mm/mmu_notifier: contextual information for event triggering invalidation
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
ca79b0c2 19#include <linux/highmem.h>
1da177e4
LT
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
10ed273f 23#include <linux/jiffies.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
a6cccdc3 42#include <linux/vmstat.h>
4be38e35 43#include <linux/mempolicy.h>
4b94ffdc 44#include <linux/memremap.h>
6811378e 45#include <linux/stop_machine.h>
c713216d
MG
46#include <linux/sort.h>
47#include <linux/pfn.h>
3fcfab16 48#include <linux/backing-dev.h>
933e312e 49#include <linux/fault-inject.h>
a5d76b54 50#include <linux/page-isolation.h>
eefa864b 51#include <linux/page_ext.h>
3ac7fe5a 52#include <linux/debugobjects.h>
dbb1f81c 53#include <linux/kmemleak.h>
56de7263 54#include <linux/compaction.h>
0d3d062a 55#include <trace/events/kmem.h>
d379f01d 56#include <trace/events/oom.h>
268bb0ce 57#include <linux/prefetch.h>
6e543d57 58#include <linux/mm_inline.h>
041d3a8c 59#include <linux/migrate.h>
949f7ec5 60#include <linux/hugetlb.h>
8bd75c77 61#include <linux/sched/rt.h>
5b3cc15a 62#include <linux/sched/mm.h>
48c96a36 63#include <linux/page_owner.h>
0e1cc95b 64#include <linux/kthread.h>
4949148a 65#include <linux/memcontrol.h>
42c269c8 66#include <linux/ftrace.h>
d92a8cfc 67#include <linux/lockdep.h>
556b969a 68#include <linux/nmi.h>
eb414681 69#include <linux/psi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53 99/* work_structs for global per-cpu drains */
d9367bd0
WY
100struct pcpu_drain {
101 struct zone *zone;
102 struct work_struct work;
103};
bd233f53 104DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 105DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 106
38addce8 107#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 108volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
109EXPORT_SYMBOL(latent_entropy);
110#endif
111
1da177e4 112/*
13808910 113 * Array of node states.
1da177e4 114 */
13808910
CL
115nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
116 [N_POSSIBLE] = NODE_MASK_ALL,
117 [N_ONLINE] = { { [0] = 1UL } },
118#ifndef CONFIG_NUMA
119 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
120#ifdef CONFIG_HIGHMEM
121 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 122#endif
20b2f52b 123 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
124 [N_CPU] = { { [0] = 1UL } },
125#endif /* NUMA */
126};
127EXPORT_SYMBOL(node_states);
128
ca79b0c2
AK
129atomic_long_t _totalram_pages __read_mostly;
130EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 131unsigned long totalreserve_pages __read_mostly;
e48322ab 132unsigned long totalcma_pages __read_mostly;
ab8fabd4 133
1b76b02f 134int percpu_pagelist_fraction;
dcce284a 135gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 136
bb14c2c7
VB
137/*
138 * A cached value of the page's pageblock's migratetype, used when the page is
139 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
140 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
141 * Also the migratetype set in the page does not necessarily match the pcplist
142 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
143 * other index - this ensures that it will be put on the correct CMA freelist.
144 */
145static inline int get_pcppage_migratetype(struct page *page)
146{
147 return page->index;
148}
149
150static inline void set_pcppage_migratetype(struct page *page, int migratetype)
151{
152 page->index = migratetype;
153}
154
452aa699
RW
155#ifdef CONFIG_PM_SLEEP
156/*
157 * The following functions are used by the suspend/hibernate code to temporarily
158 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
159 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
160 * they should always be called with system_transition_mutex held
161 * (gfp_allowed_mask also should only be modified with system_transition_mutex
162 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
163 * with that modification).
452aa699 164 */
c9e664f1
RW
165
166static gfp_t saved_gfp_mask;
167
168void pm_restore_gfp_mask(void)
452aa699 169{
55f2503c 170 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
171 if (saved_gfp_mask) {
172 gfp_allowed_mask = saved_gfp_mask;
173 saved_gfp_mask = 0;
174 }
452aa699
RW
175}
176
c9e664f1 177void pm_restrict_gfp_mask(void)
452aa699 178{
55f2503c 179 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
180 WARN_ON(saved_gfp_mask);
181 saved_gfp_mask = gfp_allowed_mask;
d0164adc 182 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 183}
f90ac398
MG
184
185bool pm_suspended_storage(void)
186{
d0164adc 187 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
188 return false;
189 return true;
190}
452aa699
RW
191#endif /* CONFIG_PM_SLEEP */
192
d9c23400 193#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 194unsigned int pageblock_order __read_mostly;
d9c23400
MG
195#endif
196
d98c7a09 197static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 198
1da177e4
LT
199/*
200 * results with 256, 32 in the lowmem_reserve sysctl:
201 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
202 * 1G machine -> (16M dma, 784M normal, 224M high)
203 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
204 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 205 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
206 *
207 * TBD: should special case ZONE_DMA32 machines here - in those we normally
208 * don't need any ZONE_NORMAL reservation
1da177e4 209 */
d3cda233 210int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
d3cda233 212 [ZONE_DMA] = 256,
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
d3cda233 215 [ZONE_DMA32] = 256,
fb0e7942 216#endif
d3cda233 217 [ZONE_NORMAL] = 32,
e53ef38d 218#ifdef CONFIG_HIGHMEM
d3cda233 219 [ZONE_HIGHMEM] = 0,
e53ef38d 220#endif
d3cda233 221 [ZONE_MOVABLE] = 0,
2f1b6248 222};
1da177e4
LT
223
224EXPORT_SYMBOL(totalram_pages);
1da177e4 225
15ad7cdc 226static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 227#ifdef CONFIG_ZONE_DMA
2f1b6248 228 "DMA",
4b51d669 229#endif
fb0e7942 230#ifdef CONFIG_ZONE_DMA32
2f1b6248 231 "DMA32",
fb0e7942 232#endif
2f1b6248 233 "Normal",
e53ef38d 234#ifdef CONFIG_HIGHMEM
2a1e274a 235 "HighMem",
e53ef38d 236#endif
2a1e274a 237 "Movable",
033fbae9
DW
238#ifdef CONFIG_ZONE_DEVICE
239 "Device",
240#endif
2f1b6248
CL
241};
242
c999fbd3 243const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
244 "Unmovable",
245 "Movable",
246 "Reclaimable",
247 "HighAtomic",
248#ifdef CONFIG_CMA
249 "CMA",
250#endif
251#ifdef CONFIG_MEMORY_ISOLATION
252 "Isolate",
253#endif
254};
255
f1e61557
KS
256compound_page_dtor * const compound_page_dtors[] = {
257 NULL,
258 free_compound_page,
259#ifdef CONFIG_HUGETLB_PAGE
260 free_huge_page,
261#endif
9a982250
KS
262#ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 free_transhuge_page,
264#endif
f1e61557
KS
265};
266
1da177e4 267int min_free_kbytes = 1024;
42aa83cb 268int user_min_free_kbytes = -1;
24512228
MG
269#ifdef CONFIG_DISCONTIGMEM
270/*
271 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
272 * are not on separate NUMA nodes. Functionally this works but with
273 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
274 * quite small. By default, do not boost watermarks on discontigmem as in
275 * many cases very high-order allocations like THP are likely to be
276 * unsupported and the premature reclaim offsets the advantage of long-term
277 * fragmentation avoidance.
278 */
279int watermark_boost_factor __read_mostly;
280#else
1c30844d 281int watermark_boost_factor __read_mostly = 15000;
24512228 282#endif
795ae7a0 283int watermark_scale_factor = 10;
1da177e4 284
bbe5d993
OS
285static unsigned long nr_kernel_pages __initdata;
286static unsigned long nr_all_pages __initdata;
287static unsigned long dma_reserve __initdata;
1da177e4 288
0ee332c1 289#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
290static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
291static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 292static unsigned long required_kernelcore __initdata;
a5c6d650 293static unsigned long required_kernelcore_percent __initdata;
7f16f91f 294static unsigned long required_movablecore __initdata;
a5c6d650 295static unsigned long required_movablecore_percent __initdata;
bbe5d993 296static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 297static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
298
299/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
300int movable_zone;
301EXPORT_SYMBOL(movable_zone);
302#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 303
418508c1 304#if MAX_NUMNODES > 1
b9726c26 305unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 306unsigned int nr_online_nodes __read_mostly = 1;
418508c1 307EXPORT_SYMBOL(nr_node_ids);
62bc62a8 308EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
309#endif
310
9ef9acb0
MG
311int page_group_by_mobility_disabled __read_mostly;
312
3a80a7fa 313#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
314/*
315 * During boot we initialize deferred pages on-demand, as needed, but once
316 * page_alloc_init_late() has finished, the deferred pages are all initialized,
317 * and we can permanently disable that path.
318 */
319static DEFINE_STATIC_KEY_TRUE(deferred_pages);
320
321/*
322 * Calling kasan_free_pages() only after deferred memory initialization
323 * has completed. Poisoning pages during deferred memory init will greatly
324 * lengthen the process and cause problem in large memory systems as the
325 * deferred pages initialization is done with interrupt disabled.
326 *
327 * Assuming that there will be no reference to those newly initialized
328 * pages before they are ever allocated, this should have no effect on
329 * KASAN memory tracking as the poison will be properly inserted at page
330 * allocation time. The only corner case is when pages are allocated by
331 * on-demand allocation and then freed again before the deferred pages
332 * initialization is done, but this is not likely to happen.
333 */
334static inline void kasan_free_nondeferred_pages(struct page *page, int order)
335{
336 if (!static_branch_unlikely(&deferred_pages))
337 kasan_free_pages(page, order);
338}
339
3a80a7fa 340/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 341static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 342{
ef70b6f4
MG
343 int nid = early_pfn_to_nid(pfn);
344
345 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
346 return true;
347
348 return false;
349}
350
351/*
d3035be4 352 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
353 * later in the boot cycle when it can be parallelised.
354 */
d3035be4
PT
355static bool __meminit
356defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 357{
d3035be4
PT
358 static unsigned long prev_end_pfn, nr_initialised;
359
360 /*
361 * prev_end_pfn static that contains the end of previous zone
362 * No need to protect because called very early in boot before smp_init.
363 */
364 if (prev_end_pfn != end_pfn) {
365 prev_end_pfn = end_pfn;
366 nr_initialised = 0;
367 }
368
3c2c6488 369 /* Always populate low zones for address-constrained allocations */
d3035be4 370 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 371 return false;
23b68cfa
WY
372
373 /*
374 * We start only with one section of pages, more pages are added as
375 * needed until the rest of deferred pages are initialized.
376 */
d3035be4 377 nr_initialised++;
23b68cfa 378 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
379 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
380 NODE_DATA(nid)->first_deferred_pfn = pfn;
381 return true;
3a80a7fa 382 }
d3035be4 383 return false;
3a80a7fa
MG
384}
385#else
3c0c12cc
WL
386#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
387
3a80a7fa
MG
388static inline bool early_page_uninitialised(unsigned long pfn)
389{
390 return false;
391}
392
d3035be4 393static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 394{
d3035be4 395 return false;
3a80a7fa
MG
396}
397#endif
398
0b423ca2
MG
399/* Return a pointer to the bitmap storing bits affecting a block of pages */
400static inline unsigned long *get_pageblock_bitmap(struct page *page,
401 unsigned long pfn)
402{
403#ifdef CONFIG_SPARSEMEM
404 return __pfn_to_section(pfn)->pageblock_flags;
405#else
406 return page_zone(page)->pageblock_flags;
407#endif /* CONFIG_SPARSEMEM */
408}
409
410static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
411{
412#ifdef CONFIG_SPARSEMEM
413 pfn &= (PAGES_PER_SECTION-1);
414 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
415#else
416 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
417 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
418#endif /* CONFIG_SPARSEMEM */
419}
420
421/**
422 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
423 * @page: The page within the block of interest
424 * @pfn: The target page frame number
425 * @end_bitidx: The last bit of interest to retrieve
426 * @mask: mask of bits that the caller is interested in
427 *
428 * Return: pageblock_bits flags
429 */
430static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
431 unsigned long pfn,
432 unsigned long end_bitidx,
433 unsigned long mask)
434{
435 unsigned long *bitmap;
436 unsigned long bitidx, word_bitidx;
437 unsigned long word;
438
439 bitmap = get_pageblock_bitmap(page, pfn);
440 bitidx = pfn_to_bitidx(page, pfn);
441 word_bitidx = bitidx / BITS_PER_LONG;
442 bitidx &= (BITS_PER_LONG-1);
443
444 word = bitmap[word_bitidx];
445 bitidx += end_bitidx;
446 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
447}
448
449unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
450 unsigned long end_bitidx,
451 unsigned long mask)
452{
453 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
454}
455
456static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
457{
458 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
459}
460
461/**
462 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
463 * @page: The page within the block of interest
464 * @flags: The flags to set
465 * @pfn: The target page frame number
466 * @end_bitidx: The last bit of interest
467 * @mask: mask of bits that the caller is interested in
468 */
469void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
470 unsigned long pfn,
471 unsigned long end_bitidx,
472 unsigned long mask)
473{
474 unsigned long *bitmap;
475 unsigned long bitidx, word_bitidx;
476 unsigned long old_word, word;
477
478 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 479 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
480
481 bitmap = get_pageblock_bitmap(page, pfn);
482 bitidx = pfn_to_bitidx(page, pfn);
483 word_bitidx = bitidx / BITS_PER_LONG;
484 bitidx &= (BITS_PER_LONG-1);
485
486 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
487
488 bitidx += end_bitidx;
489 mask <<= (BITS_PER_LONG - bitidx - 1);
490 flags <<= (BITS_PER_LONG - bitidx - 1);
491
492 word = READ_ONCE(bitmap[word_bitidx]);
493 for (;;) {
494 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
495 if (word == old_word)
496 break;
497 word = old_word;
498 }
499}
3a80a7fa 500
ee6f509c 501void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 502{
5d0f3f72
KM
503 if (unlikely(page_group_by_mobility_disabled &&
504 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
505 migratetype = MIGRATE_UNMOVABLE;
506
b2a0ac88
MG
507 set_pageblock_flags_group(page, (unsigned long)migratetype,
508 PB_migrate, PB_migrate_end);
509}
510
13e7444b 511#ifdef CONFIG_DEBUG_VM
c6a57e19 512static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 513{
bdc8cb98
DH
514 int ret = 0;
515 unsigned seq;
516 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 517 unsigned long sp, start_pfn;
c6a57e19 518
bdc8cb98
DH
519 do {
520 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
521 start_pfn = zone->zone_start_pfn;
522 sp = zone->spanned_pages;
108bcc96 523 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
524 ret = 1;
525 } while (zone_span_seqretry(zone, seq));
526
b5e6a5a2 527 if (ret)
613813e8
DH
528 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
529 pfn, zone_to_nid(zone), zone->name,
530 start_pfn, start_pfn + sp);
b5e6a5a2 531
bdc8cb98 532 return ret;
c6a57e19
DH
533}
534
535static int page_is_consistent(struct zone *zone, struct page *page)
536{
14e07298 537 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 538 return 0;
1da177e4 539 if (zone != page_zone(page))
c6a57e19
DH
540 return 0;
541
542 return 1;
543}
544/*
545 * Temporary debugging check for pages not lying within a given zone.
546 */
d73d3c9f 547static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
548{
549 if (page_outside_zone_boundaries(zone, page))
1da177e4 550 return 1;
c6a57e19
DH
551 if (!page_is_consistent(zone, page))
552 return 1;
553
1da177e4
LT
554 return 0;
555}
13e7444b 556#else
d73d3c9f 557static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
558{
559 return 0;
560}
561#endif
562
d230dec1
KS
563static void bad_page(struct page *page, const char *reason,
564 unsigned long bad_flags)
1da177e4 565{
d936cf9b
HD
566 static unsigned long resume;
567 static unsigned long nr_shown;
568 static unsigned long nr_unshown;
569
570 /*
571 * Allow a burst of 60 reports, then keep quiet for that minute;
572 * or allow a steady drip of one report per second.
573 */
574 if (nr_shown == 60) {
575 if (time_before(jiffies, resume)) {
576 nr_unshown++;
577 goto out;
578 }
579 if (nr_unshown) {
ff8e8116 580 pr_alert(
1e9e6365 581 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
582 nr_unshown);
583 nr_unshown = 0;
584 }
585 nr_shown = 0;
586 }
587 if (nr_shown++ == 0)
588 resume = jiffies + 60 * HZ;
589
ff8e8116 590 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 591 current->comm, page_to_pfn(page));
ff8e8116
VB
592 __dump_page(page, reason);
593 bad_flags &= page->flags;
594 if (bad_flags)
595 pr_alert("bad because of flags: %#lx(%pGp)\n",
596 bad_flags, &bad_flags);
4e462112 597 dump_page_owner(page);
3dc14741 598
4f31888c 599 print_modules();
1da177e4 600 dump_stack();
d936cf9b 601out:
8cc3b392 602 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 603 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 604 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
605}
606
1da177e4
LT
607/*
608 * Higher-order pages are called "compound pages". They are structured thusly:
609 *
1d798ca3 610 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 611 *
1d798ca3
KS
612 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
613 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 614 *
1d798ca3
KS
615 * The first tail page's ->compound_dtor holds the offset in array of compound
616 * page destructors. See compound_page_dtors.
1da177e4 617 *
1d798ca3 618 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 619 * This usage means that zero-order pages may not be compound.
1da177e4 620 */
d98c7a09 621
9a982250 622void free_compound_page(struct page *page)
d98c7a09 623{
d85f3385 624 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
625}
626
d00181b9 627void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
628{
629 int i;
630 int nr_pages = 1 << order;
631
f1e61557 632 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
633 set_compound_order(page, order);
634 __SetPageHead(page);
635 for (i = 1; i < nr_pages; i++) {
636 struct page *p = page + i;
58a84aa9 637 set_page_count(p, 0);
1c290f64 638 p->mapping = TAIL_MAPPING;
1d798ca3 639 set_compound_head(p, page);
18229df5 640 }
53f9263b 641 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
642}
643
c0a32fc5
SG
644#ifdef CONFIG_DEBUG_PAGEALLOC
645unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
646bool _debug_pagealloc_enabled __read_mostly
647 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 648EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
649bool _debug_guardpage_enabled __read_mostly;
650
031bc574
JK
651static int __init early_debug_pagealloc(char *buf)
652{
653 if (!buf)
654 return -EINVAL;
2a138dc7 655 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
656}
657early_param("debug_pagealloc", early_debug_pagealloc);
658
e30825f1
JK
659static bool need_debug_guardpage(void)
660{
031bc574
JK
661 /* If we don't use debug_pagealloc, we don't need guard page */
662 if (!debug_pagealloc_enabled())
663 return false;
664
f1c1e9f7
JK
665 if (!debug_guardpage_minorder())
666 return false;
667
e30825f1
JK
668 return true;
669}
670
671static void init_debug_guardpage(void)
672{
031bc574
JK
673 if (!debug_pagealloc_enabled())
674 return;
675
f1c1e9f7
JK
676 if (!debug_guardpage_minorder())
677 return;
678
e30825f1
JK
679 _debug_guardpage_enabled = true;
680}
681
682struct page_ext_operations debug_guardpage_ops = {
683 .need = need_debug_guardpage,
684 .init = init_debug_guardpage,
685};
c0a32fc5
SG
686
687static int __init debug_guardpage_minorder_setup(char *buf)
688{
689 unsigned long res;
690
691 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 692 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
693 return 0;
694 }
695 _debug_guardpage_minorder = res;
1170532b 696 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
697 return 0;
698}
f1c1e9f7 699early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 700
acbc15a4 701static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 702 unsigned int order, int migratetype)
c0a32fc5 703{
e30825f1
JK
704 struct page_ext *page_ext;
705
706 if (!debug_guardpage_enabled())
acbc15a4
JK
707 return false;
708
709 if (order >= debug_guardpage_minorder())
710 return false;
e30825f1
JK
711
712 page_ext = lookup_page_ext(page);
f86e4271 713 if (unlikely(!page_ext))
acbc15a4 714 return false;
f86e4271 715
e30825f1
JK
716 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
717
2847cf95
JK
718 INIT_LIST_HEAD(&page->lru);
719 set_page_private(page, order);
720 /* Guard pages are not available for any usage */
721 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
722
723 return true;
c0a32fc5
SG
724}
725
2847cf95
JK
726static inline void clear_page_guard(struct zone *zone, struct page *page,
727 unsigned int order, int migratetype)
c0a32fc5 728{
e30825f1
JK
729 struct page_ext *page_ext;
730
731 if (!debug_guardpage_enabled())
732 return;
733
734 page_ext = lookup_page_ext(page);
f86e4271
YS
735 if (unlikely(!page_ext))
736 return;
737
e30825f1
JK
738 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
739
2847cf95
JK
740 set_page_private(page, 0);
741 if (!is_migrate_isolate(migratetype))
742 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
743}
744#else
980ac167 745struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
746static inline bool set_page_guard(struct zone *zone, struct page *page,
747 unsigned int order, int migratetype) { return false; }
2847cf95
JK
748static inline void clear_page_guard(struct zone *zone, struct page *page,
749 unsigned int order, int migratetype) {}
c0a32fc5
SG
750#endif
751
7aeb09f9 752static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 753{
4c21e2f2 754 set_page_private(page, order);
676165a8 755 __SetPageBuddy(page);
1da177e4
LT
756}
757
758static inline void rmv_page_order(struct page *page)
759{
676165a8 760 __ClearPageBuddy(page);
4c21e2f2 761 set_page_private(page, 0);
1da177e4
LT
762}
763
1da177e4
LT
764/*
765 * This function checks whether a page is free && is the buddy
6e292b9b 766 * we can coalesce a page and its buddy if
13ad59df 767 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 768 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
769 * (c) a page and its buddy have the same order &&
770 * (d) a page and its buddy are in the same zone.
676165a8 771 *
6e292b9b
MW
772 * For recording whether a page is in the buddy system, we set PageBuddy.
773 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 774 *
676165a8 775 * For recording page's order, we use page_private(page).
1da177e4 776 */
cb2b95e1 777static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 778 unsigned int order)
1da177e4 779{
c0a32fc5 780 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
781 if (page_zone_id(page) != page_zone_id(buddy))
782 return 0;
783
4c5018ce
WY
784 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
785
c0a32fc5
SG
786 return 1;
787 }
788
cb2b95e1 789 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
790 /*
791 * zone check is done late to avoid uselessly
792 * calculating zone/node ids for pages that could
793 * never merge.
794 */
795 if (page_zone_id(page) != page_zone_id(buddy))
796 return 0;
797
4c5018ce
WY
798 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
799
6aa3001b 800 return 1;
676165a8 801 }
6aa3001b 802 return 0;
1da177e4
LT
803}
804
5e1f0f09
MG
805#ifdef CONFIG_COMPACTION
806static inline struct capture_control *task_capc(struct zone *zone)
807{
808 struct capture_control *capc = current->capture_control;
809
810 return capc &&
811 !(current->flags & PF_KTHREAD) &&
812 !capc->page &&
813 capc->cc->zone == zone &&
814 capc->cc->direct_compaction ? capc : NULL;
815}
816
817static inline bool
818compaction_capture(struct capture_control *capc, struct page *page,
819 int order, int migratetype)
820{
821 if (!capc || order != capc->cc->order)
822 return false;
823
824 /* Do not accidentally pollute CMA or isolated regions*/
825 if (is_migrate_cma(migratetype) ||
826 is_migrate_isolate(migratetype))
827 return false;
828
829 /*
830 * Do not let lower order allocations polluate a movable pageblock.
831 * This might let an unmovable request use a reclaimable pageblock
832 * and vice-versa but no more than normal fallback logic which can
833 * have trouble finding a high-order free page.
834 */
835 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
836 return false;
837
838 capc->page = page;
839 return true;
840}
841
842#else
843static inline struct capture_control *task_capc(struct zone *zone)
844{
845 return NULL;
846}
847
848static inline bool
849compaction_capture(struct capture_control *capc, struct page *page,
850 int order, int migratetype)
851{
852 return false;
853}
854#endif /* CONFIG_COMPACTION */
855
1da177e4
LT
856/*
857 * Freeing function for a buddy system allocator.
858 *
859 * The concept of a buddy system is to maintain direct-mapped table
860 * (containing bit values) for memory blocks of various "orders".
861 * The bottom level table contains the map for the smallest allocatable
862 * units of memory (here, pages), and each level above it describes
863 * pairs of units from the levels below, hence, "buddies".
864 * At a high level, all that happens here is marking the table entry
865 * at the bottom level available, and propagating the changes upward
866 * as necessary, plus some accounting needed to play nicely with other
867 * parts of the VM system.
868 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
869 * free pages of length of (1 << order) and marked with PageBuddy.
870 * Page's order is recorded in page_private(page) field.
1da177e4 871 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
872 * other. That is, if we allocate a small block, and both were
873 * free, the remainder of the region must be split into blocks.
1da177e4 874 * If a block is freed, and its buddy is also free, then this
5f63b720 875 * triggers coalescing into a block of larger size.
1da177e4 876 *
6d49e352 877 * -- nyc
1da177e4
LT
878 */
879
48db57f8 880static inline void __free_one_page(struct page *page,
dc4b0caf 881 unsigned long pfn,
ed0ae21d
MG
882 struct zone *zone, unsigned int order,
883 int migratetype)
1da177e4 884{
76741e77
VB
885 unsigned long combined_pfn;
886 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 887 struct page *buddy;
d9dddbf5 888 unsigned int max_order;
5e1f0f09 889 struct capture_control *capc = task_capc(zone);
d9dddbf5
VB
890
891 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 892
d29bb978 893 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 894 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 895
ed0ae21d 896 VM_BUG_ON(migratetype == -1);
d9dddbf5 897 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 898 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 899
76741e77 900 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 901 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 902
d9dddbf5 903continue_merging:
3c605096 904 while (order < max_order - 1) {
5e1f0f09
MG
905 if (compaction_capture(capc, page, order, migratetype)) {
906 __mod_zone_freepage_state(zone, -(1 << order),
907 migratetype);
908 return;
909 }
76741e77
VB
910 buddy_pfn = __find_buddy_pfn(pfn, order);
911 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
912
913 if (!pfn_valid_within(buddy_pfn))
914 goto done_merging;
cb2b95e1 915 if (!page_is_buddy(page, buddy, order))
d9dddbf5 916 goto done_merging;
c0a32fc5
SG
917 /*
918 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
919 * merge with it and move up one order.
920 */
921 if (page_is_guard(buddy)) {
2847cf95 922 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
923 } else {
924 list_del(&buddy->lru);
925 zone->free_area[order].nr_free--;
926 rmv_page_order(buddy);
927 }
76741e77
VB
928 combined_pfn = buddy_pfn & pfn;
929 page = page + (combined_pfn - pfn);
930 pfn = combined_pfn;
1da177e4
LT
931 order++;
932 }
d9dddbf5
VB
933 if (max_order < MAX_ORDER) {
934 /* If we are here, it means order is >= pageblock_order.
935 * We want to prevent merge between freepages on isolate
936 * pageblock and normal pageblock. Without this, pageblock
937 * isolation could cause incorrect freepage or CMA accounting.
938 *
939 * We don't want to hit this code for the more frequent
940 * low-order merging.
941 */
942 if (unlikely(has_isolate_pageblock(zone))) {
943 int buddy_mt;
944
76741e77
VB
945 buddy_pfn = __find_buddy_pfn(pfn, order);
946 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
947 buddy_mt = get_pageblock_migratetype(buddy);
948
949 if (migratetype != buddy_mt
950 && (is_migrate_isolate(migratetype) ||
951 is_migrate_isolate(buddy_mt)))
952 goto done_merging;
953 }
954 max_order++;
955 goto continue_merging;
956 }
957
958done_merging:
1da177e4 959 set_page_order(page, order);
6dda9d55
CZ
960
961 /*
962 * If this is not the largest possible page, check if the buddy
963 * of the next-highest order is free. If it is, it's possible
964 * that pages are being freed that will coalesce soon. In case,
965 * that is happening, add the free page to the tail of the list
966 * so it's less likely to be used soon and more likely to be merged
967 * as a higher order page
968 */
13ad59df 969 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 970 struct page *higher_page, *higher_buddy;
76741e77
VB
971 combined_pfn = buddy_pfn & pfn;
972 higher_page = page + (combined_pfn - pfn);
973 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
974 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
975 if (pfn_valid_within(buddy_pfn) &&
976 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
977 list_add_tail(&page->lru,
978 &zone->free_area[order].free_list[migratetype]);
979 goto out;
980 }
981 }
982
983 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
984out:
1da177e4
LT
985 zone->free_area[order].nr_free++;
986}
987
7bfec6f4
MG
988/*
989 * A bad page could be due to a number of fields. Instead of multiple branches,
990 * try and check multiple fields with one check. The caller must do a detailed
991 * check if necessary.
992 */
993static inline bool page_expected_state(struct page *page,
994 unsigned long check_flags)
995{
996 if (unlikely(atomic_read(&page->_mapcount) != -1))
997 return false;
998
999 if (unlikely((unsigned long)page->mapping |
1000 page_ref_count(page) |
1001#ifdef CONFIG_MEMCG
1002 (unsigned long)page->mem_cgroup |
1003#endif
1004 (page->flags & check_flags)))
1005 return false;
1006
1007 return true;
1008}
1009
bb552ac6 1010static void free_pages_check_bad(struct page *page)
1da177e4 1011{
7bfec6f4
MG
1012 const char *bad_reason;
1013 unsigned long bad_flags;
1014
7bfec6f4
MG
1015 bad_reason = NULL;
1016 bad_flags = 0;
f0b791a3 1017
53f9263b 1018 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1019 bad_reason = "nonzero mapcount";
1020 if (unlikely(page->mapping != NULL))
1021 bad_reason = "non-NULL mapping";
fe896d18 1022 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1023 bad_reason = "nonzero _refcount";
f0b791a3
DH
1024 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1025 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1026 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1027 }
9edad6ea
JW
1028#ifdef CONFIG_MEMCG
1029 if (unlikely(page->mem_cgroup))
1030 bad_reason = "page still charged to cgroup";
1031#endif
7bfec6f4 1032 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1033}
1034
1035static inline int free_pages_check(struct page *page)
1036{
da838d4f 1037 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1038 return 0;
bb552ac6
MG
1039
1040 /* Something has gone sideways, find it */
1041 free_pages_check_bad(page);
7bfec6f4 1042 return 1;
1da177e4
LT
1043}
1044
4db7548c
MG
1045static int free_tail_pages_check(struct page *head_page, struct page *page)
1046{
1047 int ret = 1;
1048
1049 /*
1050 * We rely page->lru.next never has bit 0 set, unless the page
1051 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1052 */
1053 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1054
1055 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1056 ret = 0;
1057 goto out;
1058 }
1059 switch (page - head_page) {
1060 case 1:
4da1984e 1061 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1062 if (unlikely(compound_mapcount(page))) {
1063 bad_page(page, "nonzero compound_mapcount", 0);
1064 goto out;
1065 }
1066 break;
1067 case 2:
1068 /*
1069 * the second tail page: ->mapping is
fa3015b7 1070 * deferred_list.next -- ignore value.
4db7548c
MG
1071 */
1072 break;
1073 default:
1074 if (page->mapping != TAIL_MAPPING) {
1075 bad_page(page, "corrupted mapping in tail page", 0);
1076 goto out;
1077 }
1078 break;
1079 }
1080 if (unlikely(!PageTail(page))) {
1081 bad_page(page, "PageTail not set", 0);
1082 goto out;
1083 }
1084 if (unlikely(compound_head(page) != head_page)) {
1085 bad_page(page, "compound_head not consistent", 0);
1086 goto out;
1087 }
1088 ret = 0;
1089out:
1090 page->mapping = NULL;
1091 clear_compound_head(page);
1092 return ret;
1093}
1094
e2769dbd
MG
1095static __always_inline bool free_pages_prepare(struct page *page,
1096 unsigned int order, bool check_free)
4db7548c 1097{
e2769dbd 1098 int bad = 0;
4db7548c 1099
4db7548c
MG
1100 VM_BUG_ON_PAGE(PageTail(page), page);
1101
e2769dbd 1102 trace_mm_page_free(page, order);
e2769dbd
MG
1103
1104 /*
1105 * Check tail pages before head page information is cleared to
1106 * avoid checking PageCompound for order-0 pages.
1107 */
1108 if (unlikely(order)) {
1109 bool compound = PageCompound(page);
1110 int i;
1111
1112 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1113
9a73f61b
KS
1114 if (compound)
1115 ClearPageDoubleMap(page);
e2769dbd
MG
1116 for (i = 1; i < (1 << order); i++) {
1117 if (compound)
1118 bad += free_tail_pages_check(page, page + i);
1119 if (unlikely(free_pages_check(page + i))) {
1120 bad++;
1121 continue;
1122 }
1123 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1124 }
1125 }
bda807d4 1126 if (PageMappingFlags(page))
4db7548c 1127 page->mapping = NULL;
c4159a75 1128 if (memcg_kmem_enabled() && PageKmemcg(page))
60cd4bcd 1129 __memcg_kmem_uncharge(page, order);
e2769dbd
MG
1130 if (check_free)
1131 bad += free_pages_check(page);
1132 if (bad)
1133 return false;
4db7548c 1134
e2769dbd
MG
1135 page_cpupid_reset_last(page);
1136 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1137 reset_page_owner(page, order);
4db7548c
MG
1138
1139 if (!PageHighMem(page)) {
1140 debug_check_no_locks_freed(page_address(page),
e2769dbd 1141 PAGE_SIZE << order);
4db7548c 1142 debug_check_no_obj_freed(page_address(page),
e2769dbd 1143 PAGE_SIZE << order);
4db7548c 1144 }
e2769dbd
MG
1145 arch_free_page(page, order);
1146 kernel_poison_pages(page, 1 << order, 0);
d6332692
RE
1147 if (debug_pagealloc_enabled())
1148 kernel_map_pages(page, 1 << order, 0);
1149
3c0c12cc 1150 kasan_free_nondeferred_pages(page, order);
4db7548c 1151
4db7548c
MG
1152 return true;
1153}
1154
e2769dbd
MG
1155#ifdef CONFIG_DEBUG_VM
1156static inline bool free_pcp_prepare(struct page *page)
1157{
1158 return free_pages_prepare(page, 0, true);
1159}
1160
1161static inline bool bulkfree_pcp_prepare(struct page *page)
1162{
1163 return false;
1164}
1165#else
1166static bool free_pcp_prepare(struct page *page)
1167{
1168 return free_pages_prepare(page, 0, false);
1169}
1170
4db7548c
MG
1171static bool bulkfree_pcp_prepare(struct page *page)
1172{
1173 return free_pages_check(page);
1174}
1175#endif /* CONFIG_DEBUG_VM */
1176
97334162
AL
1177static inline void prefetch_buddy(struct page *page)
1178{
1179 unsigned long pfn = page_to_pfn(page);
1180 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1181 struct page *buddy = page + (buddy_pfn - pfn);
1182
1183 prefetch(buddy);
1184}
1185
1da177e4 1186/*
5f8dcc21 1187 * Frees a number of pages from the PCP lists
1da177e4 1188 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1189 * count is the number of pages to free.
1da177e4
LT
1190 *
1191 * If the zone was previously in an "all pages pinned" state then look to
1192 * see if this freeing clears that state.
1193 *
1194 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1195 * pinned" detection logic.
1196 */
5f8dcc21
MG
1197static void free_pcppages_bulk(struct zone *zone, int count,
1198 struct per_cpu_pages *pcp)
1da177e4 1199{
5f8dcc21 1200 int migratetype = 0;
a6f9edd6 1201 int batch_free = 0;
97334162 1202 int prefetch_nr = 0;
3777999d 1203 bool isolated_pageblocks;
0a5f4e5b
AL
1204 struct page *page, *tmp;
1205 LIST_HEAD(head);
f2260e6b 1206
e5b31ac2 1207 while (count) {
5f8dcc21
MG
1208 struct list_head *list;
1209
1210 /*
a6f9edd6
MG
1211 * Remove pages from lists in a round-robin fashion. A
1212 * batch_free count is maintained that is incremented when an
1213 * empty list is encountered. This is so more pages are freed
1214 * off fuller lists instead of spinning excessively around empty
1215 * lists
5f8dcc21
MG
1216 */
1217 do {
a6f9edd6 1218 batch_free++;
5f8dcc21
MG
1219 if (++migratetype == MIGRATE_PCPTYPES)
1220 migratetype = 0;
1221 list = &pcp->lists[migratetype];
1222 } while (list_empty(list));
48db57f8 1223
1d16871d
NK
1224 /* This is the only non-empty list. Free them all. */
1225 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1226 batch_free = count;
1d16871d 1227
a6f9edd6 1228 do {
a16601c5 1229 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1230 /* must delete to avoid corrupting pcp list */
a6f9edd6 1231 list_del(&page->lru);
77ba9062 1232 pcp->count--;
aa016d14 1233
4db7548c
MG
1234 if (bulkfree_pcp_prepare(page))
1235 continue;
1236
0a5f4e5b 1237 list_add_tail(&page->lru, &head);
97334162
AL
1238
1239 /*
1240 * We are going to put the page back to the global
1241 * pool, prefetch its buddy to speed up later access
1242 * under zone->lock. It is believed the overhead of
1243 * an additional test and calculating buddy_pfn here
1244 * can be offset by reduced memory latency later. To
1245 * avoid excessive prefetching due to large count, only
1246 * prefetch buddy for the first pcp->batch nr of pages.
1247 */
1248 if (prefetch_nr++ < pcp->batch)
1249 prefetch_buddy(page);
e5b31ac2 1250 } while (--count && --batch_free && !list_empty(list));
1da177e4 1251 }
0a5f4e5b
AL
1252
1253 spin_lock(&zone->lock);
1254 isolated_pageblocks = has_isolate_pageblock(zone);
1255
1256 /*
1257 * Use safe version since after __free_one_page(),
1258 * page->lru.next will not point to original list.
1259 */
1260 list_for_each_entry_safe(page, tmp, &head, lru) {
1261 int mt = get_pcppage_migratetype(page);
1262 /* MIGRATE_ISOLATE page should not go to pcplists */
1263 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1264 /* Pageblock could have been isolated meanwhile */
1265 if (unlikely(isolated_pageblocks))
1266 mt = get_pageblock_migratetype(page);
1267
1268 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1269 trace_mm_page_pcpu_drain(page, 0, mt);
1270 }
d34b0733 1271 spin_unlock(&zone->lock);
1da177e4
LT
1272}
1273
dc4b0caf
MG
1274static void free_one_page(struct zone *zone,
1275 struct page *page, unsigned long pfn,
7aeb09f9 1276 unsigned int order,
ed0ae21d 1277 int migratetype)
1da177e4 1278{
d34b0733 1279 spin_lock(&zone->lock);
ad53f92e
JK
1280 if (unlikely(has_isolate_pageblock(zone) ||
1281 is_migrate_isolate(migratetype))) {
1282 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1283 }
dc4b0caf 1284 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1285 spin_unlock(&zone->lock);
48db57f8
NP
1286}
1287
1e8ce83c 1288static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1289 unsigned long zone, int nid)
1e8ce83c 1290{
d0dc12e8 1291 mm_zero_struct_page(page);
1e8ce83c 1292 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1293 init_page_count(page);
1294 page_mapcount_reset(page);
1295 page_cpupid_reset_last(page);
2813b9c0 1296 page_kasan_tag_reset(page);
1e8ce83c 1297
1e8ce83c
RH
1298 INIT_LIST_HEAD(&page->lru);
1299#ifdef WANT_PAGE_VIRTUAL
1300 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1301 if (!is_highmem_idx(zone))
1302 set_page_address(page, __va(pfn << PAGE_SHIFT));
1303#endif
1304}
1305
7e18adb4 1306#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1307static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1308{
1309 pg_data_t *pgdat;
1310 int nid, zid;
1311
1312 if (!early_page_uninitialised(pfn))
1313 return;
1314
1315 nid = early_pfn_to_nid(pfn);
1316 pgdat = NODE_DATA(nid);
1317
1318 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1319 struct zone *zone = &pgdat->node_zones[zid];
1320
1321 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1322 break;
1323 }
d0dc12e8 1324 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1325}
1326#else
1327static inline void init_reserved_page(unsigned long pfn)
1328{
1329}
1330#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1331
92923ca3
NZ
1332/*
1333 * Initialised pages do not have PageReserved set. This function is
1334 * called for each range allocated by the bootmem allocator and
1335 * marks the pages PageReserved. The remaining valid pages are later
1336 * sent to the buddy page allocator.
1337 */
4b50bcc7 1338void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1339{
1340 unsigned long start_pfn = PFN_DOWN(start);
1341 unsigned long end_pfn = PFN_UP(end);
1342
7e18adb4
MG
1343 for (; start_pfn < end_pfn; start_pfn++) {
1344 if (pfn_valid(start_pfn)) {
1345 struct page *page = pfn_to_page(start_pfn);
1346
1347 init_reserved_page(start_pfn);
1d798ca3
KS
1348
1349 /* Avoid false-positive PageTail() */
1350 INIT_LIST_HEAD(&page->lru);
1351
d483da5b
AD
1352 /*
1353 * no need for atomic set_bit because the struct
1354 * page is not visible yet so nobody should
1355 * access it yet.
1356 */
1357 __SetPageReserved(page);
7e18adb4
MG
1358 }
1359 }
92923ca3
NZ
1360}
1361
ec95f53a
KM
1362static void __free_pages_ok(struct page *page, unsigned int order)
1363{
d34b0733 1364 unsigned long flags;
95e34412 1365 int migratetype;
dc4b0caf 1366 unsigned long pfn = page_to_pfn(page);
ec95f53a 1367
e2769dbd 1368 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1369 return;
1370
cfc47a28 1371 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1372 local_irq_save(flags);
1373 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1374 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1375 local_irq_restore(flags);
1da177e4
LT
1376}
1377
a9cd410a 1378void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1379{
c3993076 1380 unsigned int nr_pages = 1 << order;
e2d0bd2b 1381 struct page *p = page;
c3993076 1382 unsigned int loop;
a226f6c8 1383
e2d0bd2b
YL
1384 prefetchw(p);
1385 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1386 prefetchw(p + 1);
c3993076
JW
1387 __ClearPageReserved(p);
1388 set_page_count(p, 0);
a226f6c8 1389 }
e2d0bd2b
YL
1390 __ClearPageReserved(p);
1391 set_page_count(p, 0);
c3993076 1392
9705bea5 1393 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1394 set_page_refcounted(page);
1395 __free_pages(page, order);
a226f6c8
DH
1396}
1397
75a592a4
MG
1398#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1399 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1400
75a592a4
MG
1401static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1402
1403int __meminit early_pfn_to_nid(unsigned long pfn)
1404{
7ace9917 1405 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1406 int nid;
1407
7ace9917 1408 spin_lock(&early_pfn_lock);
75a592a4 1409 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1410 if (nid < 0)
e4568d38 1411 nid = first_online_node;
7ace9917
MG
1412 spin_unlock(&early_pfn_lock);
1413
1414 return nid;
75a592a4
MG
1415}
1416#endif
1417
1418#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1419static inline bool __meminit __maybe_unused
1420meminit_pfn_in_nid(unsigned long pfn, int node,
1421 struct mminit_pfnnid_cache *state)
75a592a4
MG
1422{
1423 int nid;
1424
1425 nid = __early_pfn_to_nid(pfn, state);
1426 if (nid >= 0 && nid != node)
1427 return false;
1428 return true;
1429}
1430
1431/* Only safe to use early in boot when initialisation is single-threaded */
1432static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1433{
1434 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1435}
1436
1437#else
1438
1439static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1440{
1441 return true;
1442}
d73d3c9f
MK
1443static inline bool __meminit __maybe_unused
1444meminit_pfn_in_nid(unsigned long pfn, int node,
1445 struct mminit_pfnnid_cache *state)
75a592a4
MG
1446{
1447 return true;
1448}
1449#endif
1450
1451
7c2ee349 1452void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1453 unsigned int order)
1454{
1455 if (early_page_uninitialised(pfn))
1456 return;
a9cd410a 1457 __free_pages_core(page, order);
3a80a7fa
MG
1458}
1459
7cf91a98
JK
1460/*
1461 * Check that the whole (or subset of) a pageblock given by the interval of
1462 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1463 * with the migration of free compaction scanner. The scanners then need to
1464 * use only pfn_valid_within() check for arches that allow holes within
1465 * pageblocks.
1466 *
1467 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1468 *
1469 * It's possible on some configurations to have a setup like node0 node1 node0
1470 * i.e. it's possible that all pages within a zones range of pages do not
1471 * belong to a single zone. We assume that a border between node0 and node1
1472 * can occur within a single pageblock, but not a node0 node1 node0
1473 * interleaving within a single pageblock. It is therefore sufficient to check
1474 * the first and last page of a pageblock and avoid checking each individual
1475 * page in a pageblock.
1476 */
1477struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1478 unsigned long end_pfn, struct zone *zone)
1479{
1480 struct page *start_page;
1481 struct page *end_page;
1482
1483 /* end_pfn is one past the range we are checking */
1484 end_pfn--;
1485
1486 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1487 return NULL;
1488
2d070eab
MH
1489 start_page = pfn_to_online_page(start_pfn);
1490 if (!start_page)
1491 return NULL;
7cf91a98
JK
1492
1493 if (page_zone(start_page) != zone)
1494 return NULL;
1495
1496 end_page = pfn_to_page(end_pfn);
1497
1498 /* This gives a shorter code than deriving page_zone(end_page) */
1499 if (page_zone_id(start_page) != page_zone_id(end_page))
1500 return NULL;
1501
1502 return start_page;
1503}
1504
1505void set_zone_contiguous(struct zone *zone)
1506{
1507 unsigned long block_start_pfn = zone->zone_start_pfn;
1508 unsigned long block_end_pfn;
1509
1510 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1511 for (; block_start_pfn < zone_end_pfn(zone);
1512 block_start_pfn = block_end_pfn,
1513 block_end_pfn += pageblock_nr_pages) {
1514
1515 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1516
1517 if (!__pageblock_pfn_to_page(block_start_pfn,
1518 block_end_pfn, zone))
1519 return;
1520 }
1521
1522 /* We confirm that there is no hole */
1523 zone->contiguous = true;
1524}
1525
1526void clear_zone_contiguous(struct zone *zone)
1527{
1528 zone->contiguous = false;
1529}
1530
7e18adb4 1531#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1532static void __init deferred_free_range(unsigned long pfn,
1533 unsigned long nr_pages)
a4de83dd 1534{
2f47a91f
PT
1535 struct page *page;
1536 unsigned long i;
a4de83dd 1537
2f47a91f 1538 if (!nr_pages)
a4de83dd
MG
1539 return;
1540
2f47a91f
PT
1541 page = pfn_to_page(pfn);
1542
a4de83dd 1543 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1544 if (nr_pages == pageblock_nr_pages &&
1545 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1546 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1547 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1548 return;
1549 }
1550
e780149b
XQ
1551 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1552 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1553 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1554 __free_pages_core(page, 0);
e780149b 1555 }
a4de83dd
MG
1556}
1557
d3cd131d
NS
1558/* Completion tracking for deferred_init_memmap() threads */
1559static atomic_t pgdat_init_n_undone __initdata;
1560static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1561
1562static inline void __init pgdat_init_report_one_done(void)
1563{
1564 if (atomic_dec_and_test(&pgdat_init_n_undone))
1565 complete(&pgdat_init_all_done_comp);
1566}
0e1cc95b 1567
2f47a91f 1568/*
80b1f41c
PT
1569 * Returns true if page needs to be initialized or freed to buddy allocator.
1570 *
1571 * First we check if pfn is valid on architectures where it is possible to have
1572 * holes within pageblock_nr_pages. On systems where it is not possible, this
1573 * function is optimized out.
1574 *
1575 * Then, we check if a current large page is valid by only checking the validity
1576 * of the head pfn.
1577 *
1578 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1579 * within a node: a pfn is between start and end of a node, but does not belong
1580 * to this memory node.
2f47a91f 1581 */
80b1f41c
PT
1582static inline bool __init
1583deferred_pfn_valid(int nid, unsigned long pfn,
1584 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1585{
80b1f41c
PT
1586 if (!pfn_valid_within(pfn))
1587 return false;
1588 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1589 return false;
1590 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1591 return false;
1592 return true;
1593}
2f47a91f 1594
80b1f41c
PT
1595/*
1596 * Free pages to buddy allocator. Try to free aligned pages in
1597 * pageblock_nr_pages sizes.
1598 */
1599static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1600 unsigned long end_pfn)
1601{
1602 struct mminit_pfnnid_cache nid_init_state = { };
1603 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1604 unsigned long nr_free = 0;
2f47a91f 1605
80b1f41c
PT
1606 for (; pfn < end_pfn; pfn++) {
1607 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1608 deferred_free_range(pfn - nr_free, nr_free);
1609 nr_free = 0;
1610 } else if (!(pfn & nr_pgmask)) {
1611 deferred_free_range(pfn - nr_free, nr_free);
1612 nr_free = 1;
3a2d7fa8 1613 touch_nmi_watchdog();
80b1f41c
PT
1614 } else {
1615 nr_free++;
1616 }
1617 }
1618 /* Free the last block of pages to allocator */
1619 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1620}
1621
80b1f41c
PT
1622/*
1623 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1624 * by performing it only once every pageblock_nr_pages.
1625 * Return number of pages initialized.
1626 */
1627static unsigned long __init deferred_init_pages(int nid, int zid,
1628 unsigned long pfn,
1629 unsigned long end_pfn)
2f47a91f
PT
1630{
1631 struct mminit_pfnnid_cache nid_init_state = { };
1632 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1633 unsigned long nr_pages = 0;
2f47a91f 1634 struct page *page = NULL;
2f47a91f 1635
80b1f41c
PT
1636 for (; pfn < end_pfn; pfn++) {
1637 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1638 page = NULL;
2f47a91f 1639 continue;
80b1f41c 1640 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1641 page = pfn_to_page(pfn);
3a2d7fa8 1642 touch_nmi_watchdog();
80b1f41c
PT
1643 } else {
1644 page++;
2f47a91f 1645 }
d0dc12e8 1646 __init_single_page(page, pfn, zid, nid);
80b1f41c 1647 nr_pages++;
2f47a91f 1648 }
80b1f41c 1649 return (nr_pages);
2f47a91f
PT
1650}
1651
7e18adb4 1652/* Initialise remaining memory on a node */
0e1cc95b 1653static int __init deferred_init_memmap(void *data)
7e18adb4 1654{
0e1cc95b
MG
1655 pg_data_t *pgdat = data;
1656 int nid = pgdat->node_id;
7e18adb4
MG
1657 unsigned long start = jiffies;
1658 unsigned long nr_pages = 0;
3a2d7fa8 1659 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1660 phys_addr_t spa, epa;
1661 int zid;
7e18adb4 1662 struct zone *zone;
0e1cc95b 1663 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1664 u64 i;
7e18adb4 1665
3a2d7fa8
PT
1666 /* Bind memory initialisation thread to a local node if possible */
1667 if (!cpumask_empty(cpumask))
1668 set_cpus_allowed_ptr(current, cpumask);
1669
1670 pgdat_resize_lock(pgdat, &flags);
1671 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1672 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1673 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1674 pgdat_init_report_one_done();
0e1cc95b
MG
1675 return 0;
1676 }
1677
7e18adb4
MG
1678 /* Sanity check boundaries */
1679 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1680 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1681 pgdat->first_deferred_pfn = ULONG_MAX;
1682
1683 /* Only the highest zone is deferred so find it */
1684 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1685 zone = pgdat->node_zones + zid;
1686 if (first_init_pfn < zone_end_pfn(zone))
1687 break;
1688 }
2f47a91f 1689 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1690
80b1f41c
PT
1691 /*
1692 * Initialize and free pages. We do it in two loops: first we initialize
1693 * struct page, than free to buddy allocator, because while we are
1694 * freeing pages we can access pages that are ahead (computing buddy
1695 * page in __free_one_page()).
1696 */
1697 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1698 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1699 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1700 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1701 }
2f47a91f
PT
1702 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1703 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1704 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1705 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1706 }
3a2d7fa8 1707 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1708
1709 /* Sanity check that the next zone really is unpopulated */
1710 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1711
0e1cc95b 1712 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1713 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1714
1715 pgdat_init_report_one_done();
0e1cc95b
MG
1716 return 0;
1717}
c9e97a19 1718
c9e97a19
PT
1719/*
1720 * If this zone has deferred pages, try to grow it by initializing enough
1721 * deferred pages to satisfy the allocation specified by order, rounded up to
1722 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1723 * of SECTION_SIZE bytes by initializing struct pages in increments of
1724 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1725 *
1726 * Return true when zone was grown, otherwise return false. We return true even
1727 * when we grow less than requested, to let the caller decide if there are
1728 * enough pages to satisfy the allocation.
1729 *
1730 * Note: We use noinline because this function is needed only during boot, and
1731 * it is called from a __ref function _deferred_grow_zone. This way we are
1732 * making sure that it is not inlined into permanent text section.
1733 */
1734static noinline bool __init
1735deferred_grow_zone(struct zone *zone, unsigned int order)
1736{
1737 int zid = zone_idx(zone);
1738 int nid = zone_to_nid(zone);
1739 pg_data_t *pgdat = NODE_DATA(nid);
1740 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1741 unsigned long nr_pages = 0;
1742 unsigned long first_init_pfn, spfn, epfn, t, flags;
1743 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1744 phys_addr_t spa, epa;
1745 u64 i;
1746
1747 /* Only the last zone may have deferred pages */
1748 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1749 return false;
1750
1751 pgdat_resize_lock(pgdat, &flags);
1752
1753 /*
1754 * If deferred pages have been initialized while we were waiting for
1755 * the lock, return true, as the zone was grown. The caller will retry
1756 * this zone. We won't return to this function since the caller also
1757 * has this static branch.
1758 */
1759 if (!static_branch_unlikely(&deferred_pages)) {
1760 pgdat_resize_unlock(pgdat, &flags);
1761 return true;
1762 }
1763
1764 /*
1765 * If someone grew this zone while we were waiting for spinlock, return
1766 * true, as there might be enough pages already.
1767 */
1768 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1769 pgdat_resize_unlock(pgdat, &flags);
1770 return true;
1771 }
1772
1773 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1774
1775 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1776 pgdat_resize_unlock(pgdat, &flags);
1777 return false;
1778 }
1779
1780 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1781 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1782 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1783
1784 while (spfn < epfn && nr_pages < nr_pages_needed) {
1785 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1786 first_deferred_pfn = min(t, epfn);
1787 nr_pages += deferred_init_pages(nid, zid, spfn,
1788 first_deferred_pfn);
1789 spfn = first_deferred_pfn;
1790 }
1791
1792 if (nr_pages >= nr_pages_needed)
1793 break;
1794 }
1795
1796 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1797 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1798 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1799 deferred_free_pages(nid, zid, spfn, epfn);
1800
1801 if (first_deferred_pfn == epfn)
1802 break;
1803 }
1804 pgdat->first_deferred_pfn = first_deferred_pfn;
1805 pgdat_resize_unlock(pgdat, &flags);
1806
1807 return nr_pages > 0;
1808}
1809
1810/*
1811 * deferred_grow_zone() is __init, but it is called from
1812 * get_page_from_freelist() during early boot until deferred_pages permanently
1813 * disables this call. This is why we have refdata wrapper to avoid warning,
1814 * and to ensure that the function body gets unloaded.
1815 */
1816static bool __ref
1817_deferred_grow_zone(struct zone *zone, unsigned int order)
1818{
1819 return deferred_grow_zone(zone, order);
1820}
1821
7cf91a98 1822#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1823
1824void __init page_alloc_init_late(void)
1825{
7cf91a98
JK
1826 struct zone *zone;
1827
1828#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1829 int nid;
1830
d3cd131d
NS
1831 /* There will be num_node_state(N_MEMORY) threads */
1832 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1833 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1834 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1835 }
1836
1837 /* Block until all are initialised */
d3cd131d 1838 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1839
c9e97a19
PT
1840 /*
1841 * We initialized the rest of the deferred pages. Permanently disable
1842 * on-demand struct page initialization.
1843 */
1844 static_branch_disable(&deferred_pages);
1845
4248b0da
MG
1846 /* Reinit limits that are based on free pages after the kernel is up */
1847 files_maxfiles_init();
7cf91a98 1848#endif
3010f876
PT
1849#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1850 /* Discard memblock private memory */
1851 memblock_discard();
1852#endif
7cf91a98
JK
1853
1854 for_each_populated_zone(zone)
1855 set_zone_contiguous(zone);
7e18adb4 1856}
7e18adb4 1857
47118af0 1858#ifdef CONFIG_CMA
9cf510a5 1859/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1860void __init init_cma_reserved_pageblock(struct page *page)
1861{
1862 unsigned i = pageblock_nr_pages;
1863 struct page *p = page;
1864
1865 do {
1866 __ClearPageReserved(p);
1867 set_page_count(p, 0);
d883c6cf 1868 } while (++p, --i);
47118af0 1869
47118af0 1870 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1871
1872 if (pageblock_order >= MAX_ORDER) {
1873 i = pageblock_nr_pages;
1874 p = page;
1875 do {
1876 set_page_refcounted(p);
1877 __free_pages(p, MAX_ORDER - 1);
1878 p += MAX_ORDER_NR_PAGES;
1879 } while (i -= MAX_ORDER_NR_PAGES);
1880 } else {
1881 set_page_refcounted(page);
1882 __free_pages(page, pageblock_order);
1883 }
1884
3dcc0571 1885 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1886}
1887#endif
1da177e4
LT
1888
1889/*
1890 * The order of subdivision here is critical for the IO subsystem.
1891 * Please do not alter this order without good reasons and regression
1892 * testing. Specifically, as large blocks of memory are subdivided,
1893 * the order in which smaller blocks are delivered depends on the order
1894 * they're subdivided in this function. This is the primary factor
1895 * influencing the order in which pages are delivered to the IO
1896 * subsystem according to empirical testing, and this is also justified
1897 * by considering the behavior of a buddy system containing a single
1898 * large block of memory acted on by a series of small allocations.
1899 * This behavior is a critical factor in sglist merging's success.
1900 *
6d49e352 1901 * -- nyc
1da177e4 1902 */
085cc7d5 1903static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1904 int low, int high, struct free_area *area,
1905 int migratetype)
1da177e4
LT
1906{
1907 unsigned long size = 1 << high;
1908
1909 while (high > low) {
1910 area--;
1911 high--;
1912 size >>= 1;
309381fe 1913 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1914
acbc15a4
JK
1915 /*
1916 * Mark as guard pages (or page), that will allow to
1917 * merge back to allocator when buddy will be freed.
1918 * Corresponding page table entries will not be touched,
1919 * pages will stay not present in virtual address space
1920 */
1921 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1922 continue;
acbc15a4 1923
b2a0ac88 1924 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1925 area->nr_free++;
1926 set_page_order(&page[size], high);
1927 }
1da177e4
LT
1928}
1929
4e611801 1930static void check_new_page_bad(struct page *page)
1da177e4 1931{
4e611801
VB
1932 const char *bad_reason = NULL;
1933 unsigned long bad_flags = 0;
7bfec6f4 1934
53f9263b 1935 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1936 bad_reason = "nonzero mapcount";
1937 if (unlikely(page->mapping != NULL))
1938 bad_reason = "non-NULL mapping";
fe896d18 1939 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1940 bad_reason = "nonzero _count";
f4c18e6f
NH
1941 if (unlikely(page->flags & __PG_HWPOISON)) {
1942 bad_reason = "HWPoisoned (hardware-corrupted)";
1943 bad_flags = __PG_HWPOISON;
e570f56c
NH
1944 /* Don't complain about hwpoisoned pages */
1945 page_mapcount_reset(page); /* remove PageBuddy */
1946 return;
f4c18e6f 1947 }
f0b791a3
DH
1948 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1949 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1950 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1951 }
9edad6ea
JW
1952#ifdef CONFIG_MEMCG
1953 if (unlikely(page->mem_cgroup))
1954 bad_reason = "page still charged to cgroup";
1955#endif
4e611801
VB
1956 bad_page(page, bad_reason, bad_flags);
1957}
1958
1959/*
1960 * This page is about to be returned from the page allocator
1961 */
1962static inline int check_new_page(struct page *page)
1963{
1964 if (likely(page_expected_state(page,
1965 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1966 return 0;
1967
1968 check_new_page_bad(page);
1969 return 1;
2a7684a2
WF
1970}
1971
bd33ef36 1972static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1973{
1974 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1975 page_poisoning_enabled();
1414c7f4
LA
1976}
1977
479f854a
MG
1978#ifdef CONFIG_DEBUG_VM
1979static bool check_pcp_refill(struct page *page)
1980{
1981 return false;
1982}
1983
1984static bool check_new_pcp(struct page *page)
1985{
1986 return check_new_page(page);
1987}
1988#else
1989static bool check_pcp_refill(struct page *page)
1990{
1991 return check_new_page(page);
1992}
1993static bool check_new_pcp(struct page *page)
1994{
1995 return false;
1996}
1997#endif /* CONFIG_DEBUG_VM */
1998
1999static bool check_new_pages(struct page *page, unsigned int order)
2000{
2001 int i;
2002 for (i = 0; i < (1 << order); i++) {
2003 struct page *p = page + i;
2004
2005 if (unlikely(check_new_page(p)))
2006 return true;
2007 }
2008
2009 return false;
2010}
2011
46f24fd8
JK
2012inline void post_alloc_hook(struct page *page, unsigned int order,
2013 gfp_t gfp_flags)
2014{
2015 set_page_private(page, 0);
2016 set_page_refcounted(page);
2017
2018 arch_alloc_page(page, order);
d6332692
RE
2019 if (debug_pagealloc_enabled())
2020 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2021 kasan_alloc_pages(page, order);
4117992d 2022 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2023 set_page_owner(page, order, gfp_flags);
2024}
2025
479f854a 2026static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2027 unsigned int alloc_flags)
2a7684a2
WF
2028{
2029 int i;
689bcebf 2030
46f24fd8 2031 post_alloc_hook(page, order, gfp_flags);
17cf4406 2032
bd33ef36 2033 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
2034 for (i = 0; i < (1 << order); i++)
2035 clear_highpage(page + i);
17cf4406
NP
2036
2037 if (order && (gfp_flags & __GFP_COMP))
2038 prep_compound_page(page, order);
2039
75379191 2040 /*
2f064f34 2041 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2042 * allocate the page. The expectation is that the caller is taking
2043 * steps that will free more memory. The caller should avoid the page
2044 * being used for !PFMEMALLOC purposes.
2045 */
2f064f34
MH
2046 if (alloc_flags & ALLOC_NO_WATERMARKS)
2047 set_page_pfmemalloc(page);
2048 else
2049 clear_page_pfmemalloc(page);
1da177e4
LT
2050}
2051
56fd56b8
MG
2052/*
2053 * Go through the free lists for the given migratetype and remove
2054 * the smallest available page from the freelists
2055 */
85ccc8fa 2056static __always_inline
728ec980 2057struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2058 int migratetype)
2059{
2060 unsigned int current_order;
b8af2941 2061 struct free_area *area;
56fd56b8
MG
2062 struct page *page;
2063
2064 /* Find a page of the appropriate size in the preferred list */
2065 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2066 area = &(zone->free_area[current_order]);
a16601c5 2067 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 2068 struct page, lru);
a16601c5
GT
2069 if (!page)
2070 continue;
56fd56b8
MG
2071 list_del(&page->lru);
2072 rmv_page_order(page);
2073 area->nr_free--;
56fd56b8 2074 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2075 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2076 return page;
2077 }
2078
2079 return NULL;
2080}
2081
2082
b2a0ac88
MG
2083/*
2084 * This array describes the order lists are fallen back to when
2085 * the free lists for the desirable migrate type are depleted
2086 */
47118af0 2087static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2088 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2089 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2090 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2091#ifdef CONFIG_CMA
974a786e 2092 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2093#endif
194159fb 2094#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2095 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2096#endif
b2a0ac88
MG
2097};
2098
dc67647b 2099#ifdef CONFIG_CMA
85ccc8fa 2100static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2101 unsigned int order)
2102{
2103 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2104}
2105#else
2106static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2107 unsigned int order) { return NULL; }
2108#endif
2109
c361be55
MG
2110/*
2111 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2112 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2113 * boundary. If alignment is required, use move_freepages_block()
2114 */
02aa0cdd 2115static int move_freepages(struct zone *zone,
b69a7288 2116 struct page *start_page, struct page *end_page,
02aa0cdd 2117 int migratetype, int *num_movable)
c361be55
MG
2118{
2119 struct page *page;
d00181b9 2120 unsigned int order;
d100313f 2121 int pages_moved = 0;
c361be55
MG
2122
2123#ifndef CONFIG_HOLES_IN_ZONE
2124 /*
2125 * page_zone is not safe to call in this context when
2126 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2127 * anyway as we check zone boundaries in move_freepages_block().
2128 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2129 * grouping pages by mobility
c361be55 2130 */
3e04040d
AB
2131 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2132 pfn_valid(page_to_pfn(end_page)) &&
2133 page_zone(start_page) != page_zone(end_page));
c361be55 2134#endif
c361be55
MG
2135 for (page = start_page; page <= end_page;) {
2136 if (!pfn_valid_within(page_to_pfn(page))) {
2137 page++;
2138 continue;
2139 }
2140
f073bdc5
AB
2141 /* Make sure we are not inadvertently changing nodes */
2142 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2143
c361be55 2144 if (!PageBuddy(page)) {
02aa0cdd
VB
2145 /*
2146 * We assume that pages that could be isolated for
2147 * migration are movable. But we don't actually try
2148 * isolating, as that would be expensive.
2149 */
2150 if (num_movable &&
2151 (PageLRU(page) || __PageMovable(page)))
2152 (*num_movable)++;
2153
c361be55
MG
2154 page++;
2155 continue;
2156 }
2157
2158 order = page_order(page);
84be48d8
KS
2159 list_move(&page->lru,
2160 &zone->free_area[order].free_list[migratetype]);
c361be55 2161 page += 1 << order;
d100313f 2162 pages_moved += 1 << order;
c361be55
MG
2163 }
2164
d100313f 2165 return pages_moved;
c361be55
MG
2166}
2167
ee6f509c 2168int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2169 int migratetype, int *num_movable)
c361be55
MG
2170{
2171 unsigned long start_pfn, end_pfn;
2172 struct page *start_page, *end_page;
2173
4a222127
DR
2174 if (num_movable)
2175 *num_movable = 0;
2176
c361be55 2177 start_pfn = page_to_pfn(page);
d9c23400 2178 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2179 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2180 end_page = start_page + pageblock_nr_pages - 1;
2181 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2182
2183 /* Do not cross zone boundaries */
108bcc96 2184 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2185 start_page = page;
108bcc96 2186 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2187 return 0;
2188
02aa0cdd
VB
2189 return move_freepages(zone, start_page, end_page, migratetype,
2190 num_movable);
c361be55
MG
2191}
2192
2f66a68f
MG
2193static void change_pageblock_range(struct page *pageblock_page,
2194 int start_order, int migratetype)
2195{
2196 int nr_pageblocks = 1 << (start_order - pageblock_order);
2197
2198 while (nr_pageblocks--) {
2199 set_pageblock_migratetype(pageblock_page, migratetype);
2200 pageblock_page += pageblock_nr_pages;
2201 }
2202}
2203
fef903ef 2204/*
9c0415eb
VB
2205 * When we are falling back to another migratetype during allocation, try to
2206 * steal extra free pages from the same pageblocks to satisfy further
2207 * allocations, instead of polluting multiple pageblocks.
2208 *
2209 * If we are stealing a relatively large buddy page, it is likely there will
2210 * be more free pages in the pageblock, so try to steal them all. For
2211 * reclaimable and unmovable allocations, we steal regardless of page size,
2212 * as fragmentation caused by those allocations polluting movable pageblocks
2213 * is worse than movable allocations stealing from unmovable and reclaimable
2214 * pageblocks.
fef903ef 2215 */
4eb7dce6
JK
2216static bool can_steal_fallback(unsigned int order, int start_mt)
2217{
2218 /*
2219 * Leaving this order check is intended, although there is
2220 * relaxed order check in next check. The reason is that
2221 * we can actually steal whole pageblock if this condition met,
2222 * but, below check doesn't guarantee it and that is just heuristic
2223 * so could be changed anytime.
2224 */
2225 if (order >= pageblock_order)
2226 return true;
2227
2228 if (order >= pageblock_order / 2 ||
2229 start_mt == MIGRATE_RECLAIMABLE ||
2230 start_mt == MIGRATE_UNMOVABLE ||
2231 page_group_by_mobility_disabled)
2232 return true;
2233
2234 return false;
2235}
2236
1c30844d
MG
2237static inline void boost_watermark(struct zone *zone)
2238{
2239 unsigned long max_boost;
2240
2241 if (!watermark_boost_factor)
2242 return;
2243
2244 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2245 watermark_boost_factor, 10000);
94b3334c
MG
2246
2247 /*
2248 * high watermark may be uninitialised if fragmentation occurs
2249 * very early in boot so do not boost. We do not fall
2250 * through and boost by pageblock_nr_pages as failing
2251 * allocations that early means that reclaim is not going
2252 * to help and it may even be impossible to reclaim the
2253 * boosted watermark resulting in a hang.
2254 */
2255 if (!max_boost)
2256 return;
2257
1c30844d
MG
2258 max_boost = max(pageblock_nr_pages, max_boost);
2259
2260 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2261 max_boost);
2262}
2263
4eb7dce6
JK
2264/*
2265 * This function implements actual steal behaviour. If order is large enough,
2266 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2267 * pageblock to our migratetype and determine how many already-allocated pages
2268 * are there in the pageblock with a compatible migratetype. If at least half
2269 * of pages are free or compatible, we can change migratetype of the pageblock
2270 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2271 */
2272static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2273 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2274{
d00181b9 2275 unsigned int current_order = page_order(page);
3bc48f96 2276 struct free_area *area;
02aa0cdd
VB
2277 int free_pages, movable_pages, alike_pages;
2278 int old_block_type;
2279
2280 old_block_type = get_pageblock_migratetype(page);
fef903ef 2281
3bc48f96
VB
2282 /*
2283 * This can happen due to races and we want to prevent broken
2284 * highatomic accounting.
2285 */
02aa0cdd 2286 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2287 goto single_page;
2288
fef903ef
SB
2289 /* Take ownership for orders >= pageblock_order */
2290 if (current_order >= pageblock_order) {
2291 change_pageblock_range(page, current_order, start_type);
3bc48f96 2292 goto single_page;
fef903ef
SB
2293 }
2294
1c30844d
MG
2295 /*
2296 * Boost watermarks to increase reclaim pressure to reduce the
2297 * likelihood of future fallbacks. Wake kswapd now as the node
2298 * may be balanced overall and kswapd will not wake naturally.
2299 */
2300 boost_watermark(zone);
2301 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2302 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2303
3bc48f96
VB
2304 /* We are not allowed to try stealing from the whole block */
2305 if (!whole_block)
2306 goto single_page;
2307
02aa0cdd
VB
2308 free_pages = move_freepages_block(zone, page, start_type,
2309 &movable_pages);
2310 /*
2311 * Determine how many pages are compatible with our allocation.
2312 * For movable allocation, it's the number of movable pages which
2313 * we just obtained. For other types it's a bit more tricky.
2314 */
2315 if (start_type == MIGRATE_MOVABLE) {
2316 alike_pages = movable_pages;
2317 } else {
2318 /*
2319 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2320 * to MOVABLE pageblock, consider all non-movable pages as
2321 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2322 * vice versa, be conservative since we can't distinguish the
2323 * exact migratetype of non-movable pages.
2324 */
2325 if (old_block_type == MIGRATE_MOVABLE)
2326 alike_pages = pageblock_nr_pages
2327 - (free_pages + movable_pages);
2328 else
2329 alike_pages = 0;
2330 }
2331
3bc48f96 2332 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2333 if (!free_pages)
3bc48f96 2334 goto single_page;
fef903ef 2335
02aa0cdd
VB
2336 /*
2337 * If a sufficient number of pages in the block are either free or of
2338 * comparable migratability as our allocation, claim the whole block.
2339 */
2340 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2341 page_group_by_mobility_disabled)
2342 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2343
2344 return;
2345
2346single_page:
2347 area = &zone->free_area[current_order];
2348 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2349}
2350
2149cdae
JK
2351/*
2352 * Check whether there is a suitable fallback freepage with requested order.
2353 * If only_stealable is true, this function returns fallback_mt only if
2354 * we can steal other freepages all together. This would help to reduce
2355 * fragmentation due to mixed migratetype pages in one pageblock.
2356 */
2357int find_suitable_fallback(struct free_area *area, unsigned int order,
2358 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2359{
2360 int i;
2361 int fallback_mt;
2362
2363 if (area->nr_free == 0)
2364 return -1;
2365
2366 *can_steal = false;
2367 for (i = 0;; i++) {
2368 fallback_mt = fallbacks[migratetype][i];
974a786e 2369 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2370 break;
2371
2372 if (list_empty(&area->free_list[fallback_mt]))
2373 continue;
fef903ef 2374
4eb7dce6
JK
2375 if (can_steal_fallback(order, migratetype))
2376 *can_steal = true;
2377
2149cdae
JK
2378 if (!only_stealable)
2379 return fallback_mt;
2380
2381 if (*can_steal)
2382 return fallback_mt;
fef903ef 2383 }
4eb7dce6
JK
2384
2385 return -1;
fef903ef
SB
2386}
2387
0aaa29a5
MG
2388/*
2389 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2390 * there are no empty page blocks that contain a page with a suitable order
2391 */
2392static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2393 unsigned int alloc_order)
2394{
2395 int mt;
2396 unsigned long max_managed, flags;
2397
2398 /*
2399 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2400 * Check is race-prone but harmless.
2401 */
9705bea5 2402 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2403 if (zone->nr_reserved_highatomic >= max_managed)
2404 return;
2405
2406 spin_lock_irqsave(&zone->lock, flags);
2407
2408 /* Recheck the nr_reserved_highatomic limit under the lock */
2409 if (zone->nr_reserved_highatomic >= max_managed)
2410 goto out_unlock;
2411
2412 /* Yoink! */
2413 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2414 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2415 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2416 zone->nr_reserved_highatomic += pageblock_nr_pages;
2417 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2418 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2419 }
2420
2421out_unlock:
2422 spin_unlock_irqrestore(&zone->lock, flags);
2423}
2424
2425/*
2426 * Used when an allocation is about to fail under memory pressure. This
2427 * potentially hurts the reliability of high-order allocations when under
2428 * intense memory pressure but failed atomic allocations should be easier
2429 * to recover from than an OOM.
29fac03b
MK
2430 *
2431 * If @force is true, try to unreserve a pageblock even though highatomic
2432 * pageblock is exhausted.
0aaa29a5 2433 */
29fac03b
MK
2434static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2435 bool force)
0aaa29a5
MG
2436{
2437 struct zonelist *zonelist = ac->zonelist;
2438 unsigned long flags;
2439 struct zoneref *z;
2440 struct zone *zone;
2441 struct page *page;
2442 int order;
04c8716f 2443 bool ret;
0aaa29a5
MG
2444
2445 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2446 ac->nodemask) {
29fac03b
MK
2447 /*
2448 * Preserve at least one pageblock unless memory pressure
2449 * is really high.
2450 */
2451 if (!force && zone->nr_reserved_highatomic <=
2452 pageblock_nr_pages)
0aaa29a5
MG
2453 continue;
2454
2455 spin_lock_irqsave(&zone->lock, flags);
2456 for (order = 0; order < MAX_ORDER; order++) {
2457 struct free_area *area = &(zone->free_area[order]);
2458
a16601c5
GT
2459 page = list_first_entry_or_null(
2460 &area->free_list[MIGRATE_HIGHATOMIC],
2461 struct page, lru);
2462 if (!page)
0aaa29a5
MG
2463 continue;
2464
0aaa29a5 2465 /*
4855e4a7
MK
2466 * In page freeing path, migratetype change is racy so
2467 * we can counter several free pages in a pageblock
2468 * in this loop althoug we changed the pageblock type
2469 * from highatomic to ac->migratetype. So we should
2470 * adjust the count once.
0aaa29a5 2471 */
a6ffdc07 2472 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2473 /*
2474 * It should never happen but changes to
2475 * locking could inadvertently allow a per-cpu
2476 * drain to add pages to MIGRATE_HIGHATOMIC
2477 * while unreserving so be safe and watch for
2478 * underflows.
2479 */
2480 zone->nr_reserved_highatomic -= min(
2481 pageblock_nr_pages,
2482 zone->nr_reserved_highatomic);
2483 }
0aaa29a5
MG
2484
2485 /*
2486 * Convert to ac->migratetype and avoid the normal
2487 * pageblock stealing heuristics. Minimally, the caller
2488 * is doing the work and needs the pages. More
2489 * importantly, if the block was always converted to
2490 * MIGRATE_UNMOVABLE or another type then the number
2491 * of pageblocks that cannot be completely freed
2492 * may increase.
2493 */
2494 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2495 ret = move_freepages_block(zone, page, ac->migratetype,
2496 NULL);
29fac03b
MK
2497 if (ret) {
2498 spin_unlock_irqrestore(&zone->lock, flags);
2499 return ret;
2500 }
0aaa29a5
MG
2501 }
2502 spin_unlock_irqrestore(&zone->lock, flags);
2503 }
04c8716f
MK
2504
2505 return false;
0aaa29a5
MG
2506}
2507
3bc48f96
VB
2508/*
2509 * Try finding a free buddy page on the fallback list and put it on the free
2510 * list of requested migratetype, possibly along with other pages from the same
2511 * block, depending on fragmentation avoidance heuristics. Returns true if
2512 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2513 *
2514 * The use of signed ints for order and current_order is a deliberate
2515 * deviation from the rest of this file, to make the for loop
2516 * condition simpler.
3bc48f96 2517 */
85ccc8fa 2518static __always_inline bool
6bb15450
MG
2519__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2520 unsigned int alloc_flags)
b2a0ac88 2521{
b8af2941 2522 struct free_area *area;
b002529d 2523 int current_order;
6bb15450 2524 int min_order = order;
b2a0ac88 2525 struct page *page;
4eb7dce6
JK
2526 int fallback_mt;
2527 bool can_steal;
b2a0ac88 2528
6bb15450
MG
2529 /*
2530 * Do not steal pages from freelists belonging to other pageblocks
2531 * i.e. orders < pageblock_order. If there are no local zones free,
2532 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2533 */
2534 if (alloc_flags & ALLOC_NOFRAGMENT)
2535 min_order = pageblock_order;
2536
7a8f58f3
VB
2537 /*
2538 * Find the largest available free page in the other list. This roughly
2539 * approximates finding the pageblock with the most free pages, which
2540 * would be too costly to do exactly.
2541 */
6bb15450 2542 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2543 --current_order) {
4eb7dce6
JK
2544 area = &(zone->free_area[current_order]);
2545 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2546 start_migratetype, false, &can_steal);
4eb7dce6
JK
2547 if (fallback_mt == -1)
2548 continue;
b2a0ac88 2549
7a8f58f3
VB
2550 /*
2551 * We cannot steal all free pages from the pageblock and the
2552 * requested migratetype is movable. In that case it's better to
2553 * steal and split the smallest available page instead of the
2554 * largest available page, because even if the next movable
2555 * allocation falls back into a different pageblock than this
2556 * one, it won't cause permanent fragmentation.
2557 */
2558 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2559 && current_order > order)
2560 goto find_smallest;
b2a0ac88 2561
7a8f58f3
VB
2562 goto do_steal;
2563 }
e0fff1bd 2564
7a8f58f3 2565 return false;
e0fff1bd 2566
7a8f58f3
VB
2567find_smallest:
2568 for (current_order = order; current_order < MAX_ORDER;
2569 current_order++) {
2570 area = &(zone->free_area[current_order]);
2571 fallback_mt = find_suitable_fallback(area, current_order,
2572 start_migratetype, false, &can_steal);
2573 if (fallback_mt != -1)
2574 break;
b2a0ac88
MG
2575 }
2576
7a8f58f3
VB
2577 /*
2578 * This should not happen - we already found a suitable fallback
2579 * when looking for the largest page.
2580 */
2581 VM_BUG_ON(current_order == MAX_ORDER);
2582
2583do_steal:
2584 page = list_first_entry(&area->free_list[fallback_mt],
2585 struct page, lru);
2586
1c30844d
MG
2587 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2588 can_steal);
7a8f58f3
VB
2589
2590 trace_mm_page_alloc_extfrag(page, order, current_order,
2591 start_migratetype, fallback_mt);
2592
2593 return true;
2594
b2a0ac88
MG
2595}
2596
56fd56b8 2597/*
1da177e4
LT
2598 * Do the hard work of removing an element from the buddy allocator.
2599 * Call me with the zone->lock already held.
2600 */
85ccc8fa 2601static __always_inline struct page *
6bb15450
MG
2602__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2603 unsigned int alloc_flags)
1da177e4 2604{
1da177e4
LT
2605 struct page *page;
2606
3bc48f96 2607retry:
56fd56b8 2608 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2609 if (unlikely(!page)) {
dc67647b
JK
2610 if (migratetype == MIGRATE_MOVABLE)
2611 page = __rmqueue_cma_fallback(zone, order);
2612
6bb15450
MG
2613 if (!page && __rmqueue_fallback(zone, order, migratetype,
2614 alloc_flags))
3bc48f96 2615 goto retry;
728ec980
MG
2616 }
2617
0d3d062a 2618 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2619 return page;
1da177e4
LT
2620}
2621
5f63b720 2622/*
1da177e4
LT
2623 * Obtain a specified number of elements from the buddy allocator, all under
2624 * a single hold of the lock, for efficiency. Add them to the supplied list.
2625 * Returns the number of new pages which were placed at *list.
2626 */
5f63b720 2627static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2628 unsigned long count, struct list_head *list,
6bb15450 2629 int migratetype, unsigned int alloc_flags)
1da177e4 2630{
a6de734b 2631 int i, alloced = 0;
5f63b720 2632
d34b0733 2633 spin_lock(&zone->lock);
1da177e4 2634 for (i = 0; i < count; ++i) {
6bb15450
MG
2635 struct page *page = __rmqueue(zone, order, migratetype,
2636 alloc_flags);
085cc7d5 2637 if (unlikely(page == NULL))
1da177e4 2638 break;
81eabcbe 2639
479f854a
MG
2640 if (unlikely(check_pcp_refill(page)))
2641 continue;
2642
81eabcbe 2643 /*
0fac3ba5
VB
2644 * Split buddy pages returned by expand() are received here in
2645 * physical page order. The page is added to the tail of
2646 * caller's list. From the callers perspective, the linked list
2647 * is ordered by page number under some conditions. This is
2648 * useful for IO devices that can forward direction from the
2649 * head, thus also in the physical page order. This is useful
2650 * for IO devices that can merge IO requests if the physical
2651 * pages are ordered properly.
81eabcbe 2652 */
0fac3ba5 2653 list_add_tail(&page->lru, list);
a6de734b 2654 alloced++;
bb14c2c7 2655 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2656 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2657 -(1 << order));
1da177e4 2658 }
a6de734b
MG
2659
2660 /*
2661 * i pages were removed from the buddy list even if some leak due
2662 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2663 * on i. Do not confuse with 'alloced' which is the number of
2664 * pages added to the pcp list.
2665 */
f2260e6b 2666 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2667 spin_unlock(&zone->lock);
a6de734b 2668 return alloced;
1da177e4
LT
2669}
2670
4ae7c039 2671#ifdef CONFIG_NUMA
8fce4d8e 2672/*
4037d452
CL
2673 * Called from the vmstat counter updater to drain pagesets of this
2674 * currently executing processor on remote nodes after they have
2675 * expired.
2676 *
879336c3
CL
2677 * Note that this function must be called with the thread pinned to
2678 * a single processor.
8fce4d8e 2679 */
4037d452 2680void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2681{
4ae7c039 2682 unsigned long flags;
7be12fc9 2683 int to_drain, batch;
4ae7c039 2684
4037d452 2685 local_irq_save(flags);
4db0c3c2 2686 batch = READ_ONCE(pcp->batch);
7be12fc9 2687 to_drain = min(pcp->count, batch);
77ba9062 2688 if (to_drain > 0)
2a13515c 2689 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2690 local_irq_restore(flags);
4ae7c039
CL
2691}
2692#endif
2693
9f8f2172 2694/*
93481ff0 2695 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2696 *
2697 * The processor must either be the current processor and the
2698 * thread pinned to the current processor or a processor that
2699 * is not online.
2700 */
93481ff0 2701static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2702{
c54ad30c 2703 unsigned long flags;
93481ff0
VB
2704 struct per_cpu_pageset *pset;
2705 struct per_cpu_pages *pcp;
1da177e4 2706
93481ff0
VB
2707 local_irq_save(flags);
2708 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2709
93481ff0 2710 pcp = &pset->pcp;
77ba9062 2711 if (pcp->count)
93481ff0 2712 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2713 local_irq_restore(flags);
2714}
3dfa5721 2715
93481ff0
VB
2716/*
2717 * Drain pcplists of all zones on the indicated processor.
2718 *
2719 * The processor must either be the current processor and the
2720 * thread pinned to the current processor or a processor that
2721 * is not online.
2722 */
2723static void drain_pages(unsigned int cpu)
2724{
2725 struct zone *zone;
2726
2727 for_each_populated_zone(zone) {
2728 drain_pages_zone(cpu, zone);
1da177e4
LT
2729 }
2730}
1da177e4 2731
9f8f2172
CL
2732/*
2733 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2734 *
2735 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2736 * the single zone's pages.
9f8f2172 2737 */
93481ff0 2738void drain_local_pages(struct zone *zone)
9f8f2172 2739{
93481ff0
VB
2740 int cpu = smp_processor_id();
2741
2742 if (zone)
2743 drain_pages_zone(cpu, zone);
2744 else
2745 drain_pages(cpu);
9f8f2172
CL
2746}
2747
0ccce3b9
MG
2748static void drain_local_pages_wq(struct work_struct *work)
2749{
d9367bd0
WY
2750 struct pcpu_drain *drain;
2751
2752 drain = container_of(work, struct pcpu_drain, work);
2753
a459eeb7
MH
2754 /*
2755 * drain_all_pages doesn't use proper cpu hotplug protection so
2756 * we can race with cpu offline when the WQ can move this from
2757 * a cpu pinned worker to an unbound one. We can operate on a different
2758 * cpu which is allright but we also have to make sure to not move to
2759 * a different one.
2760 */
2761 preempt_disable();
d9367bd0 2762 drain_local_pages(drain->zone);
a459eeb7 2763 preempt_enable();
0ccce3b9
MG
2764}
2765
9f8f2172 2766/*
74046494
GBY
2767 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2768 *
93481ff0
VB
2769 * When zone parameter is non-NULL, spill just the single zone's pages.
2770 *
0ccce3b9 2771 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2772 */
93481ff0 2773void drain_all_pages(struct zone *zone)
9f8f2172 2774{
74046494 2775 int cpu;
74046494
GBY
2776
2777 /*
2778 * Allocate in the BSS so we wont require allocation in
2779 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2780 */
2781 static cpumask_t cpus_with_pcps;
2782
ce612879
MH
2783 /*
2784 * Make sure nobody triggers this path before mm_percpu_wq is fully
2785 * initialized.
2786 */
2787 if (WARN_ON_ONCE(!mm_percpu_wq))
2788 return;
2789
bd233f53
MG
2790 /*
2791 * Do not drain if one is already in progress unless it's specific to
2792 * a zone. Such callers are primarily CMA and memory hotplug and need
2793 * the drain to be complete when the call returns.
2794 */
2795 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2796 if (!zone)
2797 return;
2798 mutex_lock(&pcpu_drain_mutex);
2799 }
0ccce3b9 2800
74046494
GBY
2801 /*
2802 * We don't care about racing with CPU hotplug event
2803 * as offline notification will cause the notified
2804 * cpu to drain that CPU pcps and on_each_cpu_mask
2805 * disables preemption as part of its processing
2806 */
2807 for_each_online_cpu(cpu) {
93481ff0
VB
2808 struct per_cpu_pageset *pcp;
2809 struct zone *z;
74046494 2810 bool has_pcps = false;
93481ff0
VB
2811
2812 if (zone) {
74046494 2813 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2814 if (pcp->pcp.count)
74046494 2815 has_pcps = true;
93481ff0
VB
2816 } else {
2817 for_each_populated_zone(z) {
2818 pcp = per_cpu_ptr(z->pageset, cpu);
2819 if (pcp->pcp.count) {
2820 has_pcps = true;
2821 break;
2822 }
74046494
GBY
2823 }
2824 }
93481ff0 2825
74046494
GBY
2826 if (has_pcps)
2827 cpumask_set_cpu(cpu, &cpus_with_pcps);
2828 else
2829 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2830 }
0ccce3b9 2831
bd233f53 2832 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2833 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2834
2835 drain->zone = zone;
2836 INIT_WORK(&drain->work, drain_local_pages_wq);
2837 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2838 }
bd233f53 2839 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2840 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2841
2842 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2843}
2844
296699de 2845#ifdef CONFIG_HIBERNATION
1da177e4 2846
556b969a
CY
2847/*
2848 * Touch the watchdog for every WD_PAGE_COUNT pages.
2849 */
2850#define WD_PAGE_COUNT (128*1024)
2851
1da177e4
LT
2852void mark_free_pages(struct zone *zone)
2853{
556b969a 2854 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2855 unsigned long flags;
7aeb09f9 2856 unsigned int order, t;
86760a2c 2857 struct page *page;
1da177e4 2858
8080fc03 2859 if (zone_is_empty(zone))
1da177e4
LT
2860 return;
2861
2862 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2863
108bcc96 2864 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2865 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2866 if (pfn_valid(pfn)) {
86760a2c 2867 page = pfn_to_page(pfn);
ba6b0979 2868
556b969a
CY
2869 if (!--page_count) {
2870 touch_nmi_watchdog();
2871 page_count = WD_PAGE_COUNT;
2872 }
2873
ba6b0979
JK
2874 if (page_zone(page) != zone)
2875 continue;
2876
7be98234
RW
2877 if (!swsusp_page_is_forbidden(page))
2878 swsusp_unset_page_free(page);
f623f0db 2879 }
1da177e4 2880
b2a0ac88 2881 for_each_migratetype_order(order, t) {
86760a2c
GT
2882 list_for_each_entry(page,
2883 &zone->free_area[order].free_list[t], lru) {
f623f0db 2884 unsigned long i;
1da177e4 2885
86760a2c 2886 pfn = page_to_pfn(page);
556b969a
CY
2887 for (i = 0; i < (1UL << order); i++) {
2888 if (!--page_count) {
2889 touch_nmi_watchdog();
2890 page_count = WD_PAGE_COUNT;
2891 }
7be98234 2892 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2893 }
f623f0db 2894 }
b2a0ac88 2895 }
1da177e4
LT
2896 spin_unlock_irqrestore(&zone->lock, flags);
2897}
e2c55dc8 2898#endif /* CONFIG_PM */
1da177e4 2899
2d4894b5 2900static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2901{
5f8dcc21 2902 int migratetype;
1da177e4 2903
4db7548c 2904 if (!free_pcp_prepare(page))
9cca35d4 2905 return false;
689bcebf 2906
dc4b0caf 2907 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2908 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2909 return true;
2910}
2911
2d4894b5 2912static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2913{
2914 struct zone *zone = page_zone(page);
2915 struct per_cpu_pages *pcp;
2916 int migratetype;
2917
2918 migratetype = get_pcppage_migratetype(page);
d34b0733 2919 __count_vm_event(PGFREE);
da456f14 2920
5f8dcc21
MG
2921 /*
2922 * We only track unmovable, reclaimable and movable on pcp lists.
2923 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2924 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2925 * areas back if necessary. Otherwise, we may have to free
2926 * excessively into the page allocator
2927 */
2928 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2929 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2930 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2931 return;
5f8dcc21
MG
2932 }
2933 migratetype = MIGRATE_MOVABLE;
2934 }
2935
99dcc3e5 2936 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2937 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2938 pcp->count++;
48db57f8 2939 if (pcp->count >= pcp->high) {
4db0c3c2 2940 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2941 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2942 }
9cca35d4 2943}
5f8dcc21 2944
9cca35d4
MG
2945/*
2946 * Free a 0-order page
9cca35d4 2947 */
2d4894b5 2948void free_unref_page(struct page *page)
9cca35d4
MG
2949{
2950 unsigned long flags;
2951 unsigned long pfn = page_to_pfn(page);
2952
2d4894b5 2953 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2954 return;
2955
2956 local_irq_save(flags);
2d4894b5 2957 free_unref_page_commit(page, pfn);
d34b0733 2958 local_irq_restore(flags);
1da177e4
LT
2959}
2960
cc59850e
KK
2961/*
2962 * Free a list of 0-order pages
2963 */
2d4894b5 2964void free_unref_page_list(struct list_head *list)
cc59850e
KK
2965{
2966 struct page *page, *next;
9cca35d4 2967 unsigned long flags, pfn;
c24ad77d 2968 int batch_count = 0;
9cca35d4
MG
2969
2970 /* Prepare pages for freeing */
2971 list_for_each_entry_safe(page, next, list, lru) {
2972 pfn = page_to_pfn(page);
2d4894b5 2973 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2974 list_del(&page->lru);
2975 set_page_private(page, pfn);
2976 }
cc59850e 2977
9cca35d4 2978 local_irq_save(flags);
cc59850e 2979 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2980 unsigned long pfn = page_private(page);
2981
2982 set_page_private(page, 0);
2d4894b5
MG
2983 trace_mm_page_free_batched(page);
2984 free_unref_page_commit(page, pfn);
c24ad77d
LS
2985
2986 /*
2987 * Guard against excessive IRQ disabled times when we get
2988 * a large list of pages to free.
2989 */
2990 if (++batch_count == SWAP_CLUSTER_MAX) {
2991 local_irq_restore(flags);
2992 batch_count = 0;
2993 local_irq_save(flags);
2994 }
cc59850e 2995 }
9cca35d4 2996 local_irq_restore(flags);
cc59850e
KK
2997}
2998
8dfcc9ba
NP
2999/*
3000 * split_page takes a non-compound higher-order page, and splits it into
3001 * n (1<<order) sub-pages: page[0..n]
3002 * Each sub-page must be freed individually.
3003 *
3004 * Note: this is probably too low level an operation for use in drivers.
3005 * Please consult with lkml before using this in your driver.
3006 */
3007void split_page(struct page *page, unsigned int order)
3008{
3009 int i;
3010
309381fe
SL
3011 VM_BUG_ON_PAGE(PageCompound(page), page);
3012 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3013
a9627bc5 3014 for (i = 1; i < (1 << order); i++)
7835e98b 3015 set_page_refcounted(page + i);
a9627bc5 3016 split_page_owner(page, order);
8dfcc9ba 3017}
5853ff23 3018EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3019
3c605096 3020int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3021{
748446bb
MG
3022 unsigned long watermark;
3023 struct zone *zone;
2139cbe6 3024 int mt;
748446bb
MG
3025
3026 BUG_ON(!PageBuddy(page));
3027
3028 zone = page_zone(page);
2e30abd1 3029 mt = get_pageblock_migratetype(page);
748446bb 3030
194159fb 3031 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3032 /*
3033 * Obey watermarks as if the page was being allocated. We can
3034 * emulate a high-order watermark check with a raised order-0
3035 * watermark, because we already know our high-order page
3036 * exists.
3037 */
fd1444b2 3038 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3039 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3040 return 0;
3041
8fb74b9f 3042 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3043 }
748446bb
MG
3044
3045 /* Remove page from free list */
3046 list_del(&page->lru);
3047 zone->free_area[order].nr_free--;
3048 rmv_page_order(page);
2139cbe6 3049
400bc7fd 3050 /*
3051 * Set the pageblock if the isolated page is at least half of a
3052 * pageblock
3053 */
748446bb
MG
3054 if (order >= pageblock_order - 1) {
3055 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3056 for (; page < endpage; page += pageblock_nr_pages) {
3057 int mt = get_pageblock_migratetype(page);
88ed365e 3058 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3059 && !is_migrate_highatomic(mt))
47118af0
MN
3060 set_pageblock_migratetype(page,
3061 MIGRATE_MOVABLE);
3062 }
748446bb
MG
3063 }
3064
f3a14ced 3065
8fb74b9f 3066 return 1UL << order;
1fb3f8ca
MG
3067}
3068
060e7417
MG
3069/*
3070 * Update NUMA hit/miss statistics
3071 *
3072 * Must be called with interrupts disabled.
060e7417 3073 */
41b6167e 3074static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3075{
3076#ifdef CONFIG_NUMA
3a321d2a 3077 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3078
4518085e
KW
3079 /* skip numa counters update if numa stats is disabled */
3080 if (!static_branch_likely(&vm_numa_stat_key))
3081 return;
3082
c1093b74 3083 if (zone_to_nid(z) != numa_node_id())
060e7417 3084 local_stat = NUMA_OTHER;
060e7417 3085
c1093b74 3086 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3087 __inc_numa_state(z, NUMA_HIT);
2df26639 3088 else {
3a321d2a
KW
3089 __inc_numa_state(z, NUMA_MISS);
3090 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3091 }
3a321d2a 3092 __inc_numa_state(z, local_stat);
060e7417
MG
3093#endif
3094}
3095
066b2393
MG
3096/* Remove page from the per-cpu list, caller must protect the list */
3097static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3098 unsigned int alloc_flags,
453f85d4 3099 struct per_cpu_pages *pcp,
066b2393
MG
3100 struct list_head *list)
3101{
3102 struct page *page;
3103
3104 do {
3105 if (list_empty(list)) {
3106 pcp->count += rmqueue_bulk(zone, 0,
3107 pcp->batch, list,
6bb15450 3108 migratetype, alloc_flags);
066b2393
MG
3109 if (unlikely(list_empty(list)))
3110 return NULL;
3111 }
3112
453f85d4 3113 page = list_first_entry(list, struct page, lru);
066b2393
MG
3114 list_del(&page->lru);
3115 pcp->count--;
3116 } while (check_new_pcp(page));
3117
3118 return page;
3119}
3120
3121/* Lock and remove page from the per-cpu list */
3122static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3123 struct zone *zone, unsigned int order,
6bb15450
MG
3124 gfp_t gfp_flags, int migratetype,
3125 unsigned int alloc_flags)
066b2393
MG
3126{
3127 struct per_cpu_pages *pcp;
3128 struct list_head *list;
066b2393 3129 struct page *page;
d34b0733 3130 unsigned long flags;
066b2393 3131
d34b0733 3132 local_irq_save(flags);
066b2393
MG
3133 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3134 list = &pcp->lists[migratetype];
6bb15450 3135 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393
MG
3136 if (page) {
3137 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3138 zone_statistics(preferred_zone, zone);
3139 }
d34b0733 3140 local_irq_restore(flags);
066b2393
MG
3141 return page;
3142}
3143
1da177e4 3144/*
75379191 3145 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3146 */
0a15c3e9 3147static inline
066b2393 3148struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3149 struct zone *zone, unsigned int order,
c603844b
MG
3150 gfp_t gfp_flags, unsigned int alloc_flags,
3151 int migratetype)
1da177e4
LT
3152{
3153 unsigned long flags;
689bcebf 3154 struct page *page;
1da177e4 3155
d34b0733 3156 if (likely(order == 0)) {
066b2393 3157 page = rmqueue_pcplist(preferred_zone, zone, order,
6bb15450 3158 gfp_flags, migratetype, alloc_flags);
066b2393
MG
3159 goto out;
3160 }
83b9355b 3161
066b2393
MG
3162 /*
3163 * We most definitely don't want callers attempting to
3164 * allocate greater than order-1 page units with __GFP_NOFAIL.
3165 */
3166 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3167 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3168
066b2393
MG
3169 do {
3170 page = NULL;
3171 if (alloc_flags & ALLOC_HARDER) {
3172 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3173 if (page)
3174 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3175 }
a74609fa 3176 if (!page)
6bb15450 3177 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3178 } while (page && check_new_pages(page, order));
3179 spin_unlock(&zone->lock);
3180 if (!page)
3181 goto failed;
3182 __mod_zone_freepage_state(zone, -(1 << order),
3183 get_pcppage_migratetype(page));
1da177e4 3184
16709d1d 3185 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3186 zone_statistics(preferred_zone, zone);
a74609fa 3187 local_irq_restore(flags);
1da177e4 3188
066b2393 3189out:
73444bc4
MG
3190 /* Separate test+clear to avoid unnecessary atomics */
3191 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3192 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3193 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3194 }
3195
066b2393 3196 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3197 return page;
a74609fa
NP
3198
3199failed:
3200 local_irq_restore(flags);
a74609fa 3201 return NULL;
1da177e4
LT
3202}
3203
933e312e
AM
3204#ifdef CONFIG_FAIL_PAGE_ALLOC
3205
b2588c4b 3206static struct {
933e312e
AM
3207 struct fault_attr attr;
3208
621a5f7a 3209 bool ignore_gfp_highmem;
71baba4b 3210 bool ignore_gfp_reclaim;
54114994 3211 u32 min_order;
933e312e
AM
3212} fail_page_alloc = {
3213 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3214 .ignore_gfp_reclaim = true,
621a5f7a 3215 .ignore_gfp_highmem = true,
54114994 3216 .min_order = 1,
933e312e
AM
3217};
3218
3219static int __init setup_fail_page_alloc(char *str)
3220{
3221 return setup_fault_attr(&fail_page_alloc.attr, str);
3222}
3223__setup("fail_page_alloc=", setup_fail_page_alloc);
3224
af3b8544 3225static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3226{
54114994 3227 if (order < fail_page_alloc.min_order)
deaf386e 3228 return false;
933e312e 3229 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3230 return false;
933e312e 3231 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3232 return false;
71baba4b
MG
3233 if (fail_page_alloc.ignore_gfp_reclaim &&
3234 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3235 return false;
933e312e
AM
3236
3237 return should_fail(&fail_page_alloc.attr, 1 << order);
3238}
3239
3240#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3241
3242static int __init fail_page_alloc_debugfs(void)
3243{
0825a6f9 3244 umode_t mode = S_IFREG | 0600;
933e312e 3245 struct dentry *dir;
933e312e 3246
dd48c085
AM
3247 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3248 &fail_page_alloc.attr);
b2588c4b 3249
d9f7979c
GKH
3250 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3251 &fail_page_alloc.ignore_gfp_reclaim);
3252 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3253 &fail_page_alloc.ignore_gfp_highmem);
3254 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3255
d9f7979c 3256 return 0;
933e312e
AM
3257}
3258
3259late_initcall(fail_page_alloc_debugfs);
3260
3261#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3262
3263#else /* CONFIG_FAIL_PAGE_ALLOC */
3264
af3b8544 3265static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3266{
deaf386e 3267 return false;
933e312e
AM
3268}
3269
3270#endif /* CONFIG_FAIL_PAGE_ALLOC */
3271
af3b8544
BP
3272static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3273{
3274 return __should_fail_alloc_page(gfp_mask, order);
3275}
3276ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3277
1da177e4 3278/*
97a16fc8
MG
3279 * Return true if free base pages are above 'mark'. For high-order checks it
3280 * will return true of the order-0 watermark is reached and there is at least
3281 * one free page of a suitable size. Checking now avoids taking the zone lock
3282 * to check in the allocation paths if no pages are free.
1da177e4 3283 */
86a294a8
MH
3284bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3285 int classzone_idx, unsigned int alloc_flags,
3286 long free_pages)
1da177e4 3287{
d23ad423 3288 long min = mark;
1da177e4 3289 int o;
cd04ae1e 3290 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3291
0aaa29a5 3292 /* free_pages may go negative - that's OK */
df0a6daa 3293 free_pages -= (1 << order) - 1;
0aaa29a5 3294
7fb1d9fc 3295 if (alloc_flags & ALLOC_HIGH)
1da177e4 3296 min -= min / 2;
0aaa29a5
MG
3297
3298 /*
3299 * If the caller does not have rights to ALLOC_HARDER then subtract
3300 * the high-atomic reserves. This will over-estimate the size of the
3301 * atomic reserve but it avoids a search.
3302 */
cd04ae1e 3303 if (likely(!alloc_harder)) {
0aaa29a5 3304 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3305 } else {
3306 /*
3307 * OOM victims can try even harder than normal ALLOC_HARDER
3308 * users on the grounds that it's definitely going to be in
3309 * the exit path shortly and free memory. Any allocation it
3310 * makes during the free path will be small and short-lived.
3311 */
3312 if (alloc_flags & ALLOC_OOM)
3313 min -= min / 2;
3314 else
3315 min -= min / 4;
3316 }
3317
e2b19197 3318
d883c6cf
JK
3319#ifdef CONFIG_CMA
3320 /* If allocation can't use CMA areas don't use free CMA pages */
3321 if (!(alloc_flags & ALLOC_CMA))
3322 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3323#endif
3324
97a16fc8
MG
3325 /*
3326 * Check watermarks for an order-0 allocation request. If these
3327 * are not met, then a high-order request also cannot go ahead
3328 * even if a suitable page happened to be free.
3329 */
3330 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3331 return false;
1da177e4 3332
97a16fc8
MG
3333 /* If this is an order-0 request then the watermark is fine */
3334 if (!order)
3335 return true;
3336
3337 /* For a high-order request, check at least one suitable page is free */
3338 for (o = order; o < MAX_ORDER; o++) {
3339 struct free_area *area = &z->free_area[o];
3340 int mt;
3341
3342 if (!area->nr_free)
3343 continue;
3344
97a16fc8
MG
3345 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3346 if (!list_empty(&area->free_list[mt]))
3347 return true;
3348 }
3349
3350#ifdef CONFIG_CMA
d883c6cf
JK
3351 if ((alloc_flags & ALLOC_CMA) &&
3352 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3353 return true;
d883c6cf 3354 }
97a16fc8 3355#endif
b050e376
VB
3356 if (alloc_harder &&
3357 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3358 return true;
1da177e4 3359 }
97a16fc8 3360 return false;
88f5acf8
MG
3361}
3362
7aeb09f9 3363bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3364 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3365{
3366 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3367 zone_page_state(z, NR_FREE_PAGES));
3368}
3369
48ee5f36
MG
3370static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3371 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3372{
3373 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3374 long cma_pages = 0;
3375
3376#ifdef CONFIG_CMA
3377 /* If allocation can't use CMA areas don't use free CMA pages */
3378 if (!(alloc_flags & ALLOC_CMA))
3379 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3380#endif
48ee5f36
MG
3381
3382 /*
3383 * Fast check for order-0 only. If this fails then the reserves
3384 * need to be calculated. There is a corner case where the check
3385 * passes but only the high-order atomic reserve are free. If
3386 * the caller is !atomic then it'll uselessly search the free
3387 * list. That corner case is then slower but it is harmless.
3388 */
d883c6cf 3389 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3390 return true;
3391
3392 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3393 free_pages);
3394}
3395
7aeb09f9 3396bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3397 unsigned long mark, int classzone_idx)
88f5acf8
MG
3398{
3399 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3400
3401 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3402 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3403
e2b19197 3404 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3405 free_pages);
1da177e4
LT
3406}
3407
9276b1bc 3408#ifdef CONFIG_NUMA
957f822a
DR
3409static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3410{
e02dc017 3411 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3412 RECLAIM_DISTANCE;
957f822a 3413}
9276b1bc 3414#else /* CONFIG_NUMA */
957f822a
DR
3415static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3416{
3417 return true;
3418}
9276b1bc
PJ
3419#endif /* CONFIG_NUMA */
3420
6bb15450
MG
3421/*
3422 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3423 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3424 * premature use of a lower zone may cause lowmem pressure problems that
3425 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3426 * probably too small. It only makes sense to spread allocations to avoid
3427 * fragmentation between the Normal and DMA32 zones.
3428 */
3429static inline unsigned int
0a79cdad 3430alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3431{
0a79cdad
MG
3432 unsigned int alloc_flags = 0;
3433
3434 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3435 alloc_flags |= ALLOC_KSWAPD;
3436
3437#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3438 if (!zone)
3439 return alloc_flags;
3440
6bb15450 3441 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3442 return alloc_flags;
6bb15450
MG
3443
3444 /*
3445 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3446 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3447 * on UMA that if Normal is populated then so is DMA32.
3448 */
3449 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3450 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3451 return alloc_flags;
6bb15450 3452
8118b82e 3453 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3454#endif /* CONFIG_ZONE_DMA32 */
3455 return alloc_flags;
6bb15450 3456}
6bb15450 3457
7fb1d9fc 3458/*
0798e519 3459 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3460 * a page.
3461 */
3462static struct page *
a9263751
VB
3463get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3464 const struct alloc_context *ac)
753ee728 3465{
6bb15450 3466 struct zoneref *z;
5117f45d 3467 struct zone *zone;
3b8c0be4 3468 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3469 bool no_fallback;
3b8c0be4 3470
6bb15450 3471retry:
7fb1d9fc 3472 /*
9276b1bc 3473 * Scan zonelist, looking for a zone with enough free.
344736f2 3474 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3475 */
6bb15450
MG
3476 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3477 z = ac->preferred_zoneref;
c33d6c06 3478 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3479 ac->nodemask) {
be06af00 3480 struct page *page;
e085dbc5
JW
3481 unsigned long mark;
3482
664eedde
MG
3483 if (cpusets_enabled() &&
3484 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3485 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3486 continue;
a756cf59
JW
3487 /*
3488 * When allocating a page cache page for writing, we
281e3726
MG
3489 * want to get it from a node that is within its dirty
3490 * limit, such that no single node holds more than its
a756cf59 3491 * proportional share of globally allowed dirty pages.
281e3726 3492 * The dirty limits take into account the node's
a756cf59
JW
3493 * lowmem reserves and high watermark so that kswapd
3494 * should be able to balance it without having to
3495 * write pages from its LRU list.
3496 *
a756cf59 3497 * XXX: For now, allow allocations to potentially
281e3726 3498 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3499 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3500 * which is important when on a NUMA setup the allowed
281e3726 3501 * nodes are together not big enough to reach the
a756cf59 3502 * global limit. The proper fix for these situations
281e3726 3503 * will require awareness of nodes in the
a756cf59
JW
3504 * dirty-throttling and the flusher threads.
3505 */
3b8c0be4
MG
3506 if (ac->spread_dirty_pages) {
3507 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3508 continue;
3509
3510 if (!node_dirty_ok(zone->zone_pgdat)) {
3511 last_pgdat_dirty_limit = zone->zone_pgdat;
3512 continue;
3513 }
3514 }
7fb1d9fc 3515
6bb15450
MG
3516 if (no_fallback && nr_online_nodes > 1 &&
3517 zone != ac->preferred_zoneref->zone) {
3518 int local_nid;
3519
3520 /*
3521 * If moving to a remote node, retry but allow
3522 * fragmenting fallbacks. Locality is more important
3523 * than fragmentation avoidance.
3524 */
3525 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3526 if (zone_to_nid(zone) != local_nid) {
3527 alloc_flags &= ~ALLOC_NOFRAGMENT;
3528 goto retry;
3529 }
3530 }
3531
a9214443 3532 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3533 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3534 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3535 int ret;
3536
c9e97a19
PT
3537#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3538 /*
3539 * Watermark failed for this zone, but see if we can
3540 * grow this zone if it contains deferred pages.
3541 */
3542 if (static_branch_unlikely(&deferred_pages)) {
3543 if (_deferred_grow_zone(zone, order))
3544 goto try_this_zone;
3545 }
3546#endif
5dab2911
MG
3547 /* Checked here to keep the fast path fast */
3548 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3549 if (alloc_flags & ALLOC_NO_WATERMARKS)
3550 goto try_this_zone;
3551
a5f5f91d 3552 if (node_reclaim_mode == 0 ||
c33d6c06 3553 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3554 continue;
3555
a5f5f91d 3556 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3557 switch (ret) {
a5f5f91d 3558 case NODE_RECLAIM_NOSCAN:
fa5e084e 3559 /* did not scan */
cd38b115 3560 continue;
a5f5f91d 3561 case NODE_RECLAIM_FULL:
fa5e084e 3562 /* scanned but unreclaimable */
cd38b115 3563 continue;
fa5e084e
MG
3564 default:
3565 /* did we reclaim enough */
fed2719e 3566 if (zone_watermark_ok(zone, order, mark,
93ea9964 3567 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3568 goto try_this_zone;
3569
fed2719e 3570 continue;
0798e519 3571 }
7fb1d9fc
RS
3572 }
3573
fa5e084e 3574try_this_zone:
066b2393 3575 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3576 gfp_mask, alloc_flags, ac->migratetype);
75379191 3577 if (page) {
479f854a 3578 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3579
3580 /*
3581 * If this is a high-order atomic allocation then check
3582 * if the pageblock should be reserved for the future
3583 */
3584 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3585 reserve_highatomic_pageblock(page, zone, order);
3586
75379191 3587 return page;
c9e97a19
PT
3588 } else {
3589#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3590 /* Try again if zone has deferred pages */
3591 if (static_branch_unlikely(&deferred_pages)) {
3592 if (_deferred_grow_zone(zone, order))
3593 goto try_this_zone;
3594 }
3595#endif
75379191 3596 }
54a6eb5c 3597 }
9276b1bc 3598
6bb15450
MG
3599 /*
3600 * It's possible on a UMA machine to get through all zones that are
3601 * fragmented. If avoiding fragmentation, reset and try again.
3602 */
3603 if (no_fallback) {
3604 alloc_flags &= ~ALLOC_NOFRAGMENT;
3605 goto retry;
3606 }
3607
4ffeaf35 3608 return NULL;
753ee728
MH
3609}
3610
9af744d7 3611static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3612{
a238ab5b 3613 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3614 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3615
2c029a1e 3616 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3617 return;
3618
3619 /*
3620 * This documents exceptions given to allocations in certain
3621 * contexts that are allowed to allocate outside current's set
3622 * of allowed nodes.
3623 */
3624 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3625 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3626 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3627 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3628 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3629 filter &= ~SHOW_MEM_FILTER_NODES;
3630
9af744d7 3631 show_mem(filter, nodemask);
aa187507
MH
3632}
3633
a8e99259 3634void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3635{
3636 struct va_format vaf;
3637 va_list args;
3638 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3639 DEFAULT_RATELIMIT_BURST);
3640
0f7896f1 3641 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3642 return;
3643
7877cdcc
MH
3644 va_start(args, fmt);
3645 vaf.fmt = fmt;
3646 vaf.va = &args;
ef8444ea 3647 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3648 current->comm, &vaf, gfp_mask, &gfp_mask,
3649 nodemask_pr_args(nodemask));
7877cdcc 3650 va_end(args);
3ee9a4f0 3651
a8e99259 3652 cpuset_print_current_mems_allowed();
ef8444ea 3653 pr_cont("\n");
a238ab5b 3654 dump_stack();
685dbf6f 3655 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3656}
3657
6c18ba7a
MH
3658static inline struct page *
3659__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3660 unsigned int alloc_flags,
3661 const struct alloc_context *ac)
3662{
3663 struct page *page;
3664
3665 page = get_page_from_freelist(gfp_mask, order,
3666 alloc_flags|ALLOC_CPUSET, ac);
3667 /*
3668 * fallback to ignore cpuset restriction if our nodes
3669 * are depleted
3670 */
3671 if (!page)
3672 page = get_page_from_freelist(gfp_mask, order,
3673 alloc_flags, ac);
3674
3675 return page;
3676}
3677
11e33f6a
MG
3678static inline struct page *
3679__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3680 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3681{
6e0fc46d
DR
3682 struct oom_control oc = {
3683 .zonelist = ac->zonelist,
3684 .nodemask = ac->nodemask,
2a966b77 3685 .memcg = NULL,
6e0fc46d
DR
3686 .gfp_mask = gfp_mask,
3687 .order = order,
6e0fc46d 3688 };
11e33f6a
MG
3689 struct page *page;
3690
9879de73
JW
3691 *did_some_progress = 0;
3692
9879de73 3693 /*
dc56401f
JW
3694 * Acquire the oom lock. If that fails, somebody else is
3695 * making progress for us.
9879de73 3696 */
dc56401f 3697 if (!mutex_trylock(&oom_lock)) {
9879de73 3698 *did_some_progress = 1;
11e33f6a 3699 schedule_timeout_uninterruptible(1);
1da177e4
LT
3700 return NULL;
3701 }
6b1de916 3702
11e33f6a
MG
3703 /*
3704 * Go through the zonelist yet one more time, keep very high watermark
3705 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3706 * we're still under heavy pressure. But make sure that this reclaim
3707 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3708 * allocation which will never fail due to oom_lock already held.
11e33f6a 3709 */
e746bf73
TH
3710 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3711 ~__GFP_DIRECT_RECLAIM, order,
3712 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3713 if (page)
11e33f6a
MG
3714 goto out;
3715
06ad276a
MH
3716 /* Coredumps can quickly deplete all memory reserves */
3717 if (current->flags & PF_DUMPCORE)
3718 goto out;
3719 /* The OOM killer will not help higher order allocs */
3720 if (order > PAGE_ALLOC_COSTLY_ORDER)
3721 goto out;
dcda9b04
MH
3722 /*
3723 * We have already exhausted all our reclaim opportunities without any
3724 * success so it is time to admit defeat. We will skip the OOM killer
3725 * because it is very likely that the caller has a more reasonable
3726 * fallback than shooting a random task.
3727 */
3728 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3729 goto out;
06ad276a
MH
3730 /* The OOM killer does not needlessly kill tasks for lowmem */
3731 if (ac->high_zoneidx < ZONE_NORMAL)
3732 goto out;
3733 if (pm_suspended_storage())
3734 goto out;
3735 /*
3736 * XXX: GFP_NOFS allocations should rather fail than rely on
3737 * other request to make a forward progress.
3738 * We are in an unfortunate situation where out_of_memory cannot
3739 * do much for this context but let's try it to at least get
3740 * access to memory reserved if the current task is killed (see
3741 * out_of_memory). Once filesystems are ready to handle allocation
3742 * failures more gracefully we should just bail out here.
3743 */
3744
3745 /* The OOM killer may not free memory on a specific node */
3746 if (gfp_mask & __GFP_THISNODE)
3747 goto out;
3da88fb3 3748
3c2c6488 3749 /* Exhausted what can be done so it's blame time */
5020e285 3750 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3751 *did_some_progress = 1;
5020e285 3752
6c18ba7a
MH
3753 /*
3754 * Help non-failing allocations by giving them access to memory
3755 * reserves
3756 */
3757 if (gfp_mask & __GFP_NOFAIL)
3758 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3759 ALLOC_NO_WATERMARKS, ac);
5020e285 3760 }
11e33f6a 3761out:
dc56401f 3762 mutex_unlock(&oom_lock);
11e33f6a
MG
3763 return page;
3764}
3765
33c2d214
MH
3766/*
3767 * Maximum number of compaction retries wit a progress before OOM
3768 * killer is consider as the only way to move forward.
3769 */
3770#define MAX_COMPACT_RETRIES 16
3771
56de7263
MG
3772#ifdef CONFIG_COMPACTION
3773/* Try memory compaction for high-order allocations before reclaim */
3774static struct page *
3775__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3776 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3777 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3778{
5e1f0f09 3779 struct page *page = NULL;
eb414681 3780 unsigned long pflags;
499118e9 3781 unsigned int noreclaim_flag;
53853e2d
VB
3782
3783 if (!order)
66199712 3784 return NULL;
66199712 3785
eb414681 3786 psi_memstall_enter(&pflags);
499118e9 3787 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3788
c5d01d0d 3789 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3790 prio, &page);
eb414681 3791
499118e9 3792 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3793 psi_memstall_leave(&pflags);
56de7263 3794
98dd3b48
VB
3795 /*
3796 * At least in one zone compaction wasn't deferred or skipped, so let's
3797 * count a compaction stall
3798 */
3799 count_vm_event(COMPACTSTALL);
8fb74b9f 3800
5e1f0f09
MG
3801 /* Prep a captured page if available */
3802 if (page)
3803 prep_new_page(page, order, gfp_mask, alloc_flags);
3804
3805 /* Try get a page from the freelist if available */
3806 if (!page)
3807 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3808
98dd3b48
VB
3809 if (page) {
3810 struct zone *zone = page_zone(page);
53853e2d 3811
98dd3b48
VB
3812 zone->compact_blockskip_flush = false;
3813 compaction_defer_reset(zone, order, true);
3814 count_vm_event(COMPACTSUCCESS);
3815 return page;
3816 }
56de7263 3817
98dd3b48
VB
3818 /*
3819 * It's bad if compaction run occurs and fails. The most likely reason
3820 * is that pages exist, but not enough to satisfy watermarks.
3821 */
3822 count_vm_event(COMPACTFAIL);
66199712 3823
98dd3b48 3824 cond_resched();
56de7263
MG
3825
3826 return NULL;
3827}
33c2d214 3828
3250845d
VB
3829static inline bool
3830should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3831 enum compact_result compact_result,
3832 enum compact_priority *compact_priority,
d9436498 3833 int *compaction_retries)
3250845d
VB
3834{
3835 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3836 int min_priority;
65190cff
MH
3837 bool ret = false;
3838 int retries = *compaction_retries;
3839 enum compact_priority priority = *compact_priority;
3250845d
VB
3840
3841 if (!order)
3842 return false;
3843
d9436498
VB
3844 if (compaction_made_progress(compact_result))
3845 (*compaction_retries)++;
3846
3250845d
VB
3847 /*
3848 * compaction considers all the zone as desperately out of memory
3849 * so it doesn't really make much sense to retry except when the
3850 * failure could be caused by insufficient priority
3851 */
d9436498
VB
3852 if (compaction_failed(compact_result))
3853 goto check_priority;
3250845d
VB
3854
3855 /*
3856 * make sure the compaction wasn't deferred or didn't bail out early
3857 * due to locks contention before we declare that we should give up.
3858 * But do not retry if the given zonelist is not suitable for
3859 * compaction.
3860 */
65190cff
MH
3861 if (compaction_withdrawn(compact_result)) {
3862 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3863 goto out;
3864 }
3250845d
VB
3865
3866 /*
dcda9b04 3867 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3868 * costly ones because they are de facto nofail and invoke OOM
3869 * killer to move on while costly can fail and users are ready
3870 * to cope with that. 1/4 retries is rather arbitrary but we
3871 * would need much more detailed feedback from compaction to
3872 * make a better decision.
3873 */
3874 if (order > PAGE_ALLOC_COSTLY_ORDER)
3875 max_retries /= 4;
65190cff
MH
3876 if (*compaction_retries <= max_retries) {
3877 ret = true;
3878 goto out;
3879 }
3250845d 3880
d9436498
VB
3881 /*
3882 * Make sure there are attempts at the highest priority if we exhausted
3883 * all retries or failed at the lower priorities.
3884 */
3885check_priority:
c2033b00
VB
3886 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3887 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3888
c2033b00 3889 if (*compact_priority > min_priority) {
d9436498
VB
3890 (*compact_priority)--;
3891 *compaction_retries = 0;
65190cff 3892 ret = true;
d9436498 3893 }
65190cff
MH
3894out:
3895 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3896 return ret;
3250845d 3897}
56de7263
MG
3898#else
3899static inline struct page *
3900__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3901 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3902 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3903{
33c2d214 3904 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3905 return NULL;
3906}
33c2d214
MH
3907
3908static inline bool
86a294a8
MH
3909should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3910 enum compact_result compact_result,
a5508cd8 3911 enum compact_priority *compact_priority,
d9436498 3912 int *compaction_retries)
33c2d214 3913{
31e49bfd
MH
3914 struct zone *zone;
3915 struct zoneref *z;
3916
3917 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3918 return false;
3919
3920 /*
3921 * There are setups with compaction disabled which would prefer to loop
3922 * inside the allocator rather than hit the oom killer prematurely.
3923 * Let's give them a good hope and keep retrying while the order-0
3924 * watermarks are OK.
3925 */
3926 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3927 ac->nodemask) {
3928 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3929 ac_classzone_idx(ac), alloc_flags))
3930 return true;
3931 }
33c2d214
MH
3932 return false;
3933}
3250845d 3934#endif /* CONFIG_COMPACTION */
56de7263 3935
d92a8cfc 3936#ifdef CONFIG_LOCKDEP
93781325 3937static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3938 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3939
3940static bool __need_fs_reclaim(gfp_t gfp_mask)
3941{
3942 gfp_mask = current_gfp_context(gfp_mask);
3943
3944 /* no reclaim without waiting on it */
3945 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3946 return false;
3947
3948 /* this guy won't enter reclaim */
2e517d68 3949 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3950 return false;
3951
3952 /* We're only interested __GFP_FS allocations for now */
3953 if (!(gfp_mask & __GFP_FS))
3954 return false;
3955
3956 if (gfp_mask & __GFP_NOLOCKDEP)
3957 return false;
3958
3959 return true;
3960}
3961
93781325
OS
3962void __fs_reclaim_acquire(void)
3963{
3964 lock_map_acquire(&__fs_reclaim_map);
3965}
3966
3967void __fs_reclaim_release(void)
3968{
3969 lock_map_release(&__fs_reclaim_map);
3970}
3971
d92a8cfc
PZ
3972void fs_reclaim_acquire(gfp_t gfp_mask)
3973{
3974 if (__need_fs_reclaim(gfp_mask))
93781325 3975 __fs_reclaim_acquire();
d92a8cfc
PZ
3976}
3977EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3978
3979void fs_reclaim_release(gfp_t gfp_mask)
3980{
3981 if (__need_fs_reclaim(gfp_mask))
93781325 3982 __fs_reclaim_release();
d92a8cfc
PZ
3983}
3984EXPORT_SYMBOL_GPL(fs_reclaim_release);
3985#endif
3986
bba90710
MS
3987/* Perform direct synchronous page reclaim */
3988static int
a9263751
VB
3989__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3990 const struct alloc_context *ac)
11e33f6a 3991{
11e33f6a 3992 struct reclaim_state reclaim_state;
bba90710 3993 int progress;
499118e9 3994 unsigned int noreclaim_flag;
eb414681 3995 unsigned long pflags;
11e33f6a
MG
3996
3997 cond_resched();
3998
3999 /* We now go into synchronous reclaim */
4000 cpuset_memory_pressure_bump();
eb414681 4001 psi_memstall_enter(&pflags);
d92a8cfc 4002 fs_reclaim_acquire(gfp_mask);
93781325 4003 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4004 reclaim_state.reclaimed_slab = 0;
c06b1fca 4005 current->reclaim_state = &reclaim_state;
11e33f6a 4006
a9263751
VB
4007 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4008 ac->nodemask);
11e33f6a 4009
c06b1fca 4010 current->reclaim_state = NULL;
499118e9 4011 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4012 fs_reclaim_release(gfp_mask);
eb414681 4013 psi_memstall_leave(&pflags);
11e33f6a
MG
4014
4015 cond_resched();
4016
bba90710
MS
4017 return progress;
4018}
4019
4020/* The really slow allocator path where we enter direct reclaim */
4021static inline struct page *
4022__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4023 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4024 unsigned long *did_some_progress)
bba90710
MS
4025{
4026 struct page *page = NULL;
4027 bool drained = false;
4028
a9263751 4029 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4030 if (unlikely(!(*did_some_progress)))
4031 return NULL;
11e33f6a 4032
9ee493ce 4033retry:
31a6c190 4034 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4035
4036 /*
4037 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4038 * pages are pinned on the per-cpu lists or in high alloc reserves.
4039 * Shrink them them and try again
9ee493ce
MG
4040 */
4041 if (!page && !drained) {
29fac03b 4042 unreserve_highatomic_pageblock(ac, false);
93481ff0 4043 drain_all_pages(NULL);
9ee493ce
MG
4044 drained = true;
4045 goto retry;
4046 }
4047
11e33f6a
MG
4048 return page;
4049}
4050
5ecd9d40
DR
4051static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4052 const struct alloc_context *ac)
3a025760
JW
4053{
4054 struct zoneref *z;
4055 struct zone *zone;
e1a55637 4056 pg_data_t *last_pgdat = NULL;
5ecd9d40 4057 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4058
5ecd9d40
DR
4059 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4060 ac->nodemask) {
e1a55637 4061 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4062 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4063 last_pgdat = zone->zone_pgdat;
4064 }
3a025760
JW
4065}
4066
c603844b 4067static inline unsigned int
341ce06f
PZ
4068gfp_to_alloc_flags(gfp_t gfp_mask)
4069{
c603844b 4070 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4071
a56f57ff 4072 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 4073 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 4074
341ce06f
PZ
4075 /*
4076 * The caller may dip into page reserves a bit more if the caller
4077 * cannot run direct reclaim, or if the caller has realtime scheduling
4078 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4079 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4080 */
e6223a3b 4081 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4082
d0164adc 4083 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4084 /*
b104a35d
DR
4085 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4086 * if it can't schedule.
5c3240d9 4087 */
b104a35d 4088 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4089 alloc_flags |= ALLOC_HARDER;
523b9458 4090 /*
b104a35d 4091 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4092 * comment for __cpuset_node_allowed().
523b9458 4093 */
341ce06f 4094 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4095 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4096 alloc_flags |= ALLOC_HARDER;
4097
0a79cdad
MG
4098 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4099 alloc_flags |= ALLOC_KSWAPD;
4100
d883c6cf
JK
4101#ifdef CONFIG_CMA
4102 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4103 alloc_flags |= ALLOC_CMA;
4104#endif
341ce06f
PZ
4105 return alloc_flags;
4106}
4107
cd04ae1e 4108static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4109{
cd04ae1e
MH
4110 if (!tsk_is_oom_victim(tsk))
4111 return false;
4112
4113 /*
4114 * !MMU doesn't have oom reaper so give access to memory reserves
4115 * only to the thread with TIF_MEMDIE set
4116 */
4117 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4118 return false;
4119
cd04ae1e
MH
4120 return true;
4121}
4122
4123/*
4124 * Distinguish requests which really need access to full memory
4125 * reserves from oom victims which can live with a portion of it
4126 */
4127static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4128{
4129 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4130 return 0;
31a6c190 4131 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4132 return ALLOC_NO_WATERMARKS;
31a6c190 4133 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4134 return ALLOC_NO_WATERMARKS;
4135 if (!in_interrupt()) {
4136 if (current->flags & PF_MEMALLOC)
4137 return ALLOC_NO_WATERMARKS;
4138 else if (oom_reserves_allowed(current))
4139 return ALLOC_OOM;
4140 }
31a6c190 4141
cd04ae1e
MH
4142 return 0;
4143}
4144
4145bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4146{
4147 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4148}
4149
0a0337e0
MH
4150/*
4151 * Checks whether it makes sense to retry the reclaim to make a forward progress
4152 * for the given allocation request.
491d79ae
JW
4153 *
4154 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4155 * without success, or when we couldn't even meet the watermark if we
4156 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4157 *
4158 * Returns true if a retry is viable or false to enter the oom path.
4159 */
4160static inline bool
4161should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4162 struct alloc_context *ac, int alloc_flags,
423b452e 4163 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4164{
4165 struct zone *zone;
4166 struct zoneref *z;
15f570bf 4167 bool ret = false;
0a0337e0 4168
423b452e
VB
4169 /*
4170 * Costly allocations might have made a progress but this doesn't mean
4171 * their order will become available due to high fragmentation so
4172 * always increment the no progress counter for them
4173 */
4174 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4175 *no_progress_loops = 0;
4176 else
4177 (*no_progress_loops)++;
4178
0a0337e0
MH
4179 /*
4180 * Make sure we converge to OOM if we cannot make any progress
4181 * several times in the row.
4182 */
04c8716f
MK
4183 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4184 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4185 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4186 }
0a0337e0 4187
bca67592
MG
4188 /*
4189 * Keep reclaiming pages while there is a chance this will lead
4190 * somewhere. If none of the target zones can satisfy our allocation
4191 * request even if all reclaimable pages are considered then we are
4192 * screwed and have to go OOM.
0a0337e0
MH
4193 */
4194 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4195 ac->nodemask) {
4196 unsigned long available;
ede37713 4197 unsigned long reclaimable;
d379f01d
MH
4198 unsigned long min_wmark = min_wmark_pages(zone);
4199 bool wmark;
0a0337e0 4200
5a1c84b4 4201 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4202 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4203
4204 /*
491d79ae
JW
4205 * Would the allocation succeed if we reclaimed all
4206 * reclaimable pages?
0a0337e0 4207 */
d379f01d
MH
4208 wmark = __zone_watermark_ok(zone, order, min_wmark,
4209 ac_classzone_idx(ac), alloc_flags, available);
4210 trace_reclaim_retry_zone(z, order, reclaimable,
4211 available, min_wmark, *no_progress_loops, wmark);
4212 if (wmark) {
ede37713
MH
4213 /*
4214 * If we didn't make any progress and have a lot of
4215 * dirty + writeback pages then we should wait for
4216 * an IO to complete to slow down the reclaim and
4217 * prevent from pre mature OOM
4218 */
4219 if (!did_some_progress) {
11fb9989 4220 unsigned long write_pending;
ede37713 4221
5a1c84b4
MG
4222 write_pending = zone_page_state_snapshot(zone,
4223 NR_ZONE_WRITE_PENDING);
ede37713 4224
11fb9989 4225 if (2 * write_pending > reclaimable) {
ede37713
MH
4226 congestion_wait(BLK_RW_ASYNC, HZ/10);
4227 return true;
4228 }
4229 }
5a1c84b4 4230
15f570bf
MH
4231 ret = true;
4232 goto out;
0a0337e0
MH
4233 }
4234 }
4235
15f570bf
MH
4236out:
4237 /*
4238 * Memory allocation/reclaim might be called from a WQ context and the
4239 * current implementation of the WQ concurrency control doesn't
4240 * recognize that a particular WQ is congested if the worker thread is
4241 * looping without ever sleeping. Therefore we have to do a short sleep
4242 * here rather than calling cond_resched().
4243 */
4244 if (current->flags & PF_WQ_WORKER)
4245 schedule_timeout_uninterruptible(1);
4246 else
4247 cond_resched();
4248 return ret;
0a0337e0
MH
4249}
4250
902b6281
VB
4251static inline bool
4252check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4253{
4254 /*
4255 * It's possible that cpuset's mems_allowed and the nodemask from
4256 * mempolicy don't intersect. This should be normally dealt with by
4257 * policy_nodemask(), but it's possible to race with cpuset update in
4258 * such a way the check therein was true, and then it became false
4259 * before we got our cpuset_mems_cookie here.
4260 * This assumes that for all allocations, ac->nodemask can come only
4261 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4262 * when it does not intersect with the cpuset restrictions) or the
4263 * caller can deal with a violated nodemask.
4264 */
4265 if (cpusets_enabled() && ac->nodemask &&
4266 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4267 ac->nodemask = NULL;
4268 return true;
4269 }
4270
4271 /*
4272 * When updating a task's mems_allowed or mempolicy nodemask, it is
4273 * possible to race with parallel threads in such a way that our
4274 * allocation can fail while the mask is being updated. If we are about
4275 * to fail, check if the cpuset changed during allocation and if so,
4276 * retry.
4277 */
4278 if (read_mems_allowed_retry(cpuset_mems_cookie))
4279 return true;
4280
4281 return false;
4282}
4283
11e33f6a
MG
4284static inline struct page *
4285__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4286 struct alloc_context *ac)
11e33f6a 4287{
d0164adc 4288 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4289 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4290 struct page *page = NULL;
c603844b 4291 unsigned int alloc_flags;
11e33f6a 4292 unsigned long did_some_progress;
5ce9bfef 4293 enum compact_priority compact_priority;
c5d01d0d 4294 enum compact_result compact_result;
5ce9bfef
VB
4295 int compaction_retries;
4296 int no_progress_loops;
5ce9bfef 4297 unsigned int cpuset_mems_cookie;
cd04ae1e 4298 int reserve_flags;
1da177e4 4299
d0164adc
MG
4300 /*
4301 * We also sanity check to catch abuse of atomic reserves being used by
4302 * callers that are not in atomic context.
4303 */
4304 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4305 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4306 gfp_mask &= ~__GFP_ATOMIC;
4307
5ce9bfef
VB
4308retry_cpuset:
4309 compaction_retries = 0;
4310 no_progress_loops = 0;
4311 compact_priority = DEF_COMPACT_PRIORITY;
4312 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4313
4314 /*
4315 * The fast path uses conservative alloc_flags to succeed only until
4316 * kswapd needs to be woken up, and to avoid the cost of setting up
4317 * alloc_flags precisely. So we do that now.
4318 */
4319 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4320
e47483bc
VB
4321 /*
4322 * We need to recalculate the starting point for the zonelist iterator
4323 * because we might have used different nodemask in the fast path, or
4324 * there was a cpuset modification and we are retrying - otherwise we
4325 * could end up iterating over non-eligible zones endlessly.
4326 */
4327 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4328 ac->high_zoneidx, ac->nodemask);
4329 if (!ac->preferred_zoneref->zone)
4330 goto nopage;
4331
0a79cdad 4332 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4333 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4334
4335 /*
4336 * The adjusted alloc_flags might result in immediate success, so try
4337 * that first
4338 */
4339 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4340 if (page)
4341 goto got_pg;
4342
a8161d1e
VB
4343 /*
4344 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4345 * that we have enough base pages and don't need to reclaim. For non-
4346 * movable high-order allocations, do that as well, as compaction will
4347 * try prevent permanent fragmentation by migrating from blocks of the
4348 * same migratetype.
4349 * Don't try this for allocations that are allowed to ignore
4350 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4351 */
282722b0
VB
4352 if (can_direct_reclaim &&
4353 (costly_order ||
4354 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4355 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4356 page = __alloc_pages_direct_compact(gfp_mask, order,
4357 alloc_flags, ac,
a5508cd8 4358 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4359 &compact_result);
4360 if (page)
4361 goto got_pg;
4362
3eb2771b
VB
4363 /*
4364 * Checks for costly allocations with __GFP_NORETRY, which
4365 * includes THP page fault allocations
4366 */
282722b0 4367 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4368 /*
4369 * If compaction is deferred for high-order allocations,
4370 * it is because sync compaction recently failed. If
4371 * this is the case and the caller requested a THP
4372 * allocation, we do not want to heavily disrupt the
4373 * system, so we fail the allocation instead of entering
4374 * direct reclaim.
4375 */
4376 if (compact_result == COMPACT_DEFERRED)
4377 goto nopage;
4378
a8161d1e 4379 /*
3eb2771b
VB
4380 * Looks like reclaim/compaction is worth trying, but
4381 * sync compaction could be very expensive, so keep
25160354 4382 * using async compaction.
a8161d1e 4383 */
a5508cd8 4384 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4385 }
4386 }
23771235 4387
31a6c190 4388retry:
23771235 4389 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4390 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4391 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4392
cd04ae1e
MH
4393 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4394 if (reserve_flags)
4395 alloc_flags = reserve_flags;
23771235 4396
e46e7b77 4397 /*
d6a24df0
VB
4398 * Reset the nodemask and zonelist iterators if memory policies can be
4399 * ignored. These allocations are high priority and system rather than
4400 * user oriented.
e46e7b77 4401 */
cd04ae1e 4402 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4403 ac->nodemask = NULL;
e46e7b77
MG
4404 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4405 ac->high_zoneidx, ac->nodemask);
4406 }
4407
23771235 4408 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4409 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4410 if (page)
4411 goto got_pg;
1da177e4 4412
d0164adc 4413 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4414 if (!can_direct_reclaim)
1da177e4
LT
4415 goto nopage;
4416
9a67f648
MH
4417 /* Avoid recursion of direct reclaim */
4418 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4419 goto nopage;
4420
a8161d1e
VB
4421 /* Try direct reclaim and then allocating */
4422 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4423 &did_some_progress);
4424 if (page)
4425 goto got_pg;
4426
4427 /* Try direct compaction and then allocating */
a9263751 4428 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4429 compact_priority, &compact_result);
56de7263
MG
4430 if (page)
4431 goto got_pg;
75f30861 4432
9083905a
JW
4433 /* Do not loop if specifically requested */
4434 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4435 goto nopage;
9083905a 4436
0a0337e0
MH
4437 /*
4438 * Do not retry costly high order allocations unless they are
dcda9b04 4439 * __GFP_RETRY_MAYFAIL
0a0337e0 4440 */
dcda9b04 4441 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4442 goto nopage;
0a0337e0 4443
0a0337e0 4444 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4445 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4446 goto retry;
4447
33c2d214
MH
4448 /*
4449 * It doesn't make any sense to retry for the compaction if the order-0
4450 * reclaim is not able to make any progress because the current
4451 * implementation of the compaction depends on the sufficient amount
4452 * of free memory (see __compaction_suitable)
4453 */
4454 if (did_some_progress > 0 &&
86a294a8 4455 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4456 compact_result, &compact_priority,
d9436498 4457 &compaction_retries))
33c2d214
MH
4458 goto retry;
4459
902b6281
VB
4460
4461 /* Deal with possible cpuset update races before we start OOM killing */
4462 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4463 goto retry_cpuset;
4464
9083905a
JW
4465 /* Reclaim has failed us, start killing things */
4466 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4467 if (page)
4468 goto got_pg;
4469
9a67f648 4470 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4471 if (tsk_is_oom_victim(current) &&
4472 (alloc_flags == ALLOC_OOM ||
c288983d 4473 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4474 goto nopage;
4475
9083905a 4476 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4477 if (did_some_progress) {
4478 no_progress_loops = 0;
9083905a 4479 goto retry;
0a0337e0 4480 }
9083905a 4481
1da177e4 4482nopage:
902b6281
VB
4483 /* Deal with possible cpuset update races before we fail */
4484 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4485 goto retry_cpuset;
4486
9a67f648
MH
4487 /*
4488 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4489 * we always retry
4490 */
4491 if (gfp_mask & __GFP_NOFAIL) {
4492 /*
4493 * All existing users of the __GFP_NOFAIL are blockable, so warn
4494 * of any new users that actually require GFP_NOWAIT
4495 */
4496 if (WARN_ON_ONCE(!can_direct_reclaim))
4497 goto fail;
4498
4499 /*
4500 * PF_MEMALLOC request from this context is rather bizarre
4501 * because we cannot reclaim anything and only can loop waiting
4502 * for somebody to do a work for us
4503 */
4504 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4505
4506 /*
4507 * non failing costly orders are a hard requirement which we
4508 * are not prepared for much so let's warn about these users
4509 * so that we can identify them and convert them to something
4510 * else.
4511 */
4512 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4513
6c18ba7a
MH
4514 /*
4515 * Help non-failing allocations by giving them access to memory
4516 * reserves but do not use ALLOC_NO_WATERMARKS because this
4517 * could deplete whole memory reserves which would just make
4518 * the situation worse
4519 */
4520 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4521 if (page)
4522 goto got_pg;
4523
9a67f648
MH
4524 cond_resched();
4525 goto retry;
4526 }
4527fail:
a8e99259 4528 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4529 "page allocation failure: order:%u", order);
1da177e4 4530got_pg:
072bb0aa 4531 return page;
1da177e4 4532}
11e33f6a 4533
9cd75558 4534static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4535 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4536 struct alloc_context *ac, gfp_t *alloc_mask,
4537 unsigned int *alloc_flags)
11e33f6a 4538{
9cd75558 4539 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4540 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4541 ac->nodemask = nodemask;
4542 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4543
682a3385 4544 if (cpusets_enabled()) {
9cd75558 4545 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4546 if (!ac->nodemask)
4547 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4548 else
4549 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4550 }
4551
d92a8cfc
PZ
4552 fs_reclaim_acquire(gfp_mask);
4553 fs_reclaim_release(gfp_mask);
11e33f6a 4554
d0164adc 4555 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4556
4557 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4558 return false;
11e33f6a 4559
d883c6cf
JK
4560 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4561 *alloc_flags |= ALLOC_CMA;
4562
9cd75558
MG
4563 return true;
4564}
21bb9bd1 4565
9cd75558 4566/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4567static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4568{
c9ab0c4f 4569 /* Dirty zone balancing only done in the fast path */
9cd75558 4570 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4571
e46e7b77
MG
4572 /*
4573 * The preferred zone is used for statistics but crucially it is
4574 * also used as the starting point for the zonelist iterator. It
4575 * may get reset for allocations that ignore memory policies.
4576 */
9cd75558
MG
4577 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4578 ac->high_zoneidx, ac->nodemask);
4579}
4580
4581/*
4582 * This is the 'heart' of the zoned buddy allocator.
4583 */
4584struct page *
04ec6264
VB
4585__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4586 nodemask_t *nodemask)
9cd75558
MG
4587{
4588 struct page *page;
4589 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4590 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4591 struct alloc_context ac = { };
4592
c63ae43b
MH
4593 /*
4594 * There are several places where we assume that the order value is sane
4595 * so bail out early if the request is out of bound.
4596 */
4597 if (unlikely(order >= MAX_ORDER)) {
4598 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4599 return NULL;
4600 }
4601
9cd75558 4602 gfp_mask &= gfp_allowed_mask;
f19360f0 4603 alloc_mask = gfp_mask;
04ec6264 4604 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4605 return NULL;
4606
a380b40a 4607 finalise_ac(gfp_mask, &ac);
5bb1b169 4608
6bb15450
MG
4609 /*
4610 * Forbid the first pass from falling back to types that fragment
4611 * memory until all local zones are considered.
4612 */
0a79cdad 4613 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4614
5117f45d 4615 /* First allocation attempt */
a9263751 4616 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4617 if (likely(page))
4618 goto out;
11e33f6a 4619
4fcb0971 4620 /*
7dea19f9
MH
4621 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4622 * resp. GFP_NOIO which has to be inherited for all allocation requests
4623 * from a particular context which has been marked by
4624 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4625 */
7dea19f9 4626 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4627 ac.spread_dirty_pages = false;
23f086f9 4628
4741526b
MG
4629 /*
4630 * Restore the original nodemask if it was potentially replaced with
4631 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4632 */
e47483bc 4633 if (unlikely(ac.nodemask != nodemask))
4741526b 4634 ac.nodemask = nodemask;
16096c25 4635
4fcb0971 4636 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4637
4fcb0971 4638out:
c4159a75 4639 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
60cd4bcd 4640 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
c4159a75
VD
4641 __free_pages(page, order);
4642 page = NULL;
4949148a
VD
4643 }
4644
4fcb0971
MG
4645 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4646
11e33f6a 4647 return page;
1da177e4 4648}
d239171e 4649EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4650
4651/*
9ea9a680
MH
4652 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4653 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4654 * you need to access high mem.
1da177e4 4655 */
920c7a5d 4656unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4657{
945a1113
AM
4658 struct page *page;
4659
9ea9a680 4660 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4661 if (!page)
4662 return 0;
4663 return (unsigned long) page_address(page);
4664}
1da177e4
LT
4665EXPORT_SYMBOL(__get_free_pages);
4666
920c7a5d 4667unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4668{
945a1113 4669 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4670}
1da177e4
LT
4671EXPORT_SYMBOL(get_zeroed_page);
4672
742aa7fb 4673static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4674{
742aa7fb
AL
4675 if (order == 0) /* Via pcp? */
4676 free_unref_page(page);
4677 else
4678 __free_pages_ok(page, order);
1da177e4
LT
4679}
4680
742aa7fb
AL
4681void __free_pages(struct page *page, unsigned int order)
4682{
4683 if (put_page_testzero(page))
4684 free_the_page(page, order);
4685}
1da177e4
LT
4686EXPORT_SYMBOL(__free_pages);
4687
920c7a5d 4688void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4689{
4690 if (addr != 0) {
725d704e 4691 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4692 __free_pages(virt_to_page((void *)addr), order);
4693 }
4694}
4695
4696EXPORT_SYMBOL(free_pages);
4697
b63ae8ca
AD
4698/*
4699 * Page Fragment:
4700 * An arbitrary-length arbitrary-offset area of memory which resides
4701 * within a 0 or higher order page. Multiple fragments within that page
4702 * are individually refcounted, in the page's reference counter.
4703 *
4704 * The page_frag functions below provide a simple allocation framework for
4705 * page fragments. This is used by the network stack and network device
4706 * drivers to provide a backing region of memory for use as either an
4707 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4708 */
2976db80
AD
4709static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4710 gfp_t gfp_mask)
b63ae8ca
AD
4711{
4712 struct page *page = NULL;
4713 gfp_t gfp = gfp_mask;
4714
4715#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4716 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4717 __GFP_NOMEMALLOC;
4718 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4719 PAGE_FRAG_CACHE_MAX_ORDER);
4720 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4721#endif
4722 if (unlikely(!page))
4723 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4724
4725 nc->va = page ? page_address(page) : NULL;
4726
4727 return page;
4728}
4729
2976db80 4730void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4731{
4732 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4733
742aa7fb
AL
4734 if (page_ref_sub_and_test(page, count))
4735 free_the_page(page, compound_order(page));
44fdffd7 4736}
2976db80 4737EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4738
8c2dd3e4
AD
4739void *page_frag_alloc(struct page_frag_cache *nc,
4740 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4741{
4742 unsigned int size = PAGE_SIZE;
4743 struct page *page;
4744 int offset;
4745
4746 if (unlikely(!nc->va)) {
4747refill:
2976db80 4748 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4749 if (!page)
4750 return NULL;
4751
4752#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4753 /* if size can vary use size else just use PAGE_SIZE */
4754 size = nc->size;
4755#endif
4756 /* Even if we own the page, we do not use atomic_set().
4757 * This would break get_page_unless_zero() users.
4758 */
86447726 4759 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4760
4761 /* reset page count bias and offset to start of new frag */
2f064f34 4762 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4763 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4764 nc->offset = size;
4765 }
4766
4767 offset = nc->offset - fragsz;
4768 if (unlikely(offset < 0)) {
4769 page = virt_to_page(nc->va);
4770
fe896d18 4771 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4772 goto refill;
4773
4774#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4775 /* if size can vary use size else just use PAGE_SIZE */
4776 size = nc->size;
4777#endif
4778 /* OK, page count is 0, we can safely set it */
86447726 4779 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4780
4781 /* reset page count bias and offset to start of new frag */
86447726 4782 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4783 offset = size - fragsz;
4784 }
4785
4786 nc->pagecnt_bias--;
4787 nc->offset = offset;
4788
4789 return nc->va + offset;
4790}
8c2dd3e4 4791EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4792
4793/*
4794 * Frees a page fragment allocated out of either a compound or order 0 page.
4795 */
8c2dd3e4 4796void page_frag_free(void *addr)
b63ae8ca
AD
4797{
4798 struct page *page = virt_to_head_page(addr);
4799
742aa7fb
AL
4800 if (unlikely(put_page_testzero(page)))
4801 free_the_page(page, compound_order(page));
b63ae8ca 4802}
8c2dd3e4 4803EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4804
d00181b9
KS
4805static void *make_alloc_exact(unsigned long addr, unsigned int order,
4806 size_t size)
ee85c2e1
AK
4807{
4808 if (addr) {
4809 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4810 unsigned long used = addr + PAGE_ALIGN(size);
4811
4812 split_page(virt_to_page((void *)addr), order);
4813 while (used < alloc_end) {
4814 free_page(used);
4815 used += PAGE_SIZE;
4816 }
4817 }
4818 return (void *)addr;
4819}
4820
2be0ffe2
TT
4821/**
4822 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4823 * @size: the number of bytes to allocate
63931eb9 4824 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4825 *
4826 * This function is similar to alloc_pages(), except that it allocates the
4827 * minimum number of pages to satisfy the request. alloc_pages() can only
4828 * allocate memory in power-of-two pages.
4829 *
4830 * This function is also limited by MAX_ORDER.
4831 *
4832 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4833 *
4834 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4835 */
4836void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4837{
4838 unsigned int order = get_order(size);
4839 unsigned long addr;
4840
63931eb9
VB
4841 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4842 gfp_mask &= ~__GFP_COMP;
4843
2be0ffe2 4844 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4845 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4846}
4847EXPORT_SYMBOL(alloc_pages_exact);
4848
ee85c2e1
AK
4849/**
4850 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4851 * pages on a node.
b5e6ab58 4852 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4853 * @size: the number of bytes to allocate
63931eb9 4854 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4855 *
4856 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4857 * back.
a862f68a
MR
4858 *
4859 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4860 */
e1931811 4861void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4862{
d00181b9 4863 unsigned int order = get_order(size);
63931eb9
VB
4864 struct page *p;
4865
4866 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4867 gfp_mask &= ~__GFP_COMP;
4868
4869 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4870 if (!p)
4871 return NULL;
4872 return make_alloc_exact((unsigned long)page_address(p), order, size);
4873}
ee85c2e1 4874
2be0ffe2
TT
4875/**
4876 * free_pages_exact - release memory allocated via alloc_pages_exact()
4877 * @virt: the value returned by alloc_pages_exact.
4878 * @size: size of allocation, same value as passed to alloc_pages_exact().
4879 *
4880 * Release the memory allocated by a previous call to alloc_pages_exact.
4881 */
4882void free_pages_exact(void *virt, size_t size)
4883{
4884 unsigned long addr = (unsigned long)virt;
4885 unsigned long end = addr + PAGE_ALIGN(size);
4886
4887 while (addr < end) {
4888 free_page(addr);
4889 addr += PAGE_SIZE;
4890 }
4891}
4892EXPORT_SYMBOL(free_pages_exact);
4893
e0fb5815
ZY
4894/**
4895 * nr_free_zone_pages - count number of pages beyond high watermark
4896 * @offset: The zone index of the highest zone
4897 *
a862f68a 4898 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
4899 * high watermark within all zones at or below a given zone index. For each
4900 * zone, the number of pages is calculated as:
0e056eb5 4901 *
4902 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
4903 *
4904 * Return: number of pages beyond high watermark.
e0fb5815 4905 */
ebec3862 4906static unsigned long nr_free_zone_pages(int offset)
1da177e4 4907{
dd1a239f 4908 struct zoneref *z;
54a6eb5c
MG
4909 struct zone *zone;
4910
e310fd43 4911 /* Just pick one node, since fallback list is circular */
ebec3862 4912 unsigned long sum = 0;
1da177e4 4913
0e88460d 4914 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4915
54a6eb5c 4916 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 4917 unsigned long size = zone_managed_pages(zone);
41858966 4918 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4919 if (size > high)
4920 sum += size - high;
1da177e4
LT
4921 }
4922
4923 return sum;
4924}
4925
e0fb5815
ZY
4926/**
4927 * nr_free_buffer_pages - count number of pages beyond high watermark
4928 *
4929 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4930 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
4931 *
4932 * Return: number of pages beyond high watermark within ZONE_DMA and
4933 * ZONE_NORMAL.
1da177e4 4934 */
ebec3862 4935unsigned long nr_free_buffer_pages(void)
1da177e4 4936{
af4ca457 4937 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4938}
c2f1a551 4939EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4940
e0fb5815
ZY
4941/**
4942 * nr_free_pagecache_pages - count number of pages beyond high watermark
4943 *
4944 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4945 * high watermark within all zones.
a862f68a
MR
4946 *
4947 * Return: number of pages beyond high watermark within all zones.
1da177e4 4948 */
ebec3862 4949unsigned long nr_free_pagecache_pages(void)
1da177e4 4950{
2a1e274a 4951 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4952}
08e0f6a9
CL
4953
4954static inline void show_node(struct zone *zone)
1da177e4 4955{
e5adfffc 4956 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4957 printk("Node %d ", zone_to_nid(zone));
1da177e4 4958}
1da177e4 4959
d02bd27b
IR
4960long si_mem_available(void)
4961{
4962 long available;
4963 unsigned long pagecache;
4964 unsigned long wmark_low = 0;
4965 unsigned long pages[NR_LRU_LISTS];
b29940c1 4966 unsigned long reclaimable;
d02bd27b
IR
4967 struct zone *zone;
4968 int lru;
4969
4970 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4971 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4972
4973 for_each_zone(zone)
a9214443 4974 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
4975
4976 /*
4977 * Estimate the amount of memory available for userspace allocations,
4978 * without causing swapping.
4979 */
c41f012a 4980 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4981
4982 /*
4983 * Not all the page cache can be freed, otherwise the system will
4984 * start swapping. Assume at least half of the page cache, or the
4985 * low watermark worth of cache, needs to stay.
4986 */
4987 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4988 pagecache -= min(pagecache / 2, wmark_low);
4989 available += pagecache;
4990
4991 /*
b29940c1
VB
4992 * Part of the reclaimable slab and other kernel memory consists of
4993 * items that are in use, and cannot be freed. Cap this estimate at the
4994 * low watermark.
d02bd27b 4995 */
b29940c1
VB
4996 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
4997 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
4998 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 4999
d02bd27b
IR
5000 if (available < 0)
5001 available = 0;
5002 return available;
5003}
5004EXPORT_SYMBOL_GPL(si_mem_available);
5005
1da177e4
LT
5006void si_meminfo(struct sysinfo *val)
5007{
ca79b0c2 5008 val->totalram = totalram_pages();
11fb9989 5009 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5010 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5011 val->bufferram = nr_blockdev_pages();
ca79b0c2 5012 val->totalhigh = totalhigh_pages();
1da177e4 5013 val->freehigh = nr_free_highpages();
1da177e4
LT
5014 val->mem_unit = PAGE_SIZE;
5015}
5016
5017EXPORT_SYMBOL(si_meminfo);
5018
5019#ifdef CONFIG_NUMA
5020void si_meminfo_node(struct sysinfo *val, int nid)
5021{
cdd91a77
JL
5022 int zone_type; /* needs to be signed */
5023 unsigned long managed_pages = 0;
fc2bd799
JK
5024 unsigned long managed_highpages = 0;
5025 unsigned long free_highpages = 0;
1da177e4
LT
5026 pg_data_t *pgdat = NODE_DATA(nid);
5027
cdd91a77 5028 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5029 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5030 val->totalram = managed_pages;
11fb9989 5031 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5032 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5033#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5034 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5035 struct zone *zone = &pgdat->node_zones[zone_type];
5036
5037 if (is_highmem(zone)) {
9705bea5 5038 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5039 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5040 }
5041 }
5042 val->totalhigh = managed_highpages;
5043 val->freehigh = free_highpages;
98d2b0eb 5044#else
fc2bd799
JK
5045 val->totalhigh = managed_highpages;
5046 val->freehigh = free_highpages;
98d2b0eb 5047#endif
1da177e4
LT
5048 val->mem_unit = PAGE_SIZE;
5049}
5050#endif
5051
ddd588b5 5052/*
7bf02ea2
DR
5053 * Determine whether the node should be displayed or not, depending on whether
5054 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5055 */
9af744d7 5056static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5057{
ddd588b5 5058 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5059 return false;
ddd588b5 5060
9af744d7
MH
5061 /*
5062 * no node mask - aka implicit memory numa policy. Do not bother with
5063 * the synchronization - read_mems_allowed_begin - because we do not
5064 * have to be precise here.
5065 */
5066 if (!nodemask)
5067 nodemask = &cpuset_current_mems_allowed;
5068
5069 return !node_isset(nid, *nodemask);
ddd588b5
DR
5070}
5071
1da177e4
LT
5072#define K(x) ((x) << (PAGE_SHIFT-10))
5073
377e4f16
RV
5074static void show_migration_types(unsigned char type)
5075{
5076 static const char types[MIGRATE_TYPES] = {
5077 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5078 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5079 [MIGRATE_RECLAIMABLE] = 'E',
5080 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5081#ifdef CONFIG_CMA
5082 [MIGRATE_CMA] = 'C',
5083#endif
194159fb 5084#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5085 [MIGRATE_ISOLATE] = 'I',
194159fb 5086#endif
377e4f16
RV
5087 };
5088 char tmp[MIGRATE_TYPES + 1];
5089 char *p = tmp;
5090 int i;
5091
5092 for (i = 0; i < MIGRATE_TYPES; i++) {
5093 if (type & (1 << i))
5094 *p++ = types[i];
5095 }
5096
5097 *p = '\0';
1f84a18f 5098 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5099}
5100
1da177e4
LT
5101/*
5102 * Show free area list (used inside shift_scroll-lock stuff)
5103 * We also calculate the percentage fragmentation. We do this by counting the
5104 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5105 *
5106 * Bits in @filter:
5107 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5108 * cpuset.
1da177e4 5109 */
9af744d7 5110void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5111{
d1bfcdb8 5112 unsigned long free_pcp = 0;
c7241913 5113 int cpu;
1da177e4 5114 struct zone *zone;
599d0c95 5115 pg_data_t *pgdat;
1da177e4 5116
ee99c71c 5117 for_each_populated_zone(zone) {
9af744d7 5118 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5119 continue;
d1bfcdb8 5120
761b0677
KK
5121 for_each_online_cpu(cpu)
5122 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5123 }
5124
a731286d
KM
5125 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5126 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5127 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5128 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5129 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5130 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5131 global_node_page_state(NR_ACTIVE_ANON),
5132 global_node_page_state(NR_INACTIVE_ANON),
5133 global_node_page_state(NR_ISOLATED_ANON),
5134 global_node_page_state(NR_ACTIVE_FILE),
5135 global_node_page_state(NR_INACTIVE_FILE),
5136 global_node_page_state(NR_ISOLATED_FILE),
5137 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5138 global_node_page_state(NR_FILE_DIRTY),
5139 global_node_page_state(NR_WRITEBACK),
5140 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5141 global_node_page_state(NR_SLAB_RECLAIMABLE),
5142 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5143 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5144 global_node_page_state(NR_SHMEM),
c41f012a
MH
5145 global_zone_page_state(NR_PAGETABLE),
5146 global_zone_page_state(NR_BOUNCE),
5147 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5148 free_pcp,
c41f012a 5149 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5150
599d0c95 5151 for_each_online_pgdat(pgdat) {
9af744d7 5152 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5153 continue;
5154
599d0c95
MG
5155 printk("Node %d"
5156 " active_anon:%lukB"
5157 " inactive_anon:%lukB"
5158 " active_file:%lukB"
5159 " inactive_file:%lukB"
5160 " unevictable:%lukB"
5161 " isolated(anon):%lukB"
5162 " isolated(file):%lukB"
50658e2e 5163 " mapped:%lukB"
11fb9989
MG
5164 " dirty:%lukB"
5165 " writeback:%lukB"
5166 " shmem:%lukB"
5167#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5168 " shmem_thp: %lukB"
5169 " shmem_pmdmapped: %lukB"
5170 " anon_thp: %lukB"
5171#endif
5172 " writeback_tmp:%lukB"
5173 " unstable:%lukB"
599d0c95
MG
5174 " all_unreclaimable? %s"
5175 "\n",
5176 pgdat->node_id,
5177 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5178 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5179 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5180 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5181 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5182 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5183 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5184 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5185 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5186 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5187 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5188#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5189 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5190 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5191 * HPAGE_PMD_NR),
5192 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5193#endif
11fb9989
MG
5194 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5195 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5196 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5197 "yes" : "no");
599d0c95
MG
5198 }
5199
ee99c71c 5200 for_each_populated_zone(zone) {
1da177e4
LT
5201 int i;
5202
9af744d7 5203 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5204 continue;
d1bfcdb8
KK
5205
5206 free_pcp = 0;
5207 for_each_online_cpu(cpu)
5208 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5209
1da177e4 5210 show_node(zone);
1f84a18f
JP
5211 printk(KERN_CONT
5212 "%s"
1da177e4
LT
5213 " free:%lukB"
5214 " min:%lukB"
5215 " low:%lukB"
5216 " high:%lukB"
71c799f4
MK
5217 " active_anon:%lukB"
5218 " inactive_anon:%lukB"
5219 " active_file:%lukB"
5220 " inactive_file:%lukB"
5221 " unevictable:%lukB"
5a1c84b4 5222 " writepending:%lukB"
1da177e4 5223 " present:%lukB"
9feedc9d 5224 " managed:%lukB"
4a0aa73f 5225 " mlocked:%lukB"
c6a7f572 5226 " kernel_stack:%lukB"
4a0aa73f 5227 " pagetables:%lukB"
4a0aa73f 5228 " bounce:%lukB"
d1bfcdb8
KK
5229 " free_pcp:%lukB"
5230 " local_pcp:%ukB"
d1ce749a 5231 " free_cma:%lukB"
1da177e4
LT
5232 "\n",
5233 zone->name,
88f5acf8 5234 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5235 K(min_wmark_pages(zone)),
5236 K(low_wmark_pages(zone)),
5237 K(high_wmark_pages(zone)),
71c799f4
MK
5238 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5239 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5240 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5241 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5242 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5243 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5244 K(zone->present_pages),
9705bea5 5245 K(zone_managed_pages(zone)),
4a0aa73f 5246 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5247 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5248 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5249 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5250 K(free_pcp),
5251 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5252 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5253 printk("lowmem_reserve[]:");
5254 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5255 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5256 printk(KERN_CONT "\n");
1da177e4
LT
5257 }
5258
ee99c71c 5259 for_each_populated_zone(zone) {
d00181b9
KS
5260 unsigned int order;
5261 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5262 unsigned char types[MAX_ORDER];
1da177e4 5263
9af744d7 5264 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5265 continue;
1da177e4 5266 show_node(zone);
1f84a18f 5267 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5268
5269 spin_lock_irqsave(&zone->lock, flags);
5270 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5271 struct free_area *area = &zone->free_area[order];
5272 int type;
5273
5274 nr[order] = area->nr_free;
8f9de51a 5275 total += nr[order] << order;
377e4f16
RV
5276
5277 types[order] = 0;
5278 for (type = 0; type < MIGRATE_TYPES; type++) {
5279 if (!list_empty(&area->free_list[type]))
5280 types[order] |= 1 << type;
5281 }
1da177e4
LT
5282 }
5283 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5284 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5285 printk(KERN_CONT "%lu*%lukB ",
5286 nr[order], K(1UL) << order);
377e4f16
RV
5287 if (nr[order])
5288 show_migration_types(types[order]);
5289 }
1f84a18f 5290 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5291 }
5292
949f7ec5
DR
5293 hugetlb_show_meminfo();
5294
11fb9989 5295 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5296
1da177e4
LT
5297 show_swap_cache_info();
5298}
5299
19770b32
MG
5300static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5301{
5302 zoneref->zone = zone;
5303 zoneref->zone_idx = zone_idx(zone);
5304}
5305
1da177e4
LT
5306/*
5307 * Builds allocation fallback zone lists.
1a93205b
CL
5308 *
5309 * Add all populated zones of a node to the zonelist.
1da177e4 5310 */
9d3be21b 5311static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5312{
1a93205b 5313 struct zone *zone;
bc732f1d 5314 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5315 int nr_zones = 0;
02a68a5e
CL
5316
5317 do {
2f6726e5 5318 zone_type--;
070f8032 5319 zone = pgdat->node_zones + zone_type;
6aa303de 5320 if (managed_zone(zone)) {
9d3be21b 5321 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5322 check_highest_zone(zone_type);
1da177e4 5323 }
2f6726e5 5324 } while (zone_type);
bc732f1d 5325
070f8032 5326 return nr_zones;
1da177e4
LT
5327}
5328
5329#ifdef CONFIG_NUMA
f0c0b2b8
KH
5330
5331static int __parse_numa_zonelist_order(char *s)
5332{
c9bff3ee
MH
5333 /*
5334 * We used to support different zonlists modes but they turned
5335 * out to be just not useful. Let's keep the warning in place
5336 * if somebody still use the cmd line parameter so that we do
5337 * not fail it silently
5338 */
5339 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5340 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5341 return -EINVAL;
5342 }
5343 return 0;
5344}
5345
5346static __init int setup_numa_zonelist_order(char *s)
5347{
ecb256f8
VL
5348 if (!s)
5349 return 0;
5350
c9bff3ee 5351 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5352}
5353early_param("numa_zonelist_order", setup_numa_zonelist_order);
5354
c9bff3ee
MH
5355char numa_zonelist_order[] = "Node";
5356
f0c0b2b8
KH
5357/*
5358 * sysctl handler for numa_zonelist_order
5359 */
cccad5b9 5360int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5361 void __user *buffer, size_t *length,
f0c0b2b8
KH
5362 loff_t *ppos)
5363{
c9bff3ee 5364 char *str;
f0c0b2b8
KH
5365 int ret;
5366
c9bff3ee
MH
5367 if (!write)
5368 return proc_dostring(table, write, buffer, length, ppos);
5369 str = memdup_user_nul(buffer, 16);
5370 if (IS_ERR(str))
5371 return PTR_ERR(str);
dacbde09 5372
c9bff3ee
MH
5373 ret = __parse_numa_zonelist_order(str);
5374 kfree(str);
443c6f14 5375 return ret;
f0c0b2b8
KH
5376}
5377
5378
62bc62a8 5379#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5380static int node_load[MAX_NUMNODES];
5381
1da177e4 5382/**
4dc3b16b 5383 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5384 * @node: node whose fallback list we're appending
5385 * @used_node_mask: nodemask_t of already used nodes
5386 *
5387 * We use a number of factors to determine which is the next node that should
5388 * appear on a given node's fallback list. The node should not have appeared
5389 * already in @node's fallback list, and it should be the next closest node
5390 * according to the distance array (which contains arbitrary distance values
5391 * from each node to each node in the system), and should also prefer nodes
5392 * with no CPUs, since presumably they'll have very little allocation pressure
5393 * on them otherwise.
a862f68a
MR
5394 *
5395 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5396 */
f0c0b2b8 5397static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5398{
4cf808eb 5399 int n, val;
1da177e4 5400 int min_val = INT_MAX;
00ef2d2f 5401 int best_node = NUMA_NO_NODE;
a70f7302 5402 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5403
4cf808eb
LT
5404 /* Use the local node if we haven't already */
5405 if (!node_isset(node, *used_node_mask)) {
5406 node_set(node, *used_node_mask);
5407 return node;
5408 }
1da177e4 5409
4b0ef1fe 5410 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5411
5412 /* Don't want a node to appear more than once */
5413 if (node_isset(n, *used_node_mask))
5414 continue;
5415
1da177e4
LT
5416 /* Use the distance array to find the distance */
5417 val = node_distance(node, n);
5418
4cf808eb
LT
5419 /* Penalize nodes under us ("prefer the next node") */
5420 val += (n < node);
5421
1da177e4 5422 /* Give preference to headless and unused nodes */
a70f7302
RR
5423 tmp = cpumask_of_node(n);
5424 if (!cpumask_empty(tmp))
1da177e4
LT
5425 val += PENALTY_FOR_NODE_WITH_CPUS;
5426
5427 /* Slight preference for less loaded node */
5428 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5429 val += node_load[n];
5430
5431 if (val < min_val) {
5432 min_val = val;
5433 best_node = n;
5434 }
5435 }
5436
5437 if (best_node >= 0)
5438 node_set(best_node, *used_node_mask);
5439
5440 return best_node;
5441}
5442
f0c0b2b8
KH
5443
5444/*
5445 * Build zonelists ordered by node and zones within node.
5446 * This results in maximum locality--normal zone overflows into local
5447 * DMA zone, if any--but risks exhausting DMA zone.
5448 */
9d3be21b
MH
5449static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5450 unsigned nr_nodes)
1da177e4 5451{
9d3be21b
MH
5452 struct zoneref *zonerefs;
5453 int i;
5454
5455 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5456
5457 for (i = 0; i < nr_nodes; i++) {
5458 int nr_zones;
5459
5460 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5461
9d3be21b
MH
5462 nr_zones = build_zonerefs_node(node, zonerefs);
5463 zonerefs += nr_zones;
5464 }
5465 zonerefs->zone = NULL;
5466 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5467}
5468
523b9458
CL
5469/*
5470 * Build gfp_thisnode zonelists
5471 */
5472static void build_thisnode_zonelists(pg_data_t *pgdat)
5473{
9d3be21b
MH
5474 struct zoneref *zonerefs;
5475 int nr_zones;
523b9458 5476
9d3be21b
MH
5477 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5478 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5479 zonerefs += nr_zones;
5480 zonerefs->zone = NULL;
5481 zonerefs->zone_idx = 0;
523b9458
CL
5482}
5483
f0c0b2b8
KH
5484/*
5485 * Build zonelists ordered by zone and nodes within zones.
5486 * This results in conserving DMA zone[s] until all Normal memory is
5487 * exhausted, but results in overflowing to remote node while memory
5488 * may still exist in local DMA zone.
5489 */
f0c0b2b8 5490
f0c0b2b8
KH
5491static void build_zonelists(pg_data_t *pgdat)
5492{
9d3be21b
MH
5493 static int node_order[MAX_NUMNODES];
5494 int node, load, nr_nodes = 0;
1da177e4 5495 nodemask_t used_mask;
f0c0b2b8 5496 int local_node, prev_node;
1da177e4
LT
5497
5498 /* NUMA-aware ordering of nodes */
5499 local_node = pgdat->node_id;
62bc62a8 5500 load = nr_online_nodes;
1da177e4
LT
5501 prev_node = local_node;
5502 nodes_clear(used_mask);
f0c0b2b8 5503
f0c0b2b8 5504 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5505 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5506 /*
5507 * We don't want to pressure a particular node.
5508 * So adding penalty to the first node in same
5509 * distance group to make it round-robin.
5510 */
957f822a
DR
5511 if (node_distance(local_node, node) !=
5512 node_distance(local_node, prev_node))
f0c0b2b8
KH
5513 node_load[node] = load;
5514
9d3be21b 5515 node_order[nr_nodes++] = node;
1da177e4
LT
5516 prev_node = node;
5517 load--;
1da177e4 5518 }
523b9458 5519
9d3be21b 5520 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5521 build_thisnode_zonelists(pgdat);
1da177e4
LT
5522}
5523
7aac7898
LS
5524#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5525/*
5526 * Return node id of node used for "local" allocations.
5527 * I.e., first node id of first zone in arg node's generic zonelist.
5528 * Used for initializing percpu 'numa_mem', which is used primarily
5529 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5530 */
5531int local_memory_node(int node)
5532{
c33d6c06 5533 struct zoneref *z;
7aac7898 5534
c33d6c06 5535 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5536 gfp_zone(GFP_KERNEL),
c33d6c06 5537 NULL);
c1093b74 5538 return zone_to_nid(z->zone);
7aac7898
LS
5539}
5540#endif
f0c0b2b8 5541
6423aa81
JK
5542static void setup_min_unmapped_ratio(void);
5543static void setup_min_slab_ratio(void);
1da177e4
LT
5544#else /* CONFIG_NUMA */
5545
f0c0b2b8 5546static void build_zonelists(pg_data_t *pgdat)
1da177e4 5547{
19655d34 5548 int node, local_node;
9d3be21b
MH
5549 struct zoneref *zonerefs;
5550 int nr_zones;
1da177e4
LT
5551
5552 local_node = pgdat->node_id;
1da177e4 5553
9d3be21b
MH
5554 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5555 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5556 zonerefs += nr_zones;
1da177e4 5557
54a6eb5c
MG
5558 /*
5559 * Now we build the zonelist so that it contains the zones
5560 * of all the other nodes.
5561 * We don't want to pressure a particular node, so when
5562 * building the zones for node N, we make sure that the
5563 * zones coming right after the local ones are those from
5564 * node N+1 (modulo N)
5565 */
5566 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5567 if (!node_online(node))
5568 continue;
9d3be21b
MH
5569 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5570 zonerefs += nr_zones;
1da177e4 5571 }
54a6eb5c
MG
5572 for (node = 0; node < local_node; node++) {
5573 if (!node_online(node))
5574 continue;
9d3be21b
MH
5575 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5576 zonerefs += nr_zones;
54a6eb5c
MG
5577 }
5578
9d3be21b
MH
5579 zonerefs->zone = NULL;
5580 zonerefs->zone_idx = 0;
1da177e4
LT
5581}
5582
5583#endif /* CONFIG_NUMA */
5584
99dcc3e5
CL
5585/*
5586 * Boot pageset table. One per cpu which is going to be used for all
5587 * zones and all nodes. The parameters will be set in such a way
5588 * that an item put on a list will immediately be handed over to
5589 * the buddy list. This is safe since pageset manipulation is done
5590 * with interrupts disabled.
5591 *
5592 * The boot_pagesets must be kept even after bootup is complete for
5593 * unused processors and/or zones. They do play a role for bootstrapping
5594 * hotplugged processors.
5595 *
5596 * zoneinfo_show() and maybe other functions do
5597 * not check if the processor is online before following the pageset pointer.
5598 * Other parts of the kernel may not check if the zone is available.
5599 */
5600static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5601static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5602static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5603
11cd8638 5604static void __build_all_zonelists(void *data)
1da177e4 5605{
6811378e 5606 int nid;
afb6ebb3 5607 int __maybe_unused cpu;
9adb62a5 5608 pg_data_t *self = data;
b93e0f32
MH
5609 static DEFINE_SPINLOCK(lock);
5610
5611 spin_lock(&lock);
9276b1bc 5612
7f9cfb31
BL
5613#ifdef CONFIG_NUMA
5614 memset(node_load, 0, sizeof(node_load));
5615#endif
9adb62a5 5616
c1152583
WY
5617 /*
5618 * This node is hotadded and no memory is yet present. So just
5619 * building zonelists is fine - no need to touch other nodes.
5620 */
9adb62a5
JL
5621 if (self && !node_online(self->node_id)) {
5622 build_zonelists(self);
c1152583
WY
5623 } else {
5624 for_each_online_node(nid) {
5625 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5626
c1152583
WY
5627 build_zonelists(pgdat);
5628 }
99dcc3e5 5629
7aac7898
LS
5630#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5631 /*
5632 * We now know the "local memory node" for each node--
5633 * i.e., the node of the first zone in the generic zonelist.
5634 * Set up numa_mem percpu variable for on-line cpus. During
5635 * boot, only the boot cpu should be on-line; we'll init the
5636 * secondary cpus' numa_mem as they come on-line. During
5637 * node/memory hotplug, we'll fixup all on-line cpus.
5638 */
d9c9a0b9 5639 for_each_online_cpu(cpu)
7aac7898 5640 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5641#endif
d9c9a0b9 5642 }
b93e0f32
MH
5643
5644 spin_unlock(&lock);
6811378e
YG
5645}
5646
061f67bc
RV
5647static noinline void __init
5648build_all_zonelists_init(void)
5649{
afb6ebb3
MH
5650 int cpu;
5651
061f67bc 5652 __build_all_zonelists(NULL);
afb6ebb3
MH
5653
5654 /*
5655 * Initialize the boot_pagesets that are going to be used
5656 * for bootstrapping processors. The real pagesets for
5657 * each zone will be allocated later when the per cpu
5658 * allocator is available.
5659 *
5660 * boot_pagesets are used also for bootstrapping offline
5661 * cpus if the system is already booted because the pagesets
5662 * are needed to initialize allocators on a specific cpu too.
5663 * F.e. the percpu allocator needs the page allocator which
5664 * needs the percpu allocator in order to allocate its pagesets
5665 * (a chicken-egg dilemma).
5666 */
5667 for_each_possible_cpu(cpu)
5668 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5669
061f67bc
RV
5670 mminit_verify_zonelist();
5671 cpuset_init_current_mems_allowed();
5672}
5673
4eaf3f64 5674/*
4eaf3f64 5675 * unless system_state == SYSTEM_BOOTING.
061f67bc 5676 *
72675e13 5677 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5678 * [protected by SYSTEM_BOOTING].
4eaf3f64 5679 */
72675e13 5680void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5681{
5682 if (system_state == SYSTEM_BOOTING) {
061f67bc 5683 build_all_zonelists_init();
6811378e 5684 } else {
11cd8638 5685 __build_all_zonelists(pgdat);
6811378e
YG
5686 /* cpuset refresh routine should be here */
5687 }
bd1e22b8 5688 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5689 /*
5690 * Disable grouping by mobility if the number of pages in the
5691 * system is too low to allow the mechanism to work. It would be
5692 * more accurate, but expensive to check per-zone. This check is
5693 * made on memory-hotadd so a system can start with mobility
5694 * disabled and enable it later
5695 */
d9c23400 5696 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5697 page_group_by_mobility_disabled = 1;
5698 else
5699 page_group_by_mobility_disabled = 0;
5700
ce0725f7 5701 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5702 nr_online_nodes,
756a025f
JP
5703 page_group_by_mobility_disabled ? "off" : "on",
5704 vm_total_pages);
f0c0b2b8 5705#ifdef CONFIG_NUMA
f88dfff5 5706 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5707#endif
1da177e4
LT
5708}
5709
a9a9e77f
PT
5710/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5711static bool __meminit
5712overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5713{
5714#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5715 static struct memblock_region *r;
5716
5717 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5718 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5719 for_each_memblock(memory, r) {
5720 if (*pfn < memblock_region_memory_end_pfn(r))
5721 break;
5722 }
5723 }
5724 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5725 memblock_is_mirror(r)) {
5726 *pfn = memblock_region_memory_end_pfn(r);
5727 return true;
5728 }
5729 }
5730#endif
5731 return false;
5732}
5733
1da177e4
LT
5734/*
5735 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5736 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5737 * done. Non-atomic initialization, single-pass.
5738 */
c09b4240 5739void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5740 unsigned long start_pfn, enum memmap_context context,
5741 struct vmem_altmap *altmap)
1da177e4 5742{
a9a9e77f 5743 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5744 struct page *page;
1da177e4 5745
22b31eec
HD
5746 if (highest_memmap_pfn < end_pfn - 1)
5747 highest_memmap_pfn = end_pfn - 1;
5748
966cf44f 5749#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5750 /*
5751 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5752 * memory. We limit the total number of pages to initialize to just
5753 * those that might contain the memory mapping. We will defer the
5754 * ZONE_DEVICE page initialization until after we have released
5755 * the hotplug lock.
4b94ffdc 5756 */
966cf44f
AD
5757 if (zone == ZONE_DEVICE) {
5758 if (!altmap)
5759 return;
5760
5761 if (start_pfn == altmap->base_pfn)
5762 start_pfn += altmap->reserve;
5763 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5764 }
5765#endif
4b94ffdc 5766
cbe8dd4a 5767 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5768 /*
b72d0ffb
AM
5769 * There can be holes in boot-time mem_map[]s handed to this
5770 * function. They do not exist on hotplugged memory.
a2f3aa02 5771 */
a9a9e77f
PT
5772 if (context == MEMMAP_EARLY) {
5773 if (!early_pfn_valid(pfn))
b72d0ffb 5774 continue;
a9a9e77f
PT
5775 if (!early_pfn_in_nid(pfn, nid))
5776 continue;
5777 if (overlap_memmap_init(zone, &pfn))
5778 continue;
5779 if (defer_init(nid, pfn, end_pfn))
5780 break;
a2f3aa02 5781 }
ac5d2539 5782
d0dc12e8
PT
5783 page = pfn_to_page(pfn);
5784 __init_single_page(page, pfn, zone, nid);
5785 if (context == MEMMAP_HOTPLUG)
d483da5b 5786 __SetPageReserved(page);
d0dc12e8 5787
ac5d2539
MG
5788 /*
5789 * Mark the block movable so that blocks are reserved for
5790 * movable at startup. This will force kernel allocations
5791 * to reserve their blocks rather than leaking throughout
5792 * the address space during boot when many long-lived
974a786e 5793 * kernel allocations are made.
ac5d2539
MG
5794 *
5795 * bitmap is created for zone's valid pfn range. but memmap
5796 * can be created for invalid pages (for alignment)
5797 * check here not to call set_pageblock_migratetype() against
5798 * pfn out of zone.
5799 */
5800 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5801 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5802 cond_resched();
ac5d2539 5803 }
1da177e4
LT
5804 }
5805}
5806
966cf44f
AD
5807#ifdef CONFIG_ZONE_DEVICE
5808void __ref memmap_init_zone_device(struct zone *zone,
5809 unsigned long start_pfn,
5810 unsigned long size,
5811 struct dev_pagemap *pgmap)
5812{
5813 unsigned long pfn, end_pfn = start_pfn + size;
5814 struct pglist_data *pgdat = zone->zone_pgdat;
5815 unsigned long zone_idx = zone_idx(zone);
5816 unsigned long start = jiffies;
5817 int nid = pgdat->node_id;
5818
5819 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5820 return;
5821
5822 /*
5823 * The call to memmap_init_zone should have already taken care
5824 * of the pages reserved for the memmap, so we can just jump to
5825 * the end of that region and start processing the device pages.
5826 */
5827 if (pgmap->altmap_valid) {
5828 struct vmem_altmap *altmap = &pgmap->altmap;
5829
5830 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5831 size = end_pfn - start_pfn;
5832 }
5833
5834 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5835 struct page *page = pfn_to_page(pfn);
5836
5837 __init_single_page(page, pfn, zone_idx, nid);
5838
5839 /*
5840 * Mark page reserved as it will need to wait for onlining
5841 * phase for it to be fully associated with a zone.
5842 *
5843 * We can use the non-atomic __set_bit operation for setting
5844 * the flag as we are still initializing the pages.
5845 */
5846 __SetPageReserved(page);
5847
5848 /*
5849 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5850 * pointer and hmm_data. It is a bug if a ZONE_DEVICE
5851 * page is ever freed or placed on a driver-private list.
5852 */
5853 page->pgmap = pgmap;
5854 page->hmm_data = 0;
5855
5856 /*
5857 * Mark the block movable so that blocks are reserved for
5858 * movable at startup. This will force kernel allocations
5859 * to reserve their blocks rather than leaking throughout
5860 * the address space during boot when many long-lived
5861 * kernel allocations are made.
5862 *
5863 * bitmap is created for zone's valid pfn range. but memmap
5864 * can be created for invalid pages (for alignment)
5865 * check here not to call set_pageblock_migratetype() against
5866 * pfn out of zone.
5867 *
5868 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5869 * because this is done early in sparse_add_one_section
5870 */
5871 if (!(pfn & (pageblock_nr_pages - 1))) {
5872 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5873 cond_resched();
5874 }
5875 }
5876
5877 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5878 size, jiffies_to_msecs(jiffies - start));
5879}
5880
5881#endif
1e548deb 5882static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5883{
7aeb09f9 5884 unsigned int order, t;
b2a0ac88
MG
5885 for_each_migratetype_order(order, t) {
5886 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5887 zone->free_area[order].nr_free = 0;
5888 }
5889}
5890
dfb3ccd0
PT
5891void __meminit __weak memmap_init(unsigned long size, int nid,
5892 unsigned long zone, unsigned long start_pfn)
5893{
5894 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5895}
1da177e4 5896
7cd2b0a3 5897static int zone_batchsize(struct zone *zone)
e7c8d5c9 5898{
3a6be87f 5899#ifdef CONFIG_MMU
e7c8d5c9
CL
5900 int batch;
5901
5902 /*
5903 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 5904 * size of the zone.
e7c8d5c9 5905 */
9705bea5 5906 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
5907 /* But no more than a meg. */
5908 if (batch * PAGE_SIZE > 1024 * 1024)
5909 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5910 batch /= 4; /* We effectively *= 4 below */
5911 if (batch < 1)
5912 batch = 1;
5913
5914 /*
0ceaacc9
NP
5915 * Clamp the batch to a 2^n - 1 value. Having a power
5916 * of 2 value was found to be more likely to have
5917 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5918 *
0ceaacc9
NP
5919 * For example if 2 tasks are alternately allocating
5920 * batches of pages, one task can end up with a lot
5921 * of pages of one half of the possible page colors
5922 * and the other with pages of the other colors.
e7c8d5c9 5923 */
9155203a 5924 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5925
e7c8d5c9 5926 return batch;
3a6be87f
DH
5927
5928#else
5929 /* The deferral and batching of frees should be suppressed under NOMMU
5930 * conditions.
5931 *
5932 * The problem is that NOMMU needs to be able to allocate large chunks
5933 * of contiguous memory as there's no hardware page translation to
5934 * assemble apparent contiguous memory from discontiguous pages.
5935 *
5936 * Queueing large contiguous runs of pages for batching, however,
5937 * causes the pages to actually be freed in smaller chunks. As there
5938 * can be a significant delay between the individual batches being
5939 * recycled, this leads to the once large chunks of space being
5940 * fragmented and becoming unavailable for high-order allocations.
5941 */
5942 return 0;
5943#endif
e7c8d5c9
CL
5944}
5945
8d7a8fa9
CS
5946/*
5947 * pcp->high and pcp->batch values are related and dependent on one another:
5948 * ->batch must never be higher then ->high.
5949 * The following function updates them in a safe manner without read side
5950 * locking.
5951 *
5952 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5953 * those fields changing asynchronously (acording the the above rule).
5954 *
5955 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5956 * outside of boot time (or some other assurance that no concurrent updaters
5957 * exist).
5958 */
5959static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5960 unsigned long batch)
5961{
5962 /* start with a fail safe value for batch */
5963 pcp->batch = 1;
5964 smp_wmb();
5965
5966 /* Update high, then batch, in order */
5967 pcp->high = high;
5968 smp_wmb();
5969
5970 pcp->batch = batch;
5971}
5972
3664033c 5973/* a companion to pageset_set_high() */
4008bab7
CS
5974static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5975{
8d7a8fa9 5976 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5977}
5978
88c90dbc 5979static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5980{
5981 struct per_cpu_pages *pcp;
5f8dcc21 5982 int migratetype;
2caaad41 5983
1c6fe946
MD
5984 memset(p, 0, sizeof(*p));
5985
3dfa5721 5986 pcp = &p->pcp;
5f8dcc21
MG
5987 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5988 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5989}
5990
88c90dbc
CS
5991static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5992{
5993 pageset_init(p);
5994 pageset_set_batch(p, batch);
5995}
5996
8ad4b1fb 5997/*
3664033c 5998 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5999 * to the value high for the pageset p.
6000 */
3664033c 6001static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6002 unsigned long high)
6003{
8d7a8fa9
CS
6004 unsigned long batch = max(1UL, high / 4);
6005 if ((high / 4) > (PAGE_SHIFT * 8))
6006 batch = PAGE_SHIFT * 8;
8ad4b1fb 6007
8d7a8fa9 6008 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6009}
6010
7cd2b0a3
DR
6011static void pageset_set_high_and_batch(struct zone *zone,
6012 struct per_cpu_pageset *pcp)
56cef2b8 6013{
56cef2b8 6014 if (percpu_pagelist_fraction)
3664033c 6015 pageset_set_high(pcp,
9705bea5 6016 (zone_managed_pages(zone) /
56cef2b8
CS
6017 percpu_pagelist_fraction));
6018 else
6019 pageset_set_batch(pcp, zone_batchsize(zone));
6020}
6021
169f6c19
CS
6022static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6023{
6024 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6025
6026 pageset_init(pcp);
6027 pageset_set_high_and_batch(zone, pcp);
6028}
6029
72675e13 6030void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6031{
6032 int cpu;
319774e2 6033 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6034 for_each_possible_cpu(cpu)
6035 zone_pageset_init(zone, cpu);
319774e2
WF
6036}
6037
2caaad41 6038/*
99dcc3e5
CL
6039 * Allocate per cpu pagesets and initialize them.
6040 * Before this call only boot pagesets were available.
e7c8d5c9 6041 */
99dcc3e5 6042void __init setup_per_cpu_pageset(void)
e7c8d5c9 6043{
b4911ea2 6044 struct pglist_data *pgdat;
99dcc3e5 6045 struct zone *zone;
e7c8d5c9 6046
319774e2
WF
6047 for_each_populated_zone(zone)
6048 setup_zone_pageset(zone);
b4911ea2
MG
6049
6050 for_each_online_pgdat(pgdat)
6051 pgdat->per_cpu_nodestats =
6052 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6053}
6054
c09b4240 6055static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6056{
99dcc3e5
CL
6057 /*
6058 * per cpu subsystem is not up at this point. The following code
6059 * relies on the ability of the linker to provide the
6060 * offset of a (static) per cpu variable into the per cpu area.
6061 */
6062 zone->pageset = &boot_pageset;
ed8ece2e 6063
b38a8725 6064 if (populated_zone(zone))
99dcc3e5
CL
6065 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6066 zone->name, zone->present_pages,
6067 zone_batchsize(zone));
ed8ece2e
DH
6068}
6069
dc0bbf3b 6070void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6071 unsigned long zone_start_pfn,
b171e409 6072 unsigned long size)
ed8ece2e
DH
6073{
6074 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6075 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6076
8f416836
WY
6077 if (zone_idx > pgdat->nr_zones)
6078 pgdat->nr_zones = zone_idx;
ed8ece2e 6079
ed8ece2e
DH
6080 zone->zone_start_pfn = zone_start_pfn;
6081
708614e6
MG
6082 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6083 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6084 pgdat->node_id,
6085 (unsigned long)zone_idx(zone),
6086 zone_start_pfn, (zone_start_pfn + size));
6087
1e548deb 6088 zone_init_free_lists(zone);
9dcb8b68 6089 zone->initialized = 1;
ed8ece2e
DH
6090}
6091
0ee332c1 6092#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6093#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6094
c713216d
MG
6095/*
6096 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6097 */
8a942fde
MG
6098int __meminit __early_pfn_to_nid(unsigned long pfn,
6099 struct mminit_pfnnid_cache *state)
c713216d 6100{
c13291a5 6101 unsigned long start_pfn, end_pfn;
e76b63f8 6102 int nid;
7c243c71 6103
8a942fde
MG
6104 if (state->last_start <= pfn && pfn < state->last_end)
6105 return state->last_nid;
c713216d 6106
e76b63f8 6107 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6108 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6109 state->last_start = start_pfn;
6110 state->last_end = end_pfn;
6111 state->last_nid = nid;
e76b63f8
YL
6112 }
6113
6114 return nid;
c713216d
MG
6115}
6116#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6117
c713216d 6118/**
6782832e 6119 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6120 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6121 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6122 *
7d018176
ZZ
6123 * If an architecture guarantees that all ranges registered contain no holes
6124 * and may be freed, this this function may be used instead of calling
6125 * memblock_free_early_nid() manually.
c713216d 6126 */
c13291a5 6127void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6128{
c13291a5
TH
6129 unsigned long start_pfn, end_pfn;
6130 int i, this_nid;
edbe7d23 6131
c13291a5
TH
6132 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6133 start_pfn = min(start_pfn, max_low_pfn);
6134 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6135
c13291a5 6136 if (start_pfn < end_pfn)
6782832e
SS
6137 memblock_free_early_nid(PFN_PHYS(start_pfn),
6138 (end_pfn - start_pfn) << PAGE_SHIFT,
6139 this_nid);
edbe7d23 6140 }
edbe7d23 6141}
edbe7d23 6142
c713216d
MG
6143/**
6144 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6145 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6146 *
7d018176
ZZ
6147 * If an architecture guarantees that all ranges registered contain no holes and may
6148 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6149 */
6150void __init sparse_memory_present_with_active_regions(int nid)
6151{
c13291a5
TH
6152 unsigned long start_pfn, end_pfn;
6153 int i, this_nid;
c713216d 6154
c13291a5
TH
6155 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6156 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6157}
6158
6159/**
6160 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6161 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6162 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6163 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6164 *
6165 * It returns the start and end page frame of a node based on information
7d018176 6166 * provided by memblock_set_node(). If called for a node
c713216d 6167 * with no available memory, a warning is printed and the start and end
88ca3b94 6168 * PFNs will be 0.
c713216d 6169 */
bbe5d993 6170void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6171 unsigned long *start_pfn, unsigned long *end_pfn)
6172{
c13291a5 6173 unsigned long this_start_pfn, this_end_pfn;
c713216d 6174 int i;
c13291a5 6175
c713216d
MG
6176 *start_pfn = -1UL;
6177 *end_pfn = 0;
6178
c13291a5
TH
6179 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6180 *start_pfn = min(*start_pfn, this_start_pfn);
6181 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6182 }
6183
633c0666 6184 if (*start_pfn == -1UL)
c713216d 6185 *start_pfn = 0;
c713216d
MG
6186}
6187
2a1e274a
MG
6188/*
6189 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6190 * assumption is made that zones within a node are ordered in monotonic
6191 * increasing memory addresses so that the "highest" populated zone is used
6192 */
b69a7288 6193static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6194{
6195 int zone_index;
6196 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6197 if (zone_index == ZONE_MOVABLE)
6198 continue;
6199
6200 if (arch_zone_highest_possible_pfn[zone_index] >
6201 arch_zone_lowest_possible_pfn[zone_index])
6202 break;
6203 }
6204
6205 VM_BUG_ON(zone_index == -1);
6206 movable_zone = zone_index;
6207}
6208
6209/*
6210 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6211 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6212 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6213 * in each node depending on the size of each node and how evenly kernelcore
6214 * is distributed. This helper function adjusts the zone ranges
6215 * provided by the architecture for a given node by using the end of the
6216 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6217 * zones within a node are in order of monotonic increases memory addresses
6218 */
bbe5d993 6219static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6220 unsigned long zone_type,
6221 unsigned long node_start_pfn,
6222 unsigned long node_end_pfn,
6223 unsigned long *zone_start_pfn,
6224 unsigned long *zone_end_pfn)
6225{
6226 /* Only adjust if ZONE_MOVABLE is on this node */
6227 if (zone_movable_pfn[nid]) {
6228 /* Size ZONE_MOVABLE */
6229 if (zone_type == ZONE_MOVABLE) {
6230 *zone_start_pfn = zone_movable_pfn[nid];
6231 *zone_end_pfn = min(node_end_pfn,
6232 arch_zone_highest_possible_pfn[movable_zone]);
6233
e506b996
XQ
6234 /* Adjust for ZONE_MOVABLE starting within this range */
6235 } else if (!mirrored_kernelcore &&
6236 *zone_start_pfn < zone_movable_pfn[nid] &&
6237 *zone_end_pfn > zone_movable_pfn[nid]) {
6238 *zone_end_pfn = zone_movable_pfn[nid];
6239
2a1e274a
MG
6240 /* Check if this whole range is within ZONE_MOVABLE */
6241 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6242 *zone_start_pfn = *zone_end_pfn;
6243 }
6244}
6245
c713216d
MG
6246/*
6247 * Return the number of pages a zone spans in a node, including holes
6248 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6249 */
bbe5d993 6250static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6251 unsigned long zone_type,
7960aedd
ZY
6252 unsigned long node_start_pfn,
6253 unsigned long node_end_pfn,
d91749c1
TI
6254 unsigned long *zone_start_pfn,
6255 unsigned long *zone_end_pfn,
c713216d
MG
6256 unsigned long *ignored)
6257{
299c83dc
LF
6258 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6259 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6260 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6261 if (!node_start_pfn && !node_end_pfn)
6262 return 0;
6263
7960aedd 6264 /* Get the start and end of the zone */
299c83dc
LF
6265 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6266 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6267 adjust_zone_range_for_zone_movable(nid, zone_type,
6268 node_start_pfn, node_end_pfn,
d91749c1 6269 zone_start_pfn, zone_end_pfn);
c713216d
MG
6270
6271 /* Check that this node has pages within the zone's required range */
d91749c1 6272 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6273 return 0;
6274
6275 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6276 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6277 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6278
6279 /* Return the spanned pages */
d91749c1 6280 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6281}
6282
6283/*
6284 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6285 * then all holes in the requested range will be accounted for.
c713216d 6286 */
bbe5d993 6287unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6288 unsigned long range_start_pfn,
6289 unsigned long range_end_pfn)
6290{
96e907d1
TH
6291 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6292 unsigned long start_pfn, end_pfn;
6293 int i;
c713216d 6294
96e907d1
TH
6295 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6296 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6297 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6298 nr_absent -= end_pfn - start_pfn;
c713216d 6299 }
96e907d1 6300 return nr_absent;
c713216d
MG
6301}
6302
6303/**
6304 * absent_pages_in_range - Return number of page frames in holes within a range
6305 * @start_pfn: The start PFN to start searching for holes
6306 * @end_pfn: The end PFN to stop searching for holes
6307 *
a862f68a 6308 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6309 */
6310unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6311 unsigned long end_pfn)
6312{
6313 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6314}
6315
6316/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6317static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6318 unsigned long zone_type,
7960aedd
ZY
6319 unsigned long node_start_pfn,
6320 unsigned long node_end_pfn,
c713216d
MG
6321 unsigned long *ignored)
6322{
96e907d1
TH
6323 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6324 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6325 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6326 unsigned long nr_absent;
9c7cd687 6327
b5685e92 6328 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6329 if (!node_start_pfn && !node_end_pfn)
6330 return 0;
6331
96e907d1
TH
6332 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6333 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6334
2a1e274a
MG
6335 adjust_zone_range_for_zone_movable(nid, zone_type,
6336 node_start_pfn, node_end_pfn,
6337 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6338 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6339
6340 /*
6341 * ZONE_MOVABLE handling.
6342 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6343 * and vice versa.
6344 */
e506b996
XQ
6345 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6346 unsigned long start_pfn, end_pfn;
6347 struct memblock_region *r;
6348
6349 for_each_memblock(memory, r) {
6350 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6351 zone_start_pfn, zone_end_pfn);
6352 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6353 zone_start_pfn, zone_end_pfn);
6354
6355 if (zone_type == ZONE_MOVABLE &&
6356 memblock_is_mirror(r))
6357 nr_absent += end_pfn - start_pfn;
6358
6359 if (zone_type == ZONE_NORMAL &&
6360 !memblock_is_mirror(r))
6361 nr_absent += end_pfn - start_pfn;
342332e6
TI
6362 }
6363 }
6364
6365 return nr_absent;
c713216d 6366}
0e0b864e 6367
0ee332c1 6368#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6369static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6370 unsigned long zone_type,
7960aedd
ZY
6371 unsigned long node_start_pfn,
6372 unsigned long node_end_pfn,
d91749c1
TI
6373 unsigned long *zone_start_pfn,
6374 unsigned long *zone_end_pfn,
c713216d
MG
6375 unsigned long *zones_size)
6376{
d91749c1
TI
6377 unsigned int zone;
6378
6379 *zone_start_pfn = node_start_pfn;
6380 for (zone = 0; zone < zone_type; zone++)
6381 *zone_start_pfn += zones_size[zone];
6382
6383 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6384
c713216d
MG
6385 return zones_size[zone_type];
6386}
6387
bbe5d993 6388static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6389 unsigned long zone_type,
7960aedd
ZY
6390 unsigned long node_start_pfn,
6391 unsigned long node_end_pfn,
c713216d
MG
6392 unsigned long *zholes_size)
6393{
6394 if (!zholes_size)
6395 return 0;
6396
6397 return zholes_size[zone_type];
6398}
20e6926d 6399
0ee332c1 6400#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6401
bbe5d993 6402static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6403 unsigned long node_start_pfn,
6404 unsigned long node_end_pfn,
6405 unsigned long *zones_size,
6406 unsigned long *zholes_size)
c713216d 6407{
febd5949 6408 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6409 enum zone_type i;
6410
febd5949
GZ
6411 for (i = 0; i < MAX_NR_ZONES; i++) {
6412 struct zone *zone = pgdat->node_zones + i;
d91749c1 6413 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6414 unsigned long size, real_size;
c713216d 6415
febd5949
GZ
6416 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6417 node_start_pfn,
6418 node_end_pfn,
d91749c1
TI
6419 &zone_start_pfn,
6420 &zone_end_pfn,
febd5949
GZ
6421 zones_size);
6422 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6423 node_start_pfn, node_end_pfn,
6424 zholes_size);
d91749c1
TI
6425 if (size)
6426 zone->zone_start_pfn = zone_start_pfn;
6427 else
6428 zone->zone_start_pfn = 0;
febd5949
GZ
6429 zone->spanned_pages = size;
6430 zone->present_pages = real_size;
6431
6432 totalpages += size;
6433 realtotalpages += real_size;
6434 }
6435
6436 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6437 pgdat->node_present_pages = realtotalpages;
6438 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6439 realtotalpages);
6440}
6441
835c134e
MG
6442#ifndef CONFIG_SPARSEMEM
6443/*
6444 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6445 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6446 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6447 * round what is now in bits to nearest long in bits, then return it in
6448 * bytes.
6449 */
7c45512d 6450static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6451{
6452 unsigned long usemapsize;
6453
7c45512d 6454 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6455 usemapsize = roundup(zonesize, pageblock_nr_pages);
6456 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6457 usemapsize *= NR_PAGEBLOCK_BITS;
6458 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6459
6460 return usemapsize / 8;
6461}
6462
7cc2a959 6463static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6464 struct zone *zone,
6465 unsigned long zone_start_pfn,
6466 unsigned long zonesize)
835c134e 6467{
7c45512d 6468 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6469 zone->pageblock_flags = NULL;
23a7052a 6470 if (usemapsize) {
6782832e 6471 zone->pageblock_flags =
26fb3dae
MR
6472 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6473 pgdat->node_id);
23a7052a
MR
6474 if (!zone->pageblock_flags)
6475 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6476 usemapsize, zone->name, pgdat->node_id);
6477 }
835c134e
MG
6478}
6479#else
7c45512d
LT
6480static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6481 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6482#endif /* CONFIG_SPARSEMEM */
6483
d9c23400 6484#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6485
d9c23400 6486/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6487void __init set_pageblock_order(void)
d9c23400 6488{
955c1cd7
AM
6489 unsigned int order;
6490
d9c23400
MG
6491 /* Check that pageblock_nr_pages has not already been setup */
6492 if (pageblock_order)
6493 return;
6494
955c1cd7
AM
6495 if (HPAGE_SHIFT > PAGE_SHIFT)
6496 order = HUGETLB_PAGE_ORDER;
6497 else
6498 order = MAX_ORDER - 1;
6499
d9c23400
MG
6500 /*
6501 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6502 * This value may be variable depending on boot parameters on IA64 and
6503 * powerpc.
d9c23400
MG
6504 */
6505 pageblock_order = order;
6506}
6507#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6508
ba72cb8c
MG
6509/*
6510 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6511 * is unused as pageblock_order is set at compile-time. See
6512 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6513 * the kernel config
ba72cb8c 6514 */
03e85f9d 6515void __init set_pageblock_order(void)
ba72cb8c 6516{
ba72cb8c 6517}
d9c23400
MG
6518
6519#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6520
03e85f9d 6521static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6522 unsigned long present_pages)
01cefaef
JL
6523{
6524 unsigned long pages = spanned_pages;
6525
6526 /*
6527 * Provide a more accurate estimation if there are holes within
6528 * the zone and SPARSEMEM is in use. If there are holes within the
6529 * zone, each populated memory region may cost us one or two extra
6530 * memmap pages due to alignment because memmap pages for each
89d790ab 6531 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6532 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6533 */
6534 if (spanned_pages > present_pages + (present_pages >> 4) &&
6535 IS_ENABLED(CONFIG_SPARSEMEM))
6536 pages = present_pages;
6537
6538 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6539}
6540
ace1db39
OS
6541#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6542static void pgdat_init_split_queue(struct pglist_data *pgdat)
6543{
6544 spin_lock_init(&pgdat->split_queue_lock);
6545 INIT_LIST_HEAD(&pgdat->split_queue);
6546 pgdat->split_queue_len = 0;
6547}
6548#else
6549static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6550#endif
6551
6552#ifdef CONFIG_COMPACTION
6553static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6554{
6555 init_waitqueue_head(&pgdat->kcompactd_wait);
6556}
6557#else
6558static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6559#endif
6560
03e85f9d 6561static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6562{
208d54e5 6563 pgdat_resize_init(pgdat);
ace1db39 6564
ace1db39
OS
6565 pgdat_init_split_queue(pgdat);
6566 pgdat_init_kcompactd(pgdat);
6567
1da177e4 6568 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6569 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6570
eefa864b 6571 pgdat_page_ext_init(pgdat);
a52633d8 6572 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6573 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6574}
6575
6576static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6577 unsigned long remaining_pages)
6578{
9705bea5 6579 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6580 zone_set_nid(zone, nid);
6581 zone->name = zone_names[idx];
6582 zone->zone_pgdat = NODE_DATA(nid);
6583 spin_lock_init(&zone->lock);
6584 zone_seqlock_init(zone);
6585 zone_pcp_init(zone);
6586}
6587
6588/*
6589 * Set up the zone data structures
6590 * - init pgdat internals
6591 * - init all zones belonging to this node
6592 *
6593 * NOTE: this function is only called during memory hotplug
6594 */
6595#ifdef CONFIG_MEMORY_HOTPLUG
6596void __ref free_area_init_core_hotplug(int nid)
6597{
6598 enum zone_type z;
6599 pg_data_t *pgdat = NODE_DATA(nid);
6600
6601 pgdat_init_internals(pgdat);
6602 for (z = 0; z < MAX_NR_ZONES; z++)
6603 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6604}
6605#endif
6606
6607/*
6608 * Set up the zone data structures:
6609 * - mark all pages reserved
6610 * - mark all memory queues empty
6611 * - clear the memory bitmaps
6612 *
6613 * NOTE: pgdat should get zeroed by caller.
6614 * NOTE: this function is only called during early init.
6615 */
6616static void __init free_area_init_core(struct pglist_data *pgdat)
6617{
6618 enum zone_type j;
6619 int nid = pgdat->node_id;
5f63b720 6620
03e85f9d 6621 pgdat_init_internals(pgdat);
385386cf
JW
6622 pgdat->per_cpu_nodestats = &boot_nodestats;
6623
1da177e4
LT
6624 for (j = 0; j < MAX_NR_ZONES; j++) {
6625 struct zone *zone = pgdat->node_zones + j;
e6943859 6626 unsigned long size, freesize, memmap_pages;
d91749c1 6627 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6628
febd5949 6629 size = zone->spanned_pages;
e6943859 6630 freesize = zone->present_pages;
1da177e4 6631
0e0b864e 6632 /*
9feedc9d 6633 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6634 * is used by this zone for memmap. This affects the watermark
6635 * and per-cpu initialisations
6636 */
e6943859 6637 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6638 if (!is_highmem_idx(j)) {
6639 if (freesize >= memmap_pages) {
6640 freesize -= memmap_pages;
6641 if (memmap_pages)
6642 printk(KERN_DEBUG
6643 " %s zone: %lu pages used for memmap\n",
6644 zone_names[j], memmap_pages);
6645 } else
1170532b 6646 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6647 zone_names[j], memmap_pages, freesize);
6648 }
0e0b864e 6649
6267276f 6650 /* Account for reserved pages */
9feedc9d
JL
6651 if (j == 0 && freesize > dma_reserve) {
6652 freesize -= dma_reserve;
d903ef9f 6653 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6654 zone_names[0], dma_reserve);
0e0b864e
MG
6655 }
6656
98d2b0eb 6657 if (!is_highmem_idx(j))
9feedc9d 6658 nr_kernel_pages += freesize;
01cefaef
JL
6659 /* Charge for highmem memmap if there are enough kernel pages */
6660 else if (nr_kernel_pages > memmap_pages * 2)
6661 nr_kernel_pages -= memmap_pages;
9feedc9d 6662 nr_all_pages += freesize;
1da177e4 6663
9feedc9d
JL
6664 /*
6665 * Set an approximate value for lowmem here, it will be adjusted
6666 * when the bootmem allocator frees pages into the buddy system.
6667 * And all highmem pages will be managed by the buddy system.
6668 */
03e85f9d 6669 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6670
d883c6cf 6671 if (!size)
1da177e4
LT
6672 continue;
6673
955c1cd7 6674 set_pageblock_order();
d883c6cf
JK
6675 setup_usemap(pgdat, zone, zone_start_pfn, size);
6676 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6677 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6678 }
6679}
6680
0cd842f9 6681#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6682static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6683{
b0aeba74 6684 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6685 unsigned long __maybe_unused offset = 0;
6686
1da177e4
LT
6687 /* Skip empty nodes */
6688 if (!pgdat->node_spanned_pages)
6689 return;
6690
b0aeba74
TL
6691 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6692 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6693 /* ia64 gets its own node_mem_map, before this, without bootmem */
6694 if (!pgdat->node_mem_map) {
b0aeba74 6695 unsigned long size, end;
d41dee36
AW
6696 struct page *map;
6697
e984bb43
BP
6698 /*
6699 * The zone's endpoints aren't required to be MAX_ORDER
6700 * aligned but the node_mem_map endpoints must be in order
6701 * for the buddy allocator to function correctly.
6702 */
108bcc96 6703 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6704 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6705 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6706 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6707 pgdat->node_id);
23a7052a
MR
6708 if (!map)
6709 panic("Failed to allocate %ld bytes for node %d memory map\n",
6710 size, pgdat->node_id);
a1c34a3b 6711 pgdat->node_mem_map = map + offset;
1da177e4 6712 }
0cd842f9
OS
6713 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6714 __func__, pgdat->node_id, (unsigned long)pgdat,
6715 (unsigned long)pgdat->node_mem_map);
12d810c1 6716#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6717 /*
6718 * With no DISCONTIG, the global mem_map is just set as node 0's
6719 */
c713216d 6720 if (pgdat == NODE_DATA(0)) {
1da177e4 6721 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6722#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6723 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6724 mem_map -= offset;
0ee332c1 6725#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6726 }
1da177e4
LT
6727#endif
6728}
0cd842f9
OS
6729#else
6730static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6731#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6732
0188dc98
OS
6733#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6734static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6735{
0188dc98
OS
6736 pgdat->first_deferred_pfn = ULONG_MAX;
6737}
6738#else
6739static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6740#endif
6741
03e85f9d 6742void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6743 unsigned long node_start_pfn,
6744 unsigned long *zholes_size)
1da177e4 6745{
9109fb7b 6746 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6747 unsigned long start_pfn = 0;
6748 unsigned long end_pfn = 0;
9109fb7b 6749
88fdf75d 6750 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6751 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6752
1da177e4
LT
6753 pgdat->node_id = nid;
6754 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6755 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6756#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6757 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6758 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6759 (u64)start_pfn << PAGE_SHIFT,
6760 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6761#else
6762 start_pfn = node_start_pfn;
7960aedd
ZY
6763#endif
6764 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6765 zones_size, zholes_size);
1da177e4
LT
6766
6767 alloc_node_mem_map(pgdat);
0188dc98 6768 pgdat_set_deferred_range(pgdat);
1da177e4 6769
7f3eb55b 6770 free_area_init_core(pgdat);
1da177e4
LT
6771}
6772
aca52c39 6773#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6774/*
6775 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6776 * pages zeroed
6777 */
6778static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6779{
6780 unsigned long pfn;
6781 u64 pgcnt = 0;
6782
6783 for (pfn = spfn; pfn < epfn; pfn++) {
6784 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6785 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6786 + pageblock_nr_pages - 1;
6787 continue;
6788 }
6789 mm_zero_struct_page(pfn_to_page(pfn));
6790 pgcnt++;
6791 }
6792
6793 return pgcnt;
6794}
6795
a4a3ede2
PT
6796/*
6797 * Only struct pages that are backed by physical memory are zeroed and
6798 * initialized by going through __init_single_page(). But, there are some
6799 * struct pages which are reserved in memblock allocator and their fields
6800 * may be accessed (for example page_to_pfn() on some configuration accesses
6801 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6802 *
6803 * This function also addresses a similar issue where struct pages are left
6804 * uninitialized because the physical address range is not covered by
6805 * memblock.memory or memblock.reserved. That could happen when memblock
6806 * layout is manually configured via memmap=.
a4a3ede2 6807 */
03e85f9d 6808void __init zero_resv_unavail(void)
a4a3ede2
PT
6809{
6810 phys_addr_t start, end;
a4a3ede2 6811 u64 i, pgcnt;
907ec5fc 6812 phys_addr_t next = 0;
a4a3ede2
PT
6813
6814 /*
907ec5fc 6815 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6816 */
6817 pgcnt = 0;
907ec5fc
NH
6818 for_each_mem_range(i, &memblock.memory, NULL,
6819 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6820 if (next < start)
6821 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6822 next = end;
6823 }
ec393a0f 6824 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6825
a4a3ede2
PT
6826 /*
6827 * Struct pages that do not have backing memory. This could be because
6828 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6829 */
6830 if (pgcnt)
907ec5fc 6831 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6832}
aca52c39 6833#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6834
0ee332c1 6835#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6836
6837#if MAX_NUMNODES > 1
6838/*
6839 * Figure out the number of possible node ids.
6840 */
f9872caf 6841void __init setup_nr_node_ids(void)
418508c1 6842{
904a9553 6843 unsigned int highest;
418508c1 6844
904a9553 6845 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6846 nr_node_ids = highest + 1;
6847}
418508c1
MS
6848#endif
6849
1e01979c
TH
6850/**
6851 * node_map_pfn_alignment - determine the maximum internode alignment
6852 *
6853 * This function should be called after node map is populated and sorted.
6854 * It calculates the maximum power of two alignment which can distinguish
6855 * all the nodes.
6856 *
6857 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6858 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6859 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6860 * shifted, 1GiB is enough and this function will indicate so.
6861 *
6862 * This is used to test whether pfn -> nid mapping of the chosen memory
6863 * model has fine enough granularity to avoid incorrect mapping for the
6864 * populated node map.
6865 *
a862f68a 6866 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
6867 * requirement (single node).
6868 */
6869unsigned long __init node_map_pfn_alignment(void)
6870{
6871 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6872 unsigned long start, end, mask;
98fa15f3 6873 int last_nid = NUMA_NO_NODE;
c13291a5 6874 int i, nid;
1e01979c 6875
c13291a5 6876 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6877 if (!start || last_nid < 0 || last_nid == nid) {
6878 last_nid = nid;
6879 last_end = end;
6880 continue;
6881 }
6882
6883 /*
6884 * Start with a mask granular enough to pin-point to the
6885 * start pfn and tick off bits one-by-one until it becomes
6886 * too coarse to separate the current node from the last.
6887 */
6888 mask = ~((1 << __ffs(start)) - 1);
6889 while (mask && last_end <= (start & (mask << 1)))
6890 mask <<= 1;
6891
6892 /* accumulate all internode masks */
6893 accl_mask |= mask;
6894 }
6895
6896 /* convert mask to number of pages */
6897 return ~accl_mask + 1;
6898}
6899
a6af2bc3 6900/* Find the lowest pfn for a node */
b69a7288 6901static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6902{
a6af2bc3 6903 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6904 unsigned long start_pfn;
6905 int i;
1abbfb41 6906
c13291a5
TH
6907 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6908 min_pfn = min(min_pfn, start_pfn);
c713216d 6909
a6af2bc3 6910 if (min_pfn == ULONG_MAX) {
1170532b 6911 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6912 return 0;
6913 }
6914
6915 return min_pfn;
c713216d
MG
6916}
6917
6918/**
6919 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6920 *
a862f68a 6921 * Return: the minimum PFN based on information provided via
7d018176 6922 * memblock_set_node().
c713216d
MG
6923 */
6924unsigned long __init find_min_pfn_with_active_regions(void)
6925{
6926 return find_min_pfn_for_node(MAX_NUMNODES);
6927}
6928
37b07e41
LS
6929/*
6930 * early_calculate_totalpages()
6931 * Sum pages in active regions for movable zone.
4b0ef1fe 6932 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6933 */
484f51f8 6934static unsigned long __init early_calculate_totalpages(void)
7e63efef 6935{
7e63efef 6936 unsigned long totalpages = 0;
c13291a5
TH
6937 unsigned long start_pfn, end_pfn;
6938 int i, nid;
6939
6940 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6941 unsigned long pages = end_pfn - start_pfn;
7e63efef 6942
37b07e41
LS
6943 totalpages += pages;
6944 if (pages)
4b0ef1fe 6945 node_set_state(nid, N_MEMORY);
37b07e41 6946 }
b8af2941 6947 return totalpages;
7e63efef
MG
6948}
6949
2a1e274a
MG
6950/*
6951 * Find the PFN the Movable zone begins in each node. Kernel memory
6952 * is spread evenly between nodes as long as the nodes have enough
6953 * memory. When they don't, some nodes will have more kernelcore than
6954 * others
6955 */
b224ef85 6956static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6957{
6958 int i, nid;
6959 unsigned long usable_startpfn;
6960 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6961 /* save the state before borrow the nodemask */
4b0ef1fe 6962 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6963 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6964 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6965 struct memblock_region *r;
b2f3eebe
TC
6966
6967 /* Need to find movable_zone earlier when movable_node is specified. */
6968 find_usable_zone_for_movable();
6969
6970 /*
6971 * If movable_node is specified, ignore kernelcore and movablecore
6972 * options.
6973 */
6974 if (movable_node_is_enabled()) {
136199f0
EM
6975 for_each_memblock(memory, r) {
6976 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6977 continue;
6978
136199f0 6979 nid = r->nid;
b2f3eebe 6980
136199f0 6981 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6982 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6983 min(usable_startpfn, zone_movable_pfn[nid]) :
6984 usable_startpfn;
6985 }
6986
6987 goto out2;
6988 }
2a1e274a 6989
342332e6
TI
6990 /*
6991 * If kernelcore=mirror is specified, ignore movablecore option
6992 */
6993 if (mirrored_kernelcore) {
6994 bool mem_below_4gb_not_mirrored = false;
6995
6996 for_each_memblock(memory, r) {
6997 if (memblock_is_mirror(r))
6998 continue;
6999
7000 nid = r->nid;
7001
7002 usable_startpfn = memblock_region_memory_base_pfn(r);
7003
7004 if (usable_startpfn < 0x100000) {
7005 mem_below_4gb_not_mirrored = true;
7006 continue;
7007 }
7008
7009 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7010 min(usable_startpfn, zone_movable_pfn[nid]) :
7011 usable_startpfn;
7012 }
7013
7014 if (mem_below_4gb_not_mirrored)
7015 pr_warn("This configuration results in unmirrored kernel memory.");
7016
7017 goto out2;
7018 }
7019
7e63efef 7020 /*
a5c6d650
DR
7021 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7022 * amount of necessary memory.
7023 */
7024 if (required_kernelcore_percent)
7025 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7026 10000UL;
7027 if (required_movablecore_percent)
7028 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7029 10000UL;
7030
7031 /*
7032 * If movablecore= was specified, calculate what size of
7e63efef
MG
7033 * kernelcore that corresponds so that memory usable for
7034 * any allocation type is evenly spread. If both kernelcore
7035 * and movablecore are specified, then the value of kernelcore
7036 * will be used for required_kernelcore if it's greater than
7037 * what movablecore would have allowed.
7038 */
7039 if (required_movablecore) {
7e63efef
MG
7040 unsigned long corepages;
7041
7042 /*
7043 * Round-up so that ZONE_MOVABLE is at least as large as what
7044 * was requested by the user
7045 */
7046 required_movablecore =
7047 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7048 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7049 corepages = totalpages - required_movablecore;
7050
7051 required_kernelcore = max(required_kernelcore, corepages);
7052 }
7053
bde304bd
XQ
7054 /*
7055 * If kernelcore was not specified or kernelcore size is larger
7056 * than totalpages, there is no ZONE_MOVABLE.
7057 */
7058 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7059 goto out;
2a1e274a
MG
7060
7061 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7062 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7063
7064restart:
7065 /* Spread kernelcore memory as evenly as possible throughout nodes */
7066 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7067 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7068 unsigned long start_pfn, end_pfn;
7069
2a1e274a
MG
7070 /*
7071 * Recalculate kernelcore_node if the division per node
7072 * now exceeds what is necessary to satisfy the requested
7073 * amount of memory for the kernel
7074 */
7075 if (required_kernelcore < kernelcore_node)
7076 kernelcore_node = required_kernelcore / usable_nodes;
7077
7078 /*
7079 * As the map is walked, we track how much memory is usable
7080 * by the kernel using kernelcore_remaining. When it is
7081 * 0, the rest of the node is usable by ZONE_MOVABLE
7082 */
7083 kernelcore_remaining = kernelcore_node;
7084
7085 /* Go through each range of PFNs within this node */
c13291a5 7086 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7087 unsigned long size_pages;
7088
c13291a5 7089 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7090 if (start_pfn >= end_pfn)
7091 continue;
7092
7093 /* Account for what is only usable for kernelcore */
7094 if (start_pfn < usable_startpfn) {
7095 unsigned long kernel_pages;
7096 kernel_pages = min(end_pfn, usable_startpfn)
7097 - start_pfn;
7098
7099 kernelcore_remaining -= min(kernel_pages,
7100 kernelcore_remaining);
7101 required_kernelcore -= min(kernel_pages,
7102 required_kernelcore);
7103
7104 /* Continue if range is now fully accounted */
7105 if (end_pfn <= usable_startpfn) {
7106
7107 /*
7108 * Push zone_movable_pfn to the end so
7109 * that if we have to rebalance
7110 * kernelcore across nodes, we will
7111 * not double account here
7112 */
7113 zone_movable_pfn[nid] = end_pfn;
7114 continue;
7115 }
7116 start_pfn = usable_startpfn;
7117 }
7118
7119 /*
7120 * The usable PFN range for ZONE_MOVABLE is from
7121 * start_pfn->end_pfn. Calculate size_pages as the
7122 * number of pages used as kernelcore
7123 */
7124 size_pages = end_pfn - start_pfn;
7125 if (size_pages > kernelcore_remaining)
7126 size_pages = kernelcore_remaining;
7127 zone_movable_pfn[nid] = start_pfn + size_pages;
7128
7129 /*
7130 * Some kernelcore has been met, update counts and
7131 * break if the kernelcore for this node has been
b8af2941 7132 * satisfied
2a1e274a
MG
7133 */
7134 required_kernelcore -= min(required_kernelcore,
7135 size_pages);
7136 kernelcore_remaining -= size_pages;
7137 if (!kernelcore_remaining)
7138 break;
7139 }
7140 }
7141
7142 /*
7143 * If there is still required_kernelcore, we do another pass with one
7144 * less node in the count. This will push zone_movable_pfn[nid] further
7145 * along on the nodes that still have memory until kernelcore is
b8af2941 7146 * satisfied
2a1e274a
MG
7147 */
7148 usable_nodes--;
7149 if (usable_nodes && required_kernelcore > usable_nodes)
7150 goto restart;
7151
b2f3eebe 7152out2:
2a1e274a
MG
7153 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7154 for (nid = 0; nid < MAX_NUMNODES; nid++)
7155 zone_movable_pfn[nid] =
7156 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7157
20e6926d 7158out:
66918dcd 7159 /* restore the node_state */
4b0ef1fe 7160 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7161}
7162
4b0ef1fe
LJ
7163/* Any regular or high memory on that node ? */
7164static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7165{
37b07e41
LS
7166 enum zone_type zone_type;
7167
4b0ef1fe 7168 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7169 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7170 if (populated_zone(zone)) {
7b0e0c0e
OS
7171 if (IS_ENABLED(CONFIG_HIGHMEM))
7172 node_set_state(nid, N_HIGH_MEMORY);
7173 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7174 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7175 break;
7176 }
37b07e41 7177 }
37b07e41
LS
7178}
7179
c713216d
MG
7180/**
7181 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7182 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7183 *
7184 * This will call free_area_init_node() for each active node in the system.
7d018176 7185 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7186 * zone in each node and their holes is calculated. If the maximum PFN
7187 * between two adjacent zones match, it is assumed that the zone is empty.
7188 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7189 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7190 * starts where the previous one ended. For example, ZONE_DMA32 starts
7191 * at arch_max_dma_pfn.
7192 */
7193void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7194{
c13291a5
TH
7195 unsigned long start_pfn, end_pfn;
7196 int i, nid;
a6af2bc3 7197
c713216d
MG
7198 /* Record where the zone boundaries are */
7199 memset(arch_zone_lowest_possible_pfn, 0,
7200 sizeof(arch_zone_lowest_possible_pfn));
7201 memset(arch_zone_highest_possible_pfn, 0,
7202 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7203
7204 start_pfn = find_min_pfn_with_active_regions();
7205
7206 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7207 if (i == ZONE_MOVABLE)
7208 continue;
90cae1fe
OH
7209
7210 end_pfn = max(max_zone_pfn[i], start_pfn);
7211 arch_zone_lowest_possible_pfn[i] = start_pfn;
7212 arch_zone_highest_possible_pfn[i] = end_pfn;
7213
7214 start_pfn = end_pfn;
c713216d 7215 }
2a1e274a
MG
7216
7217 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7218 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7219 find_zone_movable_pfns_for_nodes();
c713216d 7220
c713216d 7221 /* Print out the zone ranges */
f88dfff5 7222 pr_info("Zone ranges:\n");
2a1e274a
MG
7223 for (i = 0; i < MAX_NR_ZONES; i++) {
7224 if (i == ZONE_MOVABLE)
7225 continue;
f88dfff5 7226 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7227 if (arch_zone_lowest_possible_pfn[i] ==
7228 arch_zone_highest_possible_pfn[i])
f88dfff5 7229 pr_cont("empty\n");
72f0ba02 7230 else
8d29e18a
JG
7231 pr_cont("[mem %#018Lx-%#018Lx]\n",
7232 (u64)arch_zone_lowest_possible_pfn[i]
7233 << PAGE_SHIFT,
7234 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7235 << PAGE_SHIFT) - 1);
2a1e274a
MG
7236 }
7237
7238 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7239 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7240 for (i = 0; i < MAX_NUMNODES; i++) {
7241 if (zone_movable_pfn[i])
8d29e18a
JG
7242 pr_info(" Node %d: %#018Lx\n", i,
7243 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7244 }
c713216d 7245
f2d52fe5 7246 /* Print out the early node map */
f88dfff5 7247 pr_info("Early memory node ranges\n");
c13291a5 7248 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
7249 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7250 (u64)start_pfn << PAGE_SHIFT,
7251 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
7252
7253 /* Initialise every node */
708614e6 7254 mminit_verify_pageflags_layout();
8ef82866 7255 setup_nr_node_ids();
e181ae0c 7256 zero_resv_unavail();
c713216d
MG
7257 for_each_online_node(nid) {
7258 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7259 free_area_init_node(nid, NULL,
c713216d 7260 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7261
7262 /* Any memory on that node */
7263 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7264 node_set_state(nid, N_MEMORY);
7265 check_for_memory(pgdat, nid);
c713216d
MG
7266 }
7267}
2a1e274a 7268
a5c6d650
DR
7269static int __init cmdline_parse_core(char *p, unsigned long *core,
7270 unsigned long *percent)
2a1e274a
MG
7271{
7272 unsigned long long coremem;
a5c6d650
DR
7273 char *endptr;
7274
2a1e274a
MG
7275 if (!p)
7276 return -EINVAL;
7277
a5c6d650
DR
7278 /* Value may be a percentage of total memory, otherwise bytes */
7279 coremem = simple_strtoull(p, &endptr, 0);
7280 if (*endptr == '%') {
7281 /* Paranoid check for percent values greater than 100 */
7282 WARN_ON(coremem > 100);
2a1e274a 7283
a5c6d650
DR
7284 *percent = coremem;
7285 } else {
7286 coremem = memparse(p, &p);
7287 /* Paranoid check that UL is enough for the coremem value */
7288 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7289
a5c6d650
DR
7290 *core = coremem >> PAGE_SHIFT;
7291 *percent = 0UL;
7292 }
2a1e274a
MG
7293 return 0;
7294}
ed7ed365 7295
7e63efef
MG
7296/*
7297 * kernelcore=size sets the amount of memory for use for allocations that
7298 * cannot be reclaimed or migrated.
7299 */
7300static int __init cmdline_parse_kernelcore(char *p)
7301{
342332e6
TI
7302 /* parse kernelcore=mirror */
7303 if (parse_option_str(p, "mirror")) {
7304 mirrored_kernelcore = true;
7305 return 0;
7306 }
7307
a5c6d650
DR
7308 return cmdline_parse_core(p, &required_kernelcore,
7309 &required_kernelcore_percent);
7e63efef
MG
7310}
7311
7312/*
7313 * movablecore=size sets the amount of memory for use for allocations that
7314 * can be reclaimed or migrated.
7315 */
7316static int __init cmdline_parse_movablecore(char *p)
7317{
a5c6d650
DR
7318 return cmdline_parse_core(p, &required_movablecore,
7319 &required_movablecore_percent);
7e63efef
MG
7320}
7321
ed7ed365 7322early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7323early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7324
0ee332c1 7325#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7326
c3d5f5f0
JL
7327void adjust_managed_page_count(struct page *page, long count)
7328{
9705bea5 7329 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7330 totalram_pages_add(count);
3dcc0571
JL
7331#ifdef CONFIG_HIGHMEM
7332 if (PageHighMem(page))
ca79b0c2 7333 totalhigh_pages_add(count);
3dcc0571 7334#endif
c3d5f5f0 7335}
3dcc0571 7336EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7337
e5cb113f 7338unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7339{
11199692
JL
7340 void *pos;
7341 unsigned long pages = 0;
69afade7 7342
11199692
JL
7343 start = (void *)PAGE_ALIGN((unsigned long)start);
7344 end = (void *)((unsigned long)end & PAGE_MASK);
7345 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7346 struct page *page = virt_to_page(pos);
7347 void *direct_map_addr;
7348
7349 /*
7350 * 'direct_map_addr' might be different from 'pos'
7351 * because some architectures' virt_to_page()
7352 * work with aliases. Getting the direct map
7353 * address ensures that we get a _writeable_
7354 * alias for the memset().
7355 */
7356 direct_map_addr = page_address(page);
dbe67df4 7357 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7358 memset(direct_map_addr, poison, PAGE_SIZE);
7359
7360 free_reserved_page(page);
69afade7
JL
7361 }
7362
7363 if (pages && s)
adb1fe9a
JP
7364 pr_info("Freeing %s memory: %ldK\n",
7365 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7366
7367 return pages;
7368}
7369
cfa11e08
JL
7370#ifdef CONFIG_HIGHMEM
7371void free_highmem_page(struct page *page)
7372{
7373 __free_reserved_page(page);
ca79b0c2 7374 totalram_pages_inc();
9705bea5 7375 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7376 totalhigh_pages_inc();
cfa11e08
JL
7377}
7378#endif
7379
7ee3d4e8
JL
7380
7381void __init mem_init_print_info(const char *str)
7382{
7383 unsigned long physpages, codesize, datasize, rosize, bss_size;
7384 unsigned long init_code_size, init_data_size;
7385
7386 physpages = get_num_physpages();
7387 codesize = _etext - _stext;
7388 datasize = _edata - _sdata;
7389 rosize = __end_rodata - __start_rodata;
7390 bss_size = __bss_stop - __bss_start;
7391 init_data_size = __init_end - __init_begin;
7392 init_code_size = _einittext - _sinittext;
7393
7394 /*
7395 * Detect special cases and adjust section sizes accordingly:
7396 * 1) .init.* may be embedded into .data sections
7397 * 2) .init.text.* may be out of [__init_begin, __init_end],
7398 * please refer to arch/tile/kernel/vmlinux.lds.S.
7399 * 3) .rodata.* may be embedded into .text or .data sections.
7400 */
7401#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7402 do { \
7403 if (start <= pos && pos < end && size > adj) \
7404 size -= adj; \
7405 } while (0)
7ee3d4e8
JL
7406
7407 adj_init_size(__init_begin, __init_end, init_data_size,
7408 _sinittext, init_code_size);
7409 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7410 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7411 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7412 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7413
7414#undef adj_init_size
7415
756a025f 7416 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7417#ifdef CONFIG_HIGHMEM
756a025f 7418 ", %luK highmem"
7ee3d4e8 7419#endif
756a025f
JP
7420 "%s%s)\n",
7421 nr_free_pages() << (PAGE_SHIFT - 10),
7422 physpages << (PAGE_SHIFT - 10),
7423 codesize >> 10, datasize >> 10, rosize >> 10,
7424 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7425 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7426 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7427#ifdef CONFIG_HIGHMEM
ca79b0c2 7428 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7429#endif
756a025f 7430 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7431}
7432
0e0b864e 7433/**
88ca3b94
RD
7434 * set_dma_reserve - set the specified number of pages reserved in the first zone
7435 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7436 *
013110a7 7437 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7438 * In the DMA zone, a significant percentage may be consumed by kernel image
7439 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7440 * function may optionally be used to account for unfreeable pages in the
7441 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7442 * smaller per-cpu batchsize.
0e0b864e
MG
7443 */
7444void __init set_dma_reserve(unsigned long new_dma_reserve)
7445{
7446 dma_reserve = new_dma_reserve;
7447}
7448
1da177e4
LT
7449void __init free_area_init(unsigned long *zones_size)
7450{
e181ae0c 7451 zero_resv_unavail();
9109fb7b 7452 free_area_init_node(0, zones_size,
1da177e4
LT
7453 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7454}
1da177e4 7455
005fd4bb 7456static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7457{
1da177e4 7458
005fd4bb
SAS
7459 lru_add_drain_cpu(cpu);
7460 drain_pages(cpu);
9f8f2172 7461
005fd4bb
SAS
7462 /*
7463 * Spill the event counters of the dead processor
7464 * into the current processors event counters.
7465 * This artificially elevates the count of the current
7466 * processor.
7467 */
7468 vm_events_fold_cpu(cpu);
9f8f2172 7469
005fd4bb
SAS
7470 /*
7471 * Zero the differential counters of the dead processor
7472 * so that the vm statistics are consistent.
7473 *
7474 * This is only okay since the processor is dead and cannot
7475 * race with what we are doing.
7476 */
7477 cpu_vm_stats_fold(cpu);
7478 return 0;
1da177e4 7479}
1da177e4
LT
7480
7481void __init page_alloc_init(void)
7482{
005fd4bb
SAS
7483 int ret;
7484
7485 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7486 "mm/page_alloc:dead", NULL,
7487 page_alloc_cpu_dead);
7488 WARN_ON(ret < 0);
1da177e4
LT
7489}
7490
cb45b0e9 7491/*
34b10060 7492 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7493 * or min_free_kbytes changes.
7494 */
7495static void calculate_totalreserve_pages(void)
7496{
7497 struct pglist_data *pgdat;
7498 unsigned long reserve_pages = 0;
2f6726e5 7499 enum zone_type i, j;
cb45b0e9
HA
7500
7501 for_each_online_pgdat(pgdat) {
281e3726
MG
7502
7503 pgdat->totalreserve_pages = 0;
7504
cb45b0e9
HA
7505 for (i = 0; i < MAX_NR_ZONES; i++) {
7506 struct zone *zone = pgdat->node_zones + i;
3484b2de 7507 long max = 0;
9705bea5 7508 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7509
7510 /* Find valid and maximum lowmem_reserve in the zone */
7511 for (j = i; j < MAX_NR_ZONES; j++) {
7512 if (zone->lowmem_reserve[j] > max)
7513 max = zone->lowmem_reserve[j];
7514 }
7515
41858966
MG
7516 /* we treat the high watermark as reserved pages. */
7517 max += high_wmark_pages(zone);
cb45b0e9 7518
3d6357de
AK
7519 if (max > managed_pages)
7520 max = managed_pages;
a8d01437 7521
281e3726 7522 pgdat->totalreserve_pages += max;
a8d01437 7523
cb45b0e9
HA
7524 reserve_pages += max;
7525 }
7526 }
7527 totalreserve_pages = reserve_pages;
7528}
7529
1da177e4
LT
7530/*
7531 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7532 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7533 * has a correct pages reserved value, so an adequate number of
7534 * pages are left in the zone after a successful __alloc_pages().
7535 */
7536static void setup_per_zone_lowmem_reserve(void)
7537{
7538 struct pglist_data *pgdat;
2f6726e5 7539 enum zone_type j, idx;
1da177e4 7540
ec936fc5 7541 for_each_online_pgdat(pgdat) {
1da177e4
LT
7542 for (j = 0; j < MAX_NR_ZONES; j++) {
7543 struct zone *zone = pgdat->node_zones + j;
9705bea5 7544 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7545
7546 zone->lowmem_reserve[j] = 0;
7547
2f6726e5
CL
7548 idx = j;
7549 while (idx) {
1da177e4
LT
7550 struct zone *lower_zone;
7551
2f6726e5 7552 idx--;
1da177e4 7553 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7554
7555 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7556 sysctl_lowmem_reserve_ratio[idx] = 0;
7557 lower_zone->lowmem_reserve[j] = 0;
7558 } else {
7559 lower_zone->lowmem_reserve[j] =
7560 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7561 }
9705bea5 7562 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7563 }
7564 }
7565 }
cb45b0e9
HA
7566
7567 /* update totalreserve_pages */
7568 calculate_totalreserve_pages();
1da177e4
LT
7569}
7570
cfd3da1e 7571static void __setup_per_zone_wmarks(void)
1da177e4
LT
7572{
7573 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7574 unsigned long lowmem_pages = 0;
7575 struct zone *zone;
7576 unsigned long flags;
7577
7578 /* Calculate total number of !ZONE_HIGHMEM pages */
7579 for_each_zone(zone) {
7580 if (!is_highmem(zone))
9705bea5 7581 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7582 }
7583
7584 for_each_zone(zone) {
ac924c60
AM
7585 u64 tmp;
7586
1125b4e3 7587 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7588 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7589 do_div(tmp, lowmem_pages);
1da177e4
LT
7590 if (is_highmem(zone)) {
7591 /*
669ed175
NP
7592 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7593 * need highmem pages, so cap pages_min to a small
7594 * value here.
7595 *
41858966 7596 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7597 * deltas control async page reclaim, and so should
669ed175 7598 * not be capped for highmem.
1da177e4 7599 */
90ae8d67 7600 unsigned long min_pages;
1da177e4 7601
9705bea5 7602 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7603 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7604 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7605 } else {
669ed175
NP
7606 /*
7607 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7608 * proportionate to the zone's size.
7609 */
a9214443 7610 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7611 }
7612
795ae7a0
JW
7613 /*
7614 * Set the kswapd watermarks distance according to the
7615 * scale factor in proportion to available memory, but
7616 * ensure a minimum size on small systems.
7617 */
7618 tmp = max_t(u64, tmp >> 2,
9705bea5 7619 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7620 watermark_scale_factor, 10000));
7621
a9214443
MG
7622 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7623 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7624 zone->watermark_boost = 0;
49f223a9 7625
1125b4e3 7626 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7627 }
cb45b0e9
HA
7628
7629 /* update totalreserve_pages */
7630 calculate_totalreserve_pages();
1da177e4
LT
7631}
7632
cfd3da1e
MG
7633/**
7634 * setup_per_zone_wmarks - called when min_free_kbytes changes
7635 * or when memory is hot-{added|removed}
7636 *
7637 * Ensures that the watermark[min,low,high] values for each zone are set
7638 * correctly with respect to min_free_kbytes.
7639 */
7640void setup_per_zone_wmarks(void)
7641{
b93e0f32
MH
7642 static DEFINE_SPINLOCK(lock);
7643
7644 spin_lock(&lock);
cfd3da1e 7645 __setup_per_zone_wmarks();
b93e0f32 7646 spin_unlock(&lock);
cfd3da1e
MG
7647}
7648
1da177e4
LT
7649/*
7650 * Initialise min_free_kbytes.
7651 *
7652 * For small machines we want it small (128k min). For large machines
7653 * we want it large (64MB max). But it is not linear, because network
7654 * bandwidth does not increase linearly with machine size. We use
7655 *
b8af2941 7656 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7657 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7658 *
7659 * which yields
7660 *
7661 * 16MB: 512k
7662 * 32MB: 724k
7663 * 64MB: 1024k
7664 * 128MB: 1448k
7665 * 256MB: 2048k
7666 * 512MB: 2896k
7667 * 1024MB: 4096k
7668 * 2048MB: 5792k
7669 * 4096MB: 8192k
7670 * 8192MB: 11584k
7671 * 16384MB: 16384k
7672 */
1b79acc9 7673int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7674{
7675 unsigned long lowmem_kbytes;
5f12733e 7676 int new_min_free_kbytes;
1da177e4
LT
7677
7678 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7679 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7680
7681 if (new_min_free_kbytes > user_min_free_kbytes) {
7682 min_free_kbytes = new_min_free_kbytes;
7683 if (min_free_kbytes < 128)
7684 min_free_kbytes = 128;
7685 if (min_free_kbytes > 65536)
7686 min_free_kbytes = 65536;
7687 } else {
7688 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7689 new_min_free_kbytes, user_min_free_kbytes);
7690 }
bc75d33f 7691 setup_per_zone_wmarks();
a6cccdc3 7692 refresh_zone_stat_thresholds();
1da177e4 7693 setup_per_zone_lowmem_reserve();
6423aa81
JK
7694
7695#ifdef CONFIG_NUMA
7696 setup_min_unmapped_ratio();
7697 setup_min_slab_ratio();
7698#endif
7699
1da177e4
LT
7700 return 0;
7701}
bc22af74 7702core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7703
7704/*
b8af2941 7705 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7706 * that we can call two helper functions whenever min_free_kbytes
7707 * changes.
7708 */
cccad5b9 7709int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7710 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7711{
da8c757b
HP
7712 int rc;
7713
7714 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7715 if (rc)
7716 return rc;
7717
5f12733e
MH
7718 if (write) {
7719 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7720 setup_per_zone_wmarks();
5f12733e 7721 }
1da177e4
LT
7722 return 0;
7723}
7724
1c30844d
MG
7725int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7726 void __user *buffer, size_t *length, loff_t *ppos)
7727{
7728 int rc;
7729
7730 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7731 if (rc)
7732 return rc;
7733
7734 return 0;
7735}
7736
795ae7a0
JW
7737int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7738 void __user *buffer, size_t *length, loff_t *ppos)
7739{
7740 int rc;
7741
7742 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7743 if (rc)
7744 return rc;
7745
7746 if (write)
7747 setup_per_zone_wmarks();
7748
7749 return 0;
7750}
7751
9614634f 7752#ifdef CONFIG_NUMA
6423aa81 7753static void setup_min_unmapped_ratio(void)
9614634f 7754{
6423aa81 7755 pg_data_t *pgdat;
9614634f 7756 struct zone *zone;
9614634f 7757
a5f5f91d 7758 for_each_online_pgdat(pgdat)
81cbcbc2 7759 pgdat->min_unmapped_pages = 0;
a5f5f91d 7760
9614634f 7761 for_each_zone(zone)
9705bea5
AK
7762 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7763 sysctl_min_unmapped_ratio) / 100;
9614634f 7764}
0ff38490 7765
6423aa81
JK
7766
7767int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7768 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7769{
0ff38490
CL
7770 int rc;
7771
8d65af78 7772 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7773 if (rc)
7774 return rc;
7775
6423aa81
JK
7776 setup_min_unmapped_ratio();
7777
7778 return 0;
7779}
7780
7781static void setup_min_slab_ratio(void)
7782{
7783 pg_data_t *pgdat;
7784 struct zone *zone;
7785
a5f5f91d
MG
7786 for_each_online_pgdat(pgdat)
7787 pgdat->min_slab_pages = 0;
7788
0ff38490 7789 for_each_zone(zone)
9705bea5
AK
7790 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7791 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7792}
7793
7794int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7795 void __user *buffer, size_t *length, loff_t *ppos)
7796{
7797 int rc;
7798
7799 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7800 if (rc)
7801 return rc;
7802
7803 setup_min_slab_ratio();
7804
0ff38490
CL
7805 return 0;
7806}
9614634f
CL
7807#endif
7808
1da177e4
LT
7809/*
7810 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7811 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7812 * whenever sysctl_lowmem_reserve_ratio changes.
7813 *
7814 * The reserve ratio obviously has absolutely no relation with the
41858966 7815 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7816 * if in function of the boot time zone sizes.
7817 */
cccad5b9 7818int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7819 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7820{
8d65af78 7821 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7822 setup_per_zone_lowmem_reserve();
7823 return 0;
7824}
7825
8ad4b1fb
RS
7826/*
7827 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7828 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7829 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7830 */
cccad5b9 7831int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7832 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7833{
7834 struct zone *zone;
7cd2b0a3 7835 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7836 int ret;
7837
7cd2b0a3
DR
7838 mutex_lock(&pcp_batch_high_lock);
7839 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7840
8d65af78 7841 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7842 if (!write || ret < 0)
7843 goto out;
7844
7845 /* Sanity checking to avoid pcp imbalance */
7846 if (percpu_pagelist_fraction &&
7847 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7848 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7849 ret = -EINVAL;
7850 goto out;
7851 }
7852
7853 /* No change? */
7854 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7855 goto out;
c8e251fa 7856
364df0eb 7857 for_each_populated_zone(zone) {
7cd2b0a3
DR
7858 unsigned int cpu;
7859
22a7f12b 7860 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7861 pageset_set_high_and_batch(zone,
7862 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7863 }
7cd2b0a3 7864out:
c8e251fa 7865 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7866 return ret;
8ad4b1fb
RS
7867}
7868
a9919c79 7869#ifdef CONFIG_NUMA
f034b5d4 7870int hashdist = HASHDIST_DEFAULT;
1da177e4 7871
1da177e4
LT
7872static int __init set_hashdist(char *str)
7873{
7874 if (!str)
7875 return 0;
7876 hashdist = simple_strtoul(str, &str, 0);
7877 return 1;
7878}
7879__setup("hashdist=", set_hashdist);
7880#endif
7881
f6f34b43
SD
7882#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7883/*
7884 * Returns the number of pages that arch has reserved but
7885 * is not known to alloc_large_system_hash().
7886 */
7887static unsigned long __init arch_reserved_kernel_pages(void)
7888{
7889 return 0;
7890}
7891#endif
7892
9017217b
PT
7893/*
7894 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7895 * machines. As memory size is increased the scale is also increased but at
7896 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7897 * quadruples the scale is increased by one, which means the size of hash table
7898 * only doubles, instead of quadrupling as well.
7899 * Because 32-bit systems cannot have large physical memory, where this scaling
7900 * makes sense, it is disabled on such platforms.
7901 */
7902#if __BITS_PER_LONG > 32
7903#define ADAPT_SCALE_BASE (64ul << 30)
7904#define ADAPT_SCALE_SHIFT 2
7905#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7906#endif
7907
1da177e4
LT
7908/*
7909 * allocate a large system hash table from bootmem
7910 * - it is assumed that the hash table must contain an exact power-of-2
7911 * quantity of entries
7912 * - limit is the number of hash buckets, not the total allocation size
7913 */
7914void *__init alloc_large_system_hash(const char *tablename,
7915 unsigned long bucketsize,
7916 unsigned long numentries,
7917 int scale,
7918 int flags,
7919 unsigned int *_hash_shift,
7920 unsigned int *_hash_mask,
31fe62b9
TB
7921 unsigned long low_limit,
7922 unsigned long high_limit)
1da177e4 7923{
31fe62b9 7924 unsigned long long max = high_limit;
1da177e4
LT
7925 unsigned long log2qty, size;
7926 void *table = NULL;
3749a8f0 7927 gfp_t gfp_flags;
1da177e4
LT
7928
7929 /* allow the kernel cmdline to have a say */
7930 if (!numentries) {
7931 /* round applicable memory size up to nearest megabyte */
04903664 7932 numentries = nr_kernel_pages;
f6f34b43 7933 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7934
7935 /* It isn't necessary when PAGE_SIZE >= 1MB */
7936 if (PAGE_SHIFT < 20)
7937 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7938
9017217b
PT
7939#if __BITS_PER_LONG > 32
7940 if (!high_limit) {
7941 unsigned long adapt;
7942
7943 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7944 adapt <<= ADAPT_SCALE_SHIFT)
7945 scale++;
7946 }
7947#endif
7948
1da177e4
LT
7949 /* limit to 1 bucket per 2^scale bytes of low memory */
7950 if (scale > PAGE_SHIFT)
7951 numentries >>= (scale - PAGE_SHIFT);
7952 else
7953 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7954
7955 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7956 if (unlikely(flags & HASH_SMALL)) {
7957 /* Makes no sense without HASH_EARLY */
7958 WARN_ON(!(flags & HASH_EARLY));
7959 if (!(numentries >> *_hash_shift)) {
7960 numentries = 1UL << *_hash_shift;
7961 BUG_ON(!numentries);
7962 }
7963 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7964 numentries = PAGE_SIZE / bucketsize;
1da177e4 7965 }
6e692ed3 7966 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7967
7968 /* limit allocation size to 1/16 total memory by default */
7969 if (max == 0) {
7970 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7971 do_div(max, bucketsize);
7972 }
074b8517 7973 max = min(max, 0x80000000ULL);
1da177e4 7974
31fe62b9
TB
7975 if (numentries < low_limit)
7976 numentries = low_limit;
1da177e4
LT
7977 if (numentries > max)
7978 numentries = max;
7979
f0d1b0b3 7980 log2qty = ilog2(numentries);
1da177e4 7981
3749a8f0 7982 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7983 do {
7984 size = bucketsize << log2qty;
ea1f5f37
PT
7985 if (flags & HASH_EARLY) {
7986 if (flags & HASH_ZERO)
26fb3dae 7987 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 7988 else
7e1c4e27
MR
7989 table = memblock_alloc_raw(size,
7990 SMP_CACHE_BYTES);
ea1f5f37 7991 } else if (hashdist) {
3749a8f0 7992 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7993 } else {
1037b83b
ED
7994 /*
7995 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7996 * some pages at the end of hash table which
7997 * alloc_pages_exact() automatically does
1037b83b 7998 */
264ef8a9 7999 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
8000 table = alloc_pages_exact(size, gfp_flags);
8001 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 8002 }
1da177e4
LT
8003 }
8004 } while (!table && size > PAGE_SIZE && --log2qty);
8005
8006 if (!table)
8007 panic("Failed to allocate %s hash table\n", tablename);
8008
1170532b
JP
8009 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8010 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
8011
8012 if (_hash_shift)
8013 *_hash_shift = log2qty;
8014 if (_hash_mask)
8015 *_hash_mask = (1 << log2qty) - 1;
8016
8017 return table;
8018}
a117e66e 8019
a5d76b54 8020/*
80934513
MK
8021 * This function checks whether pageblock includes unmovable pages or not.
8022 * If @count is not zero, it is okay to include less @count unmovable pages
8023 *
b8af2941 8024 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8025 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8026 * check without lock_page also may miss some movable non-lru pages at
8027 * race condition. So you can't expect this function should be exact.
a5d76b54 8028 */
b023f468 8029bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 8030 int migratetype, int flags)
49ac8255 8031{
1a9f2191
QC
8032 unsigned long found;
8033 unsigned long iter = 0;
8034 unsigned long pfn = page_to_pfn(page);
8035 const char *reason = "unmovable page";
47118af0 8036
49ac8255 8037 /*
15c30bc0
MH
8038 * TODO we could make this much more efficient by not checking every
8039 * page in the range if we know all of them are in MOVABLE_ZONE and
8040 * that the movable zone guarantees that pages are migratable but
8041 * the later is not the case right now unfortunatelly. E.g. movablecore
8042 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8043 */
49ac8255 8044
1a9f2191
QC
8045 if (is_migrate_cma_page(page)) {
8046 /*
8047 * CMA allocations (alloc_contig_range) really need to mark
8048 * isolate CMA pageblocks even when they are not movable in fact
8049 * so consider them movable here.
8050 */
8051 if (is_migrate_cma(migratetype))
8052 return false;
8053
8054 reason = "CMA page";
8055 goto unmovable;
8056 }
4da2ce25 8057
1a9f2191 8058 for (found = 0; iter < pageblock_nr_pages; iter++) {
49ac8255
KH
8059 unsigned long check = pfn + iter;
8060
29723fcc 8061 if (!pfn_valid_within(check))
49ac8255 8062 continue;
29723fcc 8063
49ac8255 8064 page = pfn_to_page(check);
c8721bbb 8065
d7ab3672 8066 if (PageReserved(page))
15c30bc0 8067 goto unmovable;
d7ab3672 8068
9d789999
MH
8069 /*
8070 * If the zone is movable and we have ruled out all reserved
8071 * pages then it should be reasonably safe to assume the rest
8072 * is movable.
8073 */
8074 if (zone_idx(zone) == ZONE_MOVABLE)
8075 continue;
8076
c8721bbb
NH
8077 /*
8078 * Hugepages are not in LRU lists, but they're movable.
8bb4e7a2 8079 * We need not scan over tail pages because we don't
c8721bbb
NH
8080 * handle each tail page individually in migration.
8081 */
8082 if (PageHuge(page)) {
17e2e7d7
OS
8083 struct page *head = compound_head(page);
8084 unsigned int skip_pages;
464c7ffb 8085
17e2e7d7 8086 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
8087 goto unmovable;
8088
17e2e7d7
OS
8089 skip_pages = (1 << compound_order(head)) - (page - head);
8090 iter += skip_pages - 1;
c8721bbb
NH
8091 continue;
8092 }
8093
97d255c8
MK
8094 /*
8095 * We can't use page_count without pin a page
8096 * because another CPU can free compound page.
8097 * This check already skips compound tails of THP
0139aa7b 8098 * because their page->_refcount is zero at all time.
97d255c8 8099 */
fe896d18 8100 if (!page_ref_count(page)) {
49ac8255
KH
8101 if (PageBuddy(page))
8102 iter += (1 << page_order(page)) - 1;
8103 continue;
8104 }
97d255c8 8105
b023f468
WC
8106 /*
8107 * The HWPoisoned page may be not in buddy system, and
8108 * page_count() is not 0.
8109 */
d381c547 8110 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
8111 continue;
8112
0efadf48
YX
8113 if (__PageMovable(page))
8114 continue;
8115
49ac8255
KH
8116 if (!PageLRU(page))
8117 found++;
8118 /*
6b4f7799
JW
8119 * If there are RECLAIMABLE pages, we need to check
8120 * it. But now, memory offline itself doesn't call
8121 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8122 */
8123 /*
8124 * If the page is not RAM, page_count()should be 0.
8125 * we don't need more check. This is an _used_ not-movable page.
8126 *
8127 * The problematic thing here is PG_reserved pages. PG_reserved
8128 * is set to both of a memory hole page and a _used_ kernel
8129 * page at boot.
8130 */
8131 if (found > count)
15c30bc0 8132 goto unmovable;
49ac8255 8133 }
80934513 8134 return false;
15c30bc0
MH
8135unmovable:
8136 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547 8137 if (flags & REPORT_FAILURE)
1a9f2191 8138 dump_page(pfn_to_page(pfn + iter), reason);
15c30bc0 8139 return true;
49ac8255
KH
8140}
8141
8df995f6 8142#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8143static unsigned long pfn_max_align_down(unsigned long pfn)
8144{
8145 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8146 pageblock_nr_pages) - 1);
8147}
8148
8149static unsigned long pfn_max_align_up(unsigned long pfn)
8150{
8151 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8152 pageblock_nr_pages));
8153}
8154
041d3a8c 8155/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8156static int __alloc_contig_migrate_range(struct compact_control *cc,
8157 unsigned long start, unsigned long end)
041d3a8c
MN
8158{
8159 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8160 unsigned long nr_reclaimed;
041d3a8c
MN
8161 unsigned long pfn = start;
8162 unsigned int tries = 0;
8163 int ret = 0;
8164
be49a6e1 8165 migrate_prep();
041d3a8c 8166
bb13ffeb 8167 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8168 if (fatal_signal_pending(current)) {
8169 ret = -EINTR;
8170 break;
8171 }
8172
bb13ffeb
MG
8173 if (list_empty(&cc->migratepages)) {
8174 cc->nr_migratepages = 0;
edc2ca61 8175 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8176 if (!pfn) {
8177 ret = -EINTR;
8178 break;
8179 }
8180 tries = 0;
8181 } else if (++tries == 5) {
8182 ret = ret < 0 ? ret : -EBUSY;
8183 break;
8184 }
8185
beb51eaa
MK
8186 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8187 &cc->migratepages);
8188 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8189
9c620e2b 8190 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8191 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8192 }
2a6f5124
SP
8193 if (ret < 0) {
8194 putback_movable_pages(&cc->migratepages);
8195 return ret;
8196 }
8197 return 0;
041d3a8c
MN
8198}
8199
8200/**
8201 * alloc_contig_range() -- tries to allocate given range of pages
8202 * @start: start PFN to allocate
8203 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8204 * @migratetype: migratetype of the underlaying pageblocks (either
8205 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8206 * in range must have the same migratetype and it must
8207 * be either of the two.
ca96b625 8208 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8209 *
8210 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8211 * aligned. The PFN range must belong to a single zone.
041d3a8c 8212 *
2c7452a0
MK
8213 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8214 * pageblocks in the range. Once isolated, the pageblocks should not
8215 * be modified by others.
041d3a8c 8216 *
a862f68a 8217 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8218 * pages which PFN is in [start, end) are allocated for the caller and
8219 * need to be freed with free_contig_range().
8220 */
0815f3d8 8221int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8222 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8223{
041d3a8c 8224 unsigned long outer_start, outer_end;
d00181b9
KS
8225 unsigned int order;
8226 int ret = 0;
041d3a8c 8227
bb13ffeb
MG
8228 struct compact_control cc = {
8229 .nr_migratepages = 0,
8230 .order = -1,
8231 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8232 .mode = MIGRATE_SYNC,
bb13ffeb 8233 .ignore_skip_hint = true,
2583d671 8234 .no_set_skip_hint = true,
7dea19f9 8235 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8236 };
8237 INIT_LIST_HEAD(&cc.migratepages);
8238
041d3a8c
MN
8239 /*
8240 * What we do here is we mark all pageblocks in range as
8241 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8242 * have different sizes, and due to the way page allocator
8243 * work, we align the range to biggest of the two pages so
8244 * that page allocator won't try to merge buddies from
8245 * different pageblocks and change MIGRATE_ISOLATE to some
8246 * other migration type.
8247 *
8248 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8249 * migrate the pages from an unaligned range (ie. pages that
8250 * we are interested in). This will put all the pages in
8251 * range back to page allocator as MIGRATE_ISOLATE.
8252 *
8253 * When this is done, we take the pages in range from page
8254 * allocator removing them from the buddy system. This way
8255 * page allocator will never consider using them.
8256 *
8257 * This lets us mark the pageblocks back as
8258 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8259 * aligned range but not in the unaligned, original range are
8260 * put back to page allocator so that buddy can use them.
8261 */
8262
8263 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8264 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8265 if (ret < 0)
86a595f9 8266 return ret;
041d3a8c 8267
8ef5849f
JK
8268 /*
8269 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8270 * So, just fall through. test_pages_isolated() has a tracepoint
8271 * which will report the busy page.
8272 *
8273 * It is possible that busy pages could become available before
8274 * the call to test_pages_isolated, and the range will actually be
8275 * allocated. So, if we fall through be sure to clear ret so that
8276 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8277 */
bb13ffeb 8278 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8279 if (ret && ret != -EBUSY)
041d3a8c 8280 goto done;
63cd4489 8281 ret =0;
041d3a8c
MN
8282
8283 /*
8284 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8285 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8286 * more, all pages in [start, end) are free in page allocator.
8287 * What we are going to do is to allocate all pages from
8288 * [start, end) (that is remove them from page allocator).
8289 *
8290 * The only problem is that pages at the beginning and at the
8291 * end of interesting range may be not aligned with pages that
8292 * page allocator holds, ie. they can be part of higher order
8293 * pages. Because of this, we reserve the bigger range and
8294 * once this is done free the pages we are not interested in.
8295 *
8296 * We don't have to hold zone->lock here because the pages are
8297 * isolated thus they won't get removed from buddy.
8298 */
8299
8300 lru_add_drain_all();
041d3a8c
MN
8301
8302 order = 0;
8303 outer_start = start;
8304 while (!PageBuddy(pfn_to_page(outer_start))) {
8305 if (++order >= MAX_ORDER) {
8ef5849f
JK
8306 outer_start = start;
8307 break;
041d3a8c
MN
8308 }
8309 outer_start &= ~0UL << order;
8310 }
8311
8ef5849f
JK
8312 if (outer_start != start) {
8313 order = page_order(pfn_to_page(outer_start));
8314
8315 /*
8316 * outer_start page could be small order buddy page and
8317 * it doesn't include start page. Adjust outer_start
8318 * in this case to report failed page properly
8319 * on tracepoint in test_pages_isolated()
8320 */
8321 if (outer_start + (1UL << order) <= start)
8322 outer_start = start;
8323 }
8324
041d3a8c 8325 /* Make sure the range is really isolated. */
b023f468 8326 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8327 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8328 __func__, outer_start, end);
041d3a8c
MN
8329 ret = -EBUSY;
8330 goto done;
8331 }
8332
49f223a9 8333 /* Grab isolated pages from freelists. */
bb13ffeb 8334 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8335 if (!outer_end) {
8336 ret = -EBUSY;
8337 goto done;
8338 }
8339
8340 /* Free head and tail (if any) */
8341 if (start != outer_start)
8342 free_contig_range(outer_start, start - outer_start);
8343 if (end != outer_end)
8344 free_contig_range(end, outer_end - end);
8345
8346done:
8347 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8348 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8349 return ret;
8350}
4eb0716e 8351#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8352
4eb0716e 8353void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8354{
bcc2b02f
MS
8355 unsigned int count = 0;
8356
8357 for (; nr_pages--; pfn++) {
8358 struct page *page = pfn_to_page(pfn);
8359
8360 count += page_count(page) != 1;
8361 __free_page(page);
8362 }
8363 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8364}
041d3a8c 8365
d883c6cf 8366#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8367/*
8368 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8369 * page high values need to be recalulated.
8370 */
4ed7e022
JL
8371void __meminit zone_pcp_update(struct zone *zone)
8372{
0a647f38 8373 unsigned cpu;
c8e251fa 8374 mutex_lock(&pcp_batch_high_lock);
0a647f38 8375 for_each_possible_cpu(cpu)
169f6c19
CS
8376 pageset_set_high_and_batch(zone,
8377 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8378 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8379}
8380#endif
8381
340175b7
JL
8382void zone_pcp_reset(struct zone *zone)
8383{
8384 unsigned long flags;
5a883813
MK
8385 int cpu;
8386 struct per_cpu_pageset *pset;
340175b7
JL
8387
8388 /* avoid races with drain_pages() */
8389 local_irq_save(flags);
8390 if (zone->pageset != &boot_pageset) {
5a883813
MK
8391 for_each_online_cpu(cpu) {
8392 pset = per_cpu_ptr(zone->pageset, cpu);
8393 drain_zonestat(zone, pset);
8394 }
340175b7
JL
8395 free_percpu(zone->pageset);
8396 zone->pageset = &boot_pageset;
8397 }
8398 local_irq_restore(flags);
8399}
8400
6dcd73d7 8401#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8402/*
b9eb6319
JK
8403 * All pages in the range must be in a single zone and isolated
8404 * before calling this.
0c0e6195
KH
8405 */
8406void
8407__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8408{
8409 struct page *page;
8410 struct zone *zone;
7aeb09f9 8411 unsigned int order, i;
0c0e6195
KH
8412 unsigned long pfn;
8413 unsigned long flags;
8414 /* find the first valid pfn */
8415 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8416 if (pfn_valid(pfn))
8417 break;
8418 if (pfn == end_pfn)
8419 return;
2d070eab 8420 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8421 zone = page_zone(pfn_to_page(pfn));
8422 spin_lock_irqsave(&zone->lock, flags);
8423 pfn = start_pfn;
8424 while (pfn < end_pfn) {
8425 if (!pfn_valid(pfn)) {
8426 pfn++;
8427 continue;
8428 }
8429 page = pfn_to_page(pfn);
b023f468
WC
8430 /*
8431 * The HWPoisoned page may be not in buddy system, and
8432 * page_count() is not 0.
8433 */
8434 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8435 pfn++;
8436 SetPageReserved(page);
8437 continue;
8438 }
8439
0c0e6195
KH
8440 BUG_ON(page_count(page));
8441 BUG_ON(!PageBuddy(page));
8442 order = page_order(page);
8443#ifdef CONFIG_DEBUG_VM
1170532b
JP
8444 pr_info("remove from free list %lx %d %lx\n",
8445 pfn, 1 << order, end_pfn);
0c0e6195
KH
8446#endif
8447 list_del(&page->lru);
8448 rmv_page_order(page);
8449 zone->free_area[order].nr_free--;
0c0e6195
KH
8450 for (i = 0; i < (1 << order); i++)
8451 SetPageReserved((page+i));
8452 pfn += (1 << order);
8453 }
8454 spin_unlock_irqrestore(&zone->lock, flags);
8455}
8456#endif
8d22ba1b 8457
8d22ba1b
WF
8458bool is_free_buddy_page(struct page *page)
8459{
8460 struct zone *zone = page_zone(page);
8461 unsigned long pfn = page_to_pfn(page);
8462 unsigned long flags;
7aeb09f9 8463 unsigned int order;
8d22ba1b
WF
8464
8465 spin_lock_irqsave(&zone->lock, flags);
8466 for (order = 0; order < MAX_ORDER; order++) {
8467 struct page *page_head = page - (pfn & ((1 << order) - 1));
8468
8469 if (PageBuddy(page_head) && page_order(page_head) >= order)
8470 break;
8471 }
8472 spin_unlock_irqrestore(&zone->lock, flags);
8473
8474 return order < MAX_ORDER;
8475}
d4ae9916
NH
8476
8477#ifdef CONFIG_MEMORY_FAILURE
8478/*
8479 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8480 * test is performed under the zone lock to prevent a race against page
8481 * allocation.
8482 */
8483bool set_hwpoison_free_buddy_page(struct page *page)
8484{
8485 struct zone *zone = page_zone(page);
8486 unsigned long pfn = page_to_pfn(page);
8487 unsigned long flags;
8488 unsigned int order;
8489 bool hwpoisoned = false;
8490
8491 spin_lock_irqsave(&zone->lock, flags);
8492 for (order = 0; order < MAX_ORDER; order++) {
8493 struct page *page_head = page - (pfn & ((1 << order) - 1));
8494
8495 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8496 if (!TestSetPageHWPoison(page))
8497 hwpoisoned = true;
8498 break;
8499 }
8500 }
8501 spin_unlock_irqrestore(&zone->lock, flags);
8502
8503 return hwpoisoned;
8504}
8505#endif