PM / QOS: Rename __dev_pm_qos_read_value() and dev_pm_qos_raw_read_value()
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
d379f01d 58#include <trace/events/oom.h>
268bb0ce 59#include <linux/prefetch.h>
6e543d57 60#include <linux/mm_inline.h>
041d3a8c 61#include <linux/migrate.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
5b3cc15a 64#include <linux/sched/mm.h>
48c96a36 65#include <linux/page_owner.h>
0e1cc95b 66#include <linux/kthread.h>
4949148a 67#include <linux/memcontrol.h>
42c269c8 68#include <linux/ftrace.h>
d92a8cfc 69#include <linux/lockdep.h>
556b969a 70#include <linux/nmi.h>
eb414681 71#include <linux/psi.h>
1da177e4 72
7ee3d4e8 73#include <asm/sections.h>
1da177e4 74#include <asm/tlbflush.h>
ac924c60 75#include <asm/div64.h>
1da177e4 76#include "internal.h"
e900a918 77#include "shuffle.h"
1da177e4 78
c8e251fa
CS
79/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 81#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 82
72812019
LS
83#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84DEFINE_PER_CPU(int, numa_node);
85EXPORT_PER_CPU_SYMBOL(numa_node);
86#endif
87
4518085e
KW
88DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89
7aac7898
LS
90#ifdef CONFIG_HAVE_MEMORYLESS_NODES
91/*
92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95 * defined in <linux/topology.h>.
96 */
97DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
98EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 99int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
100#endif
101
bd233f53 102/* work_structs for global per-cpu drains */
d9367bd0
WY
103struct pcpu_drain {
104 struct zone *zone;
105 struct work_struct work;
106};
bd233f53 107DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 108DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 109
38addce8 110#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 111volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
112EXPORT_SYMBOL(latent_entropy);
113#endif
114
1da177e4 115/*
13808910 116 * Array of node states.
1da177e4 117 */
13808910
CL
118nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 [N_POSSIBLE] = NODE_MASK_ALL,
120 [N_ONLINE] = { { [0] = 1UL } },
121#ifndef CONFIG_NUMA
122 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
123#ifdef CONFIG_HIGHMEM
124 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 125#endif
20b2f52b 126 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
127 [N_CPU] = { { [0] = 1UL } },
128#endif /* NUMA */
129};
130EXPORT_SYMBOL(node_states);
131
ca79b0c2
AK
132atomic_long_t _totalram_pages __read_mostly;
133EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 134unsigned long totalreserve_pages __read_mostly;
e48322ab 135unsigned long totalcma_pages __read_mostly;
ab8fabd4 136
1b76b02f 137int percpu_pagelist_fraction;
dcce284a 138gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 139
bb14c2c7
VB
140/*
141 * A cached value of the page's pageblock's migratetype, used when the page is
142 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
143 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
144 * Also the migratetype set in the page does not necessarily match the pcplist
145 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
146 * other index - this ensures that it will be put on the correct CMA freelist.
147 */
148static inline int get_pcppage_migratetype(struct page *page)
149{
150 return page->index;
151}
152
153static inline void set_pcppage_migratetype(struct page *page, int migratetype)
154{
155 page->index = migratetype;
156}
157
452aa699
RW
158#ifdef CONFIG_PM_SLEEP
159/*
160 * The following functions are used by the suspend/hibernate code to temporarily
161 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
162 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
163 * they should always be called with system_transition_mutex held
164 * (gfp_allowed_mask also should only be modified with system_transition_mutex
165 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
166 * with that modification).
452aa699 167 */
c9e664f1
RW
168
169static gfp_t saved_gfp_mask;
170
171void pm_restore_gfp_mask(void)
452aa699 172{
55f2503c 173 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
174 if (saved_gfp_mask) {
175 gfp_allowed_mask = saved_gfp_mask;
176 saved_gfp_mask = 0;
177 }
452aa699
RW
178}
179
c9e664f1 180void pm_restrict_gfp_mask(void)
452aa699 181{
55f2503c 182 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
183 WARN_ON(saved_gfp_mask);
184 saved_gfp_mask = gfp_allowed_mask;
d0164adc 185 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 186}
f90ac398
MG
187
188bool pm_suspended_storage(void)
189{
d0164adc 190 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
191 return false;
192 return true;
193}
452aa699
RW
194#endif /* CONFIG_PM_SLEEP */
195
d9c23400 196#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 197unsigned int pageblock_order __read_mostly;
d9c23400
MG
198#endif
199
d98c7a09 200static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 201
1da177e4
LT
202/*
203 * results with 256, 32 in the lowmem_reserve sysctl:
204 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
205 * 1G machine -> (16M dma, 784M normal, 224M high)
206 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
207 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 208 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
209 *
210 * TBD: should special case ZONE_DMA32 machines here - in those we normally
211 * don't need any ZONE_NORMAL reservation
1da177e4 212 */
d3cda233 213int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 214#ifdef CONFIG_ZONE_DMA
d3cda233 215 [ZONE_DMA] = 256,
4b51d669 216#endif
fb0e7942 217#ifdef CONFIG_ZONE_DMA32
d3cda233 218 [ZONE_DMA32] = 256,
fb0e7942 219#endif
d3cda233 220 [ZONE_NORMAL] = 32,
e53ef38d 221#ifdef CONFIG_HIGHMEM
d3cda233 222 [ZONE_HIGHMEM] = 0,
e53ef38d 223#endif
d3cda233 224 [ZONE_MOVABLE] = 0,
2f1b6248 225};
1da177e4
LT
226
227EXPORT_SYMBOL(totalram_pages);
1da177e4 228
15ad7cdc 229static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 230#ifdef CONFIG_ZONE_DMA
2f1b6248 231 "DMA",
4b51d669 232#endif
fb0e7942 233#ifdef CONFIG_ZONE_DMA32
2f1b6248 234 "DMA32",
fb0e7942 235#endif
2f1b6248 236 "Normal",
e53ef38d 237#ifdef CONFIG_HIGHMEM
2a1e274a 238 "HighMem",
e53ef38d 239#endif
2a1e274a 240 "Movable",
033fbae9
DW
241#ifdef CONFIG_ZONE_DEVICE
242 "Device",
243#endif
2f1b6248
CL
244};
245
c999fbd3 246const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
247 "Unmovable",
248 "Movable",
249 "Reclaimable",
250 "HighAtomic",
251#ifdef CONFIG_CMA
252 "CMA",
253#endif
254#ifdef CONFIG_MEMORY_ISOLATION
255 "Isolate",
256#endif
257};
258
f1e61557
KS
259compound_page_dtor * const compound_page_dtors[] = {
260 NULL,
261 free_compound_page,
262#ifdef CONFIG_HUGETLB_PAGE
263 free_huge_page,
264#endif
9a982250
KS
265#ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 free_transhuge_page,
267#endif
f1e61557
KS
268};
269
1da177e4 270int min_free_kbytes = 1024;
42aa83cb 271int user_min_free_kbytes = -1;
24512228
MG
272#ifdef CONFIG_DISCONTIGMEM
273/*
274 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
275 * are not on separate NUMA nodes. Functionally this works but with
276 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
277 * quite small. By default, do not boost watermarks on discontigmem as in
278 * many cases very high-order allocations like THP are likely to be
279 * unsupported and the premature reclaim offsets the advantage of long-term
280 * fragmentation avoidance.
281 */
282int watermark_boost_factor __read_mostly;
283#else
1c30844d 284int watermark_boost_factor __read_mostly = 15000;
24512228 285#endif
795ae7a0 286int watermark_scale_factor = 10;
1da177e4 287
bbe5d993
OS
288static unsigned long nr_kernel_pages __initdata;
289static unsigned long nr_all_pages __initdata;
290static unsigned long dma_reserve __initdata;
1da177e4 291
0ee332c1 292#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
293static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
294static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 295static unsigned long required_kernelcore __initdata;
a5c6d650 296static unsigned long required_kernelcore_percent __initdata;
7f16f91f 297static unsigned long required_movablecore __initdata;
a5c6d650 298static unsigned long required_movablecore_percent __initdata;
bbe5d993 299static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 300static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
301
302/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
303int movable_zone;
304EXPORT_SYMBOL(movable_zone);
305#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 306
418508c1 307#if MAX_NUMNODES > 1
b9726c26 308unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 309unsigned int nr_online_nodes __read_mostly = 1;
418508c1 310EXPORT_SYMBOL(nr_node_ids);
62bc62a8 311EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
312#endif
313
9ef9acb0
MG
314int page_group_by_mobility_disabled __read_mostly;
315
3a80a7fa 316#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
317/*
318 * During boot we initialize deferred pages on-demand, as needed, but once
319 * page_alloc_init_late() has finished, the deferred pages are all initialized,
320 * and we can permanently disable that path.
321 */
322static DEFINE_STATIC_KEY_TRUE(deferred_pages);
323
324/*
325 * Calling kasan_free_pages() only after deferred memory initialization
326 * has completed. Poisoning pages during deferred memory init will greatly
327 * lengthen the process and cause problem in large memory systems as the
328 * deferred pages initialization is done with interrupt disabled.
329 *
330 * Assuming that there will be no reference to those newly initialized
331 * pages before they are ever allocated, this should have no effect on
332 * KASAN memory tracking as the poison will be properly inserted at page
333 * allocation time. The only corner case is when pages are allocated by
334 * on-demand allocation and then freed again before the deferred pages
335 * initialization is done, but this is not likely to happen.
336 */
337static inline void kasan_free_nondeferred_pages(struct page *page, int order)
338{
339 if (!static_branch_unlikely(&deferred_pages))
340 kasan_free_pages(page, order);
341}
342
3a80a7fa 343/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 344static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 345{
ef70b6f4
MG
346 int nid = early_pfn_to_nid(pfn);
347
348 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
349 return true;
350
351 return false;
352}
353
354/*
d3035be4 355 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
356 * later in the boot cycle when it can be parallelised.
357 */
d3035be4
PT
358static bool __meminit
359defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 360{
d3035be4
PT
361 static unsigned long prev_end_pfn, nr_initialised;
362
363 /*
364 * prev_end_pfn static that contains the end of previous zone
365 * No need to protect because called very early in boot before smp_init.
366 */
367 if (prev_end_pfn != end_pfn) {
368 prev_end_pfn = end_pfn;
369 nr_initialised = 0;
370 }
371
3c2c6488 372 /* Always populate low zones for address-constrained allocations */
d3035be4 373 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 374 return false;
23b68cfa
WY
375
376 /*
377 * We start only with one section of pages, more pages are added as
378 * needed until the rest of deferred pages are initialized.
379 */
d3035be4 380 nr_initialised++;
23b68cfa 381 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
382 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
383 NODE_DATA(nid)->first_deferred_pfn = pfn;
384 return true;
3a80a7fa 385 }
d3035be4 386 return false;
3a80a7fa
MG
387}
388#else
3c0c12cc
WL
389#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
390
3a80a7fa
MG
391static inline bool early_page_uninitialised(unsigned long pfn)
392{
393 return false;
394}
395
d3035be4 396static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 397{
d3035be4 398 return false;
3a80a7fa
MG
399}
400#endif
401
0b423ca2
MG
402/* Return a pointer to the bitmap storing bits affecting a block of pages */
403static inline unsigned long *get_pageblock_bitmap(struct page *page,
404 unsigned long pfn)
405{
406#ifdef CONFIG_SPARSEMEM
407 return __pfn_to_section(pfn)->pageblock_flags;
408#else
409 return page_zone(page)->pageblock_flags;
410#endif /* CONFIG_SPARSEMEM */
411}
412
413static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
414{
415#ifdef CONFIG_SPARSEMEM
416 pfn &= (PAGES_PER_SECTION-1);
417 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
418#else
419 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
420 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
421#endif /* CONFIG_SPARSEMEM */
422}
423
424/**
425 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
426 * @page: The page within the block of interest
427 * @pfn: The target page frame number
428 * @end_bitidx: The last bit of interest to retrieve
429 * @mask: mask of bits that the caller is interested in
430 *
431 * Return: pageblock_bits flags
432 */
433static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
434 unsigned long pfn,
435 unsigned long end_bitidx,
436 unsigned long mask)
437{
438 unsigned long *bitmap;
439 unsigned long bitidx, word_bitidx;
440 unsigned long word;
441
442 bitmap = get_pageblock_bitmap(page, pfn);
443 bitidx = pfn_to_bitidx(page, pfn);
444 word_bitidx = bitidx / BITS_PER_LONG;
445 bitidx &= (BITS_PER_LONG-1);
446
447 word = bitmap[word_bitidx];
448 bitidx += end_bitidx;
449 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
450}
451
452unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
453 unsigned long end_bitidx,
454 unsigned long mask)
455{
456 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
457}
458
459static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
460{
461 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
462}
463
464/**
465 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
466 * @page: The page within the block of interest
467 * @flags: The flags to set
468 * @pfn: The target page frame number
469 * @end_bitidx: The last bit of interest
470 * @mask: mask of bits that the caller is interested in
471 */
472void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
473 unsigned long pfn,
474 unsigned long end_bitidx,
475 unsigned long mask)
476{
477 unsigned long *bitmap;
478 unsigned long bitidx, word_bitidx;
479 unsigned long old_word, word;
480
481 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 482 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
483
484 bitmap = get_pageblock_bitmap(page, pfn);
485 bitidx = pfn_to_bitidx(page, pfn);
486 word_bitidx = bitidx / BITS_PER_LONG;
487 bitidx &= (BITS_PER_LONG-1);
488
489 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
490
491 bitidx += end_bitidx;
492 mask <<= (BITS_PER_LONG - bitidx - 1);
493 flags <<= (BITS_PER_LONG - bitidx - 1);
494
495 word = READ_ONCE(bitmap[word_bitidx]);
496 for (;;) {
497 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
498 if (word == old_word)
499 break;
500 word = old_word;
501 }
502}
3a80a7fa 503
ee6f509c 504void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 505{
5d0f3f72
KM
506 if (unlikely(page_group_by_mobility_disabled &&
507 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
508 migratetype = MIGRATE_UNMOVABLE;
509
b2a0ac88
MG
510 set_pageblock_flags_group(page, (unsigned long)migratetype,
511 PB_migrate, PB_migrate_end);
512}
513
13e7444b 514#ifdef CONFIG_DEBUG_VM
c6a57e19 515static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 516{
bdc8cb98
DH
517 int ret = 0;
518 unsigned seq;
519 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 520 unsigned long sp, start_pfn;
c6a57e19 521
bdc8cb98
DH
522 do {
523 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
524 start_pfn = zone->zone_start_pfn;
525 sp = zone->spanned_pages;
108bcc96 526 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
527 ret = 1;
528 } while (zone_span_seqretry(zone, seq));
529
b5e6a5a2 530 if (ret)
613813e8
DH
531 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
532 pfn, zone_to_nid(zone), zone->name,
533 start_pfn, start_pfn + sp);
b5e6a5a2 534
bdc8cb98 535 return ret;
c6a57e19
DH
536}
537
538static int page_is_consistent(struct zone *zone, struct page *page)
539{
14e07298 540 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 541 return 0;
1da177e4 542 if (zone != page_zone(page))
c6a57e19
DH
543 return 0;
544
545 return 1;
546}
547/*
548 * Temporary debugging check for pages not lying within a given zone.
549 */
d73d3c9f 550static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
551{
552 if (page_outside_zone_boundaries(zone, page))
1da177e4 553 return 1;
c6a57e19
DH
554 if (!page_is_consistent(zone, page))
555 return 1;
556
1da177e4
LT
557 return 0;
558}
13e7444b 559#else
d73d3c9f 560static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
561{
562 return 0;
563}
564#endif
565
d230dec1
KS
566static void bad_page(struct page *page, const char *reason,
567 unsigned long bad_flags)
1da177e4 568{
d936cf9b
HD
569 static unsigned long resume;
570 static unsigned long nr_shown;
571 static unsigned long nr_unshown;
572
573 /*
574 * Allow a burst of 60 reports, then keep quiet for that minute;
575 * or allow a steady drip of one report per second.
576 */
577 if (nr_shown == 60) {
578 if (time_before(jiffies, resume)) {
579 nr_unshown++;
580 goto out;
581 }
582 if (nr_unshown) {
ff8e8116 583 pr_alert(
1e9e6365 584 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
585 nr_unshown);
586 nr_unshown = 0;
587 }
588 nr_shown = 0;
589 }
590 if (nr_shown++ == 0)
591 resume = jiffies + 60 * HZ;
592
ff8e8116 593 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 594 current->comm, page_to_pfn(page));
ff8e8116
VB
595 __dump_page(page, reason);
596 bad_flags &= page->flags;
597 if (bad_flags)
598 pr_alert("bad because of flags: %#lx(%pGp)\n",
599 bad_flags, &bad_flags);
4e462112 600 dump_page_owner(page);
3dc14741 601
4f31888c 602 print_modules();
1da177e4 603 dump_stack();
d936cf9b 604out:
8cc3b392 605 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 606 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 607 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
608}
609
1da177e4
LT
610/*
611 * Higher-order pages are called "compound pages". They are structured thusly:
612 *
1d798ca3 613 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 614 *
1d798ca3
KS
615 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
616 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 617 *
1d798ca3
KS
618 * The first tail page's ->compound_dtor holds the offset in array of compound
619 * page destructors. See compound_page_dtors.
1da177e4 620 *
1d798ca3 621 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 622 * This usage means that zero-order pages may not be compound.
1da177e4 623 */
d98c7a09 624
9a982250 625void free_compound_page(struct page *page)
d98c7a09 626{
d85f3385 627 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
628}
629
d00181b9 630void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
631{
632 int i;
633 int nr_pages = 1 << order;
634
f1e61557 635 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
636 set_compound_order(page, order);
637 __SetPageHead(page);
638 for (i = 1; i < nr_pages; i++) {
639 struct page *p = page + i;
58a84aa9 640 set_page_count(p, 0);
1c290f64 641 p->mapping = TAIL_MAPPING;
1d798ca3 642 set_compound_head(p, page);
18229df5 643 }
53f9263b 644 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
645}
646
c0a32fc5
SG
647#ifdef CONFIG_DEBUG_PAGEALLOC
648unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
649bool _debug_pagealloc_enabled __read_mostly
650 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 651EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
652bool _debug_guardpage_enabled __read_mostly;
653
031bc574
JK
654static int __init early_debug_pagealloc(char *buf)
655{
656 if (!buf)
657 return -EINVAL;
2a138dc7 658 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
659}
660early_param("debug_pagealloc", early_debug_pagealloc);
661
e30825f1
JK
662static bool need_debug_guardpage(void)
663{
031bc574
JK
664 /* If we don't use debug_pagealloc, we don't need guard page */
665 if (!debug_pagealloc_enabled())
666 return false;
667
f1c1e9f7
JK
668 if (!debug_guardpage_minorder())
669 return false;
670
e30825f1
JK
671 return true;
672}
673
674static void init_debug_guardpage(void)
675{
031bc574
JK
676 if (!debug_pagealloc_enabled())
677 return;
678
f1c1e9f7
JK
679 if (!debug_guardpage_minorder())
680 return;
681
e30825f1
JK
682 _debug_guardpage_enabled = true;
683}
684
685struct page_ext_operations debug_guardpage_ops = {
686 .need = need_debug_guardpage,
687 .init = init_debug_guardpage,
688};
c0a32fc5
SG
689
690static int __init debug_guardpage_minorder_setup(char *buf)
691{
692 unsigned long res;
693
694 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 695 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
696 return 0;
697 }
698 _debug_guardpage_minorder = res;
1170532b 699 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
700 return 0;
701}
f1c1e9f7 702early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 703
acbc15a4 704static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 705 unsigned int order, int migratetype)
c0a32fc5 706{
e30825f1
JK
707 struct page_ext *page_ext;
708
709 if (!debug_guardpage_enabled())
acbc15a4
JK
710 return false;
711
712 if (order >= debug_guardpage_minorder())
713 return false;
e30825f1
JK
714
715 page_ext = lookup_page_ext(page);
f86e4271 716 if (unlikely(!page_ext))
acbc15a4 717 return false;
f86e4271 718
e30825f1
JK
719 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720
2847cf95
JK
721 INIT_LIST_HEAD(&page->lru);
722 set_page_private(page, order);
723 /* Guard pages are not available for any usage */
724 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
725
726 return true;
c0a32fc5
SG
727}
728
2847cf95
JK
729static inline void clear_page_guard(struct zone *zone, struct page *page,
730 unsigned int order, int migratetype)
c0a32fc5 731{
e30825f1
JK
732 struct page_ext *page_ext;
733
734 if (!debug_guardpage_enabled())
735 return;
736
737 page_ext = lookup_page_ext(page);
f86e4271
YS
738 if (unlikely(!page_ext))
739 return;
740
e30825f1
JK
741 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
742
2847cf95
JK
743 set_page_private(page, 0);
744 if (!is_migrate_isolate(migratetype))
745 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
746}
747#else
980ac167 748struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
749static inline bool set_page_guard(struct zone *zone, struct page *page,
750 unsigned int order, int migratetype) { return false; }
2847cf95
JK
751static inline void clear_page_guard(struct zone *zone, struct page *page,
752 unsigned int order, int migratetype) {}
c0a32fc5
SG
753#endif
754
7aeb09f9 755static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 756{
4c21e2f2 757 set_page_private(page, order);
676165a8 758 __SetPageBuddy(page);
1da177e4
LT
759}
760
1da177e4
LT
761/*
762 * This function checks whether a page is free && is the buddy
6e292b9b 763 * we can coalesce a page and its buddy if
13ad59df 764 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 765 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
766 * (c) a page and its buddy have the same order &&
767 * (d) a page and its buddy are in the same zone.
676165a8 768 *
6e292b9b
MW
769 * For recording whether a page is in the buddy system, we set PageBuddy.
770 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 771 *
676165a8 772 * For recording page's order, we use page_private(page).
1da177e4 773 */
cb2b95e1 774static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 775 unsigned int order)
1da177e4 776{
c0a32fc5 777 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
778 if (page_zone_id(page) != page_zone_id(buddy))
779 return 0;
780
4c5018ce
WY
781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782
c0a32fc5
SG
783 return 1;
784 }
785
cb2b95e1 786 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
787 /*
788 * zone check is done late to avoid uselessly
789 * calculating zone/node ids for pages that could
790 * never merge.
791 */
792 if (page_zone_id(page) != page_zone_id(buddy))
793 return 0;
794
4c5018ce
WY
795 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
796
6aa3001b 797 return 1;
676165a8 798 }
6aa3001b 799 return 0;
1da177e4
LT
800}
801
5e1f0f09
MG
802#ifdef CONFIG_COMPACTION
803static inline struct capture_control *task_capc(struct zone *zone)
804{
805 struct capture_control *capc = current->capture_control;
806
807 return capc &&
808 !(current->flags & PF_KTHREAD) &&
809 !capc->page &&
810 capc->cc->zone == zone &&
811 capc->cc->direct_compaction ? capc : NULL;
812}
813
814static inline bool
815compaction_capture(struct capture_control *capc, struct page *page,
816 int order, int migratetype)
817{
818 if (!capc || order != capc->cc->order)
819 return false;
820
821 /* Do not accidentally pollute CMA or isolated regions*/
822 if (is_migrate_cma(migratetype) ||
823 is_migrate_isolate(migratetype))
824 return false;
825
826 /*
827 * Do not let lower order allocations polluate a movable pageblock.
828 * This might let an unmovable request use a reclaimable pageblock
829 * and vice-versa but no more than normal fallback logic which can
830 * have trouble finding a high-order free page.
831 */
832 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
833 return false;
834
835 capc->page = page;
836 return true;
837}
838
839#else
840static inline struct capture_control *task_capc(struct zone *zone)
841{
842 return NULL;
843}
844
845static inline bool
846compaction_capture(struct capture_control *capc, struct page *page,
847 int order, int migratetype)
848{
849 return false;
850}
851#endif /* CONFIG_COMPACTION */
852
1da177e4
LT
853/*
854 * Freeing function for a buddy system allocator.
855 *
856 * The concept of a buddy system is to maintain direct-mapped table
857 * (containing bit values) for memory blocks of various "orders".
858 * The bottom level table contains the map for the smallest allocatable
859 * units of memory (here, pages), and each level above it describes
860 * pairs of units from the levels below, hence, "buddies".
861 * At a high level, all that happens here is marking the table entry
862 * at the bottom level available, and propagating the changes upward
863 * as necessary, plus some accounting needed to play nicely with other
864 * parts of the VM system.
865 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
866 * free pages of length of (1 << order) and marked with PageBuddy.
867 * Page's order is recorded in page_private(page) field.
1da177e4 868 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
869 * other. That is, if we allocate a small block, and both were
870 * free, the remainder of the region must be split into blocks.
1da177e4 871 * If a block is freed, and its buddy is also free, then this
5f63b720 872 * triggers coalescing into a block of larger size.
1da177e4 873 *
6d49e352 874 * -- nyc
1da177e4
LT
875 */
876
48db57f8 877static inline void __free_one_page(struct page *page,
dc4b0caf 878 unsigned long pfn,
ed0ae21d
MG
879 struct zone *zone, unsigned int order,
880 int migratetype)
1da177e4 881{
76741e77
VB
882 unsigned long combined_pfn;
883 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 884 struct page *buddy;
d9dddbf5 885 unsigned int max_order;
5e1f0f09 886 struct capture_control *capc = task_capc(zone);
d9dddbf5
VB
887
888 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 889
d29bb978 890 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 891 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 892
ed0ae21d 893 VM_BUG_ON(migratetype == -1);
d9dddbf5 894 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 895 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 896
76741e77 897 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 898 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 899
d9dddbf5 900continue_merging:
3c605096 901 while (order < max_order - 1) {
5e1f0f09
MG
902 if (compaction_capture(capc, page, order, migratetype)) {
903 __mod_zone_freepage_state(zone, -(1 << order),
904 migratetype);
905 return;
906 }
76741e77
VB
907 buddy_pfn = __find_buddy_pfn(pfn, order);
908 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
909
910 if (!pfn_valid_within(buddy_pfn))
911 goto done_merging;
cb2b95e1 912 if (!page_is_buddy(page, buddy, order))
d9dddbf5 913 goto done_merging;
c0a32fc5
SG
914 /*
915 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
916 * merge with it and move up one order.
917 */
b03641af 918 if (page_is_guard(buddy))
2847cf95 919 clear_page_guard(zone, buddy, order, migratetype);
b03641af
DW
920 else
921 del_page_from_free_area(buddy, &zone->free_area[order]);
76741e77
VB
922 combined_pfn = buddy_pfn & pfn;
923 page = page + (combined_pfn - pfn);
924 pfn = combined_pfn;
1da177e4
LT
925 order++;
926 }
d9dddbf5
VB
927 if (max_order < MAX_ORDER) {
928 /* If we are here, it means order is >= pageblock_order.
929 * We want to prevent merge between freepages on isolate
930 * pageblock and normal pageblock. Without this, pageblock
931 * isolation could cause incorrect freepage or CMA accounting.
932 *
933 * We don't want to hit this code for the more frequent
934 * low-order merging.
935 */
936 if (unlikely(has_isolate_pageblock(zone))) {
937 int buddy_mt;
938
76741e77
VB
939 buddy_pfn = __find_buddy_pfn(pfn, order);
940 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
941 buddy_mt = get_pageblock_migratetype(buddy);
942
943 if (migratetype != buddy_mt
944 && (is_migrate_isolate(migratetype) ||
945 is_migrate_isolate(buddy_mt)))
946 goto done_merging;
947 }
948 max_order++;
949 goto continue_merging;
950 }
951
952done_merging:
1da177e4 953 set_page_order(page, order);
6dda9d55
CZ
954
955 /*
956 * If this is not the largest possible page, check if the buddy
957 * of the next-highest order is free. If it is, it's possible
958 * that pages are being freed that will coalesce soon. In case,
959 * that is happening, add the free page to the tail of the list
960 * so it's less likely to be used soon and more likely to be merged
961 * as a higher order page
962 */
97500a4a
DW
963 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
964 && !is_shuffle_order(order)) {
6dda9d55 965 struct page *higher_page, *higher_buddy;
76741e77
VB
966 combined_pfn = buddy_pfn & pfn;
967 higher_page = page + (combined_pfn - pfn);
968 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
969 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
970 if (pfn_valid_within(buddy_pfn) &&
971 page_is_buddy(higher_page, higher_buddy, order + 1)) {
b03641af
DW
972 add_to_free_area_tail(page, &zone->free_area[order],
973 migratetype);
974 return;
6dda9d55
CZ
975 }
976 }
977
97500a4a
DW
978 if (is_shuffle_order(order))
979 add_to_free_area_random(page, &zone->free_area[order],
980 migratetype);
981 else
982 add_to_free_area(page, &zone->free_area[order], migratetype);
983
1da177e4
LT
984}
985
7bfec6f4
MG
986/*
987 * A bad page could be due to a number of fields. Instead of multiple branches,
988 * try and check multiple fields with one check. The caller must do a detailed
989 * check if necessary.
990 */
991static inline bool page_expected_state(struct page *page,
992 unsigned long check_flags)
993{
994 if (unlikely(atomic_read(&page->_mapcount) != -1))
995 return false;
996
997 if (unlikely((unsigned long)page->mapping |
998 page_ref_count(page) |
999#ifdef CONFIG_MEMCG
1000 (unsigned long)page->mem_cgroup |
1001#endif
1002 (page->flags & check_flags)))
1003 return false;
1004
1005 return true;
1006}
1007
bb552ac6 1008static void free_pages_check_bad(struct page *page)
1da177e4 1009{
7bfec6f4
MG
1010 const char *bad_reason;
1011 unsigned long bad_flags;
1012
7bfec6f4
MG
1013 bad_reason = NULL;
1014 bad_flags = 0;
f0b791a3 1015
53f9263b 1016 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1017 bad_reason = "nonzero mapcount";
1018 if (unlikely(page->mapping != NULL))
1019 bad_reason = "non-NULL mapping";
fe896d18 1020 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1021 bad_reason = "nonzero _refcount";
f0b791a3
DH
1022 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1023 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1024 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1025 }
9edad6ea
JW
1026#ifdef CONFIG_MEMCG
1027 if (unlikely(page->mem_cgroup))
1028 bad_reason = "page still charged to cgroup";
1029#endif
7bfec6f4 1030 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1031}
1032
1033static inline int free_pages_check(struct page *page)
1034{
da838d4f 1035 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1036 return 0;
bb552ac6
MG
1037
1038 /* Something has gone sideways, find it */
1039 free_pages_check_bad(page);
7bfec6f4 1040 return 1;
1da177e4
LT
1041}
1042
4db7548c
MG
1043static int free_tail_pages_check(struct page *head_page, struct page *page)
1044{
1045 int ret = 1;
1046
1047 /*
1048 * We rely page->lru.next never has bit 0 set, unless the page
1049 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1050 */
1051 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1052
1053 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1054 ret = 0;
1055 goto out;
1056 }
1057 switch (page - head_page) {
1058 case 1:
4da1984e 1059 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1060 if (unlikely(compound_mapcount(page))) {
1061 bad_page(page, "nonzero compound_mapcount", 0);
1062 goto out;
1063 }
1064 break;
1065 case 2:
1066 /*
1067 * the second tail page: ->mapping is
fa3015b7 1068 * deferred_list.next -- ignore value.
4db7548c
MG
1069 */
1070 break;
1071 default:
1072 if (page->mapping != TAIL_MAPPING) {
1073 bad_page(page, "corrupted mapping in tail page", 0);
1074 goto out;
1075 }
1076 break;
1077 }
1078 if (unlikely(!PageTail(page))) {
1079 bad_page(page, "PageTail not set", 0);
1080 goto out;
1081 }
1082 if (unlikely(compound_head(page) != head_page)) {
1083 bad_page(page, "compound_head not consistent", 0);
1084 goto out;
1085 }
1086 ret = 0;
1087out:
1088 page->mapping = NULL;
1089 clear_compound_head(page);
1090 return ret;
1091}
1092
e2769dbd
MG
1093static __always_inline bool free_pages_prepare(struct page *page,
1094 unsigned int order, bool check_free)
4db7548c 1095{
e2769dbd 1096 int bad = 0;
4db7548c 1097
4db7548c
MG
1098 VM_BUG_ON_PAGE(PageTail(page), page);
1099
e2769dbd 1100 trace_mm_page_free(page, order);
e2769dbd
MG
1101
1102 /*
1103 * Check tail pages before head page information is cleared to
1104 * avoid checking PageCompound for order-0 pages.
1105 */
1106 if (unlikely(order)) {
1107 bool compound = PageCompound(page);
1108 int i;
1109
1110 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1111
9a73f61b
KS
1112 if (compound)
1113 ClearPageDoubleMap(page);
e2769dbd
MG
1114 for (i = 1; i < (1 << order); i++) {
1115 if (compound)
1116 bad += free_tail_pages_check(page, page + i);
1117 if (unlikely(free_pages_check(page + i))) {
1118 bad++;
1119 continue;
1120 }
1121 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1122 }
1123 }
bda807d4 1124 if (PageMappingFlags(page))
4db7548c 1125 page->mapping = NULL;
c4159a75 1126 if (memcg_kmem_enabled() && PageKmemcg(page))
60cd4bcd 1127 __memcg_kmem_uncharge(page, order);
e2769dbd
MG
1128 if (check_free)
1129 bad += free_pages_check(page);
1130 if (bad)
1131 return false;
4db7548c 1132
e2769dbd
MG
1133 page_cpupid_reset_last(page);
1134 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1135 reset_page_owner(page, order);
4db7548c
MG
1136
1137 if (!PageHighMem(page)) {
1138 debug_check_no_locks_freed(page_address(page),
e2769dbd 1139 PAGE_SIZE << order);
4db7548c 1140 debug_check_no_obj_freed(page_address(page),
e2769dbd 1141 PAGE_SIZE << order);
4db7548c 1142 }
e2769dbd
MG
1143 arch_free_page(page, order);
1144 kernel_poison_pages(page, 1 << order, 0);
d6332692
RE
1145 if (debug_pagealloc_enabled())
1146 kernel_map_pages(page, 1 << order, 0);
1147
3c0c12cc 1148 kasan_free_nondeferred_pages(page, order);
4db7548c 1149
4db7548c
MG
1150 return true;
1151}
1152
e2769dbd
MG
1153#ifdef CONFIG_DEBUG_VM
1154static inline bool free_pcp_prepare(struct page *page)
1155{
1156 return free_pages_prepare(page, 0, true);
1157}
1158
1159static inline bool bulkfree_pcp_prepare(struct page *page)
1160{
1161 return false;
1162}
1163#else
1164static bool free_pcp_prepare(struct page *page)
1165{
1166 return free_pages_prepare(page, 0, false);
1167}
1168
4db7548c
MG
1169static bool bulkfree_pcp_prepare(struct page *page)
1170{
1171 return free_pages_check(page);
1172}
1173#endif /* CONFIG_DEBUG_VM */
1174
97334162
AL
1175static inline void prefetch_buddy(struct page *page)
1176{
1177 unsigned long pfn = page_to_pfn(page);
1178 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1179 struct page *buddy = page + (buddy_pfn - pfn);
1180
1181 prefetch(buddy);
1182}
1183
1da177e4 1184/*
5f8dcc21 1185 * Frees a number of pages from the PCP lists
1da177e4 1186 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1187 * count is the number of pages to free.
1da177e4
LT
1188 *
1189 * If the zone was previously in an "all pages pinned" state then look to
1190 * see if this freeing clears that state.
1191 *
1192 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1193 * pinned" detection logic.
1194 */
5f8dcc21
MG
1195static void free_pcppages_bulk(struct zone *zone, int count,
1196 struct per_cpu_pages *pcp)
1da177e4 1197{
5f8dcc21 1198 int migratetype = 0;
a6f9edd6 1199 int batch_free = 0;
97334162 1200 int prefetch_nr = 0;
3777999d 1201 bool isolated_pageblocks;
0a5f4e5b
AL
1202 struct page *page, *tmp;
1203 LIST_HEAD(head);
f2260e6b 1204
e5b31ac2 1205 while (count) {
5f8dcc21
MG
1206 struct list_head *list;
1207
1208 /*
a6f9edd6
MG
1209 * Remove pages from lists in a round-robin fashion. A
1210 * batch_free count is maintained that is incremented when an
1211 * empty list is encountered. This is so more pages are freed
1212 * off fuller lists instead of spinning excessively around empty
1213 * lists
5f8dcc21
MG
1214 */
1215 do {
a6f9edd6 1216 batch_free++;
5f8dcc21
MG
1217 if (++migratetype == MIGRATE_PCPTYPES)
1218 migratetype = 0;
1219 list = &pcp->lists[migratetype];
1220 } while (list_empty(list));
48db57f8 1221
1d16871d
NK
1222 /* This is the only non-empty list. Free them all. */
1223 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1224 batch_free = count;
1d16871d 1225
a6f9edd6 1226 do {
a16601c5 1227 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1228 /* must delete to avoid corrupting pcp list */
a6f9edd6 1229 list_del(&page->lru);
77ba9062 1230 pcp->count--;
aa016d14 1231
4db7548c
MG
1232 if (bulkfree_pcp_prepare(page))
1233 continue;
1234
0a5f4e5b 1235 list_add_tail(&page->lru, &head);
97334162
AL
1236
1237 /*
1238 * We are going to put the page back to the global
1239 * pool, prefetch its buddy to speed up later access
1240 * under zone->lock. It is believed the overhead of
1241 * an additional test and calculating buddy_pfn here
1242 * can be offset by reduced memory latency later. To
1243 * avoid excessive prefetching due to large count, only
1244 * prefetch buddy for the first pcp->batch nr of pages.
1245 */
1246 if (prefetch_nr++ < pcp->batch)
1247 prefetch_buddy(page);
e5b31ac2 1248 } while (--count && --batch_free && !list_empty(list));
1da177e4 1249 }
0a5f4e5b
AL
1250
1251 spin_lock(&zone->lock);
1252 isolated_pageblocks = has_isolate_pageblock(zone);
1253
1254 /*
1255 * Use safe version since after __free_one_page(),
1256 * page->lru.next will not point to original list.
1257 */
1258 list_for_each_entry_safe(page, tmp, &head, lru) {
1259 int mt = get_pcppage_migratetype(page);
1260 /* MIGRATE_ISOLATE page should not go to pcplists */
1261 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1262 /* Pageblock could have been isolated meanwhile */
1263 if (unlikely(isolated_pageblocks))
1264 mt = get_pageblock_migratetype(page);
1265
1266 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1267 trace_mm_page_pcpu_drain(page, 0, mt);
1268 }
d34b0733 1269 spin_unlock(&zone->lock);
1da177e4
LT
1270}
1271
dc4b0caf
MG
1272static void free_one_page(struct zone *zone,
1273 struct page *page, unsigned long pfn,
7aeb09f9 1274 unsigned int order,
ed0ae21d 1275 int migratetype)
1da177e4 1276{
d34b0733 1277 spin_lock(&zone->lock);
ad53f92e
JK
1278 if (unlikely(has_isolate_pageblock(zone) ||
1279 is_migrate_isolate(migratetype))) {
1280 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1281 }
dc4b0caf 1282 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1283 spin_unlock(&zone->lock);
48db57f8
NP
1284}
1285
1e8ce83c 1286static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1287 unsigned long zone, int nid)
1e8ce83c 1288{
d0dc12e8 1289 mm_zero_struct_page(page);
1e8ce83c 1290 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1291 init_page_count(page);
1292 page_mapcount_reset(page);
1293 page_cpupid_reset_last(page);
2813b9c0 1294 page_kasan_tag_reset(page);
1e8ce83c 1295
1e8ce83c
RH
1296 INIT_LIST_HEAD(&page->lru);
1297#ifdef WANT_PAGE_VIRTUAL
1298 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1299 if (!is_highmem_idx(zone))
1300 set_page_address(page, __va(pfn << PAGE_SHIFT));
1301#endif
1302}
1303
7e18adb4 1304#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1305static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1306{
1307 pg_data_t *pgdat;
1308 int nid, zid;
1309
1310 if (!early_page_uninitialised(pfn))
1311 return;
1312
1313 nid = early_pfn_to_nid(pfn);
1314 pgdat = NODE_DATA(nid);
1315
1316 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1317 struct zone *zone = &pgdat->node_zones[zid];
1318
1319 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1320 break;
1321 }
d0dc12e8 1322 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1323}
1324#else
1325static inline void init_reserved_page(unsigned long pfn)
1326{
1327}
1328#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1329
92923ca3
NZ
1330/*
1331 * Initialised pages do not have PageReserved set. This function is
1332 * called for each range allocated by the bootmem allocator and
1333 * marks the pages PageReserved. The remaining valid pages are later
1334 * sent to the buddy page allocator.
1335 */
4b50bcc7 1336void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1337{
1338 unsigned long start_pfn = PFN_DOWN(start);
1339 unsigned long end_pfn = PFN_UP(end);
1340
7e18adb4
MG
1341 for (; start_pfn < end_pfn; start_pfn++) {
1342 if (pfn_valid(start_pfn)) {
1343 struct page *page = pfn_to_page(start_pfn);
1344
1345 init_reserved_page(start_pfn);
1d798ca3
KS
1346
1347 /* Avoid false-positive PageTail() */
1348 INIT_LIST_HEAD(&page->lru);
1349
d483da5b
AD
1350 /*
1351 * no need for atomic set_bit because the struct
1352 * page is not visible yet so nobody should
1353 * access it yet.
1354 */
1355 __SetPageReserved(page);
7e18adb4
MG
1356 }
1357 }
92923ca3
NZ
1358}
1359
ec95f53a
KM
1360static void __free_pages_ok(struct page *page, unsigned int order)
1361{
d34b0733 1362 unsigned long flags;
95e34412 1363 int migratetype;
dc4b0caf 1364 unsigned long pfn = page_to_pfn(page);
ec95f53a 1365
e2769dbd 1366 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1367 return;
1368
cfc47a28 1369 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1370 local_irq_save(flags);
1371 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1372 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1373 local_irq_restore(flags);
1da177e4
LT
1374}
1375
a9cd410a 1376void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1377{
c3993076 1378 unsigned int nr_pages = 1 << order;
e2d0bd2b 1379 struct page *p = page;
c3993076 1380 unsigned int loop;
a226f6c8 1381
e2d0bd2b
YL
1382 prefetchw(p);
1383 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1384 prefetchw(p + 1);
c3993076
JW
1385 __ClearPageReserved(p);
1386 set_page_count(p, 0);
a226f6c8 1387 }
e2d0bd2b
YL
1388 __ClearPageReserved(p);
1389 set_page_count(p, 0);
c3993076 1390
9705bea5 1391 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1392 set_page_refcounted(page);
1393 __free_pages(page, order);
a226f6c8
DH
1394}
1395
75a592a4
MG
1396#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1397 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1398
75a592a4
MG
1399static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1400
1401int __meminit early_pfn_to_nid(unsigned long pfn)
1402{
7ace9917 1403 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1404 int nid;
1405
7ace9917 1406 spin_lock(&early_pfn_lock);
75a592a4 1407 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1408 if (nid < 0)
e4568d38 1409 nid = first_online_node;
7ace9917
MG
1410 spin_unlock(&early_pfn_lock);
1411
1412 return nid;
75a592a4
MG
1413}
1414#endif
1415
1416#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1417/* Only safe to use early in boot when initialisation is single-threaded */
1418static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1419{
1420 int nid;
1421
56ec43d8 1422 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1423 if (nid >= 0 && nid != node)
1424 return false;
1425 return true;
1426}
1427
75a592a4 1428#else
75a592a4
MG
1429static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1430{
1431 return true;
1432}
75a592a4
MG
1433#endif
1434
1435
7c2ee349 1436void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1437 unsigned int order)
1438{
1439 if (early_page_uninitialised(pfn))
1440 return;
a9cd410a 1441 __free_pages_core(page, order);
3a80a7fa
MG
1442}
1443
7cf91a98
JK
1444/*
1445 * Check that the whole (or subset of) a pageblock given by the interval of
1446 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1447 * with the migration of free compaction scanner. The scanners then need to
1448 * use only pfn_valid_within() check for arches that allow holes within
1449 * pageblocks.
1450 *
1451 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1452 *
1453 * It's possible on some configurations to have a setup like node0 node1 node0
1454 * i.e. it's possible that all pages within a zones range of pages do not
1455 * belong to a single zone. We assume that a border between node0 and node1
1456 * can occur within a single pageblock, but not a node0 node1 node0
1457 * interleaving within a single pageblock. It is therefore sufficient to check
1458 * the first and last page of a pageblock and avoid checking each individual
1459 * page in a pageblock.
1460 */
1461struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1462 unsigned long end_pfn, struct zone *zone)
1463{
1464 struct page *start_page;
1465 struct page *end_page;
1466
1467 /* end_pfn is one past the range we are checking */
1468 end_pfn--;
1469
1470 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1471 return NULL;
1472
2d070eab
MH
1473 start_page = pfn_to_online_page(start_pfn);
1474 if (!start_page)
1475 return NULL;
7cf91a98
JK
1476
1477 if (page_zone(start_page) != zone)
1478 return NULL;
1479
1480 end_page = pfn_to_page(end_pfn);
1481
1482 /* This gives a shorter code than deriving page_zone(end_page) */
1483 if (page_zone_id(start_page) != page_zone_id(end_page))
1484 return NULL;
1485
1486 return start_page;
1487}
1488
1489void set_zone_contiguous(struct zone *zone)
1490{
1491 unsigned long block_start_pfn = zone->zone_start_pfn;
1492 unsigned long block_end_pfn;
1493
1494 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1495 for (; block_start_pfn < zone_end_pfn(zone);
1496 block_start_pfn = block_end_pfn,
1497 block_end_pfn += pageblock_nr_pages) {
1498
1499 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1500
1501 if (!__pageblock_pfn_to_page(block_start_pfn,
1502 block_end_pfn, zone))
1503 return;
1504 }
1505
1506 /* We confirm that there is no hole */
1507 zone->contiguous = true;
1508}
1509
1510void clear_zone_contiguous(struct zone *zone)
1511{
1512 zone->contiguous = false;
1513}
1514
7e18adb4 1515#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1516static void __init deferred_free_range(unsigned long pfn,
1517 unsigned long nr_pages)
a4de83dd 1518{
2f47a91f
PT
1519 struct page *page;
1520 unsigned long i;
a4de83dd 1521
2f47a91f 1522 if (!nr_pages)
a4de83dd
MG
1523 return;
1524
2f47a91f
PT
1525 page = pfn_to_page(pfn);
1526
a4de83dd 1527 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1528 if (nr_pages == pageblock_nr_pages &&
1529 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1530 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1531 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1532 return;
1533 }
1534
e780149b
XQ
1535 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1536 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1537 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1538 __free_pages_core(page, 0);
e780149b 1539 }
a4de83dd
MG
1540}
1541
d3cd131d
NS
1542/* Completion tracking for deferred_init_memmap() threads */
1543static atomic_t pgdat_init_n_undone __initdata;
1544static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1545
1546static inline void __init pgdat_init_report_one_done(void)
1547{
1548 if (atomic_dec_and_test(&pgdat_init_n_undone))
1549 complete(&pgdat_init_all_done_comp);
1550}
0e1cc95b 1551
2f47a91f 1552/*
80b1f41c
PT
1553 * Returns true if page needs to be initialized or freed to buddy allocator.
1554 *
1555 * First we check if pfn is valid on architectures where it is possible to have
1556 * holes within pageblock_nr_pages. On systems where it is not possible, this
1557 * function is optimized out.
1558 *
1559 * Then, we check if a current large page is valid by only checking the validity
1560 * of the head pfn.
2f47a91f 1561 */
56ec43d8 1562static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1563{
80b1f41c
PT
1564 if (!pfn_valid_within(pfn))
1565 return false;
1566 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1567 return false;
80b1f41c
PT
1568 return true;
1569}
2f47a91f 1570
80b1f41c
PT
1571/*
1572 * Free pages to buddy allocator. Try to free aligned pages in
1573 * pageblock_nr_pages sizes.
1574 */
56ec43d8 1575static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1576 unsigned long end_pfn)
1577{
80b1f41c
PT
1578 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1579 unsigned long nr_free = 0;
2f47a91f 1580
80b1f41c 1581 for (; pfn < end_pfn; pfn++) {
56ec43d8 1582 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1583 deferred_free_range(pfn - nr_free, nr_free);
1584 nr_free = 0;
1585 } else if (!(pfn & nr_pgmask)) {
1586 deferred_free_range(pfn - nr_free, nr_free);
1587 nr_free = 1;
3a2d7fa8 1588 touch_nmi_watchdog();
80b1f41c
PT
1589 } else {
1590 nr_free++;
1591 }
1592 }
1593 /* Free the last block of pages to allocator */
1594 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1595}
1596
80b1f41c
PT
1597/*
1598 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1599 * by performing it only once every pageblock_nr_pages.
1600 * Return number of pages initialized.
1601 */
56ec43d8 1602static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1603 unsigned long pfn,
1604 unsigned long end_pfn)
2f47a91f 1605{
2f47a91f 1606 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1607 int nid = zone_to_nid(zone);
2f47a91f 1608 unsigned long nr_pages = 0;
56ec43d8 1609 int zid = zone_idx(zone);
2f47a91f 1610 struct page *page = NULL;
2f47a91f 1611
80b1f41c 1612 for (; pfn < end_pfn; pfn++) {
56ec43d8 1613 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1614 page = NULL;
2f47a91f 1615 continue;
80b1f41c 1616 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1617 page = pfn_to_page(pfn);
3a2d7fa8 1618 touch_nmi_watchdog();
80b1f41c
PT
1619 } else {
1620 page++;
2f47a91f 1621 }
d0dc12e8 1622 __init_single_page(page, pfn, zid, nid);
80b1f41c 1623 nr_pages++;
2f47a91f 1624 }
80b1f41c 1625 return (nr_pages);
2f47a91f
PT
1626}
1627
0e56acae
AD
1628/*
1629 * This function is meant to pre-load the iterator for the zone init.
1630 * Specifically it walks through the ranges until we are caught up to the
1631 * first_init_pfn value and exits there. If we never encounter the value we
1632 * return false indicating there are no valid ranges left.
1633 */
1634static bool __init
1635deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1636 unsigned long *spfn, unsigned long *epfn,
1637 unsigned long first_init_pfn)
1638{
1639 u64 j;
1640
1641 /*
1642 * Start out by walking through the ranges in this zone that have
1643 * already been initialized. We don't need to do anything with them
1644 * so we just need to flush them out of the system.
1645 */
1646 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1647 if (*epfn <= first_init_pfn)
1648 continue;
1649 if (*spfn < first_init_pfn)
1650 *spfn = first_init_pfn;
1651 *i = j;
1652 return true;
1653 }
1654
1655 return false;
1656}
1657
1658/*
1659 * Initialize and free pages. We do it in two loops: first we initialize
1660 * struct page, then free to buddy allocator, because while we are
1661 * freeing pages we can access pages that are ahead (computing buddy
1662 * page in __free_one_page()).
1663 *
1664 * In order to try and keep some memory in the cache we have the loop
1665 * broken along max page order boundaries. This way we will not cause
1666 * any issues with the buddy page computation.
1667 */
1668static unsigned long __init
1669deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1670 unsigned long *end_pfn)
1671{
1672 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1673 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1674 unsigned long nr_pages = 0;
1675 u64 j = *i;
1676
1677 /* First we loop through and initialize the page values */
1678 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1679 unsigned long t;
1680
1681 if (mo_pfn <= *start_pfn)
1682 break;
1683
1684 t = min(mo_pfn, *end_pfn);
1685 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1686
1687 if (mo_pfn < *end_pfn) {
1688 *start_pfn = mo_pfn;
1689 break;
1690 }
1691 }
1692
1693 /* Reset values and now loop through freeing pages as needed */
1694 swap(j, *i);
1695
1696 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1697 unsigned long t;
1698
1699 if (mo_pfn <= spfn)
1700 break;
1701
1702 t = min(mo_pfn, epfn);
1703 deferred_free_pages(spfn, t);
1704
1705 if (mo_pfn <= epfn)
1706 break;
1707 }
1708
1709 return nr_pages;
1710}
1711
7e18adb4 1712/* Initialise remaining memory on a node */
0e1cc95b 1713static int __init deferred_init_memmap(void *data)
7e18adb4 1714{
0e1cc95b 1715 pg_data_t *pgdat = data;
0e56acae
AD
1716 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1717 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1718 unsigned long first_init_pfn, flags;
7e18adb4 1719 unsigned long start = jiffies;
7e18adb4 1720 struct zone *zone;
0e56acae 1721 int zid;
2f47a91f 1722 u64 i;
7e18adb4 1723
3a2d7fa8
PT
1724 /* Bind memory initialisation thread to a local node if possible */
1725 if (!cpumask_empty(cpumask))
1726 set_cpus_allowed_ptr(current, cpumask);
1727
1728 pgdat_resize_lock(pgdat, &flags);
1729 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1730 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1731 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1732 pgdat_init_report_one_done();
0e1cc95b
MG
1733 return 0;
1734 }
1735
7e18adb4
MG
1736 /* Sanity check boundaries */
1737 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1738 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1739 pgdat->first_deferred_pfn = ULONG_MAX;
1740
1741 /* Only the highest zone is deferred so find it */
1742 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1743 zone = pgdat->node_zones + zid;
1744 if (first_init_pfn < zone_end_pfn(zone))
1745 break;
1746 }
0e56acae
AD
1747
1748 /* If the zone is empty somebody else may have cleared out the zone */
1749 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1750 first_init_pfn))
1751 goto zone_empty;
7e18adb4 1752
80b1f41c 1753 /*
0e56acae
AD
1754 * Initialize and free pages in MAX_ORDER sized increments so
1755 * that we can avoid introducing any issues with the buddy
1756 * allocator.
80b1f41c 1757 */
0e56acae
AD
1758 while (spfn < epfn)
1759 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1760zone_empty:
3a2d7fa8 1761 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1762
1763 /* Sanity check that the next zone really is unpopulated */
1764 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1765
837566e7
AD
1766 pr_info("node %d initialised, %lu pages in %ums\n",
1767 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1768
1769 pgdat_init_report_one_done();
0e1cc95b
MG
1770 return 0;
1771}
c9e97a19 1772
c9e97a19
PT
1773/*
1774 * If this zone has deferred pages, try to grow it by initializing enough
1775 * deferred pages to satisfy the allocation specified by order, rounded up to
1776 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1777 * of SECTION_SIZE bytes by initializing struct pages in increments of
1778 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1779 *
1780 * Return true when zone was grown, otherwise return false. We return true even
1781 * when we grow less than requested, to let the caller decide if there are
1782 * enough pages to satisfy the allocation.
1783 *
1784 * Note: We use noinline because this function is needed only during boot, and
1785 * it is called from a __ref function _deferred_grow_zone. This way we are
1786 * making sure that it is not inlined into permanent text section.
1787 */
1788static noinline bool __init
1789deferred_grow_zone(struct zone *zone, unsigned int order)
1790{
c9e97a19 1791 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1792 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1793 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1794 unsigned long spfn, epfn, flags;
1795 unsigned long nr_pages = 0;
c9e97a19
PT
1796 u64 i;
1797
1798 /* Only the last zone may have deferred pages */
1799 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1800 return false;
1801
1802 pgdat_resize_lock(pgdat, &flags);
1803
1804 /*
1805 * If deferred pages have been initialized while we were waiting for
1806 * the lock, return true, as the zone was grown. The caller will retry
1807 * this zone. We won't return to this function since the caller also
1808 * has this static branch.
1809 */
1810 if (!static_branch_unlikely(&deferred_pages)) {
1811 pgdat_resize_unlock(pgdat, &flags);
1812 return true;
1813 }
1814
1815 /*
1816 * If someone grew this zone while we were waiting for spinlock, return
1817 * true, as there might be enough pages already.
1818 */
1819 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1820 pgdat_resize_unlock(pgdat, &flags);
1821 return true;
1822 }
1823
0e56acae
AD
1824 /* If the zone is empty somebody else may have cleared out the zone */
1825 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1826 first_deferred_pfn)) {
1827 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1828 pgdat_resize_unlock(pgdat, &flags);
0e56acae 1829 return true;
c9e97a19
PT
1830 }
1831
0e56acae
AD
1832 /*
1833 * Initialize and free pages in MAX_ORDER sized increments so
1834 * that we can avoid introducing any issues with the buddy
1835 * allocator.
1836 */
1837 while (spfn < epfn) {
1838 /* update our first deferred PFN for this section */
1839 first_deferred_pfn = spfn;
1840
1841 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1842
0e56acae
AD
1843 /* We should only stop along section boundaries */
1844 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1845 continue;
c9e97a19 1846
0e56acae 1847 /* If our quota has been met we can stop here */
c9e97a19
PT
1848 if (nr_pages >= nr_pages_needed)
1849 break;
1850 }
1851
0e56acae 1852 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1853 pgdat_resize_unlock(pgdat, &flags);
1854
1855 return nr_pages > 0;
1856}
1857
1858/*
1859 * deferred_grow_zone() is __init, but it is called from
1860 * get_page_from_freelist() during early boot until deferred_pages permanently
1861 * disables this call. This is why we have refdata wrapper to avoid warning,
1862 * and to ensure that the function body gets unloaded.
1863 */
1864static bool __ref
1865_deferred_grow_zone(struct zone *zone, unsigned int order)
1866{
1867 return deferred_grow_zone(zone, order);
1868}
1869
7cf91a98 1870#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1871
1872void __init page_alloc_init_late(void)
1873{
7cf91a98 1874 struct zone *zone;
e900a918 1875 int nid;
7cf91a98
JK
1876
1877#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1878
d3cd131d
NS
1879 /* There will be num_node_state(N_MEMORY) threads */
1880 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1881 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1882 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1883 }
1884
1885 /* Block until all are initialised */
d3cd131d 1886 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1887
c9e97a19
PT
1888 /*
1889 * We initialized the rest of the deferred pages. Permanently disable
1890 * on-demand struct page initialization.
1891 */
1892 static_branch_disable(&deferred_pages);
1893
4248b0da
MG
1894 /* Reinit limits that are based on free pages after the kernel is up */
1895 files_maxfiles_init();
7cf91a98 1896#endif
350e88ba 1897
3010f876
PT
1898 /* Discard memblock private memory */
1899 memblock_discard();
7cf91a98 1900
e900a918
DW
1901 for_each_node_state(nid, N_MEMORY)
1902 shuffle_free_memory(NODE_DATA(nid));
1903
7cf91a98
JK
1904 for_each_populated_zone(zone)
1905 set_zone_contiguous(zone);
7e18adb4 1906}
7e18adb4 1907
47118af0 1908#ifdef CONFIG_CMA
9cf510a5 1909/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1910void __init init_cma_reserved_pageblock(struct page *page)
1911{
1912 unsigned i = pageblock_nr_pages;
1913 struct page *p = page;
1914
1915 do {
1916 __ClearPageReserved(p);
1917 set_page_count(p, 0);
d883c6cf 1918 } while (++p, --i);
47118af0 1919
47118af0 1920 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1921
1922 if (pageblock_order >= MAX_ORDER) {
1923 i = pageblock_nr_pages;
1924 p = page;
1925 do {
1926 set_page_refcounted(p);
1927 __free_pages(p, MAX_ORDER - 1);
1928 p += MAX_ORDER_NR_PAGES;
1929 } while (i -= MAX_ORDER_NR_PAGES);
1930 } else {
1931 set_page_refcounted(page);
1932 __free_pages(page, pageblock_order);
1933 }
1934
3dcc0571 1935 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1936}
1937#endif
1da177e4
LT
1938
1939/*
1940 * The order of subdivision here is critical for the IO subsystem.
1941 * Please do not alter this order without good reasons and regression
1942 * testing. Specifically, as large blocks of memory are subdivided,
1943 * the order in which smaller blocks are delivered depends on the order
1944 * they're subdivided in this function. This is the primary factor
1945 * influencing the order in which pages are delivered to the IO
1946 * subsystem according to empirical testing, and this is also justified
1947 * by considering the behavior of a buddy system containing a single
1948 * large block of memory acted on by a series of small allocations.
1949 * This behavior is a critical factor in sglist merging's success.
1950 *
6d49e352 1951 * -- nyc
1da177e4 1952 */
085cc7d5 1953static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1954 int low, int high, struct free_area *area,
1955 int migratetype)
1da177e4
LT
1956{
1957 unsigned long size = 1 << high;
1958
1959 while (high > low) {
1960 area--;
1961 high--;
1962 size >>= 1;
309381fe 1963 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1964
acbc15a4
JK
1965 /*
1966 * Mark as guard pages (or page), that will allow to
1967 * merge back to allocator when buddy will be freed.
1968 * Corresponding page table entries will not be touched,
1969 * pages will stay not present in virtual address space
1970 */
1971 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1972 continue;
acbc15a4 1973
b03641af 1974 add_to_free_area(&page[size], area, migratetype);
1da177e4
LT
1975 set_page_order(&page[size], high);
1976 }
1da177e4
LT
1977}
1978
4e611801 1979static void check_new_page_bad(struct page *page)
1da177e4 1980{
4e611801
VB
1981 const char *bad_reason = NULL;
1982 unsigned long bad_flags = 0;
7bfec6f4 1983
53f9263b 1984 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1985 bad_reason = "nonzero mapcount";
1986 if (unlikely(page->mapping != NULL))
1987 bad_reason = "non-NULL mapping";
fe896d18 1988 if (unlikely(page_ref_count(page) != 0))
136ac591 1989 bad_reason = "nonzero _refcount";
f4c18e6f
NH
1990 if (unlikely(page->flags & __PG_HWPOISON)) {
1991 bad_reason = "HWPoisoned (hardware-corrupted)";
1992 bad_flags = __PG_HWPOISON;
e570f56c
NH
1993 /* Don't complain about hwpoisoned pages */
1994 page_mapcount_reset(page); /* remove PageBuddy */
1995 return;
f4c18e6f 1996 }
f0b791a3
DH
1997 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1998 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1999 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2000 }
9edad6ea
JW
2001#ifdef CONFIG_MEMCG
2002 if (unlikely(page->mem_cgroup))
2003 bad_reason = "page still charged to cgroup";
2004#endif
4e611801
VB
2005 bad_page(page, bad_reason, bad_flags);
2006}
2007
2008/*
2009 * This page is about to be returned from the page allocator
2010 */
2011static inline int check_new_page(struct page *page)
2012{
2013 if (likely(page_expected_state(page,
2014 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2015 return 0;
2016
2017 check_new_page_bad(page);
2018 return 1;
2a7684a2
WF
2019}
2020
bd33ef36 2021static inline bool free_pages_prezeroed(void)
1414c7f4
LA
2022{
2023 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 2024 page_poisoning_enabled();
1414c7f4
LA
2025}
2026
479f854a
MG
2027#ifdef CONFIG_DEBUG_VM
2028static bool check_pcp_refill(struct page *page)
2029{
2030 return false;
2031}
2032
2033static bool check_new_pcp(struct page *page)
2034{
2035 return check_new_page(page);
2036}
2037#else
2038static bool check_pcp_refill(struct page *page)
2039{
2040 return check_new_page(page);
2041}
2042static bool check_new_pcp(struct page *page)
2043{
2044 return false;
2045}
2046#endif /* CONFIG_DEBUG_VM */
2047
2048static bool check_new_pages(struct page *page, unsigned int order)
2049{
2050 int i;
2051 for (i = 0; i < (1 << order); i++) {
2052 struct page *p = page + i;
2053
2054 if (unlikely(check_new_page(p)))
2055 return true;
2056 }
2057
2058 return false;
2059}
2060
46f24fd8
JK
2061inline void post_alloc_hook(struct page *page, unsigned int order,
2062 gfp_t gfp_flags)
2063{
2064 set_page_private(page, 0);
2065 set_page_refcounted(page);
2066
2067 arch_alloc_page(page, order);
d6332692
RE
2068 if (debug_pagealloc_enabled())
2069 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2070 kasan_alloc_pages(page, order);
4117992d 2071 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2072 set_page_owner(page, order, gfp_flags);
2073}
2074
479f854a 2075static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2076 unsigned int alloc_flags)
2a7684a2
WF
2077{
2078 int i;
689bcebf 2079
46f24fd8 2080 post_alloc_hook(page, order, gfp_flags);
17cf4406 2081
bd33ef36 2082 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
2083 for (i = 0; i < (1 << order); i++)
2084 clear_highpage(page + i);
17cf4406
NP
2085
2086 if (order && (gfp_flags & __GFP_COMP))
2087 prep_compound_page(page, order);
2088
75379191 2089 /*
2f064f34 2090 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2091 * allocate the page. The expectation is that the caller is taking
2092 * steps that will free more memory. The caller should avoid the page
2093 * being used for !PFMEMALLOC purposes.
2094 */
2f064f34
MH
2095 if (alloc_flags & ALLOC_NO_WATERMARKS)
2096 set_page_pfmemalloc(page);
2097 else
2098 clear_page_pfmemalloc(page);
1da177e4
LT
2099}
2100
56fd56b8
MG
2101/*
2102 * Go through the free lists for the given migratetype and remove
2103 * the smallest available page from the freelists
2104 */
85ccc8fa 2105static __always_inline
728ec980 2106struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2107 int migratetype)
2108{
2109 unsigned int current_order;
b8af2941 2110 struct free_area *area;
56fd56b8
MG
2111 struct page *page;
2112
2113 /* Find a page of the appropriate size in the preferred list */
2114 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2115 area = &(zone->free_area[current_order]);
b03641af 2116 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2117 if (!page)
2118 continue;
b03641af 2119 del_page_from_free_area(page, area);
56fd56b8 2120 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2121 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2122 return page;
2123 }
2124
2125 return NULL;
2126}
2127
2128
b2a0ac88
MG
2129/*
2130 * This array describes the order lists are fallen back to when
2131 * the free lists for the desirable migrate type are depleted
2132 */
47118af0 2133static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2134 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2135 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2136 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2137#ifdef CONFIG_CMA
974a786e 2138 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2139#endif
194159fb 2140#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2141 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2142#endif
b2a0ac88
MG
2143};
2144
dc67647b 2145#ifdef CONFIG_CMA
85ccc8fa 2146static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2147 unsigned int order)
2148{
2149 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2150}
2151#else
2152static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2153 unsigned int order) { return NULL; }
2154#endif
2155
c361be55
MG
2156/*
2157 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2158 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2159 * boundary. If alignment is required, use move_freepages_block()
2160 */
02aa0cdd 2161static int move_freepages(struct zone *zone,
b69a7288 2162 struct page *start_page, struct page *end_page,
02aa0cdd 2163 int migratetype, int *num_movable)
c361be55
MG
2164{
2165 struct page *page;
d00181b9 2166 unsigned int order;
d100313f 2167 int pages_moved = 0;
c361be55
MG
2168
2169#ifndef CONFIG_HOLES_IN_ZONE
2170 /*
2171 * page_zone is not safe to call in this context when
2172 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2173 * anyway as we check zone boundaries in move_freepages_block().
2174 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2175 * grouping pages by mobility
c361be55 2176 */
3e04040d
AB
2177 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2178 pfn_valid(page_to_pfn(end_page)) &&
2179 page_zone(start_page) != page_zone(end_page));
c361be55 2180#endif
c361be55
MG
2181 for (page = start_page; page <= end_page;) {
2182 if (!pfn_valid_within(page_to_pfn(page))) {
2183 page++;
2184 continue;
2185 }
2186
f073bdc5
AB
2187 /* Make sure we are not inadvertently changing nodes */
2188 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2189
c361be55 2190 if (!PageBuddy(page)) {
02aa0cdd
VB
2191 /*
2192 * We assume that pages that could be isolated for
2193 * migration are movable. But we don't actually try
2194 * isolating, as that would be expensive.
2195 */
2196 if (num_movable &&
2197 (PageLRU(page) || __PageMovable(page)))
2198 (*num_movable)++;
2199
c361be55
MG
2200 page++;
2201 continue;
2202 }
2203
2204 order = page_order(page);
b03641af 2205 move_to_free_area(page, &zone->free_area[order], migratetype);
c361be55 2206 page += 1 << order;
d100313f 2207 pages_moved += 1 << order;
c361be55
MG
2208 }
2209
d100313f 2210 return pages_moved;
c361be55
MG
2211}
2212
ee6f509c 2213int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2214 int migratetype, int *num_movable)
c361be55
MG
2215{
2216 unsigned long start_pfn, end_pfn;
2217 struct page *start_page, *end_page;
2218
4a222127
DR
2219 if (num_movable)
2220 *num_movable = 0;
2221
c361be55 2222 start_pfn = page_to_pfn(page);
d9c23400 2223 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2224 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2225 end_page = start_page + pageblock_nr_pages - 1;
2226 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2227
2228 /* Do not cross zone boundaries */
108bcc96 2229 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2230 start_page = page;
108bcc96 2231 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2232 return 0;
2233
02aa0cdd
VB
2234 return move_freepages(zone, start_page, end_page, migratetype,
2235 num_movable);
c361be55
MG
2236}
2237
2f66a68f
MG
2238static void change_pageblock_range(struct page *pageblock_page,
2239 int start_order, int migratetype)
2240{
2241 int nr_pageblocks = 1 << (start_order - pageblock_order);
2242
2243 while (nr_pageblocks--) {
2244 set_pageblock_migratetype(pageblock_page, migratetype);
2245 pageblock_page += pageblock_nr_pages;
2246 }
2247}
2248
fef903ef 2249/*
9c0415eb
VB
2250 * When we are falling back to another migratetype during allocation, try to
2251 * steal extra free pages from the same pageblocks to satisfy further
2252 * allocations, instead of polluting multiple pageblocks.
2253 *
2254 * If we are stealing a relatively large buddy page, it is likely there will
2255 * be more free pages in the pageblock, so try to steal them all. For
2256 * reclaimable and unmovable allocations, we steal regardless of page size,
2257 * as fragmentation caused by those allocations polluting movable pageblocks
2258 * is worse than movable allocations stealing from unmovable and reclaimable
2259 * pageblocks.
fef903ef 2260 */
4eb7dce6
JK
2261static bool can_steal_fallback(unsigned int order, int start_mt)
2262{
2263 /*
2264 * Leaving this order check is intended, although there is
2265 * relaxed order check in next check. The reason is that
2266 * we can actually steal whole pageblock if this condition met,
2267 * but, below check doesn't guarantee it and that is just heuristic
2268 * so could be changed anytime.
2269 */
2270 if (order >= pageblock_order)
2271 return true;
2272
2273 if (order >= pageblock_order / 2 ||
2274 start_mt == MIGRATE_RECLAIMABLE ||
2275 start_mt == MIGRATE_UNMOVABLE ||
2276 page_group_by_mobility_disabled)
2277 return true;
2278
2279 return false;
2280}
2281
1c30844d
MG
2282static inline void boost_watermark(struct zone *zone)
2283{
2284 unsigned long max_boost;
2285
2286 if (!watermark_boost_factor)
2287 return;
2288
2289 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2290 watermark_boost_factor, 10000);
94b3334c
MG
2291
2292 /*
2293 * high watermark may be uninitialised if fragmentation occurs
2294 * very early in boot so do not boost. We do not fall
2295 * through and boost by pageblock_nr_pages as failing
2296 * allocations that early means that reclaim is not going
2297 * to help and it may even be impossible to reclaim the
2298 * boosted watermark resulting in a hang.
2299 */
2300 if (!max_boost)
2301 return;
2302
1c30844d
MG
2303 max_boost = max(pageblock_nr_pages, max_boost);
2304
2305 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2306 max_boost);
2307}
2308
4eb7dce6
JK
2309/*
2310 * This function implements actual steal behaviour. If order is large enough,
2311 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2312 * pageblock to our migratetype and determine how many already-allocated pages
2313 * are there in the pageblock with a compatible migratetype. If at least half
2314 * of pages are free or compatible, we can change migratetype of the pageblock
2315 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2316 */
2317static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2318 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2319{
d00181b9 2320 unsigned int current_order = page_order(page);
3bc48f96 2321 struct free_area *area;
02aa0cdd
VB
2322 int free_pages, movable_pages, alike_pages;
2323 int old_block_type;
2324
2325 old_block_type = get_pageblock_migratetype(page);
fef903ef 2326
3bc48f96
VB
2327 /*
2328 * This can happen due to races and we want to prevent broken
2329 * highatomic accounting.
2330 */
02aa0cdd 2331 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2332 goto single_page;
2333
fef903ef
SB
2334 /* Take ownership for orders >= pageblock_order */
2335 if (current_order >= pageblock_order) {
2336 change_pageblock_range(page, current_order, start_type);
3bc48f96 2337 goto single_page;
fef903ef
SB
2338 }
2339
1c30844d
MG
2340 /*
2341 * Boost watermarks to increase reclaim pressure to reduce the
2342 * likelihood of future fallbacks. Wake kswapd now as the node
2343 * may be balanced overall and kswapd will not wake naturally.
2344 */
2345 boost_watermark(zone);
2346 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2347 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2348
3bc48f96
VB
2349 /* We are not allowed to try stealing from the whole block */
2350 if (!whole_block)
2351 goto single_page;
2352
02aa0cdd
VB
2353 free_pages = move_freepages_block(zone, page, start_type,
2354 &movable_pages);
2355 /*
2356 * Determine how many pages are compatible with our allocation.
2357 * For movable allocation, it's the number of movable pages which
2358 * we just obtained. For other types it's a bit more tricky.
2359 */
2360 if (start_type == MIGRATE_MOVABLE) {
2361 alike_pages = movable_pages;
2362 } else {
2363 /*
2364 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2365 * to MOVABLE pageblock, consider all non-movable pages as
2366 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2367 * vice versa, be conservative since we can't distinguish the
2368 * exact migratetype of non-movable pages.
2369 */
2370 if (old_block_type == MIGRATE_MOVABLE)
2371 alike_pages = pageblock_nr_pages
2372 - (free_pages + movable_pages);
2373 else
2374 alike_pages = 0;
2375 }
2376
3bc48f96 2377 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2378 if (!free_pages)
3bc48f96 2379 goto single_page;
fef903ef 2380
02aa0cdd
VB
2381 /*
2382 * If a sufficient number of pages in the block are either free or of
2383 * comparable migratability as our allocation, claim the whole block.
2384 */
2385 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2386 page_group_by_mobility_disabled)
2387 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2388
2389 return;
2390
2391single_page:
2392 area = &zone->free_area[current_order];
b03641af 2393 move_to_free_area(page, area, start_type);
4eb7dce6
JK
2394}
2395
2149cdae
JK
2396/*
2397 * Check whether there is a suitable fallback freepage with requested order.
2398 * If only_stealable is true, this function returns fallback_mt only if
2399 * we can steal other freepages all together. This would help to reduce
2400 * fragmentation due to mixed migratetype pages in one pageblock.
2401 */
2402int find_suitable_fallback(struct free_area *area, unsigned int order,
2403 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2404{
2405 int i;
2406 int fallback_mt;
2407
2408 if (area->nr_free == 0)
2409 return -1;
2410
2411 *can_steal = false;
2412 for (i = 0;; i++) {
2413 fallback_mt = fallbacks[migratetype][i];
974a786e 2414 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2415 break;
2416
b03641af 2417 if (free_area_empty(area, fallback_mt))
4eb7dce6 2418 continue;
fef903ef 2419
4eb7dce6
JK
2420 if (can_steal_fallback(order, migratetype))
2421 *can_steal = true;
2422
2149cdae
JK
2423 if (!only_stealable)
2424 return fallback_mt;
2425
2426 if (*can_steal)
2427 return fallback_mt;
fef903ef 2428 }
4eb7dce6
JK
2429
2430 return -1;
fef903ef
SB
2431}
2432
0aaa29a5
MG
2433/*
2434 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2435 * there are no empty page blocks that contain a page with a suitable order
2436 */
2437static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2438 unsigned int alloc_order)
2439{
2440 int mt;
2441 unsigned long max_managed, flags;
2442
2443 /*
2444 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2445 * Check is race-prone but harmless.
2446 */
9705bea5 2447 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2448 if (zone->nr_reserved_highatomic >= max_managed)
2449 return;
2450
2451 spin_lock_irqsave(&zone->lock, flags);
2452
2453 /* Recheck the nr_reserved_highatomic limit under the lock */
2454 if (zone->nr_reserved_highatomic >= max_managed)
2455 goto out_unlock;
2456
2457 /* Yoink! */
2458 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2459 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2460 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2461 zone->nr_reserved_highatomic += pageblock_nr_pages;
2462 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2463 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2464 }
2465
2466out_unlock:
2467 spin_unlock_irqrestore(&zone->lock, flags);
2468}
2469
2470/*
2471 * Used when an allocation is about to fail under memory pressure. This
2472 * potentially hurts the reliability of high-order allocations when under
2473 * intense memory pressure but failed atomic allocations should be easier
2474 * to recover from than an OOM.
29fac03b
MK
2475 *
2476 * If @force is true, try to unreserve a pageblock even though highatomic
2477 * pageblock is exhausted.
0aaa29a5 2478 */
29fac03b
MK
2479static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2480 bool force)
0aaa29a5
MG
2481{
2482 struct zonelist *zonelist = ac->zonelist;
2483 unsigned long flags;
2484 struct zoneref *z;
2485 struct zone *zone;
2486 struct page *page;
2487 int order;
04c8716f 2488 bool ret;
0aaa29a5
MG
2489
2490 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2491 ac->nodemask) {
29fac03b
MK
2492 /*
2493 * Preserve at least one pageblock unless memory pressure
2494 * is really high.
2495 */
2496 if (!force && zone->nr_reserved_highatomic <=
2497 pageblock_nr_pages)
0aaa29a5
MG
2498 continue;
2499
2500 spin_lock_irqsave(&zone->lock, flags);
2501 for (order = 0; order < MAX_ORDER; order++) {
2502 struct free_area *area = &(zone->free_area[order]);
2503
b03641af 2504 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2505 if (!page)
0aaa29a5
MG
2506 continue;
2507
0aaa29a5 2508 /*
4855e4a7
MK
2509 * In page freeing path, migratetype change is racy so
2510 * we can counter several free pages in a pageblock
2511 * in this loop althoug we changed the pageblock type
2512 * from highatomic to ac->migratetype. So we should
2513 * adjust the count once.
0aaa29a5 2514 */
a6ffdc07 2515 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2516 /*
2517 * It should never happen but changes to
2518 * locking could inadvertently allow a per-cpu
2519 * drain to add pages to MIGRATE_HIGHATOMIC
2520 * while unreserving so be safe and watch for
2521 * underflows.
2522 */
2523 zone->nr_reserved_highatomic -= min(
2524 pageblock_nr_pages,
2525 zone->nr_reserved_highatomic);
2526 }
0aaa29a5
MG
2527
2528 /*
2529 * Convert to ac->migratetype and avoid the normal
2530 * pageblock stealing heuristics. Minimally, the caller
2531 * is doing the work and needs the pages. More
2532 * importantly, if the block was always converted to
2533 * MIGRATE_UNMOVABLE or another type then the number
2534 * of pageblocks that cannot be completely freed
2535 * may increase.
2536 */
2537 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2538 ret = move_freepages_block(zone, page, ac->migratetype,
2539 NULL);
29fac03b
MK
2540 if (ret) {
2541 spin_unlock_irqrestore(&zone->lock, flags);
2542 return ret;
2543 }
0aaa29a5
MG
2544 }
2545 spin_unlock_irqrestore(&zone->lock, flags);
2546 }
04c8716f
MK
2547
2548 return false;
0aaa29a5
MG
2549}
2550
3bc48f96
VB
2551/*
2552 * Try finding a free buddy page on the fallback list and put it on the free
2553 * list of requested migratetype, possibly along with other pages from the same
2554 * block, depending on fragmentation avoidance heuristics. Returns true if
2555 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2556 *
2557 * The use of signed ints for order and current_order is a deliberate
2558 * deviation from the rest of this file, to make the for loop
2559 * condition simpler.
3bc48f96 2560 */
85ccc8fa 2561static __always_inline bool
6bb15450
MG
2562__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2563 unsigned int alloc_flags)
b2a0ac88 2564{
b8af2941 2565 struct free_area *area;
b002529d 2566 int current_order;
6bb15450 2567 int min_order = order;
b2a0ac88 2568 struct page *page;
4eb7dce6
JK
2569 int fallback_mt;
2570 bool can_steal;
b2a0ac88 2571
6bb15450
MG
2572 /*
2573 * Do not steal pages from freelists belonging to other pageblocks
2574 * i.e. orders < pageblock_order. If there are no local zones free,
2575 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2576 */
2577 if (alloc_flags & ALLOC_NOFRAGMENT)
2578 min_order = pageblock_order;
2579
7a8f58f3
VB
2580 /*
2581 * Find the largest available free page in the other list. This roughly
2582 * approximates finding the pageblock with the most free pages, which
2583 * would be too costly to do exactly.
2584 */
6bb15450 2585 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2586 --current_order) {
4eb7dce6
JK
2587 area = &(zone->free_area[current_order]);
2588 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2589 start_migratetype, false, &can_steal);
4eb7dce6
JK
2590 if (fallback_mt == -1)
2591 continue;
b2a0ac88 2592
7a8f58f3
VB
2593 /*
2594 * We cannot steal all free pages from the pageblock and the
2595 * requested migratetype is movable. In that case it's better to
2596 * steal and split the smallest available page instead of the
2597 * largest available page, because even if the next movable
2598 * allocation falls back into a different pageblock than this
2599 * one, it won't cause permanent fragmentation.
2600 */
2601 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2602 && current_order > order)
2603 goto find_smallest;
b2a0ac88 2604
7a8f58f3
VB
2605 goto do_steal;
2606 }
e0fff1bd 2607
7a8f58f3 2608 return false;
e0fff1bd 2609
7a8f58f3
VB
2610find_smallest:
2611 for (current_order = order; current_order < MAX_ORDER;
2612 current_order++) {
2613 area = &(zone->free_area[current_order]);
2614 fallback_mt = find_suitable_fallback(area, current_order,
2615 start_migratetype, false, &can_steal);
2616 if (fallback_mt != -1)
2617 break;
b2a0ac88
MG
2618 }
2619
7a8f58f3
VB
2620 /*
2621 * This should not happen - we already found a suitable fallback
2622 * when looking for the largest page.
2623 */
2624 VM_BUG_ON(current_order == MAX_ORDER);
2625
2626do_steal:
b03641af 2627 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2628
1c30844d
MG
2629 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2630 can_steal);
7a8f58f3
VB
2631
2632 trace_mm_page_alloc_extfrag(page, order, current_order,
2633 start_migratetype, fallback_mt);
2634
2635 return true;
2636
b2a0ac88
MG
2637}
2638
56fd56b8 2639/*
1da177e4
LT
2640 * Do the hard work of removing an element from the buddy allocator.
2641 * Call me with the zone->lock already held.
2642 */
85ccc8fa 2643static __always_inline struct page *
6bb15450
MG
2644__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2645 unsigned int alloc_flags)
1da177e4 2646{
1da177e4
LT
2647 struct page *page;
2648
3bc48f96 2649retry:
56fd56b8 2650 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2651 if (unlikely(!page)) {
dc67647b
JK
2652 if (migratetype == MIGRATE_MOVABLE)
2653 page = __rmqueue_cma_fallback(zone, order);
2654
6bb15450
MG
2655 if (!page && __rmqueue_fallback(zone, order, migratetype,
2656 alloc_flags))
3bc48f96 2657 goto retry;
728ec980
MG
2658 }
2659
0d3d062a 2660 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2661 return page;
1da177e4
LT
2662}
2663
5f63b720 2664/*
1da177e4
LT
2665 * Obtain a specified number of elements from the buddy allocator, all under
2666 * a single hold of the lock, for efficiency. Add them to the supplied list.
2667 * Returns the number of new pages which were placed at *list.
2668 */
5f63b720 2669static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2670 unsigned long count, struct list_head *list,
6bb15450 2671 int migratetype, unsigned int alloc_flags)
1da177e4 2672{
a6de734b 2673 int i, alloced = 0;
5f63b720 2674
d34b0733 2675 spin_lock(&zone->lock);
1da177e4 2676 for (i = 0; i < count; ++i) {
6bb15450
MG
2677 struct page *page = __rmqueue(zone, order, migratetype,
2678 alloc_flags);
085cc7d5 2679 if (unlikely(page == NULL))
1da177e4 2680 break;
81eabcbe 2681
479f854a
MG
2682 if (unlikely(check_pcp_refill(page)))
2683 continue;
2684
81eabcbe 2685 /*
0fac3ba5
VB
2686 * Split buddy pages returned by expand() are received here in
2687 * physical page order. The page is added to the tail of
2688 * caller's list. From the callers perspective, the linked list
2689 * is ordered by page number under some conditions. This is
2690 * useful for IO devices that can forward direction from the
2691 * head, thus also in the physical page order. This is useful
2692 * for IO devices that can merge IO requests if the physical
2693 * pages are ordered properly.
81eabcbe 2694 */
0fac3ba5 2695 list_add_tail(&page->lru, list);
a6de734b 2696 alloced++;
bb14c2c7 2697 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2698 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2699 -(1 << order));
1da177e4 2700 }
a6de734b
MG
2701
2702 /*
2703 * i pages were removed from the buddy list even if some leak due
2704 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2705 * on i. Do not confuse with 'alloced' which is the number of
2706 * pages added to the pcp list.
2707 */
f2260e6b 2708 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2709 spin_unlock(&zone->lock);
a6de734b 2710 return alloced;
1da177e4
LT
2711}
2712
4ae7c039 2713#ifdef CONFIG_NUMA
8fce4d8e 2714/*
4037d452
CL
2715 * Called from the vmstat counter updater to drain pagesets of this
2716 * currently executing processor on remote nodes after they have
2717 * expired.
2718 *
879336c3
CL
2719 * Note that this function must be called with the thread pinned to
2720 * a single processor.
8fce4d8e 2721 */
4037d452 2722void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2723{
4ae7c039 2724 unsigned long flags;
7be12fc9 2725 int to_drain, batch;
4ae7c039 2726
4037d452 2727 local_irq_save(flags);
4db0c3c2 2728 batch = READ_ONCE(pcp->batch);
7be12fc9 2729 to_drain = min(pcp->count, batch);
77ba9062 2730 if (to_drain > 0)
2a13515c 2731 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2732 local_irq_restore(flags);
4ae7c039
CL
2733}
2734#endif
2735
9f8f2172 2736/*
93481ff0 2737 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2738 *
2739 * The processor must either be the current processor and the
2740 * thread pinned to the current processor or a processor that
2741 * is not online.
2742 */
93481ff0 2743static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2744{
c54ad30c 2745 unsigned long flags;
93481ff0
VB
2746 struct per_cpu_pageset *pset;
2747 struct per_cpu_pages *pcp;
1da177e4 2748
93481ff0
VB
2749 local_irq_save(flags);
2750 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2751
93481ff0 2752 pcp = &pset->pcp;
77ba9062 2753 if (pcp->count)
93481ff0 2754 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2755 local_irq_restore(flags);
2756}
3dfa5721 2757
93481ff0
VB
2758/*
2759 * Drain pcplists of all zones on the indicated processor.
2760 *
2761 * The processor must either be the current processor and the
2762 * thread pinned to the current processor or a processor that
2763 * is not online.
2764 */
2765static void drain_pages(unsigned int cpu)
2766{
2767 struct zone *zone;
2768
2769 for_each_populated_zone(zone) {
2770 drain_pages_zone(cpu, zone);
1da177e4
LT
2771 }
2772}
1da177e4 2773
9f8f2172
CL
2774/*
2775 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2776 *
2777 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2778 * the single zone's pages.
9f8f2172 2779 */
93481ff0 2780void drain_local_pages(struct zone *zone)
9f8f2172 2781{
93481ff0
VB
2782 int cpu = smp_processor_id();
2783
2784 if (zone)
2785 drain_pages_zone(cpu, zone);
2786 else
2787 drain_pages(cpu);
9f8f2172
CL
2788}
2789
0ccce3b9
MG
2790static void drain_local_pages_wq(struct work_struct *work)
2791{
d9367bd0
WY
2792 struct pcpu_drain *drain;
2793
2794 drain = container_of(work, struct pcpu_drain, work);
2795
a459eeb7
MH
2796 /*
2797 * drain_all_pages doesn't use proper cpu hotplug protection so
2798 * we can race with cpu offline when the WQ can move this from
2799 * a cpu pinned worker to an unbound one. We can operate on a different
2800 * cpu which is allright but we also have to make sure to not move to
2801 * a different one.
2802 */
2803 preempt_disable();
d9367bd0 2804 drain_local_pages(drain->zone);
a459eeb7 2805 preempt_enable();
0ccce3b9
MG
2806}
2807
9f8f2172 2808/*
74046494
GBY
2809 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2810 *
93481ff0
VB
2811 * When zone parameter is non-NULL, spill just the single zone's pages.
2812 *
0ccce3b9 2813 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2814 */
93481ff0 2815void drain_all_pages(struct zone *zone)
9f8f2172 2816{
74046494 2817 int cpu;
74046494
GBY
2818
2819 /*
2820 * Allocate in the BSS so we wont require allocation in
2821 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2822 */
2823 static cpumask_t cpus_with_pcps;
2824
ce612879
MH
2825 /*
2826 * Make sure nobody triggers this path before mm_percpu_wq is fully
2827 * initialized.
2828 */
2829 if (WARN_ON_ONCE(!mm_percpu_wq))
2830 return;
2831
bd233f53
MG
2832 /*
2833 * Do not drain if one is already in progress unless it's specific to
2834 * a zone. Such callers are primarily CMA and memory hotplug and need
2835 * the drain to be complete when the call returns.
2836 */
2837 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2838 if (!zone)
2839 return;
2840 mutex_lock(&pcpu_drain_mutex);
2841 }
0ccce3b9 2842
74046494
GBY
2843 /*
2844 * We don't care about racing with CPU hotplug event
2845 * as offline notification will cause the notified
2846 * cpu to drain that CPU pcps and on_each_cpu_mask
2847 * disables preemption as part of its processing
2848 */
2849 for_each_online_cpu(cpu) {
93481ff0
VB
2850 struct per_cpu_pageset *pcp;
2851 struct zone *z;
74046494 2852 bool has_pcps = false;
93481ff0
VB
2853
2854 if (zone) {
74046494 2855 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2856 if (pcp->pcp.count)
74046494 2857 has_pcps = true;
93481ff0
VB
2858 } else {
2859 for_each_populated_zone(z) {
2860 pcp = per_cpu_ptr(z->pageset, cpu);
2861 if (pcp->pcp.count) {
2862 has_pcps = true;
2863 break;
2864 }
74046494
GBY
2865 }
2866 }
93481ff0 2867
74046494
GBY
2868 if (has_pcps)
2869 cpumask_set_cpu(cpu, &cpus_with_pcps);
2870 else
2871 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2872 }
0ccce3b9 2873
bd233f53 2874 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2875 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2876
2877 drain->zone = zone;
2878 INIT_WORK(&drain->work, drain_local_pages_wq);
2879 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2880 }
bd233f53 2881 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2882 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2883
2884 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2885}
2886
296699de 2887#ifdef CONFIG_HIBERNATION
1da177e4 2888
556b969a
CY
2889/*
2890 * Touch the watchdog for every WD_PAGE_COUNT pages.
2891 */
2892#define WD_PAGE_COUNT (128*1024)
2893
1da177e4
LT
2894void mark_free_pages(struct zone *zone)
2895{
556b969a 2896 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2897 unsigned long flags;
7aeb09f9 2898 unsigned int order, t;
86760a2c 2899 struct page *page;
1da177e4 2900
8080fc03 2901 if (zone_is_empty(zone))
1da177e4
LT
2902 return;
2903
2904 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2905
108bcc96 2906 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2907 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2908 if (pfn_valid(pfn)) {
86760a2c 2909 page = pfn_to_page(pfn);
ba6b0979 2910
556b969a
CY
2911 if (!--page_count) {
2912 touch_nmi_watchdog();
2913 page_count = WD_PAGE_COUNT;
2914 }
2915
ba6b0979
JK
2916 if (page_zone(page) != zone)
2917 continue;
2918
7be98234
RW
2919 if (!swsusp_page_is_forbidden(page))
2920 swsusp_unset_page_free(page);
f623f0db 2921 }
1da177e4 2922
b2a0ac88 2923 for_each_migratetype_order(order, t) {
86760a2c
GT
2924 list_for_each_entry(page,
2925 &zone->free_area[order].free_list[t], lru) {
f623f0db 2926 unsigned long i;
1da177e4 2927
86760a2c 2928 pfn = page_to_pfn(page);
556b969a
CY
2929 for (i = 0; i < (1UL << order); i++) {
2930 if (!--page_count) {
2931 touch_nmi_watchdog();
2932 page_count = WD_PAGE_COUNT;
2933 }
7be98234 2934 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2935 }
f623f0db 2936 }
b2a0ac88 2937 }
1da177e4
LT
2938 spin_unlock_irqrestore(&zone->lock, flags);
2939}
e2c55dc8 2940#endif /* CONFIG_PM */
1da177e4 2941
2d4894b5 2942static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2943{
5f8dcc21 2944 int migratetype;
1da177e4 2945
4db7548c 2946 if (!free_pcp_prepare(page))
9cca35d4 2947 return false;
689bcebf 2948
dc4b0caf 2949 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2950 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2951 return true;
2952}
2953
2d4894b5 2954static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2955{
2956 struct zone *zone = page_zone(page);
2957 struct per_cpu_pages *pcp;
2958 int migratetype;
2959
2960 migratetype = get_pcppage_migratetype(page);
d34b0733 2961 __count_vm_event(PGFREE);
da456f14 2962
5f8dcc21
MG
2963 /*
2964 * We only track unmovable, reclaimable and movable on pcp lists.
2965 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2966 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2967 * areas back if necessary. Otherwise, we may have to free
2968 * excessively into the page allocator
2969 */
2970 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2971 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2972 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2973 return;
5f8dcc21
MG
2974 }
2975 migratetype = MIGRATE_MOVABLE;
2976 }
2977
99dcc3e5 2978 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2979 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2980 pcp->count++;
48db57f8 2981 if (pcp->count >= pcp->high) {
4db0c3c2 2982 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2983 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2984 }
9cca35d4 2985}
5f8dcc21 2986
9cca35d4
MG
2987/*
2988 * Free a 0-order page
9cca35d4 2989 */
2d4894b5 2990void free_unref_page(struct page *page)
9cca35d4
MG
2991{
2992 unsigned long flags;
2993 unsigned long pfn = page_to_pfn(page);
2994
2d4894b5 2995 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2996 return;
2997
2998 local_irq_save(flags);
2d4894b5 2999 free_unref_page_commit(page, pfn);
d34b0733 3000 local_irq_restore(flags);
1da177e4
LT
3001}
3002
cc59850e
KK
3003/*
3004 * Free a list of 0-order pages
3005 */
2d4894b5 3006void free_unref_page_list(struct list_head *list)
cc59850e
KK
3007{
3008 struct page *page, *next;
9cca35d4 3009 unsigned long flags, pfn;
c24ad77d 3010 int batch_count = 0;
9cca35d4
MG
3011
3012 /* Prepare pages for freeing */
3013 list_for_each_entry_safe(page, next, list, lru) {
3014 pfn = page_to_pfn(page);
2d4894b5 3015 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3016 list_del(&page->lru);
3017 set_page_private(page, pfn);
3018 }
cc59850e 3019
9cca35d4 3020 local_irq_save(flags);
cc59850e 3021 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3022 unsigned long pfn = page_private(page);
3023
3024 set_page_private(page, 0);
2d4894b5
MG
3025 trace_mm_page_free_batched(page);
3026 free_unref_page_commit(page, pfn);
c24ad77d
LS
3027
3028 /*
3029 * Guard against excessive IRQ disabled times when we get
3030 * a large list of pages to free.
3031 */
3032 if (++batch_count == SWAP_CLUSTER_MAX) {
3033 local_irq_restore(flags);
3034 batch_count = 0;
3035 local_irq_save(flags);
3036 }
cc59850e 3037 }
9cca35d4 3038 local_irq_restore(flags);
cc59850e
KK
3039}
3040
8dfcc9ba
NP
3041/*
3042 * split_page takes a non-compound higher-order page, and splits it into
3043 * n (1<<order) sub-pages: page[0..n]
3044 * Each sub-page must be freed individually.
3045 *
3046 * Note: this is probably too low level an operation for use in drivers.
3047 * Please consult with lkml before using this in your driver.
3048 */
3049void split_page(struct page *page, unsigned int order)
3050{
3051 int i;
3052
309381fe
SL
3053 VM_BUG_ON_PAGE(PageCompound(page), page);
3054 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3055
a9627bc5 3056 for (i = 1; i < (1 << order); i++)
7835e98b 3057 set_page_refcounted(page + i);
a9627bc5 3058 split_page_owner(page, order);
8dfcc9ba 3059}
5853ff23 3060EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3061
3c605096 3062int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3063{
b03641af 3064 struct free_area *area = &page_zone(page)->free_area[order];
748446bb
MG
3065 unsigned long watermark;
3066 struct zone *zone;
2139cbe6 3067 int mt;
748446bb
MG
3068
3069 BUG_ON(!PageBuddy(page));
3070
3071 zone = page_zone(page);
2e30abd1 3072 mt = get_pageblock_migratetype(page);
748446bb 3073
194159fb 3074 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3075 /*
3076 * Obey watermarks as if the page was being allocated. We can
3077 * emulate a high-order watermark check with a raised order-0
3078 * watermark, because we already know our high-order page
3079 * exists.
3080 */
fd1444b2 3081 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3082 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3083 return 0;
3084
8fb74b9f 3085 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3086 }
748446bb
MG
3087
3088 /* Remove page from free list */
b03641af
DW
3089
3090 del_page_from_free_area(page, area);
2139cbe6 3091
400bc7fd 3092 /*
3093 * Set the pageblock if the isolated page is at least half of a
3094 * pageblock
3095 */
748446bb
MG
3096 if (order >= pageblock_order - 1) {
3097 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3098 for (; page < endpage; page += pageblock_nr_pages) {
3099 int mt = get_pageblock_migratetype(page);
88ed365e 3100 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3101 && !is_migrate_highatomic(mt))
47118af0
MN
3102 set_pageblock_migratetype(page,
3103 MIGRATE_MOVABLE);
3104 }
748446bb
MG
3105 }
3106
f3a14ced 3107
8fb74b9f 3108 return 1UL << order;
1fb3f8ca
MG
3109}
3110
060e7417
MG
3111/*
3112 * Update NUMA hit/miss statistics
3113 *
3114 * Must be called with interrupts disabled.
060e7417 3115 */
41b6167e 3116static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3117{
3118#ifdef CONFIG_NUMA
3a321d2a 3119 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3120
4518085e
KW
3121 /* skip numa counters update if numa stats is disabled */
3122 if (!static_branch_likely(&vm_numa_stat_key))
3123 return;
3124
c1093b74 3125 if (zone_to_nid(z) != numa_node_id())
060e7417 3126 local_stat = NUMA_OTHER;
060e7417 3127
c1093b74 3128 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3129 __inc_numa_state(z, NUMA_HIT);
2df26639 3130 else {
3a321d2a
KW
3131 __inc_numa_state(z, NUMA_MISS);
3132 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3133 }
3a321d2a 3134 __inc_numa_state(z, local_stat);
060e7417
MG
3135#endif
3136}
3137
066b2393
MG
3138/* Remove page from the per-cpu list, caller must protect the list */
3139static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3140 unsigned int alloc_flags,
453f85d4 3141 struct per_cpu_pages *pcp,
066b2393
MG
3142 struct list_head *list)
3143{
3144 struct page *page;
3145
3146 do {
3147 if (list_empty(list)) {
3148 pcp->count += rmqueue_bulk(zone, 0,
3149 pcp->batch, list,
6bb15450 3150 migratetype, alloc_flags);
066b2393
MG
3151 if (unlikely(list_empty(list)))
3152 return NULL;
3153 }
3154
453f85d4 3155 page = list_first_entry(list, struct page, lru);
066b2393
MG
3156 list_del(&page->lru);
3157 pcp->count--;
3158 } while (check_new_pcp(page));
3159
3160 return page;
3161}
3162
3163/* Lock and remove page from the per-cpu list */
3164static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3165 struct zone *zone, gfp_t gfp_flags,
3166 int migratetype, unsigned int alloc_flags)
066b2393
MG
3167{
3168 struct per_cpu_pages *pcp;
3169 struct list_head *list;
066b2393 3170 struct page *page;
d34b0733 3171 unsigned long flags;
066b2393 3172
d34b0733 3173 local_irq_save(flags);
066b2393
MG
3174 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3175 list = &pcp->lists[migratetype];
6bb15450 3176 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3177 if (page) {
1c52e6d0 3178 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3179 zone_statistics(preferred_zone, zone);
3180 }
d34b0733 3181 local_irq_restore(flags);
066b2393
MG
3182 return page;
3183}
3184
1da177e4 3185/*
75379191 3186 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3187 */
0a15c3e9 3188static inline
066b2393 3189struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3190 struct zone *zone, unsigned int order,
c603844b
MG
3191 gfp_t gfp_flags, unsigned int alloc_flags,
3192 int migratetype)
1da177e4
LT
3193{
3194 unsigned long flags;
689bcebf 3195 struct page *page;
1da177e4 3196
d34b0733 3197 if (likely(order == 0)) {
1c52e6d0
YS
3198 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3199 migratetype, alloc_flags);
066b2393
MG
3200 goto out;
3201 }
83b9355b 3202
066b2393
MG
3203 /*
3204 * We most definitely don't want callers attempting to
3205 * allocate greater than order-1 page units with __GFP_NOFAIL.
3206 */
3207 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3208 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3209
066b2393
MG
3210 do {
3211 page = NULL;
3212 if (alloc_flags & ALLOC_HARDER) {
3213 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3214 if (page)
3215 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3216 }
a74609fa 3217 if (!page)
6bb15450 3218 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3219 } while (page && check_new_pages(page, order));
3220 spin_unlock(&zone->lock);
3221 if (!page)
3222 goto failed;
3223 __mod_zone_freepage_state(zone, -(1 << order),
3224 get_pcppage_migratetype(page));
1da177e4 3225
16709d1d 3226 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3227 zone_statistics(preferred_zone, zone);
a74609fa 3228 local_irq_restore(flags);
1da177e4 3229
066b2393 3230out:
73444bc4
MG
3231 /* Separate test+clear to avoid unnecessary atomics */
3232 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3233 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3234 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3235 }
3236
066b2393 3237 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3238 return page;
a74609fa
NP
3239
3240failed:
3241 local_irq_restore(flags);
a74609fa 3242 return NULL;
1da177e4
LT
3243}
3244
933e312e
AM
3245#ifdef CONFIG_FAIL_PAGE_ALLOC
3246
b2588c4b 3247static struct {
933e312e
AM
3248 struct fault_attr attr;
3249
621a5f7a 3250 bool ignore_gfp_highmem;
71baba4b 3251 bool ignore_gfp_reclaim;
54114994 3252 u32 min_order;
933e312e
AM
3253} fail_page_alloc = {
3254 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3255 .ignore_gfp_reclaim = true,
621a5f7a 3256 .ignore_gfp_highmem = true,
54114994 3257 .min_order = 1,
933e312e
AM
3258};
3259
3260static int __init setup_fail_page_alloc(char *str)
3261{
3262 return setup_fault_attr(&fail_page_alloc.attr, str);
3263}
3264__setup("fail_page_alloc=", setup_fail_page_alloc);
3265
af3b8544 3266static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3267{
54114994 3268 if (order < fail_page_alloc.min_order)
deaf386e 3269 return false;
933e312e 3270 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3271 return false;
933e312e 3272 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3273 return false;
71baba4b
MG
3274 if (fail_page_alloc.ignore_gfp_reclaim &&
3275 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3276 return false;
933e312e
AM
3277
3278 return should_fail(&fail_page_alloc.attr, 1 << order);
3279}
3280
3281#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3282
3283static int __init fail_page_alloc_debugfs(void)
3284{
0825a6f9 3285 umode_t mode = S_IFREG | 0600;
933e312e 3286 struct dentry *dir;
933e312e 3287
dd48c085
AM
3288 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3289 &fail_page_alloc.attr);
b2588c4b 3290
d9f7979c
GKH
3291 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3292 &fail_page_alloc.ignore_gfp_reclaim);
3293 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3294 &fail_page_alloc.ignore_gfp_highmem);
3295 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3296
d9f7979c 3297 return 0;
933e312e
AM
3298}
3299
3300late_initcall(fail_page_alloc_debugfs);
3301
3302#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3303
3304#else /* CONFIG_FAIL_PAGE_ALLOC */
3305
af3b8544 3306static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3307{
deaf386e 3308 return false;
933e312e
AM
3309}
3310
3311#endif /* CONFIG_FAIL_PAGE_ALLOC */
3312
af3b8544
BP
3313static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3314{
3315 return __should_fail_alloc_page(gfp_mask, order);
3316}
3317ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3318
1da177e4 3319/*
97a16fc8
MG
3320 * Return true if free base pages are above 'mark'. For high-order checks it
3321 * will return true of the order-0 watermark is reached and there is at least
3322 * one free page of a suitable size. Checking now avoids taking the zone lock
3323 * to check in the allocation paths if no pages are free.
1da177e4 3324 */
86a294a8
MH
3325bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3326 int classzone_idx, unsigned int alloc_flags,
3327 long free_pages)
1da177e4 3328{
d23ad423 3329 long min = mark;
1da177e4 3330 int o;
cd04ae1e 3331 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3332
0aaa29a5 3333 /* free_pages may go negative - that's OK */
df0a6daa 3334 free_pages -= (1 << order) - 1;
0aaa29a5 3335
7fb1d9fc 3336 if (alloc_flags & ALLOC_HIGH)
1da177e4 3337 min -= min / 2;
0aaa29a5
MG
3338
3339 /*
3340 * If the caller does not have rights to ALLOC_HARDER then subtract
3341 * the high-atomic reserves. This will over-estimate the size of the
3342 * atomic reserve but it avoids a search.
3343 */
cd04ae1e 3344 if (likely(!alloc_harder)) {
0aaa29a5 3345 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3346 } else {
3347 /*
3348 * OOM victims can try even harder than normal ALLOC_HARDER
3349 * users on the grounds that it's definitely going to be in
3350 * the exit path shortly and free memory. Any allocation it
3351 * makes during the free path will be small and short-lived.
3352 */
3353 if (alloc_flags & ALLOC_OOM)
3354 min -= min / 2;
3355 else
3356 min -= min / 4;
3357 }
3358
e2b19197 3359
d883c6cf
JK
3360#ifdef CONFIG_CMA
3361 /* If allocation can't use CMA areas don't use free CMA pages */
3362 if (!(alloc_flags & ALLOC_CMA))
3363 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3364#endif
3365
97a16fc8
MG
3366 /*
3367 * Check watermarks for an order-0 allocation request. If these
3368 * are not met, then a high-order request also cannot go ahead
3369 * even if a suitable page happened to be free.
3370 */
3371 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3372 return false;
1da177e4 3373
97a16fc8
MG
3374 /* If this is an order-0 request then the watermark is fine */
3375 if (!order)
3376 return true;
3377
3378 /* For a high-order request, check at least one suitable page is free */
3379 for (o = order; o < MAX_ORDER; o++) {
3380 struct free_area *area = &z->free_area[o];
3381 int mt;
3382
3383 if (!area->nr_free)
3384 continue;
3385
97a16fc8 3386 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3387 if (!free_area_empty(area, mt))
97a16fc8
MG
3388 return true;
3389 }
3390
3391#ifdef CONFIG_CMA
d883c6cf 3392 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3393 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3394 return true;
d883c6cf 3395 }
97a16fc8 3396#endif
b050e376
VB
3397 if (alloc_harder &&
3398 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3399 return true;
1da177e4 3400 }
97a16fc8 3401 return false;
88f5acf8
MG
3402}
3403
7aeb09f9 3404bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3405 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3406{
3407 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3408 zone_page_state(z, NR_FREE_PAGES));
3409}
3410
48ee5f36
MG
3411static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3412 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3413{
3414 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3415 long cma_pages = 0;
3416
3417#ifdef CONFIG_CMA
3418 /* If allocation can't use CMA areas don't use free CMA pages */
3419 if (!(alloc_flags & ALLOC_CMA))
3420 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3421#endif
48ee5f36
MG
3422
3423 /*
3424 * Fast check for order-0 only. If this fails then the reserves
3425 * need to be calculated. There is a corner case where the check
3426 * passes but only the high-order atomic reserve are free. If
3427 * the caller is !atomic then it'll uselessly search the free
3428 * list. That corner case is then slower but it is harmless.
3429 */
d883c6cf 3430 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3431 return true;
3432
3433 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3434 free_pages);
3435}
3436
7aeb09f9 3437bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3438 unsigned long mark, int classzone_idx)
88f5acf8
MG
3439{
3440 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3441
3442 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3443 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3444
e2b19197 3445 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3446 free_pages);
1da177e4
LT
3447}
3448
9276b1bc 3449#ifdef CONFIG_NUMA
957f822a
DR
3450static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3451{
e02dc017 3452 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3453 RECLAIM_DISTANCE;
957f822a 3454}
9276b1bc 3455#else /* CONFIG_NUMA */
957f822a
DR
3456static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3457{
3458 return true;
3459}
9276b1bc
PJ
3460#endif /* CONFIG_NUMA */
3461
6bb15450
MG
3462/*
3463 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3464 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3465 * premature use of a lower zone may cause lowmem pressure problems that
3466 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3467 * probably too small. It only makes sense to spread allocations to avoid
3468 * fragmentation between the Normal and DMA32 zones.
3469 */
3470static inline unsigned int
0a79cdad 3471alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3472{
0a79cdad
MG
3473 unsigned int alloc_flags = 0;
3474
3475 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3476 alloc_flags |= ALLOC_KSWAPD;
3477
3478#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3479 if (!zone)
3480 return alloc_flags;
3481
6bb15450 3482 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3483 return alloc_flags;
6bb15450
MG
3484
3485 /*
3486 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3487 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3488 * on UMA that if Normal is populated then so is DMA32.
3489 */
3490 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3491 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3492 return alloc_flags;
6bb15450 3493
8118b82e 3494 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3495#endif /* CONFIG_ZONE_DMA32 */
3496 return alloc_flags;
6bb15450 3497}
6bb15450 3498
7fb1d9fc 3499/*
0798e519 3500 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3501 * a page.
3502 */
3503static struct page *
a9263751
VB
3504get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3505 const struct alloc_context *ac)
753ee728 3506{
6bb15450 3507 struct zoneref *z;
5117f45d 3508 struct zone *zone;
3b8c0be4 3509 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3510 bool no_fallback;
3b8c0be4 3511
6bb15450 3512retry:
7fb1d9fc 3513 /*
9276b1bc 3514 * Scan zonelist, looking for a zone with enough free.
344736f2 3515 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3516 */
6bb15450
MG
3517 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3518 z = ac->preferred_zoneref;
c33d6c06 3519 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3520 ac->nodemask) {
be06af00 3521 struct page *page;
e085dbc5
JW
3522 unsigned long mark;
3523
664eedde
MG
3524 if (cpusets_enabled() &&
3525 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3526 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3527 continue;
a756cf59
JW
3528 /*
3529 * When allocating a page cache page for writing, we
281e3726
MG
3530 * want to get it from a node that is within its dirty
3531 * limit, such that no single node holds more than its
a756cf59 3532 * proportional share of globally allowed dirty pages.
281e3726 3533 * The dirty limits take into account the node's
a756cf59
JW
3534 * lowmem reserves and high watermark so that kswapd
3535 * should be able to balance it without having to
3536 * write pages from its LRU list.
3537 *
a756cf59 3538 * XXX: For now, allow allocations to potentially
281e3726 3539 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3540 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3541 * which is important when on a NUMA setup the allowed
281e3726 3542 * nodes are together not big enough to reach the
a756cf59 3543 * global limit. The proper fix for these situations
281e3726 3544 * will require awareness of nodes in the
a756cf59
JW
3545 * dirty-throttling and the flusher threads.
3546 */
3b8c0be4
MG
3547 if (ac->spread_dirty_pages) {
3548 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3549 continue;
3550
3551 if (!node_dirty_ok(zone->zone_pgdat)) {
3552 last_pgdat_dirty_limit = zone->zone_pgdat;
3553 continue;
3554 }
3555 }
7fb1d9fc 3556
6bb15450
MG
3557 if (no_fallback && nr_online_nodes > 1 &&
3558 zone != ac->preferred_zoneref->zone) {
3559 int local_nid;
3560
3561 /*
3562 * If moving to a remote node, retry but allow
3563 * fragmenting fallbacks. Locality is more important
3564 * than fragmentation avoidance.
3565 */
3566 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3567 if (zone_to_nid(zone) != local_nid) {
3568 alloc_flags &= ~ALLOC_NOFRAGMENT;
3569 goto retry;
3570 }
3571 }
3572
a9214443 3573 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3574 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3575 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3576 int ret;
3577
c9e97a19
PT
3578#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3579 /*
3580 * Watermark failed for this zone, but see if we can
3581 * grow this zone if it contains deferred pages.
3582 */
3583 if (static_branch_unlikely(&deferred_pages)) {
3584 if (_deferred_grow_zone(zone, order))
3585 goto try_this_zone;
3586 }
3587#endif
5dab2911
MG
3588 /* Checked here to keep the fast path fast */
3589 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3590 if (alloc_flags & ALLOC_NO_WATERMARKS)
3591 goto try_this_zone;
3592
a5f5f91d 3593 if (node_reclaim_mode == 0 ||
c33d6c06 3594 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3595 continue;
3596
a5f5f91d 3597 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3598 switch (ret) {
a5f5f91d 3599 case NODE_RECLAIM_NOSCAN:
fa5e084e 3600 /* did not scan */
cd38b115 3601 continue;
a5f5f91d 3602 case NODE_RECLAIM_FULL:
fa5e084e 3603 /* scanned but unreclaimable */
cd38b115 3604 continue;
fa5e084e
MG
3605 default:
3606 /* did we reclaim enough */
fed2719e 3607 if (zone_watermark_ok(zone, order, mark,
93ea9964 3608 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3609 goto try_this_zone;
3610
fed2719e 3611 continue;
0798e519 3612 }
7fb1d9fc
RS
3613 }
3614
fa5e084e 3615try_this_zone:
066b2393 3616 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3617 gfp_mask, alloc_flags, ac->migratetype);
75379191 3618 if (page) {
479f854a 3619 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3620
3621 /*
3622 * If this is a high-order atomic allocation then check
3623 * if the pageblock should be reserved for the future
3624 */
3625 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3626 reserve_highatomic_pageblock(page, zone, order);
3627
75379191 3628 return page;
c9e97a19
PT
3629 } else {
3630#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3631 /* Try again if zone has deferred pages */
3632 if (static_branch_unlikely(&deferred_pages)) {
3633 if (_deferred_grow_zone(zone, order))
3634 goto try_this_zone;
3635 }
3636#endif
75379191 3637 }
54a6eb5c 3638 }
9276b1bc 3639
6bb15450
MG
3640 /*
3641 * It's possible on a UMA machine to get through all zones that are
3642 * fragmented. If avoiding fragmentation, reset and try again.
3643 */
3644 if (no_fallback) {
3645 alloc_flags &= ~ALLOC_NOFRAGMENT;
3646 goto retry;
3647 }
3648
4ffeaf35 3649 return NULL;
753ee728
MH
3650}
3651
9af744d7 3652static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3653{
a238ab5b 3654 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3655 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3656
2c029a1e 3657 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3658 return;
3659
3660 /*
3661 * This documents exceptions given to allocations in certain
3662 * contexts that are allowed to allocate outside current's set
3663 * of allowed nodes.
3664 */
3665 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3666 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3667 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3668 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3669 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3670 filter &= ~SHOW_MEM_FILTER_NODES;
3671
9af744d7 3672 show_mem(filter, nodemask);
aa187507
MH
3673}
3674
a8e99259 3675void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3676{
3677 struct va_format vaf;
3678 va_list args;
3679 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3680 DEFAULT_RATELIMIT_BURST);
3681
0f7896f1 3682 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3683 return;
3684
7877cdcc
MH
3685 va_start(args, fmt);
3686 vaf.fmt = fmt;
3687 vaf.va = &args;
ef8444ea 3688 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3689 current->comm, &vaf, gfp_mask, &gfp_mask,
3690 nodemask_pr_args(nodemask));
7877cdcc 3691 va_end(args);
3ee9a4f0 3692
a8e99259 3693 cpuset_print_current_mems_allowed();
ef8444ea 3694 pr_cont("\n");
a238ab5b 3695 dump_stack();
685dbf6f 3696 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3697}
3698
6c18ba7a
MH
3699static inline struct page *
3700__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3701 unsigned int alloc_flags,
3702 const struct alloc_context *ac)
3703{
3704 struct page *page;
3705
3706 page = get_page_from_freelist(gfp_mask, order,
3707 alloc_flags|ALLOC_CPUSET, ac);
3708 /*
3709 * fallback to ignore cpuset restriction if our nodes
3710 * are depleted
3711 */
3712 if (!page)
3713 page = get_page_from_freelist(gfp_mask, order,
3714 alloc_flags, ac);
3715
3716 return page;
3717}
3718
11e33f6a
MG
3719static inline struct page *
3720__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3721 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3722{
6e0fc46d
DR
3723 struct oom_control oc = {
3724 .zonelist = ac->zonelist,
3725 .nodemask = ac->nodemask,
2a966b77 3726 .memcg = NULL,
6e0fc46d
DR
3727 .gfp_mask = gfp_mask,
3728 .order = order,
6e0fc46d 3729 };
11e33f6a
MG
3730 struct page *page;
3731
9879de73
JW
3732 *did_some_progress = 0;
3733
9879de73 3734 /*
dc56401f
JW
3735 * Acquire the oom lock. If that fails, somebody else is
3736 * making progress for us.
9879de73 3737 */
dc56401f 3738 if (!mutex_trylock(&oom_lock)) {
9879de73 3739 *did_some_progress = 1;
11e33f6a 3740 schedule_timeout_uninterruptible(1);
1da177e4
LT
3741 return NULL;
3742 }
6b1de916 3743
11e33f6a
MG
3744 /*
3745 * Go through the zonelist yet one more time, keep very high watermark
3746 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3747 * we're still under heavy pressure. But make sure that this reclaim
3748 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3749 * allocation which will never fail due to oom_lock already held.
11e33f6a 3750 */
e746bf73
TH
3751 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3752 ~__GFP_DIRECT_RECLAIM, order,
3753 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3754 if (page)
11e33f6a
MG
3755 goto out;
3756
06ad276a
MH
3757 /* Coredumps can quickly deplete all memory reserves */
3758 if (current->flags & PF_DUMPCORE)
3759 goto out;
3760 /* The OOM killer will not help higher order allocs */
3761 if (order > PAGE_ALLOC_COSTLY_ORDER)
3762 goto out;
dcda9b04
MH
3763 /*
3764 * We have already exhausted all our reclaim opportunities without any
3765 * success so it is time to admit defeat. We will skip the OOM killer
3766 * because it is very likely that the caller has a more reasonable
3767 * fallback than shooting a random task.
3768 */
3769 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3770 goto out;
06ad276a
MH
3771 /* The OOM killer does not needlessly kill tasks for lowmem */
3772 if (ac->high_zoneidx < ZONE_NORMAL)
3773 goto out;
3774 if (pm_suspended_storage())
3775 goto out;
3776 /*
3777 * XXX: GFP_NOFS allocations should rather fail than rely on
3778 * other request to make a forward progress.
3779 * We are in an unfortunate situation where out_of_memory cannot
3780 * do much for this context but let's try it to at least get
3781 * access to memory reserved if the current task is killed (see
3782 * out_of_memory). Once filesystems are ready to handle allocation
3783 * failures more gracefully we should just bail out here.
3784 */
3785
3786 /* The OOM killer may not free memory on a specific node */
3787 if (gfp_mask & __GFP_THISNODE)
3788 goto out;
3da88fb3 3789
3c2c6488 3790 /* Exhausted what can be done so it's blame time */
5020e285 3791 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3792 *did_some_progress = 1;
5020e285 3793
6c18ba7a
MH
3794 /*
3795 * Help non-failing allocations by giving them access to memory
3796 * reserves
3797 */
3798 if (gfp_mask & __GFP_NOFAIL)
3799 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3800 ALLOC_NO_WATERMARKS, ac);
5020e285 3801 }
11e33f6a 3802out:
dc56401f 3803 mutex_unlock(&oom_lock);
11e33f6a
MG
3804 return page;
3805}
3806
33c2d214
MH
3807/*
3808 * Maximum number of compaction retries wit a progress before OOM
3809 * killer is consider as the only way to move forward.
3810 */
3811#define MAX_COMPACT_RETRIES 16
3812
56de7263
MG
3813#ifdef CONFIG_COMPACTION
3814/* Try memory compaction for high-order allocations before reclaim */
3815static struct page *
3816__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3817 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3818 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3819{
5e1f0f09 3820 struct page *page = NULL;
eb414681 3821 unsigned long pflags;
499118e9 3822 unsigned int noreclaim_flag;
53853e2d
VB
3823
3824 if (!order)
66199712 3825 return NULL;
66199712 3826
eb414681 3827 psi_memstall_enter(&pflags);
499118e9 3828 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3829
c5d01d0d 3830 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3831 prio, &page);
eb414681 3832
499118e9 3833 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3834 psi_memstall_leave(&pflags);
56de7263 3835
98dd3b48
VB
3836 /*
3837 * At least in one zone compaction wasn't deferred or skipped, so let's
3838 * count a compaction stall
3839 */
3840 count_vm_event(COMPACTSTALL);
8fb74b9f 3841
5e1f0f09
MG
3842 /* Prep a captured page if available */
3843 if (page)
3844 prep_new_page(page, order, gfp_mask, alloc_flags);
3845
3846 /* Try get a page from the freelist if available */
3847 if (!page)
3848 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3849
98dd3b48
VB
3850 if (page) {
3851 struct zone *zone = page_zone(page);
53853e2d 3852
98dd3b48
VB
3853 zone->compact_blockskip_flush = false;
3854 compaction_defer_reset(zone, order, true);
3855 count_vm_event(COMPACTSUCCESS);
3856 return page;
3857 }
56de7263 3858
98dd3b48
VB
3859 /*
3860 * It's bad if compaction run occurs and fails. The most likely reason
3861 * is that pages exist, but not enough to satisfy watermarks.
3862 */
3863 count_vm_event(COMPACTFAIL);
66199712 3864
98dd3b48 3865 cond_resched();
56de7263
MG
3866
3867 return NULL;
3868}
33c2d214 3869
3250845d
VB
3870static inline bool
3871should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3872 enum compact_result compact_result,
3873 enum compact_priority *compact_priority,
d9436498 3874 int *compaction_retries)
3250845d
VB
3875{
3876 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3877 int min_priority;
65190cff
MH
3878 bool ret = false;
3879 int retries = *compaction_retries;
3880 enum compact_priority priority = *compact_priority;
3250845d
VB
3881
3882 if (!order)
3883 return false;
3884
d9436498
VB
3885 if (compaction_made_progress(compact_result))
3886 (*compaction_retries)++;
3887
3250845d
VB
3888 /*
3889 * compaction considers all the zone as desperately out of memory
3890 * so it doesn't really make much sense to retry except when the
3891 * failure could be caused by insufficient priority
3892 */
d9436498
VB
3893 if (compaction_failed(compact_result))
3894 goto check_priority;
3250845d
VB
3895
3896 /*
3897 * make sure the compaction wasn't deferred or didn't bail out early
3898 * due to locks contention before we declare that we should give up.
3899 * But do not retry if the given zonelist is not suitable for
3900 * compaction.
3901 */
65190cff
MH
3902 if (compaction_withdrawn(compact_result)) {
3903 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3904 goto out;
3905 }
3250845d
VB
3906
3907 /*
dcda9b04 3908 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3909 * costly ones because they are de facto nofail and invoke OOM
3910 * killer to move on while costly can fail and users are ready
3911 * to cope with that. 1/4 retries is rather arbitrary but we
3912 * would need much more detailed feedback from compaction to
3913 * make a better decision.
3914 */
3915 if (order > PAGE_ALLOC_COSTLY_ORDER)
3916 max_retries /= 4;
65190cff
MH
3917 if (*compaction_retries <= max_retries) {
3918 ret = true;
3919 goto out;
3920 }
3250845d 3921
d9436498
VB
3922 /*
3923 * Make sure there are attempts at the highest priority if we exhausted
3924 * all retries or failed at the lower priorities.
3925 */
3926check_priority:
c2033b00
VB
3927 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3928 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3929
c2033b00 3930 if (*compact_priority > min_priority) {
d9436498
VB
3931 (*compact_priority)--;
3932 *compaction_retries = 0;
65190cff 3933 ret = true;
d9436498 3934 }
65190cff
MH
3935out:
3936 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3937 return ret;
3250845d 3938}
56de7263
MG
3939#else
3940static inline struct page *
3941__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3942 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3943 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3944{
33c2d214 3945 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3946 return NULL;
3947}
33c2d214
MH
3948
3949static inline bool
86a294a8
MH
3950should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3951 enum compact_result compact_result,
a5508cd8 3952 enum compact_priority *compact_priority,
d9436498 3953 int *compaction_retries)
33c2d214 3954{
31e49bfd
MH
3955 struct zone *zone;
3956 struct zoneref *z;
3957
3958 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3959 return false;
3960
3961 /*
3962 * There are setups with compaction disabled which would prefer to loop
3963 * inside the allocator rather than hit the oom killer prematurely.
3964 * Let's give them a good hope and keep retrying while the order-0
3965 * watermarks are OK.
3966 */
3967 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3968 ac->nodemask) {
3969 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3970 ac_classzone_idx(ac), alloc_flags))
3971 return true;
3972 }
33c2d214
MH
3973 return false;
3974}
3250845d 3975#endif /* CONFIG_COMPACTION */
56de7263 3976
d92a8cfc 3977#ifdef CONFIG_LOCKDEP
93781325 3978static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3979 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3980
3981static bool __need_fs_reclaim(gfp_t gfp_mask)
3982{
3983 gfp_mask = current_gfp_context(gfp_mask);
3984
3985 /* no reclaim without waiting on it */
3986 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3987 return false;
3988
3989 /* this guy won't enter reclaim */
2e517d68 3990 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3991 return false;
3992
3993 /* We're only interested __GFP_FS allocations for now */
3994 if (!(gfp_mask & __GFP_FS))
3995 return false;
3996
3997 if (gfp_mask & __GFP_NOLOCKDEP)
3998 return false;
3999
4000 return true;
4001}
4002
93781325
OS
4003void __fs_reclaim_acquire(void)
4004{
4005 lock_map_acquire(&__fs_reclaim_map);
4006}
4007
4008void __fs_reclaim_release(void)
4009{
4010 lock_map_release(&__fs_reclaim_map);
4011}
4012
d92a8cfc
PZ
4013void fs_reclaim_acquire(gfp_t gfp_mask)
4014{
4015 if (__need_fs_reclaim(gfp_mask))
93781325 4016 __fs_reclaim_acquire();
d92a8cfc
PZ
4017}
4018EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4019
4020void fs_reclaim_release(gfp_t gfp_mask)
4021{
4022 if (__need_fs_reclaim(gfp_mask))
93781325 4023 __fs_reclaim_release();
d92a8cfc
PZ
4024}
4025EXPORT_SYMBOL_GPL(fs_reclaim_release);
4026#endif
4027
bba90710
MS
4028/* Perform direct synchronous page reclaim */
4029static int
a9263751
VB
4030__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4031 const struct alloc_context *ac)
11e33f6a 4032{
11e33f6a 4033 struct reclaim_state reclaim_state;
bba90710 4034 int progress;
499118e9 4035 unsigned int noreclaim_flag;
eb414681 4036 unsigned long pflags;
11e33f6a
MG
4037
4038 cond_resched();
4039
4040 /* We now go into synchronous reclaim */
4041 cpuset_memory_pressure_bump();
eb414681 4042 psi_memstall_enter(&pflags);
d92a8cfc 4043 fs_reclaim_acquire(gfp_mask);
93781325 4044 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4045 reclaim_state.reclaimed_slab = 0;
c06b1fca 4046 current->reclaim_state = &reclaim_state;
11e33f6a 4047
a9263751
VB
4048 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4049 ac->nodemask);
11e33f6a 4050
c06b1fca 4051 current->reclaim_state = NULL;
499118e9 4052 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4053 fs_reclaim_release(gfp_mask);
eb414681 4054 psi_memstall_leave(&pflags);
11e33f6a
MG
4055
4056 cond_resched();
4057
bba90710
MS
4058 return progress;
4059}
4060
4061/* The really slow allocator path where we enter direct reclaim */
4062static inline struct page *
4063__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4064 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4065 unsigned long *did_some_progress)
bba90710
MS
4066{
4067 struct page *page = NULL;
4068 bool drained = false;
4069
a9263751 4070 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4071 if (unlikely(!(*did_some_progress)))
4072 return NULL;
11e33f6a 4073
9ee493ce 4074retry:
31a6c190 4075 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4076
4077 /*
4078 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4079 * pages are pinned on the per-cpu lists or in high alloc reserves.
4080 * Shrink them them and try again
9ee493ce
MG
4081 */
4082 if (!page && !drained) {
29fac03b 4083 unreserve_highatomic_pageblock(ac, false);
93481ff0 4084 drain_all_pages(NULL);
9ee493ce
MG
4085 drained = true;
4086 goto retry;
4087 }
4088
11e33f6a
MG
4089 return page;
4090}
4091
5ecd9d40
DR
4092static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4093 const struct alloc_context *ac)
3a025760
JW
4094{
4095 struct zoneref *z;
4096 struct zone *zone;
e1a55637 4097 pg_data_t *last_pgdat = NULL;
5ecd9d40 4098 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4099
5ecd9d40
DR
4100 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4101 ac->nodemask) {
e1a55637 4102 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4103 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4104 last_pgdat = zone->zone_pgdat;
4105 }
3a025760
JW
4106}
4107
c603844b 4108static inline unsigned int
341ce06f
PZ
4109gfp_to_alloc_flags(gfp_t gfp_mask)
4110{
c603844b 4111 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4112
a56f57ff 4113 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 4114 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 4115
341ce06f
PZ
4116 /*
4117 * The caller may dip into page reserves a bit more if the caller
4118 * cannot run direct reclaim, or if the caller has realtime scheduling
4119 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4120 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4121 */
e6223a3b 4122 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4123
d0164adc 4124 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4125 /*
b104a35d
DR
4126 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4127 * if it can't schedule.
5c3240d9 4128 */
b104a35d 4129 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4130 alloc_flags |= ALLOC_HARDER;
523b9458 4131 /*
b104a35d 4132 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4133 * comment for __cpuset_node_allowed().
523b9458 4134 */
341ce06f 4135 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4136 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4137 alloc_flags |= ALLOC_HARDER;
4138
0a79cdad
MG
4139 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4140 alloc_flags |= ALLOC_KSWAPD;
4141
d883c6cf
JK
4142#ifdef CONFIG_CMA
4143 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4144 alloc_flags |= ALLOC_CMA;
4145#endif
341ce06f
PZ
4146 return alloc_flags;
4147}
4148
cd04ae1e 4149static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4150{
cd04ae1e
MH
4151 if (!tsk_is_oom_victim(tsk))
4152 return false;
4153
4154 /*
4155 * !MMU doesn't have oom reaper so give access to memory reserves
4156 * only to the thread with TIF_MEMDIE set
4157 */
4158 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4159 return false;
4160
cd04ae1e
MH
4161 return true;
4162}
4163
4164/*
4165 * Distinguish requests which really need access to full memory
4166 * reserves from oom victims which can live with a portion of it
4167 */
4168static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4169{
4170 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4171 return 0;
31a6c190 4172 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4173 return ALLOC_NO_WATERMARKS;
31a6c190 4174 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4175 return ALLOC_NO_WATERMARKS;
4176 if (!in_interrupt()) {
4177 if (current->flags & PF_MEMALLOC)
4178 return ALLOC_NO_WATERMARKS;
4179 else if (oom_reserves_allowed(current))
4180 return ALLOC_OOM;
4181 }
31a6c190 4182
cd04ae1e
MH
4183 return 0;
4184}
4185
4186bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4187{
4188 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4189}
4190
0a0337e0
MH
4191/*
4192 * Checks whether it makes sense to retry the reclaim to make a forward progress
4193 * for the given allocation request.
491d79ae
JW
4194 *
4195 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4196 * without success, or when we couldn't even meet the watermark if we
4197 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4198 *
4199 * Returns true if a retry is viable or false to enter the oom path.
4200 */
4201static inline bool
4202should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4203 struct alloc_context *ac, int alloc_flags,
423b452e 4204 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4205{
4206 struct zone *zone;
4207 struct zoneref *z;
15f570bf 4208 bool ret = false;
0a0337e0 4209
423b452e
VB
4210 /*
4211 * Costly allocations might have made a progress but this doesn't mean
4212 * their order will become available due to high fragmentation so
4213 * always increment the no progress counter for them
4214 */
4215 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4216 *no_progress_loops = 0;
4217 else
4218 (*no_progress_loops)++;
4219
0a0337e0
MH
4220 /*
4221 * Make sure we converge to OOM if we cannot make any progress
4222 * several times in the row.
4223 */
04c8716f
MK
4224 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4225 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4226 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4227 }
0a0337e0 4228
bca67592
MG
4229 /*
4230 * Keep reclaiming pages while there is a chance this will lead
4231 * somewhere. If none of the target zones can satisfy our allocation
4232 * request even if all reclaimable pages are considered then we are
4233 * screwed and have to go OOM.
0a0337e0
MH
4234 */
4235 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4236 ac->nodemask) {
4237 unsigned long available;
ede37713 4238 unsigned long reclaimable;
d379f01d
MH
4239 unsigned long min_wmark = min_wmark_pages(zone);
4240 bool wmark;
0a0337e0 4241
5a1c84b4 4242 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4243 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4244
4245 /*
491d79ae
JW
4246 * Would the allocation succeed if we reclaimed all
4247 * reclaimable pages?
0a0337e0 4248 */
d379f01d
MH
4249 wmark = __zone_watermark_ok(zone, order, min_wmark,
4250 ac_classzone_idx(ac), alloc_flags, available);
4251 trace_reclaim_retry_zone(z, order, reclaimable,
4252 available, min_wmark, *no_progress_loops, wmark);
4253 if (wmark) {
ede37713
MH
4254 /*
4255 * If we didn't make any progress and have a lot of
4256 * dirty + writeback pages then we should wait for
4257 * an IO to complete to slow down the reclaim and
4258 * prevent from pre mature OOM
4259 */
4260 if (!did_some_progress) {
11fb9989 4261 unsigned long write_pending;
ede37713 4262
5a1c84b4
MG
4263 write_pending = zone_page_state_snapshot(zone,
4264 NR_ZONE_WRITE_PENDING);
ede37713 4265
11fb9989 4266 if (2 * write_pending > reclaimable) {
ede37713
MH
4267 congestion_wait(BLK_RW_ASYNC, HZ/10);
4268 return true;
4269 }
4270 }
5a1c84b4 4271
15f570bf
MH
4272 ret = true;
4273 goto out;
0a0337e0
MH
4274 }
4275 }
4276
15f570bf
MH
4277out:
4278 /*
4279 * Memory allocation/reclaim might be called from a WQ context and the
4280 * current implementation of the WQ concurrency control doesn't
4281 * recognize that a particular WQ is congested if the worker thread is
4282 * looping without ever sleeping. Therefore we have to do a short sleep
4283 * here rather than calling cond_resched().
4284 */
4285 if (current->flags & PF_WQ_WORKER)
4286 schedule_timeout_uninterruptible(1);
4287 else
4288 cond_resched();
4289 return ret;
0a0337e0
MH
4290}
4291
902b6281
VB
4292static inline bool
4293check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4294{
4295 /*
4296 * It's possible that cpuset's mems_allowed and the nodemask from
4297 * mempolicy don't intersect. This should be normally dealt with by
4298 * policy_nodemask(), but it's possible to race with cpuset update in
4299 * such a way the check therein was true, and then it became false
4300 * before we got our cpuset_mems_cookie here.
4301 * This assumes that for all allocations, ac->nodemask can come only
4302 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4303 * when it does not intersect with the cpuset restrictions) or the
4304 * caller can deal with a violated nodemask.
4305 */
4306 if (cpusets_enabled() && ac->nodemask &&
4307 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4308 ac->nodemask = NULL;
4309 return true;
4310 }
4311
4312 /*
4313 * When updating a task's mems_allowed or mempolicy nodemask, it is
4314 * possible to race with parallel threads in such a way that our
4315 * allocation can fail while the mask is being updated. If we are about
4316 * to fail, check if the cpuset changed during allocation and if so,
4317 * retry.
4318 */
4319 if (read_mems_allowed_retry(cpuset_mems_cookie))
4320 return true;
4321
4322 return false;
4323}
4324
11e33f6a
MG
4325static inline struct page *
4326__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4327 struct alloc_context *ac)
11e33f6a 4328{
d0164adc 4329 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4330 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4331 struct page *page = NULL;
c603844b 4332 unsigned int alloc_flags;
11e33f6a 4333 unsigned long did_some_progress;
5ce9bfef 4334 enum compact_priority compact_priority;
c5d01d0d 4335 enum compact_result compact_result;
5ce9bfef
VB
4336 int compaction_retries;
4337 int no_progress_loops;
5ce9bfef 4338 unsigned int cpuset_mems_cookie;
cd04ae1e 4339 int reserve_flags;
1da177e4 4340
d0164adc
MG
4341 /*
4342 * We also sanity check to catch abuse of atomic reserves being used by
4343 * callers that are not in atomic context.
4344 */
4345 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4346 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4347 gfp_mask &= ~__GFP_ATOMIC;
4348
5ce9bfef
VB
4349retry_cpuset:
4350 compaction_retries = 0;
4351 no_progress_loops = 0;
4352 compact_priority = DEF_COMPACT_PRIORITY;
4353 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4354
4355 /*
4356 * The fast path uses conservative alloc_flags to succeed only until
4357 * kswapd needs to be woken up, and to avoid the cost of setting up
4358 * alloc_flags precisely. So we do that now.
4359 */
4360 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4361
e47483bc
VB
4362 /*
4363 * We need to recalculate the starting point for the zonelist iterator
4364 * because we might have used different nodemask in the fast path, or
4365 * there was a cpuset modification and we are retrying - otherwise we
4366 * could end up iterating over non-eligible zones endlessly.
4367 */
4368 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4369 ac->high_zoneidx, ac->nodemask);
4370 if (!ac->preferred_zoneref->zone)
4371 goto nopage;
4372
0a79cdad 4373 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4374 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4375
4376 /*
4377 * The adjusted alloc_flags might result in immediate success, so try
4378 * that first
4379 */
4380 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4381 if (page)
4382 goto got_pg;
4383
a8161d1e
VB
4384 /*
4385 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4386 * that we have enough base pages and don't need to reclaim. For non-
4387 * movable high-order allocations, do that as well, as compaction will
4388 * try prevent permanent fragmentation by migrating from blocks of the
4389 * same migratetype.
4390 * Don't try this for allocations that are allowed to ignore
4391 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4392 */
282722b0
VB
4393 if (can_direct_reclaim &&
4394 (costly_order ||
4395 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4396 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4397 page = __alloc_pages_direct_compact(gfp_mask, order,
4398 alloc_flags, ac,
a5508cd8 4399 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4400 &compact_result);
4401 if (page)
4402 goto got_pg;
4403
3eb2771b
VB
4404 /*
4405 * Checks for costly allocations with __GFP_NORETRY, which
4406 * includes THP page fault allocations
4407 */
282722b0 4408 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4409 /*
4410 * If compaction is deferred for high-order allocations,
4411 * it is because sync compaction recently failed. If
4412 * this is the case and the caller requested a THP
4413 * allocation, we do not want to heavily disrupt the
4414 * system, so we fail the allocation instead of entering
4415 * direct reclaim.
4416 */
4417 if (compact_result == COMPACT_DEFERRED)
4418 goto nopage;
4419
a8161d1e 4420 /*
3eb2771b
VB
4421 * Looks like reclaim/compaction is worth trying, but
4422 * sync compaction could be very expensive, so keep
25160354 4423 * using async compaction.
a8161d1e 4424 */
a5508cd8 4425 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4426 }
4427 }
23771235 4428
31a6c190 4429retry:
23771235 4430 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4431 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4432 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4433
cd04ae1e
MH
4434 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4435 if (reserve_flags)
4436 alloc_flags = reserve_flags;
23771235 4437
e46e7b77 4438 /*
d6a24df0
VB
4439 * Reset the nodemask and zonelist iterators if memory policies can be
4440 * ignored. These allocations are high priority and system rather than
4441 * user oriented.
e46e7b77 4442 */
cd04ae1e 4443 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4444 ac->nodemask = NULL;
e46e7b77
MG
4445 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4446 ac->high_zoneidx, ac->nodemask);
4447 }
4448
23771235 4449 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4450 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4451 if (page)
4452 goto got_pg;
1da177e4 4453
d0164adc 4454 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4455 if (!can_direct_reclaim)
1da177e4
LT
4456 goto nopage;
4457
9a67f648
MH
4458 /* Avoid recursion of direct reclaim */
4459 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4460 goto nopage;
4461
a8161d1e
VB
4462 /* Try direct reclaim and then allocating */
4463 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4464 &did_some_progress);
4465 if (page)
4466 goto got_pg;
4467
4468 /* Try direct compaction and then allocating */
a9263751 4469 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4470 compact_priority, &compact_result);
56de7263
MG
4471 if (page)
4472 goto got_pg;
75f30861 4473
9083905a
JW
4474 /* Do not loop if specifically requested */
4475 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4476 goto nopage;
9083905a 4477
0a0337e0
MH
4478 /*
4479 * Do not retry costly high order allocations unless they are
dcda9b04 4480 * __GFP_RETRY_MAYFAIL
0a0337e0 4481 */
dcda9b04 4482 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4483 goto nopage;
0a0337e0 4484
0a0337e0 4485 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4486 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4487 goto retry;
4488
33c2d214
MH
4489 /*
4490 * It doesn't make any sense to retry for the compaction if the order-0
4491 * reclaim is not able to make any progress because the current
4492 * implementation of the compaction depends on the sufficient amount
4493 * of free memory (see __compaction_suitable)
4494 */
4495 if (did_some_progress > 0 &&
86a294a8 4496 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4497 compact_result, &compact_priority,
d9436498 4498 &compaction_retries))
33c2d214
MH
4499 goto retry;
4500
902b6281
VB
4501
4502 /* Deal with possible cpuset update races before we start OOM killing */
4503 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4504 goto retry_cpuset;
4505
9083905a
JW
4506 /* Reclaim has failed us, start killing things */
4507 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4508 if (page)
4509 goto got_pg;
4510
9a67f648 4511 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4512 if (tsk_is_oom_victim(current) &&
4513 (alloc_flags == ALLOC_OOM ||
c288983d 4514 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4515 goto nopage;
4516
9083905a 4517 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4518 if (did_some_progress) {
4519 no_progress_loops = 0;
9083905a 4520 goto retry;
0a0337e0 4521 }
9083905a 4522
1da177e4 4523nopage:
902b6281
VB
4524 /* Deal with possible cpuset update races before we fail */
4525 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4526 goto retry_cpuset;
4527
9a67f648
MH
4528 /*
4529 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4530 * we always retry
4531 */
4532 if (gfp_mask & __GFP_NOFAIL) {
4533 /*
4534 * All existing users of the __GFP_NOFAIL are blockable, so warn
4535 * of any new users that actually require GFP_NOWAIT
4536 */
4537 if (WARN_ON_ONCE(!can_direct_reclaim))
4538 goto fail;
4539
4540 /*
4541 * PF_MEMALLOC request from this context is rather bizarre
4542 * because we cannot reclaim anything and only can loop waiting
4543 * for somebody to do a work for us
4544 */
4545 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4546
4547 /*
4548 * non failing costly orders are a hard requirement which we
4549 * are not prepared for much so let's warn about these users
4550 * so that we can identify them and convert them to something
4551 * else.
4552 */
4553 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4554
6c18ba7a
MH
4555 /*
4556 * Help non-failing allocations by giving them access to memory
4557 * reserves but do not use ALLOC_NO_WATERMARKS because this
4558 * could deplete whole memory reserves which would just make
4559 * the situation worse
4560 */
4561 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4562 if (page)
4563 goto got_pg;
4564
9a67f648
MH
4565 cond_resched();
4566 goto retry;
4567 }
4568fail:
a8e99259 4569 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4570 "page allocation failure: order:%u", order);
1da177e4 4571got_pg:
072bb0aa 4572 return page;
1da177e4 4573}
11e33f6a 4574
9cd75558 4575static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4576 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4577 struct alloc_context *ac, gfp_t *alloc_mask,
4578 unsigned int *alloc_flags)
11e33f6a 4579{
9cd75558 4580 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4581 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4582 ac->nodemask = nodemask;
4583 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4584
682a3385 4585 if (cpusets_enabled()) {
9cd75558 4586 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4587 if (!ac->nodemask)
4588 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4589 else
4590 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4591 }
4592
d92a8cfc
PZ
4593 fs_reclaim_acquire(gfp_mask);
4594 fs_reclaim_release(gfp_mask);
11e33f6a 4595
d0164adc 4596 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4597
4598 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4599 return false;
11e33f6a 4600
d883c6cf
JK
4601 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4602 *alloc_flags |= ALLOC_CMA;
4603
9cd75558
MG
4604 return true;
4605}
21bb9bd1 4606
9cd75558 4607/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4608static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4609{
c9ab0c4f 4610 /* Dirty zone balancing only done in the fast path */
9cd75558 4611 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4612
e46e7b77
MG
4613 /*
4614 * The preferred zone is used for statistics but crucially it is
4615 * also used as the starting point for the zonelist iterator. It
4616 * may get reset for allocations that ignore memory policies.
4617 */
9cd75558
MG
4618 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4619 ac->high_zoneidx, ac->nodemask);
4620}
4621
4622/*
4623 * This is the 'heart' of the zoned buddy allocator.
4624 */
4625struct page *
04ec6264
VB
4626__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4627 nodemask_t *nodemask)
9cd75558
MG
4628{
4629 struct page *page;
4630 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4631 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4632 struct alloc_context ac = { };
4633
c63ae43b
MH
4634 /*
4635 * There are several places where we assume that the order value is sane
4636 * so bail out early if the request is out of bound.
4637 */
4638 if (unlikely(order >= MAX_ORDER)) {
4639 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4640 return NULL;
4641 }
4642
9cd75558 4643 gfp_mask &= gfp_allowed_mask;
f19360f0 4644 alloc_mask = gfp_mask;
04ec6264 4645 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4646 return NULL;
4647
a380b40a 4648 finalise_ac(gfp_mask, &ac);
5bb1b169 4649
6bb15450
MG
4650 /*
4651 * Forbid the first pass from falling back to types that fragment
4652 * memory until all local zones are considered.
4653 */
0a79cdad 4654 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4655
5117f45d 4656 /* First allocation attempt */
a9263751 4657 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4658 if (likely(page))
4659 goto out;
11e33f6a 4660
4fcb0971 4661 /*
7dea19f9
MH
4662 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4663 * resp. GFP_NOIO which has to be inherited for all allocation requests
4664 * from a particular context which has been marked by
4665 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4666 */
7dea19f9 4667 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4668 ac.spread_dirty_pages = false;
23f086f9 4669
4741526b
MG
4670 /*
4671 * Restore the original nodemask if it was potentially replaced with
4672 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4673 */
e47483bc 4674 if (unlikely(ac.nodemask != nodemask))
4741526b 4675 ac.nodemask = nodemask;
16096c25 4676
4fcb0971 4677 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4678
4fcb0971 4679out:
c4159a75 4680 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
60cd4bcd 4681 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
c4159a75
VD
4682 __free_pages(page, order);
4683 page = NULL;
4949148a
VD
4684 }
4685
4fcb0971
MG
4686 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4687
11e33f6a 4688 return page;
1da177e4 4689}
d239171e 4690EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4691
4692/*
9ea9a680
MH
4693 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4694 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4695 * you need to access high mem.
1da177e4 4696 */
920c7a5d 4697unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4698{
945a1113
AM
4699 struct page *page;
4700
9ea9a680 4701 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4702 if (!page)
4703 return 0;
4704 return (unsigned long) page_address(page);
4705}
1da177e4
LT
4706EXPORT_SYMBOL(__get_free_pages);
4707
920c7a5d 4708unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4709{
945a1113 4710 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4711}
1da177e4
LT
4712EXPORT_SYMBOL(get_zeroed_page);
4713
742aa7fb 4714static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4715{
742aa7fb
AL
4716 if (order == 0) /* Via pcp? */
4717 free_unref_page(page);
4718 else
4719 __free_pages_ok(page, order);
1da177e4
LT
4720}
4721
742aa7fb
AL
4722void __free_pages(struct page *page, unsigned int order)
4723{
4724 if (put_page_testzero(page))
4725 free_the_page(page, order);
4726}
1da177e4
LT
4727EXPORT_SYMBOL(__free_pages);
4728
920c7a5d 4729void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4730{
4731 if (addr != 0) {
725d704e 4732 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4733 __free_pages(virt_to_page((void *)addr), order);
4734 }
4735}
4736
4737EXPORT_SYMBOL(free_pages);
4738
b63ae8ca
AD
4739/*
4740 * Page Fragment:
4741 * An arbitrary-length arbitrary-offset area of memory which resides
4742 * within a 0 or higher order page. Multiple fragments within that page
4743 * are individually refcounted, in the page's reference counter.
4744 *
4745 * The page_frag functions below provide a simple allocation framework for
4746 * page fragments. This is used by the network stack and network device
4747 * drivers to provide a backing region of memory for use as either an
4748 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4749 */
2976db80
AD
4750static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4751 gfp_t gfp_mask)
b63ae8ca
AD
4752{
4753 struct page *page = NULL;
4754 gfp_t gfp = gfp_mask;
4755
4756#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4757 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4758 __GFP_NOMEMALLOC;
4759 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4760 PAGE_FRAG_CACHE_MAX_ORDER);
4761 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4762#endif
4763 if (unlikely(!page))
4764 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4765
4766 nc->va = page ? page_address(page) : NULL;
4767
4768 return page;
4769}
4770
2976db80 4771void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4772{
4773 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4774
742aa7fb
AL
4775 if (page_ref_sub_and_test(page, count))
4776 free_the_page(page, compound_order(page));
44fdffd7 4777}
2976db80 4778EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4779
8c2dd3e4
AD
4780void *page_frag_alloc(struct page_frag_cache *nc,
4781 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4782{
4783 unsigned int size = PAGE_SIZE;
4784 struct page *page;
4785 int offset;
4786
4787 if (unlikely(!nc->va)) {
4788refill:
2976db80 4789 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4790 if (!page)
4791 return NULL;
4792
4793#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4794 /* if size can vary use size else just use PAGE_SIZE */
4795 size = nc->size;
4796#endif
4797 /* Even if we own the page, we do not use atomic_set().
4798 * This would break get_page_unless_zero() users.
4799 */
86447726 4800 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4801
4802 /* reset page count bias and offset to start of new frag */
2f064f34 4803 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4804 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4805 nc->offset = size;
4806 }
4807
4808 offset = nc->offset - fragsz;
4809 if (unlikely(offset < 0)) {
4810 page = virt_to_page(nc->va);
4811
fe896d18 4812 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4813 goto refill;
4814
4815#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4816 /* if size can vary use size else just use PAGE_SIZE */
4817 size = nc->size;
4818#endif
4819 /* OK, page count is 0, we can safely set it */
86447726 4820 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4821
4822 /* reset page count bias and offset to start of new frag */
86447726 4823 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4824 offset = size - fragsz;
4825 }
4826
4827 nc->pagecnt_bias--;
4828 nc->offset = offset;
4829
4830 return nc->va + offset;
4831}
8c2dd3e4 4832EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4833
4834/*
4835 * Frees a page fragment allocated out of either a compound or order 0 page.
4836 */
8c2dd3e4 4837void page_frag_free(void *addr)
b63ae8ca
AD
4838{
4839 struct page *page = virt_to_head_page(addr);
4840
742aa7fb
AL
4841 if (unlikely(put_page_testzero(page)))
4842 free_the_page(page, compound_order(page));
b63ae8ca 4843}
8c2dd3e4 4844EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4845
d00181b9
KS
4846static void *make_alloc_exact(unsigned long addr, unsigned int order,
4847 size_t size)
ee85c2e1
AK
4848{
4849 if (addr) {
4850 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4851 unsigned long used = addr + PAGE_ALIGN(size);
4852
4853 split_page(virt_to_page((void *)addr), order);
4854 while (used < alloc_end) {
4855 free_page(used);
4856 used += PAGE_SIZE;
4857 }
4858 }
4859 return (void *)addr;
4860}
4861
2be0ffe2
TT
4862/**
4863 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4864 * @size: the number of bytes to allocate
63931eb9 4865 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4866 *
4867 * This function is similar to alloc_pages(), except that it allocates the
4868 * minimum number of pages to satisfy the request. alloc_pages() can only
4869 * allocate memory in power-of-two pages.
4870 *
4871 * This function is also limited by MAX_ORDER.
4872 *
4873 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4874 *
4875 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4876 */
4877void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4878{
4879 unsigned int order = get_order(size);
4880 unsigned long addr;
4881
63931eb9
VB
4882 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4883 gfp_mask &= ~__GFP_COMP;
4884
2be0ffe2 4885 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4886 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4887}
4888EXPORT_SYMBOL(alloc_pages_exact);
4889
ee85c2e1
AK
4890/**
4891 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4892 * pages on a node.
b5e6ab58 4893 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4894 * @size: the number of bytes to allocate
63931eb9 4895 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4896 *
4897 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4898 * back.
a862f68a
MR
4899 *
4900 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4901 */
e1931811 4902void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4903{
d00181b9 4904 unsigned int order = get_order(size);
63931eb9
VB
4905 struct page *p;
4906
4907 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4908 gfp_mask &= ~__GFP_COMP;
4909
4910 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4911 if (!p)
4912 return NULL;
4913 return make_alloc_exact((unsigned long)page_address(p), order, size);
4914}
ee85c2e1 4915
2be0ffe2
TT
4916/**
4917 * free_pages_exact - release memory allocated via alloc_pages_exact()
4918 * @virt: the value returned by alloc_pages_exact.
4919 * @size: size of allocation, same value as passed to alloc_pages_exact().
4920 *
4921 * Release the memory allocated by a previous call to alloc_pages_exact.
4922 */
4923void free_pages_exact(void *virt, size_t size)
4924{
4925 unsigned long addr = (unsigned long)virt;
4926 unsigned long end = addr + PAGE_ALIGN(size);
4927
4928 while (addr < end) {
4929 free_page(addr);
4930 addr += PAGE_SIZE;
4931 }
4932}
4933EXPORT_SYMBOL(free_pages_exact);
4934
e0fb5815
ZY
4935/**
4936 * nr_free_zone_pages - count number of pages beyond high watermark
4937 * @offset: The zone index of the highest zone
4938 *
a862f68a 4939 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
4940 * high watermark within all zones at or below a given zone index. For each
4941 * zone, the number of pages is calculated as:
0e056eb5 4942 *
4943 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
4944 *
4945 * Return: number of pages beyond high watermark.
e0fb5815 4946 */
ebec3862 4947static unsigned long nr_free_zone_pages(int offset)
1da177e4 4948{
dd1a239f 4949 struct zoneref *z;
54a6eb5c
MG
4950 struct zone *zone;
4951
e310fd43 4952 /* Just pick one node, since fallback list is circular */
ebec3862 4953 unsigned long sum = 0;
1da177e4 4954
0e88460d 4955 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4956
54a6eb5c 4957 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4958 unsigned long size = zone_managed_pages(zone);
41858966 4959 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4960 if (size > high)
4961 sum += size - high;
1da177e4
LT
4962 }
4963
4964 return sum;
4965}
4966
e0fb5815
ZY
4967/**
4968 * nr_free_buffer_pages - count number of pages beyond high watermark
4969 *
4970 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4971 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
4972 *
4973 * Return: number of pages beyond high watermark within ZONE_DMA and
4974 * ZONE_NORMAL.
1da177e4 4975 */
ebec3862 4976unsigned long nr_free_buffer_pages(void)
1da177e4 4977{
af4ca457 4978 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4979}
c2f1a551 4980EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4981
e0fb5815
ZY
4982/**
4983 * nr_free_pagecache_pages - count number of pages beyond high watermark
4984 *
4985 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4986 * high watermark within all zones.
a862f68a
MR
4987 *
4988 * Return: number of pages beyond high watermark within all zones.
1da177e4 4989 */
ebec3862 4990unsigned long nr_free_pagecache_pages(void)
1da177e4 4991{
2a1e274a 4992 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4993}
08e0f6a9
CL
4994
4995static inline void show_node(struct zone *zone)
1da177e4 4996{
e5adfffc 4997 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4998 printk("Node %d ", zone_to_nid(zone));
1da177e4 4999}
1da177e4 5000
d02bd27b
IR
5001long si_mem_available(void)
5002{
5003 long available;
5004 unsigned long pagecache;
5005 unsigned long wmark_low = 0;
5006 unsigned long pages[NR_LRU_LISTS];
b29940c1 5007 unsigned long reclaimable;
d02bd27b
IR
5008 struct zone *zone;
5009 int lru;
5010
5011 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5012 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5013
5014 for_each_zone(zone)
a9214443 5015 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5016
5017 /*
5018 * Estimate the amount of memory available for userspace allocations,
5019 * without causing swapping.
5020 */
c41f012a 5021 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5022
5023 /*
5024 * Not all the page cache can be freed, otherwise the system will
5025 * start swapping. Assume at least half of the page cache, or the
5026 * low watermark worth of cache, needs to stay.
5027 */
5028 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5029 pagecache -= min(pagecache / 2, wmark_low);
5030 available += pagecache;
5031
5032 /*
b29940c1
VB
5033 * Part of the reclaimable slab and other kernel memory consists of
5034 * items that are in use, and cannot be freed. Cap this estimate at the
5035 * low watermark.
d02bd27b 5036 */
b29940c1
VB
5037 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5038 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5039 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5040
d02bd27b
IR
5041 if (available < 0)
5042 available = 0;
5043 return available;
5044}
5045EXPORT_SYMBOL_GPL(si_mem_available);
5046
1da177e4
LT
5047void si_meminfo(struct sysinfo *val)
5048{
ca79b0c2 5049 val->totalram = totalram_pages();
11fb9989 5050 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5051 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5052 val->bufferram = nr_blockdev_pages();
ca79b0c2 5053 val->totalhigh = totalhigh_pages();
1da177e4 5054 val->freehigh = nr_free_highpages();
1da177e4
LT
5055 val->mem_unit = PAGE_SIZE;
5056}
5057
5058EXPORT_SYMBOL(si_meminfo);
5059
5060#ifdef CONFIG_NUMA
5061void si_meminfo_node(struct sysinfo *val, int nid)
5062{
cdd91a77
JL
5063 int zone_type; /* needs to be signed */
5064 unsigned long managed_pages = 0;
fc2bd799
JK
5065 unsigned long managed_highpages = 0;
5066 unsigned long free_highpages = 0;
1da177e4
LT
5067 pg_data_t *pgdat = NODE_DATA(nid);
5068
cdd91a77 5069 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5070 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5071 val->totalram = managed_pages;
11fb9989 5072 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5073 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5074#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5075 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5076 struct zone *zone = &pgdat->node_zones[zone_type];
5077
5078 if (is_highmem(zone)) {
9705bea5 5079 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5080 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5081 }
5082 }
5083 val->totalhigh = managed_highpages;
5084 val->freehigh = free_highpages;
98d2b0eb 5085#else
fc2bd799
JK
5086 val->totalhigh = managed_highpages;
5087 val->freehigh = free_highpages;
98d2b0eb 5088#endif
1da177e4
LT
5089 val->mem_unit = PAGE_SIZE;
5090}
5091#endif
5092
ddd588b5 5093/*
7bf02ea2
DR
5094 * Determine whether the node should be displayed or not, depending on whether
5095 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5096 */
9af744d7 5097static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5098{
ddd588b5 5099 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5100 return false;
ddd588b5 5101
9af744d7
MH
5102 /*
5103 * no node mask - aka implicit memory numa policy. Do not bother with
5104 * the synchronization - read_mems_allowed_begin - because we do not
5105 * have to be precise here.
5106 */
5107 if (!nodemask)
5108 nodemask = &cpuset_current_mems_allowed;
5109
5110 return !node_isset(nid, *nodemask);
ddd588b5
DR
5111}
5112
1da177e4
LT
5113#define K(x) ((x) << (PAGE_SHIFT-10))
5114
377e4f16
RV
5115static void show_migration_types(unsigned char type)
5116{
5117 static const char types[MIGRATE_TYPES] = {
5118 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5119 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5120 [MIGRATE_RECLAIMABLE] = 'E',
5121 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5122#ifdef CONFIG_CMA
5123 [MIGRATE_CMA] = 'C',
5124#endif
194159fb 5125#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5126 [MIGRATE_ISOLATE] = 'I',
194159fb 5127#endif
377e4f16
RV
5128 };
5129 char tmp[MIGRATE_TYPES + 1];
5130 char *p = tmp;
5131 int i;
5132
5133 for (i = 0; i < MIGRATE_TYPES; i++) {
5134 if (type & (1 << i))
5135 *p++ = types[i];
5136 }
5137
5138 *p = '\0';
1f84a18f 5139 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5140}
5141
1da177e4
LT
5142/*
5143 * Show free area list (used inside shift_scroll-lock stuff)
5144 * We also calculate the percentage fragmentation. We do this by counting the
5145 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5146 *
5147 * Bits in @filter:
5148 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5149 * cpuset.
1da177e4 5150 */
9af744d7 5151void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5152{
d1bfcdb8 5153 unsigned long free_pcp = 0;
c7241913 5154 int cpu;
1da177e4 5155 struct zone *zone;
599d0c95 5156 pg_data_t *pgdat;
1da177e4 5157
ee99c71c 5158 for_each_populated_zone(zone) {
9af744d7 5159 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5160 continue;
d1bfcdb8 5161
761b0677
KK
5162 for_each_online_cpu(cpu)
5163 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5164 }
5165
a731286d
KM
5166 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5167 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5168 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5169 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5170 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5171 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5172 global_node_page_state(NR_ACTIVE_ANON),
5173 global_node_page_state(NR_INACTIVE_ANON),
5174 global_node_page_state(NR_ISOLATED_ANON),
5175 global_node_page_state(NR_ACTIVE_FILE),
5176 global_node_page_state(NR_INACTIVE_FILE),
5177 global_node_page_state(NR_ISOLATED_FILE),
5178 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5179 global_node_page_state(NR_FILE_DIRTY),
5180 global_node_page_state(NR_WRITEBACK),
5181 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5182 global_node_page_state(NR_SLAB_RECLAIMABLE),
5183 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5184 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5185 global_node_page_state(NR_SHMEM),
c41f012a
MH
5186 global_zone_page_state(NR_PAGETABLE),
5187 global_zone_page_state(NR_BOUNCE),
5188 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5189 free_pcp,
c41f012a 5190 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5191
599d0c95 5192 for_each_online_pgdat(pgdat) {
9af744d7 5193 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5194 continue;
5195
599d0c95
MG
5196 printk("Node %d"
5197 " active_anon:%lukB"
5198 " inactive_anon:%lukB"
5199 " active_file:%lukB"
5200 " inactive_file:%lukB"
5201 " unevictable:%lukB"
5202 " isolated(anon):%lukB"
5203 " isolated(file):%lukB"
50658e2e 5204 " mapped:%lukB"
11fb9989
MG
5205 " dirty:%lukB"
5206 " writeback:%lukB"
5207 " shmem:%lukB"
5208#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5209 " shmem_thp: %lukB"
5210 " shmem_pmdmapped: %lukB"
5211 " anon_thp: %lukB"
5212#endif
5213 " writeback_tmp:%lukB"
5214 " unstable:%lukB"
599d0c95
MG
5215 " all_unreclaimable? %s"
5216 "\n",
5217 pgdat->node_id,
5218 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5219 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5220 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5221 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5222 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5223 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5224 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5225 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5226 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5227 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5228 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5229#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5230 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5231 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5232 * HPAGE_PMD_NR),
5233 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5234#endif
11fb9989
MG
5235 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5236 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5237 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5238 "yes" : "no");
599d0c95
MG
5239 }
5240
ee99c71c 5241 for_each_populated_zone(zone) {
1da177e4
LT
5242 int i;
5243
9af744d7 5244 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5245 continue;
d1bfcdb8
KK
5246
5247 free_pcp = 0;
5248 for_each_online_cpu(cpu)
5249 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5250
1da177e4 5251 show_node(zone);
1f84a18f
JP
5252 printk(KERN_CONT
5253 "%s"
1da177e4
LT
5254 " free:%lukB"
5255 " min:%lukB"
5256 " low:%lukB"
5257 " high:%lukB"
71c799f4
MK
5258 " active_anon:%lukB"
5259 " inactive_anon:%lukB"
5260 " active_file:%lukB"
5261 " inactive_file:%lukB"
5262 " unevictable:%lukB"
5a1c84b4 5263 " writepending:%lukB"
1da177e4 5264 " present:%lukB"
9feedc9d 5265 " managed:%lukB"
4a0aa73f 5266 " mlocked:%lukB"
c6a7f572 5267 " kernel_stack:%lukB"
4a0aa73f 5268 " pagetables:%lukB"
4a0aa73f 5269 " bounce:%lukB"
d1bfcdb8
KK
5270 " free_pcp:%lukB"
5271 " local_pcp:%ukB"
d1ce749a 5272 " free_cma:%lukB"
1da177e4
LT
5273 "\n",
5274 zone->name,
88f5acf8 5275 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5276 K(min_wmark_pages(zone)),
5277 K(low_wmark_pages(zone)),
5278 K(high_wmark_pages(zone)),
71c799f4
MK
5279 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5280 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5281 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5282 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5283 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5284 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5285 K(zone->present_pages),
9705bea5 5286 K(zone_managed_pages(zone)),
4a0aa73f 5287 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5288 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5289 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5290 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5291 K(free_pcp),
5292 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5293 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5294 printk("lowmem_reserve[]:");
5295 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5296 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5297 printk(KERN_CONT "\n");
1da177e4
LT
5298 }
5299
ee99c71c 5300 for_each_populated_zone(zone) {
d00181b9
KS
5301 unsigned int order;
5302 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5303 unsigned char types[MAX_ORDER];
1da177e4 5304
9af744d7 5305 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5306 continue;
1da177e4 5307 show_node(zone);
1f84a18f 5308 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5309
5310 spin_lock_irqsave(&zone->lock, flags);
5311 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5312 struct free_area *area = &zone->free_area[order];
5313 int type;
5314
5315 nr[order] = area->nr_free;
8f9de51a 5316 total += nr[order] << order;
377e4f16
RV
5317
5318 types[order] = 0;
5319 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5320 if (!free_area_empty(area, type))
377e4f16
RV
5321 types[order] |= 1 << type;
5322 }
1da177e4
LT
5323 }
5324 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5325 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5326 printk(KERN_CONT "%lu*%lukB ",
5327 nr[order], K(1UL) << order);
377e4f16
RV
5328 if (nr[order])
5329 show_migration_types(types[order]);
5330 }
1f84a18f 5331 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5332 }
5333
949f7ec5
DR
5334 hugetlb_show_meminfo();
5335
11fb9989 5336 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5337
1da177e4
LT
5338 show_swap_cache_info();
5339}
5340
19770b32
MG
5341static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5342{
5343 zoneref->zone = zone;
5344 zoneref->zone_idx = zone_idx(zone);
5345}
5346
1da177e4
LT
5347/*
5348 * Builds allocation fallback zone lists.
1a93205b
CL
5349 *
5350 * Add all populated zones of a node to the zonelist.
1da177e4 5351 */
9d3be21b 5352static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5353{
1a93205b 5354 struct zone *zone;
bc732f1d 5355 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5356 int nr_zones = 0;
02a68a5e
CL
5357
5358 do {
2f6726e5 5359 zone_type--;
070f8032 5360 zone = pgdat->node_zones + zone_type;
6aa303de 5361 if (managed_zone(zone)) {
9d3be21b 5362 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5363 check_highest_zone(zone_type);
1da177e4 5364 }
2f6726e5 5365 } while (zone_type);
bc732f1d 5366
070f8032 5367 return nr_zones;
1da177e4
LT
5368}
5369
5370#ifdef CONFIG_NUMA
f0c0b2b8
KH
5371
5372static int __parse_numa_zonelist_order(char *s)
5373{
c9bff3ee
MH
5374 /*
5375 * We used to support different zonlists modes but they turned
5376 * out to be just not useful. Let's keep the warning in place
5377 * if somebody still use the cmd line parameter so that we do
5378 * not fail it silently
5379 */
5380 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5381 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5382 return -EINVAL;
5383 }
5384 return 0;
5385}
5386
5387static __init int setup_numa_zonelist_order(char *s)
5388{
ecb256f8
VL
5389 if (!s)
5390 return 0;
5391
c9bff3ee 5392 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5393}
5394early_param("numa_zonelist_order", setup_numa_zonelist_order);
5395
c9bff3ee
MH
5396char numa_zonelist_order[] = "Node";
5397
f0c0b2b8
KH
5398/*
5399 * sysctl handler for numa_zonelist_order
5400 */
cccad5b9 5401int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5402 void __user *buffer, size_t *length,
f0c0b2b8
KH
5403 loff_t *ppos)
5404{
c9bff3ee 5405 char *str;
f0c0b2b8
KH
5406 int ret;
5407
c9bff3ee
MH
5408 if (!write)
5409 return proc_dostring(table, write, buffer, length, ppos);
5410 str = memdup_user_nul(buffer, 16);
5411 if (IS_ERR(str))
5412 return PTR_ERR(str);
dacbde09 5413
c9bff3ee
MH
5414 ret = __parse_numa_zonelist_order(str);
5415 kfree(str);
443c6f14 5416 return ret;
f0c0b2b8
KH
5417}
5418
5419
62bc62a8 5420#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5421static int node_load[MAX_NUMNODES];
5422
1da177e4 5423/**
4dc3b16b 5424 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5425 * @node: node whose fallback list we're appending
5426 * @used_node_mask: nodemask_t of already used nodes
5427 *
5428 * We use a number of factors to determine which is the next node that should
5429 * appear on a given node's fallback list. The node should not have appeared
5430 * already in @node's fallback list, and it should be the next closest node
5431 * according to the distance array (which contains arbitrary distance values
5432 * from each node to each node in the system), and should also prefer nodes
5433 * with no CPUs, since presumably they'll have very little allocation pressure
5434 * on them otherwise.
a862f68a
MR
5435 *
5436 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5437 */
f0c0b2b8 5438static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5439{
4cf808eb 5440 int n, val;
1da177e4 5441 int min_val = INT_MAX;
00ef2d2f 5442 int best_node = NUMA_NO_NODE;
a70f7302 5443 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5444
4cf808eb
LT
5445 /* Use the local node if we haven't already */
5446 if (!node_isset(node, *used_node_mask)) {
5447 node_set(node, *used_node_mask);
5448 return node;
5449 }
1da177e4 5450
4b0ef1fe 5451 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5452
5453 /* Don't want a node to appear more than once */
5454 if (node_isset(n, *used_node_mask))
5455 continue;
5456
1da177e4
LT
5457 /* Use the distance array to find the distance */
5458 val = node_distance(node, n);
5459
4cf808eb
LT
5460 /* Penalize nodes under us ("prefer the next node") */
5461 val += (n < node);
5462
1da177e4 5463 /* Give preference to headless and unused nodes */
a70f7302
RR
5464 tmp = cpumask_of_node(n);
5465 if (!cpumask_empty(tmp))
1da177e4
LT
5466 val += PENALTY_FOR_NODE_WITH_CPUS;
5467
5468 /* Slight preference for less loaded node */
5469 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5470 val += node_load[n];
5471
5472 if (val < min_val) {
5473 min_val = val;
5474 best_node = n;
5475 }
5476 }
5477
5478 if (best_node >= 0)
5479 node_set(best_node, *used_node_mask);
5480
5481 return best_node;
5482}
5483
f0c0b2b8
KH
5484
5485/*
5486 * Build zonelists ordered by node and zones within node.
5487 * This results in maximum locality--normal zone overflows into local
5488 * DMA zone, if any--but risks exhausting DMA zone.
5489 */
9d3be21b
MH
5490static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5491 unsigned nr_nodes)
1da177e4 5492{
9d3be21b
MH
5493 struct zoneref *zonerefs;
5494 int i;
5495
5496 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5497
5498 for (i = 0; i < nr_nodes; i++) {
5499 int nr_zones;
5500
5501 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5502
9d3be21b
MH
5503 nr_zones = build_zonerefs_node(node, zonerefs);
5504 zonerefs += nr_zones;
5505 }
5506 zonerefs->zone = NULL;
5507 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5508}
5509
523b9458
CL
5510/*
5511 * Build gfp_thisnode zonelists
5512 */
5513static void build_thisnode_zonelists(pg_data_t *pgdat)
5514{
9d3be21b
MH
5515 struct zoneref *zonerefs;
5516 int nr_zones;
523b9458 5517
9d3be21b
MH
5518 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5519 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5520 zonerefs += nr_zones;
5521 zonerefs->zone = NULL;
5522 zonerefs->zone_idx = 0;
523b9458
CL
5523}
5524
f0c0b2b8
KH
5525/*
5526 * Build zonelists ordered by zone and nodes within zones.
5527 * This results in conserving DMA zone[s] until all Normal memory is
5528 * exhausted, but results in overflowing to remote node while memory
5529 * may still exist in local DMA zone.
5530 */
f0c0b2b8 5531
f0c0b2b8
KH
5532static void build_zonelists(pg_data_t *pgdat)
5533{
9d3be21b
MH
5534 static int node_order[MAX_NUMNODES];
5535 int node, load, nr_nodes = 0;
1da177e4 5536 nodemask_t used_mask;
f0c0b2b8 5537 int local_node, prev_node;
1da177e4
LT
5538
5539 /* NUMA-aware ordering of nodes */
5540 local_node = pgdat->node_id;
62bc62a8 5541 load = nr_online_nodes;
1da177e4
LT
5542 prev_node = local_node;
5543 nodes_clear(used_mask);
f0c0b2b8 5544
f0c0b2b8 5545 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5546 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5547 /*
5548 * We don't want to pressure a particular node.
5549 * So adding penalty to the first node in same
5550 * distance group to make it round-robin.
5551 */
957f822a
DR
5552 if (node_distance(local_node, node) !=
5553 node_distance(local_node, prev_node))
f0c0b2b8
KH
5554 node_load[node] = load;
5555
9d3be21b 5556 node_order[nr_nodes++] = node;
1da177e4
LT
5557 prev_node = node;
5558 load--;
1da177e4 5559 }
523b9458 5560
9d3be21b 5561 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5562 build_thisnode_zonelists(pgdat);
1da177e4
LT
5563}
5564
7aac7898
LS
5565#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5566/*
5567 * Return node id of node used for "local" allocations.
5568 * I.e., first node id of first zone in arg node's generic zonelist.
5569 * Used for initializing percpu 'numa_mem', which is used primarily
5570 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5571 */
5572int local_memory_node(int node)
5573{
c33d6c06 5574 struct zoneref *z;
7aac7898 5575
c33d6c06 5576 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5577 gfp_zone(GFP_KERNEL),
c33d6c06 5578 NULL);
c1093b74 5579 return zone_to_nid(z->zone);
7aac7898
LS
5580}
5581#endif
f0c0b2b8 5582
6423aa81
JK
5583static void setup_min_unmapped_ratio(void);
5584static void setup_min_slab_ratio(void);
1da177e4
LT
5585#else /* CONFIG_NUMA */
5586
f0c0b2b8 5587static void build_zonelists(pg_data_t *pgdat)
1da177e4 5588{
19655d34 5589 int node, local_node;
9d3be21b
MH
5590 struct zoneref *zonerefs;
5591 int nr_zones;
1da177e4
LT
5592
5593 local_node = pgdat->node_id;
1da177e4 5594
9d3be21b
MH
5595 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5596 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5597 zonerefs += nr_zones;
1da177e4 5598
54a6eb5c
MG
5599 /*
5600 * Now we build the zonelist so that it contains the zones
5601 * of all the other nodes.
5602 * We don't want to pressure a particular node, so when
5603 * building the zones for node N, we make sure that the
5604 * zones coming right after the local ones are those from
5605 * node N+1 (modulo N)
5606 */
5607 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5608 if (!node_online(node))
5609 continue;
9d3be21b
MH
5610 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5611 zonerefs += nr_zones;
1da177e4 5612 }
54a6eb5c
MG
5613 for (node = 0; node < local_node; node++) {
5614 if (!node_online(node))
5615 continue;
9d3be21b
MH
5616 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5617 zonerefs += nr_zones;
54a6eb5c
MG
5618 }
5619
9d3be21b
MH
5620 zonerefs->zone = NULL;
5621 zonerefs->zone_idx = 0;
1da177e4
LT
5622}
5623
5624#endif /* CONFIG_NUMA */
5625
99dcc3e5
CL
5626/*
5627 * Boot pageset table. One per cpu which is going to be used for all
5628 * zones and all nodes. The parameters will be set in such a way
5629 * that an item put on a list will immediately be handed over to
5630 * the buddy list. This is safe since pageset manipulation is done
5631 * with interrupts disabled.
5632 *
5633 * The boot_pagesets must be kept even after bootup is complete for
5634 * unused processors and/or zones. They do play a role for bootstrapping
5635 * hotplugged processors.
5636 *
5637 * zoneinfo_show() and maybe other functions do
5638 * not check if the processor is online before following the pageset pointer.
5639 * Other parts of the kernel may not check if the zone is available.
5640 */
5641static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5642static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5643static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5644
11cd8638 5645static void __build_all_zonelists(void *data)
1da177e4 5646{
6811378e 5647 int nid;
afb6ebb3 5648 int __maybe_unused cpu;
9adb62a5 5649 pg_data_t *self = data;
b93e0f32
MH
5650 static DEFINE_SPINLOCK(lock);
5651
5652 spin_lock(&lock);
9276b1bc 5653
7f9cfb31
BL
5654#ifdef CONFIG_NUMA
5655 memset(node_load, 0, sizeof(node_load));
5656#endif
9adb62a5 5657
c1152583
WY
5658 /*
5659 * This node is hotadded and no memory is yet present. So just
5660 * building zonelists is fine - no need to touch other nodes.
5661 */
9adb62a5
JL
5662 if (self && !node_online(self->node_id)) {
5663 build_zonelists(self);
c1152583
WY
5664 } else {
5665 for_each_online_node(nid) {
5666 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5667
c1152583
WY
5668 build_zonelists(pgdat);
5669 }
99dcc3e5 5670
7aac7898
LS
5671#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5672 /*
5673 * We now know the "local memory node" for each node--
5674 * i.e., the node of the first zone in the generic zonelist.
5675 * Set up numa_mem percpu variable for on-line cpus. During
5676 * boot, only the boot cpu should be on-line; we'll init the
5677 * secondary cpus' numa_mem as they come on-line. During
5678 * node/memory hotplug, we'll fixup all on-line cpus.
5679 */
d9c9a0b9 5680 for_each_online_cpu(cpu)
7aac7898 5681 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5682#endif
d9c9a0b9 5683 }
b93e0f32
MH
5684
5685 spin_unlock(&lock);
6811378e
YG
5686}
5687
061f67bc
RV
5688static noinline void __init
5689build_all_zonelists_init(void)
5690{
afb6ebb3
MH
5691 int cpu;
5692
061f67bc 5693 __build_all_zonelists(NULL);
afb6ebb3
MH
5694
5695 /*
5696 * Initialize the boot_pagesets that are going to be used
5697 * for bootstrapping processors. The real pagesets for
5698 * each zone will be allocated later when the per cpu
5699 * allocator is available.
5700 *
5701 * boot_pagesets are used also for bootstrapping offline
5702 * cpus if the system is already booted because the pagesets
5703 * are needed to initialize allocators on a specific cpu too.
5704 * F.e. the percpu allocator needs the page allocator which
5705 * needs the percpu allocator in order to allocate its pagesets
5706 * (a chicken-egg dilemma).
5707 */
5708 for_each_possible_cpu(cpu)
5709 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5710
061f67bc
RV
5711 mminit_verify_zonelist();
5712 cpuset_init_current_mems_allowed();
5713}
5714
4eaf3f64 5715/*
4eaf3f64 5716 * unless system_state == SYSTEM_BOOTING.
061f67bc 5717 *
72675e13 5718 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5719 * [protected by SYSTEM_BOOTING].
4eaf3f64 5720 */
72675e13 5721void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5722{
5723 if (system_state == SYSTEM_BOOTING) {
061f67bc 5724 build_all_zonelists_init();
6811378e 5725 } else {
11cd8638 5726 __build_all_zonelists(pgdat);
6811378e
YG
5727 /* cpuset refresh routine should be here */
5728 }
bd1e22b8 5729 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5730 /*
5731 * Disable grouping by mobility if the number of pages in the
5732 * system is too low to allow the mechanism to work. It would be
5733 * more accurate, but expensive to check per-zone. This check is
5734 * made on memory-hotadd so a system can start with mobility
5735 * disabled and enable it later
5736 */
d9c23400 5737 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5738 page_group_by_mobility_disabled = 1;
5739 else
5740 page_group_by_mobility_disabled = 0;
5741
ce0725f7 5742 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5743 nr_online_nodes,
756a025f
JP
5744 page_group_by_mobility_disabled ? "off" : "on",
5745 vm_total_pages);
f0c0b2b8 5746#ifdef CONFIG_NUMA
f88dfff5 5747 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5748#endif
1da177e4
LT
5749}
5750
a9a9e77f
PT
5751/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5752static bool __meminit
5753overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5754{
5755#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5756 static struct memblock_region *r;
5757
5758 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5759 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5760 for_each_memblock(memory, r) {
5761 if (*pfn < memblock_region_memory_end_pfn(r))
5762 break;
5763 }
5764 }
5765 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5766 memblock_is_mirror(r)) {
5767 *pfn = memblock_region_memory_end_pfn(r);
5768 return true;
5769 }
5770 }
5771#endif
5772 return false;
5773}
5774
1da177e4
LT
5775/*
5776 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5777 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5778 * done. Non-atomic initialization, single-pass.
5779 */
c09b4240 5780void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5781 unsigned long start_pfn, enum memmap_context context,
5782 struct vmem_altmap *altmap)
1da177e4 5783{
a9a9e77f 5784 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5785 struct page *page;
1da177e4 5786
22b31eec
HD
5787 if (highest_memmap_pfn < end_pfn - 1)
5788 highest_memmap_pfn = end_pfn - 1;
5789
966cf44f 5790#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5791 /*
5792 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5793 * memory. We limit the total number of pages to initialize to just
5794 * those that might contain the memory mapping. We will defer the
5795 * ZONE_DEVICE page initialization until after we have released
5796 * the hotplug lock.
4b94ffdc 5797 */
966cf44f
AD
5798 if (zone == ZONE_DEVICE) {
5799 if (!altmap)
5800 return;
5801
5802 if (start_pfn == altmap->base_pfn)
5803 start_pfn += altmap->reserve;
5804 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5805 }
5806#endif
4b94ffdc 5807
cbe8dd4a 5808 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5809 /*
b72d0ffb
AM
5810 * There can be holes in boot-time mem_map[]s handed to this
5811 * function. They do not exist on hotplugged memory.
a2f3aa02 5812 */
a9a9e77f
PT
5813 if (context == MEMMAP_EARLY) {
5814 if (!early_pfn_valid(pfn))
b72d0ffb 5815 continue;
a9a9e77f
PT
5816 if (!early_pfn_in_nid(pfn, nid))
5817 continue;
5818 if (overlap_memmap_init(zone, &pfn))
5819 continue;
5820 if (defer_init(nid, pfn, end_pfn))
5821 break;
a2f3aa02 5822 }
ac5d2539 5823
d0dc12e8
PT
5824 page = pfn_to_page(pfn);
5825 __init_single_page(page, pfn, zone, nid);
5826 if (context == MEMMAP_HOTPLUG)
d483da5b 5827 __SetPageReserved(page);
d0dc12e8 5828
ac5d2539
MG
5829 /*
5830 * Mark the block movable so that blocks are reserved for
5831 * movable at startup. This will force kernel allocations
5832 * to reserve their blocks rather than leaking throughout
5833 * the address space during boot when many long-lived
974a786e 5834 * kernel allocations are made.
ac5d2539
MG
5835 *
5836 * bitmap is created for zone's valid pfn range. but memmap
5837 * can be created for invalid pages (for alignment)
5838 * check here not to call set_pageblock_migratetype() against
5839 * pfn out of zone.
5840 */
5841 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5842 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5843 cond_resched();
ac5d2539 5844 }
1da177e4
LT
5845 }
5846}
5847
966cf44f
AD
5848#ifdef CONFIG_ZONE_DEVICE
5849void __ref memmap_init_zone_device(struct zone *zone,
5850 unsigned long start_pfn,
5851 unsigned long size,
5852 struct dev_pagemap *pgmap)
5853{
5854 unsigned long pfn, end_pfn = start_pfn + size;
5855 struct pglist_data *pgdat = zone->zone_pgdat;
5856 unsigned long zone_idx = zone_idx(zone);
5857 unsigned long start = jiffies;
5858 int nid = pgdat->node_id;
5859
5860 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5861 return;
5862
5863 /*
5864 * The call to memmap_init_zone should have already taken care
5865 * of the pages reserved for the memmap, so we can just jump to
5866 * the end of that region and start processing the device pages.
5867 */
5868 if (pgmap->altmap_valid) {
5869 struct vmem_altmap *altmap = &pgmap->altmap;
5870
5871 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5872 size = end_pfn - start_pfn;
5873 }
5874
5875 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5876 struct page *page = pfn_to_page(pfn);
5877
5878 __init_single_page(page, pfn, zone_idx, nid);
5879
5880 /*
5881 * Mark page reserved as it will need to wait for onlining
5882 * phase for it to be fully associated with a zone.
5883 *
5884 * We can use the non-atomic __set_bit operation for setting
5885 * the flag as we are still initializing the pages.
5886 */
5887 __SetPageReserved(page);
5888
5889 /*
5890 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5891 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5892 * page is ever freed or placed on a driver-private list.
5893 */
5894 page->pgmap = pgmap;
5895 page->hmm_data = 0;
5896
5897 /*
5898 * Mark the block movable so that blocks are reserved for
5899 * movable at startup. This will force kernel allocations
5900 * to reserve their blocks rather than leaking throughout
5901 * the address space during boot when many long-lived
5902 * kernel allocations are made.
5903 *
5904 * bitmap is created for zone's valid pfn range. but memmap
5905 * can be created for invalid pages (for alignment)
5906 * check here not to call set_pageblock_migratetype() against
5907 * pfn out of zone.
5908 *
5909 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5910 * because this is done early in sparse_add_one_section
5911 */
5912 if (!(pfn & (pageblock_nr_pages - 1))) {
5913 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5914 cond_resched();
5915 }
5916 }
5917
5918 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5919 size, jiffies_to_msecs(jiffies - start));
5920}
5921
5922#endif
1e548deb 5923static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5924{
7aeb09f9 5925 unsigned int order, t;
b2a0ac88
MG
5926 for_each_migratetype_order(order, t) {
5927 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5928 zone->free_area[order].nr_free = 0;
5929 }
5930}
5931
dfb3ccd0
PT
5932void __meminit __weak memmap_init(unsigned long size, int nid,
5933 unsigned long zone, unsigned long start_pfn)
5934{
5935 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5936}
1da177e4 5937
7cd2b0a3 5938static int zone_batchsize(struct zone *zone)
e7c8d5c9 5939{
3a6be87f 5940#ifdef CONFIG_MMU
e7c8d5c9
CL
5941 int batch;
5942
5943 /*
5944 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5945 * size of the zone.
e7c8d5c9 5946 */
9705bea5 5947 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
5948 /* But no more than a meg. */
5949 if (batch * PAGE_SIZE > 1024 * 1024)
5950 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5951 batch /= 4; /* We effectively *= 4 below */
5952 if (batch < 1)
5953 batch = 1;
5954
5955 /*
0ceaacc9
NP
5956 * Clamp the batch to a 2^n - 1 value. Having a power
5957 * of 2 value was found to be more likely to have
5958 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5959 *
0ceaacc9
NP
5960 * For example if 2 tasks are alternately allocating
5961 * batches of pages, one task can end up with a lot
5962 * of pages of one half of the possible page colors
5963 * and the other with pages of the other colors.
e7c8d5c9 5964 */
9155203a 5965 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5966
e7c8d5c9 5967 return batch;
3a6be87f
DH
5968
5969#else
5970 /* The deferral and batching of frees should be suppressed under NOMMU
5971 * conditions.
5972 *
5973 * The problem is that NOMMU needs to be able to allocate large chunks
5974 * of contiguous memory as there's no hardware page translation to
5975 * assemble apparent contiguous memory from discontiguous pages.
5976 *
5977 * Queueing large contiguous runs of pages for batching, however,
5978 * causes the pages to actually be freed in smaller chunks. As there
5979 * can be a significant delay between the individual batches being
5980 * recycled, this leads to the once large chunks of space being
5981 * fragmented and becoming unavailable for high-order allocations.
5982 */
5983 return 0;
5984#endif
e7c8d5c9
CL
5985}
5986
8d7a8fa9
CS
5987/*
5988 * pcp->high and pcp->batch values are related and dependent on one another:
5989 * ->batch must never be higher then ->high.
5990 * The following function updates them in a safe manner without read side
5991 * locking.
5992 *
5993 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5994 * those fields changing asynchronously (acording the the above rule).
5995 *
5996 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5997 * outside of boot time (or some other assurance that no concurrent updaters
5998 * exist).
5999 */
6000static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6001 unsigned long batch)
6002{
6003 /* start with a fail safe value for batch */
6004 pcp->batch = 1;
6005 smp_wmb();
6006
6007 /* Update high, then batch, in order */
6008 pcp->high = high;
6009 smp_wmb();
6010
6011 pcp->batch = batch;
6012}
6013
3664033c 6014/* a companion to pageset_set_high() */
4008bab7
CS
6015static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6016{
8d7a8fa9 6017 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6018}
6019
88c90dbc 6020static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6021{
6022 struct per_cpu_pages *pcp;
5f8dcc21 6023 int migratetype;
2caaad41 6024
1c6fe946
MD
6025 memset(p, 0, sizeof(*p));
6026
3dfa5721 6027 pcp = &p->pcp;
5f8dcc21
MG
6028 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6029 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6030}
6031
88c90dbc
CS
6032static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6033{
6034 pageset_init(p);
6035 pageset_set_batch(p, batch);
6036}
6037
8ad4b1fb 6038/*
3664033c 6039 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6040 * to the value high for the pageset p.
6041 */
3664033c 6042static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6043 unsigned long high)
6044{
8d7a8fa9
CS
6045 unsigned long batch = max(1UL, high / 4);
6046 if ((high / 4) > (PAGE_SHIFT * 8))
6047 batch = PAGE_SHIFT * 8;
8ad4b1fb 6048
8d7a8fa9 6049 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6050}
6051
7cd2b0a3
DR
6052static void pageset_set_high_and_batch(struct zone *zone,
6053 struct per_cpu_pageset *pcp)
56cef2b8 6054{
56cef2b8 6055 if (percpu_pagelist_fraction)
3664033c 6056 pageset_set_high(pcp,
9705bea5 6057 (zone_managed_pages(zone) /
56cef2b8
CS
6058 percpu_pagelist_fraction));
6059 else
6060 pageset_set_batch(pcp, zone_batchsize(zone));
6061}
6062
169f6c19
CS
6063static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6064{
6065 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6066
6067 pageset_init(pcp);
6068 pageset_set_high_and_batch(zone, pcp);
6069}
6070
72675e13 6071void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6072{
6073 int cpu;
319774e2 6074 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6075 for_each_possible_cpu(cpu)
6076 zone_pageset_init(zone, cpu);
319774e2
WF
6077}
6078
2caaad41 6079/*
99dcc3e5
CL
6080 * Allocate per cpu pagesets and initialize them.
6081 * Before this call only boot pagesets were available.
e7c8d5c9 6082 */
99dcc3e5 6083void __init setup_per_cpu_pageset(void)
e7c8d5c9 6084{
b4911ea2 6085 struct pglist_data *pgdat;
99dcc3e5 6086 struct zone *zone;
e7c8d5c9 6087
319774e2
WF
6088 for_each_populated_zone(zone)
6089 setup_zone_pageset(zone);
b4911ea2
MG
6090
6091 for_each_online_pgdat(pgdat)
6092 pgdat->per_cpu_nodestats =
6093 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6094}
6095
c09b4240 6096static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6097{
99dcc3e5
CL
6098 /*
6099 * per cpu subsystem is not up at this point. The following code
6100 * relies on the ability of the linker to provide the
6101 * offset of a (static) per cpu variable into the per cpu area.
6102 */
6103 zone->pageset = &boot_pageset;
ed8ece2e 6104
b38a8725 6105 if (populated_zone(zone))
99dcc3e5
CL
6106 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6107 zone->name, zone->present_pages,
6108 zone_batchsize(zone));
ed8ece2e
DH
6109}
6110
dc0bbf3b 6111void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6112 unsigned long zone_start_pfn,
b171e409 6113 unsigned long size)
ed8ece2e
DH
6114{
6115 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6116 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6117
8f416836
WY
6118 if (zone_idx > pgdat->nr_zones)
6119 pgdat->nr_zones = zone_idx;
ed8ece2e 6120
ed8ece2e
DH
6121 zone->zone_start_pfn = zone_start_pfn;
6122
708614e6
MG
6123 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6124 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6125 pgdat->node_id,
6126 (unsigned long)zone_idx(zone),
6127 zone_start_pfn, (zone_start_pfn + size));
6128
1e548deb 6129 zone_init_free_lists(zone);
9dcb8b68 6130 zone->initialized = 1;
ed8ece2e
DH
6131}
6132
0ee332c1 6133#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6134#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6135
c713216d
MG
6136/*
6137 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6138 */
8a942fde
MG
6139int __meminit __early_pfn_to_nid(unsigned long pfn,
6140 struct mminit_pfnnid_cache *state)
c713216d 6141{
c13291a5 6142 unsigned long start_pfn, end_pfn;
e76b63f8 6143 int nid;
7c243c71 6144
8a942fde
MG
6145 if (state->last_start <= pfn && pfn < state->last_end)
6146 return state->last_nid;
c713216d 6147
e76b63f8 6148 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6149 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6150 state->last_start = start_pfn;
6151 state->last_end = end_pfn;
6152 state->last_nid = nid;
e76b63f8
YL
6153 }
6154
6155 return nid;
c713216d
MG
6156}
6157#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6158
c713216d 6159/**
6782832e 6160 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6161 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6162 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6163 *
7d018176
ZZ
6164 * If an architecture guarantees that all ranges registered contain no holes
6165 * and may be freed, this this function may be used instead of calling
6166 * memblock_free_early_nid() manually.
c713216d 6167 */
c13291a5 6168void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6169{
c13291a5
TH
6170 unsigned long start_pfn, end_pfn;
6171 int i, this_nid;
edbe7d23 6172
c13291a5
TH
6173 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6174 start_pfn = min(start_pfn, max_low_pfn);
6175 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6176
c13291a5 6177 if (start_pfn < end_pfn)
6782832e
SS
6178 memblock_free_early_nid(PFN_PHYS(start_pfn),
6179 (end_pfn - start_pfn) << PAGE_SHIFT,
6180 this_nid);
edbe7d23 6181 }
edbe7d23 6182}
edbe7d23 6183
c713216d
MG
6184/**
6185 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6186 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6187 *
7d018176
ZZ
6188 * If an architecture guarantees that all ranges registered contain no holes and may
6189 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6190 */
6191void __init sparse_memory_present_with_active_regions(int nid)
6192{
c13291a5
TH
6193 unsigned long start_pfn, end_pfn;
6194 int i, this_nid;
c713216d 6195
c13291a5
TH
6196 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6197 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6198}
6199
6200/**
6201 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6202 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6203 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6204 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6205 *
6206 * It returns the start and end page frame of a node based on information
7d018176 6207 * provided by memblock_set_node(). If called for a node
c713216d 6208 * with no available memory, a warning is printed and the start and end
88ca3b94 6209 * PFNs will be 0.
c713216d 6210 */
bbe5d993 6211void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6212 unsigned long *start_pfn, unsigned long *end_pfn)
6213{
c13291a5 6214 unsigned long this_start_pfn, this_end_pfn;
c713216d 6215 int i;
c13291a5 6216
c713216d
MG
6217 *start_pfn = -1UL;
6218 *end_pfn = 0;
6219
c13291a5
TH
6220 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6221 *start_pfn = min(*start_pfn, this_start_pfn);
6222 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6223 }
6224
633c0666 6225 if (*start_pfn == -1UL)
c713216d 6226 *start_pfn = 0;
c713216d
MG
6227}
6228
2a1e274a
MG
6229/*
6230 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6231 * assumption is made that zones within a node are ordered in monotonic
6232 * increasing memory addresses so that the "highest" populated zone is used
6233 */
b69a7288 6234static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6235{
6236 int zone_index;
6237 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6238 if (zone_index == ZONE_MOVABLE)
6239 continue;
6240
6241 if (arch_zone_highest_possible_pfn[zone_index] >
6242 arch_zone_lowest_possible_pfn[zone_index])
6243 break;
6244 }
6245
6246 VM_BUG_ON(zone_index == -1);
6247 movable_zone = zone_index;
6248}
6249
6250/*
6251 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6252 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6253 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6254 * in each node depending on the size of each node and how evenly kernelcore
6255 * is distributed. This helper function adjusts the zone ranges
6256 * provided by the architecture for a given node by using the end of the
6257 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6258 * zones within a node are in order of monotonic increases memory addresses
6259 */
bbe5d993 6260static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6261 unsigned long zone_type,
6262 unsigned long node_start_pfn,
6263 unsigned long node_end_pfn,
6264 unsigned long *zone_start_pfn,
6265 unsigned long *zone_end_pfn)
6266{
6267 /* Only adjust if ZONE_MOVABLE is on this node */
6268 if (zone_movable_pfn[nid]) {
6269 /* Size ZONE_MOVABLE */
6270 if (zone_type == ZONE_MOVABLE) {
6271 *zone_start_pfn = zone_movable_pfn[nid];
6272 *zone_end_pfn = min(node_end_pfn,
6273 arch_zone_highest_possible_pfn[movable_zone]);
6274
e506b996
XQ
6275 /* Adjust for ZONE_MOVABLE starting within this range */
6276 } else if (!mirrored_kernelcore &&
6277 *zone_start_pfn < zone_movable_pfn[nid] &&
6278 *zone_end_pfn > zone_movable_pfn[nid]) {
6279 *zone_end_pfn = zone_movable_pfn[nid];
6280
2a1e274a
MG
6281 /* Check if this whole range is within ZONE_MOVABLE */
6282 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6283 *zone_start_pfn = *zone_end_pfn;
6284 }
6285}
6286
c713216d
MG
6287/*
6288 * Return the number of pages a zone spans in a node, including holes
6289 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6290 */
bbe5d993 6291static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6292 unsigned long zone_type,
7960aedd
ZY
6293 unsigned long node_start_pfn,
6294 unsigned long node_end_pfn,
d91749c1
TI
6295 unsigned long *zone_start_pfn,
6296 unsigned long *zone_end_pfn,
c713216d
MG
6297 unsigned long *ignored)
6298{
299c83dc
LF
6299 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6300 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6301 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6302 if (!node_start_pfn && !node_end_pfn)
6303 return 0;
6304
7960aedd 6305 /* Get the start and end of the zone */
299c83dc
LF
6306 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6307 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6308 adjust_zone_range_for_zone_movable(nid, zone_type,
6309 node_start_pfn, node_end_pfn,
d91749c1 6310 zone_start_pfn, zone_end_pfn);
c713216d
MG
6311
6312 /* Check that this node has pages within the zone's required range */
d91749c1 6313 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6314 return 0;
6315
6316 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6317 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6318 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6319
6320 /* Return the spanned pages */
d91749c1 6321 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6322}
6323
6324/*
6325 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6326 * then all holes in the requested range will be accounted for.
c713216d 6327 */
bbe5d993 6328unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6329 unsigned long range_start_pfn,
6330 unsigned long range_end_pfn)
6331{
96e907d1
TH
6332 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6333 unsigned long start_pfn, end_pfn;
6334 int i;
c713216d 6335
96e907d1
TH
6336 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6337 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6338 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6339 nr_absent -= end_pfn - start_pfn;
c713216d 6340 }
96e907d1 6341 return nr_absent;
c713216d
MG
6342}
6343
6344/**
6345 * absent_pages_in_range - Return number of page frames in holes within a range
6346 * @start_pfn: The start PFN to start searching for holes
6347 * @end_pfn: The end PFN to stop searching for holes
6348 *
a862f68a 6349 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6350 */
6351unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6352 unsigned long end_pfn)
6353{
6354 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6355}
6356
6357/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6358static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6359 unsigned long zone_type,
7960aedd
ZY
6360 unsigned long node_start_pfn,
6361 unsigned long node_end_pfn,
c713216d
MG
6362 unsigned long *ignored)
6363{
96e907d1
TH
6364 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6365 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6366 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6367 unsigned long nr_absent;
9c7cd687 6368
b5685e92 6369 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6370 if (!node_start_pfn && !node_end_pfn)
6371 return 0;
6372
96e907d1
TH
6373 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6374 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6375
2a1e274a
MG
6376 adjust_zone_range_for_zone_movable(nid, zone_type,
6377 node_start_pfn, node_end_pfn,
6378 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6379 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6380
6381 /*
6382 * ZONE_MOVABLE handling.
6383 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6384 * and vice versa.
6385 */
e506b996
XQ
6386 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6387 unsigned long start_pfn, end_pfn;
6388 struct memblock_region *r;
6389
6390 for_each_memblock(memory, r) {
6391 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6392 zone_start_pfn, zone_end_pfn);
6393 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6394 zone_start_pfn, zone_end_pfn);
6395
6396 if (zone_type == ZONE_MOVABLE &&
6397 memblock_is_mirror(r))
6398 nr_absent += end_pfn - start_pfn;
6399
6400 if (zone_type == ZONE_NORMAL &&
6401 !memblock_is_mirror(r))
6402 nr_absent += end_pfn - start_pfn;
342332e6
TI
6403 }
6404 }
6405
6406 return nr_absent;
c713216d 6407}
0e0b864e 6408
0ee332c1 6409#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6410static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6411 unsigned long zone_type,
7960aedd
ZY
6412 unsigned long node_start_pfn,
6413 unsigned long node_end_pfn,
d91749c1
TI
6414 unsigned long *zone_start_pfn,
6415 unsigned long *zone_end_pfn,
c713216d
MG
6416 unsigned long *zones_size)
6417{
d91749c1
TI
6418 unsigned int zone;
6419
6420 *zone_start_pfn = node_start_pfn;
6421 for (zone = 0; zone < zone_type; zone++)
6422 *zone_start_pfn += zones_size[zone];
6423
6424 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6425
c713216d
MG
6426 return zones_size[zone_type];
6427}
6428
bbe5d993 6429static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6430 unsigned long zone_type,
7960aedd
ZY
6431 unsigned long node_start_pfn,
6432 unsigned long node_end_pfn,
c713216d
MG
6433 unsigned long *zholes_size)
6434{
6435 if (!zholes_size)
6436 return 0;
6437
6438 return zholes_size[zone_type];
6439}
20e6926d 6440
0ee332c1 6441#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6442
bbe5d993 6443static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6444 unsigned long node_start_pfn,
6445 unsigned long node_end_pfn,
6446 unsigned long *zones_size,
6447 unsigned long *zholes_size)
c713216d 6448{
febd5949 6449 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6450 enum zone_type i;
6451
febd5949
GZ
6452 for (i = 0; i < MAX_NR_ZONES; i++) {
6453 struct zone *zone = pgdat->node_zones + i;
d91749c1 6454 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6455 unsigned long size, real_size;
c713216d 6456
febd5949
GZ
6457 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6458 node_start_pfn,
6459 node_end_pfn,
d91749c1
TI
6460 &zone_start_pfn,
6461 &zone_end_pfn,
febd5949
GZ
6462 zones_size);
6463 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6464 node_start_pfn, node_end_pfn,
6465 zholes_size);
d91749c1
TI
6466 if (size)
6467 zone->zone_start_pfn = zone_start_pfn;
6468 else
6469 zone->zone_start_pfn = 0;
febd5949
GZ
6470 zone->spanned_pages = size;
6471 zone->present_pages = real_size;
6472
6473 totalpages += size;
6474 realtotalpages += real_size;
6475 }
6476
6477 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6478 pgdat->node_present_pages = realtotalpages;
6479 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6480 realtotalpages);
6481}
6482
835c134e
MG
6483#ifndef CONFIG_SPARSEMEM
6484/*
6485 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6486 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6487 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6488 * round what is now in bits to nearest long in bits, then return it in
6489 * bytes.
6490 */
7c45512d 6491static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6492{
6493 unsigned long usemapsize;
6494
7c45512d 6495 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6496 usemapsize = roundup(zonesize, pageblock_nr_pages);
6497 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6498 usemapsize *= NR_PAGEBLOCK_BITS;
6499 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6500
6501 return usemapsize / 8;
6502}
6503
7cc2a959 6504static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6505 struct zone *zone,
6506 unsigned long zone_start_pfn,
6507 unsigned long zonesize)
835c134e 6508{
7c45512d 6509 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6510 zone->pageblock_flags = NULL;
23a7052a 6511 if (usemapsize) {
6782832e 6512 zone->pageblock_flags =
26fb3dae
MR
6513 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6514 pgdat->node_id);
23a7052a
MR
6515 if (!zone->pageblock_flags)
6516 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6517 usemapsize, zone->name, pgdat->node_id);
6518 }
835c134e
MG
6519}
6520#else
7c45512d
LT
6521static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6522 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6523#endif /* CONFIG_SPARSEMEM */
6524
d9c23400 6525#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6526
d9c23400 6527/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6528void __init set_pageblock_order(void)
d9c23400 6529{
955c1cd7
AM
6530 unsigned int order;
6531
d9c23400
MG
6532 /* Check that pageblock_nr_pages has not already been setup */
6533 if (pageblock_order)
6534 return;
6535
955c1cd7
AM
6536 if (HPAGE_SHIFT > PAGE_SHIFT)
6537 order = HUGETLB_PAGE_ORDER;
6538 else
6539 order = MAX_ORDER - 1;
6540
d9c23400
MG
6541 /*
6542 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6543 * This value may be variable depending on boot parameters on IA64 and
6544 * powerpc.
d9c23400
MG
6545 */
6546 pageblock_order = order;
6547}
6548#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6549
ba72cb8c
MG
6550/*
6551 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6552 * is unused as pageblock_order is set at compile-time. See
6553 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6554 * the kernel config
ba72cb8c 6555 */
03e85f9d 6556void __init set_pageblock_order(void)
ba72cb8c 6557{
ba72cb8c 6558}
d9c23400
MG
6559
6560#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6561
03e85f9d 6562static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6563 unsigned long present_pages)
01cefaef
JL
6564{
6565 unsigned long pages = spanned_pages;
6566
6567 /*
6568 * Provide a more accurate estimation if there are holes within
6569 * the zone and SPARSEMEM is in use. If there are holes within the
6570 * zone, each populated memory region may cost us one or two extra
6571 * memmap pages due to alignment because memmap pages for each
89d790ab 6572 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6573 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6574 */
6575 if (spanned_pages > present_pages + (present_pages >> 4) &&
6576 IS_ENABLED(CONFIG_SPARSEMEM))
6577 pages = present_pages;
6578
6579 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6580}
6581
ace1db39
OS
6582#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6583static void pgdat_init_split_queue(struct pglist_data *pgdat)
6584{
6585 spin_lock_init(&pgdat->split_queue_lock);
6586 INIT_LIST_HEAD(&pgdat->split_queue);
6587 pgdat->split_queue_len = 0;
6588}
6589#else
6590static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6591#endif
6592
6593#ifdef CONFIG_COMPACTION
6594static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6595{
6596 init_waitqueue_head(&pgdat->kcompactd_wait);
6597}
6598#else
6599static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6600#endif
6601
03e85f9d 6602static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6603{
208d54e5 6604 pgdat_resize_init(pgdat);
ace1db39 6605
ace1db39
OS
6606 pgdat_init_split_queue(pgdat);
6607 pgdat_init_kcompactd(pgdat);
6608
1da177e4 6609 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6610 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6611
eefa864b 6612 pgdat_page_ext_init(pgdat);
a52633d8 6613 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6614 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6615}
6616
6617static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6618 unsigned long remaining_pages)
6619{
9705bea5 6620 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6621 zone_set_nid(zone, nid);
6622 zone->name = zone_names[idx];
6623 zone->zone_pgdat = NODE_DATA(nid);
6624 spin_lock_init(&zone->lock);
6625 zone_seqlock_init(zone);
6626 zone_pcp_init(zone);
6627}
6628
6629/*
6630 * Set up the zone data structures
6631 * - init pgdat internals
6632 * - init all zones belonging to this node
6633 *
6634 * NOTE: this function is only called during memory hotplug
6635 */
6636#ifdef CONFIG_MEMORY_HOTPLUG
6637void __ref free_area_init_core_hotplug(int nid)
6638{
6639 enum zone_type z;
6640 pg_data_t *pgdat = NODE_DATA(nid);
6641
6642 pgdat_init_internals(pgdat);
6643 for (z = 0; z < MAX_NR_ZONES; z++)
6644 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6645}
6646#endif
6647
6648/*
6649 * Set up the zone data structures:
6650 * - mark all pages reserved
6651 * - mark all memory queues empty
6652 * - clear the memory bitmaps
6653 *
6654 * NOTE: pgdat should get zeroed by caller.
6655 * NOTE: this function is only called during early init.
6656 */
6657static void __init free_area_init_core(struct pglist_data *pgdat)
6658{
6659 enum zone_type j;
6660 int nid = pgdat->node_id;
5f63b720 6661
03e85f9d 6662 pgdat_init_internals(pgdat);
385386cf
JW
6663 pgdat->per_cpu_nodestats = &boot_nodestats;
6664
1da177e4
LT
6665 for (j = 0; j < MAX_NR_ZONES; j++) {
6666 struct zone *zone = pgdat->node_zones + j;
e6943859 6667 unsigned long size, freesize, memmap_pages;
d91749c1 6668 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6669
febd5949 6670 size = zone->spanned_pages;
e6943859 6671 freesize = zone->present_pages;
1da177e4 6672
0e0b864e 6673 /*
9feedc9d 6674 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6675 * is used by this zone for memmap. This affects the watermark
6676 * and per-cpu initialisations
6677 */
e6943859 6678 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6679 if (!is_highmem_idx(j)) {
6680 if (freesize >= memmap_pages) {
6681 freesize -= memmap_pages;
6682 if (memmap_pages)
6683 printk(KERN_DEBUG
6684 " %s zone: %lu pages used for memmap\n",
6685 zone_names[j], memmap_pages);
6686 } else
1170532b 6687 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6688 zone_names[j], memmap_pages, freesize);
6689 }
0e0b864e 6690
6267276f 6691 /* Account for reserved pages */
9feedc9d
JL
6692 if (j == 0 && freesize > dma_reserve) {
6693 freesize -= dma_reserve;
d903ef9f 6694 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6695 zone_names[0], dma_reserve);
0e0b864e
MG
6696 }
6697
98d2b0eb 6698 if (!is_highmem_idx(j))
9feedc9d 6699 nr_kernel_pages += freesize;
01cefaef
JL
6700 /* Charge for highmem memmap if there are enough kernel pages */
6701 else if (nr_kernel_pages > memmap_pages * 2)
6702 nr_kernel_pages -= memmap_pages;
9feedc9d 6703 nr_all_pages += freesize;
1da177e4 6704
9feedc9d
JL
6705 /*
6706 * Set an approximate value for lowmem here, it will be adjusted
6707 * when the bootmem allocator frees pages into the buddy system.
6708 * And all highmem pages will be managed by the buddy system.
6709 */
03e85f9d 6710 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6711
d883c6cf 6712 if (!size)
1da177e4
LT
6713 continue;
6714
955c1cd7 6715 set_pageblock_order();
d883c6cf
JK
6716 setup_usemap(pgdat, zone, zone_start_pfn, size);
6717 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6718 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6719 }
6720}
6721
0cd842f9 6722#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6723static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6724{
b0aeba74 6725 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6726 unsigned long __maybe_unused offset = 0;
6727
1da177e4
LT
6728 /* Skip empty nodes */
6729 if (!pgdat->node_spanned_pages)
6730 return;
6731
b0aeba74
TL
6732 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6733 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6734 /* ia64 gets its own node_mem_map, before this, without bootmem */
6735 if (!pgdat->node_mem_map) {
b0aeba74 6736 unsigned long size, end;
d41dee36
AW
6737 struct page *map;
6738
e984bb43
BP
6739 /*
6740 * The zone's endpoints aren't required to be MAX_ORDER
6741 * aligned but the node_mem_map endpoints must be in order
6742 * for the buddy allocator to function correctly.
6743 */
108bcc96 6744 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6745 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6746 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6747 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6748 pgdat->node_id);
23a7052a
MR
6749 if (!map)
6750 panic("Failed to allocate %ld bytes for node %d memory map\n",
6751 size, pgdat->node_id);
a1c34a3b 6752 pgdat->node_mem_map = map + offset;
1da177e4 6753 }
0cd842f9
OS
6754 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6755 __func__, pgdat->node_id, (unsigned long)pgdat,
6756 (unsigned long)pgdat->node_mem_map);
12d810c1 6757#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6758 /*
6759 * With no DISCONTIG, the global mem_map is just set as node 0's
6760 */
c713216d 6761 if (pgdat == NODE_DATA(0)) {
1da177e4 6762 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6763#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6764 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6765 mem_map -= offset;
0ee332c1 6766#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6767 }
1da177e4
LT
6768#endif
6769}
0cd842f9
OS
6770#else
6771static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6772#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6773
0188dc98
OS
6774#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6775static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6776{
0188dc98
OS
6777 pgdat->first_deferred_pfn = ULONG_MAX;
6778}
6779#else
6780static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6781#endif
6782
03e85f9d 6783void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6784 unsigned long node_start_pfn,
6785 unsigned long *zholes_size)
1da177e4 6786{
9109fb7b 6787 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6788 unsigned long start_pfn = 0;
6789 unsigned long end_pfn = 0;
9109fb7b 6790
88fdf75d 6791 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6792 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6793
1da177e4
LT
6794 pgdat->node_id = nid;
6795 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6796 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6797#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6798 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6799 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6800 (u64)start_pfn << PAGE_SHIFT,
6801 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6802#else
6803 start_pfn = node_start_pfn;
7960aedd
ZY
6804#endif
6805 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6806 zones_size, zholes_size);
1da177e4
LT
6807
6808 alloc_node_mem_map(pgdat);
0188dc98 6809 pgdat_set_deferred_range(pgdat);
1da177e4 6810
7f3eb55b 6811 free_area_init_core(pgdat);
1da177e4
LT
6812}
6813
aca52c39 6814#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6815/*
6816 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6817 * pages zeroed
6818 */
6819static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6820{
6821 unsigned long pfn;
6822 u64 pgcnt = 0;
6823
6824 for (pfn = spfn; pfn < epfn; pfn++) {
6825 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6826 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6827 + pageblock_nr_pages - 1;
6828 continue;
6829 }
6830 mm_zero_struct_page(pfn_to_page(pfn));
6831 pgcnt++;
6832 }
6833
6834 return pgcnt;
6835}
6836
a4a3ede2
PT
6837/*
6838 * Only struct pages that are backed by physical memory are zeroed and
6839 * initialized by going through __init_single_page(). But, there are some
6840 * struct pages which are reserved in memblock allocator and their fields
6841 * may be accessed (for example page_to_pfn() on some configuration accesses
6842 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6843 *
6844 * This function also addresses a similar issue where struct pages are left
6845 * uninitialized because the physical address range is not covered by
6846 * memblock.memory or memblock.reserved. That could happen when memblock
6847 * layout is manually configured via memmap=.
a4a3ede2 6848 */
03e85f9d 6849void __init zero_resv_unavail(void)
a4a3ede2
PT
6850{
6851 phys_addr_t start, end;
a4a3ede2 6852 u64 i, pgcnt;
907ec5fc 6853 phys_addr_t next = 0;
a4a3ede2
PT
6854
6855 /*
907ec5fc 6856 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6857 */
6858 pgcnt = 0;
907ec5fc
NH
6859 for_each_mem_range(i, &memblock.memory, NULL,
6860 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6861 if (next < start)
6862 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6863 next = end;
6864 }
ec393a0f 6865 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6866
a4a3ede2
PT
6867 /*
6868 * Struct pages that do not have backing memory. This could be because
6869 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6870 */
6871 if (pgcnt)
907ec5fc 6872 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6873}
aca52c39 6874#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6875
0ee332c1 6876#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6877
6878#if MAX_NUMNODES > 1
6879/*
6880 * Figure out the number of possible node ids.
6881 */
f9872caf 6882void __init setup_nr_node_ids(void)
418508c1 6883{
904a9553 6884 unsigned int highest;
418508c1 6885
904a9553 6886 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6887 nr_node_ids = highest + 1;
6888}
418508c1
MS
6889#endif
6890
1e01979c
TH
6891/**
6892 * node_map_pfn_alignment - determine the maximum internode alignment
6893 *
6894 * This function should be called after node map is populated and sorted.
6895 * It calculates the maximum power of two alignment which can distinguish
6896 * all the nodes.
6897 *
6898 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6899 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6900 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6901 * shifted, 1GiB is enough and this function will indicate so.
6902 *
6903 * This is used to test whether pfn -> nid mapping of the chosen memory
6904 * model has fine enough granularity to avoid incorrect mapping for the
6905 * populated node map.
6906 *
a862f68a 6907 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
6908 * requirement (single node).
6909 */
6910unsigned long __init node_map_pfn_alignment(void)
6911{
6912 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6913 unsigned long start, end, mask;
98fa15f3 6914 int last_nid = NUMA_NO_NODE;
c13291a5 6915 int i, nid;
1e01979c 6916
c13291a5 6917 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6918 if (!start || last_nid < 0 || last_nid == nid) {
6919 last_nid = nid;
6920 last_end = end;
6921 continue;
6922 }
6923
6924 /*
6925 * Start with a mask granular enough to pin-point to the
6926 * start pfn and tick off bits one-by-one until it becomes
6927 * too coarse to separate the current node from the last.
6928 */
6929 mask = ~((1 << __ffs(start)) - 1);
6930 while (mask && last_end <= (start & (mask << 1)))
6931 mask <<= 1;
6932
6933 /* accumulate all internode masks */
6934 accl_mask |= mask;
6935 }
6936
6937 /* convert mask to number of pages */
6938 return ~accl_mask + 1;
6939}
6940
a6af2bc3 6941/* Find the lowest pfn for a node */
b69a7288 6942static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6943{
a6af2bc3 6944 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6945 unsigned long start_pfn;
6946 int i;
1abbfb41 6947
c13291a5
TH
6948 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6949 min_pfn = min(min_pfn, start_pfn);
c713216d 6950
a6af2bc3 6951 if (min_pfn == ULONG_MAX) {
1170532b 6952 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6953 return 0;
6954 }
6955
6956 return min_pfn;
c713216d
MG
6957}
6958
6959/**
6960 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6961 *
a862f68a 6962 * Return: the minimum PFN based on information provided via
7d018176 6963 * memblock_set_node().
c713216d
MG
6964 */
6965unsigned long __init find_min_pfn_with_active_regions(void)
6966{
6967 return find_min_pfn_for_node(MAX_NUMNODES);
6968}
6969
37b07e41
LS
6970/*
6971 * early_calculate_totalpages()
6972 * Sum pages in active regions for movable zone.
4b0ef1fe 6973 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6974 */
484f51f8 6975static unsigned long __init early_calculate_totalpages(void)
7e63efef 6976{
7e63efef 6977 unsigned long totalpages = 0;
c13291a5
TH
6978 unsigned long start_pfn, end_pfn;
6979 int i, nid;
6980
6981 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6982 unsigned long pages = end_pfn - start_pfn;
7e63efef 6983
37b07e41
LS
6984 totalpages += pages;
6985 if (pages)
4b0ef1fe 6986 node_set_state(nid, N_MEMORY);
37b07e41 6987 }
b8af2941 6988 return totalpages;
7e63efef
MG
6989}
6990
2a1e274a
MG
6991/*
6992 * Find the PFN the Movable zone begins in each node. Kernel memory
6993 * is spread evenly between nodes as long as the nodes have enough
6994 * memory. When they don't, some nodes will have more kernelcore than
6995 * others
6996 */
b224ef85 6997static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6998{
6999 int i, nid;
7000 unsigned long usable_startpfn;
7001 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7002 /* save the state before borrow the nodemask */
4b0ef1fe 7003 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7004 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7005 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7006 struct memblock_region *r;
b2f3eebe
TC
7007
7008 /* Need to find movable_zone earlier when movable_node is specified. */
7009 find_usable_zone_for_movable();
7010
7011 /*
7012 * If movable_node is specified, ignore kernelcore and movablecore
7013 * options.
7014 */
7015 if (movable_node_is_enabled()) {
136199f0
EM
7016 for_each_memblock(memory, r) {
7017 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7018 continue;
7019
136199f0 7020 nid = r->nid;
b2f3eebe 7021
136199f0 7022 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7023 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7024 min(usable_startpfn, zone_movable_pfn[nid]) :
7025 usable_startpfn;
7026 }
7027
7028 goto out2;
7029 }
2a1e274a 7030
342332e6
TI
7031 /*
7032 * If kernelcore=mirror is specified, ignore movablecore option
7033 */
7034 if (mirrored_kernelcore) {
7035 bool mem_below_4gb_not_mirrored = false;
7036
7037 for_each_memblock(memory, r) {
7038 if (memblock_is_mirror(r))
7039 continue;
7040
7041 nid = r->nid;
7042
7043 usable_startpfn = memblock_region_memory_base_pfn(r);
7044
7045 if (usable_startpfn < 0x100000) {
7046 mem_below_4gb_not_mirrored = true;
7047 continue;
7048 }
7049
7050 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7051 min(usable_startpfn, zone_movable_pfn[nid]) :
7052 usable_startpfn;
7053 }
7054
7055 if (mem_below_4gb_not_mirrored)
7056 pr_warn("This configuration results in unmirrored kernel memory.");
7057
7058 goto out2;
7059 }
7060
7e63efef 7061 /*
a5c6d650
DR
7062 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7063 * amount of necessary memory.
7064 */
7065 if (required_kernelcore_percent)
7066 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7067 10000UL;
7068 if (required_movablecore_percent)
7069 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7070 10000UL;
7071
7072 /*
7073 * If movablecore= was specified, calculate what size of
7e63efef
MG
7074 * kernelcore that corresponds so that memory usable for
7075 * any allocation type is evenly spread. If both kernelcore
7076 * and movablecore are specified, then the value of kernelcore
7077 * will be used for required_kernelcore if it's greater than
7078 * what movablecore would have allowed.
7079 */
7080 if (required_movablecore) {
7e63efef
MG
7081 unsigned long corepages;
7082
7083 /*
7084 * Round-up so that ZONE_MOVABLE is at least as large as what
7085 * was requested by the user
7086 */
7087 required_movablecore =
7088 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7089 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7090 corepages = totalpages - required_movablecore;
7091
7092 required_kernelcore = max(required_kernelcore, corepages);
7093 }
7094
bde304bd
XQ
7095 /*
7096 * If kernelcore was not specified or kernelcore size is larger
7097 * than totalpages, there is no ZONE_MOVABLE.
7098 */
7099 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7100 goto out;
2a1e274a
MG
7101
7102 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7103 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7104
7105restart:
7106 /* Spread kernelcore memory as evenly as possible throughout nodes */
7107 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7108 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7109 unsigned long start_pfn, end_pfn;
7110
2a1e274a
MG
7111 /*
7112 * Recalculate kernelcore_node if the division per node
7113 * now exceeds what is necessary to satisfy the requested
7114 * amount of memory for the kernel
7115 */
7116 if (required_kernelcore < kernelcore_node)
7117 kernelcore_node = required_kernelcore / usable_nodes;
7118
7119 /*
7120 * As the map is walked, we track how much memory is usable
7121 * by the kernel using kernelcore_remaining. When it is
7122 * 0, the rest of the node is usable by ZONE_MOVABLE
7123 */
7124 kernelcore_remaining = kernelcore_node;
7125
7126 /* Go through each range of PFNs within this node */
c13291a5 7127 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7128 unsigned long size_pages;
7129
c13291a5 7130 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7131 if (start_pfn >= end_pfn)
7132 continue;
7133
7134 /* Account for what is only usable for kernelcore */
7135 if (start_pfn < usable_startpfn) {
7136 unsigned long kernel_pages;
7137 kernel_pages = min(end_pfn, usable_startpfn)
7138 - start_pfn;
7139
7140 kernelcore_remaining -= min(kernel_pages,
7141 kernelcore_remaining);
7142 required_kernelcore -= min(kernel_pages,
7143 required_kernelcore);
7144
7145 /* Continue if range is now fully accounted */
7146 if (end_pfn <= usable_startpfn) {
7147
7148 /*
7149 * Push zone_movable_pfn to the end so
7150 * that if we have to rebalance
7151 * kernelcore across nodes, we will
7152 * not double account here
7153 */
7154 zone_movable_pfn[nid] = end_pfn;
7155 continue;
7156 }
7157 start_pfn = usable_startpfn;
7158 }
7159
7160 /*
7161 * The usable PFN range for ZONE_MOVABLE is from
7162 * start_pfn->end_pfn. Calculate size_pages as the
7163 * number of pages used as kernelcore
7164 */
7165 size_pages = end_pfn - start_pfn;
7166 if (size_pages > kernelcore_remaining)
7167 size_pages = kernelcore_remaining;
7168 zone_movable_pfn[nid] = start_pfn + size_pages;
7169
7170 /*
7171 * Some kernelcore has been met, update counts and
7172 * break if the kernelcore for this node has been
b8af2941 7173 * satisfied
2a1e274a
MG
7174 */
7175 required_kernelcore -= min(required_kernelcore,
7176 size_pages);
7177 kernelcore_remaining -= size_pages;
7178 if (!kernelcore_remaining)
7179 break;
7180 }
7181 }
7182
7183 /*
7184 * If there is still required_kernelcore, we do another pass with one
7185 * less node in the count. This will push zone_movable_pfn[nid] further
7186 * along on the nodes that still have memory until kernelcore is
b8af2941 7187 * satisfied
2a1e274a
MG
7188 */
7189 usable_nodes--;
7190 if (usable_nodes && required_kernelcore > usable_nodes)
7191 goto restart;
7192
b2f3eebe 7193out2:
2a1e274a
MG
7194 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7195 for (nid = 0; nid < MAX_NUMNODES; nid++)
7196 zone_movable_pfn[nid] =
7197 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7198
20e6926d 7199out:
66918dcd 7200 /* restore the node_state */
4b0ef1fe 7201 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7202}
7203
4b0ef1fe
LJ
7204/* Any regular or high memory on that node ? */
7205static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7206{
37b07e41
LS
7207 enum zone_type zone_type;
7208
4b0ef1fe 7209 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7210 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7211 if (populated_zone(zone)) {
7b0e0c0e
OS
7212 if (IS_ENABLED(CONFIG_HIGHMEM))
7213 node_set_state(nid, N_HIGH_MEMORY);
7214 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7215 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7216 break;
7217 }
37b07e41 7218 }
37b07e41
LS
7219}
7220
c713216d
MG
7221/**
7222 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7223 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7224 *
7225 * This will call free_area_init_node() for each active node in the system.
7d018176 7226 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7227 * zone in each node and their holes is calculated. If the maximum PFN
7228 * between two adjacent zones match, it is assumed that the zone is empty.
7229 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7230 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7231 * starts where the previous one ended. For example, ZONE_DMA32 starts
7232 * at arch_max_dma_pfn.
7233 */
7234void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7235{
c13291a5
TH
7236 unsigned long start_pfn, end_pfn;
7237 int i, nid;
a6af2bc3 7238
c713216d
MG
7239 /* Record where the zone boundaries are */
7240 memset(arch_zone_lowest_possible_pfn, 0,
7241 sizeof(arch_zone_lowest_possible_pfn));
7242 memset(arch_zone_highest_possible_pfn, 0,
7243 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7244
7245 start_pfn = find_min_pfn_with_active_regions();
7246
7247 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7248 if (i == ZONE_MOVABLE)
7249 continue;
90cae1fe
OH
7250
7251 end_pfn = max(max_zone_pfn[i], start_pfn);
7252 arch_zone_lowest_possible_pfn[i] = start_pfn;
7253 arch_zone_highest_possible_pfn[i] = end_pfn;
7254
7255 start_pfn = end_pfn;
c713216d 7256 }
2a1e274a
MG
7257
7258 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7259 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7260 find_zone_movable_pfns_for_nodes();
c713216d 7261
c713216d 7262 /* Print out the zone ranges */
f88dfff5 7263 pr_info("Zone ranges:\n");
2a1e274a
MG
7264 for (i = 0; i < MAX_NR_ZONES; i++) {
7265 if (i == ZONE_MOVABLE)
7266 continue;
f88dfff5 7267 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7268 if (arch_zone_lowest_possible_pfn[i] ==
7269 arch_zone_highest_possible_pfn[i])
f88dfff5 7270 pr_cont("empty\n");
72f0ba02 7271 else
8d29e18a
JG
7272 pr_cont("[mem %#018Lx-%#018Lx]\n",
7273 (u64)arch_zone_lowest_possible_pfn[i]
7274 << PAGE_SHIFT,
7275 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7276 << PAGE_SHIFT) - 1);
2a1e274a
MG
7277 }
7278
7279 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7280 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7281 for (i = 0; i < MAX_NUMNODES; i++) {
7282 if (zone_movable_pfn[i])
8d29e18a
JG
7283 pr_info(" Node %d: %#018Lx\n", i,
7284 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7285 }
c713216d 7286
f2d52fe5 7287 /* Print out the early node map */
f88dfff5 7288 pr_info("Early memory node ranges\n");
c13291a5 7289 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
7290 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7291 (u64)start_pfn << PAGE_SHIFT,
7292 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7293
7294 /* Initialise every node */
708614e6 7295 mminit_verify_pageflags_layout();
8ef82866 7296 setup_nr_node_ids();
e181ae0c 7297 zero_resv_unavail();
c713216d
MG
7298 for_each_online_node(nid) {
7299 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7300 free_area_init_node(nid, NULL,
c713216d 7301 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7302
7303 /* Any memory on that node */
7304 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7305 node_set_state(nid, N_MEMORY);
7306 check_for_memory(pgdat, nid);
c713216d
MG
7307 }
7308}
2a1e274a 7309
a5c6d650
DR
7310static int __init cmdline_parse_core(char *p, unsigned long *core,
7311 unsigned long *percent)
2a1e274a
MG
7312{
7313 unsigned long long coremem;
a5c6d650
DR
7314 char *endptr;
7315
2a1e274a
MG
7316 if (!p)
7317 return -EINVAL;
7318
a5c6d650
DR
7319 /* Value may be a percentage of total memory, otherwise bytes */
7320 coremem = simple_strtoull(p, &endptr, 0);
7321 if (*endptr == '%') {
7322 /* Paranoid check for percent values greater than 100 */
7323 WARN_ON(coremem > 100);
2a1e274a 7324
a5c6d650
DR
7325 *percent = coremem;
7326 } else {
7327 coremem = memparse(p, &p);
7328 /* Paranoid check that UL is enough for the coremem value */
7329 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7330
a5c6d650
DR
7331 *core = coremem >> PAGE_SHIFT;
7332 *percent = 0UL;
7333 }
2a1e274a
MG
7334 return 0;
7335}
ed7ed365 7336
7e63efef
MG
7337/*
7338 * kernelcore=size sets the amount of memory for use for allocations that
7339 * cannot be reclaimed or migrated.
7340 */
7341static int __init cmdline_parse_kernelcore(char *p)
7342{
342332e6
TI
7343 /* parse kernelcore=mirror */
7344 if (parse_option_str(p, "mirror")) {
7345 mirrored_kernelcore = true;
7346 return 0;
7347 }
7348
a5c6d650
DR
7349 return cmdline_parse_core(p, &required_kernelcore,
7350 &required_kernelcore_percent);
7e63efef
MG
7351}
7352
7353/*
7354 * movablecore=size sets the amount of memory for use for allocations that
7355 * can be reclaimed or migrated.
7356 */
7357static int __init cmdline_parse_movablecore(char *p)
7358{
a5c6d650
DR
7359 return cmdline_parse_core(p, &required_movablecore,
7360 &required_movablecore_percent);
7e63efef
MG
7361}
7362
ed7ed365 7363early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7364early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7365
0ee332c1 7366#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7367
c3d5f5f0
JL
7368void adjust_managed_page_count(struct page *page, long count)
7369{
9705bea5 7370 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7371 totalram_pages_add(count);
3dcc0571
JL
7372#ifdef CONFIG_HIGHMEM
7373 if (PageHighMem(page))
ca79b0c2 7374 totalhigh_pages_add(count);
3dcc0571 7375#endif
c3d5f5f0 7376}
3dcc0571 7377EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7378
e5cb113f 7379unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7380{
11199692
JL
7381 void *pos;
7382 unsigned long pages = 0;
69afade7 7383
11199692
JL
7384 start = (void *)PAGE_ALIGN((unsigned long)start);
7385 end = (void *)((unsigned long)end & PAGE_MASK);
7386 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7387 struct page *page = virt_to_page(pos);
7388 void *direct_map_addr;
7389
7390 /*
7391 * 'direct_map_addr' might be different from 'pos'
7392 * because some architectures' virt_to_page()
7393 * work with aliases. Getting the direct map
7394 * address ensures that we get a _writeable_
7395 * alias for the memset().
7396 */
7397 direct_map_addr = page_address(page);
dbe67df4 7398 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7399 memset(direct_map_addr, poison, PAGE_SIZE);
7400
7401 free_reserved_page(page);
69afade7
JL
7402 }
7403
7404 if (pages && s)
adb1fe9a
JP
7405 pr_info("Freeing %s memory: %ldK\n",
7406 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7407
7408 return pages;
7409}
7410
cfa11e08
JL
7411#ifdef CONFIG_HIGHMEM
7412void free_highmem_page(struct page *page)
7413{
7414 __free_reserved_page(page);
ca79b0c2 7415 totalram_pages_inc();
9705bea5 7416 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7417 totalhigh_pages_inc();
cfa11e08
JL
7418}
7419#endif
7420
7ee3d4e8
JL
7421
7422void __init mem_init_print_info(const char *str)
7423{
7424 unsigned long physpages, codesize, datasize, rosize, bss_size;
7425 unsigned long init_code_size, init_data_size;
7426
7427 physpages = get_num_physpages();
7428 codesize = _etext - _stext;
7429 datasize = _edata - _sdata;
7430 rosize = __end_rodata - __start_rodata;
7431 bss_size = __bss_stop - __bss_start;
7432 init_data_size = __init_end - __init_begin;
7433 init_code_size = _einittext - _sinittext;
7434
7435 /*
7436 * Detect special cases and adjust section sizes accordingly:
7437 * 1) .init.* may be embedded into .data sections
7438 * 2) .init.text.* may be out of [__init_begin, __init_end],
7439 * please refer to arch/tile/kernel/vmlinux.lds.S.
7440 * 3) .rodata.* may be embedded into .text or .data sections.
7441 */
7442#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7443 do { \
7444 if (start <= pos && pos < end && size > adj) \
7445 size -= adj; \
7446 } while (0)
7ee3d4e8
JL
7447
7448 adj_init_size(__init_begin, __init_end, init_data_size,
7449 _sinittext, init_code_size);
7450 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7451 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7452 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7453 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7454
7455#undef adj_init_size
7456
756a025f 7457 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7458#ifdef CONFIG_HIGHMEM
756a025f 7459 ", %luK highmem"
7ee3d4e8 7460#endif
756a025f
JP
7461 "%s%s)\n",
7462 nr_free_pages() << (PAGE_SHIFT - 10),
7463 physpages << (PAGE_SHIFT - 10),
7464 codesize >> 10, datasize >> 10, rosize >> 10,
7465 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7466 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7467 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7468#ifdef CONFIG_HIGHMEM
ca79b0c2 7469 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7470#endif
756a025f 7471 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7472}
7473
0e0b864e 7474/**
88ca3b94
RD
7475 * set_dma_reserve - set the specified number of pages reserved in the first zone
7476 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7477 *
013110a7 7478 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7479 * In the DMA zone, a significant percentage may be consumed by kernel image
7480 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7481 * function may optionally be used to account for unfreeable pages in the
7482 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7483 * smaller per-cpu batchsize.
0e0b864e
MG
7484 */
7485void __init set_dma_reserve(unsigned long new_dma_reserve)
7486{
7487 dma_reserve = new_dma_reserve;
7488}
7489
1da177e4
LT
7490void __init free_area_init(unsigned long *zones_size)
7491{
e181ae0c 7492 zero_resv_unavail();
9109fb7b 7493 free_area_init_node(0, zones_size,
1da177e4
LT
7494 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7495}
1da177e4 7496
005fd4bb 7497static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7498{
1da177e4 7499
005fd4bb
SAS
7500 lru_add_drain_cpu(cpu);
7501 drain_pages(cpu);
9f8f2172 7502
005fd4bb
SAS
7503 /*
7504 * Spill the event counters of the dead processor
7505 * into the current processors event counters.
7506 * This artificially elevates the count of the current
7507 * processor.
7508 */
7509 vm_events_fold_cpu(cpu);
9f8f2172 7510
005fd4bb
SAS
7511 /*
7512 * Zero the differential counters of the dead processor
7513 * so that the vm statistics are consistent.
7514 *
7515 * This is only okay since the processor is dead and cannot
7516 * race with what we are doing.
7517 */
7518 cpu_vm_stats_fold(cpu);
7519 return 0;
1da177e4 7520}
1da177e4
LT
7521
7522void __init page_alloc_init(void)
7523{
005fd4bb
SAS
7524 int ret;
7525
7526 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7527 "mm/page_alloc:dead", NULL,
7528 page_alloc_cpu_dead);
7529 WARN_ON(ret < 0);
1da177e4
LT
7530}
7531
cb45b0e9 7532/*
34b10060 7533 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7534 * or min_free_kbytes changes.
7535 */
7536static void calculate_totalreserve_pages(void)
7537{
7538 struct pglist_data *pgdat;
7539 unsigned long reserve_pages = 0;
2f6726e5 7540 enum zone_type i, j;
cb45b0e9
HA
7541
7542 for_each_online_pgdat(pgdat) {
281e3726
MG
7543
7544 pgdat->totalreserve_pages = 0;
7545
cb45b0e9
HA
7546 for (i = 0; i < MAX_NR_ZONES; i++) {
7547 struct zone *zone = pgdat->node_zones + i;
3484b2de 7548 long max = 0;
9705bea5 7549 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7550
7551 /* Find valid and maximum lowmem_reserve in the zone */
7552 for (j = i; j < MAX_NR_ZONES; j++) {
7553 if (zone->lowmem_reserve[j] > max)
7554 max = zone->lowmem_reserve[j];
7555 }
7556
41858966
MG
7557 /* we treat the high watermark as reserved pages. */
7558 max += high_wmark_pages(zone);
cb45b0e9 7559
3d6357de
AK
7560 if (max > managed_pages)
7561 max = managed_pages;
a8d01437 7562
281e3726 7563 pgdat->totalreserve_pages += max;
a8d01437 7564
cb45b0e9
HA
7565 reserve_pages += max;
7566 }
7567 }
7568 totalreserve_pages = reserve_pages;
7569}
7570
1da177e4
LT
7571/*
7572 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7573 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7574 * has a correct pages reserved value, so an adequate number of
7575 * pages are left in the zone after a successful __alloc_pages().
7576 */
7577static void setup_per_zone_lowmem_reserve(void)
7578{
7579 struct pglist_data *pgdat;
2f6726e5 7580 enum zone_type j, idx;
1da177e4 7581
ec936fc5 7582 for_each_online_pgdat(pgdat) {
1da177e4
LT
7583 for (j = 0; j < MAX_NR_ZONES; j++) {
7584 struct zone *zone = pgdat->node_zones + j;
9705bea5 7585 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7586
7587 zone->lowmem_reserve[j] = 0;
7588
2f6726e5
CL
7589 idx = j;
7590 while (idx) {
1da177e4
LT
7591 struct zone *lower_zone;
7592
2f6726e5 7593 idx--;
1da177e4 7594 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7595
7596 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7597 sysctl_lowmem_reserve_ratio[idx] = 0;
7598 lower_zone->lowmem_reserve[j] = 0;
7599 } else {
7600 lower_zone->lowmem_reserve[j] =
7601 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7602 }
9705bea5 7603 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7604 }
7605 }
7606 }
cb45b0e9
HA
7607
7608 /* update totalreserve_pages */
7609 calculate_totalreserve_pages();
1da177e4
LT
7610}
7611
cfd3da1e 7612static void __setup_per_zone_wmarks(void)
1da177e4
LT
7613{
7614 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7615 unsigned long lowmem_pages = 0;
7616 struct zone *zone;
7617 unsigned long flags;
7618
7619 /* Calculate total number of !ZONE_HIGHMEM pages */
7620 for_each_zone(zone) {
7621 if (!is_highmem(zone))
9705bea5 7622 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7623 }
7624
7625 for_each_zone(zone) {
ac924c60
AM
7626 u64 tmp;
7627
1125b4e3 7628 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7629 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7630 do_div(tmp, lowmem_pages);
1da177e4
LT
7631 if (is_highmem(zone)) {
7632 /*
669ed175
NP
7633 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7634 * need highmem pages, so cap pages_min to a small
7635 * value here.
7636 *
41858966 7637 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7638 * deltas control async page reclaim, and so should
669ed175 7639 * not be capped for highmem.
1da177e4 7640 */
90ae8d67 7641 unsigned long min_pages;
1da177e4 7642
9705bea5 7643 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7644 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7645 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7646 } else {
669ed175
NP
7647 /*
7648 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7649 * proportionate to the zone's size.
7650 */
a9214443 7651 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7652 }
7653
795ae7a0
JW
7654 /*
7655 * Set the kswapd watermarks distance according to the
7656 * scale factor in proportion to available memory, but
7657 * ensure a minimum size on small systems.
7658 */
7659 tmp = max_t(u64, tmp >> 2,
9705bea5 7660 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7661 watermark_scale_factor, 10000));
7662
a9214443
MG
7663 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7664 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7665 zone->watermark_boost = 0;
49f223a9 7666
1125b4e3 7667 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7668 }
cb45b0e9
HA
7669
7670 /* update totalreserve_pages */
7671 calculate_totalreserve_pages();
1da177e4
LT
7672}
7673
cfd3da1e
MG
7674/**
7675 * setup_per_zone_wmarks - called when min_free_kbytes changes
7676 * or when memory is hot-{added|removed}
7677 *
7678 * Ensures that the watermark[min,low,high] values for each zone are set
7679 * correctly with respect to min_free_kbytes.
7680 */
7681void setup_per_zone_wmarks(void)
7682{
b93e0f32
MH
7683 static DEFINE_SPINLOCK(lock);
7684
7685 spin_lock(&lock);
cfd3da1e 7686 __setup_per_zone_wmarks();
b93e0f32 7687 spin_unlock(&lock);
cfd3da1e
MG
7688}
7689
1da177e4
LT
7690/*
7691 * Initialise min_free_kbytes.
7692 *
7693 * For small machines we want it small (128k min). For large machines
7694 * we want it large (64MB max). But it is not linear, because network
7695 * bandwidth does not increase linearly with machine size. We use
7696 *
b8af2941 7697 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7698 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7699 *
7700 * which yields
7701 *
7702 * 16MB: 512k
7703 * 32MB: 724k
7704 * 64MB: 1024k
7705 * 128MB: 1448k
7706 * 256MB: 2048k
7707 * 512MB: 2896k
7708 * 1024MB: 4096k
7709 * 2048MB: 5792k
7710 * 4096MB: 8192k
7711 * 8192MB: 11584k
7712 * 16384MB: 16384k
7713 */
1b79acc9 7714int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7715{
7716 unsigned long lowmem_kbytes;
5f12733e 7717 int new_min_free_kbytes;
1da177e4
LT
7718
7719 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7720 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7721
7722 if (new_min_free_kbytes > user_min_free_kbytes) {
7723 min_free_kbytes = new_min_free_kbytes;
7724 if (min_free_kbytes < 128)
7725 min_free_kbytes = 128;
7726 if (min_free_kbytes > 65536)
7727 min_free_kbytes = 65536;
7728 } else {
7729 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7730 new_min_free_kbytes, user_min_free_kbytes);
7731 }
bc75d33f 7732 setup_per_zone_wmarks();
a6cccdc3 7733 refresh_zone_stat_thresholds();
1da177e4 7734 setup_per_zone_lowmem_reserve();
6423aa81
JK
7735
7736#ifdef CONFIG_NUMA
7737 setup_min_unmapped_ratio();
7738 setup_min_slab_ratio();
7739#endif
7740
1da177e4
LT
7741 return 0;
7742}
bc22af74 7743core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7744
7745/*
b8af2941 7746 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7747 * that we can call two helper functions whenever min_free_kbytes
7748 * changes.
7749 */
cccad5b9 7750int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7751 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7752{
da8c757b
HP
7753 int rc;
7754
7755 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7756 if (rc)
7757 return rc;
7758
5f12733e
MH
7759 if (write) {
7760 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7761 setup_per_zone_wmarks();
5f12733e 7762 }
1da177e4
LT
7763 return 0;
7764}
7765
1c30844d
MG
7766int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7767 void __user *buffer, size_t *length, loff_t *ppos)
7768{
7769 int rc;
7770
7771 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7772 if (rc)
7773 return rc;
7774
7775 return 0;
7776}
7777
795ae7a0
JW
7778int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7779 void __user *buffer, size_t *length, loff_t *ppos)
7780{
7781 int rc;
7782
7783 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7784 if (rc)
7785 return rc;
7786
7787 if (write)
7788 setup_per_zone_wmarks();
7789
7790 return 0;
7791}
7792
9614634f 7793#ifdef CONFIG_NUMA
6423aa81 7794static void setup_min_unmapped_ratio(void)
9614634f 7795{
6423aa81 7796 pg_data_t *pgdat;
9614634f 7797 struct zone *zone;
9614634f 7798
a5f5f91d 7799 for_each_online_pgdat(pgdat)
81cbcbc2 7800 pgdat->min_unmapped_pages = 0;
a5f5f91d 7801
9614634f 7802 for_each_zone(zone)
9705bea5
AK
7803 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7804 sysctl_min_unmapped_ratio) / 100;
9614634f 7805}
0ff38490 7806
6423aa81
JK
7807
7808int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7809 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7810{
0ff38490
CL
7811 int rc;
7812
8d65af78 7813 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7814 if (rc)
7815 return rc;
7816
6423aa81
JK
7817 setup_min_unmapped_ratio();
7818
7819 return 0;
7820}
7821
7822static void setup_min_slab_ratio(void)
7823{
7824 pg_data_t *pgdat;
7825 struct zone *zone;
7826
a5f5f91d
MG
7827 for_each_online_pgdat(pgdat)
7828 pgdat->min_slab_pages = 0;
7829
0ff38490 7830 for_each_zone(zone)
9705bea5
AK
7831 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7832 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7833}
7834
7835int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7836 void __user *buffer, size_t *length, loff_t *ppos)
7837{
7838 int rc;
7839
7840 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7841 if (rc)
7842 return rc;
7843
7844 setup_min_slab_ratio();
7845
0ff38490
CL
7846 return 0;
7847}
9614634f
CL
7848#endif
7849
1da177e4
LT
7850/*
7851 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7852 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7853 * whenever sysctl_lowmem_reserve_ratio changes.
7854 *
7855 * The reserve ratio obviously has absolutely no relation with the
41858966 7856 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7857 * if in function of the boot time zone sizes.
7858 */
cccad5b9 7859int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7860 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7861{
8d65af78 7862 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7863 setup_per_zone_lowmem_reserve();
7864 return 0;
7865}
7866
8ad4b1fb
RS
7867/*
7868 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7869 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7870 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7871 */
cccad5b9 7872int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7873 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7874{
7875 struct zone *zone;
7cd2b0a3 7876 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7877 int ret;
7878
7cd2b0a3
DR
7879 mutex_lock(&pcp_batch_high_lock);
7880 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7881
8d65af78 7882 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7883 if (!write || ret < 0)
7884 goto out;
7885
7886 /* Sanity checking to avoid pcp imbalance */
7887 if (percpu_pagelist_fraction &&
7888 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7889 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7890 ret = -EINVAL;
7891 goto out;
7892 }
7893
7894 /* No change? */
7895 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7896 goto out;
c8e251fa 7897
364df0eb 7898 for_each_populated_zone(zone) {
7cd2b0a3
DR
7899 unsigned int cpu;
7900
22a7f12b 7901 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7902 pageset_set_high_and_batch(zone,
7903 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7904 }
7cd2b0a3 7905out:
c8e251fa 7906 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7907 return ret;
8ad4b1fb
RS
7908}
7909
a9919c79 7910#ifdef CONFIG_NUMA
f034b5d4 7911int hashdist = HASHDIST_DEFAULT;
1da177e4 7912
1da177e4
LT
7913static int __init set_hashdist(char *str)
7914{
7915 if (!str)
7916 return 0;
7917 hashdist = simple_strtoul(str, &str, 0);
7918 return 1;
7919}
7920__setup("hashdist=", set_hashdist);
7921#endif
7922
f6f34b43
SD
7923#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7924/*
7925 * Returns the number of pages that arch has reserved but
7926 * is not known to alloc_large_system_hash().
7927 */
7928static unsigned long __init arch_reserved_kernel_pages(void)
7929{
7930 return 0;
7931}
7932#endif
7933
9017217b
PT
7934/*
7935 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7936 * machines. As memory size is increased the scale is also increased but at
7937 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7938 * quadruples the scale is increased by one, which means the size of hash table
7939 * only doubles, instead of quadrupling as well.
7940 * Because 32-bit systems cannot have large physical memory, where this scaling
7941 * makes sense, it is disabled on such platforms.
7942 */
7943#if __BITS_PER_LONG > 32
7944#define ADAPT_SCALE_BASE (64ul << 30)
7945#define ADAPT_SCALE_SHIFT 2
7946#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7947#endif
7948
1da177e4
LT
7949/*
7950 * allocate a large system hash table from bootmem
7951 * - it is assumed that the hash table must contain an exact power-of-2
7952 * quantity of entries
7953 * - limit is the number of hash buckets, not the total allocation size
7954 */
7955void *__init alloc_large_system_hash(const char *tablename,
7956 unsigned long bucketsize,
7957 unsigned long numentries,
7958 int scale,
7959 int flags,
7960 unsigned int *_hash_shift,
7961 unsigned int *_hash_mask,
31fe62b9
TB
7962 unsigned long low_limit,
7963 unsigned long high_limit)
1da177e4 7964{
31fe62b9 7965 unsigned long long max = high_limit;
1da177e4
LT
7966 unsigned long log2qty, size;
7967 void *table = NULL;
3749a8f0 7968 gfp_t gfp_flags;
1da177e4
LT
7969
7970 /* allow the kernel cmdline to have a say */
7971 if (!numentries) {
7972 /* round applicable memory size up to nearest megabyte */
04903664 7973 numentries = nr_kernel_pages;
f6f34b43 7974 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7975
7976 /* It isn't necessary when PAGE_SIZE >= 1MB */
7977 if (PAGE_SHIFT < 20)
7978 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7979
9017217b
PT
7980#if __BITS_PER_LONG > 32
7981 if (!high_limit) {
7982 unsigned long adapt;
7983
7984 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7985 adapt <<= ADAPT_SCALE_SHIFT)
7986 scale++;
7987 }
7988#endif
7989
1da177e4
LT
7990 /* limit to 1 bucket per 2^scale bytes of low memory */
7991 if (scale > PAGE_SHIFT)
7992 numentries >>= (scale - PAGE_SHIFT);
7993 else
7994 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7995
7996 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7997 if (unlikely(flags & HASH_SMALL)) {
7998 /* Makes no sense without HASH_EARLY */
7999 WARN_ON(!(flags & HASH_EARLY));
8000 if (!(numentries >> *_hash_shift)) {
8001 numentries = 1UL << *_hash_shift;
8002 BUG_ON(!numentries);
8003 }
8004 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8005 numentries = PAGE_SIZE / bucketsize;
1da177e4 8006 }
6e692ed3 8007 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8008
8009 /* limit allocation size to 1/16 total memory by default */
8010 if (max == 0) {
8011 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8012 do_div(max, bucketsize);
8013 }
074b8517 8014 max = min(max, 0x80000000ULL);
1da177e4 8015
31fe62b9
TB
8016 if (numentries < low_limit)
8017 numentries = low_limit;
1da177e4
LT
8018 if (numentries > max)
8019 numentries = max;
8020
f0d1b0b3 8021 log2qty = ilog2(numentries);
1da177e4 8022
3749a8f0 8023 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
8024 do {
8025 size = bucketsize << log2qty;
ea1f5f37
PT
8026 if (flags & HASH_EARLY) {
8027 if (flags & HASH_ZERO)
26fb3dae 8028 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8029 else
7e1c4e27
MR
8030 table = memblock_alloc_raw(size,
8031 SMP_CACHE_BYTES);
ea1f5f37 8032 } else if (hashdist) {
3749a8f0 8033 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 8034 } else {
1037b83b
ED
8035 /*
8036 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8037 * some pages at the end of hash table which
8038 * alloc_pages_exact() automatically does
1037b83b 8039 */
264ef8a9 8040 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
8041 table = alloc_pages_exact(size, gfp_flags);
8042 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 8043 }
1da177e4
LT
8044 }
8045 } while (!table && size > PAGE_SIZE && --log2qty);
8046
8047 if (!table)
8048 panic("Failed to allocate %s hash table\n", tablename);
8049
1170532b
JP
8050 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8051 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
8052
8053 if (_hash_shift)
8054 *_hash_shift = log2qty;
8055 if (_hash_mask)
8056 *_hash_mask = (1 << log2qty) - 1;
8057
8058 return table;
8059}
a117e66e 8060
a5d76b54 8061/*
80934513
MK
8062 * This function checks whether pageblock includes unmovable pages or not.
8063 * If @count is not zero, it is okay to include less @count unmovable pages
8064 *
b8af2941 8065 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8066 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8067 * check without lock_page also may miss some movable non-lru pages at
8068 * race condition. So you can't expect this function should be exact.
a5d76b54 8069 */
b023f468 8070bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 8071 int migratetype, int flags)
49ac8255 8072{
1a9f2191
QC
8073 unsigned long found;
8074 unsigned long iter = 0;
8075 unsigned long pfn = page_to_pfn(page);
8076 const char *reason = "unmovable page";
47118af0 8077
49ac8255 8078 /*
15c30bc0
MH
8079 * TODO we could make this much more efficient by not checking every
8080 * page in the range if we know all of them are in MOVABLE_ZONE and
8081 * that the movable zone guarantees that pages are migratable but
8082 * the later is not the case right now unfortunatelly. E.g. movablecore
8083 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8084 */
49ac8255 8085
1a9f2191
QC
8086 if (is_migrate_cma_page(page)) {
8087 /*
8088 * CMA allocations (alloc_contig_range) really need to mark
8089 * isolate CMA pageblocks even when they are not movable in fact
8090 * so consider them movable here.
8091 */
8092 if (is_migrate_cma(migratetype))
8093 return false;
8094
8095 reason = "CMA page";
8096 goto unmovable;
8097 }
4da2ce25 8098
1a9f2191 8099 for (found = 0; iter < pageblock_nr_pages; iter++) {
49ac8255
KH
8100 unsigned long check = pfn + iter;
8101
29723fcc 8102 if (!pfn_valid_within(check))
49ac8255 8103 continue;
29723fcc 8104
49ac8255 8105 page = pfn_to_page(check);
c8721bbb 8106
d7ab3672 8107 if (PageReserved(page))
15c30bc0 8108 goto unmovable;
d7ab3672 8109
9d789999
MH
8110 /*
8111 * If the zone is movable and we have ruled out all reserved
8112 * pages then it should be reasonably safe to assume the rest
8113 * is movable.
8114 */
8115 if (zone_idx(zone) == ZONE_MOVABLE)
8116 continue;
8117
c8721bbb
NH
8118 /*
8119 * Hugepages are not in LRU lists, but they're movable.
8bb4e7a2 8120 * We need not scan over tail pages because we don't
c8721bbb
NH
8121 * handle each tail page individually in migration.
8122 */
8123 if (PageHuge(page)) {
17e2e7d7
OS
8124 struct page *head = compound_head(page);
8125 unsigned int skip_pages;
464c7ffb 8126
17e2e7d7 8127 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
8128 goto unmovable;
8129
17e2e7d7
OS
8130 skip_pages = (1 << compound_order(head)) - (page - head);
8131 iter += skip_pages - 1;
c8721bbb
NH
8132 continue;
8133 }
8134
97d255c8
MK
8135 /*
8136 * We can't use page_count without pin a page
8137 * because another CPU can free compound page.
8138 * This check already skips compound tails of THP
0139aa7b 8139 * because their page->_refcount is zero at all time.
97d255c8 8140 */
fe896d18 8141 if (!page_ref_count(page)) {
49ac8255
KH
8142 if (PageBuddy(page))
8143 iter += (1 << page_order(page)) - 1;
8144 continue;
8145 }
97d255c8 8146
b023f468
WC
8147 /*
8148 * The HWPoisoned page may be not in buddy system, and
8149 * page_count() is not 0.
8150 */
d381c547 8151 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
8152 continue;
8153
0efadf48
YX
8154 if (__PageMovable(page))
8155 continue;
8156
49ac8255
KH
8157 if (!PageLRU(page))
8158 found++;
8159 /*
6b4f7799
JW
8160 * If there are RECLAIMABLE pages, we need to check
8161 * it. But now, memory offline itself doesn't call
8162 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8163 */
8164 /*
8165 * If the page is not RAM, page_count()should be 0.
8166 * we don't need more check. This is an _used_ not-movable page.
8167 *
8168 * The problematic thing here is PG_reserved pages. PG_reserved
8169 * is set to both of a memory hole page and a _used_ kernel
8170 * page at boot.
8171 */
8172 if (found > count)
15c30bc0 8173 goto unmovable;
49ac8255 8174 }
80934513 8175 return false;
15c30bc0
MH
8176unmovable:
8177 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547 8178 if (flags & REPORT_FAILURE)
1a9f2191 8179 dump_page(pfn_to_page(pfn + iter), reason);
15c30bc0 8180 return true;
49ac8255
KH
8181}
8182
8df995f6 8183#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8184static unsigned long pfn_max_align_down(unsigned long pfn)
8185{
8186 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8187 pageblock_nr_pages) - 1);
8188}
8189
8190static unsigned long pfn_max_align_up(unsigned long pfn)
8191{
8192 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8193 pageblock_nr_pages));
8194}
8195
041d3a8c 8196/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8197static int __alloc_contig_migrate_range(struct compact_control *cc,
8198 unsigned long start, unsigned long end)
041d3a8c
MN
8199{
8200 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8201 unsigned long nr_reclaimed;
041d3a8c
MN
8202 unsigned long pfn = start;
8203 unsigned int tries = 0;
8204 int ret = 0;
8205
be49a6e1 8206 migrate_prep();
041d3a8c 8207
bb13ffeb 8208 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8209 if (fatal_signal_pending(current)) {
8210 ret = -EINTR;
8211 break;
8212 }
8213
bb13ffeb
MG
8214 if (list_empty(&cc->migratepages)) {
8215 cc->nr_migratepages = 0;
edc2ca61 8216 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8217 if (!pfn) {
8218 ret = -EINTR;
8219 break;
8220 }
8221 tries = 0;
8222 } else if (++tries == 5) {
8223 ret = ret < 0 ? ret : -EBUSY;
8224 break;
8225 }
8226
beb51eaa
MK
8227 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8228 &cc->migratepages);
8229 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8230
9c620e2b 8231 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8232 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8233 }
2a6f5124
SP
8234 if (ret < 0) {
8235 putback_movable_pages(&cc->migratepages);
8236 return ret;
8237 }
8238 return 0;
041d3a8c
MN
8239}
8240
8241/**
8242 * alloc_contig_range() -- tries to allocate given range of pages
8243 * @start: start PFN to allocate
8244 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8245 * @migratetype: migratetype of the underlaying pageblocks (either
8246 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8247 * in range must have the same migratetype and it must
8248 * be either of the two.
ca96b625 8249 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8250 *
8251 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8252 * aligned. The PFN range must belong to a single zone.
041d3a8c 8253 *
2c7452a0
MK
8254 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8255 * pageblocks in the range. Once isolated, the pageblocks should not
8256 * be modified by others.
041d3a8c 8257 *
a862f68a 8258 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8259 * pages which PFN is in [start, end) are allocated for the caller and
8260 * need to be freed with free_contig_range().
8261 */
0815f3d8 8262int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8263 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8264{
041d3a8c 8265 unsigned long outer_start, outer_end;
d00181b9
KS
8266 unsigned int order;
8267 int ret = 0;
041d3a8c 8268
bb13ffeb
MG
8269 struct compact_control cc = {
8270 .nr_migratepages = 0,
8271 .order = -1,
8272 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8273 .mode = MIGRATE_SYNC,
bb13ffeb 8274 .ignore_skip_hint = true,
2583d671 8275 .no_set_skip_hint = true,
7dea19f9 8276 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8277 };
8278 INIT_LIST_HEAD(&cc.migratepages);
8279
041d3a8c
MN
8280 /*
8281 * What we do here is we mark all pageblocks in range as
8282 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8283 * have different sizes, and due to the way page allocator
8284 * work, we align the range to biggest of the two pages so
8285 * that page allocator won't try to merge buddies from
8286 * different pageblocks and change MIGRATE_ISOLATE to some
8287 * other migration type.
8288 *
8289 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8290 * migrate the pages from an unaligned range (ie. pages that
8291 * we are interested in). This will put all the pages in
8292 * range back to page allocator as MIGRATE_ISOLATE.
8293 *
8294 * When this is done, we take the pages in range from page
8295 * allocator removing them from the buddy system. This way
8296 * page allocator will never consider using them.
8297 *
8298 * This lets us mark the pageblocks back as
8299 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8300 * aligned range but not in the unaligned, original range are
8301 * put back to page allocator so that buddy can use them.
8302 */
8303
8304 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8305 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8306 if (ret < 0)
86a595f9 8307 return ret;
041d3a8c 8308
8ef5849f
JK
8309 /*
8310 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8311 * So, just fall through. test_pages_isolated() has a tracepoint
8312 * which will report the busy page.
8313 *
8314 * It is possible that busy pages could become available before
8315 * the call to test_pages_isolated, and the range will actually be
8316 * allocated. So, if we fall through be sure to clear ret so that
8317 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8318 */
bb13ffeb 8319 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8320 if (ret && ret != -EBUSY)
041d3a8c 8321 goto done;
63cd4489 8322 ret =0;
041d3a8c
MN
8323
8324 /*
8325 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8326 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8327 * more, all pages in [start, end) are free in page allocator.
8328 * What we are going to do is to allocate all pages from
8329 * [start, end) (that is remove them from page allocator).
8330 *
8331 * The only problem is that pages at the beginning and at the
8332 * end of interesting range may be not aligned with pages that
8333 * page allocator holds, ie. they can be part of higher order
8334 * pages. Because of this, we reserve the bigger range and
8335 * once this is done free the pages we are not interested in.
8336 *
8337 * We don't have to hold zone->lock here because the pages are
8338 * isolated thus they won't get removed from buddy.
8339 */
8340
8341 lru_add_drain_all();
041d3a8c
MN
8342
8343 order = 0;
8344 outer_start = start;
8345 while (!PageBuddy(pfn_to_page(outer_start))) {
8346 if (++order >= MAX_ORDER) {
8ef5849f
JK
8347 outer_start = start;
8348 break;
041d3a8c
MN
8349 }
8350 outer_start &= ~0UL << order;
8351 }
8352
8ef5849f
JK
8353 if (outer_start != start) {
8354 order = page_order(pfn_to_page(outer_start));
8355
8356 /*
8357 * outer_start page could be small order buddy page and
8358 * it doesn't include start page. Adjust outer_start
8359 * in this case to report failed page properly
8360 * on tracepoint in test_pages_isolated()
8361 */
8362 if (outer_start + (1UL << order) <= start)
8363 outer_start = start;
8364 }
8365
041d3a8c 8366 /* Make sure the range is really isolated. */
b023f468 8367 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8368 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8369 __func__, outer_start, end);
041d3a8c
MN
8370 ret = -EBUSY;
8371 goto done;
8372 }
8373
49f223a9 8374 /* Grab isolated pages from freelists. */
bb13ffeb 8375 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8376 if (!outer_end) {
8377 ret = -EBUSY;
8378 goto done;
8379 }
8380
8381 /* Free head and tail (if any) */
8382 if (start != outer_start)
8383 free_contig_range(outer_start, start - outer_start);
8384 if (end != outer_end)
8385 free_contig_range(end, outer_end - end);
8386
8387done:
8388 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8389 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8390 return ret;
8391}
4eb0716e 8392#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8393
4eb0716e 8394void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8395{
bcc2b02f
MS
8396 unsigned int count = 0;
8397
8398 for (; nr_pages--; pfn++) {
8399 struct page *page = pfn_to_page(pfn);
8400
8401 count += page_count(page) != 1;
8402 __free_page(page);
8403 }
8404 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8405}
041d3a8c 8406
d883c6cf 8407#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8408/*
8409 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8410 * page high values need to be recalulated.
8411 */
4ed7e022
JL
8412void __meminit zone_pcp_update(struct zone *zone)
8413{
0a647f38 8414 unsigned cpu;
c8e251fa 8415 mutex_lock(&pcp_batch_high_lock);
0a647f38 8416 for_each_possible_cpu(cpu)
169f6c19
CS
8417 pageset_set_high_and_batch(zone,
8418 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8419 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8420}
8421#endif
8422
340175b7
JL
8423void zone_pcp_reset(struct zone *zone)
8424{
8425 unsigned long flags;
5a883813
MK
8426 int cpu;
8427 struct per_cpu_pageset *pset;
340175b7
JL
8428
8429 /* avoid races with drain_pages() */
8430 local_irq_save(flags);
8431 if (zone->pageset != &boot_pageset) {
5a883813
MK
8432 for_each_online_cpu(cpu) {
8433 pset = per_cpu_ptr(zone->pageset, cpu);
8434 drain_zonestat(zone, pset);
8435 }
340175b7
JL
8436 free_percpu(zone->pageset);
8437 zone->pageset = &boot_pageset;
8438 }
8439 local_irq_restore(flags);
8440}
8441
6dcd73d7 8442#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8443/*
b9eb6319
JK
8444 * All pages in the range must be in a single zone and isolated
8445 * before calling this.
0c0e6195 8446 */
5557c766 8447unsigned long
0c0e6195
KH
8448__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8449{
8450 struct page *page;
8451 struct zone *zone;
7aeb09f9 8452 unsigned int order, i;
0c0e6195
KH
8453 unsigned long pfn;
8454 unsigned long flags;
5557c766
MH
8455 unsigned long offlined_pages = 0;
8456
0c0e6195
KH
8457 /* find the first valid pfn */
8458 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8459 if (pfn_valid(pfn))
8460 break;
8461 if (pfn == end_pfn)
5557c766
MH
8462 return offlined_pages;
8463
2d070eab 8464 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8465 zone = page_zone(pfn_to_page(pfn));
8466 spin_lock_irqsave(&zone->lock, flags);
8467 pfn = start_pfn;
8468 while (pfn < end_pfn) {
8469 if (!pfn_valid(pfn)) {
8470 pfn++;
8471 continue;
8472 }
8473 page = pfn_to_page(pfn);
b023f468
WC
8474 /*
8475 * The HWPoisoned page may be not in buddy system, and
8476 * page_count() is not 0.
8477 */
8478 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8479 pfn++;
8480 SetPageReserved(page);
5557c766 8481 offlined_pages++;
b023f468
WC
8482 continue;
8483 }
8484
0c0e6195
KH
8485 BUG_ON(page_count(page));
8486 BUG_ON(!PageBuddy(page));
8487 order = page_order(page);
5557c766 8488 offlined_pages += 1 << order;
0c0e6195 8489#ifdef CONFIG_DEBUG_VM
1170532b
JP
8490 pr_info("remove from free list %lx %d %lx\n",
8491 pfn, 1 << order, end_pfn);
0c0e6195 8492#endif
b03641af 8493 del_page_from_free_area(page, &zone->free_area[order]);
0c0e6195
KH
8494 for (i = 0; i < (1 << order); i++)
8495 SetPageReserved((page+i));
8496 pfn += (1 << order);
8497 }
8498 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8499
8500 return offlined_pages;
0c0e6195
KH
8501}
8502#endif
8d22ba1b 8503
8d22ba1b
WF
8504bool is_free_buddy_page(struct page *page)
8505{
8506 struct zone *zone = page_zone(page);
8507 unsigned long pfn = page_to_pfn(page);
8508 unsigned long flags;
7aeb09f9 8509 unsigned int order;
8d22ba1b
WF
8510
8511 spin_lock_irqsave(&zone->lock, flags);
8512 for (order = 0; order < MAX_ORDER; order++) {
8513 struct page *page_head = page - (pfn & ((1 << order) - 1));
8514
8515 if (PageBuddy(page_head) && page_order(page_head) >= order)
8516 break;
8517 }
8518 spin_unlock_irqrestore(&zone->lock, flags);
8519
8520 return order < MAX_ORDER;
8521}
d4ae9916
NH
8522
8523#ifdef CONFIG_MEMORY_FAILURE
8524/*
8525 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8526 * test is performed under the zone lock to prevent a race against page
8527 * allocation.
8528 */
8529bool set_hwpoison_free_buddy_page(struct page *page)
8530{
8531 struct zone *zone = page_zone(page);
8532 unsigned long pfn = page_to_pfn(page);
8533 unsigned long flags;
8534 unsigned int order;
8535 bool hwpoisoned = false;
8536
8537 spin_lock_irqsave(&zone->lock, flags);
8538 for (order = 0; order < MAX_ORDER; order++) {
8539 struct page *page_head = page - (pfn & ((1 << order) - 1));
8540
8541 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8542 if (!TestSetPageHWPoison(page))
8543 hwpoisoned = true;
8544 break;
8545 }
8546 }
8547 spin_unlock_irqrestore(&zone->lock, flags);
8548
8549 return hwpoisoned;
8550}
8551#endif