drm: rcar-du: add missing of_node_put
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
ca79b0c2 19#include <linux/highmem.h>
1da177e4
LT
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
10ed273f 23#include <linux/jiffies.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
a6cccdc3 42#include <linux/vmstat.h>
4be38e35 43#include <linux/mempolicy.h>
4b94ffdc 44#include <linux/memremap.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
d379f01d 56#include <trace/events/oom.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
5b3cc15a 62#include <linux/sched/mm.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
4949148a 65#include <linux/memcontrol.h>
42c269c8 66#include <linux/ftrace.h>
d92a8cfc 67#include <linux/lockdep.h>
556b969a 68#include <linux/nmi.h>
eb414681 69#include <linux/psi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53 99/* work_structs for global per-cpu drains */
d9367bd0
WY
100struct pcpu_drain {
101 struct zone *zone;
102 struct work_struct work;
103};
bd233f53 104DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 105DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 106
38addce8 107#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 108volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
109EXPORT_SYMBOL(latent_entropy);
110#endif
111
1da177e4 112/*
13808910 113 * Array of node states.
1da177e4 114 */
13808910
CL
115nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
116 [N_POSSIBLE] = NODE_MASK_ALL,
117 [N_ONLINE] = { { [0] = 1UL } },
118#ifndef CONFIG_NUMA
119 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
120#ifdef CONFIG_HIGHMEM
121 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 122#endif
20b2f52b 123 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
124 [N_CPU] = { { [0] = 1UL } },
125#endif /* NUMA */
126};
127EXPORT_SYMBOL(node_states);
128
ca79b0c2
AK
129atomic_long_t _totalram_pages __read_mostly;
130EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 131unsigned long totalreserve_pages __read_mostly;
e48322ab 132unsigned long totalcma_pages __read_mostly;
ab8fabd4 133
1b76b02f 134int percpu_pagelist_fraction;
dcce284a 135gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 136
bb14c2c7
VB
137/*
138 * A cached value of the page's pageblock's migratetype, used when the page is
139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
140 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
141 * Also the migratetype set in the page does not necessarily match the pcplist
142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
143 * other index - this ensures that it will be put on the correct CMA freelist.
144 */
145static inline int get_pcppage_migratetype(struct page *page)
146{
147 return page->index;
148}
149
150static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151{
152 page->index = migratetype;
153}
154
452aa699
RW
155#ifdef CONFIG_PM_SLEEP
156/*
157 * The following functions are used by the suspend/hibernate code to temporarily
158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
159 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
160 * they should always be called with system_transition_mutex held
161 * (gfp_allowed_mask also should only be modified with system_transition_mutex
162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
163 * with that modification).
452aa699 164 */
c9e664f1
RW
165
166static gfp_t saved_gfp_mask;
167
168void pm_restore_gfp_mask(void)
452aa699 169{
55f2503c 170 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
171 if (saved_gfp_mask) {
172 gfp_allowed_mask = saved_gfp_mask;
173 saved_gfp_mask = 0;
174 }
452aa699
RW
175}
176
c9e664f1 177void pm_restrict_gfp_mask(void)
452aa699 178{
55f2503c 179 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
180 WARN_ON(saved_gfp_mask);
181 saved_gfp_mask = gfp_allowed_mask;
d0164adc 182 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 183}
f90ac398
MG
184
185bool pm_suspended_storage(void)
186{
d0164adc 187 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
188 return false;
189 return true;
190}
452aa699
RW
191#endif /* CONFIG_PM_SLEEP */
192
d9c23400 193#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 194unsigned int pageblock_order __read_mostly;
d9c23400
MG
195#endif
196
d98c7a09 197static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 198
1da177e4
LT
199/*
200 * results with 256, 32 in the lowmem_reserve sysctl:
201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
202 * 1G machine -> (16M dma, 784M normal, 224M high)
203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
206 *
207 * TBD: should special case ZONE_DMA32 machines here - in those we normally
208 * don't need any ZONE_NORMAL reservation
1da177e4 209 */
d3cda233 210int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
d3cda233 212 [ZONE_DMA] = 256,
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
d3cda233 215 [ZONE_DMA32] = 256,
fb0e7942 216#endif
d3cda233 217 [ZONE_NORMAL] = 32,
e53ef38d 218#ifdef CONFIG_HIGHMEM
d3cda233 219 [ZONE_HIGHMEM] = 0,
e53ef38d 220#endif
d3cda233 221 [ZONE_MOVABLE] = 0,
2f1b6248 222};
1da177e4
LT
223
224EXPORT_SYMBOL(totalram_pages);
1da177e4 225
15ad7cdc 226static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 227#ifdef CONFIG_ZONE_DMA
2f1b6248 228 "DMA",
4b51d669 229#endif
fb0e7942 230#ifdef CONFIG_ZONE_DMA32
2f1b6248 231 "DMA32",
fb0e7942 232#endif
2f1b6248 233 "Normal",
e53ef38d 234#ifdef CONFIG_HIGHMEM
2a1e274a 235 "HighMem",
e53ef38d 236#endif
2a1e274a 237 "Movable",
033fbae9
DW
238#ifdef CONFIG_ZONE_DEVICE
239 "Device",
240#endif
2f1b6248
CL
241};
242
c999fbd3 243const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
244 "Unmovable",
245 "Movable",
246 "Reclaimable",
247 "HighAtomic",
248#ifdef CONFIG_CMA
249 "CMA",
250#endif
251#ifdef CONFIG_MEMORY_ISOLATION
252 "Isolate",
253#endif
254};
255
f1e61557
KS
256compound_page_dtor * const compound_page_dtors[] = {
257 NULL,
258 free_compound_page,
259#ifdef CONFIG_HUGETLB_PAGE
260 free_huge_page,
261#endif
9a982250
KS
262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 free_transhuge_page,
264#endif
f1e61557
KS
265};
266
1da177e4 267int min_free_kbytes = 1024;
42aa83cb 268int user_min_free_kbytes = -1;
1c30844d 269int watermark_boost_factor __read_mostly = 15000;
795ae7a0 270int watermark_scale_factor = 10;
1da177e4 271
bbe5d993
OS
272static unsigned long nr_kernel_pages __initdata;
273static unsigned long nr_all_pages __initdata;
274static unsigned long dma_reserve __initdata;
1da177e4 275
0ee332c1 276#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
277static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
278static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 279static unsigned long required_kernelcore __initdata;
a5c6d650 280static unsigned long required_kernelcore_percent __initdata;
7f16f91f 281static unsigned long required_movablecore __initdata;
a5c6d650 282static unsigned long required_movablecore_percent __initdata;
bbe5d993 283static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 284static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
285
286/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
287int movable_zone;
288EXPORT_SYMBOL(movable_zone);
289#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 290
418508c1
MS
291#if MAX_NUMNODES > 1
292int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 293int nr_online_nodes __read_mostly = 1;
418508c1 294EXPORT_SYMBOL(nr_node_ids);
62bc62a8 295EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
296#endif
297
9ef9acb0
MG
298int page_group_by_mobility_disabled __read_mostly;
299
3a80a7fa 300#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
301/*
302 * During boot we initialize deferred pages on-demand, as needed, but once
303 * page_alloc_init_late() has finished, the deferred pages are all initialized,
304 * and we can permanently disable that path.
305 */
306static DEFINE_STATIC_KEY_TRUE(deferred_pages);
307
308/*
309 * Calling kasan_free_pages() only after deferred memory initialization
310 * has completed. Poisoning pages during deferred memory init will greatly
311 * lengthen the process and cause problem in large memory systems as the
312 * deferred pages initialization is done with interrupt disabled.
313 *
314 * Assuming that there will be no reference to those newly initialized
315 * pages before they are ever allocated, this should have no effect on
316 * KASAN memory tracking as the poison will be properly inserted at page
317 * allocation time. The only corner case is when pages are allocated by
318 * on-demand allocation and then freed again before the deferred pages
319 * initialization is done, but this is not likely to happen.
320 */
321static inline void kasan_free_nondeferred_pages(struct page *page, int order)
322{
323 if (!static_branch_unlikely(&deferred_pages))
324 kasan_free_pages(page, order);
325}
326
3a80a7fa 327/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 328static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 329{
ef70b6f4
MG
330 int nid = early_pfn_to_nid(pfn);
331
332 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
333 return true;
334
335 return false;
336}
337
338/*
d3035be4 339 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
340 * later in the boot cycle when it can be parallelised.
341 */
d3035be4
PT
342static bool __meminit
343defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 344{
d3035be4
PT
345 static unsigned long prev_end_pfn, nr_initialised;
346
347 /*
348 * prev_end_pfn static that contains the end of previous zone
349 * No need to protect because called very early in boot before smp_init.
350 */
351 if (prev_end_pfn != end_pfn) {
352 prev_end_pfn = end_pfn;
353 nr_initialised = 0;
354 }
355
3c2c6488 356 /* Always populate low zones for address-constrained allocations */
d3035be4 357 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 358 return false;
23b68cfa
WY
359
360 /*
361 * We start only with one section of pages, more pages are added as
362 * needed until the rest of deferred pages are initialized.
363 */
d3035be4 364 nr_initialised++;
23b68cfa 365 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
366 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
367 NODE_DATA(nid)->first_deferred_pfn = pfn;
368 return true;
3a80a7fa 369 }
d3035be4 370 return false;
3a80a7fa
MG
371}
372#else
3c0c12cc
WL
373#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
374
3a80a7fa
MG
375static inline bool early_page_uninitialised(unsigned long pfn)
376{
377 return false;
378}
379
d3035be4 380static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 381{
d3035be4 382 return false;
3a80a7fa
MG
383}
384#endif
385
0b423ca2
MG
386/* Return a pointer to the bitmap storing bits affecting a block of pages */
387static inline unsigned long *get_pageblock_bitmap(struct page *page,
388 unsigned long pfn)
389{
390#ifdef CONFIG_SPARSEMEM
391 return __pfn_to_section(pfn)->pageblock_flags;
392#else
393 return page_zone(page)->pageblock_flags;
394#endif /* CONFIG_SPARSEMEM */
395}
396
397static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
398{
399#ifdef CONFIG_SPARSEMEM
400 pfn &= (PAGES_PER_SECTION-1);
401 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
402#else
403 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
404 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
405#endif /* CONFIG_SPARSEMEM */
406}
407
408/**
409 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
410 * @page: The page within the block of interest
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest to retrieve
413 * @mask: mask of bits that the caller is interested in
414 *
415 * Return: pageblock_bits flags
416 */
417static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
418 unsigned long pfn,
419 unsigned long end_bitidx,
420 unsigned long mask)
421{
422 unsigned long *bitmap;
423 unsigned long bitidx, word_bitidx;
424 unsigned long word;
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 word = bitmap[word_bitidx];
432 bitidx += end_bitidx;
433 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
434}
435
436unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
437 unsigned long end_bitidx,
438 unsigned long mask)
439{
440 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
441}
442
443static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
444{
445 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
446}
447
448/**
449 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
450 * @page: The page within the block of interest
451 * @flags: The flags to set
452 * @pfn: The target page frame number
453 * @end_bitidx: The last bit of interest
454 * @mask: mask of bits that the caller is interested in
455 */
456void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
457 unsigned long pfn,
458 unsigned long end_bitidx,
459 unsigned long mask)
460{
461 unsigned long *bitmap;
462 unsigned long bitidx, word_bitidx;
463 unsigned long old_word, word;
464
465 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 466 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
467
468 bitmap = get_pageblock_bitmap(page, pfn);
469 bitidx = pfn_to_bitidx(page, pfn);
470 word_bitidx = bitidx / BITS_PER_LONG;
471 bitidx &= (BITS_PER_LONG-1);
472
473 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
474
475 bitidx += end_bitidx;
476 mask <<= (BITS_PER_LONG - bitidx - 1);
477 flags <<= (BITS_PER_LONG - bitidx - 1);
478
479 word = READ_ONCE(bitmap[word_bitidx]);
480 for (;;) {
481 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
482 if (word == old_word)
483 break;
484 word = old_word;
485 }
486}
3a80a7fa 487
ee6f509c 488void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 489{
5d0f3f72
KM
490 if (unlikely(page_group_by_mobility_disabled &&
491 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
492 migratetype = MIGRATE_UNMOVABLE;
493
b2a0ac88
MG
494 set_pageblock_flags_group(page, (unsigned long)migratetype,
495 PB_migrate, PB_migrate_end);
496}
497
13e7444b 498#ifdef CONFIG_DEBUG_VM
c6a57e19 499static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 500{
bdc8cb98
DH
501 int ret = 0;
502 unsigned seq;
503 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 504 unsigned long sp, start_pfn;
c6a57e19 505
bdc8cb98
DH
506 do {
507 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
508 start_pfn = zone->zone_start_pfn;
509 sp = zone->spanned_pages;
108bcc96 510 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
511 ret = 1;
512 } while (zone_span_seqretry(zone, seq));
513
b5e6a5a2 514 if (ret)
613813e8
DH
515 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
516 pfn, zone_to_nid(zone), zone->name,
517 start_pfn, start_pfn + sp);
b5e6a5a2 518
bdc8cb98 519 return ret;
c6a57e19
DH
520}
521
522static int page_is_consistent(struct zone *zone, struct page *page)
523{
14e07298 524 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 525 return 0;
1da177e4 526 if (zone != page_zone(page))
c6a57e19
DH
527 return 0;
528
529 return 1;
530}
531/*
532 * Temporary debugging check for pages not lying within a given zone.
533 */
d73d3c9f 534static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
535{
536 if (page_outside_zone_boundaries(zone, page))
1da177e4 537 return 1;
c6a57e19
DH
538 if (!page_is_consistent(zone, page))
539 return 1;
540
1da177e4
LT
541 return 0;
542}
13e7444b 543#else
d73d3c9f 544static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
545{
546 return 0;
547}
548#endif
549
d230dec1
KS
550static void bad_page(struct page *page, const char *reason,
551 unsigned long bad_flags)
1da177e4 552{
d936cf9b
HD
553 static unsigned long resume;
554 static unsigned long nr_shown;
555 static unsigned long nr_unshown;
556
557 /*
558 * Allow a burst of 60 reports, then keep quiet for that minute;
559 * or allow a steady drip of one report per second.
560 */
561 if (nr_shown == 60) {
562 if (time_before(jiffies, resume)) {
563 nr_unshown++;
564 goto out;
565 }
566 if (nr_unshown) {
ff8e8116 567 pr_alert(
1e9e6365 568 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
569 nr_unshown);
570 nr_unshown = 0;
571 }
572 nr_shown = 0;
573 }
574 if (nr_shown++ == 0)
575 resume = jiffies + 60 * HZ;
576
ff8e8116 577 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 578 current->comm, page_to_pfn(page));
ff8e8116
VB
579 __dump_page(page, reason);
580 bad_flags &= page->flags;
581 if (bad_flags)
582 pr_alert("bad because of flags: %#lx(%pGp)\n",
583 bad_flags, &bad_flags);
4e462112 584 dump_page_owner(page);
3dc14741 585
4f31888c 586 print_modules();
1da177e4 587 dump_stack();
d936cf9b 588out:
8cc3b392 589 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 590 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 591 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
592}
593
1da177e4
LT
594/*
595 * Higher-order pages are called "compound pages". They are structured thusly:
596 *
1d798ca3 597 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 598 *
1d798ca3
KS
599 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
600 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 601 *
1d798ca3
KS
602 * The first tail page's ->compound_dtor holds the offset in array of compound
603 * page destructors. See compound_page_dtors.
1da177e4 604 *
1d798ca3 605 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 606 * This usage means that zero-order pages may not be compound.
1da177e4 607 */
d98c7a09 608
9a982250 609void free_compound_page(struct page *page)
d98c7a09 610{
d85f3385 611 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
612}
613
d00181b9 614void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
615{
616 int i;
617 int nr_pages = 1 << order;
618
f1e61557 619 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
620 set_compound_order(page, order);
621 __SetPageHead(page);
622 for (i = 1; i < nr_pages; i++) {
623 struct page *p = page + i;
58a84aa9 624 set_page_count(p, 0);
1c290f64 625 p->mapping = TAIL_MAPPING;
1d798ca3 626 set_compound_head(p, page);
18229df5 627 }
53f9263b 628 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
629}
630
c0a32fc5
SG
631#ifdef CONFIG_DEBUG_PAGEALLOC
632unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
633bool _debug_pagealloc_enabled __read_mostly
634 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 635EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
636bool _debug_guardpage_enabled __read_mostly;
637
031bc574
JK
638static int __init early_debug_pagealloc(char *buf)
639{
640 if (!buf)
641 return -EINVAL;
2a138dc7 642 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
643}
644early_param("debug_pagealloc", early_debug_pagealloc);
645
e30825f1
JK
646static bool need_debug_guardpage(void)
647{
031bc574
JK
648 /* If we don't use debug_pagealloc, we don't need guard page */
649 if (!debug_pagealloc_enabled())
650 return false;
651
f1c1e9f7
JK
652 if (!debug_guardpage_minorder())
653 return false;
654
e30825f1
JK
655 return true;
656}
657
658static void init_debug_guardpage(void)
659{
031bc574
JK
660 if (!debug_pagealloc_enabled())
661 return;
662
f1c1e9f7
JK
663 if (!debug_guardpage_minorder())
664 return;
665
e30825f1
JK
666 _debug_guardpage_enabled = true;
667}
668
669struct page_ext_operations debug_guardpage_ops = {
670 .need = need_debug_guardpage,
671 .init = init_debug_guardpage,
672};
c0a32fc5
SG
673
674static int __init debug_guardpage_minorder_setup(char *buf)
675{
676 unsigned long res;
677
678 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 679 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
680 return 0;
681 }
682 _debug_guardpage_minorder = res;
1170532b 683 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
684 return 0;
685}
f1c1e9f7 686early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 687
acbc15a4 688static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 689 unsigned int order, int migratetype)
c0a32fc5 690{
e30825f1
JK
691 struct page_ext *page_ext;
692
693 if (!debug_guardpage_enabled())
acbc15a4
JK
694 return false;
695
696 if (order >= debug_guardpage_minorder())
697 return false;
e30825f1
JK
698
699 page_ext = lookup_page_ext(page);
f86e4271 700 if (unlikely(!page_ext))
acbc15a4 701 return false;
f86e4271 702
e30825f1
JK
703 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
704
2847cf95
JK
705 INIT_LIST_HEAD(&page->lru);
706 set_page_private(page, order);
707 /* Guard pages are not available for any usage */
708 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
709
710 return true;
c0a32fc5
SG
711}
712
2847cf95
JK
713static inline void clear_page_guard(struct zone *zone, struct page *page,
714 unsigned int order, int migratetype)
c0a32fc5 715{
e30825f1
JK
716 struct page_ext *page_ext;
717
718 if (!debug_guardpage_enabled())
719 return;
720
721 page_ext = lookup_page_ext(page);
f86e4271
YS
722 if (unlikely(!page_ext))
723 return;
724
e30825f1
JK
725 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
726
2847cf95
JK
727 set_page_private(page, 0);
728 if (!is_migrate_isolate(migratetype))
729 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
730}
731#else
980ac167 732struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
733static inline bool set_page_guard(struct zone *zone, struct page *page,
734 unsigned int order, int migratetype) { return false; }
2847cf95
JK
735static inline void clear_page_guard(struct zone *zone, struct page *page,
736 unsigned int order, int migratetype) {}
c0a32fc5
SG
737#endif
738
7aeb09f9 739static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 740{
4c21e2f2 741 set_page_private(page, order);
676165a8 742 __SetPageBuddy(page);
1da177e4
LT
743}
744
745static inline void rmv_page_order(struct page *page)
746{
676165a8 747 __ClearPageBuddy(page);
4c21e2f2 748 set_page_private(page, 0);
1da177e4
LT
749}
750
1da177e4
LT
751/*
752 * This function checks whether a page is free && is the buddy
6e292b9b 753 * we can coalesce a page and its buddy if
13ad59df 754 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 755 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
756 * (c) a page and its buddy have the same order &&
757 * (d) a page and its buddy are in the same zone.
676165a8 758 *
6e292b9b
MW
759 * For recording whether a page is in the buddy system, we set PageBuddy.
760 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 761 *
676165a8 762 * For recording page's order, we use page_private(page).
1da177e4 763 */
cb2b95e1 764static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 765 unsigned int order)
1da177e4 766{
c0a32fc5 767 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
768 if (page_zone_id(page) != page_zone_id(buddy))
769 return 0;
770
4c5018ce
WY
771 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
772
c0a32fc5
SG
773 return 1;
774 }
775
cb2b95e1 776 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
777 /*
778 * zone check is done late to avoid uselessly
779 * calculating zone/node ids for pages that could
780 * never merge.
781 */
782 if (page_zone_id(page) != page_zone_id(buddy))
783 return 0;
784
4c5018ce
WY
785 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
786
6aa3001b 787 return 1;
676165a8 788 }
6aa3001b 789 return 0;
1da177e4
LT
790}
791
792/*
793 * Freeing function for a buddy system allocator.
794 *
795 * The concept of a buddy system is to maintain direct-mapped table
796 * (containing bit values) for memory blocks of various "orders".
797 * The bottom level table contains the map for the smallest allocatable
798 * units of memory (here, pages), and each level above it describes
799 * pairs of units from the levels below, hence, "buddies".
800 * At a high level, all that happens here is marking the table entry
801 * at the bottom level available, and propagating the changes upward
802 * as necessary, plus some accounting needed to play nicely with other
803 * parts of the VM system.
804 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
805 * free pages of length of (1 << order) and marked with PageBuddy.
806 * Page's order is recorded in page_private(page) field.
1da177e4 807 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
808 * other. That is, if we allocate a small block, and both were
809 * free, the remainder of the region must be split into blocks.
1da177e4 810 * If a block is freed, and its buddy is also free, then this
5f63b720 811 * triggers coalescing into a block of larger size.
1da177e4 812 *
6d49e352 813 * -- nyc
1da177e4
LT
814 */
815
48db57f8 816static inline void __free_one_page(struct page *page,
dc4b0caf 817 unsigned long pfn,
ed0ae21d
MG
818 struct zone *zone, unsigned int order,
819 int migratetype)
1da177e4 820{
76741e77
VB
821 unsigned long combined_pfn;
822 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 823 struct page *buddy;
d9dddbf5
VB
824 unsigned int max_order;
825
826 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 827
d29bb978 828 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 829 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 830
ed0ae21d 831 VM_BUG_ON(migratetype == -1);
d9dddbf5 832 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 833 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 834
76741e77 835 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 836 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 837
d9dddbf5 838continue_merging:
3c605096 839 while (order < max_order - 1) {
76741e77
VB
840 buddy_pfn = __find_buddy_pfn(pfn, order);
841 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
842
843 if (!pfn_valid_within(buddy_pfn))
844 goto done_merging;
cb2b95e1 845 if (!page_is_buddy(page, buddy, order))
d9dddbf5 846 goto done_merging;
c0a32fc5
SG
847 /*
848 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
849 * merge with it and move up one order.
850 */
851 if (page_is_guard(buddy)) {
2847cf95 852 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
853 } else {
854 list_del(&buddy->lru);
855 zone->free_area[order].nr_free--;
856 rmv_page_order(buddy);
857 }
76741e77
VB
858 combined_pfn = buddy_pfn & pfn;
859 page = page + (combined_pfn - pfn);
860 pfn = combined_pfn;
1da177e4
LT
861 order++;
862 }
d9dddbf5
VB
863 if (max_order < MAX_ORDER) {
864 /* If we are here, it means order is >= pageblock_order.
865 * We want to prevent merge between freepages on isolate
866 * pageblock and normal pageblock. Without this, pageblock
867 * isolation could cause incorrect freepage or CMA accounting.
868 *
869 * We don't want to hit this code for the more frequent
870 * low-order merging.
871 */
872 if (unlikely(has_isolate_pageblock(zone))) {
873 int buddy_mt;
874
76741e77
VB
875 buddy_pfn = __find_buddy_pfn(pfn, order);
876 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
877 buddy_mt = get_pageblock_migratetype(buddy);
878
879 if (migratetype != buddy_mt
880 && (is_migrate_isolate(migratetype) ||
881 is_migrate_isolate(buddy_mt)))
882 goto done_merging;
883 }
884 max_order++;
885 goto continue_merging;
886 }
887
888done_merging:
1da177e4 889 set_page_order(page, order);
6dda9d55
CZ
890
891 /*
892 * If this is not the largest possible page, check if the buddy
893 * of the next-highest order is free. If it is, it's possible
894 * that pages are being freed that will coalesce soon. In case,
895 * that is happening, add the free page to the tail of the list
896 * so it's less likely to be used soon and more likely to be merged
897 * as a higher order page
898 */
13ad59df 899 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 900 struct page *higher_page, *higher_buddy;
76741e77
VB
901 combined_pfn = buddy_pfn & pfn;
902 higher_page = page + (combined_pfn - pfn);
903 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
904 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
905 if (pfn_valid_within(buddy_pfn) &&
906 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
907 list_add_tail(&page->lru,
908 &zone->free_area[order].free_list[migratetype]);
909 goto out;
910 }
911 }
912
913 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
914out:
1da177e4
LT
915 zone->free_area[order].nr_free++;
916}
917
7bfec6f4
MG
918/*
919 * A bad page could be due to a number of fields. Instead of multiple branches,
920 * try and check multiple fields with one check. The caller must do a detailed
921 * check if necessary.
922 */
923static inline bool page_expected_state(struct page *page,
924 unsigned long check_flags)
925{
926 if (unlikely(atomic_read(&page->_mapcount) != -1))
927 return false;
928
929 if (unlikely((unsigned long)page->mapping |
930 page_ref_count(page) |
931#ifdef CONFIG_MEMCG
932 (unsigned long)page->mem_cgroup |
933#endif
934 (page->flags & check_flags)))
935 return false;
936
937 return true;
938}
939
bb552ac6 940static void free_pages_check_bad(struct page *page)
1da177e4 941{
7bfec6f4
MG
942 const char *bad_reason;
943 unsigned long bad_flags;
944
7bfec6f4
MG
945 bad_reason = NULL;
946 bad_flags = 0;
f0b791a3 947
53f9263b 948 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
949 bad_reason = "nonzero mapcount";
950 if (unlikely(page->mapping != NULL))
951 bad_reason = "non-NULL mapping";
fe896d18 952 if (unlikely(page_ref_count(page) != 0))
0139aa7b 953 bad_reason = "nonzero _refcount";
f0b791a3
DH
954 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
955 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
956 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
957 }
9edad6ea
JW
958#ifdef CONFIG_MEMCG
959 if (unlikely(page->mem_cgroup))
960 bad_reason = "page still charged to cgroup";
961#endif
7bfec6f4 962 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
963}
964
965static inline int free_pages_check(struct page *page)
966{
da838d4f 967 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 968 return 0;
bb552ac6
MG
969
970 /* Something has gone sideways, find it */
971 free_pages_check_bad(page);
7bfec6f4 972 return 1;
1da177e4
LT
973}
974
4db7548c
MG
975static int free_tail_pages_check(struct page *head_page, struct page *page)
976{
977 int ret = 1;
978
979 /*
980 * We rely page->lru.next never has bit 0 set, unless the page
981 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
982 */
983 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
984
985 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
986 ret = 0;
987 goto out;
988 }
989 switch (page - head_page) {
990 case 1:
4da1984e 991 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
992 if (unlikely(compound_mapcount(page))) {
993 bad_page(page, "nonzero compound_mapcount", 0);
994 goto out;
995 }
996 break;
997 case 2:
998 /*
999 * the second tail page: ->mapping is
fa3015b7 1000 * deferred_list.next -- ignore value.
4db7548c
MG
1001 */
1002 break;
1003 default:
1004 if (page->mapping != TAIL_MAPPING) {
1005 bad_page(page, "corrupted mapping in tail page", 0);
1006 goto out;
1007 }
1008 break;
1009 }
1010 if (unlikely(!PageTail(page))) {
1011 bad_page(page, "PageTail not set", 0);
1012 goto out;
1013 }
1014 if (unlikely(compound_head(page) != head_page)) {
1015 bad_page(page, "compound_head not consistent", 0);
1016 goto out;
1017 }
1018 ret = 0;
1019out:
1020 page->mapping = NULL;
1021 clear_compound_head(page);
1022 return ret;
1023}
1024
e2769dbd
MG
1025static __always_inline bool free_pages_prepare(struct page *page,
1026 unsigned int order, bool check_free)
4db7548c 1027{
e2769dbd 1028 int bad = 0;
4db7548c 1029
4db7548c
MG
1030 VM_BUG_ON_PAGE(PageTail(page), page);
1031
e2769dbd 1032 trace_mm_page_free(page, order);
e2769dbd
MG
1033
1034 /*
1035 * Check tail pages before head page information is cleared to
1036 * avoid checking PageCompound for order-0 pages.
1037 */
1038 if (unlikely(order)) {
1039 bool compound = PageCompound(page);
1040 int i;
1041
1042 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1043
9a73f61b
KS
1044 if (compound)
1045 ClearPageDoubleMap(page);
e2769dbd
MG
1046 for (i = 1; i < (1 << order); i++) {
1047 if (compound)
1048 bad += free_tail_pages_check(page, page + i);
1049 if (unlikely(free_pages_check(page + i))) {
1050 bad++;
1051 continue;
1052 }
1053 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1054 }
1055 }
bda807d4 1056 if (PageMappingFlags(page))
4db7548c 1057 page->mapping = NULL;
c4159a75 1058 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1059 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1060 if (check_free)
1061 bad += free_pages_check(page);
1062 if (bad)
1063 return false;
4db7548c 1064
e2769dbd
MG
1065 page_cpupid_reset_last(page);
1066 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1067 reset_page_owner(page, order);
4db7548c
MG
1068
1069 if (!PageHighMem(page)) {
1070 debug_check_no_locks_freed(page_address(page),
e2769dbd 1071 PAGE_SIZE << order);
4db7548c 1072 debug_check_no_obj_freed(page_address(page),
e2769dbd 1073 PAGE_SIZE << order);
4db7548c 1074 }
e2769dbd
MG
1075 arch_free_page(page, order);
1076 kernel_poison_pages(page, 1 << order, 0);
1077 kernel_map_pages(page, 1 << order, 0);
3c0c12cc 1078 kasan_free_nondeferred_pages(page, order);
4db7548c 1079
4db7548c
MG
1080 return true;
1081}
1082
e2769dbd
MG
1083#ifdef CONFIG_DEBUG_VM
1084static inline bool free_pcp_prepare(struct page *page)
1085{
1086 return free_pages_prepare(page, 0, true);
1087}
1088
1089static inline bool bulkfree_pcp_prepare(struct page *page)
1090{
1091 return false;
1092}
1093#else
1094static bool free_pcp_prepare(struct page *page)
1095{
1096 return free_pages_prepare(page, 0, false);
1097}
1098
4db7548c
MG
1099static bool bulkfree_pcp_prepare(struct page *page)
1100{
1101 return free_pages_check(page);
1102}
1103#endif /* CONFIG_DEBUG_VM */
1104
97334162
AL
1105static inline void prefetch_buddy(struct page *page)
1106{
1107 unsigned long pfn = page_to_pfn(page);
1108 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1109 struct page *buddy = page + (buddy_pfn - pfn);
1110
1111 prefetch(buddy);
1112}
1113
1da177e4 1114/*
5f8dcc21 1115 * Frees a number of pages from the PCP lists
1da177e4 1116 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1117 * count is the number of pages to free.
1da177e4
LT
1118 *
1119 * If the zone was previously in an "all pages pinned" state then look to
1120 * see if this freeing clears that state.
1121 *
1122 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1123 * pinned" detection logic.
1124 */
5f8dcc21
MG
1125static void free_pcppages_bulk(struct zone *zone, int count,
1126 struct per_cpu_pages *pcp)
1da177e4 1127{
5f8dcc21 1128 int migratetype = 0;
a6f9edd6 1129 int batch_free = 0;
97334162 1130 int prefetch_nr = 0;
3777999d 1131 bool isolated_pageblocks;
0a5f4e5b
AL
1132 struct page *page, *tmp;
1133 LIST_HEAD(head);
f2260e6b 1134
e5b31ac2 1135 while (count) {
5f8dcc21
MG
1136 struct list_head *list;
1137
1138 /*
a6f9edd6
MG
1139 * Remove pages from lists in a round-robin fashion. A
1140 * batch_free count is maintained that is incremented when an
1141 * empty list is encountered. This is so more pages are freed
1142 * off fuller lists instead of spinning excessively around empty
1143 * lists
5f8dcc21
MG
1144 */
1145 do {
a6f9edd6 1146 batch_free++;
5f8dcc21
MG
1147 if (++migratetype == MIGRATE_PCPTYPES)
1148 migratetype = 0;
1149 list = &pcp->lists[migratetype];
1150 } while (list_empty(list));
48db57f8 1151
1d16871d
NK
1152 /* This is the only non-empty list. Free them all. */
1153 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1154 batch_free = count;
1d16871d 1155
a6f9edd6 1156 do {
a16601c5 1157 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1158 /* must delete to avoid corrupting pcp list */
a6f9edd6 1159 list_del(&page->lru);
77ba9062 1160 pcp->count--;
aa016d14 1161
4db7548c
MG
1162 if (bulkfree_pcp_prepare(page))
1163 continue;
1164
0a5f4e5b 1165 list_add_tail(&page->lru, &head);
97334162
AL
1166
1167 /*
1168 * We are going to put the page back to the global
1169 * pool, prefetch its buddy to speed up later access
1170 * under zone->lock. It is believed the overhead of
1171 * an additional test and calculating buddy_pfn here
1172 * can be offset by reduced memory latency later. To
1173 * avoid excessive prefetching due to large count, only
1174 * prefetch buddy for the first pcp->batch nr of pages.
1175 */
1176 if (prefetch_nr++ < pcp->batch)
1177 prefetch_buddy(page);
e5b31ac2 1178 } while (--count && --batch_free && !list_empty(list));
1da177e4 1179 }
0a5f4e5b
AL
1180
1181 spin_lock(&zone->lock);
1182 isolated_pageblocks = has_isolate_pageblock(zone);
1183
1184 /*
1185 * Use safe version since after __free_one_page(),
1186 * page->lru.next will not point to original list.
1187 */
1188 list_for_each_entry_safe(page, tmp, &head, lru) {
1189 int mt = get_pcppage_migratetype(page);
1190 /* MIGRATE_ISOLATE page should not go to pcplists */
1191 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1192 /* Pageblock could have been isolated meanwhile */
1193 if (unlikely(isolated_pageblocks))
1194 mt = get_pageblock_migratetype(page);
1195
1196 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1197 trace_mm_page_pcpu_drain(page, 0, mt);
1198 }
d34b0733 1199 spin_unlock(&zone->lock);
1da177e4
LT
1200}
1201
dc4b0caf
MG
1202static void free_one_page(struct zone *zone,
1203 struct page *page, unsigned long pfn,
7aeb09f9 1204 unsigned int order,
ed0ae21d 1205 int migratetype)
1da177e4 1206{
d34b0733 1207 spin_lock(&zone->lock);
ad53f92e
JK
1208 if (unlikely(has_isolate_pageblock(zone) ||
1209 is_migrate_isolate(migratetype))) {
1210 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1211 }
dc4b0caf 1212 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1213 spin_unlock(&zone->lock);
48db57f8
NP
1214}
1215
1e8ce83c 1216static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1217 unsigned long zone, int nid)
1e8ce83c 1218{
d0dc12e8 1219 mm_zero_struct_page(page);
1e8ce83c 1220 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1221 init_page_count(page);
1222 page_mapcount_reset(page);
1223 page_cpupid_reset_last(page);
2813b9c0 1224 page_kasan_tag_reset(page);
1e8ce83c 1225
1e8ce83c
RH
1226 INIT_LIST_HEAD(&page->lru);
1227#ifdef WANT_PAGE_VIRTUAL
1228 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1229 if (!is_highmem_idx(zone))
1230 set_page_address(page, __va(pfn << PAGE_SHIFT));
1231#endif
1232}
1233
7e18adb4 1234#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1235static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1236{
1237 pg_data_t *pgdat;
1238 int nid, zid;
1239
1240 if (!early_page_uninitialised(pfn))
1241 return;
1242
1243 nid = early_pfn_to_nid(pfn);
1244 pgdat = NODE_DATA(nid);
1245
1246 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1247 struct zone *zone = &pgdat->node_zones[zid];
1248
1249 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1250 break;
1251 }
d0dc12e8 1252 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1253}
1254#else
1255static inline void init_reserved_page(unsigned long pfn)
1256{
1257}
1258#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1259
92923ca3
NZ
1260/*
1261 * Initialised pages do not have PageReserved set. This function is
1262 * called for each range allocated by the bootmem allocator and
1263 * marks the pages PageReserved. The remaining valid pages are later
1264 * sent to the buddy page allocator.
1265 */
4b50bcc7 1266void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1267{
1268 unsigned long start_pfn = PFN_DOWN(start);
1269 unsigned long end_pfn = PFN_UP(end);
1270
7e18adb4
MG
1271 for (; start_pfn < end_pfn; start_pfn++) {
1272 if (pfn_valid(start_pfn)) {
1273 struct page *page = pfn_to_page(start_pfn);
1274
1275 init_reserved_page(start_pfn);
1d798ca3
KS
1276
1277 /* Avoid false-positive PageTail() */
1278 INIT_LIST_HEAD(&page->lru);
1279
d483da5b
AD
1280 /*
1281 * no need for atomic set_bit because the struct
1282 * page is not visible yet so nobody should
1283 * access it yet.
1284 */
1285 __SetPageReserved(page);
7e18adb4
MG
1286 }
1287 }
92923ca3
NZ
1288}
1289
ec95f53a
KM
1290static void __free_pages_ok(struct page *page, unsigned int order)
1291{
d34b0733 1292 unsigned long flags;
95e34412 1293 int migratetype;
dc4b0caf 1294 unsigned long pfn = page_to_pfn(page);
ec95f53a 1295
e2769dbd 1296 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1297 return;
1298
cfc47a28 1299 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1300 local_irq_save(flags);
1301 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1302 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1303 local_irq_restore(flags);
1da177e4
LT
1304}
1305
949698a3 1306static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1307{
c3993076 1308 unsigned int nr_pages = 1 << order;
e2d0bd2b 1309 struct page *p = page;
c3993076 1310 unsigned int loop;
a226f6c8 1311
e2d0bd2b
YL
1312 prefetchw(p);
1313 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1314 prefetchw(p + 1);
c3993076
JW
1315 __ClearPageReserved(p);
1316 set_page_count(p, 0);
a226f6c8 1317 }
e2d0bd2b
YL
1318 __ClearPageReserved(p);
1319 set_page_count(p, 0);
c3993076 1320
9705bea5 1321 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1322 set_page_refcounted(page);
1323 __free_pages(page, order);
a226f6c8
DH
1324}
1325
75a592a4
MG
1326#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1327 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1328
75a592a4
MG
1329static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1330
1331int __meminit early_pfn_to_nid(unsigned long pfn)
1332{
7ace9917 1333 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1334 int nid;
1335
7ace9917 1336 spin_lock(&early_pfn_lock);
75a592a4 1337 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1338 if (nid < 0)
e4568d38 1339 nid = first_online_node;
7ace9917
MG
1340 spin_unlock(&early_pfn_lock);
1341
1342 return nid;
75a592a4
MG
1343}
1344#endif
1345
1346#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1347static inline bool __meminit __maybe_unused
1348meminit_pfn_in_nid(unsigned long pfn, int node,
1349 struct mminit_pfnnid_cache *state)
75a592a4
MG
1350{
1351 int nid;
1352
1353 nid = __early_pfn_to_nid(pfn, state);
1354 if (nid >= 0 && nid != node)
1355 return false;
1356 return true;
1357}
1358
1359/* Only safe to use early in boot when initialisation is single-threaded */
1360static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1361{
1362 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1363}
1364
1365#else
1366
1367static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1368{
1369 return true;
1370}
d73d3c9f
MK
1371static inline bool __meminit __maybe_unused
1372meminit_pfn_in_nid(unsigned long pfn, int node,
1373 struct mminit_pfnnid_cache *state)
75a592a4
MG
1374{
1375 return true;
1376}
1377#endif
1378
1379
7c2ee349 1380void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1381 unsigned int order)
1382{
1383 if (early_page_uninitialised(pfn))
1384 return;
949698a3 1385 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1386}
1387
7cf91a98
JK
1388/*
1389 * Check that the whole (or subset of) a pageblock given by the interval of
1390 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1391 * with the migration of free compaction scanner. The scanners then need to
1392 * use only pfn_valid_within() check for arches that allow holes within
1393 * pageblocks.
1394 *
1395 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1396 *
1397 * It's possible on some configurations to have a setup like node0 node1 node0
1398 * i.e. it's possible that all pages within a zones range of pages do not
1399 * belong to a single zone. We assume that a border between node0 and node1
1400 * can occur within a single pageblock, but not a node0 node1 node0
1401 * interleaving within a single pageblock. It is therefore sufficient to check
1402 * the first and last page of a pageblock and avoid checking each individual
1403 * page in a pageblock.
1404 */
1405struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1406 unsigned long end_pfn, struct zone *zone)
1407{
1408 struct page *start_page;
1409 struct page *end_page;
1410
1411 /* end_pfn is one past the range we are checking */
1412 end_pfn--;
1413
1414 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1415 return NULL;
1416
2d070eab
MH
1417 start_page = pfn_to_online_page(start_pfn);
1418 if (!start_page)
1419 return NULL;
7cf91a98
JK
1420
1421 if (page_zone(start_page) != zone)
1422 return NULL;
1423
1424 end_page = pfn_to_page(end_pfn);
1425
1426 /* This gives a shorter code than deriving page_zone(end_page) */
1427 if (page_zone_id(start_page) != page_zone_id(end_page))
1428 return NULL;
1429
1430 return start_page;
1431}
1432
1433void set_zone_contiguous(struct zone *zone)
1434{
1435 unsigned long block_start_pfn = zone->zone_start_pfn;
1436 unsigned long block_end_pfn;
1437
1438 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1439 for (; block_start_pfn < zone_end_pfn(zone);
1440 block_start_pfn = block_end_pfn,
1441 block_end_pfn += pageblock_nr_pages) {
1442
1443 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1444
1445 if (!__pageblock_pfn_to_page(block_start_pfn,
1446 block_end_pfn, zone))
1447 return;
1448 }
1449
1450 /* We confirm that there is no hole */
1451 zone->contiguous = true;
1452}
1453
1454void clear_zone_contiguous(struct zone *zone)
1455{
1456 zone->contiguous = false;
1457}
1458
7e18adb4 1459#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1460static void __init deferred_free_range(unsigned long pfn,
1461 unsigned long nr_pages)
a4de83dd 1462{
2f47a91f
PT
1463 struct page *page;
1464 unsigned long i;
a4de83dd 1465
2f47a91f 1466 if (!nr_pages)
a4de83dd
MG
1467 return;
1468
2f47a91f
PT
1469 page = pfn_to_page(pfn);
1470
a4de83dd 1471 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1472 if (nr_pages == pageblock_nr_pages &&
1473 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1474 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1475 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1476 return;
1477 }
1478
e780149b
XQ
1479 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1480 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1481 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1482 __free_pages_boot_core(page, 0);
e780149b 1483 }
a4de83dd
MG
1484}
1485
d3cd131d
NS
1486/* Completion tracking for deferred_init_memmap() threads */
1487static atomic_t pgdat_init_n_undone __initdata;
1488static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1489
1490static inline void __init pgdat_init_report_one_done(void)
1491{
1492 if (atomic_dec_and_test(&pgdat_init_n_undone))
1493 complete(&pgdat_init_all_done_comp);
1494}
0e1cc95b 1495
2f47a91f 1496/*
80b1f41c
PT
1497 * Returns true if page needs to be initialized or freed to buddy allocator.
1498 *
1499 * First we check if pfn is valid on architectures where it is possible to have
1500 * holes within pageblock_nr_pages. On systems where it is not possible, this
1501 * function is optimized out.
1502 *
1503 * Then, we check if a current large page is valid by only checking the validity
1504 * of the head pfn.
1505 *
1506 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1507 * within a node: a pfn is between start and end of a node, but does not belong
1508 * to this memory node.
2f47a91f 1509 */
80b1f41c
PT
1510static inline bool __init
1511deferred_pfn_valid(int nid, unsigned long pfn,
1512 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1513{
80b1f41c
PT
1514 if (!pfn_valid_within(pfn))
1515 return false;
1516 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1517 return false;
1518 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1519 return false;
1520 return true;
1521}
2f47a91f 1522
80b1f41c
PT
1523/*
1524 * Free pages to buddy allocator. Try to free aligned pages in
1525 * pageblock_nr_pages sizes.
1526 */
1527static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1528 unsigned long end_pfn)
1529{
1530 struct mminit_pfnnid_cache nid_init_state = { };
1531 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1532 unsigned long nr_free = 0;
2f47a91f 1533
80b1f41c
PT
1534 for (; pfn < end_pfn; pfn++) {
1535 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1536 deferred_free_range(pfn - nr_free, nr_free);
1537 nr_free = 0;
1538 } else if (!(pfn & nr_pgmask)) {
1539 deferred_free_range(pfn - nr_free, nr_free);
1540 nr_free = 1;
3a2d7fa8 1541 touch_nmi_watchdog();
80b1f41c
PT
1542 } else {
1543 nr_free++;
1544 }
1545 }
1546 /* Free the last block of pages to allocator */
1547 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1548}
1549
80b1f41c
PT
1550/*
1551 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1552 * by performing it only once every pageblock_nr_pages.
1553 * Return number of pages initialized.
1554 */
1555static unsigned long __init deferred_init_pages(int nid, int zid,
1556 unsigned long pfn,
1557 unsigned long end_pfn)
2f47a91f
PT
1558{
1559 struct mminit_pfnnid_cache nid_init_state = { };
1560 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1561 unsigned long nr_pages = 0;
2f47a91f 1562 struct page *page = NULL;
2f47a91f 1563
80b1f41c
PT
1564 for (; pfn < end_pfn; pfn++) {
1565 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1566 page = NULL;
2f47a91f 1567 continue;
80b1f41c 1568 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1569 page = pfn_to_page(pfn);
3a2d7fa8 1570 touch_nmi_watchdog();
80b1f41c
PT
1571 } else {
1572 page++;
2f47a91f 1573 }
d0dc12e8 1574 __init_single_page(page, pfn, zid, nid);
80b1f41c 1575 nr_pages++;
2f47a91f 1576 }
80b1f41c 1577 return (nr_pages);
2f47a91f
PT
1578}
1579
7e18adb4 1580/* Initialise remaining memory on a node */
0e1cc95b 1581static int __init deferred_init_memmap(void *data)
7e18adb4 1582{
0e1cc95b
MG
1583 pg_data_t *pgdat = data;
1584 int nid = pgdat->node_id;
7e18adb4
MG
1585 unsigned long start = jiffies;
1586 unsigned long nr_pages = 0;
3a2d7fa8 1587 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1588 phys_addr_t spa, epa;
1589 int zid;
7e18adb4 1590 struct zone *zone;
0e1cc95b 1591 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1592 u64 i;
7e18adb4 1593
3a2d7fa8
PT
1594 /* Bind memory initialisation thread to a local node if possible */
1595 if (!cpumask_empty(cpumask))
1596 set_cpus_allowed_ptr(current, cpumask);
1597
1598 pgdat_resize_lock(pgdat, &flags);
1599 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1600 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1601 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1602 pgdat_init_report_one_done();
0e1cc95b
MG
1603 return 0;
1604 }
1605
7e18adb4
MG
1606 /* Sanity check boundaries */
1607 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1608 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1609 pgdat->first_deferred_pfn = ULONG_MAX;
1610
1611 /* Only the highest zone is deferred so find it */
1612 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1613 zone = pgdat->node_zones + zid;
1614 if (first_init_pfn < zone_end_pfn(zone))
1615 break;
1616 }
2f47a91f 1617 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1618
80b1f41c
PT
1619 /*
1620 * Initialize and free pages. We do it in two loops: first we initialize
1621 * struct page, than free to buddy allocator, because while we are
1622 * freeing pages we can access pages that are ahead (computing buddy
1623 * page in __free_one_page()).
1624 */
1625 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1626 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1627 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1628 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1629 }
2f47a91f
PT
1630 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1631 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1632 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1633 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1634 }
3a2d7fa8 1635 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1636
1637 /* Sanity check that the next zone really is unpopulated */
1638 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1639
0e1cc95b 1640 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1641 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1642
1643 pgdat_init_report_one_done();
0e1cc95b
MG
1644 return 0;
1645}
c9e97a19 1646
c9e97a19
PT
1647/*
1648 * If this zone has deferred pages, try to grow it by initializing enough
1649 * deferred pages to satisfy the allocation specified by order, rounded up to
1650 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1651 * of SECTION_SIZE bytes by initializing struct pages in increments of
1652 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1653 *
1654 * Return true when zone was grown, otherwise return false. We return true even
1655 * when we grow less than requested, to let the caller decide if there are
1656 * enough pages to satisfy the allocation.
1657 *
1658 * Note: We use noinline because this function is needed only during boot, and
1659 * it is called from a __ref function _deferred_grow_zone. This way we are
1660 * making sure that it is not inlined into permanent text section.
1661 */
1662static noinline bool __init
1663deferred_grow_zone(struct zone *zone, unsigned int order)
1664{
1665 int zid = zone_idx(zone);
1666 int nid = zone_to_nid(zone);
1667 pg_data_t *pgdat = NODE_DATA(nid);
1668 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1669 unsigned long nr_pages = 0;
1670 unsigned long first_init_pfn, spfn, epfn, t, flags;
1671 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1672 phys_addr_t spa, epa;
1673 u64 i;
1674
1675 /* Only the last zone may have deferred pages */
1676 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1677 return false;
1678
1679 pgdat_resize_lock(pgdat, &flags);
1680
1681 /*
1682 * If deferred pages have been initialized while we were waiting for
1683 * the lock, return true, as the zone was grown. The caller will retry
1684 * this zone. We won't return to this function since the caller also
1685 * has this static branch.
1686 */
1687 if (!static_branch_unlikely(&deferred_pages)) {
1688 pgdat_resize_unlock(pgdat, &flags);
1689 return true;
1690 }
1691
1692 /*
1693 * If someone grew this zone while we were waiting for spinlock, return
1694 * true, as there might be enough pages already.
1695 */
1696 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1697 pgdat_resize_unlock(pgdat, &flags);
1698 return true;
1699 }
1700
1701 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1702
1703 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1704 pgdat_resize_unlock(pgdat, &flags);
1705 return false;
1706 }
1707
1708 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1709 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1710 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1711
1712 while (spfn < epfn && nr_pages < nr_pages_needed) {
1713 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1714 first_deferred_pfn = min(t, epfn);
1715 nr_pages += deferred_init_pages(nid, zid, spfn,
1716 first_deferred_pfn);
1717 spfn = first_deferred_pfn;
1718 }
1719
1720 if (nr_pages >= nr_pages_needed)
1721 break;
1722 }
1723
1724 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1725 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1726 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1727 deferred_free_pages(nid, zid, spfn, epfn);
1728
1729 if (first_deferred_pfn == epfn)
1730 break;
1731 }
1732 pgdat->first_deferred_pfn = first_deferred_pfn;
1733 pgdat_resize_unlock(pgdat, &flags);
1734
1735 return nr_pages > 0;
1736}
1737
1738/*
1739 * deferred_grow_zone() is __init, but it is called from
1740 * get_page_from_freelist() during early boot until deferred_pages permanently
1741 * disables this call. This is why we have refdata wrapper to avoid warning,
1742 * and to ensure that the function body gets unloaded.
1743 */
1744static bool __ref
1745_deferred_grow_zone(struct zone *zone, unsigned int order)
1746{
1747 return deferred_grow_zone(zone, order);
1748}
1749
7cf91a98 1750#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1751
1752void __init page_alloc_init_late(void)
1753{
7cf91a98
JK
1754 struct zone *zone;
1755
1756#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1757 int nid;
1758
d3cd131d
NS
1759 /* There will be num_node_state(N_MEMORY) threads */
1760 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1761 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1762 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1763 }
1764
1765 /* Block until all are initialised */
d3cd131d 1766 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1767
c9e97a19
PT
1768 /*
1769 * We initialized the rest of the deferred pages. Permanently disable
1770 * on-demand struct page initialization.
1771 */
1772 static_branch_disable(&deferred_pages);
1773
4248b0da
MG
1774 /* Reinit limits that are based on free pages after the kernel is up */
1775 files_maxfiles_init();
7cf91a98 1776#endif
3010f876
PT
1777#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1778 /* Discard memblock private memory */
1779 memblock_discard();
1780#endif
7cf91a98
JK
1781
1782 for_each_populated_zone(zone)
1783 set_zone_contiguous(zone);
7e18adb4 1784}
7e18adb4 1785
47118af0 1786#ifdef CONFIG_CMA
9cf510a5 1787/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1788void __init init_cma_reserved_pageblock(struct page *page)
1789{
1790 unsigned i = pageblock_nr_pages;
1791 struct page *p = page;
1792
1793 do {
1794 __ClearPageReserved(p);
1795 set_page_count(p, 0);
d883c6cf 1796 } while (++p, --i);
47118af0 1797
47118af0 1798 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1799
1800 if (pageblock_order >= MAX_ORDER) {
1801 i = pageblock_nr_pages;
1802 p = page;
1803 do {
1804 set_page_refcounted(p);
1805 __free_pages(p, MAX_ORDER - 1);
1806 p += MAX_ORDER_NR_PAGES;
1807 } while (i -= MAX_ORDER_NR_PAGES);
1808 } else {
1809 set_page_refcounted(page);
1810 __free_pages(page, pageblock_order);
1811 }
1812
3dcc0571 1813 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1814}
1815#endif
1da177e4
LT
1816
1817/*
1818 * The order of subdivision here is critical for the IO subsystem.
1819 * Please do not alter this order without good reasons and regression
1820 * testing. Specifically, as large blocks of memory are subdivided,
1821 * the order in which smaller blocks are delivered depends on the order
1822 * they're subdivided in this function. This is the primary factor
1823 * influencing the order in which pages are delivered to the IO
1824 * subsystem according to empirical testing, and this is also justified
1825 * by considering the behavior of a buddy system containing a single
1826 * large block of memory acted on by a series of small allocations.
1827 * This behavior is a critical factor in sglist merging's success.
1828 *
6d49e352 1829 * -- nyc
1da177e4 1830 */
085cc7d5 1831static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1832 int low, int high, struct free_area *area,
1833 int migratetype)
1da177e4
LT
1834{
1835 unsigned long size = 1 << high;
1836
1837 while (high > low) {
1838 area--;
1839 high--;
1840 size >>= 1;
309381fe 1841 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1842
acbc15a4
JK
1843 /*
1844 * Mark as guard pages (or page), that will allow to
1845 * merge back to allocator when buddy will be freed.
1846 * Corresponding page table entries will not be touched,
1847 * pages will stay not present in virtual address space
1848 */
1849 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1850 continue;
acbc15a4 1851
b2a0ac88 1852 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1853 area->nr_free++;
1854 set_page_order(&page[size], high);
1855 }
1da177e4
LT
1856}
1857
4e611801 1858static void check_new_page_bad(struct page *page)
1da177e4 1859{
4e611801
VB
1860 const char *bad_reason = NULL;
1861 unsigned long bad_flags = 0;
7bfec6f4 1862
53f9263b 1863 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1864 bad_reason = "nonzero mapcount";
1865 if (unlikely(page->mapping != NULL))
1866 bad_reason = "non-NULL mapping";
fe896d18 1867 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1868 bad_reason = "nonzero _count";
f4c18e6f
NH
1869 if (unlikely(page->flags & __PG_HWPOISON)) {
1870 bad_reason = "HWPoisoned (hardware-corrupted)";
1871 bad_flags = __PG_HWPOISON;
e570f56c
NH
1872 /* Don't complain about hwpoisoned pages */
1873 page_mapcount_reset(page); /* remove PageBuddy */
1874 return;
f4c18e6f 1875 }
f0b791a3
DH
1876 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1877 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1878 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1879 }
9edad6ea
JW
1880#ifdef CONFIG_MEMCG
1881 if (unlikely(page->mem_cgroup))
1882 bad_reason = "page still charged to cgroup";
1883#endif
4e611801
VB
1884 bad_page(page, bad_reason, bad_flags);
1885}
1886
1887/*
1888 * This page is about to be returned from the page allocator
1889 */
1890static inline int check_new_page(struct page *page)
1891{
1892 if (likely(page_expected_state(page,
1893 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1894 return 0;
1895
1896 check_new_page_bad(page);
1897 return 1;
2a7684a2
WF
1898}
1899
bd33ef36 1900static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1901{
1902 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1903 page_poisoning_enabled();
1414c7f4
LA
1904}
1905
479f854a
MG
1906#ifdef CONFIG_DEBUG_VM
1907static bool check_pcp_refill(struct page *page)
1908{
1909 return false;
1910}
1911
1912static bool check_new_pcp(struct page *page)
1913{
1914 return check_new_page(page);
1915}
1916#else
1917static bool check_pcp_refill(struct page *page)
1918{
1919 return check_new_page(page);
1920}
1921static bool check_new_pcp(struct page *page)
1922{
1923 return false;
1924}
1925#endif /* CONFIG_DEBUG_VM */
1926
1927static bool check_new_pages(struct page *page, unsigned int order)
1928{
1929 int i;
1930 for (i = 0; i < (1 << order); i++) {
1931 struct page *p = page + i;
1932
1933 if (unlikely(check_new_page(p)))
1934 return true;
1935 }
1936
1937 return false;
1938}
1939
46f24fd8
JK
1940inline void post_alloc_hook(struct page *page, unsigned int order,
1941 gfp_t gfp_flags)
1942{
1943 set_page_private(page, 0);
1944 set_page_refcounted(page);
1945
1946 arch_alloc_page(page, order);
1947 kernel_map_pages(page, 1 << order, 1);
1948 kernel_poison_pages(page, 1 << order, 1);
1949 kasan_alloc_pages(page, order);
1950 set_page_owner(page, order, gfp_flags);
1951}
1952
479f854a 1953static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1954 unsigned int alloc_flags)
2a7684a2
WF
1955{
1956 int i;
689bcebf 1957
46f24fd8 1958 post_alloc_hook(page, order, gfp_flags);
17cf4406 1959
bd33ef36 1960 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1961 for (i = 0; i < (1 << order); i++)
1962 clear_highpage(page + i);
17cf4406
NP
1963
1964 if (order && (gfp_flags & __GFP_COMP))
1965 prep_compound_page(page, order);
1966
75379191 1967 /*
2f064f34 1968 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1969 * allocate the page. The expectation is that the caller is taking
1970 * steps that will free more memory. The caller should avoid the page
1971 * being used for !PFMEMALLOC purposes.
1972 */
2f064f34
MH
1973 if (alloc_flags & ALLOC_NO_WATERMARKS)
1974 set_page_pfmemalloc(page);
1975 else
1976 clear_page_pfmemalloc(page);
1da177e4
LT
1977}
1978
56fd56b8
MG
1979/*
1980 * Go through the free lists for the given migratetype and remove
1981 * the smallest available page from the freelists
1982 */
85ccc8fa 1983static __always_inline
728ec980 1984struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1985 int migratetype)
1986{
1987 unsigned int current_order;
b8af2941 1988 struct free_area *area;
56fd56b8
MG
1989 struct page *page;
1990
1991 /* Find a page of the appropriate size in the preferred list */
1992 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1993 area = &(zone->free_area[current_order]);
a16601c5 1994 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1995 struct page, lru);
a16601c5
GT
1996 if (!page)
1997 continue;
56fd56b8
MG
1998 list_del(&page->lru);
1999 rmv_page_order(page);
2000 area->nr_free--;
56fd56b8 2001 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2002 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2003 return page;
2004 }
2005
2006 return NULL;
2007}
2008
2009
b2a0ac88
MG
2010/*
2011 * This array describes the order lists are fallen back to when
2012 * the free lists for the desirable migrate type are depleted
2013 */
47118af0 2014static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2015 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2016 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2017 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2018#ifdef CONFIG_CMA
974a786e 2019 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2020#endif
194159fb 2021#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2022 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2023#endif
b2a0ac88
MG
2024};
2025
dc67647b 2026#ifdef CONFIG_CMA
85ccc8fa 2027static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2028 unsigned int order)
2029{
2030 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2031}
2032#else
2033static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2034 unsigned int order) { return NULL; }
2035#endif
2036
c361be55
MG
2037/*
2038 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2039 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2040 * boundary. If alignment is required, use move_freepages_block()
2041 */
02aa0cdd 2042static int move_freepages(struct zone *zone,
b69a7288 2043 struct page *start_page, struct page *end_page,
02aa0cdd 2044 int migratetype, int *num_movable)
c361be55
MG
2045{
2046 struct page *page;
d00181b9 2047 unsigned int order;
d100313f 2048 int pages_moved = 0;
c361be55
MG
2049
2050#ifndef CONFIG_HOLES_IN_ZONE
2051 /*
2052 * page_zone is not safe to call in this context when
2053 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2054 * anyway as we check zone boundaries in move_freepages_block().
2055 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2056 * grouping pages by mobility
c361be55 2057 */
3e04040d
AB
2058 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2059 pfn_valid(page_to_pfn(end_page)) &&
2060 page_zone(start_page) != page_zone(end_page));
c361be55 2061#endif
c361be55
MG
2062 for (page = start_page; page <= end_page;) {
2063 if (!pfn_valid_within(page_to_pfn(page))) {
2064 page++;
2065 continue;
2066 }
2067
f073bdc5
AB
2068 /* Make sure we are not inadvertently changing nodes */
2069 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2070
c361be55 2071 if (!PageBuddy(page)) {
02aa0cdd
VB
2072 /*
2073 * We assume that pages that could be isolated for
2074 * migration are movable. But we don't actually try
2075 * isolating, as that would be expensive.
2076 */
2077 if (num_movable &&
2078 (PageLRU(page) || __PageMovable(page)))
2079 (*num_movable)++;
2080
c361be55
MG
2081 page++;
2082 continue;
2083 }
2084
2085 order = page_order(page);
84be48d8
KS
2086 list_move(&page->lru,
2087 &zone->free_area[order].free_list[migratetype]);
c361be55 2088 page += 1 << order;
d100313f 2089 pages_moved += 1 << order;
c361be55
MG
2090 }
2091
d100313f 2092 return pages_moved;
c361be55
MG
2093}
2094
ee6f509c 2095int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2096 int migratetype, int *num_movable)
c361be55
MG
2097{
2098 unsigned long start_pfn, end_pfn;
2099 struct page *start_page, *end_page;
2100
4a222127
DR
2101 if (num_movable)
2102 *num_movable = 0;
2103
c361be55 2104 start_pfn = page_to_pfn(page);
d9c23400 2105 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2106 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2107 end_page = start_page + pageblock_nr_pages - 1;
2108 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2109
2110 /* Do not cross zone boundaries */
108bcc96 2111 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2112 start_page = page;
108bcc96 2113 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2114 return 0;
2115
02aa0cdd
VB
2116 return move_freepages(zone, start_page, end_page, migratetype,
2117 num_movable);
c361be55
MG
2118}
2119
2f66a68f
MG
2120static void change_pageblock_range(struct page *pageblock_page,
2121 int start_order, int migratetype)
2122{
2123 int nr_pageblocks = 1 << (start_order - pageblock_order);
2124
2125 while (nr_pageblocks--) {
2126 set_pageblock_migratetype(pageblock_page, migratetype);
2127 pageblock_page += pageblock_nr_pages;
2128 }
2129}
2130
fef903ef 2131/*
9c0415eb
VB
2132 * When we are falling back to another migratetype during allocation, try to
2133 * steal extra free pages from the same pageblocks to satisfy further
2134 * allocations, instead of polluting multiple pageblocks.
2135 *
2136 * If we are stealing a relatively large buddy page, it is likely there will
2137 * be more free pages in the pageblock, so try to steal them all. For
2138 * reclaimable and unmovable allocations, we steal regardless of page size,
2139 * as fragmentation caused by those allocations polluting movable pageblocks
2140 * is worse than movable allocations stealing from unmovable and reclaimable
2141 * pageblocks.
fef903ef 2142 */
4eb7dce6
JK
2143static bool can_steal_fallback(unsigned int order, int start_mt)
2144{
2145 /*
2146 * Leaving this order check is intended, although there is
2147 * relaxed order check in next check. The reason is that
2148 * we can actually steal whole pageblock if this condition met,
2149 * but, below check doesn't guarantee it and that is just heuristic
2150 * so could be changed anytime.
2151 */
2152 if (order >= pageblock_order)
2153 return true;
2154
2155 if (order >= pageblock_order / 2 ||
2156 start_mt == MIGRATE_RECLAIMABLE ||
2157 start_mt == MIGRATE_UNMOVABLE ||
2158 page_group_by_mobility_disabled)
2159 return true;
2160
2161 return false;
2162}
2163
1c30844d
MG
2164static inline void boost_watermark(struct zone *zone)
2165{
2166 unsigned long max_boost;
2167
2168 if (!watermark_boost_factor)
2169 return;
2170
2171 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2172 watermark_boost_factor, 10000);
2173 max_boost = max(pageblock_nr_pages, max_boost);
2174
2175 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2176 max_boost);
2177}
2178
4eb7dce6
JK
2179/*
2180 * This function implements actual steal behaviour. If order is large enough,
2181 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2182 * pageblock to our migratetype and determine how many already-allocated pages
2183 * are there in the pageblock with a compatible migratetype. If at least half
2184 * of pages are free or compatible, we can change migratetype of the pageblock
2185 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2186 */
2187static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2188 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2189{
d00181b9 2190 unsigned int current_order = page_order(page);
3bc48f96 2191 struct free_area *area;
02aa0cdd
VB
2192 int free_pages, movable_pages, alike_pages;
2193 int old_block_type;
2194
2195 old_block_type = get_pageblock_migratetype(page);
fef903ef 2196
3bc48f96
VB
2197 /*
2198 * This can happen due to races and we want to prevent broken
2199 * highatomic accounting.
2200 */
02aa0cdd 2201 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2202 goto single_page;
2203
fef903ef
SB
2204 /* Take ownership for orders >= pageblock_order */
2205 if (current_order >= pageblock_order) {
2206 change_pageblock_range(page, current_order, start_type);
3bc48f96 2207 goto single_page;
fef903ef
SB
2208 }
2209
1c30844d
MG
2210 /*
2211 * Boost watermarks to increase reclaim pressure to reduce the
2212 * likelihood of future fallbacks. Wake kswapd now as the node
2213 * may be balanced overall and kswapd will not wake naturally.
2214 */
2215 boost_watermark(zone);
2216 if (alloc_flags & ALLOC_KSWAPD)
2217 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2218
3bc48f96
VB
2219 /* We are not allowed to try stealing from the whole block */
2220 if (!whole_block)
2221 goto single_page;
2222
02aa0cdd
VB
2223 free_pages = move_freepages_block(zone, page, start_type,
2224 &movable_pages);
2225 /*
2226 * Determine how many pages are compatible with our allocation.
2227 * For movable allocation, it's the number of movable pages which
2228 * we just obtained. For other types it's a bit more tricky.
2229 */
2230 if (start_type == MIGRATE_MOVABLE) {
2231 alike_pages = movable_pages;
2232 } else {
2233 /*
2234 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2235 * to MOVABLE pageblock, consider all non-movable pages as
2236 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2237 * vice versa, be conservative since we can't distinguish the
2238 * exact migratetype of non-movable pages.
2239 */
2240 if (old_block_type == MIGRATE_MOVABLE)
2241 alike_pages = pageblock_nr_pages
2242 - (free_pages + movable_pages);
2243 else
2244 alike_pages = 0;
2245 }
2246
3bc48f96 2247 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2248 if (!free_pages)
3bc48f96 2249 goto single_page;
fef903ef 2250
02aa0cdd
VB
2251 /*
2252 * If a sufficient number of pages in the block are either free or of
2253 * comparable migratability as our allocation, claim the whole block.
2254 */
2255 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2256 page_group_by_mobility_disabled)
2257 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2258
2259 return;
2260
2261single_page:
2262 area = &zone->free_area[current_order];
2263 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2264}
2265
2149cdae
JK
2266/*
2267 * Check whether there is a suitable fallback freepage with requested order.
2268 * If only_stealable is true, this function returns fallback_mt only if
2269 * we can steal other freepages all together. This would help to reduce
2270 * fragmentation due to mixed migratetype pages in one pageblock.
2271 */
2272int find_suitable_fallback(struct free_area *area, unsigned int order,
2273 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2274{
2275 int i;
2276 int fallback_mt;
2277
2278 if (area->nr_free == 0)
2279 return -1;
2280
2281 *can_steal = false;
2282 for (i = 0;; i++) {
2283 fallback_mt = fallbacks[migratetype][i];
974a786e 2284 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2285 break;
2286
2287 if (list_empty(&area->free_list[fallback_mt]))
2288 continue;
fef903ef 2289
4eb7dce6
JK
2290 if (can_steal_fallback(order, migratetype))
2291 *can_steal = true;
2292
2149cdae
JK
2293 if (!only_stealable)
2294 return fallback_mt;
2295
2296 if (*can_steal)
2297 return fallback_mt;
fef903ef 2298 }
4eb7dce6
JK
2299
2300 return -1;
fef903ef
SB
2301}
2302
0aaa29a5
MG
2303/*
2304 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2305 * there are no empty page blocks that contain a page with a suitable order
2306 */
2307static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2308 unsigned int alloc_order)
2309{
2310 int mt;
2311 unsigned long max_managed, flags;
2312
2313 /*
2314 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2315 * Check is race-prone but harmless.
2316 */
9705bea5 2317 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2318 if (zone->nr_reserved_highatomic >= max_managed)
2319 return;
2320
2321 spin_lock_irqsave(&zone->lock, flags);
2322
2323 /* Recheck the nr_reserved_highatomic limit under the lock */
2324 if (zone->nr_reserved_highatomic >= max_managed)
2325 goto out_unlock;
2326
2327 /* Yoink! */
2328 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2329 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2330 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2331 zone->nr_reserved_highatomic += pageblock_nr_pages;
2332 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2333 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2334 }
2335
2336out_unlock:
2337 spin_unlock_irqrestore(&zone->lock, flags);
2338}
2339
2340/*
2341 * Used when an allocation is about to fail under memory pressure. This
2342 * potentially hurts the reliability of high-order allocations when under
2343 * intense memory pressure but failed atomic allocations should be easier
2344 * to recover from than an OOM.
29fac03b
MK
2345 *
2346 * If @force is true, try to unreserve a pageblock even though highatomic
2347 * pageblock is exhausted.
0aaa29a5 2348 */
29fac03b
MK
2349static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2350 bool force)
0aaa29a5
MG
2351{
2352 struct zonelist *zonelist = ac->zonelist;
2353 unsigned long flags;
2354 struct zoneref *z;
2355 struct zone *zone;
2356 struct page *page;
2357 int order;
04c8716f 2358 bool ret;
0aaa29a5
MG
2359
2360 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2361 ac->nodemask) {
29fac03b
MK
2362 /*
2363 * Preserve at least one pageblock unless memory pressure
2364 * is really high.
2365 */
2366 if (!force && zone->nr_reserved_highatomic <=
2367 pageblock_nr_pages)
0aaa29a5
MG
2368 continue;
2369
2370 spin_lock_irqsave(&zone->lock, flags);
2371 for (order = 0; order < MAX_ORDER; order++) {
2372 struct free_area *area = &(zone->free_area[order]);
2373
a16601c5
GT
2374 page = list_first_entry_or_null(
2375 &area->free_list[MIGRATE_HIGHATOMIC],
2376 struct page, lru);
2377 if (!page)
0aaa29a5
MG
2378 continue;
2379
0aaa29a5 2380 /*
4855e4a7
MK
2381 * In page freeing path, migratetype change is racy so
2382 * we can counter several free pages in a pageblock
2383 * in this loop althoug we changed the pageblock type
2384 * from highatomic to ac->migratetype. So we should
2385 * adjust the count once.
0aaa29a5 2386 */
a6ffdc07 2387 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2388 /*
2389 * It should never happen but changes to
2390 * locking could inadvertently allow a per-cpu
2391 * drain to add pages to MIGRATE_HIGHATOMIC
2392 * while unreserving so be safe and watch for
2393 * underflows.
2394 */
2395 zone->nr_reserved_highatomic -= min(
2396 pageblock_nr_pages,
2397 zone->nr_reserved_highatomic);
2398 }
0aaa29a5
MG
2399
2400 /*
2401 * Convert to ac->migratetype and avoid the normal
2402 * pageblock stealing heuristics. Minimally, the caller
2403 * is doing the work and needs the pages. More
2404 * importantly, if the block was always converted to
2405 * MIGRATE_UNMOVABLE or another type then the number
2406 * of pageblocks that cannot be completely freed
2407 * may increase.
2408 */
2409 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2410 ret = move_freepages_block(zone, page, ac->migratetype,
2411 NULL);
29fac03b
MK
2412 if (ret) {
2413 spin_unlock_irqrestore(&zone->lock, flags);
2414 return ret;
2415 }
0aaa29a5
MG
2416 }
2417 spin_unlock_irqrestore(&zone->lock, flags);
2418 }
04c8716f
MK
2419
2420 return false;
0aaa29a5
MG
2421}
2422
3bc48f96
VB
2423/*
2424 * Try finding a free buddy page on the fallback list and put it on the free
2425 * list of requested migratetype, possibly along with other pages from the same
2426 * block, depending on fragmentation avoidance heuristics. Returns true if
2427 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2428 *
2429 * The use of signed ints for order and current_order is a deliberate
2430 * deviation from the rest of this file, to make the for loop
2431 * condition simpler.
3bc48f96 2432 */
85ccc8fa 2433static __always_inline bool
6bb15450
MG
2434__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2435 unsigned int alloc_flags)
b2a0ac88 2436{
b8af2941 2437 struct free_area *area;
b002529d 2438 int current_order;
6bb15450 2439 int min_order = order;
b2a0ac88 2440 struct page *page;
4eb7dce6
JK
2441 int fallback_mt;
2442 bool can_steal;
b2a0ac88 2443
6bb15450
MG
2444 /*
2445 * Do not steal pages from freelists belonging to other pageblocks
2446 * i.e. orders < pageblock_order. If there are no local zones free,
2447 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2448 */
2449 if (alloc_flags & ALLOC_NOFRAGMENT)
2450 min_order = pageblock_order;
2451
7a8f58f3
VB
2452 /*
2453 * Find the largest available free page in the other list. This roughly
2454 * approximates finding the pageblock with the most free pages, which
2455 * would be too costly to do exactly.
2456 */
6bb15450 2457 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2458 --current_order) {
4eb7dce6
JK
2459 area = &(zone->free_area[current_order]);
2460 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2461 start_migratetype, false, &can_steal);
4eb7dce6
JK
2462 if (fallback_mt == -1)
2463 continue;
b2a0ac88 2464
7a8f58f3
VB
2465 /*
2466 * We cannot steal all free pages from the pageblock and the
2467 * requested migratetype is movable. In that case it's better to
2468 * steal and split the smallest available page instead of the
2469 * largest available page, because even if the next movable
2470 * allocation falls back into a different pageblock than this
2471 * one, it won't cause permanent fragmentation.
2472 */
2473 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2474 && current_order > order)
2475 goto find_smallest;
b2a0ac88 2476
7a8f58f3
VB
2477 goto do_steal;
2478 }
e0fff1bd 2479
7a8f58f3 2480 return false;
e0fff1bd 2481
7a8f58f3
VB
2482find_smallest:
2483 for (current_order = order; current_order < MAX_ORDER;
2484 current_order++) {
2485 area = &(zone->free_area[current_order]);
2486 fallback_mt = find_suitable_fallback(area, current_order,
2487 start_migratetype, false, &can_steal);
2488 if (fallback_mt != -1)
2489 break;
b2a0ac88
MG
2490 }
2491
7a8f58f3
VB
2492 /*
2493 * This should not happen - we already found a suitable fallback
2494 * when looking for the largest page.
2495 */
2496 VM_BUG_ON(current_order == MAX_ORDER);
2497
2498do_steal:
2499 page = list_first_entry(&area->free_list[fallback_mt],
2500 struct page, lru);
2501
1c30844d
MG
2502 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2503 can_steal);
7a8f58f3
VB
2504
2505 trace_mm_page_alloc_extfrag(page, order, current_order,
2506 start_migratetype, fallback_mt);
2507
2508 return true;
2509
b2a0ac88
MG
2510}
2511
56fd56b8 2512/*
1da177e4
LT
2513 * Do the hard work of removing an element from the buddy allocator.
2514 * Call me with the zone->lock already held.
2515 */
85ccc8fa 2516static __always_inline struct page *
6bb15450
MG
2517__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2518 unsigned int alloc_flags)
1da177e4 2519{
1da177e4
LT
2520 struct page *page;
2521
3bc48f96 2522retry:
56fd56b8 2523 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2524 if (unlikely(!page)) {
dc67647b
JK
2525 if (migratetype == MIGRATE_MOVABLE)
2526 page = __rmqueue_cma_fallback(zone, order);
2527
6bb15450
MG
2528 if (!page && __rmqueue_fallback(zone, order, migratetype,
2529 alloc_flags))
3bc48f96 2530 goto retry;
728ec980
MG
2531 }
2532
0d3d062a 2533 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2534 return page;
1da177e4
LT
2535}
2536
5f63b720 2537/*
1da177e4
LT
2538 * Obtain a specified number of elements from the buddy allocator, all under
2539 * a single hold of the lock, for efficiency. Add them to the supplied list.
2540 * Returns the number of new pages which were placed at *list.
2541 */
5f63b720 2542static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2543 unsigned long count, struct list_head *list,
6bb15450 2544 int migratetype, unsigned int alloc_flags)
1da177e4 2545{
a6de734b 2546 int i, alloced = 0;
5f63b720 2547
d34b0733 2548 spin_lock(&zone->lock);
1da177e4 2549 for (i = 0; i < count; ++i) {
6bb15450
MG
2550 struct page *page = __rmqueue(zone, order, migratetype,
2551 alloc_flags);
085cc7d5 2552 if (unlikely(page == NULL))
1da177e4 2553 break;
81eabcbe 2554
479f854a
MG
2555 if (unlikely(check_pcp_refill(page)))
2556 continue;
2557
81eabcbe 2558 /*
0fac3ba5
VB
2559 * Split buddy pages returned by expand() are received here in
2560 * physical page order. The page is added to the tail of
2561 * caller's list. From the callers perspective, the linked list
2562 * is ordered by page number under some conditions. This is
2563 * useful for IO devices that can forward direction from the
2564 * head, thus also in the physical page order. This is useful
2565 * for IO devices that can merge IO requests if the physical
2566 * pages are ordered properly.
81eabcbe 2567 */
0fac3ba5 2568 list_add_tail(&page->lru, list);
a6de734b 2569 alloced++;
bb14c2c7 2570 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2571 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2572 -(1 << order));
1da177e4 2573 }
a6de734b
MG
2574
2575 /*
2576 * i pages were removed from the buddy list even if some leak due
2577 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2578 * on i. Do not confuse with 'alloced' which is the number of
2579 * pages added to the pcp list.
2580 */
f2260e6b 2581 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2582 spin_unlock(&zone->lock);
a6de734b 2583 return alloced;
1da177e4
LT
2584}
2585
4ae7c039 2586#ifdef CONFIG_NUMA
8fce4d8e 2587/*
4037d452
CL
2588 * Called from the vmstat counter updater to drain pagesets of this
2589 * currently executing processor on remote nodes after they have
2590 * expired.
2591 *
879336c3
CL
2592 * Note that this function must be called with the thread pinned to
2593 * a single processor.
8fce4d8e 2594 */
4037d452 2595void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2596{
4ae7c039 2597 unsigned long flags;
7be12fc9 2598 int to_drain, batch;
4ae7c039 2599
4037d452 2600 local_irq_save(flags);
4db0c3c2 2601 batch = READ_ONCE(pcp->batch);
7be12fc9 2602 to_drain = min(pcp->count, batch);
77ba9062 2603 if (to_drain > 0)
2a13515c 2604 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2605 local_irq_restore(flags);
4ae7c039
CL
2606}
2607#endif
2608
9f8f2172 2609/*
93481ff0 2610 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2611 *
2612 * The processor must either be the current processor and the
2613 * thread pinned to the current processor or a processor that
2614 * is not online.
2615 */
93481ff0 2616static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2617{
c54ad30c 2618 unsigned long flags;
93481ff0
VB
2619 struct per_cpu_pageset *pset;
2620 struct per_cpu_pages *pcp;
1da177e4 2621
93481ff0
VB
2622 local_irq_save(flags);
2623 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2624
93481ff0 2625 pcp = &pset->pcp;
77ba9062 2626 if (pcp->count)
93481ff0 2627 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2628 local_irq_restore(flags);
2629}
3dfa5721 2630
93481ff0
VB
2631/*
2632 * Drain pcplists of all zones on the indicated processor.
2633 *
2634 * The processor must either be the current processor and the
2635 * thread pinned to the current processor or a processor that
2636 * is not online.
2637 */
2638static void drain_pages(unsigned int cpu)
2639{
2640 struct zone *zone;
2641
2642 for_each_populated_zone(zone) {
2643 drain_pages_zone(cpu, zone);
1da177e4
LT
2644 }
2645}
1da177e4 2646
9f8f2172
CL
2647/*
2648 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2649 *
2650 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2651 * the single zone's pages.
9f8f2172 2652 */
93481ff0 2653void drain_local_pages(struct zone *zone)
9f8f2172 2654{
93481ff0
VB
2655 int cpu = smp_processor_id();
2656
2657 if (zone)
2658 drain_pages_zone(cpu, zone);
2659 else
2660 drain_pages(cpu);
9f8f2172
CL
2661}
2662
0ccce3b9
MG
2663static void drain_local_pages_wq(struct work_struct *work)
2664{
d9367bd0
WY
2665 struct pcpu_drain *drain;
2666
2667 drain = container_of(work, struct pcpu_drain, work);
2668
a459eeb7
MH
2669 /*
2670 * drain_all_pages doesn't use proper cpu hotplug protection so
2671 * we can race with cpu offline when the WQ can move this from
2672 * a cpu pinned worker to an unbound one. We can operate on a different
2673 * cpu which is allright but we also have to make sure to not move to
2674 * a different one.
2675 */
2676 preempt_disable();
d9367bd0 2677 drain_local_pages(drain->zone);
a459eeb7 2678 preempt_enable();
0ccce3b9
MG
2679}
2680
9f8f2172 2681/*
74046494
GBY
2682 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2683 *
93481ff0
VB
2684 * When zone parameter is non-NULL, spill just the single zone's pages.
2685 *
0ccce3b9 2686 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2687 */
93481ff0 2688void drain_all_pages(struct zone *zone)
9f8f2172 2689{
74046494 2690 int cpu;
74046494
GBY
2691
2692 /*
2693 * Allocate in the BSS so we wont require allocation in
2694 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2695 */
2696 static cpumask_t cpus_with_pcps;
2697
ce612879
MH
2698 /*
2699 * Make sure nobody triggers this path before mm_percpu_wq is fully
2700 * initialized.
2701 */
2702 if (WARN_ON_ONCE(!mm_percpu_wq))
2703 return;
2704
bd233f53
MG
2705 /*
2706 * Do not drain if one is already in progress unless it's specific to
2707 * a zone. Such callers are primarily CMA and memory hotplug and need
2708 * the drain to be complete when the call returns.
2709 */
2710 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2711 if (!zone)
2712 return;
2713 mutex_lock(&pcpu_drain_mutex);
2714 }
0ccce3b9 2715
74046494
GBY
2716 /*
2717 * We don't care about racing with CPU hotplug event
2718 * as offline notification will cause the notified
2719 * cpu to drain that CPU pcps and on_each_cpu_mask
2720 * disables preemption as part of its processing
2721 */
2722 for_each_online_cpu(cpu) {
93481ff0
VB
2723 struct per_cpu_pageset *pcp;
2724 struct zone *z;
74046494 2725 bool has_pcps = false;
93481ff0
VB
2726
2727 if (zone) {
74046494 2728 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2729 if (pcp->pcp.count)
74046494 2730 has_pcps = true;
93481ff0
VB
2731 } else {
2732 for_each_populated_zone(z) {
2733 pcp = per_cpu_ptr(z->pageset, cpu);
2734 if (pcp->pcp.count) {
2735 has_pcps = true;
2736 break;
2737 }
74046494
GBY
2738 }
2739 }
93481ff0 2740
74046494
GBY
2741 if (has_pcps)
2742 cpumask_set_cpu(cpu, &cpus_with_pcps);
2743 else
2744 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2745 }
0ccce3b9 2746
bd233f53 2747 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2748 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2749
2750 drain->zone = zone;
2751 INIT_WORK(&drain->work, drain_local_pages_wq);
2752 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2753 }
bd233f53 2754 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2755 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2756
2757 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2758}
2759
296699de 2760#ifdef CONFIG_HIBERNATION
1da177e4 2761
556b969a
CY
2762/*
2763 * Touch the watchdog for every WD_PAGE_COUNT pages.
2764 */
2765#define WD_PAGE_COUNT (128*1024)
2766
1da177e4
LT
2767void mark_free_pages(struct zone *zone)
2768{
556b969a 2769 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2770 unsigned long flags;
7aeb09f9 2771 unsigned int order, t;
86760a2c 2772 struct page *page;
1da177e4 2773
8080fc03 2774 if (zone_is_empty(zone))
1da177e4
LT
2775 return;
2776
2777 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2778
108bcc96 2779 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2780 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2781 if (pfn_valid(pfn)) {
86760a2c 2782 page = pfn_to_page(pfn);
ba6b0979 2783
556b969a
CY
2784 if (!--page_count) {
2785 touch_nmi_watchdog();
2786 page_count = WD_PAGE_COUNT;
2787 }
2788
ba6b0979
JK
2789 if (page_zone(page) != zone)
2790 continue;
2791
7be98234
RW
2792 if (!swsusp_page_is_forbidden(page))
2793 swsusp_unset_page_free(page);
f623f0db 2794 }
1da177e4 2795
b2a0ac88 2796 for_each_migratetype_order(order, t) {
86760a2c
GT
2797 list_for_each_entry(page,
2798 &zone->free_area[order].free_list[t], lru) {
f623f0db 2799 unsigned long i;
1da177e4 2800
86760a2c 2801 pfn = page_to_pfn(page);
556b969a
CY
2802 for (i = 0; i < (1UL << order); i++) {
2803 if (!--page_count) {
2804 touch_nmi_watchdog();
2805 page_count = WD_PAGE_COUNT;
2806 }
7be98234 2807 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2808 }
f623f0db 2809 }
b2a0ac88 2810 }
1da177e4
LT
2811 spin_unlock_irqrestore(&zone->lock, flags);
2812}
e2c55dc8 2813#endif /* CONFIG_PM */
1da177e4 2814
2d4894b5 2815static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2816{
5f8dcc21 2817 int migratetype;
1da177e4 2818
4db7548c 2819 if (!free_pcp_prepare(page))
9cca35d4 2820 return false;
689bcebf 2821
dc4b0caf 2822 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2823 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2824 return true;
2825}
2826
2d4894b5 2827static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2828{
2829 struct zone *zone = page_zone(page);
2830 struct per_cpu_pages *pcp;
2831 int migratetype;
2832
2833 migratetype = get_pcppage_migratetype(page);
d34b0733 2834 __count_vm_event(PGFREE);
da456f14 2835
5f8dcc21
MG
2836 /*
2837 * We only track unmovable, reclaimable and movable on pcp lists.
2838 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2839 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2840 * areas back if necessary. Otherwise, we may have to free
2841 * excessively into the page allocator
2842 */
2843 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2844 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2845 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2846 return;
5f8dcc21
MG
2847 }
2848 migratetype = MIGRATE_MOVABLE;
2849 }
2850
99dcc3e5 2851 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2852 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2853 pcp->count++;
48db57f8 2854 if (pcp->count >= pcp->high) {
4db0c3c2 2855 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2856 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2857 }
9cca35d4 2858}
5f8dcc21 2859
9cca35d4
MG
2860/*
2861 * Free a 0-order page
9cca35d4 2862 */
2d4894b5 2863void free_unref_page(struct page *page)
9cca35d4
MG
2864{
2865 unsigned long flags;
2866 unsigned long pfn = page_to_pfn(page);
2867
2d4894b5 2868 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2869 return;
2870
2871 local_irq_save(flags);
2d4894b5 2872 free_unref_page_commit(page, pfn);
d34b0733 2873 local_irq_restore(flags);
1da177e4
LT
2874}
2875
cc59850e
KK
2876/*
2877 * Free a list of 0-order pages
2878 */
2d4894b5 2879void free_unref_page_list(struct list_head *list)
cc59850e
KK
2880{
2881 struct page *page, *next;
9cca35d4 2882 unsigned long flags, pfn;
c24ad77d 2883 int batch_count = 0;
9cca35d4
MG
2884
2885 /* Prepare pages for freeing */
2886 list_for_each_entry_safe(page, next, list, lru) {
2887 pfn = page_to_pfn(page);
2d4894b5 2888 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2889 list_del(&page->lru);
2890 set_page_private(page, pfn);
2891 }
cc59850e 2892
9cca35d4 2893 local_irq_save(flags);
cc59850e 2894 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2895 unsigned long pfn = page_private(page);
2896
2897 set_page_private(page, 0);
2d4894b5
MG
2898 trace_mm_page_free_batched(page);
2899 free_unref_page_commit(page, pfn);
c24ad77d
LS
2900
2901 /*
2902 * Guard against excessive IRQ disabled times when we get
2903 * a large list of pages to free.
2904 */
2905 if (++batch_count == SWAP_CLUSTER_MAX) {
2906 local_irq_restore(flags);
2907 batch_count = 0;
2908 local_irq_save(flags);
2909 }
cc59850e 2910 }
9cca35d4 2911 local_irq_restore(flags);
cc59850e
KK
2912}
2913
8dfcc9ba
NP
2914/*
2915 * split_page takes a non-compound higher-order page, and splits it into
2916 * n (1<<order) sub-pages: page[0..n]
2917 * Each sub-page must be freed individually.
2918 *
2919 * Note: this is probably too low level an operation for use in drivers.
2920 * Please consult with lkml before using this in your driver.
2921 */
2922void split_page(struct page *page, unsigned int order)
2923{
2924 int i;
2925
309381fe
SL
2926 VM_BUG_ON_PAGE(PageCompound(page), page);
2927 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2928
a9627bc5 2929 for (i = 1; i < (1 << order); i++)
7835e98b 2930 set_page_refcounted(page + i);
a9627bc5 2931 split_page_owner(page, order);
8dfcc9ba 2932}
5853ff23 2933EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2934
3c605096 2935int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2936{
748446bb
MG
2937 unsigned long watermark;
2938 struct zone *zone;
2139cbe6 2939 int mt;
748446bb
MG
2940
2941 BUG_ON(!PageBuddy(page));
2942
2943 zone = page_zone(page);
2e30abd1 2944 mt = get_pageblock_migratetype(page);
748446bb 2945
194159fb 2946 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2947 /*
2948 * Obey watermarks as if the page was being allocated. We can
2949 * emulate a high-order watermark check with a raised order-0
2950 * watermark, because we already know our high-order page
2951 * exists.
2952 */
2953 watermark = min_wmark_pages(zone) + (1UL << order);
d883c6cf 2954 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2955 return 0;
2956
8fb74b9f 2957 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2958 }
748446bb
MG
2959
2960 /* Remove page from free list */
2961 list_del(&page->lru);
2962 zone->free_area[order].nr_free--;
2963 rmv_page_order(page);
2139cbe6 2964
400bc7fd 2965 /*
2966 * Set the pageblock if the isolated page is at least half of a
2967 * pageblock
2968 */
748446bb
MG
2969 if (order >= pageblock_order - 1) {
2970 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2971 for (; page < endpage; page += pageblock_nr_pages) {
2972 int mt = get_pageblock_migratetype(page);
88ed365e 2973 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2974 && !is_migrate_highatomic(mt))
47118af0
MN
2975 set_pageblock_migratetype(page,
2976 MIGRATE_MOVABLE);
2977 }
748446bb
MG
2978 }
2979
f3a14ced 2980
8fb74b9f 2981 return 1UL << order;
1fb3f8ca
MG
2982}
2983
060e7417
MG
2984/*
2985 * Update NUMA hit/miss statistics
2986 *
2987 * Must be called with interrupts disabled.
060e7417 2988 */
41b6167e 2989static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2990{
2991#ifdef CONFIG_NUMA
3a321d2a 2992 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2993
4518085e
KW
2994 /* skip numa counters update if numa stats is disabled */
2995 if (!static_branch_likely(&vm_numa_stat_key))
2996 return;
2997
c1093b74 2998 if (zone_to_nid(z) != numa_node_id())
060e7417 2999 local_stat = NUMA_OTHER;
060e7417 3000
c1093b74 3001 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3002 __inc_numa_state(z, NUMA_HIT);
2df26639 3003 else {
3a321d2a
KW
3004 __inc_numa_state(z, NUMA_MISS);
3005 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3006 }
3a321d2a 3007 __inc_numa_state(z, local_stat);
060e7417
MG
3008#endif
3009}
3010
066b2393
MG
3011/* Remove page from the per-cpu list, caller must protect the list */
3012static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3013 unsigned int alloc_flags,
453f85d4 3014 struct per_cpu_pages *pcp,
066b2393
MG
3015 struct list_head *list)
3016{
3017 struct page *page;
3018
3019 do {
3020 if (list_empty(list)) {
3021 pcp->count += rmqueue_bulk(zone, 0,
3022 pcp->batch, list,
6bb15450 3023 migratetype, alloc_flags);
066b2393
MG
3024 if (unlikely(list_empty(list)))
3025 return NULL;
3026 }
3027
453f85d4 3028 page = list_first_entry(list, struct page, lru);
066b2393
MG
3029 list_del(&page->lru);
3030 pcp->count--;
3031 } while (check_new_pcp(page));
3032
3033 return page;
3034}
3035
3036/* Lock and remove page from the per-cpu list */
3037static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3038 struct zone *zone, unsigned int order,
6bb15450
MG
3039 gfp_t gfp_flags, int migratetype,
3040 unsigned int alloc_flags)
066b2393
MG
3041{
3042 struct per_cpu_pages *pcp;
3043 struct list_head *list;
066b2393 3044 struct page *page;
d34b0733 3045 unsigned long flags;
066b2393 3046
d34b0733 3047 local_irq_save(flags);
066b2393
MG
3048 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3049 list = &pcp->lists[migratetype];
6bb15450 3050 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393
MG
3051 if (page) {
3052 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3053 zone_statistics(preferred_zone, zone);
3054 }
d34b0733 3055 local_irq_restore(flags);
066b2393
MG
3056 return page;
3057}
3058
1da177e4 3059/*
75379191 3060 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3061 */
0a15c3e9 3062static inline
066b2393 3063struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3064 struct zone *zone, unsigned int order,
c603844b
MG
3065 gfp_t gfp_flags, unsigned int alloc_flags,
3066 int migratetype)
1da177e4
LT
3067{
3068 unsigned long flags;
689bcebf 3069 struct page *page;
1da177e4 3070
d34b0733 3071 if (likely(order == 0)) {
066b2393 3072 page = rmqueue_pcplist(preferred_zone, zone, order,
6bb15450 3073 gfp_flags, migratetype, alloc_flags);
066b2393
MG
3074 goto out;
3075 }
83b9355b 3076
066b2393
MG
3077 /*
3078 * We most definitely don't want callers attempting to
3079 * allocate greater than order-1 page units with __GFP_NOFAIL.
3080 */
3081 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3082 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3083
066b2393
MG
3084 do {
3085 page = NULL;
3086 if (alloc_flags & ALLOC_HARDER) {
3087 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3088 if (page)
3089 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3090 }
a74609fa 3091 if (!page)
6bb15450 3092 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3093 } while (page && check_new_pages(page, order));
3094 spin_unlock(&zone->lock);
3095 if (!page)
3096 goto failed;
3097 __mod_zone_freepage_state(zone, -(1 << order),
3098 get_pcppage_migratetype(page));
1da177e4 3099
16709d1d 3100 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3101 zone_statistics(preferred_zone, zone);
a74609fa 3102 local_irq_restore(flags);
1da177e4 3103
066b2393
MG
3104out:
3105 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3106 return page;
a74609fa
NP
3107
3108failed:
3109 local_irq_restore(flags);
a74609fa 3110 return NULL;
1da177e4
LT
3111}
3112
933e312e
AM
3113#ifdef CONFIG_FAIL_PAGE_ALLOC
3114
b2588c4b 3115static struct {
933e312e
AM
3116 struct fault_attr attr;
3117
621a5f7a 3118 bool ignore_gfp_highmem;
71baba4b 3119 bool ignore_gfp_reclaim;
54114994 3120 u32 min_order;
933e312e
AM
3121} fail_page_alloc = {
3122 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3123 .ignore_gfp_reclaim = true,
621a5f7a 3124 .ignore_gfp_highmem = true,
54114994 3125 .min_order = 1,
933e312e
AM
3126};
3127
3128static int __init setup_fail_page_alloc(char *str)
3129{
3130 return setup_fault_attr(&fail_page_alloc.attr, str);
3131}
3132__setup("fail_page_alloc=", setup_fail_page_alloc);
3133
af3b8544 3134static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3135{
54114994 3136 if (order < fail_page_alloc.min_order)
deaf386e 3137 return false;
933e312e 3138 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3139 return false;
933e312e 3140 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3141 return false;
71baba4b
MG
3142 if (fail_page_alloc.ignore_gfp_reclaim &&
3143 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3144 return false;
933e312e
AM
3145
3146 return should_fail(&fail_page_alloc.attr, 1 << order);
3147}
3148
3149#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3150
3151static int __init fail_page_alloc_debugfs(void)
3152{
0825a6f9 3153 umode_t mode = S_IFREG | 0600;
933e312e 3154 struct dentry *dir;
933e312e 3155
dd48c085
AM
3156 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3157 &fail_page_alloc.attr);
3158 if (IS_ERR(dir))
3159 return PTR_ERR(dir);
933e312e 3160
b2588c4b 3161 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 3162 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
3163 goto fail;
3164 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3165 &fail_page_alloc.ignore_gfp_highmem))
3166 goto fail;
3167 if (!debugfs_create_u32("min-order", mode, dir,
3168 &fail_page_alloc.min_order))
3169 goto fail;
3170
3171 return 0;
3172fail:
dd48c085 3173 debugfs_remove_recursive(dir);
933e312e 3174
b2588c4b 3175 return -ENOMEM;
933e312e
AM
3176}
3177
3178late_initcall(fail_page_alloc_debugfs);
3179
3180#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3181
3182#else /* CONFIG_FAIL_PAGE_ALLOC */
3183
af3b8544 3184static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3185{
deaf386e 3186 return false;
933e312e
AM
3187}
3188
3189#endif /* CONFIG_FAIL_PAGE_ALLOC */
3190
af3b8544
BP
3191static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3192{
3193 return __should_fail_alloc_page(gfp_mask, order);
3194}
3195ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3196
1da177e4 3197/*
97a16fc8
MG
3198 * Return true if free base pages are above 'mark'. For high-order checks it
3199 * will return true of the order-0 watermark is reached and there is at least
3200 * one free page of a suitable size. Checking now avoids taking the zone lock
3201 * to check in the allocation paths if no pages are free.
1da177e4 3202 */
86a294a8
MH
3203bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3204 int classzone_idx, unsigned int alloc_flags,
3205 long free_pages)
1da177e4 3206{
d23ad423 3207 long min = mark;
1da177e4 3208 int o;
cd04ae1e 3209 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3210
0aaa29a5 3211 /* free_pages may go negative - that's OK */
df0a6daa 3212 free_pages -= (1 << order) - 1;
0aaa29a5 3213
7fb1d9fc 3214 if (alloc_flags & ALLOC_HIGH)
1da177e4 3215 min -= min / 2;
0aaa29a5
MG
3216
3217 /*
3218 * If the caller does not have rights to ALLOC_HARDER then subtract
3219 * the high-atomic reserves. This will over-estimate the size of the
3220 * atomic reserve but it avoids a search.
3221 */
cd04ae1e 3222 if (likely(!alloc_harder)) {
0aaa29a5 3223 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3224 } else {
3225 /*
3226 * OOM victims can try even harder than normal ALLOC_HARDER
3227 * users on the grounds that it's definitely going to be in
3228 * the exit path shortly and free memory. Any allocation it
3229 * makes during the free path will be small and short-lived.
3230 */
3231 if (alloc_flags & ALLOC_OOM)
3232 min -= min / 2;
3233 else
3234 min -= min / 4;
3235 }
3236
e2b19197 3237
d883c6cf
JK
3238#ifdef CONFIG_CMA
3239 /* If allocation can't use CMA areas don't use free CMA pages */
3240 if (!(alloc_flags & ALLOC_CMA))
3241 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3242#endif
3243
97a16fc8
MG
3244 /*
3245 * Check watermarks for an order-0 allocation request. If these
3246 * are not met, then a high-order request also cannot go ahead
3247 * even if a suitable page happened to be free.
3248 */
3249 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3250 return false;
1da177e4 3251
97a16fc8
MG
3252 /* If this is an order-0 request then the watermark is fine */
3253 if (!order)
3254 return true;
3255
3256 /* For a high-order request, check at least one suitable page is free */
3257 for (o = order; o < MAX_ORDER; o++) {
3258 struct free_area *area = &z->free_area[o];
3259 int mt;
3260
3261 if (!area->nr_free)
3262 continue;
3263
97a16fc8
MG
3264 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3265 if (!list_empty(&area->free_list[mt]))
3266 return true;
3267 }
3268
3269#ifdef CONFIG_CMA
d883c6cf
JK
3270 if ((alloc_flags & ALLOC_CMA) &&
3271 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3272 return true;
d883c6cf 3273 }
97a16fc8 3274#endif
b050e376
VB
3275 if (alloc_harder &&
3276 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3277 return true;
1da177e4 3278 }
97a16fc8 3279 return false;
88f5acf8
MG
3280}
3281
7aeb09f9 3282bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3283 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3284{
3285 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3286 zone_page_state(z, NR_FREE_PAGES));
3287}
3288
48ee5f36
MG
3289static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3290 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3291{
3292 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3293 long cma_pages = 0;
3294
3295#ifdef CONFIG_CMA
3296 /* If allocation can't use CMA areas don't use free CMA pages */
3297 if (!(alloc_flags & ALLOC_CMA))
3298 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3299#endif
48ee5f36
MG
3300
3301 /*
3302 * Fast check for order-0 only. If this fails then the reserves
3303 * need to be calculated. There is a corner case where the check
3304 * passes but only the high-order atomic reserve are free. If
3305 * the caller is !atomic then it'll uselessly search the free
3306 * list. That corner case is then slower but it is harmless.
3307 */
d883c6cf 3308 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3309 return true;
3310
3311 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3312 free_pages);
3313}
3314
7aeb09f9 3315bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3316 unsigned long mark, int classzone_idx)
88f5acf8
MG
3317{
3318 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3319
3320 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3321 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3322
e2b19197 3323 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3324 free_pages);
1da177e4
LT
3325}
3326
9276b1bc 3327#ifdef CONFIG_NUMA
957f822a
DR
3328static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3329{
e02dc017 3330 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3331 RECLAIM_DISTANCE;
957f822a 3332}
9276b1bc 3333#else /* CONFIG_NUMA */
957f822a
DR
3334static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3335{
3336 return true;
3337}
9276b1bc
PJ
3338#endif /* CONFIG_NUMA */
3339
6bb15450
MG
3340/*
3341 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3342 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3343 * premature use of a lower zone may cause lowmem pressure problems that
3344 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3345 * probably too small. It only makes sense to spread allocations to avoid
3346 * fragmentation between the Normal and DMA32 zones.
3347 */
3348static inline unsigned int
0a79cdad 3349alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3350{
0a79cdad
MG
3351 unsigned int alloc_flags = 0;
3352
3353 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3354 alloc_flags |= ALLOC_KSWAPD;
3355
3356#ifdef CONFIG_ZONE_DMA32
6bb15450 3357 if (zone_idx(zone) != ZONE_NORMAL)
0a79cdad 3358 goto out;
6bb15450
MG
3359
3360 /*
3361 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3362 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3363 * on UMA that if Normal is populated then so is DMA32.
3364 */
3365 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3366 if (nr_online_nodes > 1 && !populated_zone(--zone))
0a79cdad 3367 goto out;
6bb15450 3368
0a79cdad
MG
3369out:
3370#endif /* CONFIG_ZONE_DMA32 */
3371 return alloc_flags;
6bb15450 3372}
6bb15450 3373
7fb1d9fc 3374/*
0798e519 3375 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3376 * a page.
3377 */
3378static struct page *
a9263751
VB
3379get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3380 const struct alloc_context *ac)
753ee728 3381{
6bb15450 3382 struct zoneref *z;
5117f45d 3383 struct zone *zone;
3b8c0be4 3384 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3385 bool no_fallback;
3b8c0be4 3386
6bb15450 3387retry:
7fb1d9fc 3388 /*
9276b1bc 3389 * Scan zonelist, looking for a zone with enough free.
344736f2 3390 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3391 */
6bb15450
MG
3392 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3393 z = ac->preferred_zoneref;
c33d6c06 3394 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3395 ac->nodemask) {
be06af00 3396 struct page *page;
e085dbc5
JW
3397 unsigned long mark;
3398
664eedde
MG
3399 if (cpusets_enabled() &&
3400 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3401 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3402 continue;
a756cf59
JW
3403 /*
3404 * When allocating a page cache page for writing, we
281e3726
MG
3405 * want to get it from a node that is within its dirty
3406 * limit, such that no single node holds more than its
a756cf59 3407 * proportional share of globally allowed dirty pages.
281e3726 3408 * The dirty limits take into account the node's
a756cf59
JW
3409 * lowmem reserves and high watermark so that kswapd
3410 * should be able to balance it without having to
3411 * write pages from its LRU list.
3412 *
a756cf59 3413 * XXX: For now, allow allocations to potentially
281e3726 3414 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3415 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3416 * which is important when on a NUMA setup the allowed
281e3726 3417 * nodes are together not big enough to reach the
a756cf59 3418 * global limit. The proper fix for these situations
281e3726 3419 * will require awareness of nodes in the
a756cf59
JW
3420 * dirty-throttling and the flusher threads.
3421 */
3b8c0be4
MG
3422 if (ac->spread_dirty_pages) {
3423 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3424 continue;
3425
3426 if (!node_dirty_ok(zone->zone_pgdat)) {
3427 last_pgdat_dirty_limit = zone->zone_pgdat;
3428 continue;
3429 }
3430 }
7fb1d9fc 3431
6bb15450
MG
3432 if (no_fallback && nr_online_nodes > 1 &&
3433 zone != ac->preferred_zoneref->zone) {
3434 int local_nid;
3435
3436 /*
3437 * If moving to a remote node, retry but allow
3438 * fragmenting fallbacks. Locality is more important
3439 * than fragmentation avoidance.
3440 */
3441 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3442 if (zone_to_nid(zone) != local_nid) {
3443 alloc_flags &= ~ALLOC_NOFRAGMENT;
3444 goto retry;
3445 }
3446 }
3447
a9214443 3448 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3449 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3450 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3451 int ret;
3452
c9e97a19
PT
3453#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3454 /*
3455 * Watermark failed for this zone, but see if we can
3456 * grow this zone if it contains deferred pages.
3457 */
3458 if (static_branch_unlikely(&deferred_pages)) {
3459 if (_deferred_grow_zone(zone, order))
3460 goto try_this_zone;
3461 }
3462#endif
5dab2911
MG
3463 /* Checked here to keep the fast path fast */
3464 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3465 if (alloc_flags & ALLOC_NO_WATERMARKS)
3466 goto try_this_zone;
3467
a5f5f91d 3468 if (node_reclaim_mode == 0 ||
c33d6c06 3469 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3470 continue;
3471
a5f5f91d 3472 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3473 switch (ret) {
a5f5f91d 3474 case NODE_RECLAIM_NOSCAN:
fa5e084e 3475 /* did not scan */
cd38b115 3476 continue;
a5f5f91d 3477 case NODE_RECLAIM_FULL:
fa5e084e 3478 /* scanned but unreclaimable */
cd38b115 3479 continue;
fa5e084e
MG
3480 default:
3481 /* did we reclaim enough */
fed2719e 3482 if (zone_watermark_ok(zone, order, mark,
93ea9964 3483 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3484 goto try_this_zone;
3485
fed2719e 3486 continue;
0798e519 3487 }
7fb1d9fc
RS
3488 }
3489
fa5e084e 3490try_this_zone:
066b2393 3491 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3492 gfp_mask, alloc_flags, ac->migratetype);
75379191 3493 if (page) {
479f854a 3494 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3495
3496 /*
3497 * If this is a high-order atomic allocation then check
3498 * if the pageblock should be reserved for the future
3499 */
3500 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3501 reserve_highatomic_pageblock(page, zone, order);
3502
75379191 3503 return page;
c9e97a19
PT
3504 } else {
3505#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3506 /* Try again if zone has deferred pages */
3507 if (static_branch_unlikely(&deferred_pages)) {
3508 if (_deferred_grow_zone(zone, order))
3509 goto try_this_zone;
3510 }
3511#endif
75379191 3512 }
54a6eb5c 3513 }
9276b1bc 3514
6bb15450
MG
3515 /*
3516 * It's possible on a UMA machine to get through all zones that are
3517 * fragmented. If avoiding fragmentation, reset and try again.
3518 */
3519 if (no_fallback) {
3520 alloc_flags &= ~ALLOC_NOFRAGMENT;
3521 goto retry;
3522 }
3523
4ffeaf35 3524 return NULL;
753ee728
MH
3525}
3526
9af744d7 3527static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3528{
a238ab5b 3529 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3530 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3531
2c029a1e 3532 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3533 return;
3534
3535 /*
3536 * This documents exceptions given to allocations in certain
3537 * contexts that are allowed to allocate outside current's set
3538 * of allowed nodes.
3539 */
3540 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3541 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3542 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3543 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3544 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3545 filter &= ~SHOW_MEM_FILTER_NODES;
3546
9af744d7 3547 show_mem(filter, nodemask);
aa187507
MH
3548}
3549
a8e99259 3550void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3551{
3552 struct va_format vaf;
3553 va_list args;
3554 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3555 DEFAULT_RATELIMIT_BURST);
3556
0f7896f1 3557 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3558 return;
3559
7877cdcc
MH
3560 va_start(args, fmt);
3561 vaf.fmt = fmt;
3562 vaf.va = &args;
ef8444ea 3563 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3564 current->comm, &vaf, gfp_mask, &gfp_mask,
3565 nodemask_pr_args(nodemask));
7877cdcc 3566 va_end(args);
3ee9a4f0 3567
a8e99259 3568 cpuset_print_current_mems_allowed();
ef8444ea 3569 pr_cont("\n");
a238ab5b 3570 dump_stack();
685dbf6f 3571 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3572}
3573
6c18ba7a
MH
3574static inline struct page *
3575__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3576 unsigned int alloc_flags,
3577 const struct alloc_context *ac)
3578{
3579 struct page *page;
3580
3581 page = get_page_from_freelist(gfp_mask, order,
3582 alloc_flags|ALLOC_CPUSET, ac);
3583 /*
3584 * fallback to ignore cpuset restriction if our nodes
3585 * are depleted
3586 */
3587 if (!page)
3588 page = get_page_from_freelist(gfp_mask, order,
3589 alloc_flags, ac);
3590
3591 return page;
3592}
3593
11e33f6a
MG
3594static inline struct page *
3595__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3596 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3597{
6e0fc46d
DR
3598 struct oom_control oc = {
3599 .zonelist = ac->zonelist,
3600 .nodemask = ac->nodemask,
2a966b77 3601 .memcg = NULL,
6e0fc46d
DR
3602 .gfp_mask = gfp_mask,
3603 .order = order,
6e0fc46d 3604 };
11e33f6a
MG
3605 struct page *page;
3606
9879de73
JW
3607 *did_some_progress = 0;
3608
9879de73 3609 /*
dc56401f
JW
3610 * Acquire the oom lock. If that fails, somebody else is
3611 * making progress for us.
9879de73 3612 */
dc56401f 3613 if (!mutex_trylock(&oom_lock)) {
9879de73 3614 *did_some_progress = 1;
11e33f6a 3615 schedule_timeout_uninterruptible(1);
1da177e4
LT
3616 return NULL;
3617 }
6b1de916 3618
11e33f6a
MG
3619 /*
3620 * Go through the zonelist yet one more time, keep very high watermark
3621 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3622 * we're still under heavy pressure. But make sure that this reclaim
3623 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3624 * allocation which will never fail due to oom_lock already held.
11e33f6a 3625 */
e746bf73
TH
3626 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3627 ~__GFP_DIRECT_RECLAIM, order,
3628 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3629 if (page)
11e33f6a
MG
3630 goto out;
3631
06ad276a
MH
3632 /* Coredumps can quickly deplete all memory reserves */
3633 if (current->flags & PF_DUMPCORE)
3634 goto out;
3635 /* The OOM killer will not help higher order allocs */
3636 if (order > PAGE_ALLOC_COSTLY_ORDER)
3637 goto out;
dcda9b04
MH
3638 /*
3639 * We have already exhausted all our reclaim opportunities without any
3640 * success so it is time to admit defeat. We will skip the OOM killer
3641 * because it is very likely that the caller has a more reasonable
3642 * fallback than shooting a random task.
3643 */
3644 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3645 goto out;
06ad276a
MH
3646 /* The OOM killer does not needlessly kill tasks for lowmem */
3647 if (ac->high_zoneidx < ZONE_NORMAL)
3648 goto out;
3649 if (pm_suspended_storage())
3650 goto out;
3651 /*
3652 * XXX: GFP_NOFS allocations should rather fail than rely on
3653 * other request to make a forward progress.
3654 * We are in an unfortunate situation where out_of_memory cannot
3655 * do much for this context but let's try it to at least get
3656 * access to memory reserved if the current task is killed (see
3657 * out_of_memory). Once filesystems are ready to handle allocation
3658 * failures more gracefully we should just bail out here.
3659 */
3660
3661 /* The OOM killer may not free memory on a specific node */
3662 if (gfp_mask & __GFP_THISNODE)
3663 goto out;
3da88fb3 3664
3c2c6488 3665 /* Exhausted what can be done so it's blame time */
5020e285 3666 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3667 *did_some_progress = 1;
5020e285 3668
6c18ba7a
MH
3669 /*
3670 * Help non-failing allocations by giving them access to memory
3671 * reserves
3672 */
3673 if (gfp_mask & __GFP_NOFAIL)
3674 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3675 ALLOC_NO_WATERMARKS, ac);
5020e285 3676 }
11e33f6a 3677out:
dc56401f 3678 mutex_unlock(&oom_lock);
11e33f6a
MG
3679 return page;
3680}
3681
33c2d214
MH
3682/*
3683 * Maximum number of compaction retries wit a progress before OOM
3684 * killer is consider as the only way to move forward.
3685 */
3686#define MAX_COMPACT_RETRIES 16
3687
56de7263
MG
3688#ifdef CONFIG_COMPACTION
3689/* Try memory compaction for high-order allocations before reclaim */
3690static struct page *
3691__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3692 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3693 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3694{
98dd3b48 3695 struct page *page;
eb414681 3696 unsigned long pflags;
499118e9 3697 unsigned int noreclaim_flag;
53853e2d
VB
3698
3699 if (!order)
66199712 3700 return NULL;
66199712 3701
eb414681 3702 psi_memstall_enter(&pflags);
499118e9 3703 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3704
c5d01d0d 3705 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3706 prio);
eb414681 3707
499118e9 3708 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3709 psi_memstall_leave(&pflags);
56de7263 3710
c5d01d0d 3711 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3712 return NULL;
53853e2d 3713
98dd3b48
VB
3714 /*
3715 * At least in one zone compaction wasn't deferred or skipped, so let's
3716 * count a compaction stall
3717 */
3718 count_vm_event(COMPACTSTALL);
8fb74b9f 3719
31a6c190 3720 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3721
98dd3b48
VB
3722 if (page) {
3723 struct zone *zone = page_zone(page);
53853e2d 3724
98dd3b48
VB
3725 zone->compact_blockskip_flush = false;
3726 compaction_defer_reset(zone, order, true);
3727 count_vm_event(COMPACTSUCCESS);
3728 return page;
3729 }
56de7263 3730
98dd3b48
VB
3731 /*
3732 * It's bad if compaction run occurs and fails. The most likely reason
3733 * is that pages exist, but not enough to satisfy watermarks.
3734 */
3735 count_vm_event(COMPACTFAIL);
66199712 3736
98dd3b48 3737 cond_resched();
56de7263
MG
3738
3739 return NULL;
3740}
33c2d214 3741
3250845d
VB
3742static inline bool
3743should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3744 enum compact_result compact_result,
3745 enum compact_priority *compact_priority,
d9436498 3746 int *compaction_retries)
3250845d
VB
3747{
3748 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3749 int min_priority;
65190cff
MH
3750 bool ret = false;
3751 int retries = *compaction_retries;
3752 enum compact_priority priority = *compact_priority;
3250845d
VB
3753
3754 if (!order)
3755 return false;
3756
d9436498
VB
3757 if (compaction_made_progress(compact_result))
3758 (*compaction_retries)++;
3759
3250845d
VB
3760 /*
3761 * compaction considers all the zone as desperately out of memory
3762 * so it doesn't really make much sense to retry except when the
3763 * failure could be caused by insufficient priority
3764 */
d9436498
VB
3765 if (compaction_failed(compact_result))
3766 goto check_priority;
3250845d
VB
3767
3768 /*
3769 * make sure the compaction wasn't deferred or didn't bail out early
3770 * due to locks contention before we declare that we should give up.
3771 * But do not retry if the given zonelist is not suitable for
3772 * compaction.
3773 */
65190cff
MH
3774 if (compaction_withdrawn(compact_result)) {
3775 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3776 goto out;
3777 }
3250845d
VB
3778
3779 /*
dcda9b04 3780 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3781 * costly ones because they are de facto nofail and invoke OOM
3782 * killer to move on while costly can fail and users are ready
3783 * to cope with that. 1/4 retries is rather arbitrary but we
3784 * would need much more detailed feedback from compaction to
3785 * make a better decision.
3786 */
3787 if (order > PAGE_ALLOC_COSTLY_ORDER)
3788 max_retries /= 4;
65190cff
MH
3789 if (*compaction_retries <= max_retries) {
3790 ret = true;
3791 goto out;
3792 }
3250845d 3793
d9436498
VB
3794 /*
3795 * Make sure there are attempts at the highest priority if we exhausted
3796 * all retries or failed at the lower priorities.
3797 */
3798check_priority:
c2033b00
VB
3799 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3800 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3801
c2033b00 3802 if (*compact_priority > min_priority) {
d9436498
VB
3803 (*compact_priority)--;
3804 *compaction_retries = 0;
65190cff 3805 ret = true;
d9436498 3806 }
65190cff
MH
3807out:
3808 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3809 return ret;
3250845d 3810}
56de7263
MG
3811#else
3812static inline struct page *
3813__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3814 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3815 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3816{
33c2d214 3817 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3818 return NULL;
3819}
33c2d214
MH
3820
3821static inline bool
86a294a8
MH
3822should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3823 enum compact_result compact_result,
a5508cd8 3824 enum compact_priority *compact_priority,
d9436498 3825 int *compaction_retries)
33c2d214 3826{
31e49bfd
MH
3827 struct zone *zone;
3828 struct zoneref *z;
3829
3830 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3831 return false;
3832
3833 /*
3834 * There are setups with compaction disabled which would prefer to loop
3835 * inside the allocator rather than hit the oom killer prematurely.
3836 * Let's give them a good hope and keep retrying while the order-0
3837 * watermarks are OK.
3838 */
3839 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3840 ac->nodemask) {
3841 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3842 ac_classzone_idx(ac), alloc_flags))
3843 return true;
3844 }
33c2d214
MH
3845 return false;
3846}
3250845d 3847#endif /* CONFIG_COMPACTION */
56de7263 3848
d92a8cfc 3849#ifdef CONFIG_LOCKDEP
93781325 3850static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3851 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3852
3853static bool __need_fs_reclaim(gfp_t gfp_mask)
3854{
3855 gfp_mask = current_gfp_context(gfp_mask);
3856
3857 /* no reclaim without waiting on it */
3858 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3859 return false;
3860
3861 /* this guy won't enter reclaim */
2e517d68 3862 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3863 return false;
3864
3865 /* We're only interested __GFP_FS allocations for now */
3866 if (!(gfp_mask & __GFP_FS))
3867 return false;
3868
3869 if (gfp_mask & __GFP_NOLOCKDEP)
3870 return false;
3871
3872 return true;
3873}
3874
93781325
OS
3875void __fs_reclaim_acquire(void)
3876{
3877 lock_map_acquire(&__fs_reclaim_map);
3878}
3879
3880void __fs_reclaim_release(void)
3881{
3882 lock_map_release(&__fs_reclaim_map);
3883}
3884
d92a8cfc
PZ
3885void fs_reclaim_acquire(gfp_t gfp_mask)
3886{
3887 if (__need_fs_reclaim(gfp_mask))
93781325 3888 __fs_reclaim_acquire();
d92a8cfc
PZ
3889}
3890EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3891
3892void fs_reclaim_release(gfp_t gfp_mask)
3893{
3894 if (__need_fs_reclaim(gfp_mask))
93781325 3895 __fs_reclaim_release();
d92a8cfc
PZ
3896}
3897EXPORT_SYMBOL_GPL(fs_reclaim_release);
3898#endif
3899
bba90710
MS
3900/* Perform direct synchronous page reclaim */
3901static int
a9263751
VB
3902__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3903 const struct alloc_context *ac)
11e33f6a 3904{
11e33f6a 3905 struct reclaim_state reclaim_state;
bba90710 3906 int progress;
499118e9 3907 unsigned int noreclaim_flag;
eb414681 3908 unsigned long pflags;
11e33f6a
MG
3909
3910 cond_resched();
3911
3912 /* We now go into synchronous reclaim */
3913 cpuset_memory_pressure_bump();
eb414681 3914 psi_memstall_enter(&pflags);
d92a8cfc 3915 fs_reclaim_acquire(gfp_mask);
93781325 3916 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3917 reclaim_state.reclaimed_slab = 0;
c06b1fca 3918 current->reclaim_state = &reclaim_state;
11e33f6a 3919
a9263751
VB
3920 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3921 ac->nodemask);
11e33f6a 3922
c06b1fca 3923 current->reclaim_state = NULL;
499118e9 3924 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3925 fs_reclaim_release(gfp_mask);
eb414681 3926 psi_memstall_leave(&pflags);
11e33f6a
MG
3927
3928 cond_resched();
3929
bba90710
MS
3930 return progress;
3931}
3932
3933/* The really slow allocator path where we enter direct reclaim */
3934static inline struct page *
3935__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3936 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3937 unsigned long *did_some_progress)
bba90710
MS
3938{
3939 struct page *page = NULL;
3940 bool drained = false;
3941
a9263751 3942 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3943 if (unlikely(!(*did_some_progress)))
3944 return NULL;
11e33f6a 3945
9ee493ce 3946retry:
31a6c190 3947 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3948
3949 /*
3950 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3951 * pages are pinned on the per-cpu lists or in high alloc reserves.
3952 * Shrink them them and try again
9ee493ce
MG
3953 */
3954 if (!page && !drained) {
29fac03b 3955 unreserve_highatomic_pageblock(ac, false);
93481ff0 3956 drain_all_pages(NULL);
9ee493ce
MG
3957 drained = true;
3958 goto retry;
3959 }
3960
11e33f6a
MG
3961 return page;
3962}
3963
5ecd9d40
DR
3964static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3965 const struct alloc_context *ac)
3a025760
JW
3966{
3967 struct zoneref *z;
3968 struct zone *zone;
e1a55637 3969 pg_data_t *last_pgdat = NULL;
5ecd9d40 3970 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 3971
5ecd9d40
DR
3972 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3973 ac->nodemask) {
e1a55637 3974 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 3975 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
3976 last_pgdat = zone->zone_pgdat;
3977 }
3a025760
JW
3978}
3979
c603844b 3980static inline unsigned int
341ce06f
PZ
3981gfp_to_alloc_flags(gfp_t gfp_mask)
3982{
c603844b 3983 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3984
a56f57ff 3985 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3986 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3987
341ce06f
PZ
3988 /*
3989 * The caller may dip into page reserves a bit more if the caller
3990 * cannot run direct reclaim, or if the caller has realtime scheduling
3991 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3992 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3993 */
e6223a3b 3994 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3995
d0164adc 3996 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3997 /*
b104a35d
DR
3998 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3999 * if it can't schedule.
5c3240d9 4000 */
b104a35d 4001 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4002 alloc_flags |= ALLOC_HARDER;
523b9458 4003 /*
b104a35d 4004 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4005 * comment for __cpuset_node_allowed().
523b9458 4006 */
341ce06f 4007 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4008 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4009 alloc_flags |= ALLOC_HARDER;
4010
0a79cdad
MG
4011 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4012 alloc_flags |= ALLOC_KSWAPD;
4013
d883c6cf
JK
4014#ifdef CONFIG_CMA
4015 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4016 alloc_flags |= ALLOC_CMA;
4017#endif
341ce06f
PZ
4018 return alloc_flags;
4019}
4020
cd04ae1e 4021static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4022{
cd04ae1e
MH
4023 if (!tsk_is_oom_victim(tsk))
4024 return false;
4025
4026 /*
4027 * !MMU doesn't have oom reaper so give access to memory reserves
4028 * only to the thread with TIF_MEMDIE set
4029 */
4030 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4031 return false;
4032
cd04ae1e
MH
4033 return true;
4034}
4035
4036/*
4037 * Distinguish requests which really need access to full memory
4038 * reserves from oom victims which can live with a portion of it
4039 */
4040static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4041{
4042 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4043 return 0;
31a6c190 4044 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4045 return ALLOC_NO_WATERMARKS;
31a6c190 4046 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4047 return ALLOC_NO_WATERMARKS;
4048 if (!in_interrupt()) {
4049 if (current->flags & PF_MEMALLOC)
4050 return ALLOC_NO_WATERMARKS;
4051 else if (oom_reserves_allowed(current))
4052 return ALLOC_OOM;
4053 }
31a6c190 4054
cd04ae1e
MH
4055 return 0;
4056}
4057
4058bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4059{
4060 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4061}
4062
0a0337e0
MH
4063/*
4064 * Checks whether it makes sense to retry the reclaim to make a forward progress
4065 * for the given allocation request.
491d79ae
JW
4066 *
4067 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4068 * without success, or when we couldn't even meet the watermark if we
4069 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4070 *
4071 * Returns true if a retry is viable or false to enter the oom path.
4072 */
4073static inline bool
4074should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4075 struct alloc_context *ac, int alloc_flags,
423b452e 4076 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4077{
4078 struct zone *zone;
4079 struct zoneref *z;
15f570bf 4080 bool ret = false;
0a0337e0 4081
423b452e
VB
4082 /*
4083 * Costly allocations might have made a progress but this doesn't mean
4084 * their order will become available due to high fragmentation so
4085 * always increment the no progress counter for them
4086 */
4087 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4088 *no_progress_loops = 0;
4089 else
4090 (*no_progress_loops)++;
4091
0a0337e0
MH
4092 /*
4093 * Make sure we converge to OOM if we cannot make any progress
4094 * several times in the row.
4095 */
04c8716f
MK
4096 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4097 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4098 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4099 }
0a0337e0 4100
bca67592
MG
4101 /*
4102 * Keep reclaiming pages while there is a chance this will lead
4103 * somewhere. If none of the target zones can satisfy our allocation
4104 * request even if all reclaimable pages are considered then we are
4105 * screwed and have to go OOM.
0a0337e0
MH
4106 */
4107 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4108 ac->nodemask) {
4109 unsigned long available;
ede37713 4110 unsigned long reclaimable;
d379f01d
MH
4111 unsigned long min_wmark = min_wmark_pages(zone);
4112 bool wmark;
0a0337e0 4113
5a1c84b4 4114 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4115 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4116
4117 /*
491d79ae
JW
4118 * Would the allocation succeed if we reclaimed all
4119 * reclaimable pages?
0a0337e0 4120 */
d379f01d
MH
4121 wmark = __zone_watermark_ok(zone, order, min_wmark,
4122 ac_classzone_idx(ac), alloc_flags, available);
4123 trace_reclaim_retry_zone(z, order, reclaimable,
4124 available, min_wmark, *no_progress_loops, wmark);
4125 if (wmark) {
ede37713
MH
4126 /*
4127 * If we didn't make any progress and have a lot of
4128 * dirty + writeback pages then we should wait for
4129 * an IO to complete to slow down the reclaim and
4130 * prevent from pre mature OOM
4131 */
4132 if (!did_some_progress) {
11fb9989 4133 unsigned long write_pending;
ede37713 4134
5a1c84b4
MG
4135 write_pending = zone_page_state_snapshot(zone,
4136 NR_ZONE_WRITE_PENDING);
ede37713 4137
11fb9989 4138 if (2 * write_pending > reclaimable) {
ede37713
MH
4139 congestion_wait(BLK_RW_ASYNC, HZ/10);
4140 return true;
4141 }
4142 }
5a1c84b4 4143
15f570bf
MH
4144 ret = true;
4145 goto out;
0a0337e0
MH
4146 }
4147 }
4148
15f570bf
MH
4149out:
4150 /*
4151 * Memory allocation/reclaim might be called from a WQ context and the
4152 * current implementation of the WQ concurrency control doesn't
4153 * recognize that a particular WQ is congested if the worker thread is
4154 * looping without ever sleeping. Therefore we have to do a short sleep
4155 * here rather than calling cond_resched().
4156 */
4157 if (current->flags & PF_WQ_WORKER)
4158 schedule_timeout_uninterruptible(1);
4159 else
4160 cond_resched();
4161 return ret;
0a0337e0
MH
4162}
4163
902b6281
VB
4164static inline bool
4165check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4166{
4167 /*
4168 * It's possible that cpuset's mems_allowed and the nodemask from
4169 * mempolicy don't intersect. This should be normally dealt with by
4170 * policy_nodemask(), but it's possible to race with cpuset update in
4171 * such a way the check therein was true, and then it became false
4172 * before we got our cpuset_mems_cookie here.
4173 * This assumes that for all allocations, ac->nodemask can come only
4174 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4175 * when it does not intersect with the cpuset restrictions) or the
4176 * caller can deal with a violated nodemask.
4177 */
4178 if (cpusets_enabled() && ac->nodemask &&
4179 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4180 ac->nodemask = NULL;
4181 return true;
4182 }
4183
4184 /*
4185 * When updating a task's mems_allowed or mempolicy nodemask, it is
4186 * possible to race with parallel threads in such a way that our
4187 * allocation can fail while the mask is being updated. If we are about
4188 * to fail, check if the cpuset changed during allocation and if so,
4189 * retry.
4190 */
4191 if (read_mems_allowed_retry(cpuset_mems_cookie))
4192 return true;
4193
4194 return false;
4195}
4196
11e33f6a
MG
4197static inline struct page *
4198__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4199 struct alloc_context *ac)
11e33f6a 4200{
d0164adc 4201 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4202 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4203 struct page *page = NULL;
c603844b 4204 unsigned int alloc_flags;
11e33f6a 4205 unsigned long did_some_progress;
5ce9bfef 4206 enum compact_priority compact_priority;
c5d01d0d 4207 enum compact_result compact_result;
5ce9bfef
VB
4208 int compaction_retries;
4209 int no_progress_loops;
5ce9bfef 4210 unsigned int cpuset_mems_cookie;
cd04ae1e 4211 int reserve_flags;
1da177e4 4212
d0164adc
MG
4213 /*
4214 * We also sanity check to catch abuse of atomic reserves being used by
4215 * callers that are not in atomic context.
4216 */
4217 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4218 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4219 gfp_mask &= ~__GFP_ATOMIC;
4220
5ce9bfef
VB
4221retry_cpuset:
4222 compaction_retries = 0;
4223 no_progress_loops = 0;
4224 compact_priority = DEF_COMPACT_PRIORITY;
4225 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4226
4227 /*
4228 * The fast path uses conservative alloc_flags to succeed only until
4229 * kswapd needs to be woken up, and to avoid the cost of setting up
4230 * alloc_flags precisely. So we do that now.
4231 */
4232 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4233
e47483bc
VB
4234 /*
4235 * We need to recalculate the starting point for the zonelist iterator
4236 * because we might have used different nodemask in the fast path, or
4237 * there was a cpuset modification and we are retrying - otherwise we
4238 * could end up iterating over non-eligible zones endlessly.
4239 */
4240 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4241 ac->high_zoneidx, ac->nodemask);
4242 if (!ac->preferred_zoneref->zone)
4243 goto nopage;
4244
0a79cdad 4245 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4246 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4247
4248 /*
4249 * The adjusted alloc_flags might result in immediate success, so try
4250 * that first
4251 */
4252 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4253 if (page)
4254 goto got_pg;
4255
a8161d1e
VB
4256 /*
4257 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4258 * that we have enough base pages and don't need to reclaim. For non-
4259 * movable high-order allocations, do that as well, as compaction will
4260 * try prevent permanent fragmentation by migrating from blocks of the
4261 * same migratetype.
4262 * Don't try this for allocations that are allowed to ignore
4263 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4264 */
282722b0
VB
4265 if (can_direct_reclaim &&
4266 (costly_order ||
4267 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4268 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4269 page = __alloc_pages_direct_compact(gfp_mask, order,
4270 alloc_flags, ac,
a5508cd8 4271 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4272 &compact_result);
4273 if (page)
4274 goto got_pg;
4275
3eb2771b
VB
4276 /*
4277 * Checks for costly allocations with __GFP_NORETRY, which
4278 * includes THP page fault allocations
4279 */
282722b0 4280 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4281 /*
4282 * If compaction is deferred for high-order allocations,
4283 * it is because sync compaction recently failed. If
4284 * this is the case and the caller requested a THP
4285 * allocation, we do not want to heavily disrupt the
4286 * system, so we fail the allocation instead of entering
4287 * direct reclaim.
4288 */
4289 if (compact_result == COMPACT_DEFERRED)
4290 goto nopage;
4291
a8161d1e 4292 /*
3eb2771b
VB
4293 * Looks like reclaim/compaction is worth trying, but
4294 * sync compaction could be very expensive, so keep
25160354 4295 * using async compaction.
a8161d1e 4296 */
a5508cd8 4297 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4298 }
4299 }
23771235 4300
31a6c190 4301retry:
23771235 4302 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4303 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4304 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4305
cd04ae1e
MH
4306 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4307 if (reserve_flags)
4308 alloc_flags = reserve_flags;
23771235 4309
e46e7b77 4310 /*
d6a24df0
VB
4311 * Reset the nodemask and zonelist iterators if memory policies can be
4312 * ignored. These allocations are high priority and system rather than
4313 * user oriented.
e46e7b77 4314 */
cd04ae1e 4315 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4316 ac->nodemask = NULL;
e46e7b77
MG
4317 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4318 ac->high_zoneidx, ac->nodemask);
4319 }
4320
23771235 4321 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4322 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4323 if (page)
4324 goto got_pg;
1da177e4 4325
d0164adc 4326 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4327 if (!can_direct_reclaim)
1da177e4
LT
4328 goto nopage;
4329
9a67f648
MH
4330 /* Avoid recursion of direct reclaim */
4331 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4332 goto nopage;
4333
a8161d1e
VB
4334 /* Try direct reclaim and then allocating */
4335 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4336 &did_some_progress);
4337 if (page)
4338 goto got_pg;
4339
4340 /* Try direct compaction and then allocating */
a9263751 4341 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4342 compact_priority, &compact_result);
56de7263
MG
4343 if (page)
4344 goto got_pg;
75f30861 4345
9083905a
JW
4346 /* Do not loop if specifically requested */
4347 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4348 goto nopage;
9083905a 4349
0a0337e0
MH
4350 /*
4351 * Do not retry costly high order allocations unless they are
dcda9b04 4352 * __GFP_RETRY_MAYFAIL
0a0337e0 4353 */
dcda9b04 4354 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4355 goto nopage;
0a0337e0 4356
0a0337e0 4357 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4358 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4359 goto retry;
4360
33c2d214
MH
4361 /*
4362 * It doesn't make any sense to retry for the compaction if the order-0
4363 * reclaim is not able to make any progress because the current
4364 * implementation of the compaction depends on the sufficient amount
4365 * of free memory (see __compaction_suitable)
4366 */
4367 if (did_some_progress > 0 &&
86a294a8 4368 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4369 compact_result, &compact_priority,
d9436498 4370 &compaction_retries))
33c2d214
MH
4371 goto retry;
4372
902b6281
VB
4373
4374 /* Deal with possible cpuset update races before we start OOM killing */
4375 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4376 goto retry_cpuset;
4377
9083905a
JW
4378 /* Reclaim has failed us, start killing things */
4379 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4380 if (page)
4381 goto got_pg;
4382
9a67f648 4383 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4384 if (tsk_is_oom_victim(current) &&
4385 (alloc_flags == ALLOC_OOM ||
c288983d 4386 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4387 goto nopage;
4388
9083905a 4389 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4390 if (did_some_progress) {
4391 no_progress_loops = 0;
9083905a 4392 goto retry;
0a0337e0 4393 }
9083905a 4394
1da177e4 4395nopage:
902b6281
VB
4396 /* Deal with possible cpuset update races before we fail */
4397 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4398 goto retry_cpuset;
4399
9a67f648
MH
4400 /*
4401 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4402 * we always retry
4403 */
4404 if (gfp_mask & __GFP_NOFAIL) {
4405 /*
4406 * All existing users of the __GFP_NOFAIL are blockable, so warn
4407 * of any new users that actually require GFP_NOWAIT
4408 */
4409 if (WARN_ON_ONCE(!can_direct_reclaim))
4410 goto fail;
4411
4412 /*
4413 * PF_MEMALLOC request from this context is rather bizarre
4414 * because we cannot reclaim anything and only can loop waiting
4415 * for somebody to do a work for us
4416 */
4417 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4418
4419 /*
4420 * non failing costly orders are a hard requirement which we
4421 * are not prepared for much so let's warn about these users
4422 * so that we can identify them and convert them to something
4423 * else.
4424 */
4425 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4426
6c18ba7a
MH
4427 /*
4428 * Help non-failing allocations by giving them access to memory
4429 * reserves but do not use ALLOC_NO_WATERMARKS because this
4430 * could deplete whole memory reserves which would just make
4431 * the situation worse
4432 */
4433 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4434 if (page)
4435 goto got_pg;
4436
9a67f648
MH
4437 cond_resched();
4438 goto retry;
4439 }
4440fail:
a8e99259 4441 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4442 "page allocation failure: order:%u", order);
1da177e4 4443got_pg:
072bb0aa 4444 return page;
1da177e4 4445}
11e33f6a 4446
9cd75558 4447static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4448 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4449 struct alloc_context *ac, gfp_t *alloc_mask,
4450 unsigned int *alloc_flags)
11e33f6a 4451{
9cd75558 4452 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4453 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4454 ac->nodemask = nodemask;
4455 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4456
682a3385 4457 if (cpusets_enabled()) {
9cd75558 4458 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4459 if (!ac->nodemask)
4460 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4461 else
4462 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4463 }
4464
d92a8cfc
PZ
4465 fs_reclaim_acquire(gfp_mask);
4466 fs_reclaim_release(gfp_mask);
11e33f6a 4467
d0164adc 4468 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4469
4470 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4471 return false;
11e33f6a 4472
d883c6cf
JK
4473 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4474 *alloc_flags |= ALLOC_CMA;
4475
9cd75558
MG
4476 return true;
4477}
21bb9bd1 4478
9cd75558 4479/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4480static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4481{
c9ab0c4f 4482 /* Dirty zone balancing only done in the fast path */
9cd75558 4483 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4484
e46e7b77
MG
4485 /*
4486 * The preferred zone is used for statistics but crucially it is
4487 * also used as the starting point for the zonelist iterator. It
4488 * may get reset for allocations that ignore memory policies.
4489 */
9cd75558
MG
4490 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4491 ac->high_zoneidx, ac->nodemask);
4492}
4493
4494/*
4495 * This is the 'heart' of the zoned buddy allocator.
4496 */
4497struct page *
04ec6264
VB
4498__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4499 nodemask_t *nodemask)
9cd75558
MG
4500{
4501 struct page *page;
4502 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4503 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4504 struct alloc_context ac = { };
4505
c63ae43b
MH
4506 /*
4507 * There are several places where we assume that the order value is sane
4508 * so bail out early if the request is out of bound.
4509 */
4510 if (unlikely(order >= MAX_ORDER)) {
4511 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4512 return NULL;
4513 }
4514
9cd75558 4515 gfp_mask &= gfp_allowed_mask;
f19360f0 4516 alloc_mask = gfp_mask;
04ec6264 4517 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4518 return NULL;
4519
a380b40a 4520 finalise_ac(gfp_mask, &ac);
5bb1b169 4521
6bb15450
MG
4522 /*
4523 * Forbid the first pass from falling back to types that fragment
4524 * memory until all local zones are considered.
4525 */
0a79cdad 4526 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4527
5117f45d 4528 /* First allocation attempt */
a9263751 4529 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4530 if (likely(page))
4531 goto out;
11e33f6a 4532
4fcb0971 4533 /*
7dea19f9
MH
4534 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4535 * resp. GFP_NOIO which has to be inherited for all allocation requests
4536 * from a particular context which has been marked by
4537 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4538 */
7dea19f9 4539 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4540 ac.spread_dirty_pages = false;
23f086f9 4541
4741526b
MG
4542 /*
4543 * Restore the original nodemask if it was potentially replaced with
4544 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4545 */
e47483bc 4546 if (unlikely(ac.nodemask != nodemask))
4741526b 4547 ac.nodemask = nodemask;
16096c25 4548
4fcb0971 4549 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4550
4fcb0971 4551out:
c4159a75
VD
4552 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4553 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4554 __free_pages(page, order);
4555 page = NULL;
4949148a
VD
4556 }
4557
4fcb0971
MG
4558 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4559
11e33f6a 4560 return page;
1da177e4 4561}
d239171e 4562EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4563
4564/*
9ea9a680
MH
4565 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4566 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4567 * you need to access high mem.
1da177e4 4568 */
920c7a5d 4569unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4570{
945a1113
AM
4571 struct page *page;
4572
9ea9a680 4573 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4574 if (!page)
4575 return 0;
4576 return (unsigned long) page_address(page);
4577}
1da177e4
LT
4578EXPORT_SYMBOL(__get_free_pages);
4579
920c7a5d 4580unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4581{
945a1113 4582 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4583}
1da177e4
LT
4584EXPORT_SYMBOL(get_zeroed_page);
4585
742aa7fb 4586static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4587{
742aa7fb
AL
4588 if (order == 0) /* Via pcp? */
4589 free_unref_page(page);
4590 else
4591 __free_pages_ok(page, order);
1da177e4
LT
4592}
4593
742aa7fb
AL
4594void __free_pages(struct page *page, unsigned int order)
4595{
4596 if (put_page_testzero(page))
4597 free_the_page(page, order);
4598}
1da177e4
LT
4599EXPORT_SYMBOL(__free_pages);
4600
920c7a5d 4601void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4602{
4603 if (addr != 0) {
725d704e 4604 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4605 __free_pages(virt_to_page((void *)addr), order);
4606 }
4607}
4608
4609EXPORT_SYMBOL(free_pages);
4610
b63ae8ca
AD
4611/*
4612 * Page Fragment:
4613 * An arbitrary-length arbitrary-offset area of memory which resides
4614 * within a 0 or higher order page. Multiple fragments within that page
4615 * are individually refcounted, in the page's reference counter.
4616 *
4617 * The page_frag functions below provide a simple allocation framework for
4618 * page fragments. This is used by the network stack and network device
4619 * drivers to provide a backing region of memory for use as either an
4620 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4621 */
2976db80
AD
4622static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4623 gfp_t gfp_mask)
b63ae8ca
AD
4624{
4625 struct page *page = NULL;
4626 gfp_t gfp = gfp_mask;
4627
4628#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4629 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4630 __GFP_NOMEMALLOC;
4631 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4632 PAGE_FRAG_CACHE_MAX_ORDER);
4633 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4634#endif
4635 if (unlikely(!page))
4636 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4637
4638 nc->va = page ? page_address(page) : NULL;
4639
4640 return page;
4641}
4642
2976db80 4643void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4644{
4645 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4646
742aa7fb
AL
4647 if (page_ref_sub_and_test(page, count))
4648 free_the_page(page, compound_order(page));
44fdffd7 4649}
2976db80 4650EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4651
8c2dd3e4
AD
4652void *page_frag_alloc(struct page_frag_cache *nc,
4653 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4654{
4655 unsigned int size = PAGE_SIZE;
4656 struct page *page;
4657 int offset;
4658
4659 if (unlikely(!nc->va)) {
4660refill:
2976db80 4661 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4662 if (!page)
4663 return NULL;
4664
4665#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4666 /* if size can vary use size else just use PAGE_SIZE */
4667 size = nc->size;
4668#endif
4669 /* Even if we own the page, we do not use atomic_set().
4670 * This would break get_page_unless_zero() users.
4671 */
fe896d18 4672 page_ref_add(page, size - 1);
b63ae8ca
AD
4673
4674 /* reset page count bias and offset to start of new frag */
2f064f34 4675 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4676 nc->pagecnt_bias = size;
4677 nc->offset = size;
4678 }
4679
4680 offset = nc->offset - fragsz;
4681 if (unlikely(offset < 0)) {
4682 page = virt_to_page(nc->va);
4683
fe896d18 4684 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4685 goto refill;
4686
4687#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4688 /* if size can vary use size else just use PAGE_SIZE */
4689 size = nc->size;
4690#endif
4691 /* OK, page count is 0, we can safely set it */
fe896d18 4692 set_page_count(page, size);
b63ae8ca
AD
4693
4694 /* reset page count bias and offset to start of new frag */
4695 nc->pagecnt_bias = size;
4696 offset = size - fragsz;
4697 }
4698
4699 nc->pagecnt_bias--;
4700 nc->offset = offset;
4701
4702 return nc->va + offset;
4703}
8c2dd3e4 4704EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4705
4706/*
4707 * Frees a page fragment allocated out of either a compound or order 0 page.
4708 */
8c2dd3e4 4709void page_frag_free(void *addr)
b63ae8ca
AD
4710{
4711 struct page *page = virt_to_head_page(addr);
4712
742aa7fb
AL
4713 if (unlikely(put_page_testzero(page)))
4714 free_the_page(page, compound_order(page));
b63ae8ca 4715}
8c2dd3e4 4716EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4717
d00181b9
KS
4718static void *make_alloc_exact(unsigned long addr, unsigned int order,
4719 size_t size)
ee85c2e1
AK
4720{
4721 if (addr) {
4722 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4723 unsigned long used = addr + PAGE_ALIGN(size);
4724
4725 split_page(virt_to_page((void *)addr), order);
4726 while (used < alloc_end) {
4727 free_page(used);
4728 used += PAGE_SIZE;
4729 }
4730 }
4731 return (void *)addr;
4732}
4733
2be0ffe2
TT
4734/**
4735 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4736 * @size: the number of bytes to allocate
4737 * @gfp_mask: GFP flags for the allocation
4738 *
4739 * This function is similar to alloc_pages(), except that it allocates the
4740 * minimum number of pages to satisfy the request. alloc_pages() can only
4741 * allocate memory in power-of-two pages.
4742 *
4743 * This function is also limited by MAX_ORDER.
4744 *
4745 * Memory allocated by this function must be released by free_pages_exact().
4746 */
4747void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4748{
4749 unsigned int order = get_order(size);
4750 unsigned long addr;
4751
4752 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4753 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4754}
4755EXPORT_SYMBOL(alloc_pages_exact);
4756
ee85c2e1
AK
4757/**
4758 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4759 * pages on a node.
b5e6ab58 4760 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4761 * @size: the number of bytes to allocate
4762 * @gfp_mask: GFP flags for the allocation
4763 *
4764 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4765 * back.
ee85c2e1 4766 */
e1931811 4767void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4768{
d00181b9 4769 unsigned int order = get_order(size);
ee85c2e1
AK
4770 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4771 if (!p)
4772 return NULL;
4773 return make_alloc_exact((unsigned long)page_address(p), order, size);
4774}
ee85c2e1 4775
2be0ffe2
TT
4776/**
4777 * free_pages_exact - release memory allocated via alloc_pages_exact()
4778 * @virt: the value returned by alloc_pages_exact.
4779 * @size: size of allocation, same value as passed to alloc_pages_exact().
4780 *
4781 * Release the memory allocated by a previous call to alloc_pages_exact.
4782 */
4783void free_pages_exact(void *virt, size_t size)
4784{
4785 unsigned long addr = (unsigned long)virt;
4786 unsigned long end = addr + PAGE_ALIGN(size);
4787
4788 while (addr < end) {
4789 free_page(addr);
4790 addr += PAGE_SIZE;
4791 }
4792}
4793EXPORT_SYMBOL(free_pages_exact);
4794
e0fb5815
ZY
4795/**
4796 * nr_free_zone_pages - count number of pages beyond high watermark
4797 * @offset: The zone index of the highest zone
4798 *
4799 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4800 * high watermark within all zones at or below a given zone index. For each
4801 * zone, the number of pages is calculated as:
0e056eb5 4802 *
4803 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4804 */
ebec3862 4805static unsigned long nr_free_zone_pages(int offset)
1da177e4 4806{
dd1a239f 4807 struct zoneref *z;
54a6eb5c
MG
4808 struct zone *zone;
4809
e310fd43 4810 /* Just pick one node, since fallback list is circular */
ebec3862 4811 unsigned long sum = 0;
1da177e4 4812
0e88460d 4813 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4814
54a6eb5c 4815 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4816 unsigned long size = zone_managed_pages(zone);
41858966 4817 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4818 if (size > high)
4819 sum += size - high;
1da177e4
LT
4820 }
4821
4822 return sum;
4823}
4824
e0fb5815
ZY
4825/**
4826 * nr_free_buffer_pages - count number of pages beyond high watermark
4827 *
4828 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4829 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4830 */
ebec3862 4831unsigned long nr_free_buffer_pages(void)
1da177e4 4832{
af4ca457 4833 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4834}
c2f1a551 4835EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4836
e0fb5815
ZY
4837/**
4838 * nr_free_pagecache_pages - count number of pages beyond high watermark
4839 *
4840 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4841 * high watermark within all zones.
1da177e4 4842 */
ebec3862 4843unsigned long nr_free_pagecache_pages(void)
1da177e4 4844{
2a1e274a 4845 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4846}
08e0f6a9
CL
4847
4848static inline void show_node(struct zone *zone)
1da177e4 4849{
e5adfffc 4850 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4851 printk("Node %d ", zone_to_nid(zone));
1da177e4 4852}
1da177e4 4853
d02bd27b
IR
4854long si_mem_available(void)
4855{
4856 long available;
4857 unsigned long pagecache;
4858 unsigned long wmark_low = 0;
4859 unsigned long pages[NR_LRU_LISTS];
b29940c1 4860 unsigned long reclaimable;
d02bd27b
IR
4861 struct zone *zone;
4862 int lru;
4863
4864 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4865 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4866
4867 for_each_zone(zone)
a9214443 4868 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
4869
4870 /*
4871 * Estimate the amount of memory available for userspace allocations,
4872 * without causing swapping.
4873 */
c41f012a 4874 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4875
4876 /*
4877 * Not all the page cache can be freed, otherwise the system will
4878 * start swapping. Assume at least half of the page cache, or the
4879 * low watermark worth of cache, needs to stay.
4880 */
4881 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4882 pagecache -= min(pagecache / 2, wmark_low);
4883 available += pagecache;
4884
4885 /*
b29940c1
VB
4886 * Part of the reclaimable slab and other kernel memory consists of
4887 * items that are in use, and cannot be freed. Cap this estimate at the
4888 * low watermark.
d02bd27b 4889 */
b29940c1
VB
4890 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4891 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4892 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4893
d02bd27b
IR
4894 if (available < 0)
4895 available = 0;
4896 return available;
4897}
4898EXPORT_SYMBOL_GPL(si_mem_available);
4899
1da177e4
LT
4900void si_meminfo(struct sysinfo *val)
4901{
ca79b0c2 4902 val->totalram = totalram_pages();
11fb9989 4903 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4904 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4905 val->bufferram = nr_blockdev_pages();
ca79b0c2 4906 val->totalhigh = totalhigh_pages();
1da177e4 4907 val->freehigh = nr_free_highpages();
1da177e4
LT
4908 val->mem_unit = PAGE_SIZE;
4909}
4910
4911EXPORT_SYMBOL(si_meminfo);
4912
4913#ifdef CONFIG_NUMA
4914void si_meminfo_node(struct sysinfo *val, int nid)
4915{
cdd91a77
JL
4916 int zone_type; /* needs to be signed */
4917 unsigned long managed_pages = 0;
fc2bd799
JK
4918 unsigned long managed_highpages = 0;
4919 unsigned long free_highpages = 0;
1da177e4
LT
4920 pg_data_t *pgdat = NODE_DATA(nid);
4921
cdd91a77 4922 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 4923 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 4924 val->totalram = managed_pages;
11fb9989 4925 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4926 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4927#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4928 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4929 struct zone *zone = &pgdat->node_zones[zone_type];
4930
4931 if (is_highmem(zone)) {
9705bea5 4932 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
4933 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4934 }
4935 }
4936 val->totalhigh = managed_highpages;
4937 val->freehigh = free_highpages;
98d2b0eb 4938#else
fc2bd799
JK
4939 val->totalhigh = managed_highpages;
4940 val->freehigh = free_highpages;
98d2b0eb 4941#endif
1da177e4
LT
4942 val->mem_unit = PAGE_SIZE;
4943}
4944#endif
4945
ddd588b5 4946/*
7bf02ea2
DR
4947 * Determine whether the node should be displayed or not, depending on whether
4948 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4949 */
9af744d7 4950static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4951{
ddd588b5 4952 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4953 return false;
ddd588b5 4954
9af744d7
MH
4955 /*
4956 * no node mask - aka implicit memory numa policy. Do not bother with
4957 * the synchronization - read_mems_allowed_begin - because we do not
4958 * have to be precise here.
4959 */
4960 if (!nodemask)
4961 nodemask = &cpuset_current_mems_allowed;
4962
4963 return !node_isset(nid, *nodemask);
ddd588b5
DR
4964}
4965
1da177e4
LT
4966#define K(x) ((x) << (PAGE_SHIFT-10))
4967
377e4f16
RV
4968static void show_migration_types(unsigned char type)
4969{
4970 static const char types[MIGRATE_TYPES] = {
4971 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4972 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4973 [MIGRATE_RECLAIMABLE] = 'E',
4974 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4975#ifdef CONFIG_CMA
4976 [MIGRATE_CMA] = 'C',
4977#endif
194159fb 4978#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4979 [MIGRATE_ISOLATE] = 'I',
194159fb 4980#endif
377e4f16
RV
4981 };
4982 char tmp[MIGRATE_TYPES + 1];
4983 char *p = tmp;
4984 int i;
4985
4986 for (i = 0; i < MIGRATE_TYPES; i++) {
4987 if (type & (1 << i))
4988 *p++ = types[i];
4989 }
4990
4991 *p = '\0';
1f84a18f 4992 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4993}
4994
1da177e4
LT
4995/*
4996 * Show free area list (used inside shift_scroll-lock stuff)
4997 * We also calculate the percentage fragmentation. We do this by counting the
4998 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4999 *
5000 * Bits in @filter:
5001 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5002 * cpuset.
1da177e4 5003 */
9af744d7 5004void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5005{
d1bfcdb8 5006 unsigned long free_pcp = 0;
c7241913 5007 int cpu;
1da177e4 5008 struct zone *zone;
599d0c95 5009 pg_data_t *pgdat;
1da177e4 5010
ee99c71c 5011 for_each_populated_zone(zone) {
9af744d7 5012 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5013 continue;
d1bfcdb8 5014
761b0677
KK
5015 for_each_online_cpu(cpu)
5016 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5017 }
5018
a731286d
KM
5019 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5020 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5021 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5022 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5023 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5024 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5025 global_node_page_state(NR_ACTIVE_ANON),
5026 global_node_page_state(NR_INACTIVE_ANON),
5027 global_node_page_state(NR_ISOLATED_ANON),
5028 global_node_page_state(NR_ACTIVE_FILE),
5029 global_node_page_state(NR_INACTIVE_FILE),
5030 global_node_page_state(NR_ISOLATED_FILE),
5031 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5032 global_node_page_state(NR_FILE_DIRTY),
5033 global_node_page_state(NR_WRITEBACK),
5034 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5035 global_node_page_state(NR_SLAB_RECLAIMABLE),
5036 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5037 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5038 global_node_page_state(NR_SHMEM),
c41f012a
MH
5039 global_zone_page_state(NR_PAGETABLE),
5040 global_zone_page_state(NR_BOUNCE),
5041 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5042 free_pcp,
c41f012a 5043 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5044
599d0c95 5045 for_each_online_pgdat(pgdat) {
9af744d7 5046 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5047 continue;
5048
599d0c95
MG
5049 printk("Node %d"
5050 " active_anon:%lukB"
5051 " inactive_anon:%lukB"
5052 " active_file:%lukB"
5053 " inactive_file:%lukB"
5054 " unevictable:%lukB"
5055 " isolated(anon):%lukB"
5056 " isolated(file):%lukB"
50658e2e 5057 " mapped:%lukB"
11fb9989
MG
5058 " dirty:%lukB"
5059 " writeback:%lukB"
5060 " shmem:%lukB"
5061#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5062 " shmem_thp: %lukB"
5063 " shmem_pmdmapped: %lukB"
5064 " anon_thp: %lukB"
5065#endif
5066 " writeback_tmp:%lukB"
5067 " unstable:%lukB"
599d0c95
MG
5068 " all_unreclaimable? %s"
5069 "\n",
5070 pgdat->node_id,
5071 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5072 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5073 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5074 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5075 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5076 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5077 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5078 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5079 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5080 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5081 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5082#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5083 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5084 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5085 * HPAGE_PMD_NR),
5086 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5087#endif
11fb9989
MG
5088 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5089 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5090 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5091 "yes" : "no");
599d0c95
MG
5092 }
5093
ee99c71c 5094 for_each_populated_zone(zone) {
1da177e4
LT
5095 int i;
5096
9af744d7 5097 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5098 continue;
d1bfcdb8
KK
5099
5100 free_pcp = 0;
5101 for_each_online_cpu(cpu)
5102 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5103
1da177e4 5104 show_node(zone);
1f84a18f
JP
5105 printk(KERN_CONT
5106 "%s"
1da177e4
LT
5107 " free:%lukB"
5108 " min:%lukB"
5109 " low:%lukB"
5110 " high:%lukB"
71c799f4
MK
5111 " active_anon:%lukB"
5112 " inactive_anon:%lukB"
5113 " active_file:%lukB"
5114 " inactive_file:%lukB"
5115 " unevictable:%lukB"
5a1c84b4 5116 " writepending:%lukB"
1da177e4 5117 " present:%lukB"
9feedc9d 5118 " managed:%lukB"
4a0aa73f 5119 " mlocked:%lukB"
c6a7f572 5120 " kernel_stack:%lukB"
4a0aa73f 5121 " pagetables:%lukB"
4a0aa73f 5122 " bounce:%lukB"
d1bfcdb8
KK
5123 " free_pcp:%lukB"
5124 " local_pcp:%ukB"
d1ce749a 5125 " free_cma:%lukB"
1da177e4
LT
5126 "\n",
5127 zone->name,
88f5acf8 5128 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5129 K(min_wmark_pages(zone)),
5130 K(low_wmark_pages(zone)),
5131 K(high_wmark_pages(zone)),
71c799f4
MK
5132 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5133 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5134 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5135 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5136 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5137 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5138 K(zone->present_pages),
9705bea5 5139 K(zone_managed_pages(zone)),
4a0aa73f 5140 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5141 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5142 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5143 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5144 K(free_pcp),
5145 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5146 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5147 printk("lowmem_reserve[]:");
5148 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5149 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5150 printk(KERN_CONT "\n");
1da177e4
LT
5151 }
5152
ee99c71c 5153 for_each_populated_zone(zone) {
d00181b9
KS
5154 unsigned int order;
5155 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5156 unsigned char types[MAX_ORDER];
1da177e4 5157
9af744d7 5158 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5159 continue;
1da177e4 5160 show_node(zone);
1f84a18f 5161 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5162
5163 spin_lock_irqsave(&zone->lock, flags);
5164 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5165 struct free_area *area = &zone->free_area[order];
5166 int type;
5167
5168 nr[order] = area->nr_free;
8f9de51a 5169 total += nr[order] << order;
377e4f16
RV
5170
5171 types[order] = 0;
5172 for (type = 0; type < MIGRATE_TYPES; type++) {
5173 if (!list_empty(&area->free_list[type]))
5174 types[order] |= 1 << type;
5175 }
1da177e4
LT
5176 }
5177 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5178 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5179 printk(KERN_CONT "%lu*%lukB ",
5180 nr[order], K(1UL) << order);
377e4f16
RV
5181 if (nr[order])
5182 show_migration_types(types[order]);
5183 }
1f84a18f 5184 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5185 }
5186
949f7ec5
DR
5187 hugetlb_show_meminfo();
5188
11fb9989 5189 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5190
1da177e4
LT
5191 show_swap_cache_info();
5192}
5193
19770b32
MG
5194static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5195{
5196 zoneref->zone = zone;
5197 zoneref->zone_idx = zone_idx(zone);
5198}
5199
1da177e4
LT
5200/*
5201 * Builds allocation fallback zone lists.
1a93205b
CL
5202 *
5203 * Add all populated zones of a node to the zonelist.
1da177e4 5204 */
9d3be21b 5205static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5206{
1a93205b 5207 struct zone *zone;
bc732f1d 5208 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5209 int nr_zones = 0;
02a68a5e
CL
5210
5211 do {
2f6726e5 5212 zone_type--;
070f8032 5213 zone = pgdat->node_zones + zone_type;
6aa303de 5214 if (managed_zone(zone)) {
9d3be21b 5215 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5216 check_highest_zone(zone_type);
1da177e4 5217 }
2f6726e5 5218 } while (zone_type);
bc732f1d 5219
070f8032 5220 return nr_zones;
1da177e4
LT
5221}
5222
5223#ifdef CONFIG_NUMA
f0c0b2b8
KH
5224
5225static int __parse_numa_zonelist_order(char *s)
5226{
c9bff3ee
MH
5227 /*
5228 * We used to support different zonlists modes but they turned
5229 * out to be just not useful. Let's keep the warning in place
5230 * if somebody still use the cmd line parameter so that we do
5231 * not fail it silently
5232 */
5233 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5234 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5235 return -EINVAL;
5236 }
5237 return 0;
5238}
5239
5240static __init int setup_numa_zonelist_order(char *s)
5241{
ecb256f8
VL
5242 if (!s)
5243 return 0;
5244
c9bff3ee 5245 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5246}
5247early_param("numa_zonelist_order", setup_numa_zonelist_order);
5248
c9bff3ee
MH
5249char numa_zonelist_order[] = "Node";
5250
f0c0b2b8
KH
5251/*
5252 * sysctl handler for numa_zonelist_order
5253 */
cccad5b9 5254int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5255 void __user *buffer, size_t *length,
f0c0b2b8
KH
5256 loff_t *ppos)
5257{
c9bff3ee 5258 char *str;
f0c0b2b8
KH
5259 int ret;
5260
c9bff3ee
MH
5261 if (!write)
5262 return proc_dostring(table, write, buffer, length, ppos);
5263 str = memdup_user_nul(buffer, 16);
5264 if (IS_ERR(str))
5265 return PTR_ERR(str);
dacbde09 5266
c9bff3ee
MH
5267 ret = __parse_numa_zonelist_order(str);
5268 kfree(str);
443c6f14 5269 return ret;
f0c0b2b8
KH
5270}
5271
5272
62bc62a8 5273#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5274static int node_load[MAX_NUMNODES];
5275
1da177e4 5276/**
4dc3b16b 5277 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5278 * @node: node whose fallback list we're appending
5279 * @used_node_mask: nodemask_t of already used nodes
5280 *
5281 * We use a number of factors to determine which is the next node that should
5282 * appear on a given node's fallback list. The node should not have appeared
5283 * already in @node's fallback list, and it should be the next closest node
5284 * according to the distance array (which contains arbitrary distance values
5285 * from each node to each node in the system), and should also prefer nodes
5286 * with no CPUs, since presumably they'll have very little allocation pressure
5287 * on them otherwise.
5288 * It returns -1 if no node is found.
5289 */
f0c0b2b8 5290static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5291{
4cf808eb 5292 int n, val;
1da177e4 5293 int min_val = INT_MAX;
00ef2d2f 5294 int best_node = NUMA_NO_NODE;
a70f7302 5295 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5296
4cf808eb
LT
5297 /* Use the local node if we haven't already */
5298 if (!node_isset(node, *used_node_mask)) {
5299 node_set(node, *used_node_mask);
5300 return node;
5301 }
1da177e4 5302
4b0ef1fe 5303 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5304
5305 /* Don't want a node to appear more than once */
5306 if (node_isset(n, *used_node_mask))
5307 continue;
5308
1da177e4
LT
5309 /* Use the distance array to find the distance */
5310 val = node_distance(node, n);
5311
4cf808eb
LT
5312 /* Penalize nodes under us ("prefer the next node") */
5313 val += (n < node);
5314
1da177e4 5315 /* Give preference to headless and unused nodes */
a70f7302
RR
5316 tmp = cpumask_of_node(n);
5317 if (!cpumask_empty(tmp))
1da177e4
LT
5318 val += PENALTY_FOR_NODE_WITH_CPUS;
5319
5320 /* Slight preference for less loaded node */
5321 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5322 val += node_load[n];
5323
5324 if (val < min_val) {
5325 min_val = val;
5326 best_node = n;
5327 }
5328 }
5329
5330 if (best_node >= 0)
5331 node_set(best_node, *used_node_mask);
5332
5333 return best_node;
5334}
5335
f0c0b2b8
KH
5336
5337/*
5338 * Build zonelists ordered by node and zones within node.
5339 * This results in maximum locality--normal zone overflows into local
5340 * DMA zone, if any--but risks exhausting DMA zone.
5341 */
9d3be21b
MH
5342static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5343 unsigned nr_nodes)
1da177e4 5344{
9d3be21b
MH
5345 struct zoneref *zonerefs;
5346 int i;
5347
5348 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5349
5350 for (i = 0; i < nr_nodes; i++) {
5351 int nr_zones;
5352
5353 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5354
9d3be21b
MH
5355 nr_zones = build_zonerefs_node(node, zonerefs);
5356 zonerefs += nr_zones;
5357 }
5358 zonerefs->zone = NULL;
5359 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5360}
5361
523b9458
CL
5362/*
5363 * Build gfp_thisnode zonelists
5364 */
5365static void build_thisnode_zonelists(pg_data_t *pgdat)
5366{
9d3be21b
MH
5367 struct zoneref *zonerefs;
5368 int nr_zones;
523b9458 5369
9d3be21b
MH
5370 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5371 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5372 zonerefs += nr_zones;
5373 zonerefs->zone = NULL;
5374 zonerefs->zone_idx = 0;
523b9458
CL
5375}
5376
f0c0b2b8
KH
5377/*
5378 * Build zonelists ordered by zone and nodes within zones.
5379 * This results in conserving DMA zone[s] until all Normal memory is
5380 * exhausted, but results in overflowing to remote node while memory
5381 * may still exist in local DMA zone.
5382 */
f0c0b2b8 5383
f0c0b2b8
KH
5384static void build_zonelists(pg_data_t *pgdat)
5385{
9d3be21b
MH
5386 static int node_order[MAX_NUMNODES];
5387 int node, load, nr_nodes = 0;
1da177e4 5388 nodemask_t used_mask;
f0c0b2b8 5389 int local_node, prev_node;
1da177e4
LT
5390
5391 /* NUMA-aware ordering of nodes */
5392 local_node = pgdat->node_id;
62bc62a8 5393 load = nr_online_nodes;
1da177e4
LT
5394 prev_node = local_node;
5395 nodes_clear(used_mask);
f0c0b2b8 5396
f0c0b2b8 5397 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5398 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5399 /*
5400 * We don't want to pressure a particular node.
5401 * So adding penalty to the first node in same
5402 * distance group to make it round-robin.
5403 */
957f822a
DR
5404 if (node_distance(local_node, node) !=
5405 node_distance(local_node, prev_node))
f0c0b2b8
KH
5406 node_load[node] = load;
5407
9d3be21b 5408 node_order[nr_nodes++] = node;
1da177e4
LT
5409 prev_node = node;
5410 load--;
1da177e4 5411 }
523b9458 5412
9d3be21b 5413 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5414 build_thisnode_zonelists(pgdat);
1da177e4
LT
5415}
5416
7aac7898
LS
5417#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5418/*
5419 * Return node id of node used for "local" allocations.
5420 * I.e., first node id of first zone in arg node's generic zonelist.
5421 * Used for initializing percpu 'numa_mem', which is used primarily
5422 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5423 */
5424int local_memory_node(int node)
5425{
c33d6c06 5426 struct zoneref *z;
7aac7898 5427
c33d6c06 5428 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5429 gfp_zone(GFP_KERNEL),
c33d6c06 5430 NULL);
c1093b74 5431 return zone_to_nid(z->zone);
7aac7898
LS
5432}
5433#endif
f0c0b2b8 5434
6423aa81
JK
5435static void setup_min_unmapped_ratio(void);
5436static void setup_min_slab_ratio(void);
1da177e4
LT
5437#else /* CONFIG_NUMA */
5438
f0c0b2b8 5439static void build_zonelists(pg_data_t *pgdat)
1da177e4 5440{
19655d34 5441 int node, local_node;
9d3be21b
MH
5442 struct zoneref *zonerefs;
5443 int nr_zones;
1da177e4
LT
5444
5445 local_node = pgdat->node_id;
1da177e4 5446
9d3be21b
MH
5447 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5448 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5449 zonerefs += nr_zones;
1da177e4 5450
54a6eb5c
MG
5451 /*
5452 * Now we build the zonelist so that it contains the zones
5453 * of all the other nodes.
5454 * We don't want to pressure a particular node, so when
5455 * building the zones for node N, we make sure that the
5456 * zones coming right after the local ones are those from
5457 * node N+1 (modulo N)
5458 */
5459 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5460 if (!node_online(node))
5461 continue;
9d3be21b
MH
5462 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5463 zonerefs += nr_zones;
1da177e4 5464 }
54a6eb5c
MG
5465 for (node = 0; node < local_node; node++) {
5466 if (!node_online(node))
5467 continue;
9d3be21b
MH
5468 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5469 zonerefs += nr_zones;
54a6eb5c
MG
5470 }
5471
9d3be21b
MH
5472 zonerefs->zone = NULL;
5473 zonerefs->zone_idx = 0;
1da177e4
LT
5474}
5475
5476#endif /* CONFIG_NUMA */
5477
99dcc3e5
CL
5478/*
5479 * Boot pageset table. One per cpu which is going to be used for all
5480 * zones and all nodes. The parameters will be set in such a way
5481 * that an item put on a list will immediately be handed over to
5482 * the buddy list. This is safe since pageset manipulation is done
5483 * with interrupts disabled.
5484 *
5485 * The boot_pagesets must be kept even after bootup is complete for
5486 * unused processors and/or zones. They do play a role for bootstrapping
5487 * hotplugged processors.
5488 *
5489 * zoneinfo_show() and maybe other functions do
5490 * not check if the processor is online before following the pageset pointer.
5491 * Other parts of the kernel may not check if the zone is available.
5492 */
5493static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5494static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5495static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5496
11cd8638 5497static void __build_all_zonelists(void *data)
1da177e4 5498{
6811378e 5499 int nid;
afb6ebb3 5500 int __maybe_unused cpu;
9adb62a5 5501 pg_data_t *self = data;
b93e0f32
MH
5502 static DEFINE_SPINLOCK(lock);
5503
5504 spin_lock(&lock);
9276b1bc 5505
7f9cfb31
BL
5506#ifdef CONFIG_NUMA
5507 memset(node_load, 0, sizeof(node_load));
5508#endif
9adb62a5 5509
c1152583
WY
5510 /*
5511 * This node is hotadded and no memory is yet present. So just
5512 * building zonelists is fine - no need to touch other nodes.
5513 */
9adb62a5
JL
5514 if (self && !node_online(self->node_id)) {
5515 build_zonelists(self);
c1152583
WY
5516 } else {
5517 for_each_online_node(nid) {
5518 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5519
c1152583
WY
5520 build_zonelists(pgdat);
5521 }
99dcc3e5 5522
7aac7898
LS
5523#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5524 /*
5525 * We now know the "local memory node" for each node--
5526 * i.e., the node of the first zone in the generic zonelist.
5527 * Set up numa_mem percpu variable for on-line cpus. During
5528 * boot, only the boot cpu should be on-line; we'll init the
5529 * secondary cpus' numa_mem as they come on-line. During
5530 * node/memory hotplug, we'll fixup all on-line cpus.
5531 */
d9c9a0b9 5532 for_each_online_cpu(cpu)
7aac7898 5533 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5534#endif
d9c9a0b9 5535 }
b93e0f32
MH
5536
5537 spin_unlock(&lock);
6811378e
YG
5538}
5539
061f67bc
RV
5540static noinline void __init
5541build_all_zonelists_init(void)
5542{
afb6ebb3
MH
5543 int cpu;
5544
061f67bc 5545 __build_all_zonelists(NULL);
afb6ebb3
MH
5546
5547 /*
5548 * Initialize the boot_pagesets that are going to be used
5549 * for bootstrapping processors. The real pagesets for
5550 * each zone will be allocated later when the per cpu
5551 * allocator is available.
5552 *
5553 * boot_pagesets are used also for bootstrapping offline
5554 * cpus if the system is already booted because the pagesets
5555 * are needed to initialize allocators on a specific cpu too.
5556 * F.e. the percpu allocator needs the page allocator which
5557 * needs the percpu allocator in order to allocate its pagesets
5558 * (a chicken-egg dilemma).
5559 */
5560 for_each_possible_cpu(cpu)
5561 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5562
061f67bc
RV
5563 mminit_verify_zonelist();
5564 cpuset_init_current_mems_allowed();
5565}
5566
4eaf3f64 5567/*
4eaf3f64 5568 * unless system_state == SYSTEM_BOOTING.
061f67bc 5569 *
72675e13 5570 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5571 * [protected by SYSTEM_BOOTING].
4eaf3f64 5572 */
72675e13 5573void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5574{
5575 if (system_state == SYSTEM_BOOTING) {
061f67bc 5576 build_all_zonelists_init();
6811378e 5577 } else {
11cd8638 5578 __build_all_zonelists(pgdat);
6811378e
YG
5579 /* cpuset refresh routine should be here */
5580 }
bd1e22b8 5581 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5582 /*
5583 * Disable grouping by mobility if the number of pages in the
5584 * system is too low to allow the mechanism to work. It would be
5585 * more accurate, but expensive to check per-zone. This check is
5586 * made on memory-hotadd so a system can start with mobility
5587 * disabled and enable it later
5588 */
d9c23400 5589 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5590 page_group_by_mobility_disabled = 1;
5591 else
5592 page_group_by_mobility_disabled = 0;
5593
c9bff3ee 5594 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5595 nr_online_nodes,
756a025f
JP
5596 page_group_by_mobility_disabled ? "off" : "on",
5597 vm_total_pages);
f0c0b2b8 5598#ifdef CONFIG_NUMA
f88dfff5 5599 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5600#endif
1da177e4
LT
5601}
5602
a9a9e77f
PT
5603/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5604static bool __meminit
5605overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5606{
5607#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5608 static struct memblock_region *r;
5609
5610 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5611 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5612 for_each_memblock(memory, r) {
5613 if (*pfn < memblock_region_memory_end_pfn(r))
5614 break;
5615 }
5616 }
5617 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5618 memblock_is_mirror(r)) {
5619 *pfn = memblock_region_memory_end_pfn(r);
5620 return true;
5621 }
5622 }
5623#endif
5624 return false;
5625}
5626
1da177e4
LT
5627/*
5628 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5629 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5630 * done. Non-atomic initialization, single-pass.
5631 */
c09b4240 5632void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5633 unsigned long start_pfn, enum memmap_context context,
5634 struct vmem_altmap *altmap)
1da177e4 5635{
a9a9e77f 5636 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5637 struct page *page;
1da177e4 5638
22b31eec
HD
5639 if (highest_memmap_pfn < end_pfn - 1)
5640 highest_memmap_pfn = end_pfn - 1;
5641
966cf44f 5642#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5643 /*
5644 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5645 * memory. We limit the total number of pages to initialize to just
5646 * those that might contain the memory mapping. We will defer the
5647 * ZONE_DEVICE page initialization until after we have released
5648 * the hotplug lock.
4b94ffdc 5649 */
966cf44f
AD
5650 if (zone == ZONE_DEVICE) {
5651 if (!altmap)
5652 return;
5653
5654 if (start_pfn == altmap->base_pfn)
5655 start_pfn += altmap->reserve;
5656 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5657 }
5658#endif
4b94ffdc 5659
cbe8dd4a 5660 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5661 /*
b72d0ffb
AM
5662 * There can be holes in boot-time mem_map[]s handed to this
5663 * function. They do not exist on hotplugged memory.
a2f3aa02 5664 */
a9a9e77f
PT
5665 if (context == MEMMAP_EARLY) {
5666 if (!early_pfn_valid(pfn))
b72d0ffb 5667 continue;
a9a9e77f
PT
5668 if (!early_pfn_in_nid(pfn, nid))
5669 continue;
5670 if (overlap_memmap_init(zone, &pfn))
5671 continue;
5672 if (defer_init(nid, pfn, end_pfn))
5673 break;
a2f3aa02 5674 }
ac5d2539 5675
d0dc12e8
PT
5676 page = pfn_to_page(pfn);
5677 __init_single_page(page, pfn, zone, nid);
5678 if (context == MEMMAP_HOTPLUG)
d483da5b 5679 __SetPageReserved(page);
d0dc12e8 5680
ac5d2539
MG
5681 /*
5682 * Mark the block movable so that blocks are reserved for
5683 * movable at startup. This will force kernel allocations
5684 * to reserve their blocks rather than leaking throughout
5685 * the address space during boot when many long-lived
974a786e 5686 * kernel allocations are made.
ac5d2539
MG
5687 *
5688 * bitmap is created for zone's valid pfn range. but memmap
5689 * can be created for invalid pages (for alignment)
5690 * check here not to call set_pageblock_migratetype() against
5691 * pfn out of zone.
5692 */
5693 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5694 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5695 cond_resched();
ac5d2539 5696 }
1da177e4 5697 }
2830bf6f
MZ
5698#ifdef CONFIG_SPARSEMEM
5699 /*
5700 * If the zone does not span the rest of the section then
5701 * we should at least initialize those pages. Otherwise we
5702 * could blow up on a poisoned page in some paths which depend
5703 * on full sections being initialized (e.g. memory hotplug).
5704 */
5705 while (end_pfn % PAGES_PER_SECTION) {
5706 __init_single_page(pfn_to_page(end_pfn), end_pfn, zone, nid);
5707 end_pfn++;
5708 }
5709#endif
1da177e4
LT
5710}
5711
966cf44f
AD
5712#ifdef CONFIG_ZONE_DEVICE
5713void __ref memmap_init_zone_device(struct zone *zone,
5714 unsigned long start_pfn,
5715 unsigned long size,
5716 struct dev_pagemap *pgmap)
5717{
5718 unsigned long pfn, end_pfn = start_pfn + size;
5719 struct pglist_data *pgdat = zone->zone_pgdat;
5720 unsigned long zone_idx = zone_idx(zone);
5721 unsigned long start = jiffies;
5722 int nid = pgdat->node_id;
5723
5724 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5725 return;
5726
5727 /*
5728 * The call to memmap_init_zone should have already taken care
5729 * of the pages reserved for the memmap, so we can just jump to
5730 * the end of that region and start processing the device pages.
5731 */
5732 if (pgmap->altmap_valid) {
5733 struct vmem_altmap *altmap = &pgmap->altmap;
5734
5735 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5736 size = end_pfn - start_pfn;
5737 }
5738
5739 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5740 struct page *page = pfn_to_page(pfn);
5741
5742 __init_single_page(page, pfn, zone_idx, nid);
5743
5744 /*
5745 * Mark page reserved as it will need to wait for onlining
5746 * phase for it to be fully associated with a zone.
5747 *
5748 * We can use the non-atomic __set_bit operation for setting
5749 * the flag as we are still initializing the pages.
5750 */
5751 __SetPageReserved(page);
5752
5753 /*
5754 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5755 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5756 * page is ever freed or placed on a driver-private list.
5757 */
5758 page->pgmap = pgmap;
5759 page->hmm_data = 0;
5760
5761 /*
5762 * Mark the block movable so that blocks are reserved for
5763 * movable at startup. This will force kernel allocations
5764 * to reserve their blocks rather than leaking throughout
5765 * the address space during boot when many long-lived
5766 * kernel allocations are made.
5767 *
5768 * bitmap is created for zone's valid pfn range. but memmap
5769 * can be created for invalid pages (for alignment)
5770 * check here not to call set_pageblock_migratetype() against
5771 * pfn out of zone.
5772 *
5773 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5774 * because this is done early in sparse_add_one_section
5775 */
5776 if (!(pfn & (pageblock_nr_pages - 1))) {
5777 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5778 cond_resched();
5779 }
5780 }
5781
5782 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5783 size, jiffies_to_msecs(jiffies - start));
5784}
5785
5786#endif
1e548deb 5787static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5788{
7aeb09f9 5789 unsigned int order, t;
b2a0ac88
MG
5790 for_each_migratetype_order(order, t) {
5791 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5792 zone->free_area[order].nr_free = 0;
5793 }
5794}
5795
dfb3ccd0
PT
5796void __meminit __weak memmap_init(unsigned long size, int nid,
5797 unsigned long zone, unsigned long start_pfn)
5798{
5799 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5800}
1da177e4 5801
7cd2b0a3 5802static int zone_batchsize(struct zone *zone)
e7c8d5c9 5803{
3a6be87f 5804#ifdef CONFIG_MMU
e7c8d5c9
CL
5805 int batch;
5806
5807 /*
5808 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5809 * size of the zone.
e7c8d5c9 5810 */
9705bea5 5811 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
5812 /* But no more than a meg. */
5813 if (batch * PAGE_SIZE > 1024 * 1024)
5814 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5815 batch /= 4; /* We effectively *= 4 below */
5816 if (batch < 1)
5817 batch = 1;
5818
5819 /*
0ceaacc9
NP
5820 * Clamp the batch to a 2^n - 1 value. Having a power
5821 * of 2 value was found to be more likely to have
5822 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5823 *
0ceaacc9
NP
5824 * For example if 2 tasks are alternately allocating
5825 * batches of pages, one task can end up with a lot
5826 * of pages of one half of the possible page colors
5827 * and the other with pages of the other colors.
e7c8d5c9 5828 */
9155203a 5829 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5830
e7c8d5c9 5831 return batch;
3a6be87f
DH
5832
5833#else
5834 /* The deferral and batching of frees should be suppressed under NOMMU
5835 * conditions.
5836 *
5837 * The problem is that NOMMU needs to be able to allocate large chunks
5838 * of contiguous memory as there's no hardware page translation to
5839 * assemble apparent contiguous memory from discontiguous pages.
5840 *
5841 * Queueing large contiguous runs of pages for batching, however,
5842 * causes the pages to actually be freed in smaller chunks. As there
5843 * can be a significant delay between the individual batches being
5844 * recycled, this leads to the once large chunks of space being
5845 * fragmented and becoming unavailable for high-order allocations.
5846 */
5847 return 0;
5848#endif
e7c8d5c9
CL
5849}
5850
8d7a8fa9
CS
5851/*
5852 * pcp->high and pcp->batch values are related and dependent on one another:
5853 * ->batch must never be higher then ->high.
5854 * The following function updates them in a safe manner without read side
5855 * locking.
5856 *
5857 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5858 * those fields changing asynchronously (acording the the above rule).
5859 *
5860 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5861 * outside of boot time (or some other assurance that no concurrent updaters
5862 * exist).
5863 */
5864static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5865 unsigned long batch)
5866{
5867 /* start with a fail safe value for batch */
5868 pcp->batch = 1;
5869 smp_wmb();
5870
5871 /* Update high, then batch, in order */
5872 pcp->high = high;
5873 smp_wmb();
5874
5875 pcp->batch = batch;
5876}
5877
3664033c 5878/* a companion to pageset_set_high() */
4008bab7
CS
5879static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5880{
8d7a8fa9 5881 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5882}
5883
88c90dbc 5884static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5885{
5886 struct per_cpu_pages *pcp;
5f8dcc21 5887 int migratetype;
2caaad41 5888
1c6fe946
MD
5889 memset(p, 0, sizeof(*p));
5890
3dfa5721 5891 pcp = &p->pcp;
5f8dcc21
MG
5892 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5893 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5894}
5895
88c90dbc
CS
5896static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5897{
5898 pageset_init(p);
5899 pageset_set_batch(p, batch);
5900}
5901
8ad4b1fb 5902/*
3664033c 5903 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5904 * to the value high for the pageset p.
5905 */
3664033c 5906static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5907 unsigned long high)
5908{
8d7a8fa9
CS
5909 unsigned long batch = max(1UL, high / 4);
5910 if ((high / 4) > (PAGE_SHIFT * 8))
5911 batch = PAGE_SHIFT * 8;
8ad4b1fb 5912
8d7a8fa9 5913 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5914}
5915
7cd2b0a3
DR
5916static void pageset_set_high_and_batch(struct zone *zone,
5917 struct per_cpu_pageset *pcp)
56cef2b8 5918{
56cef2b8 5919 if (percpu_pagelist_fraction)
3664033c 5920 pageset_set_high(pcp,
9705bea5 5921 (zone_managed_pages(zone) /
56cef2b8
CS
5922 percpu_pagelist_fraction));
5923 else
5924 pageset_set_batch(pcp, zone_batchsize(zone));
5925}
5926
169f6c19
CS
5927static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5928{
5929 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5930
5931 pageset_init(pcp);
5932 pageset_set_high_and_batch(zone, pcp);
5933}
5934
72675e13 5935void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5936{
5937 int cpu;
319774e2 5938 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5939 for_each_possible_cpu(cpu)
5940 zone_pageset_init(zone, cpu);
319774e2
WF
5941}
5942
2caaad41 5943/*
99dcc3e5
CL
5944 * Allocate per cpu pagesets and initialize them.
5945 * Before this call only boot pagesets were available.
e7c8d5c9 5946 */
99dcc3e5 5947void __init setup_per_cpu_pageset(void)
e7c8d5c9 5948{
b4911ea2 5949 struct pglist_data *pgdat;
99dcc3e5 5950 struct zone *zone;
e7c8d5c9 5951
319774e2
WF
5952 for_each_populated_zone(zone)
5953 setup_zone_pageset(zone);
b4911ea2
MG
5954
5955 for_each_online_pgdat(pgdat)
5956 pgdat->per_cpu_nodestats =
5957 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5958}
5959
c09b4240 5960static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5961{
99dcc3e5
CL
5962 /*
5963 * per cpu subsystem is not up at this point. The following code
5964 * relies on the ability of the linker to provide the
5965 * offset of a (static) per cpu variable into the per cpu area.
5966 */
5967 zone->pageset = &boot_pageset;
ed8ece2e 5968
b38a8725 5969 if (populated_zone(zone))
99dcc3e5
CL
5970 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5971 zone->name, zone->present_pages,
5972 zone_batchsize(zone));
ed8ece2e
DH
5973}
5974
dc0bbf3b 5975void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5976 unsigned long zone_start_pfn,
b171e409 5977 unsigned long size)
ed8ece2e
DH
5978{
5979 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 5980 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 5981
8f416836
WY
5982 if (zone_idx > pgdat->nr_zones)
5983 pgdat->nr_zones = zone_idx;
ed8ece2e 5984
ed8ece2e
DH
5985 zone->zone_start_pfn = zone_start_pfn;
5986
708614e6
MG
5987 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5988 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5989 pgdat->node_id,
5990 (unsigned long)zone_idx(zone),
5991 zone_start_pfn, (zone_start_pfn + size));
5992
1e548deb 5993 zone_init_free_lists(zone);
9dcb8b68 5994 zone->initialized = 1;
ed8ece2e
DH
5995}
5996
0ee332c1 5997#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5998#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5999
c713216d
MG
6000/*
6001 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6002 */
8a942fde
MG
6003int __meminit __early_pfn_to_nid(unsigned long pfn,
6004 struct mminit_pfnnid_cache *state)
c713216d 6005{
c13291a5 6006 unsigned long start_pfn, end_pfn;
e76b63f8 6007 int nid;
7c243c71 6008
8a942fde
MG
6009 if (state->last_start <= pfn && pfn < state->last_end)
6010 return state->last_nid;
c713216d 6011
e76b63f8
YL
6012 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6013 if (nid != -1) {
8a942fde
MG
6014 state->last_start = start_pfn;
6015 state->last_end = end_pfn;
6016 state->last_nid = nid;
e76b63f8
YL
6017 }
6018
6019 return nid;
c713216d
MG
6020}
6021#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6022
c713216d 6023/**
6782832e 6024 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6025 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6026 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6027 *
7d018176
ZZ
6028 * If an architecture guarantees that all ranges registered contain no holes
6029 * and may be freed, this this function may be used instead of calling
6030 * memblock_free_early_nid() manually.
c713216d 6031 */
c13291a5 6032void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6033{
c13291a5
TH
6034 unsigned long start_pfn, end_pfn;
6035 int i, this_nid;
edbe7d23 6036
c13291a5
TH
6037 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6038 start_pfn = min(start_pfn, max_low_pfn);
6039 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6040
c13291a5 6041 if (start_pfn < end_pfn)
6782832e
SS
6042 memblock_free_early_nid(PFN_PHYS(start_pfn),
6043 (end_pfn - start_pfn) << PAGE_SHIFT,
6044 this_nid);
edbe7d23 6045 }
edbe7d23 6046}
edbe7d23 6047
c713216d
MG
6048/**
6049 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6050 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6051 *
7d018176
ZZ
6052 * If an architecture guarantees that all ranges registered contain no holes and may
6053 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6054 */
6055void __init sparse_memory_present_with_active_regions(int nid)
6056{
c13291a5
TH
6057 unsigned long start_pfn, end_pfn;
6058 int i, this_nid;
c713216d 6059
c13291a5
TH
6060 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6061 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6062}
6063
6064/**
6065 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6066 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6067 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6068 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6069 *
6070 * It returns the start and end page frame of a node based on information
7d018176 6071 * provided by memblock_set_node(). If called for a node
c713216d 6072 * with no available memory, a warning is printed and the start and end
88ca3b94 6073 * PFNs will be 0.
c713216d 6074 */
bbe5d993 6075void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6076 unsigned long *start_pfn, unsigned long *end_pfn)
6077{
c13291a5 6078 unsigned long this_start_pfn, this_end_pfn;
c713216d 6079 int i;
c13291a5 6080
c713216d
MG
6081 *start_pfn = -1UL;
6082 *end_pfn = 0;
6083
c13291a5
TH
6084 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6085 *start_pfn = min(*start_pfn, this_start_pfn);
6086 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6087 }
6088
633c0666 6089 if (*start_pfn == -1UL)
c713216d 6090 *start_pfn = 0;
c713216d
MG
6091}
6092
2a1e274a
MG
6093/*
6094 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6095 * assumption is made that zones within a node are ordered in monotonic
6096 * increasing memory addresses so that the "highest" populated zone is used
6097 */
b69a7288 6098static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6099{
6100 int zone_index;
6101 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6102 if (zone_index == ZONE_MOVABLE)
6103 continue;
6104
6105 if (arch_zone_highest_possible_pfn[zone_index] >
6106 arch_zone_lowest_possible_pfn[zone_index])
6107 break;
6108 }
6109
6110 VM_BUG_ON(zone_index == -1);
6111 movable_zone = zone_index;
6112}
6113
6114/*
6115 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6116 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6117 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6118 * in each node depending on the size of each node and how evenly kernelcore
6119 * is distributed. This helper function adjusts the zone ranges
6120 * provided by the architecture for a given node by using the end of the
6121 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6122 * zones within a node are in order of monotonic increases memory addresses
6123 */
bbe5d993 6124static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6125 unsigned long zone_type,
6126 unsigned long node_start_pfn,
6127 unsigned long node_end_pfn,
6128 unsigned long *zone_start_pfn,
6129 unsigned long *zone_end_pfn)
6130{
6131 /* Only adjust if ZONE_MOVABLE is on this node */
6132 if (zone_movable_pfn[nid]) {
6133 /* Size ZONE_MOVABLE */
6134 if (zone_type == ZONE_MOVABLE) {
6135 *zone_start_pfn = zone_movable_pfn[nid];
6136 *zone_end_pfn = min(node_end_pfn,
6137 arch_zone_highest_possible_pfn[movable_zone]);
6138
e506b996
XQ
6139 /* Adjust for ZONE_MOVABLE starting within this range */
6140 } else if (!mirrored_kernelcore &&
6141 *zone_start_pfn < zone_movable_pfn[nid] &&
6142 *zone_end_pfn > zone_movable_pfn[nid]) {
6143 *zone_end_pfn = zone_movable_pfn[nid];
6144
2a1e274a
MG
6145 /* Check if this whole range is within ZONE_MOVABLE */
6146 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6147 *zone_start_pfn = *zone_end_pfn;
6148 }
6149}
6150
c713216d
MG
6151/*
6152 * Return the number of pages a zone spans in a node, including holes
6153 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6154 */
bbe5d993 6155static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6156 unsigned long zone_type,
7960aedd
ZY
6157 unsigned long node_start_pfn,
6158 unsigned long node_end_pfn,
d91749c1
TI
6159 unsigned long *zone_start_pfn,
6160 unsigned long *zone_end_pfn,
c713216d
MG
6161 unsigned long *ignored)
6162{
b5685e92 6163 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6164 if (!node_start_pfn && !node_end_pfn)
6165 return 0;
6166
7960aedd 6167 /* Get the start and end of the zone */
d91749c1
TI
6168 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
6169 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
6170 adjust_zone_range_for_zone_movable(nid, zone_type,
6171 node_start_pfn, node_end_pfn,
d91749c1 6172 zone_start_pfn, zone_end_pfn);
c713216d
MG
6173
6174 /* Check that this node has pages within the zone's required range */
d91749c1 6175 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6176 return 0;
6177
6178 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6179 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6180 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6181
6182 /* Return the spanned pages */
d91749c1 6183 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6184}
6185
6186/*
6187 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6188 * then all holes in the requested range will be accounted for.
c713216d 6189 */
bbe5d993 6190unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6191 unsigned long range_start_pfn,
6192 unsigned long range_end_pfn)
6193{
96e907d1
TH
6194 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6195 unsigned long start_pfn, end_pfn;
6196 int i;
c713216d 6197
96e907d1
TH
6198 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6199 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6200 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6201 nr_absent -= end_pfn - start_pfn;
c713216d 6202 }
96e907d1 6203 return nr_absent;
c713216d
MG
6204}
6205
6206/**
6207 * absent_pages_in_range - Return number of page frames in holes within a range
6208 * @start_pfn: The start PFN to start searching for holes
6209 * @end_pfn: The end PFN to stop searching for holes
6210 *
88ca3b94 6211 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
6212 */
6213unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6214 unsigned long end_pfn)
6215{
6216 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6217}
6218
6219/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6220static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6221 unsigned long zone_type,
7960aedd
ZY
6222 unsigned long node_start_pfn,
6223 unsigned long node_end_pfn,
c713216d
MG
6224 unsigned long *ignored)
6225{
96e907d1
TH
6226 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6227 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6228 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6229 unsigned long nr_absent;
9c7cd687 6230
b5685e92 6231 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6232 if (!node_start_pfn && !node_end_pfn)
6233 return 0;
6234
96e907d1
TH
6235 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6236 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6237
2a1e274a
MG
6238 adjust_zone_range_for_zone_movable(nid, zone_type,
6239 node_start_pfn, node_end_pfn,
6240 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6241 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6242
6243 /*
6244 * ZONE_MOVABLE handling.
6245 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6246 * and vice versa.
6247 */
e506b996
XQ
6248 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6249 unsigned long start_pfn, end_pfn;
6250 struct memblock_region *r;
6251
6252 for_each_memblock(memory, r) {
6253 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6254 zone_start_pfn, zone_end_pfn);
6255 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6256 zone_start_pfn, zone_end_pfn);
6257
6258 if (zone_type == ZONE_MOVABLE &&
6259 memblock_is_mirror(r))
6260 nr_absent += end_pfn - start_pfn;
6261
6262 if (zone_type == ZONE_NORMAL &&
6263 !memblock_is_mirror(r))
6264 nr_absent += end_pfn - start_pfn;
342332e6
TI
6265 }
6266 }
6267
6268 return nr_absent;
c713216d 6269}
0e0b864e 6270
0ee332c1 6271#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6272static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6273 unsigned long zone_type,
7960aedd
ZY
6274 unsigned long node_start_pfn,
6275 unsigned long node_end_pfn,
d91749c1
TI
6276 unsigned long *zone_start_pfn,
6277 unsigned long *zone_end_pfn,
c713216d
MG
6278 unsigned long *zones_size)
6279{
d91749c1
TI
6280 unsigned int zone;
6281
6282 *zone_start_pfn = node_start_pfn;
6283 for (zone = 0; zone < zone_type; zone++)
6284 *zone_start_pfn += zones_size[zone];
6285
6286 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6287
c713216d
MG
6288 return zones_size[zone_type];
6289}
6290
bbe5d993 6291static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6292 unsigned long zone_type,
7960aedd
ZY
6293 unsigned long node_start_pfn,
6294 unsigned long node_end_pfn,
c713216d
MG
6295 unsigned long *zholes_size)
6296{
6297 if (!zholes_size)
6298 return 0;
6299
6300 return zholes_size[zone_type];
6301}
20e6926d 6302
0ee332c1 6303#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6304
bbe5d993 6305static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6306 unsigned long node_start_pfn,
6307 unsigned long node_end_pfn,
6308 unsigned long *zones_size,
6309 unsigned long *zholes_size)
c713216d 6310{
febd5949 6311 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6312 enum zone_type i;
6313
febd5949
GZ
6314 for (i = 0; i < MAX_NR_ZONES; i++) {
6315 struct zone *zone = pgdat->node_zones + i;
d91749c1 6316 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6317 unsigned long size, real_size;
c713216d 6318
febd5949
GZ
6319 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6320 node_start_pfn,
6321 node_end_pfn,
d91749c1
TI
6322 &zone_start_pfn,
6323 &zone_end_pfn,
febd5949
GZ
6324 zones_size);
6325 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6326 node_start_pfn, node_end_pfn,
6327 zholes_size);
d91749c1
TI
6328 if (size)
6329 zone->zone_start_pfn = zone_start_pfn;
6330 else
6331 zone->zone_start_pfn = 0;
febd5949
GZ
6332 zone->spanned_pages = size;
6333 zone->present_pages = real_size;
6334
6335 totalpages += size;
6336 realtotalpages += real_size;
6337 }
6338
6339 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6340 pgdat->node_present_pages = realtotalpages;
6341 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6342 realtotalpages);
6343}
6344
835c134e
MG
6345#ifndef CONFIG_SPARSEMEM
6346/*
6347 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6348 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6349 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6350 * round what is now in bits to nearest long in bits, then return it in
6351 * bytes.
6352 */
7c45512d 6353static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6354{
6355 unsigned long usemapsize;
6356
7c45512d 6357 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6358 usemapsize = roundup(zonesize, pageblock_nr_pages);
6359 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6360 usemapsize *= NR_PAGEBLOCK_BITS;
6361 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6362
6363 return usemapsize / 8;
6364}
6365
7cc2a959 6366static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6367 struct zone *zone,
6368 unsigned long zone_start_pfn,
6369 unsigned long zonesize)
835c134e 6370{
7c45512d 6371 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6372 zone->pageblock_flags = NULL;
58a01a45 6373 if (usemapsize)
6782832e 6374 zone->pageblock_flags =
eb31d559 6375 memblock_alloc_node_nopanic(usemapsize,
6782832e 6376 pgdat->node_id);
835c134e
MG
6377}
6378#else
7c45512d
LT
6379static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6380 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6381#endif /* CONFIG_SPARSEMEM */
6382
d9c23400 6383#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6384
d9c23400 6385/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6386void __init set_pageblock_order(void)
d9c23400 6387{
955c1cd7
AM
6388 unsigned int order;
6389
d9c23400
MG
6390 /* Check that pageblock_nr_pages has not already been setup */
6391 if (pageblock_order)
6392 return;
6393
955c1cd7
AM
6394 if (HPAGE_SHIFT > PAGE_SHIFT)
6395 order = HUGETLB_PAGE_ORDER;
6396 else
6397 order = MAX_ORDER - 1;
6398
d9c23400
MG
6399 /*
6400 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6401 * This value may be variable depending on boot parameters on IA64 and
6402 * powerpc.
d9c23400
MG
6403 */
6404 pageblock_order = order;
6405}
6406#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6407
ba72cb8c
MG
6408/*
6409 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6410 * is unused as pageblock_order is set at compile-time. See
6411 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6412 * the kernel config
ba72cb8c 6413 */
03e85f9d 6414void __init set_pageblock_order(void)
ba72cb8c 6415{
ba72cb8c 6416}
d9c23400
MG
6417
6418#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6419
03e85f9d 6420static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6421 unsigned long present_pages)
01cefaef
JL
6422{
6423 unsigned long pages = spanned_pages;
6424
6425 /*
6426 * Provide a more accurate estimation if there are holes within
6427 * the zone and SPARSEMEM is in use. If there are holes within the
6428 * zone, each populated memory region may cost us one or two extra
6429 * memmap pages due to alignment because memmap pages for each
89d790ab 6430 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6431 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6432 */
6433 if (spanned_pages > present_pages + (present_pages >> 4) &&
6434 IS_ENABLED(CONFIG_SPARSEMEM))
6435 pages = present_pages;
6436
6437 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6438}
6439
ace1db39
OS
6440#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6441static void pgdat_init_split_queue(struct pglist_data *pgdat)
6442{
6443 spin_lock_init(&pgdat->split_queue_lock);
6444 INIT_LIST_HEAD(&pgdat->split_queue);
6445 pgdat->split_queue_len = 0;
6446}
6447#else
6448static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6449#endif
6450
6451#ifdef CONFIG_COMPACTION
6452static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6453{
6454 init_waitqueue_head(&pgdat->kcompactd_wait);
6455}
6456#else
6457static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6458#endif
6459
03e85f9d 6460static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6461{
208d54e5 6462 pgdat_resize_init(pgdat);
ace1db39 6463
ace1db39
OS
6464 pgdat_init_split_queue(pgdat);
6465 pgdat_init_kcompactd(pgdat);
6466
1da177e4 6467 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6468 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6469
eefa864b 6470 pgdat_page_ext_init(pgdat);
a52633d8 6471 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6472 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6473}
6474
6475static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6476 unsigned long remaining_pages)
6477{
9705bea5 6478 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6479 zone_set_nid(zone, nid);
6480 zone->name = zone_names[idx];
6481 zone->zone_pgdat = NODE_DATA(nid);
6482 spin_lock_init(&zone->lock);
6483 zone_seqlock_init(zone);
6484 zone_pcp_init(zone);
6485}
6486
6487/*
6488 * Set up the zone data structures
6489 * - init pgdat internals
6490 * - init all zones belonging to this node
6491 *
6492 * NOTE: this function is only called during memory hotplug
6493 */
6494#ifdef CONFIG_MEMORY_HOTPLUG
6495void __ref free_area_init_core_hotplug(int nid)
6496{
6497 enum zone_type z;
6498 pg_data_t *pgdat = NODE_DATA(nid);
6499
6500 pgdat_init_internals(pgdat);
6501 for (z = 0; z < MAX_NR_ZONES; z++)
6502 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6503}
6504#endif
6505
6506/*
6507 * Set up the zone data structures:
6508 * - mark all pages reserved
6509 * - mark all memory queues empty
6510 * - clear the memory bitmaps
6511 *
6512 * NOTE: pgdat should get zeroed by caller.
6513 * NOTE: this function is only called during early init.
6514 */
6515static void __init free_area_init_core(struct pglist_data *pgdat)
6516{
6517 enum zone_type j;
6518 int nid = pgdat->node_id;
5f63b720 6519
03e85f9d 6520 pgdat_init_internals(pgdat);
385386cf
JW
6521 pgdat->per_cpu_nodestats = &boot_nodestats;
6522
1da177e4
LT
6523 for (j = 0; j < MAX_NR_ZONES; j++) {
6524 struct zone *zone = pgdat->node_zones + j;
e6943859 6525 unsigned long size, freesize, memmap_pages;
d91749c1 6526 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6527
febd5949 6528 size = zone->spanned_pages;
e6943859 6529 freesize = zone->present_pages;
1da177e4 6530
0e0b864e 6531 /*
9feedc9d 6532 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6533 * is used by this zone for memmap. This affects the watermark
6534 * and per-cpu initialisations
6535 */
e6943859 6536 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6537 if (!is_highmem_idx(j)) {
6538 if (freesize >= memmap_pages) {
6539 freesize -= memmap_pages;
6540 if (memmap_pages)
6541 printk(KERN_DEBUG
6542 " %s zone: %lu pages used for memmap\n",
6543 zone_names[j], memmap_pages);
6544 } else
1170532b 6545 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6546 zone_names[j], memmap_pages, freesize);
6547 }
0e0b864e 6548
6267276f 6549 /* Account for reserved pages */
9feedc9d
JL
6550 if (j == 0 && freesize > dma_reserve) {
6551 freesize -= dma_reserve;
d903ef9f 6552 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6553 zone_names[0], dma_reserve);
0e0b864e
MG
6554 }
6555
98d2b0eb 6556 if (!is_highmem_idx(j))
9feedc9d 6557 nr_kernel_pages += freesize;
01cefaef
JL
6558 /* Charge for highmem memmap if there are enough kernel pages */
6559 else if (nr_kernel_pages > memmap_pages * 2)
6560 nr_kernel_pages -= memmap_pages;
9feedc9d 6561 nr_all_pages += freesize;
1da177e4 6562
9feedc9d
JL
6563 /*
6564 * Set an approximate value for lowmem here, it will be adjusted
6565 * when the bootmem allocator frees pages into the buddy system.
6566 * And all highmem pages will be managed by the buddy system.
6567 */
03e85f9d 6568 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6569
d883c6cf 6570 if (!size)
1da177e4
LT
6571 continue;
6572
955c1cd7 6573 set_pageblock_order();
d883c6cf
JK
6574 setup_usemap(pgdat, zone, zone_start_pfn, size);
6575 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6576 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6577 }
6578}
6579
0cd842f9 6580#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6581static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6582{
b0aeba74 6583 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6584 unsigned long __maybe_unused offset = 0;
6585
1da177e4
LT
6586 /* Skip empty nodes */
6587 if (!pgdat->node_spanned_pages)
6588 return;
6589
b0aeba74
TL
6590 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6591 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6592 /* ia64 gets its own node_mem_map, before this, without bootmem */
6593 if (!pgdat->node_mem_map) {
b0aeba74 6594 unsigned long size, end;
d41dee36
AW
6595 struct page *map;
6596
e984bb43
BP
6597 /*
6598 * The zone's endpoints aren't required to be MAX_ORDER
6599 * aligned but the node_mem_map endpoints must be in order
6600 * for the buddy allocator to function correctly.
6601 */
108bcc96 6602 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6603 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6604 size = (end - start) * sizeof(struct page);
eb31d559 6605 map = memblock_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6606 pgdat->node_mem_map = map + offset;
1da177e4 6607 }
0cd842f9
OS
6608 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6609 __func__, pgdat->node_id, (unsigned long)pgdat,
6610 (unsigned long)pgdat->node_mem_map);
12d810c1 6611#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6612 /*
6613 * With no DISCONTIG, the global mem_map is just set as node 0's
6614 */
c713216d 6615 if (pgdat == NODE_DATA(0)) {
1da177e4 6616 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6617#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6618 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6619 mem_map -= offset;
0ee332c1 6620#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6621 }
1da177e4
LT
6622#endif
6623}
0cd842f9
OS
6624#else
6625static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6626#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6627
0188dc98
OS
6628#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6629static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6630{
0188dc98
OS
6631 pgdat->first_deferred_pfn = ULONG_MAX;
6632}
6633#else
6634static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6635#endif
6636
03e85f9d 6637void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6638 unsigned long node_start_pfn,
6639 unsigned long *zholes_size)
1da177e4 6640{
9109fb7b 6641 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6642 unsigned long start_pfn = 0;
6643 unsigned long end_pfn = 0;
9109fb7b 6644
88fdf75d 6645 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6646 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6647
1da177e4
LT
6648 pgdat->node_id = nid;
6649 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6650 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6651#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6652 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6653 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6654 (u64)start_pfn << PAGE_SHIFT,
6655 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6656#else
6657 start_pfn = node_start_pfn;
7960aedd
ZY
6658#endif
6659 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6660 zones_size, zholes_size);
1da177e4
LT
6661
6662 alloc_node_mem_map(pgdat);
0188dc98 6663 pgdat_set_deferred_range(pgdat);
1da177e4 6664
7f3eb55b 6665 free_area_init_core(pgdat);
1da177e4
LT
6666}
6667
aca52c39 6668#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6669/*
6670 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6671 * pages zeroed
6672 */
6673static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6674{
6675 unsigned long pfn;
6676 u64 pgcnt = 0;
6677
6678 for (pfn = spfn; pfn < epfn; pfn++) {
6679 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6680 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6681 + pageblock_nr_pages - 1;
6682 continue;
6683 }
6684 mm_zero_struct_page(pfn_to_page(pfn));
6685 pgcnt++;
6686 }
6687
6688 return pgcnt;
6689}
6690
a4a3ede2
PT
6691/*
6692 * Only struct pages that are backed by physical memory are zeroed and
6693 * initialized by going through __init_single_page(). But, there are some
6694 * struct pages which are reserved in memblock allocator and their fields
6695 * may be accessed (for example page_to_pfn() on some configuration accesses
6696 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6697 *
6698 * This function also addresses a similar issue where struct pages are left
6699 * uninitialized because the physical address range is not covered by
6700 * memblock.memory or memblock.reserved. That could happen when memblock
6701 * layout is manually configured via memmap=.
a4a3ede2 6702 */
03e85f9d 6703void __init zero_resv_unavail(void)
a4a3ede2
PT
6704{
6705 phys_addr_t start, end;
a4a3ede2 6706 u64 i, pgcnt;
907ec5fc 6707 phys_addr_t next = 0;
a4a3ede2
PT
6708
6709 /*
907ec5fc 6710 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6711 */
6712 pgcnt = 0;
907ec5fc
NH
6713 for_each_mem_range(i, &memblock.memory, NULL,
6714 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6715 if (next < start)
6716 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6717 next = end;
6718 }
ec393a0f 6719 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6720
a4a3ede2
PT
6721 /*
6722 * Struct pages that do not have backing memory. This could be because
6723 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6724 */
6725 if (pgcnt)
907ec5fc 6726 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6727}
aca52c39 6728#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6729
0ee332c1 6730#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6731
6732#if MAX_NUMNODES > 1
6733/*
6734 * Figure out the number of possible node ids.
6735 */
f9872caf 6736void __init setup_nr_node_ids(void)
418508c1 6737{
904a9553 6738 unsigned int highest;
418508c1 6739
904a9553 6740 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6741 nr_node_ids = highest + 1;
6742}
418508c1
MS
6743#endif
6744
1e01979c
TH
6745/**
6746 * node_map_pfn_alignment - determine the maximum internode alignment
6747 *
6748 * This function should be called after node map is populated and sorted.
6749 * It calculates the maximum power of two alignment which can distinguish
6750 * all the nodes.
6751 *
6752 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6753 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6754 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6755 * shifted, 1GiB is enough and this function will indicate so.
6756 *
6757 * This is used to test whether pfn -> nid mapping of the chosen memory
6758 * model has fine enough granularity to avoid incorrect mapping for the
6759 * populated node map.
6760 *
6761 * Returns the determined alignment in pfn's. 0 if there is no alignment
6762 * requirement (single node).
6763 */
6764unsigned long __init node_map_pfn_alignment(void)
6765{
6766 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6767 unsigned long start, end, mask;
1e01979c 6768 int last_nid = -1;
c13291a5 6769 int i, nid;
1e01979c 6770
c13291a5 6771 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6772 if (!start || last_nid < 0 || last_nid == nid) {
6773 last_nid = nid;
6774 last_end = end;
6775 continue;
6776 }
6777
6778 /*
6779 * Start with a mask granular enough to pin-point to the
6780 * start pfn and tick off bits one-by-one until it becomes
6781 * too coarse to separate the current node from the last.
6782 */
6783 mask = ~((1 << __ffs(start)) - 1);
6784 while (mask && last_end <= (start & (mask << 1)))
6785 mask <<= 1;
6786
6787 /* accumulate all internode masks */
6788 accl_mask |= mask;
6789 }
6790
6791 /* convert mask to number of pages */
6792 return ~accl_mask + 1;
6793}
6794
a6af2bc3 6795/* Find the lowest pfn for a node */
b69a7288 6796static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6797{
a6af2bc3 6798 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6799 unsigned long start_pfn;
6800 int i;
1abbfb41 6801
c13291a5
TH
6802 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6803 min_pfn = min(min_pfn, start_pfn);
c713216d 6804
a6af2bc3 6805 if (min_pfn == ULONG_MAX) {
1170532b 6806 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6807 return 0;
6808 }
6809
6810 return min_pfn;
c713216d
MG
6811}
6812
6813/**
6814 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6815 *
6816 * It returns the minimum PFN based on information provided via
7d018176 6817 * memblock_set_node().
c713216d
MG
6818 */
6819unsigned long __init find_min_pfn_with_active_regions(void)
6820{
6821 return find_min_pfn_for_node(MAX_NUMNODES);
6822}
6823
37b07e41
LS
6824/*
6825 * early_calculate_totalpages()
6826 * Sum pages in active regions for movable zone.
4b0ef1fe 6827 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6828 */
484f51f8 6829static unsigned long __init early_calculate_totalpages(void)
7e63efef 6830{
7e63efef 6831 unsigned long totalpages = 0;
c13291a5
TH
6832 unsigned long start_pfn, end_pfn;
6833 int i, nid;
6834
6835 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6836 unsigned long pages = end_pfn - start_pfn;
7e63efef 6837
37b07e41
LS
6838 totalpages += pages;
6839 if (pages)
4b0ef1fe 6840 node_set_state(nid, N_MEMORY);
37b07e41 6841 }
b8af2941 6842 return totalpages;
7e63efef
MG
6843}
6844
2a1e274a
MG
6845/*
6846 * Find the PFN the Movable zone begins in each node. Kernel memory
6847 * is spread evenly between nodes as long as the nodes have enough
6848 * memory. When they don't, some nodes will have more kernelcore than
6849 * others
6850 */
b224ef85 6851static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6852{
6853 int i, nid;
6854 unsigned long usable_startpfn;
6855 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6856 /* save the state before borrow the nodemask */
4b0ef1fe 6857 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6858 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6859 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6860 struct memblock_region *r;
b2f3eebe
TC
6861
6862 /* Need to find movable_zone earlier when movable_node is specified. */
6863 find_usable_zone_for_movable();
6864
6865 /*
6866 * If movable_node is specified, ignore kernelcore and movablecore
6867 * options.
6868 */
6869 if (movable_node_is_enabled()) {
136199f0
EM
6870 for_each_memblock(memory, r) {
6871 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6872 continue;
6873
136199f0 6874 nid = r->nid;
b2f3eebe 6875
136199f0 6876 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6877 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6878 min(usable_startpfn, zone_movable_pfn[nid]) :
6879 usable_startpfn;
6880 }
6881
6882 goto out2;
6883 }
2a1e274a 6884
342332e6
TI
6885 /*
6886 * If kernelcore=mirror is specified, ignore movablecore option
6887 */
6888 if (mirrored_kernelcore) {
6889 bool mem_below_4gb_not_mirrored = false;
6890
6891 for_each_memblock(memory, r) {
6892 if (memblock_is_mirror(r))
6893 continue;
6894
6895 nid = r->nid;
6896
6897 usable_startpfn = memblock_region_memory_base_pfn(r);
6898
6899 if (usable_startpfn < 0x100000) {
6900 mem_below_4gb_not_mirrored = true;
6901 continue;
6902 }
6903
6904 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6905 min(usable_startpfn, zone_movable_pfn[nid]) :
6906 usable_startpfn;
6907 }
6908
6909 if (mem_below_4gb_not_mirrored)
6910 pr_warn("This configuration results in unmirrored kernel memory.");
6911
6912 goto out2;
6913 }
6914
7e63efef 6915 /*
a5c6d650
DR
6916 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6917 * amount of necessary memory.
6918 */
6919 if (required_kernelcore_percent)
6920 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6921 10000UL;
6922 if (required_movablecore_percent)
6923 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6924 10000UL;
6925
6926 /*
6927 * If movablecore= was specified, calculate what size of
7e63efef
MG
6928 * kernelcore that corresponds so that memory usable for
6929 * any allocation type is evenly spread. If both kernelcore
6930 * and movablecore are specified, then the value of kernelcore
6931 * will be used for required_kernelcore if it's greater than
6932 * what movablecore would have allowed.
6933 */
6934 if (required_movablecore) {
7e63efef
MG
6935 unsigned long corepages;
6936
6937 /*
6938 * Round-up so that ZONE_MOVABLE is at least as large as what
6939 * was requested by the user
6940 */
6941 required_movablecore =
6942 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6943 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6944 corepages = totalpages - required_movablecore;
6945
6946 required_kernelcore = max(required_kernelcore, corepages);
6947 }
6948
bde304bd
XQ
6949 /*
6950 * If kernelcore was not specified or kernelcore size is larger
6951 * than totalpages, there is no ZONE_MOVABLE.
6952 */
6953 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6954 goto out;
2a1e274a
MG
6955
6956 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6957 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6958
6959restart:
6960 /* Spread kernelcore memory as evenly as possible throughout nodes */
6961 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6962 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6963 unsigned long start_pfn, end_pfn;
6964
2a1e274a
MG
6965 /*
6966 * Recalculate kernelcore_node if the division per node
6967 * now exceeds what is necessary to satisfy the requested
6968 * amount of memory for the kernel
6969 */
6970 if (required_kernelcore < kernelcore_node)
6971 kernelcore_node = required_kernelcore / usable_nodes;
6972
6973 /*
6974 * As the map is walked, we track how much memory is usable
6975 * by the kernel using kernelcore_remaining. When it is
6976 * 0, the rest of the node is usable by ZONE_MOVABLE
6977 */
6978 kernelcore_remaining = kernelcore_node;
6979
6980 /* Go through each range of PFNs within this node */
c13291a5 6981 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6982 unsigned long size_pages;
6983
c13291a5 6984 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6985 if (start_pfn >= end_pfn)
6986 continue;
6987
6988 /* Account for what is only usable for kernelcore */
6989 if (start_pfn < usable_startpfn) {
6990 unsigned long kernel_pages;
6991 kernel_pages = min(end_pfn, usable_startpfn)
6992 - start_pfn;
6993
6994 kernelcore_remaining -= min(kernel_pages,
6995 kernelcore_remaining);
6996 required_kernelcore -= min(kernel_pages,
6997 required_kernelcore);
6998
6999 /* Continue if range is now fully accounted */
7000 if (end_pfn <= usable_startpfn) {
7001
7002 /*
7003 * Push zone_movable_pfn to the end so
7004 * that if we have to rebalance
7005 * kernelcore across nodes, we will
7006 * not double account here
7007 */
7008 zone_movable_pfn[nid] = end_pfn;
7009 continue;
7010 }
7011 start_pfn = usable_startpfn;
7012 }
7013
7014 /*
7015 * The usable PFN range for ZONE_MOVABLE is from
7016 * start_pfn->end_pfn. Calculate size_pages as the
7017 * number of pages used as kernelcore
7018 */
7019 size_pages = end_pfn - start_pfn;
7020 if (size_pages > kernelcore_remaining)
7021 size_pages = kernelcore_remaining;
7022 zone_movable_pfn[nid] = start_pfn + size_pages;
7023
7024 /*
7025 * Some kernelcore has been met, update counts and
7026 * break if the kernelcore for this node has been
b8af2941 7027 * satisfied
2a1e274a
MG
7028 */
7029 required_kernelcore -= min(required_kernelcore,
7030 size_pages);
7031 kernelcore_remaining -= size_pages;
7032 if (!kernelcore_remaining)
7033 break;
7034 }
7035 }
7036
7037 /*
7038 * If there is still required_kernelcore, we do another pass with one
7039 * less node in the count. This will push zone_movable_pfn[nid] further
7040 * along on the nodes that still have memory until kernelcore is
b8af2941 7041 * satisfied
2a1e274a
MG
7042 */
7043 usable_nodes--;
7044 if (usable_nodes && required_kernelcore > usable_nodes)
7045 goto restart;
7046
b2f3eebe 7047out2:
2a1e274a
MG
7048 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7049 for (nid = 0; nid < MAX_NUMNODES; nid++)
7050 zone_movable_pfn[nid] =
7051 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7052
20e6926d 7053out:
66918dcd 7054 /* restore the node_state */
4b0ef1fe 7055 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7056}
7057
4b0ef1fe
LJ
7058/* Any regular or high memory on that node ? */
7059static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7060{
37b07e41
LS
7061 enum zone_type zone_type;
7062
4b0ef1fe 7063 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7064 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7065 if (populated_zone(zone)) {
7b0e0c0e
OS
7066 if (IS_ENABLED(CONFIG_HIGHMEM))
7067 node_set_state(nid, N_HIGH_MEMORY);
7068 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7069 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7070 break;
7071 }
37b07e41 7072 }
37b07e41
LS
7073}
7074
c713216d
MG
7075/**
7076 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7077 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7078 *
7079 * This will call free_area_init_node() for each active node in the system.
7d018176 7080 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7081 * zone in each node and their holes is calculated. If the maximum PFN
7082 * between two adjacent zones match, it is assumed that the zone is empty.
7083 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7084 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7085 * starts where the previous one ended. For example, ZONE_DMA32 starts
7086 * at arch_max_dma_pfn.
7087 */
7088void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7089{
c13291a5
TH
7090 unsigned long start_pfn, end_pfn;
7091 int i, nid;
a6af2bc3 7092
c713216d
MG
7093 /* Record where the zone boundaries are */
7094 memset(arch_zone_lowest_possible_pfn, 0,
7095 sizeof(arch_zone_lowest_possible_pfn));
7096 memset(arch_zone_highest_possible_pfn, 0,
7097 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7098
7099 start_pfn = find_min_pfn_with_active_regions();
7100
7101 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7102 if (i == ZONE_MOVABLE)
7103 continue;
90cae1fe
OH
7104
7105 end_pfn = max(max_zone_pfn[i], start_pfn);
7106 arch_zone_lowest_possible_pfn[i] = start_pfn;
7107 arch_zone_highest_possible_pfn[i] = end_pfn;
7108
7109 start_pfn = end_pfn;
c713216d 7110 }
2a1e274a
MG
7111
7112 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7113 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7114 find_zone_movable_pfns_for_nodes();
c713216d 7115
c713216d 7116 /* Print out the zone ranges */
f88dfff5 7117 pr_info("Zone ranges:\n");
2a1e274a
MG
7118 for (i = 0; i < MAX_NR_ZONES; i++) {
7119 if (i == ZONE_MOVABLE)
7120 continue;
f88dfff5 7121 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7122 if (arch_zone_lowest_possible_pfn[i] ==
7123 arch_zone_highest_possible_pfn[i])
f88dfff5 7124 pr_cont("empty\n");
72f0ba02 7125 else
8d29e18a
JG
7126 pr_cont("[mem %#018Lx-%#018Lx]\n",
7127 (u64)arch_zone_lowest_possible_pfn[i]
7128 << PAGE_SHIFT,
7129 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7130 << PAGE_SHIFT) - 1);
2a1e274a
MG
7131 }
7132
7133 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7134 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7135 for (i = 0; i < MAX_NUMNODES; i++) {
7136 if (zone_movable_pfn[i])
8d29e18a
JG
7137 pr_info(" Node %d: %#018Lx\n", i,
7138 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7139 }
c713216d 7140
f2d52fe5 7141 /* Print out the early node map */
f88dfff5 7142 pr_info("Early memory node ranges\n");
c13291a5 7143 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
7144 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7145 (u64)start_pfn << PAGE_SHIFT,
7146 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7147
7148 /* Initialise every node */
708614e6 7149 mminit_verify_pageflags_layout();
8ef82866 7150 setup_nr_node_ids();
e181ae0c 7151 zero_resv_unavail();
c713216d
MG
7152 for_each_online_node(nid) {
7153 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7154 free_area_init_node(nid, NULL,
c713216d 7155 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7156
7157 /* Any memory on that node */
7158 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7159 node_set_state(nid, N_MEMORY);
7160 check_for_memory(pgdat, nid);
c713216d
MG
7161 }
7162}
2a1e274a 7163
a5c6d650
DR
7164static int __init cmdline_parse_core(char *p, unsigned long *core,
7165 unsigned long *percent)
2a1e274a
MG
7166{
7167 unsigned long long coremem;
a5c6d650
DR
7168 char *endptr;
7169
2a1e274a
MG
7170 if (!p)
7171 return -EINVAL;
7172
a5c6d650
DR
7173 /* Value may be a percentage of total memory, otherwise bytes */
7174 coremem = simple_strtoull(p, &endptr, 0);
7175 if (*endptr == '%') {
7176 /* Paranoid check for percent values greater than 100 */
7177 WARN_ON(coremem > 100);
2a1e274a 7178
a5c6d650
DR
7179 *percent = coremem;
7180 } else {
7181 coremem = memparse(p, &p);
7182 /* Paranoid check that UL is enough for the coremem value */
7183 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7184
a5c6d650
DR
7185 *core = coremem >> PAGE_SHIFT;
7186 *percent = 0UL;
7187 }
2a1e274a
MG
7188 return 0;
7189}
ed7ed365 7190
7e63efef
MG
7191/*
7192 * kernelcore=size sets the amount of memory for use for allocations that
7193 * cannot be reclaimed or migrated.
7194 */
7195static int __init cmdline_parse_kernelcore(char *p)
7196{
342332e6
TI
7197 /* parse kernelcore=mirror */
7198 if (parse_option_str(p, "mirror")) {
7199 mirrored_kernelcore = true;
7200 return 0;
7201 }
7202
a5c6d650
DR
7203 return cmdline_parse_core(p, &required_kernelcore,
7204 &required_kernelcore_percent);
7e63efef
MG
7205}
7206
7207/*
7208 * movablecore=size sets the amount of memory for use for allocations that
7209 * can be reclaimed or migrated.
7210 */
7211static int __init cmdline_parse_movablecore(char *p)
7212{
a5c6d650
DR
7213 return cmdline_parse_core(p, &required_movablecore,
7214 &required_movablecore_percent);
7e63efef
MG
7215}
7216
ed7ed365 7217early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7218early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7219
0ee332c1 7220#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7221
c3d5f5f0
JL
7222void adjust_managed_page_count(struct page *page, long count)
7223{
9705bea5 7224 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7225 totalram_pages_add(count);
3dcc0571
JL
7226#ifdef CONFIG_HIGHMEM
7227 if (PageHighMem(page))
ca79b0c2 7228 totalhigh_pages_add(count);
3dcc0571 7229#endif
c3d5f5f0 7230}
3dcc0571 7231EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7232
e5cb113f 7233unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7234{
11199692
JL
7235 void *pos;
7236 unsigned long pages = 0;
69afade7 7237
11199692
JL
7238 start = (void *)PAGE_ALIGN((unsigned long)start);
7239 end = (void *)((unsigned long)end & PAGE_MASK);
7240 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7241 struct page *page = virt_to_page(pos);
7242 void *direct_map_addr;
7243
7244 /*
7245 * 'direct_map_addr' might be different from 'pos'
7246 * because some architectures' virt_to_page()
7247 * work with aliases. Getting the direct map
7248 * address ensures that we get a _writeable_
7249 * alias for the memset().
7250 */
7251 direct_map_addr = page_address(page);
dbe67df4 7252 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7253 memset(direct_map_addr, poison, PAGE_SIZE);
7254
7255 free_reserved_page(page);
69afade7
JL
7256 }
7257
7258 if (pages && s)
adb1fe9a
JP
7259 pr_info("Freeing %s memory: %ldK\n",
7260 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7261
7262 return pages;
7263}
11199692 7264EXPORT_SYMBOL(free_reserved_area);
69afade7 7265
cfa11e08
JL
7266#ifdef CONFIG_HIGHMEM
7267void free_highmem_page(struct page *page)
7268{
7269 __free_reserved_page(page);
ca79b0c2 7270 totalram_pages_inc();
9705bea5 7271 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7272 totalhigh_pages_inc();
cfa11e08
JL
7273}
7274#endif
7275
7ee3d4e8
JL
7276
7277void __init mem_init_print_info(const char *str)
7278{
7279 unsigned long physpages, codesize, datasize, rosize, bss_size;
7280 unsigned long init_code_size, init_data_size;
7281
7282 physpages = get_num_physpages();
7283 codesize = _etext - _stext;
7284 datasize = _edata - _sdata;
7285 rosize = __end_rodata - __start_rodata;
7286 bss_size = __bss_stop - __bss_start;
7287 init_data_size = __init_end - __init_begin;
7288 init_code_size = _einittext - _sinittext;
7289
7290 /*
7291 * Detect special cases and adjust section sizes accordingly:
7292 * 1) .init.* may be embedded into .data sections
7293 * 2) .init.text.* may be out of [__init_begin, __init_end],
7294 * please refer to arch/tile/kernel/vmlinux.lds.S.
7295 * 3) .rodata.* may be embedded into .text or .data sections.
7296 */
7297#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7298 do { \
7299 if (start <= pos && pos < end && size > adj) \
7300 size -= adj; \
7301 } while (0)
7ee3d4e8
JL
7302
7303 adj_init_size(__init_begin, __init_end, init_data_size,
7304 _sinittext, init_code_size);
7305 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7306 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7307 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7308 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7309
7310#undef adj_init_size
7311
756a025f 7312 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7313#ifdef CONFIG_HIGHMEM
756a025f 7314 ", %luK highmem"
7ee3d4e8 7315#endif
756a025f
JP
7316 "%s%s)\n",
7317 nr_free_pages() << (PAGE_SHIFT - 10),
7318 physpages << (PAGE_SHIFT - 10),
7319 codesize >> 10, datasize >> 10, rosize >> 10,
7320 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7321 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7322 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7323#ifdef CONFIG_HIGHMEM
ca79b0c2 7324 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7325#endif
756a025f 7326 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7327}
7328
0e0b864e 7329/**
88ca3b94
RD
7330 * set_dma_reserve - set the specified number of pages reserved in the first zone
7331 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7332 *
013110a7 7333 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7334 * In the DMA zone, a significant percentage may be consumed by kernel image
7335 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7336 * function may optionally be used to account for unfreeable pages in the
7337 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7338 * smaller per-cpu batchsize.
0e0b864e
MG
7339 */
7340void __init set_dma_reserve(unsigned long new_dma_reserve)
7341{
7342 dma_reserve = new_dma_reserve;
7343}
7344
1da177e4
LT
7345void __init free_area_init(unsigned long *zones_size)
7346{
e181ae0c 7347 zero_resv_unavail();
9109fb7b 7348 free_area_init_node(0, zones_size,
1da177e4
LT
7349 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7350}
1da177e4 7351
005fd4bb 7352static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7353{
1da177e4 7354
005fd4bb
SAS
7355 lru_add_drain_cpu(cpu);
7356 drain_pages(cpu);
9f8f2172 7357
005fd4bb
SAS
7358 /*
7359 * Spill the event counters of the dead processor
7360 * into the current processors event counters.
7361 * This artificially elevates the count of the current
7362 * processor.
7363 */
7364 vm_events_fold_cpu(cpu);
9f8f2172 7365
005fd4bb
SAS
7366 /*
7367 * Zero the differential counters of the dead processor
7368 * so that the vm statistics are consistent.
7369 *
7370 * This is only okay since the processor is dead and cannot
7371 * race with what we are doing.
7372 */
7373 cpu_vm_stats_fold(cpu);
7374 return 0;
1da177e4 7375}
1da177e4
LT
7376
7377void __init page_alloc_init(void)
7378{
005fd4bb
SAS
7379 int ret;
7380
7381 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7382 "mm/page_alloc:dead", NULL,
7383 page_alloc_cpu_dead);
7384 WARN_ON(ret < 0);
1da177e4
LT
7385}
7386
cb45b0e9 7387/*
34b10060 7388 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7389 * or min_free_kbytes changes.
7390 */
7391static void calculate_totalreserve_pages(void)
7392{
7393 struct pglist_data *pgdat;
7394 unsigned long reserve_pages = 0;
2f6726e5 7395 enum zone_type i, j;
cb45b0e9
HA
7396
7397 for_each_online_pgdat(pgdat) {
281e3726
MG
7398
7399 pgdat->totalreserve_pages = 0;
7400
cb45b0e9
HA
7401 for (i = 0; i < MAX_NR_ZONES; i++) {
7402 struct zone *zone = pgdat->node_zones + i;
3484b2de 7403 long max = 0;
9705bea5 7404 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7405
7406 /* Find valid and maximum lowmem_reserve in the zone */
7407 for (j = i; j < MAX_NR_ZONES; j++) {
7408 if (zone->lowmem_reserve[j] > max)
7409 max = zone->lowmem_reserve[j];
7410 }
7411
41858966
MG
7412 /* we treat the high watermark as reserved pages. */
7413 max += high_wmark_pages(zone);
cb45b0e9 7414
3d6357de
AK
7415 if (max > managed_pages)
7416 max = managed_pages;
a8d01437 7417
281e3726 7418 pgdat->totalreserve_pages += max;
a8d01437 7419
cb45b0e9
HA
7420 reserve_pages += max;
7421 }
7422 }
7423 totalreserve_pages = reserve_pages;
7424}
7425
1da177e4
LT
7426/*
7427 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7428 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7429 * has a correct pages reserved value, so an adequate number of
7430 * pages are left in the zone after a successful __alloc_pages().
7431 */
7432static void setup_per_zone_lowmem_reserve(void)
7433{
7434 struct pglist_data *pgdat;
2f6726e5 7435 enum zone_type j, idx;
1da177e4 7436
ec936fc5 7437 for_each_online_pgdat(pgdat) {
1da177e4
LT
7438 for (j = 0; j < MAX_NR_ZONES; j++) {
7439 struct zone *zone = pgdat->node_zones + j;
9705bea5 7440 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7441
7442 zone->lowmem_reserve[j] = 0;
7443
2f6726e5
CL
7444 idx = j;
7445 while (idx) {
1da177e4
LT
7446 struct zone *lower_zone;
7447
2f6726e5 7448 idx--;
1da177e4 7449 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7450
7451 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7452 sysctl_lowmem_reserve_ratio[idx] = 0;
7453 lower_zone->lowmem_reserve[j] = 0;
7454 } else {
7455 lower_zone->lowmem_reserve[j] =
7456 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7457 }
9705bea5 7458 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7459 }
7460 }
7461 }
cb45b0e9
HA
7462
7463 /* update totalreserve_pages */
7464 calculate_totalreserve_pages();
1da177e4
LT
7465}
7466
cfd3da1e 7467static void __setup_per_zone_wmarks(void)
1da177e4
LT
7468{
7469 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7470 unsigned long lowmem_pages = 0;
7471 struct zone *zone;
7472 unsigned long flags;
7473
7474 /* Calculate total number of !ZONE_HIGHMEM pages */
7475 for_each_zone(zone) {
7476 if (!is_highmem(zone))
9705bea5 7477 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7478 }
7479
7480 for_each_zone(zone) {
ac924c60
AM
7481 u64 tmp;
7482
1125b4e3 7483 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7484 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7485 do_div(tmp, lowmem_pages);
1da177e4
LT
7486 if (is_highmem(zone)) {
7487 /*
669ed175
NP
7488 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7489 * need highmem pages, so cap pages_min to a small
7490 * value here.
7491 *
41858966 7492 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7493 * deltas control asynch page reclaim, and so should
669ed175 7494 * not be capped for highmem.
1da177e4 7495 */
90ae8d67 7496 unsigned long min_pages;
1da177e4 7497
9705bea5 7498 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7499 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7500 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7501 } else {
669ed175
NP
7502 /*
7503 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7504 * proportionate to the zone's size.
7505 */
a9214443 7506 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7507 }
7508
795ae7a0
JW
7509 /*
7510 * Set the kswapd watermarks distance according to the
7511 * scale factor in proportion to available memory, but
7512 * ensure a minimum size on small systems.
7513 */
7514 tmp = max_t(u64, tmp >> 2,
9705bea5 7515 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7516 watermark_scale_factor, 10000));
7517
a9214443
MG
7518 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7519 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7520 zone->watermark_boost = 0;
49f223a9 7521
1125b4e3 7522 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7523 }
cb45b0e9
HA
7524
7525 /* update totalreserve_pages */
7526 calculate_totalreserve_pages();
1da177e4
LT
7527}
7528
cfd3da1e
MG
7529/**
7530 * setup_per_zone_wmarks - called when min_free_kbytes changes
7531 * or when memory is hot-{added|removed}
7532 *
7533 * Ensures that the watermark[min,low,high] values for each zone are set
7534 * correctly with respect to min_free_kbytes.
7535 */
7536void setup_per_zone_wmarks(void)
7537{
b93e0f32
MH
7538 static DEFINE_SPINLOCK(lock);
7539
7540 spin_lock(&lock);
cfd3da1e 7541 __setup_per_zone_wmarks();
b93e0f32 7542 spin_unlock(&lock);
cfd3da1e
MG
7543}
7544
1da177e4
LT
7545/*
7546 * Initialise min_free_kbytes.
7547 *
7548 * For small machines we want it small (128k min). For large machines
7549 * we want it large (64MB max). But it is not linear, because network
7550 * bandwidth does not increase linearly with machine size. We use
7551 *
b8af2941 7552 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7553 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7554 *
7555 * which yields
7556 *
7557 * 16MB: 512k
7558 * 32MB: 724k
7559 * 64MB: 1024k
7560 * 128MB: 1448k
7561 * 256MB: 2048k
7562 * 512MB: 2896k
7563 * 1024MB: 4096k
7564 * 2048MB: 5792k
7565 * 4096MB: 8192k
7566 * 8192MB: 11584k
7567 * 16384MB: 16384k
7568 */
1b79acc9 7569int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7570{
7571 unsigned long lowmem_kbytes;
5f12733e 7572 int new_min_free_kbytes;
1da177e4
LT
7573
7574 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7575 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7576
7577 if (new_min_free_kbytes > user_min_free_kbytes) {
7578 min_free_kbytes = new_min_free_kbytes;
7579 if (min_free_kbytes < 128)
7580 min_free_kbytes = 128;
7581 if (min_free_kbytes > 65536)
7582 min_free_kbytes = 65536;
7583 } else {
7584 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7585 new_min_free_kbytes, user_min_free_kbytes);
7586 }
bc75d33f 7587 setup_per_zone_wmarks();
a6cccdc3 7588 refresh_zone_stat_thresholds();
1da177e4 7589 setup_per_zone_lowmem_reserve();
6423aa81
JK
7590
7591#ifdef CONFIG_NUMA
7592 setup_min_unmapped_ratio();
7593 setup_min_slab_ratio();
7594#endif
7595
1da177e4
LT
7596 return 0;
7597}
bc22af74 7598core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7599
7600/*
b8af2941 7601 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7602 * that we can call two helper functions whenever min_free_kbytes
7603 * changes.
7604 */
cccad5b9 7605int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7606 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7607{
da8c757b
HP
7608 int rc;
7609
7610 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7611 if (rc)
7612 return rc;
7613
5f12733e
MH
7614 if (write) {
7615 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7616 setup_per_zone_wmarks();
5f12733e 7617 }
1da177e4
LT
7618 return 0;
7619}
7620
1c30844d
MG
7621int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7622 void __user *buffer, size_t *length, loff_t *ppos)
7623{
7624 int rc;
7625
7626 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7627 if (rc)
7628 return rc;
7629
7630 return 0;
7631}
7632
795ae7a0
JW
7633int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7634 void __user *buffer, size_t *length, loff_t *ppos)
7635{
7636 int rc;
7637
7638 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7639 if (rc)
7640 return rc;
7641
7642 if (write)
7643 setup_per_zone_wmarks();
7644
7645 return 0;
7646}
7647
9614634f 7648#ifdef CONFIG_NUMA
6423aa81 7649static void setup_min_unmapped_ratio(void)
9614634f 7650{
6423aa81 7651 pg_data_t *pgdat;
9614634f 7652 struct zone *zone;
9614634f 7653
a5f5f91d 7654 for_each_online_pgdat(pgdat)
81cbcbc2 7655 pgdat->min_unmapped_pages = 0;
a5f5f91d 7656
9614634f 7657 for_each_zone(zone)
9705bea5
AK
7658 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7659 sysctl_min_unmapped_ratio) / 100;
9614634f 7660}
0ff38490 7661
6423aa81
JK
7662
7663int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7664 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7665{
0ff38490
CL
7666 int rc;
7667
8d65af78 7668 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7669 if (rc)
7670 return rc;
7671
6423aa81
JK
7672 setup_min_unmapped_ratio();
7673
7674 return 0;
7675}
7676
7677static void setup_min_slab_ratio(void)
7678{
7679 pg_data_t *pgdat;
7680 struct zone *zone;
7681
a5f5f91d
MG
7682 for_each_online_pgdat(pgdat)
7683 pgdat->min_slab_pages = 0;
7684
0ff38490 7685 for_each_zone(zone)
9705bea5
AK
7686 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7687 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7688}
7689
7690int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7691 void __user *buffer, size_t *length, loff_t *ppos)
7692{
7693 int rc;
7694
7695 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7696 if (rc)
7697 return rc;
7698
7699 setup_min_slab_ratio();
7700
0ff38490
CL
7701 return 0;
7702}
9614634f
CL
7703#endif
7704
1da177e4
LT
7705/*
7706 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7707 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7708 * whenever sysctl_lowmem_reserve_ratio changes.
7709 *
7710 * The reserve ratio obviously has absolutely no relation with the
41858966 7711 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7712 * if in function of the boot time zone sizes.
7713 */
cccad5b9 7714int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7715 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7716{
8d65af78 7717 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7718 setup_per_zone_lowmem_reserve();
7719 return 0;
7720}
7721
8ad4b1fb
RS
7722/*
7723 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7724 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7725 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7726 */
cccad5b9 7727int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7728 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7729{
7730 struct zone *zone;
7cd2b0a3 7731 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7732 int ret;
7733
7cd2b0a3
DR
7734 mutex_lock(&pcp_batch_high_lock);
7735 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7736
8d65af78 7737 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7738 if (!write || ret < 0)
7739 goto out;
7740
7741 /* Sanity checking to avoid pcp imbalance */
7742 if (percpu_pagelist_fraction &&
7743 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7744 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7745 ret = -EINVAL;
7746 goto out;
7747 }
7748
7749 /* No change? */
7750 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7751 goto out;
c8e251fa 7752
364df0eb 7753 for_each_populated_zone(zone) {
7cd2b0a3
DR
7754 unsigned int cpu;
7755
22a7f12b 7756 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7757 pageset_set_high_and_batch(zone,
7758 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7759 }
7cd2b0a3 7760out:
c8e251fa 7761 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7762 return ret;
8ad4b1fb
RS
7763}
7764
a9919c79 7765#ifdef CONFIG_NUMA
f034b5d4 7766int hashdist = HASHDIST_DEFAULT;
1da177e4 7767
1da177e4
LT
7768static int __init set_hashdist(char *str)
7769{
7770 if (!str)
7771 return 0;
7772 hashdist = simple_strtoul(str, &str, 0);
7773 return 1;
7774}
7775__setup("hashdist=", set_hashdist);
7776#endif
7777
f6f34b43
SD
7778#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7779/*
7780 * Returns the number of pages that arch has reserved but
7781 * is not known to alloc_large_system_hash().
7782 */
7783static unsigned long __init arch_reserved_kernel_pages(void)
7784{
7785 return 0;
7786}
7787#endif
7788
9017217b
PT
7789/*
7790 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7791 * machines. As memory size is increased the scale is also increased but at
7792 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7793 * quadruples the scale is increased by one, which means the size of hash table
7794 * only doubles, instead of quadrupling as well.
7795 * Because 32-bit systems cannot have large physical memory, where this scaling
7796 * makes sense, it is disabled on such platforms.
7797 */
7798#if __BITS_PER_LONG > 32
7799#define ADAPT_SCALE_BASE (64ul << 30)
7800#define ADAPT_SCALE_SHIFT 2
7801#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7802#endif
7803
1da177e4
LT
7804/*
7805 * allocate a large system hash table from bootmem
7806 * - it is assumed that the hash table must contain an exact power-of-2
7807 * quantity of entries
7808 * - limit is the number of hash buckets, not the total allocation size
7809 */
7810void *__init alloc_large_system_hash(const char *tablename,
7811 unsigned long bucketsize,
7812 unsigned long numentries,
7813 int scale,
7814 int flags,
7815 unsigned int *_hash_shift,
7816 unsigned int *_hash_mask,
31fe62b9
TB
7817 unsigned long low_limit,
7818 unsigned long high_limit)
1da177e4 7819{
31fe62b9 7820 unsigned long long max = high_limit;
1da177e4
LT
7821 unsigned long log2qty, size;
7822 void *table = NULL;
3749a8f0 7823 gfp_t gfp_flags;
1da177e4
LT
7824
7825 /* allow the kernel cmdline to have a say */
7826 if (!numentries) {
7827 /* round applicable memory size up to nearest megabyte */
04903664 7828 numentries = nr_kernel_pages;
f6f34b43 7829 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7830
7831 /* It isn't necessary when PAGE_SIZE >= 1MB */
7832 if (PAGE_SHIFT < 20)
7833 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7834
9017217b
PT
7835#if __BITS_PER_LONG > 32
7836 if (!high_limit) {
7837 unsigned long adapt;
7838
7839 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7840 adapt <<= ADAPT_SCALE_SHIFT)
7841 scale++;
7842 }
7843#endif
7844
1da177e4
LT
7845 /* limit to 1 bucket per 2^scale bytes of low memory */
7846 if (scale > PAGE_SHIFT)
7847 numentries >>= (scale - PAGE_SHIFT);
7848 else
7849 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7850
7851 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7852 if (unlikely(flags & HASH_SMALL)) {
7853 /* Makes no sense without HASH_EARLY */
7854 WARN_ON(!(flags & HASH_EARLY));
7855 if (!(numentries >> *_hash_shift)) {
7856 numentries = 1UL << *_hash_shift;
7857 BUG_ON(!numentries);
7858 }
7859 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7860 numentries = PAGE_SIZE / bucketsize;
1da177e4 7861 }
6e692ed3 7862 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7863
7864 /* limit allocation size to 1/16 total memory by default */
7865 if (max == 0) {
7866 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7867 do_div(max, bucketsize);
7868 }
074b8517 7869 max = min(max, 0x80000000ULL);
1da177e4 7870
31fe62b9
TB
7871 if (numentries < low_limit)
7872 numentries = low_limit;
1da177e4
LT
7873 if (numentries > max)
7874 numentries = max;
7875
f0d1b0b3 7876 log2qty = ilog2(numentries);
1da177e4 7877
3749a8f0 7878 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7879 do {
7880 size = bucketsize << log2qty;
ea1f5f37
PT
7881 if (flags & HASH_EARLY) {
7882 if (flags & HASH_ZERO)
7e1c4e27
MR
7883 table = memblock_alloc_nopanic(size,
7884 SMP_CACHE_BYTES);
ea1f5f37 7885 else
7e1c4e27
MR
7886 table = memblock_alloc_raw(size,
7887 SMP_CACHE_BYTES);
ea1f5f37 7888 } else if (hashdist) {
3749a8f0 7889 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7890 } else {
1037b83b
ED
7891 /*
7892 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7893 * some pages at the end of hash table which
7894 * alloc_pages_exact() automatically does
1037b83b 7895 */
264ef8a9 7896 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7897 table = alloc_pages_exact(size, gfp_flags);
7898 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7899 }
1da177e4
LT
7900 }
7901 } while (!table && size > PAGE_SIZE && --log2qty);
7902
7903 if (!table)
7904 panic("Failed to allocate %s hash table\n", tablename);
7905
1170532b
JP
7906 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7907 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7908
7909 if (_hash_shift)
7910 *_hash_shift = log2qty;
7911 if (_hash_mask)
7912 *_hash_mask = (1 << log2qty) - 1;
7913
7914 return table;
7915}
a117e66e 7916
a5d76b54 7917/*
80934513
MK
7918 * This function checks whether pageblock includes unmovable pages or not.
7919 * If @count is not zero, it is okay to include less @count unmovable pages
7920 *
b8af2941 7921 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7922 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7923 * check without lock_page also may miss some movable non-lru pages at
7924 * race condition. So you can't expect this function should be exact.
a5d76b54 7925 */
b023f468 7926bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 7927 int migratetype, int flags)
49ac8255
KH
7928{
7929 unsigned long pfn, iter, found;
47118af0 7930
49ac8255 7931 /*
15c30bc0
MH
7932 * TODO we could make this much more efficient by not checking every
7933 * page in the range if we know all of them are in MOVABLE_ZONE and
7934 * that the movable zone guarantees that pages are migratable but
7935 * the later is not the case right now unfortunatelly. E.g. movablecore
7936 * can still lead to having bootmem allocations in zone_movable.
49ac8255 7937 */
49ac8255 7938
4da2ce25
MH
7939 /*
7940 * CMA allocations (alloc_contig_range) really need to mark isolate
7941 * CMA pageblocks even when they are not movable in fact so consider
7942 * them movable here.
7943 */
7944 if (is_migrate_cma(migratetype) &&
7945 is_migrate_cma(get_pageblock_migratetype(page)))
7946 return false;
7947
49ac8255
KH
7948 pfn = page_to_pfn(page);
7949 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7950 unsigned long check = pfn + iter;
7951
29723fcc 7952 if (!pfn_valid_within(check))
49ac8255 7953 continue;
29723fcc 7954
49ac8255 7955 page = pfn_to_page(check);
c8721bbb 7956
d7ab3672 7957 if (PageReserved(page))
15c30bc0 7958 goto unmovable;
d7ab3672 7959
9d789999
MH
7960 /*
7961 * If the zone is movable and we have ruled out all reserved
7962 * pages then it should be reasonably safe to assume the rest
7963 * is movable.
7964 */
7965 if (zone_idx(zone) == ZONE_MOVABLE)
7966 continue;
7967
c8721bbb
NH
7968 /*
7969 * Hugepages are not in LRU lists, but they're movable.
7970 * We need not scan over tail pages bacause we don't
7971 * handle each tail page individually in migration.
7972 */
7973 if (PageHuge(page)) {
17e2e7d7
OS
7974 struct page *head = compound_head(page);
7975 unsigned int skip_pages;
464c7ffb 7976
17e2e7d7 7977 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
7978 goto unmovable;
7979
17e2e7d7
OS
7980 skip_pages = (1 << compound_order(head)) - (page - head);
7981 iter += skip_pages - 1;
c8721bbb
NH
7982 continue;
7983 }
7984
97d255c8
MK
7985 /*
7986 * We can't use page_count without pin a page
7987 * because another CPU can free compound page.
7988 * This check already skips compound tails of THP
0139aa7b 7989 * because their page->_refcount is zero at all time.
97d255c8 7990 */
fe896d18 7991 if (!page_ref_count(page)) {
49ac8255
KH
7992 if (PageBuddy(page))
7993 iter += (1 << page_order(page)) - 1;
7994 continue;
7995 }
97d255c8 7996
b023f468
WC
7997 /*
7998 * The HWPoisoned page may be not in buddy system, and
7999 * page_count() is not 0.
8000 */
d381c547 8001 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
8002 continue;
8003
0efadf48
YX
8004 if (__PageMovable(page))
8005 continue;
8006
49ac8255
KH
8007 if (!PageLRU(page))
8008 found++;
8009 /*
6b4f7799
JW
8010 * If there are RECLAIMABLE pages, we need to check
8011 * it. But now, memory offline itself doesn't call
8012 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8013 */
8014 /*
8015 * If the page is not RAM, page_count()should be 0.
8016 * we don't need more check. This is an _used_ not-movable page.
8017 *
8018 * The problematic thing here is PG_reserved pages. PG_reserved
8019 * is set to both of a memory hole page and a _used_ kernel
8020 * page at boot.
8021 */
8022 if (found > count)
15c30bc0 8023 goto unmovable;
49ac8255 8024 }
80934513 8025 return false;
15c30bc0
MH
8026unmovable:
8027 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547
MH
8028 if (flags & REPORT_FAILURE)
8029 dump_page(pfn_to_page(pfn+iter), "unmovable page");
15c30bc0 8030 return true;
49ac8255
KH
8031}
8032
080fe206 8033#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
8034
8035static unsigned long pfn_max_align_down(unsigned long pfn)
8036{
8037 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8038 pageblock_nr_pages) - 1);
8039}
8040
8041static unsigned long pfn_max_align_up(unsigned long pfn)
8042{
8043 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8044 pageblock_nr_pages));
8045}
8046
041d3a8c 8047/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8048static int __alloc_contig_migrate_range(struct compact_control *cc,
8049 unsigned long start, unsigned long end)
041d3a8c
MN
8050{
8051 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8052 unsigned long nr_reclaimed;
041d3a8c
MN
8053 unsigned long pfn = start;
8054 unsigned int tries = 0;
8055 int ret = 0;
8056
be49a6e1 8057 migrate_prep();
041d3a8c 8058
bb13ffeb 8059 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8060 if (fatal_signal_pending(current)) {
8061 ret = -EINTR;
8062 break;
8063 }
8064
bb13ffeb
MG
8065 if (list_empty(&cc->migratepages)) {
8066 cc->nr_migratepages = 0;
edc2ca61 8067 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8068 if (!pfn) {
8069 ret = -EINTR;
8070 break;
8071 }
8072 tries = 0;
8073 } else if (++tries == 5) {
8074 ret = ret < 0 ? ret : -EBUSY;
8075 break;
8076 }
8077
beb51eaa
MK
8078 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8079 &cc->migratepages);
8080 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8081
9c620e2b 8082 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8083 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8084 }
2a6f5124
SP
8085 if (ret < 0) {
8086 putback_movable_pages(&cc->migratepages);
8087 return ret;
8088 }
8089 return 0;
041d3a8c
MN
8090}
8091
8092/**
8093 * alloc_contig_range() -- tries to allocate given range of pages
8094 * @start: start PFN to allocate
8095 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8096 * @migratetype: migratetype of the underlaying pageblocks (either
8097 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8098 * in range must have the same migratetype and it must
8099 * be either of the two.
ca96b625 8100 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8101 *
8102 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8103 * aligned. The PFN range must belong to a single zone.
041d3a8c 8104 *
2c7452a0
MK
8105 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8106 * pageblocks in the range. Once isolated, the pageblocks should not
8107 * be modified by others.
041d3a8c
MN
8108 *
8109 * Returns zero on success or negative error code. On success all
8110 * pages which PFN is in [start, end) are allocated for the caller and
8111 * need to be freed with free_contig_range().
8112 */
0815f3d8 8113int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8114 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8115{
041d3a8c 8116 unsigned long outer_start, outer_end;
d00181b9
KS
8117 unsigned int order;
8118 int ret = 0;
041d3a8c 8119
bb13ffeb
MG
8120 struct compact_control cc = {
8121 .nr_migratepages = 0,
8122 .order = -1,
8123 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8124 .mode = MIGRATE_SYNC,
bb13ffeb 8125 .ignore_skip_hint = true,
2583d671 8126 .no_set_skip_hint = true,
7dea19f9 8127 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8128 };
8129 INIT_LIST_HEAD(&cc.migratepages);
8130
041d3a8c
MN
8131 /*
8132 * What we do here is we mark all pageblocks in range as
8133 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8134 * have different sizes, and due to the way page allocator
8135 * work, we align the range to biggest of the two pages so
8136 * that page allocator won't try to merge buddies from
8137 * different pageblocks and change MIGRATE_ISOLATE to some
8138 * other migration type.
8139 *
8140 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8141 * migrate the pages from an unaligned range (ie. pages that
8142 * we are interested in). This will put all the pages in
8143 * range back to page allocator as MIGRATE_ISOLATE.
8144 *
8145 * When this is done, we take the pages in range from page
8146 * allocator removing them from the buddy system. This way
8147 * page allocator will never consider using them.
8148 *
8149 * This lets us mark the pageblocks back as
8150 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8151 * aligned range but not in the unaligned, original range are
8152 * put back to page allocator so that buddy can use them.
8153 */
8154
8155 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8156 pfn_max_align_up(end), migratetype, 0);
041d3a8c 8157 if (ret)
86a595f9 8158 return ret;
041d3a8c 8159
8ef5849f
JK
8160 /*
8161 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8162 * So, just fall through. test_pages_isolated() has a tracepoint
8163 * which will report the busy page.
8164 *
8165 * It is possible that busy pages could become available before
8166 * the call to test_pages_isolated, and the range will actually be
8167 * allocated. So, if we fall through be sure to clear ret so that
8168 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8169 */
bb13ffeb 8170 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8171 if (ret && ret != -EBUSY)
041d3a8c 8172 goto done;
63cd4489 8173 ret =0;
041d3a8c
MN
8174
8175 /*
8176 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8177 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8178 * more, all pages in [start, end) are free in page allocator.
8179 * What we are going to do is to allocate all pages from
8180 * [start, end) (that is remove them from page allocator).
8181 *
8182 * The only problem is that pages at the beginning and at the
8183 * end of interesting range may be not aligned with pages that
8184 * page allocator holds, ie. they can be part of higher order
8185 * pages. Because of this, we reserve the bigger range and
8186 * once this is done free the pages we are not interested in.
8187 *
8188 * We don't have to hold zone->lock here because the pages are
8189 * isolated thus they won't get removed from buddy.
8190 */
8191
8192 lru_add_drain_all();
510f5507 8193 drain_all_pages(cc.zone);
041d3a8c
MN
8194
8195 order = 0;
8196 outer_start = start;
8197 while (!PageBuddy(pfn_to_page(outer_start))) {
8198 if (++order >= MAX_ORDER) {
8ef5849f
JK
8199 outer_start = start;
8200 break;
041d3a8c
MN
8201 }
8202 outer_start &= ~0UL << order;
8203 }
8204
8ef5849f
JK
8205 if (outer_start != start) {
8206 order = page_order(pfn_to_page(outer_start));
8207
8208 /*
8209 * outer_start page could be small order buddy page and
8210 * it doesn't include start page. Adjust outer_start
8211 * in this case to report failed page properly
8212 * on tracepoint in test_pages_isolated()
8213 */
8214 if (outer_start + (1UL << order) <= start)
8215 outer_start = start;
8216 }
8217
041d3a8c 8218 /* Make sure the range is really isolated. */
b023f468 8219 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8220 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8221 __func__, outer_start, end);
041d3a8c
MN
8222 ret = -EBUSY;
8223 goto done;
8224 }
8225
49f223a9 8226 /* Grab isolated pages from freelists. */
bb13ffeb 8227 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8228 if (!outer_end) {
8229 ret = -EBUSY;
8230 goto done;
8231 }
8232
8233 /* Free head and tail (if any) */
8234 if (start != outer_start)
8235 free_contig_range(outer_start, start - outer_start);
8236 if (end != outer_end)
8237 free_contig_range(end, outer_end - end);
8238
8239done:
8240 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8241 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8242 return ret;
8243}
8244
8245void free_contig_range(unsigned long pfn, unsigned nr_pages)
8246{
bcc2b02f
MS
8247 unsigned int count = 0;
8248
8249 for (; nr_pages--; pfn++) {
8250 struct page *page = pfn_to_page(pfn);
8251
8252 count += page_count(page) != 1;
8253 __free_page(page);
8254 }
8255 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
8256}
8257#endif
8258
d883c6cf 8259#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8260/*
8261 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8262 * page high values need to be recalulated.
8263 */
4ed7e022
JL
8264void __meminit zone_pcp_update(struct zone *zone)
8265{
0a647f38 8266 unsigned cpu;
c8e251fa 8267 mutex_lock(&pcp_batch_high_lock);
0a647f38 8268 for_each_possible_cpu(cpu)
169f6c19
CS
8269 pageset_set_high_and_batch(zone,
8270 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8271 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8272}
8273#endif
8274
340175b7
JL
8275void zone_pcp_reset(struct zone *zone)
8276{
8277 unsigned long flags;
5a883813
MK
8278 int cpu;
8279 struct per_cpu_pageset *pset;
340175b7
JL
8280
8281 /* avoid races with drain_pages() */
8282 local_irq_save(flags);
8283 if (zone->pageset != &boot_pageset) {
5a883813
MK
8284 for_each_online_cpu(cpu) {
8285 pset = per_cpu_ptr(zone->pageset, cpu);
8286 drain_zonestat(zone, pset);
8287 }
340175b7
JL
8288 free_percpu(zone->pageset);
8289 zone->pageset = &boot_pageset;
8290 }
8291 local_irq_restore(flags);
8292}
8293
6dcd73d7 8294#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8295/*
b9eb6319
JK
8296 * All pages in the range must be in a single zone and isolated
8297 * before calling this.
0c0e6195
KH
8298 */
8299void
8300__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8301{
8302 struct page *page;
8303 struct zone *zone;
7aeb09f9 8304 unsigned int order, i;
0c0e6195
KH
8305 unsigned long pfn;
8306 unsigned long flags;
8307 /* find the first valid pfn */
8308 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8309 if (pfn_valid(pfn))
8310 break;
8311 if (pfn == end_pfn)
8312 return;
2d070eab 8313 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8314 zone = page_zone(pfn_to_page(pfn));
8315 spin_lock_irqsave(&zone->lock, flags);
8316 pfn = start_pfn;
8317 while (pfn < end_pfn) {
8318 if (!pfn_valid(pfn)) {
8319 pfn++;
8320 continue;
8321 }
8322 page = pfn_to_page(pfn);
b023f468
WC
8323 /*
8324 * The HWPoisoned page may be not in buddy system, and
8325 * page_count() is not 0.
8326 */
8327 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8328 pfn++;
8329 SetPageReserved(page);
8330 continue;
8331 }
8332
0c0e6195
KH
8333 BUG_ON(page_count(page));
8334 BUG_ON(!PageBuddy(page));
8335 order = page_order(page);
8336#ifdef CONFIG_DEBUG_VM
1170532b
JP
8337 pr_info("remove from free list %lx %d %lx\n",
8338 pfn, 1 << order, end_pfn);
0c0e6195
KH
8339#endif
8340 list_del(&page->lru);
8341 rmv_page_order(page);
8342 zone->free_area[order].nr_free--;
0c0e6195
KH
8343 for (i = 0; i < (1 << order); i++)
8344 SetPageReserved((page+i));
8345 pfn += (1 << order);
8346 }
8347 spin_unlock_irqrestore(&zone->lock, flags);
8348}
8349#endif
8d22ba1b 8350
8d22ba1b
WF
8351bool is_free_buddy_page(struct page *page)
8352{
8353 struct zone *zone = page_zone(page);
8354 unsigned long pfn = page_to_pfn(page);
8355 unsigned long flags;
7aeb09f9 8356 unsigned int order;
8d22ba1b
WF
8357
8358 spin_lock_irqsave(&zone->lock, flags);
8359 for (order = 0; order < MAX_ORDER; order++) {
8360 struct page *page_head = page - (pfn & ((1 << order) - 1));
8361
8362 if (PageBuddy(page_head) && page_order(page_head) >= order)
8363 break;
8364 }
8365 spin_unlock_irqrestore(&zone->lock, flags);
8366
8367 return order < MAX_ORDER;
8368}
d4ae9916
NH
8369
8370#ifdef CONFIG_MEMORY_FAILURE
8371/*
8372 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8373 * test is performed under the zone lock to prevent a race against page
8374 * allocation.
8375 */
8376bool set_hwpoison_free_buddy_page(struct page *page)
8377{
8378 struct zone *zone = page_zone(page);
8379 unsigned long pfn = page_to_pfn(page);
8380 unsigned long flags;
8381 unsigned int order;
8382 bool hwpoisoned = false;
8383
8384 spin_lock_irqsave(&zone->lock, flags);
8385 for (order = 0; order < MAX_ORDER; order++) {
8386 struct page *page_head = page - (pfn & ((1 << order) - 1));
8387
8388 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8389 if (!TestSetPageHWPoison(page))
8390 hwpoisoned = true;
8391 break;
8392 }
8393 }
8394 spin_unlock_irqrestore(&zone->lock, flags);
8395
8396 return hwpoisoned;
8397}
8398#endif