e274a
MG
6493
6494 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6495 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6496 find_zone_movable_pfns_for_nodes();
c713216d 6497
c713216d 6498 /* Print out the zone ranges */
f88dfff5 6499 pr_info("Zone ranges:\n");
2a1e274a
MG
6500 for (i = 0; i < MAX_NR_ZONES; i++) {
6501 if (i == ZONE_MOVABLE)
6502 continue;
f88dfff5 6503 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6504 if (arch_zone_lowest_possible_pfn[i] ==
6505 arch_zone_highest_possible_pfn[i])
f88dfff5 6506 pr_cont("empty\n");
72f0ba02 6507 else
8d29e18a
JG
6508 pr_cont("[mem %#018Lx-%#018Lx]\n",
6509 (u64)arch_zone_lowest_possible_pfn[i]
6510 << PAGE_SHIFT,
6511 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6512 << PAGE_SHIFT) - 1);
2a1e274a
MG
6513 }
6514
6515 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6516 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6517 for (i = 0; i < MAX_NUMNODES; i++) {
6518 if (zone_movable_pfn[i])
8d29e18a
JG
6519 pr_info(" Node %d: %#018Lx\n", i,
6520 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6521 }
c713216d 6522
f2d52fe5 6523 /* Print out the early node map */
f88dfff5 6524 pr_info("Early memory node ranges\n");
c13291a5 6525 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6526 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6527 (u64)start_pfn << PAGE_SHIFT,
6528 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6529
6530 /* Initialise every node */
708614e6 6531 mminit_verify_pageflags_layout();
8ef82866 6532 setup_nr_node_ids();
c713216d
MG
6533 for_each_online_node(nid) {
6534 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6535 free_area_init_node(nid, NULL,
c713216d 6536 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6537
6538 /* Any memory on that node */
6539 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6540 node_set_state(nid, N_MEMORY);
6541 check_for_memory(pgdat, nid);
c713216d
MG
6542 }
6543}
2a1e274a 6544
7e63efef 6545static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6546{
6547 unsigned long long coremem;
6548 if (!p)
6549 return -EINVAL;
6550
6551 coremem = memparse(p, &p);
7e63efef 6552 *core = coremem >> PAGE_SHIFT;
2a1e274a 6553
7e63efef 6554 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6555 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6556
6557 return 0;
6558}
ed7ed365 6559
7e63efef
MG
6560/*
6561 * kernelcore=size sets the amount of memory for use for allocations that
6562 * cannot be reclaimed or migrated.
6563 */
6564static int __init cmdline_parse_kernelcore(char *p)
6565{
342332e6
TI
6566 /* parse kernelcore=mirror */
6567 if (parse_option_str(p, "mirror")) {
6568 mirrored_kernelcore = true;
6569 return 0;
6570 }
6571
7e63efef
MG
6572 return cmdline_parse_core(p, &required_kernelcore);
6573}
6574
6575/*
6576 * movablecore=size sets the amount of memory for use for allocations that
6577 * can be reclaimed or migrated.
6578 */
6579static int __init cmdline_parse_movablecore(char *p)
6580{
6581 return cmdline_parse_core(p, &required_movablecore);
6582}
6583
ed7ed365 6584early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6585early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6586
0ee332c1 6587#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6588
c3d5f5f0
JL
6589void adjust_managed_page_count(struct page *page, long count)
6590{
6591 spin_lock(&managed_page_count_lock);
6592 page_zone(page)->managed_pages += count;
6593 totalram_pages += count;
3dcc0571
JL
6594#ifdef CONFIG_HIGHMEM
6595 if (PageHighMem(page))
6596 totalhigh_pages += count;
6597#endif
c3d5f5f0
JL
6598 spin_unlock(&managed_page_count_lock);
6599}
3dcc0571 6600EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6601
11199692 6602unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6603{
11199692
JL
6604 void *pos;
6605 unsigned long pages = 0;
69afade7 6606
11199692
JL
6607 start = (void *)PAGE_ALIGN((unsigned long)start);
6608 end = (void *)((unsigned long)end & PAGE_MASK);
6609 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6610 if ((unsigned int)poison <= 0xFF)
11199692
JL
6611 memset(pos, poison, PAGE_SIZE);
6612 free_reserved_page(virt_to_page(pos));
69afade7
JL
6613 }
6614
6615 if (pages && s)
adb1fe9a
JP
6616 pr_info("Freeing %s memory: %ldK\n",
6617 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6618
6619 return pages;
6620}
11199692 6621EXPORT_SYMBOL(free_reserved_area);
69afade7 6622
cfa11e08
JL
6623#ifdef CONFIG_HIGHMEM
6624void free_highmem_page(struct page *page)
6625{
6626 __free_reserved_page(page);
6627 totalram_pages++;
7b4b2a0d 6628 page_zone(page)->managed_pages++;
cfa11e08
JL
6629 totalhigh_pages++;
6630}
6631#endif
6632
7ee3d4e8
JL
6633
6634void __init mem_init_print_info(const char *str)
6635{
6636 unsigned long physpages, codesize, datasize, rosize, bss_size;
6637 unsigned long init_code_size, init_data_size;
6638
6639 physpages = get_num_physpages();
6640 codesize = _etext - _stext;
6641 datasize = _edata - _sdata;
6642 rosize = __end_rodata - __start_rodata;
6643 bss_size = __bss_stop - __bss_start;
6644 init_data_size = __init_end - __init_begin;
6645 init_code_size = _einittext - _sinittext;
6646
6647 /*
6648 * Detect special cases and adjust section sizes accordingly:
6649 * 1) .init.* may be embedded into .data sections
6650 * 2) .init.text.* may be out of [__init_begin, __init_end],
6651 * please refer to arch/tile/kernel/vmlinux.lds.S.
6652 * 3) .rodata.* may be embedded into .text or .data sections.
6653 */
6654#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6655 do { \
6656 if (start <= pos && pos < end && size > adj) \
6657 size -= adj; \
6658 } while (0)
7ee3d4e8
JL
6659
6660 adj_init_size(__init_begin, __init_end, init_data_size,
6661 _sinittext, init_code_size);
6662 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6663 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6664 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6665 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6666
6667#undef adj_init_size
6668
756a025f 6669 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6670#ifdef CONFIG_HIGHMEM
756a025f 6671 ", %luK highmem"
7ee3d4e8 6672#endif
756a025f
JP
6673 "%s%s)\n",
6674 nr_free_pages() << (PAGE_SHIFT - 10),
6675 physpages << (PAGE_SHIFT - 10),
6676 codesize >> 10, datasize >> 10, rosize >> 10,
6677 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6678 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6679 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6680#ifdef CONFIG_HIGHMEM
756a025f 6681 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6682#endif
756a025f 6683 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6684}
6685
0e0b864e 6686/**
88ca3b94
RD
6687 * set_dma_reserve - set the specified number of pages reserved in the first zone
6688 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6689 *
013110a7 6690 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6691 * In the DMA zone, a significant percentage may be consumed by kernel image
6692 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6693 * function may optionally be used to account for unfreeable pages in the
6694 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6695 * smaller per-cpu batchsize.
0e0b864e
MG
6696 */
6697void __init set_dma_reserve(unsigned long new_dma_reserve)
6698{
6699 dma_reserve = new_dma_reserve;
6700}
6701
1da177e4
LT
6702void __init free_area_init(unsigned long *zones_size)
6703{
9109fb7b 6704 free_area_init_node(0, zones_size,
1da177e4
LT
6705 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6706}
1da177e4 6707
005fd4bb 6708static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6709{
1da177e4 6710
005fd4bb
SAS
6711 lru_add_drain_cpu(cpu);
6712 drain_pages(cpu);
9f8f2172 6713
005fd4bb
SAS
6714 /*
6715 * Spill the event counters of the dead processor
6716 * into the current processors event counters.
6717 * This artificially elevates the count of the current
6718 * processor.
6719 */
6720 vm_events_fold_cpu(cpu);
9f8f2172 6721
005fd4bb
SAS
6722 /*
6723 * Zero the differential counters of the dead processor
6724 * so that the vm statistics are consistent.
6725 *
6726 * This is only okay since the processor is dead and cannot
6727 * race with what we are doing.
6728 */
6729 cpu_vm_stats_fold(cpu);
6730 return 0;
1da177e4 6731}
1da177e4
LT
6732
6733void __init page_alloc_init(void)
6734{
005fd4bb
SAS
6735 int ret;
6736
6737 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6738 "mm/page_alloc:dead", NULL,
6739 page_alloc_cpu_dead);
6740 WARN_ON(ret < 0);
1da177e4
LT
6741}
6742
cb45b0e9 6743/*
34b10060 6744 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6745 * or min_free_kbytes changes.
6746 */
6747static void calculate_totalreserve_pages(void)
6748{
6749 struct pglist_data *pgdat;
6750 unsigned long reserve_pages = 0;
2f6726e5 6751 enum zone_type i, j;
cb45b0e9
HA
6752
6753 for_each_online_pgdat(pgdat) {
281e3726
MG
6754
6755 pgdat->totalreserve_pages = 0;
6756
cb45b0e9
HA
6757 for (i = 0; i < MAX_NR_ZONES; i++) {
6758 struct zone *zone = pgdat->node_zones + i;
3484b2de 6759 long max = 0;
cb45b0e9
HA
6760
6761 /* Find valid and maximum lowmem_reserve in the zone */
6762 for (j = i; j < MAX_NR_ZONES; j++) {
6763 if (zone->lowmem_reserve[j] > max)
6764 max = zone->lowmem_reserve[j];
6765 }
6766
41858966
MG
6767 /* we treat the high watermark as reserved pages. */
6768 max += high_wmark_pages(zone);
cb45b0e9 6769
b40da049
JL
6770 if (max > zone->managed_pages)
6771 max = zone->managed_pages;
a8d01437 6772
281e3726 6773 pgdat->totalreserve_pages += max;
a8d01437 6774
cb45b0e9
HA
6775 reserve_pages += max;
6776 }
6777 }
6778 totalreserve_pages = reserve_pages;
6779}
6780
1da177e4
LT
6781/*
6782 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6783 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6784 * has a correct pages reserved value, so an adequate number of
6785 * pages are left in the zone after a successful __alloc_pages().
6786 */
6787static void setup_per_zone_lowmem_reserve(void)
6788{
6789 struct pglist_data *pgdat;
2f6726e5 6790 enum zone_type j, idx;
1da177e4 6791
ec936fc5 6792 for_each_online_pgdat(pgdat) {
1da177e4
LT
6793 for (j = 0; j < MAX_NR_ZONES; j++) {
6794 struct zone *zone = pgdat->node_zones + j;
b40da049 6795 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6796
6797 zone->lowmem_reserve[j] = 0;
6798
2f6726e5
CL
6799 idx = j;
6800 while (idx) {
1da177e4
LT
6801 struct zone *lower_zone;
6802
2f6726e5
CL
6803 idx--;
6804
1da177e4
LT
6805 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6806 sysctl_lowmem_reserve_ratio[idx] = 1;
6807
6808 lower_zone = pgdat->node_zones + idx;
b40da049 6809 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6810 sysctl_lowmem_reserve_ratio[idx];
b40da049 6811 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6812 }
6813 }
6814 }
cb45b0e9
HA
6815
6816 /* update totalreserve_pages */
6817 calculate_totalreserve_pages();
1da177e4
LT
6818}
6819
cfd3da1e 6820static void __setup_per_zone_wmarks(void)
1da177e4
LT
6821{
6822 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6823 unsigned long lowmem_pages = 0;
6824 struct zone *zone;
6825 unsigned long flags;
6826
6827 /* Calculate total number of !ZONE_HIGHMEM pages */
6828 for_each_zone(zone) {
6829 if (!is_highmem(zone))
b40da049 6830 lowmem_pages += zone->managed_pages;
1da177e4
LT
6831 }
6832
6833 for_each_zone(zone) {
ac924c60
AM
6834 u64 tmp;
6835
1125b4e3 6836 spin_lock_irqsave(&zone->lock, flags);
b40da049 6837 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6838 do_div(tmp, lowmem_pages);
1da177e4
LT
6839 if (is_highmem(zone)) {
6840 /*
669ed175
NP
6841 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6842 * need highmem pages, so cap pages_min to a small
6843 * value here.
6844 *
41858966 6845 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6846 * deltas control asynch page reclaim, and so should
669ed175 6847 * not be capped for highmem.
1da177e4 6848 */
90ae8d67 6849 unsigned long min_pages;
1da177e4 6850
b40da049 6851 min_pages = zone->managed_pages / 1024;
90ae8d67 6852 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6853 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6854 } else {
669ed175
NP
6855 /*
6856 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6857 * proportionate to the zone's size.
6858 */
41858966 6859 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6860 }
6861
795ae7a0
JW
6862 /*
6863 * Set the kswapd watermarks distance according to the
6864 * scale factor in proportion to available memory, but
6865 * ensure a minimum size on small systems.
6866 */
6867 tmp = max_t(u64, tmp >> 2,
6868 mult_frac(zone->managed_pages,
6869 watermark_scale_factor, 10000));
6870
6871 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6872 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6873
1125b4e3 6874 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6875 }
cb45b0e9
HA
6876
6877 /* update totalreserve_pages */
6878 calculate_totalreserve_pages();
1da177e4
LT
6879}
6880
cfd3da1e
MG
6881/**
6882 * setup_per_zone_wmarks - called when min_free_kbytes changes
6883 * or when memory is hot-{added|removed}
6884 *
6885 * Ensures that the watermark[min,low,high] values for each zone are set
6886 * correctly with respect to min_free_kbytes.
6887 */
6888void setup_per_zone_wmarks(void)
6889{
6890 mutex_lock(&zonelists_mutex);
6891 __setup_per_zone_wmarks();
6892 mutex_unlock(&zonelists_mutex);
6893}
6894
1da177e4
LT
6895/*
6896 * Initialise min_free_kbytes.
6897 *
6898 * For small machines we want it small (128k min). For large machines
6899 * we want it large (64MB max). But it is not linear, because network
6900 * bandwidth does not increase linearly with machine size. We use
6901 *
b8af2941 6902 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6903 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6904 *
6905 * which yields
6906 *
6907 * 16MB: 512k
6908 * 32MB: 724k
6909 * 64MB: 1024k
6910 * 128MB: 1448k
6911 * 256MB: 2048k
6912 * 512MB: 2896k
6913 * 1024MB: 4096k
6914 * 2048MB: 5792k
6915 * 4096MB: 8192k
6916 * 8192MB: 11584k
6917 * 16384MB: 16384k
6918 */
1b79acc9 6919int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6920{
6921 unsigned long lowmem_kbytes;
5f12733e 6922 int new_min_free_kbytes;
1da177e4
LT
6923
6924 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6925 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6926
6927 if (new_min_free_kbytes > user_min_free_kbytes) {
6928 min_free_kbytes = new_min_free_kbytes;
6929 if (min_free_kbytes < 128)
6930 min_free_kbytes = 128;
6931 if (min_free_kbytes > 65536)
6932 min_free_kbytes = 65536;
6933 } else {
6934 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6935 new_min_free_kbytes, user_min_free_kbytes);
6936 }
bc75d33f 6937 setup_per_zone_wmarks();
a6cccdc3 6938 refresh_zone_stat_thresholds();
1da177e4 6939 setup_per_zone_lowmem_reserve();
6423aa81
JK
6940
6941#ifdef CONFIG_NUMA
6942 setup_min_unmapped_ratio();
6943 setup_min_slab_ratio();
6944#endif
6945
1da177e4
LT
6946 return 0;
6947}
bc22af74 6948core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6949
6950/*
b8af2941 6951 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6952 * that we can call two helper functions whenever min_free_kbytes
6953 * changes.
6954 */
cccad5b9 6955int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6956 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6957{
da8c757b
HP
6958 int rc;
6959
6960 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6961 if (rc)
6962 return rc;
6963
5f12733e
MH
6964 if (write) {
6965 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6966 setup_per_zone_wmarks();
5f12733e 6967 }
1da177e4
LT
6968 return 0;
6969}
6970
795ae7a0
JW
6971int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6972 void __user *buffer, size_t *length, loff_t *ppos)
6973{
6974 int rc;
6975
6976 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6977 if (rc)
6978 return rc;
6979
6980 if (write)
6981 setup_per_zone_wmarks();
6982
6983 return 0;
6984}
6985
9614634f 6986#ifdef CONFIG_NUMA
6423aa81 6987static void setup_min_unmapped_ratio(void)
9614634f 6988{
6423aa81 6989 pg_data_t *pgdat;
9614634f 6990 struct zone *zone;
9614634f 6991
a5f5f91d 6992 for_each_online_pgdat(pgdat)
81cbcbc2 6993 pgdat->min_unmapped_pages = 0;
a5f5f91d 6994
9614634f 6995 for_each_zone(zone)
a5f5f91d 6996 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6997 sysctl_min_unmapped_ratio) / 100;
9614634f 6998}
0ff38490 6999
6423aa81
JK
7000
7001int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7002 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7003{
0ff38490
CL
7004 int rc;
7005
8d65af78 7006 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7007 if (rc)
7008 return rc;
7009
6423aa81
JK
7010 setup_min_unmapped_ratio();
7011
7012 return 0;
7013}
7014
7015static void setup_min_slab_ratio(void)
7016{
7017 pg_data_t *pgdat;
7018 struct zone *zone;
7019
a5f5f91d
MG
7020 for_each_online_pgdat(pgdat)
7021 pgdat->min_slab_pages = 0;
7022
0ff38490 7023 for_each_zone(zone)
a5f5f91d 7024 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7025 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7026}
7027
7028int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7029 void __user *buffer, size_t *length, loff_t *ppos)
7030{
7031 int rc;
7032
7033 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7034 if (rc)
7035 return rc;
7036
7037 setup_min_slab_ratio();
7038
0ff38490
CL
7039 return 0;
7040}
9614634f
CL
7041#endif
7042
1da177e4
LT
7043/*
7044 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7045 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7046 * whenever sysctl_lowmem_reserve_ratio changes.
7047 *
7048 * The reserve ratio obviously has absolutely no relation with the
41858966 7049 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7050 * if in function of the boot time zone sizes.
7051 */
cccad5b9 7052int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7053 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7054{
8d65af78 7055 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7056 setup_per_zone_lowmem_reserve();
7057 return 0;
7058}
7059
8ad4b1fb
RS
7060/*
7061 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7062 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7063 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7064 */
cccad5b9 7065int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7066 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7067{
7068 struct zone *zone;
7cd2b0a3 7069 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7070 int ret;
7071
7cd2b0a3
DR
7072 mutex_lock(&pcp_batch_high_lock);
7073 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7074
8d65af78 7075 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7076 if (!write || ret < 0)
7077 goto out;
7078
7079 /* Sanity checking to avoid pcp imbalance */
7080 if (percpu_pagelist_fraction &&
7081 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7082 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7083 ret = -EINVAL;
7084 goto out;
7085 }
7086
7087 /* No change? */
7088 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7089 goto out;
c8e251fa 7090
364df0eb 7091 for_each_populated_zone(zone) {
7cd2b0a3
DR
7092 unsigned int cpu;
7093
22a7f12b 7094 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7095 pageset_set_high_and_batch(zone,
7096 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7097 }
7cd2b0a3 7098out:
c8e251fa 7099 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7100 return ret;
8ad4b1fb
RS
7101}
7102
a9919c79 7103#ifdef CONFIG_NUMA
f034b5d4 7104int hashdist = HASHDIST_DEFAULT;
1da177e4 7105
1da177e4
LT
7106static int __init set_hashdist(char *str)
7107{
7108 if (!str)
7109 return 0;
7110 hashdist = simple_strtoul(str, &str, 0);
7111 return 1;
7112}
7113__setup("hashdist=", set_hashdist);
7114#endif
7115
f6f34b43
SD
7116#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7117/*
7118 * Returns the number of pages that arch has reserved but
7119 * is not known to alloc_large_system_hash().
7120 */
7121static unsigned long __init arch_reserved_kernel_pages(void)
7122{
7123 return 0;
7124}
7125#endif
7126
1da177e4
LT
7127/*
7128 * allocate a large system hash table from bootmem
7129 * - it is assumed that the hash table must contain an exact power-of-2
7130 * quantity of entries
7131 * - limit is the number of hash buckets, not the total allocation size
7132 */
7133void *__init alloc_large_system_hash(const char *tablename,
7134 unsigned long bucketsize,
7135 unsigned long numentries,
7136 int scale,
7137 int flags,
7138 unsigned int *_hash_shift,
7139 unsigned int *_hash_mask,
31fe62b9
TB
7140 unsigned long low_limit,
7141 unsigned long high_limit)
1da177e4 7142{
31fe62b9 7143 unsigned long long max = high_limit;
1da177e4
LT
7144 unsigned long log2qty, size;
7145 void *table = NULL;
7146
7147 /* allow the kernel cmdline to have a say */
7148 if (!numentries) {
7149 /* round applicable memory size up to nearest megabyte */
04903664 7150 numentries = nr_kernel_pages;
f6f34b43 7151 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7152
7153 /* It isn't necessary when PAGE_SIZE >= 1MB */
7154 if (PAGE_SHIFT < 20)
7155 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
7156
7157 /* limit to 1 bucket per 2^scale bytes of low memory */
7158 if (scale > PAGE_SHIFT)
7159 numentries >>= (scale - PAGE_SHIFT);
7160 else
7161 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7162
7163 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7164 if (unlikely(flags & HASH_SMALL)) {
7165 /* Makes no sense without HASH_EARLY */
7166 WARN_ON(!(flags & HASH_EARLY));
7167 if (!(numentries >> *_hash_shift)) {
7168 numentries = 1UL << *_hash_shift;
7169 BUG_ON(!numentries);
7170 }
7171 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7172 numentries = PAGE_SIZE / bucketsize;
1da177e4 7173 }
6e692ed3 7174 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7175
7176 /* limit allocation size to 1/16 total memory by default */
7177 if (max == 0) {
7178 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7179 do_div(max, bucketsize);
7180 }
074b8517 7181 max = min(max, 0x80000000ULL);
1da177e4 7182
31fe62b9
TB
7183 if (numentries < low_limit)
7184 numentries = low_limit;
1da177e4
LT
7185 if (numentries > max)
7186 numentries = max;
7187
f0d1b0b3 7188 log2qty = ilog2(numentries);
1da177e4
LT
7189
7190 do {
7191 size = bucketsize << log2qty;
7192 if (flags & HASH_EARLY)
6782832e 7193 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
7194 else if (hashdist)
7195 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7196 else {
1037b83b
ED
7197 /*
7198 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7199 * some pages at the end of hash table which
7200 * alloc_pages_exact() automatically does
1037b83b 7201 */
264ef8a9 7202 if (get_order(size) < MAX_ORDER) {
a1dd268c 7203 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7204 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7205 }
1da177e4
LT
7206 }
7207 } while (!table && size > PAGE_SIZE && --log2qty);
7208
7209 if (!table)
7210 panic("Failed to allocate %s hash table\n", tablename);
7211
1170532b
JP
7212 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7213 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7214
7215 if (_hash_shift)
7216 *_hash_shift = log2qty;
7217 if (_hash_mask)
7218 *_hash_mask = (1 << log2qty) - 1;
7219
7220 return table;
7221}
a117e66e 7222
a5d76b54 7223/*
80934513
MK
7224 * This function checks whether pageblock includes unmovable pages or not.
7225 * If @count is not zero, it is okay to include less @count unmovable pages
7226 *
b8af2941 7227 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7228 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7229 * check without lock_page also may miss some movable non-lru pages at
7230 * race condition. So you can't expect this function should be exact.
a5d76b54 7231 */
b023f468
WC
7232bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7233 bool skip_hwpoisoned_pages)
49ac8255
KH
7234{
7235 unsigned long pfn, iter, found;
47118af0
MN
7236 int mt;
7237
49ac8255
KH
7238 /*
7239 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7240 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7241 */
7242 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7243 return false;
47118af0
MN
7244 mt = get_pageblock_migratetype(page);
7245 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7246 return false;
49ac8255
KH
7247
7248 pfn = page_to_pfn(page);
7249 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7250 unsigned long check = pfn + iter;
7251
29723fcc 7252 if (!pfn_valid_within(check))
49ac8255 7253 continue;
29723fcc 7254
49ac8255 7255 page = pfn_to_page(check);
c8721bbb
NH
7256
7257 /*
7258 * Hugepages are not in LRU lists, but they're movable.
7259 * We need not scan over tail pages bacause we don't
7260 * handle each tail page individually in migration.
7261 */
7262 if (PageHuge(page)) {
7263 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7264 continue;
7265 }
7266
97d255c8
MK
7267 /*
7268 * We can't use page_count without pin a page
7269 * because another CPU can free compound page.
7270 * This check already skips compound tails of THP
0139aa7b 7271 * because their page->_refcount is zero at all time.
97d255c8 7272 */
fe896d18 7273 if (!page_ref_count(page)) {
49ac8255
KH
7274 if (PageBuddy(page))
7275 iter += (1 << page_order(page)) - 1;
7276 continue;
7277 }
97d255c8 7278
b023f468
WC
7279 /*
7280 * The HWPoisoned page may be not in buddy system, and
7281 * page_count() is not 0.
7282 */
7283 if (skip_hwpoisoned_pages && PageHWPoison(page))
7284 continue;
7285
0efadf48
YX
7286 if (__PageMovable(page))
7287 continue;
7288
49ac8255
KH
7289 if (!PageLRU(page))
7290 found++;
7291 /*
6b4f7799
JW
7292 * If there are RECLAIMABLE pages, we need to check
7293 * it. But now, memory offline itself doesn't call
7294 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7295 */
7296 /*
7297 * If the page is not RAM, page_count()should be 0.
7298 * we don't need more check. This is an _used_ not-movable page.
7299 *
7300 * The problematic thing here is PG_reserved pages. PG_reserved
7301 * is set to both of a memory hole page and a _used_ kernel
7302 * page at boot.
7303 */
7304 if (found > count)
80934513 7305 return true;
49ac8255 7306 }
80934513 7307 return false;
49ac8255
KH
7308}
7309
7310bool is_pageblock_removable_nolock(struct page *page)
7311{
656a0706
MH
7312 struct zone *zone;
7313 unsigned long pfn;
687875fb
MH
7314
7315 /*
7316 * We have to be careful here because we are iterating over memory
7317 * sections which are not zone aware so we might end up outside of
7318 * the zone but still within the section.
656a0706
MH
7319 * We have to take care about the node as well. If the node is offline
7320 * its NODE_DATA will be NULL - see page_zone.
687875fb 7321 */
656a0706
MH
7322 if (!node_online(page_to_nid(page)))
7323 return false;
7324
7325 zone = page_zone(page);
7326 pfn = page_to_pfn(page);
108bcc96 7327 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7328 return false;
7329
b023f468 7330 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7331}
0c0e6195 7332
080fe206 7333#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7334
7335static unsigned long pfn_max_align_down(unsigned long pfn)
7336{
7337 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7338 pageblock_nr_pages) - 1);
7339}
7340
7341static unsigned long pfn_max_align_up(unsigned long pfn)
7342{
7343 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7344 pageblock_nr_pages));
7345}
7346
041d3a8c 7347/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7348static int __alloc_contig_migrate_range(struct compact_control *cc,
7349 unsigned long start, unsigned long end)
041d3a8c
MN
7350{
7351 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7352 unsigned long nr_reclaimed;
041d3a8c
MN
7353 unsigned long pfn = start;
7354 unsigned int tries = 0;
7355 int ret = 0;
7356
be49a6e1 7357 migrate_prep();
041d3a8c 7358
bb13ffeb 7359 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7360 if (fatal_signal_pending(current)) {
7361 ret = -EINTR;
7362 break;
7363 }
7364
bb13ffeb
MG
7365 if (list_empty(&cc->migratepages)) {
7366 cc->nr_migratepages = 0;
edc2ca61 7367 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7368 if (!pfn) {
7369 ret = -EINTR;
7370 break;
7371 }
7372 tries = 0;
7373 } else if (++tries == 5) {
7374 ret = ret < 0 ? ret : -EBUSY;
7375 break;
7376 }
7377
beb51eaa
MK
7378 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7379 &cc->migratepages);
7380 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7381
9c620e2b 7382 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7383 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7384 }
2a6f5124
SP
7385 if (ret < 0) {
7386 putback_movable_pages(&cc->migratepages);
7387 return ret;
7388 }
7389 return 0;
041d3a8c
MN
7390}
7391
7392/**
7393 * alloc_contig_range() -- tries to allocate given range of pages
7394 * @start: start PFN to allocate
7395 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7396 * @migratetype: migratetype of the underlaying pageblocks (either
7397 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7398 * in range must have the same migratetype and it must
7399 * be either of the two.
ca96b625 7400 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7401 *
7402 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7403 * aligned, however it's the caller's responsibility to guarantee that
7404 * we are the only thread that changes migrate type of pageblocks the
7405 * pages fall in.
7406 *
7407 * The PFN range must belong to a single zone.
7408 *
7409 * Returns zero on success or negative error code. On success all
7410 * pages which PFN is in [start, end) are allocated for the caller and
7411 * need to be freed with free_contig_range().
7412 */
0815f3d8 7413int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7414 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7415{
041d3a8c 7416 unsigned long outer_start, outer_end;
d00181b9
KS
7417 unsigned int order;
7418 int ret = 0;
041d3a8c 7419
bb13ffeb
MG
7420 struct compact_control cc = {
7421 .nr_migratepages = 0,
7422 .order = -1,
7423 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7424 .mode = MIGRATE_SYNC,
bb13ffeb 7425 .ignore_skip_hint = true,
ca96b625 7426 .gfp_mask = memalloc_noio_flags(gfp_mask),
bb13ffeb
MG
7427 };
7428 INIT_LIST_HEAD(&cc.migratepages);
7429
041d3a8c
MN
7430 /*
7431 * What we do here is we mark all pageblocks in range as
7432 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7433 * have different sizes, and due to the way page allocator
7434 * work, we align the range to biggest of the two pages so
7435 * that page allocator won't try to merge buddies from
7436 * different pageblocks and change MIGRATE_ISOLATE to some
7437 * other migration type.
7438 *
7439 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7440 * migrate the pages from an unaligned range (ie. pages that
7441 * we are interested in). This will put all the pages in
7442 * range back to page allocator as MIGRATE_ISOLATE.
7443 *
7444 * When this is done, we take the pages in range from page
7445 * allocator removing them from the buddy system. This way
7446 * page allocator will never consider using them.
7447 *
7448 * This lets us mark the pageblocks back as
7449 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7450 * aligned range but not in the unaligned, original range are
7451 * put back to page allocator so that buddy can use them.
7452 */
7453
7454 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7455 pfn_max_align_up(end), migratetype,
7456 false);
041d3a8c 7457 if (ret)
86a595f9 7458 return ret;
041d3a8c 7459
8ef5849f
JK
7460 /*
7461 * In case of -EBUSY, we'd like to know which page causes problem.
7462 * So, just fall through. We will check it in test_pages_isolated().
7463 */
bb13ffeb 7464 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7465 if (ret && ret != -EBUSY)
041d3a8c
MN
7466 goto done;
7467
7468 /*
7469 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7470 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7471 * more, all pages in [start, end) are free in page allocator.
7472 * What we are going to do is to allocate all pages from
7473 * [start, end) (that is remove them from page allocator).
7474 *
7475 * The only problem is that pages at the beginning and at the
7476 * end of interesting range may be not aligned with pages that
7477 * page allocator holds, ie. they can be part of higher order
7478 * pages. Because of this, we reserve the bigger range and
7479 * once this is done free the pages we are not interested in.
7480 *
7481 * We don't have to hold zone->lock here because the pages are
7482 * isolated thus they won't get removed from buddy.
7483 */
7484
7485 lru_add_drain_all();
510f5507 7486 drain_all_pages(cc.zone);
041d3a8c
MN
7487
7488 order = 0;
7489 outer_start = start;
7490 while (!PageBuddy(pfn_to_page(outer_start))) {
7491 if (++order >= MAX_ORDER) {
8ef5849f
JK
7492 outer_start = start;
7493 break;
041d3a8c
MN
7494 }
7495 outer_start &= ~0UL << order;
7496 }
7497
8ef5849f
JK
7498 if (outer_start != start) {
7499 order = page_order(pfn_to_page(outer_start));
7500
7501 /*
7502 * outer_start page could be small order buddy page and
7503 * it doesn't include start page. Adjust outer_start
7504 * in this case to report failed page properly
7505 * on tracepoint in test_pages_isolated()
7506 */
7507 if (outer_start + (1UL << order) <= start)
7508 outer_start = start;
7509 }
7510
041d3a8c 7511 /* Make sure the range is really isolated. */
b023f468 7512 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7513 pr_info("%s: [%lx, %lx) PFNs busy\n",
7514 __func__, outer_start, end);
041d3a8c
MN
7515 ret = -EBUSY;
7516 goto done;
7517 }
7518
49f223a9 7519 /* Grab isolated pages from freelists. */
bb13ffeb 7520 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7521 if (!outer_end) {
7522 ret = -EBUSY;
7523 goto done;
7524 }
7525
7526 /* Free head and tail (if any) */
7527 if (start != outer_start)
7528 free_contig_range(outer_start, start - outer_start);
7529 if (end != outer_end)
7530 free_contig_range(end, outer_end - end);
7531
7532done:
7533 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7534 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7535 return ret;
7536}
7537
7538void free_contig_range(unsigned long pfn, unsigned nr_pages)
7539{
bcc2b02f
MS
7540 unsigned int count = 0;
7541
7542 for (; nr_pages--; pfn++) {
7543 struct page *page = pfn_to_page(pfn);
7544
7545 count += page_count(page) != 1;
7546 __free_page(page);
7547 }
7548 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7549}
7550#endif
7551
4ed7e022 7552#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7553/*
7554 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7555 * page high values need to be recalulated.
7556 */
4ed7e022
JL
7557void __meminit zone_pcp_update(struct zone *zone)
7558{
0a647f38 7559 unsigned cpu;
c8e251fa 7560 mutex_lock(&pcp_batch_high_lock);
0a647f38 7561 for_each_possible_cpu(cpu)
169f6c19
CS
7562 pageset_set_high_and_batch(zone,
7563 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7564 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7565}
7566#endif
7567
340175b7
JL
7568void zone_pcp_reset(struct zone *zone)
7569{
7570 unsigned long flags;
5a883813
MK
7571 int cpu;
7572 struct per_cpu_pageset *pset;
340175b7
JL
7573
7574 /* avoid races with drain_pages() */
7575 local_irq_save(flags);
7576 if (zone->pageset != &boot_pageset) {
5a883813
MK
7577 for_each_online_cpu(cpu) {
7578 pset = per_cpu_ptr(zone->pageset, cpu);
7579 drain_zonestat(zone, pset);
7580 }
340175b7
JL
7581 free_percpu(zone->pageset);
7582 zone->pageset = &boot_pageset;
7583 }
7584 local_irq_restore(flags);
7585}
7586
6dcd73d7 7587#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7588/*
b9eb6319
JK
7589 * All pages in the range must be in a single zone and isolated
7590 * before calling this.
0c0e6195
KH
7591 */
7592void
7593__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7594{
7595 struct page *page;
7596 struct zone *zone;
7aeb09f9 7597 unsigned int order, i;
0c0e6195
KH
7598 unsigned long pfn;
7599 unsigned long flags;
7600 /* find the first valid pfn */
7601 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7602 if (pfn_valid(pfn))
7603 break;
7604 if (pfn == end_pfn)
7605 return;
7606 zone = page_zone(pfn_to_page(pfn));
7607 spin_lock_irqsave(&zone->lock, flags);
7608 pfn = start_pfn;
7609 while (pfn < end_pfn) {
7610 if (!pfn_valid(pfn)) {
7611 pfn++;
7612 continue;
7613 }
7614 page = pfn_to_page(pfn);
b023f468
WC
7615 /*
7616 * The HWPoisoned page may be not in buddy system, and
7617 * page_count() is not 0.
7618 */
7619 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7620 pfn++;
7621 SetPageReserved(page);
7622 continue;
7623 }
7624
0c0e6195
KH
7625 BUG_ON(page_count(page));
7626 BUG_ON(!PageBuddy(page));
7627 order = page_order(page);
7628#ifdef CONFIG_DEBUG_VM
1170532b
JP
7629 pr_info("remove from free list %lx %d %lx\n",
7630 pfn, 1 << order, end_pfn);
0c0e6195
KH
7631#endif
7632 list_del(&page->lru);
7633 rmv_page_order(page);
7634 zone->free_area[order].nr_free--;
0c0e6195
KH
7635 for (i = 0; i < (1 << order); i++)
7636 SetPageReserved((page+i));
7637 pfn += (1 << order);
7638 }
7639 spin_unlock_irqrestore(&zone->lock, flags);
7640}
7641#endif
8d22ba1b 7642
8d22ba1b
WF
7643bool is_free_buddy_page(struct page *page)
7644{
7645 struct zone *zone = page_zone(page);
7646 unsigned long pfn = page_to_pfn(page);
7647 unsigned long flags;
7aeb09f9 7648 unsigned int order;
8d22ba1b
WF
7649
7650 spin_lock_irqsave(&zone->lock, flags);
7651 for (order = 0; order < MAX_ORDER; order++) {
7652 struct page *page_head = page - (pfn & ((1 << order) - 1));
7653
7654 if (PageBuddy(page_head) && page_order(page_head) >= order)
7655 break;
7656 }
7657 spin_unlock_irqrestore(&zone->lock, flags);
7658
7659 return order < MAX_ORDER;
7660}