sch_dsmark: fix potential NULL deref in dsmark_init()
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
1da177e4
LT
18#include <linux/stddef.h>
19#include <linux/mm.h>
ca79b0c2 20#include <linux/highmem.h>
1da177e4
LT
21#include <linux/swap.h>
22#include <linux/interrupt.h>
23#include <linux/pagemap.h>
10ed273f 24#include <linux/jiffies.h>
edbe7d23 25#include <linux/memblock.h>
1da177e4 26#include <linux/compiler.h>
9f158333 27#include <linux/kernel.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
97500a4a 47#include <linux/random.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
eb414681 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4 75#include "internal.h"
e900a918 76#include "shuffle.h"
1da177e4 77
c8e251fa
CS
78/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 80#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 81
72812019
LS
82#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83DEFINE_PER_CPU(int, numa_node);
84EXPORT_PER_CPU_SYMBOL(numa_node);
85#endif
86
4518085e
KW
87DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88
7aac7898
LS
89#ifdef CONFIG_HAVE_MEMORYLESS_NODES
90/*
91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94 * defined in <linux/topology.h>.
95 */
96DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
97EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 98int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
99#endif
100
bd233f53 101/* work_structs for global per-cpu drains */
d9367bd0
WY
102struct pcpu_drain {
103 struct zone *zone;
104 struct work_struct work;
105};
bd233f53 106DEFINE_MUTEX(pcpu_drain_mutex);
d9367bd0 107DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
bd233f53 108
38addce8 109#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 110volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
111EXPORT_SYMBOL(latent_entropy);
112#endif
113
1da177e4 114/*
13808910 115 * Array of node states.
1da177e4 116 */
13808910
CL
117nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 [N_POSSIBLE] = NODE_MASK_ALL,
119 [N_ONLINE] = { { [0] = 1UL } },
120#ifndef CONFIG_NUMA
121 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
122#ifdef CONFIG_HIGHMEM
123 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 124#endif
20b2f52b 125 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
126 [N_CPU] = { { [0] = 1UL } },
127#endif /* NUMA */
128};
129EXPORT_SYMBOL(node_states);
130
ca79b0c2
AK
131atomic_long_t _totalram_pages __read_mostly;
132EXPORT_SYMBOL(_totalram_pages);
cb45b0e9 133unsigned long totalreserve_pages __read_mostly;
e48322ab 134unsigned long totalcma_pages __read_mostly;
ab8fabd4 135
1b76b02f 136int percpu_pagelist_fraction;
dcce284a 137gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
6471384a
AP
138#ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140#else
141DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142#endif
143EXPORT_SYMBOL(init_on_alloc);
144
145#ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146DEFINE_STATIC_KEY_TRUE(init_on_free);
147#else
148DEFINE_STATIC_KEY_FALSE(init_on_free);
149#endif
150EXPORT_SYMBOL(init_on_free);
151
152static int __init early_init_on_alloc(char *buf)
153{
154 int ret;
155 bool bool_result;
156
157 if (!buf)
158 return -EINVAL;
159 ret = kstrtobool(buf, &bool_result);
160 if (bool_result && page_poisoning_enabled())
161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 if (bool_result)
163 static_branch_enable(&init_on_alloc);
164 else
165 static_branch_disable(&init_on_alloc);
166 return ret;
167}
168early_param("init_on_alloc", early_init_on_alloc);
169
170static int __init early_init_on_free(char *buf)
171{
172 int ret;
173 bool bool_result;
174
175 if (!buf)
176 return -EINVAL;
177 ret = kstrtobool(buf, &bool_result);
178 if (bool_result && page_poisoning_enabled())
179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 if (bool_result)
181 static_branch_enable(&init_on_free);
182 else
183 static_branch_disable(&init_on_free);
184 return ret;
185}
186early_param("init_on_free", early_init_on_free);
1da177e4 187
bb14c2c7
VB
188/*
189 * A cached value of the page's pageblock's migratetype, used when the page is
190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192 * Also the migratetype set in the page does not necessarily match the pcplist
193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194 * other index - this ensures that it will be put on the correct CMA freelist.
195 */
196static inline int get_pcppage_migratetype(struct page *page)
197{
198 return page->index;
199}
200
201static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202{
203 page->index = migratetype;
204}
205
452aa699
RW
206#ifdef CONFIG_PM_SLEEP
207/*
208 * The following functions are used by the suspend/hibernate code to temporarily
209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210 * while devices are suspended. To avoid races with the suspend/hibernate code,
55f2503c
PL
211 * they should always be called with system_transition_mutex held
212 * (gfp_allowed_mask also should only be modified with system_transition_mutex
213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214 * with that modification).
452aa699 215 */
c9e664f1
RW
216
217static gfp_t saved_gfp_mask;
218
219void pm_restore_gfp_mask(void)
452aa699 220{
55f2503c 221 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
222 if (saved_gfp_mask) {
223 gfp_allowed_mask = saved_gfp_mask;
224 saved_gfp_mask = 0;
225 }
452aa699
RW
226}
227
c9e664f1 228void pm_restrict_gfp_mask(void)
452aa699 229{
55f2503c 230 WARN_ON(!mutex_is_locked(&system_transition_mutex));
c9e664f1
RW
231 WARN_ON(saved_gfp_mask);
232 saved_gfp_mask = gfp_allowed_mask;
d0164adc 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 234}
f90ac398
MG
235
236bool pm_suspended_storage(void)
237{
d0164adc 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
239 return false;
240 return true;
241}
452aa699
RW
242#endif /* CONFIG_PM_SLEEP */
243
d9c23400 244#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 245unsigned int pageblock_order __read_mostly;
d9c23400
MG
246#endif
247
d98c7a09 248static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 249
1da177e4
LT
250/*
251 * results with 256, 32 in the lowmem_reserve sysctl:
252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253 * 1G machine -> (16M dma, 784M normal, 224M high)
254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
257 *
258 * TBD: should special case ZONE_DMA32 machines here - in those we normally
259 * don't need any ZONE_NORMAL reservation
1da177e4 260 */
d3cda233 261int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 262#ifdef CONFIG_ZONE_DMA
d3cda233 263 [ZONE_DMA] = 256,
4b51d669 264#endif
fb0e7942 265#ifdef CONFIG_ZONE_DMA32
d3cda233 266 [ZONE_DMA32] = 256,
fb0e7942 267#endif
d3cda233 268 [ZONE_NORMAL] = 32,
e53ef38d 269#ifdef CONFIG_HIGHMEM
d3cda233 270 [ZONE_HIGHMEM] = 0,
e53ef38d 271#endif
d3cda233 272 [ZONE_MOVABLE] = 0,
2f1b6248 273};
1da177e4 274
15ad7cdc 275static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 276#ifdef CONFIG_ZONE_DMA
2f1b6248 277 "DMA",
4b51d669 278#endif
fb0e7942 279#ifdef CONFIG_ZONE_DMA32
2f1b6248 280 "DMA32",
fb0e7942 281#endif
2f1b6248 282 "Normal",
e53ef38d 283#ifdef CONFIG_HIGHMEM
2a1e274a 284 "HighMem",
e53ef38d 285#endif
2a1e274a 286 "Movable",
033fbae9
DW
287#ifdef CONFIG_ZONE_DEVICE
288 "Device",
289#endif
2f1b6248
CL
290};
291
c999fbd3 292const char * const migratetype_names[MIGRATE_TYPES] = {
60f30350
VB
293 "Unmovable",
294 "Movable",
295 "Reclaimable",
296 "HighAtomic",
297#ifdef CONFIG_CMA
298 "CMA",
299#endif
300#ifdef CONFIG_MEMORY_ISOLATION
301 "Isolate",
302#endif
303};
304
f1e61557
KS
305compound_page_dtor * const compound_page_dtors[] = {
306 NULL,
307 free_compound_page,
308#ifdef CONFIG_HUGETLB_PAGE
309 free_huge_page,
310#endif
9a982250
KS
311#ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 free_transhuge_page,
313#endif
f1e61557
KS
314};
315
1da177e4 316int min_free_kbytes = 1024;
42aa83cb 317int user_min_free_kbytes = -1;
24512228
MG
318#ifdef CONFIG_DISCONTIGMEM
319/*
320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321 * are not on separate NUMA nodes. Functionally this works but with
322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323 * quite small. By default, do not boost watermarks on discontigmem as in
324 * many cases very high-order allocations like THP are likely to be
325 * unsupported and the premature reclaim offsets the advantage of long-term
326 * fragmentation avoidance.
327 */
328int watermark_boost_factor __read_mostly;
329#else
1c30844d 330int watermark_boost_factor __read_mostly = 15000;
24512228 331#endif
795ae7a0 332int watermark_scale_factor = 10;
1da177e4 333
bbe5d993
OS
334static unsigned long nr_kernel_pages __initdata;
335static unsigned long nr_all_pages __initdata;
336static unsigned long dma_reserve __initdata;
1da177e4 337
0ee332c1 338#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
bbe5d993
OS
339static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
7f16f91f 341static unsigned long required_kernelcore __initdata;
a5c6d650 342static unsigned long required_kernelcore_percent __initdata;
7f16f91f 343static unsigned long required_movablecore __initdata;
a5c6d650 344static unsigned long required_movablecore_percent __initdata;
bbe5d993 345static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
7f16f91f 346static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
347
348/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349int movable_zone;
350EXPORT_SYMBOL(movable_zone);
351#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 352
418508c1 353#if MAX_NUMNODES > 1
b9726c26 354unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
ce0725f7 355unsigned int nr_online_nodes __read_mostly = 1;
418508c1 356EXPORT_SYMBOL(nr_node_ids);
62bc62a8 357EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
358#endif
359
9ef9acb0
MG
360int page_group_by_mobility_disabled __read_mostly;
361
3a80a7fa 362#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3c0c12cc
WL
363/*
364 * During boot we initialize deferred pages on-demand, as needed, but once
365 * page_alloc_init_late() has finished, the deferred pages are all initialized,
366 * and we can permanently disable that path.
367 */
368static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369
370/*
371 * Calling kasan_free_pages() only after deferred memory initialization
372 * has completed. Poisoning pages during deferred memory init will greatly
373 * lengthen the process and cause problem in large memory systems as the
374 * deferred pages initialization is done with interrupt disabled.
375 *
376 * Assuming that there will be no reference to those newly initialized
377 * pages before they are ever allocated, this should have no effect on
378 * KASAN memory tracking as the poison will be properly inserted at page
379 * allocation time. The only corner case is when pages are allocated by
380 * on-demand allocation and then freed again before the deferred pages
381 * initialization is done, but this is not likely to happen.
382 */
383static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384{
385 if (!static_branch_unlikely(&deferred_pages))
386 kasan_free_pages(page, order);
387}
388
3a80a7fa 389/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 390static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 391{
ef70b6f4
MG
392 int nid = early_pfn_to_nid(pfn);
393
394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
395 return true;
396
397 return false;
398}
399
400/*
d3035be4 401 * Returns true when the remaining initialisation should be deferred until
3a80a7fa
MG
402 * later in the boot cycle when it can be parallelised.
403 */
d3035be4
PT
404static bool __meminit
405defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 406{
d3035be4
PT
407 static unsigned long prev_end_pfn, nr_initialised;
408
409 /*
410 * prev_end_pfn static that contains the end of previous zone
411 * No need to protect because called very early in boot before smp_init.
412 */
413 if (prev_end_pfn != end_pfn) {
414 prev_end_pfn = end_pfn;
415 nr_initialised = 0;
416 }
417
3c2c6488 418 /* Always populate low zones for address-constrained allocations */
d3035be4 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
3a80a7fa 420 return false;
23b68cfa
WY
421
422 /*
423 * We start only with one section of pages, more pages are added as
424 * needed until the rest of deferred pages are initialized.
425 */
d3035be4 426 nr_initialised++;
23b68cfa 427 if ((nr_initialised > PAGES_PER_SECTION) &&
d3035be4
PT
428 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 NODE_DATA(nid)->first_deferred_pfn = pfn;
430 return true;
3a80a7fa 431 }
d3035be4 432 return false;
3a80a7fa
MG
433}
434#else
3c0c12cc
WL
435#define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o)
436
3a80a7fa
MG
437static inline bool early_page_uninitialised(unsigned long pfn)
438{
439 return false;
440}
441
d3035be4 442static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
3a80a7fa 443{
d3035be4 444 return false;
3a80a7fa
MG
445}
446#endif
447
0b423ca2
MG
448/* Return a pointer to the bitmap storing bits affecting a block of pages */
449static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 unsigned long pfn)
451{
452#ifdef CONFIG_SPARSEMEM
f1eca35a 453 return section_to_usemap(__pfn_to_section(pfn));
0b423ca2
MG
454#else
455 return page_zone(page)->pageblock_flags;
456#endif /* CONFIG_SPARSEMEM */
457}
458
459static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460{
461#ifdef CONFIG_SPARSEMEM
462 pfn &= (PAGES_PER_SECTION-1);
463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464#else
465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467#endif /* CONFIG_SPARSEMEM */
468}
469
470/**
471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472 * @page: The page within the block of interest
473 * @pfn: The target page frame number
474 * @end_bitidx: The last bit of interest to retrieve
475 * @mask: mask of bits that the caller is interested in
476 *
477 * Return: pageblock_bits flags
478 */
479static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 unsigned long pfn,
481 unsigned long end_bitidx,
482 unsigned long mask)
483{
484 unsigned long *bitmap;
485 unsigned long bitidx, word_bitidx;
486 unsigned long word;
487
488 bitmap = get_pageblock_bitmap(page, pfn);
489 bitidx = pfn_to_bitidx(page, pfn);
490 word_bitidx = bitidx / BITS_PER_LONG;
491 bitidx &= (BITS_PER_LONG-1);
492
493 word = bitmap[word_bitidx];
494 bitidx += end_bitidx;
495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496}
497
498unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 unsigned long end_bitidx,
500 unsigned long mask)
501{
502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503}
504
505static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506{
507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508}
509
510/**
511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512 * @page: The page within the block of interest
513 * @flags: The flags to set
514 * @pfn: The target page frame number
515 * @end_bitidx: The last bit of interest
516 * @mask: mask of bits that the caller is interested in
517 */
518void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 unsigned long pfn,
520 unsigned long end_bitidx,
521 unsigned long mask)
522{
523 unsigned long *bitmap;
524 unsigned long bitidx, word_bitidx;
525 unsigned long old_word, word;
526
527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
125b860b 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
0b423ca2
MG
529
530 bitmap = get_pageblock_bitmap(page, pfn);
531 bitidx = pfn_to_bitidx(page, pfn);
532 word_bitidx = bitidx / BITS_PER_LONG;
533 bitidx &= (BITS_PER_LONG-1);
534
535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536
537 bitidx += end_bitidx;
538 mask <<= (BITS_PER_LONG - bitidx - 1);
539 flags <<= (BITS_PER_LONG - bitidx - 1);
540
541 word = READ_ONCE(bitmap[word_bitidx]);
542 for (;;) {
543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 if (word == old_word)
545 break;
546 word = old_word;
547 }
548}
3a80a7fa 549
ee6f509c 550void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 551{
5d0f3f72
KM
552 if (unlikely(page_group_by_mobility_disabled &&
553 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
554 migratetype = MIGRATE_UNMOVABLE;
555
b2a0ac88
MG
556 set_pageblock_flags_group(page, (unsigned long)migratetype,
557 PB_migrate, PB_migrate_end);
558}
559
13e7444b 560#ifdef CONFIG_DEBUG_VM
c6a57e19 561static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 562{
bdc8cb98
DH
563 int ret = 0;
564 unsigned seq;
565 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 566 unsigned long sp, start_pfn;
c6a57e19 567
bdc8cb98
DH
568 do {
569 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
570 start_pfn = zone->zone_start_pfn;
571 sp = zone->spanned_pages;
108bcc96 572 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
573 ret = 1;
574 } while (zone_span_seqretry(zone, seq));
575
b5e6a5a2 576 if (ret)
613813e8
DH
577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 pfn, zone_to_nid(zone), zone->name,
579 start_pfn, start_pfn + sp);
b5e6a5a2 580
bdc8cb98 581 return ret;
c6a57e19
DH
582}
583
584static int page_is_consistent(struct zone *zone, struct page *page)
585{
14e07298 586 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 587 return 0;
1da177e4 588 if (zone != page_zone(page))
c6a57e19
DH
589 return 0;
590
591 return 1;
592}
593/*
594 * Temporary debugging check for pages not lying within a given zone.
595 */
d73d3c9f 596static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
597{
598 if (page_outside_zone_boundaries(zone, page))
1da177e4 599 return 1;
c6a57e19
DH
600 if (!page_is_consistent(zone, page))
601 return 1;
602
1da177e4
LT
603 return 0;
604}
13e7444b 605#else
d73d3c9f 606static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
607{
608 return 0;
609}
610#endif
611
d230dec1
KS
612static void bad_page(struct page *page, const char *reason,
613 unsigned long bad_flags)
1da177e4 614{
d936cf9b
HD
615 static unsigned long resume;
616 static unsigned long nr_shown;
617 static unsigned long nr_unshown;
618
619 /*
620 * Allow a burst of 60 reports, then keep quiet for that minute;
621 * or allow a steady drip of one report per second.
622 */
623 if (nr_shown == 60) {
624 if (time_before(jiffies, resume)) {
625 nr_unshown++;
626 goto out;
627 }
628 if (nr_unshown) {
ff8e8116 629 pr_alert(
1e9e6365 630 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
631 nr_unshown);
632 nr_unshown = 0;
633 }
634 nr_shown = 0;
635 }
636 if (nr_shown++ == 0)
637 resume = jiffies + 60 * HZ;
638
ff8e8116 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 640 current->comm, page_to_pfn(page));
ff8e8116
VB
641 __dump_page(page, reason);
642 bad_flags &= page->flags;
643 if (bad_flags)
644 pr_alert("bad because of flags: %#lx(%pGp)\n",
645 bad_flags, &bad_flags);
4e462112 646 dump_page_owner(page);
3dc14741 647
4f31888c 648 print_modules();
1da177e4 649 dump_stack();
d936cf9b 650out:
8cc3b392 651 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 652 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
654}
655
1da177e4
LT
656/*
657 * Higher-order pages are called "compound pages". They are structured thusly:
658 *
1d798ca3 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 660 *
1d798ca3
KS
661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 663 *
1d798ca3
KS
664 * The first tail page's ->compound_dtor holds the offset in array of compound
665 * page destructors. See compound_page_dtors.
1da177e4 666 *
1d798ca3 667 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 668 * This usage means that zero-order pages may not be compound.
1da177e4 669 */
d98c7a09 670
9a982250 671void free_compound_page(struct page *page)
d98c7a09 672{
7ae88534 673 mem_cgroup_uncharge(page);
d85f3385 674 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
675}
676
d00181b9 677void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
678{
679 int i;
680 int nr_pages = 1 << order;
681
f1e61557 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
683 set_compound_order(page, order);
684 __SetPageHead(page);
685 for (i = 1; i < nr_pages; i++) {
686 struct page *p = page + i;
58a84aa9 687 set_page_count(p, 0);
1c290f64 688 p->mapping = TAIL_MAPPING;
1d798ca3 689 set_compound_head(p, page);
18229df5 690 }
53f9263b 691 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
692}
693
c0a32fc5
SG
694#ifdef CONFIG_DEBUG_PAGEALLOC
695unsigned int _debug_guardpage_minorder;
96a2b03f
VB
696
697#ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
698DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
699#else
700DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701#endif
505f6d22 702EXPORT_SYMBOL(_debug_pagealloc_enabled);
96a2b03f
VB
703
704DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
e30825f1 705
031bc574
JK
706static int __init early_debug_pagealloc(char *buf)
707{
96a2b03f
VB
708 bool enable = false;
709
710 if (kstrtobool(buf, &enable))
031bc574 711 return -EINVAL;
96a2b03f
VB
712
713 if (enable)
714 static_branch_enable(&_debug_pagealloc_enabled);
715
716 return 0;
031bc574
JK
717}
718early_param("debug_pagealloc", early_debug_pagealloc);
719
e30825f1
JK
720static void init_debug_guardpage(void)
721{
031bc574
JK
722 if (!debug_pagealloc_enabled())
723 return;
724
f1c1e9f7
JK
725 if (!debug_guardpage_minorder())
726 return;
727
96a2b03f 728 static_branch_enable(&_debug_guardpage_enabled);
e30825f1
JK
729}
730
c0a32fc5
SG
731static int __init debug_guardpage_minorder_setup(char *buf)
732{
733 unsigned long res;
734
735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 736 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
737 return 0;
738 }
739 _debug_guardpage_minorder = res;
1170532b 740 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
741 return 0;
742}
f1c1e9f7 743early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 744
acbc15a4 745static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 746 unsigned int order, int migratetype)
c0a32fc5 747{
e30825f1 748 if (!debug_guardpage_enabled())
acbc15a4
JK
749 return false;
750
751 if (order >= debug_guardpage_minorder())
752 return false;
e30825f1 753
3972f6bb 754 __SetPageGuard(page);
2847cf95
JK
755 INIT_LIST_HEAD(&page->lru);
756 set_page_private(page, order);
757 /* Guard pages are not available for any usage */
758 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
759
760 return true;
c0a32fc5
SG
761}
762
2847cf95
JK
763static inline void clear_page_guard(struct zone *zone, struct page *page,
764 unsigned int order, int migratetype)
c0a32fc5 765{
e30825f1
JK
766 if (!debug_guardpage_enabled())
767 return;
768
3972f6bb 769 __ClearPageGuard(page);
e30825f1 770
2847cf95
JK
771 set_page_private(page, 0);
772 if (!is_migrate_isolate(migratetype))
773 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
774}
775#else
acbc15a4
JK
776static inline bool set_page_guard(struct zone *zone, struct page *page,
777 unsigned int order, int migratetype) { return false; }
2847cf95
JK
778static inline void clear_page_guard(struct zone *zone, struct page *page,
779 unsigned int order, int migratetype) {}
c0a32fc5
SG
780#endif
781
7aeb09f9 782static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 783{
4c21e2f2 784 set_page_private(page, order);
676165a8 785 __SetPageBuddy(page);
1da177e4
LT
786}
787
1da177e4
LT
788/*
789 * This function checks whether a page is free && is the buddy
6e292b9b 790 * we can coalesce a page and its buddy if
13ad59df 791 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 792 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
793 * (c) a page and its buddy have the same order &&
794 * (d) a page and its buddy are in the same zone.
676165a8 795 *
6e292b9b
MW
796 * For recording whether a page is in the buddy system, we set PageBuddy.
797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 798 *
676165a8 799 * For recording page's order, we use page_private(page).
1da177e4 800 */
cb2b95e1 801static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 802 unsigned int order)
1da177e4 803{
c0a32fc5 804 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
805 if (page_zone_id(page) != page_zone_id(buddy))
806 return 0;
807
4c5018ce
WY
808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
809
c0a32fc5
SG
810 return 1;
811 }
812
cb2b95e1 813 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
814 /*
815 * zone check is done late to avoid uselessly
816 * calculating zone/node ids for pages that could
817 * never merge.
818 */
819 if (page_zone_id(page) != page_zone_id(buddy))
820 return 0;
821
4c5018ce
WY
822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
823
6aa3001b 824 return 1;
676165a8 825 }
6aa3001b 826 return 0;
1da177e4
LT
827}
828
5e1f0f09
MG
829#ifdef CONFIG_COMPACTION
830static inline struct capture_control *task_capc(struct zone *zone)
831{
832 struct capture_control *capc = current->capture_control;
833
834 return capc &&
835 !(current->flags & PF_KTHREAD) &&
836 !capc->page &&
837 capc->cc->zone == zone &&
838 capc->cc->direct_compaction ? capc : NULL;
839}
840
841static inline bool
842compaction_capture(struct capture_control *capc, struct page *page,
843 int order, int migratetype)
844{
845 if (!capc || order != capc->cc->order)
846 return false;
847
848 /* Do not accidentally pollute CMA or isolated regions*/
849 if (is_migrate_cma(migratetype) ||
850 is_migrate_isolate(migratetype))
851 return false;
852
853 /*
854 * Do not let lower order allocations polluate a movable pageblock.
855 * This might let an unmovable request use a reclaimable pageblock
856 * and vice-versa but no more than normal fallback logic which can
857 * have trouble finding a high-order free page.
858 */
859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
860 return false;
861
862 capc->page = page;
863 return true;
864}
865
866#else
867static inline struct capture_control *task_capc(struct zone *zone)
868{
869 return NULL;
870}
871
872static inline bool
873compaction_capture(struct capture_control *capc, struct page *page,
874 int order, int migratetype)
875{
876 return false;
877}
878#endif /* CONFIG_COMPACTION */
879
1da177e4
LT
880/*
881 * Freeing function for a buddy system allocator.
882 *
883 * The concept of a buddy system is to maintain direct-mapped table
884 * (containing bit values) for memory blocks of various "orders".
885 * The bottom level table contains the map for the smallest allocatable
886 * units of memory (here, pages), and each level above it describes
887 * pairs of units from the levels below, hence, "buddies".
888 * At a high level, all that happens here is marking the table entry
889 * at the bottom level available, and propagating the changes upward
890 * as necessary, plus some accounting needed to play nicely with other
891 * parts of the VM system.
892 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
893 * free pages of length of (1 << order) and marked with PageBuddy.
894 * Page's order is recorded in page_private(page) field.
1da177e4 895 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
896 * other. That is, if we allocate a small block, and both were
897 * free, the remainder of the region must be split into blocks.
1da177e4 898 * If a block is freed, and its buddy is also free, then this
5f63b720 899 * triggers coalescing into a block of larger size.
1da177e4 900 *
6d49e352 901 * -- nyc
1da177e4
LT
902 */
903
48db57f8 904static inline void __free_one_page(struct page *page,
dc4b0caf 905 unsigned long pfn,
ed0ae21d
MG
906 struct zone *zone, unsigned int order,
907 int migratetype)
1da177e4 908{
76741e77
VB
909 unsigned long combined_pfn;
910 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 911 struct page *buddy;
d9dddbf5 912 unsigned int max_order;
5e1f0f09 913 struct capture_control *capc = task_capc(zone);
d9dddbf5
VB
914
915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 916
d29bb978 917 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 919
ed0ae21d 920 VM_BUG_ON(migratetype == -1);
d9dddbf5 921 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 922 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 923
76741e77 924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 925 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 926
d9dddbf5 927continue_merging:
3c605096 928 while (order < max_order - 1) {
5e1f0f09
MG
929 if (compaction_capture(capc, page, order, migratetype)) {
930 __mod_zone_freepage_state(zone, -(1 << order),
931 migratetype);
932 return;
933 }
76741e77
VB
934 buddy_pfn = __find_buddy_pfn(pfn, order);
935 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
936
937 if (!pfn_valid_within(buddy_pfn))
938 goto done_merging;
cb2b95e1 939 if (!page_is_buddy(page, buddy, order))
d9dddbf5 940 goto done_merging;
c0a32fc5
SG
941 /*
942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
943 * merge with it and move up one order.
944 */
b03641af 945 if (page_is_guard(buddy))
2847cf95 946 clear_page_guard(zone, buddy, order, migratetype);
b03641af
DW
947 else
948 del_page_from_free_area(buddy, &zone->free_area[order]);
76741e77
VB
949 combined_pfn = buddy_pfn & pfn;
950 page = page + (combined_pfn - pfn);
951 pfn = combined_pfn;
1da177e4
LT
952 order++;
953 }
d9dddbf5
VB
954 if (max_order < MAX_ORDER) {
955 /* If we are here, it means order is >= pageblock_order.
956 * We want to prevent merge between freepages on isolate
957 * pageblock and normal pageblock. Without this, pageblock
958 * isolation could cause incorrect freepage or CMA accounting.
959 *
960 * We don't want to hit this code for the more frequent
961 * low-order merging.
962 */
963 if (unlikely(has_isolate_pageblock(zone))) {
964 int buddy_mt;
965
76741e77
VB
966 buddy_pfn = __find_buddy_pfn(pfn, order);
967 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
968 buddy_mt = get_pageblock_migratetype(buddy);
969
970 if (migratetype != buddy_mt
971 && (is_migrate_isolate(migratetype) ||
972 is_migrate_isolate(buddy_mt)))
973 goto done_merging;
974 }
975 max_order++;
976 goto continue_merging;
977 }
978
979done_merging:
1da177e4 980 set_page_order(page, order);
6dda9d55
CZ
981
982 /*
983 * If this is not the largest possible page, check if the buddy
984 * of the next-highest order is free. If it is, it's possible
985 * that pages are being freed that will coalesce soon. In case,
986 * that is happening, add the free page to the tail of the list
987 * so it's less likely to be used soon and more likely to be merged
988 * as a higher order page
989 */
97500a4a
DW
990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
991 && !is_shuffle_order(order)) {
6dda9d55 992 struct page *higher_page, *higher_buddy;
76741e77
VB
993 combined_pfn = buddy_pfn & pfn;
994 higher_page = page + (combined_pfn - pfn);
995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
996 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
997 if (pfn_valid_within(buddy_pfn) &&
998 page_is_buddy(higher_page, higher_buddy, order + 1)) {
b03641af
DW
999 add_to_free_area_tail(page, &zone->free_area[order],
1000 migratetype);
1001 return;
6dda9d55
CZ
1002 }
1003 }
1004
97500a4a
DW
1005 if (is_shuffle_order(order))
1006 add_to_free_area_random(page, &zone->free_area[order],
1007 migratetype);
1008 else
1009 add_to_free_area(page, &zone->free_area[order], migratetype);
1010
1da177e4
LT
1011}
1012
7bfec6f4
MG
1013/*
1014 * A bad page could be due to a number of fields. Instead of multiple branches,
1015 * try and check multiple fields with one check. The caller must do a detailed
1016 * check if necessary.
1017 */
1018static inline bool page_expected_state(struct page *page,
1019 unsigned long check_flags)
1020{
1021 if (unlikely(atomic_read(&page->_mapcount) != -1))
1022 return false;
1023
1024 if (unlikely((unsigned long)page->mapping |
1025 page_ref_count(page) |
1026#ifdef CONFIG_MEMCG
1027 (unsigned long)page->mem_cgroup |
1028#endif
1029 (page->flags & check_flags)))
1030 return false;
1031
1032 return true;
1033}
1034
bb552ac6 1035static void free_pages_check_bad(struct page *page)
1da177e4 1036{
7bfec6f4
MG
1037 const char *bad_reason;
1038 unsigned long bad_flags;
1039
7bfec6f4
MG
1040 bad_reason = NULL;
1041 bad_flags = 0;
f0b791a3 1042
53f9263b 1043 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1044 bad_reason = "nonzero mapcount";
1045 if (unlikely(page->mapping != NULL))
1046 bad_reason = "non-NULL mapping";
fe896d18 1047 if (unlikely(page_ref_count(page) != 0))
0139aa7b 1048 bad_reason = "nonzero _refcount";
f0b791a3
DH
1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1052 }
9edad6ea
JW
1053#ifdef CONFIG_MEMCG
1054 if (unlikely(page->mem_cgroup))
1055 bad_reason = "page still charged to cgroup";
1056#endif
7bfec6f4 1057 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
1058}
1059
1060static inline int free_pages_check(struct page *page)
1061{
da838d4f 1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 1063 return 0;
bb552ac6
MG
1064
1065 /* Something has gone sideways, find it */
1066 free_pages_check_bad(page);
7bfec6f4 1067 return 1;
1da177e4
LT
1068}
1069
4db7548c
MG
1070static int free_tail_pages_check(struct page *head_page, struct page *page)
1071{
1072 int ret = 1;
1073
1074 /*
1075 * We rely page->lru.next never has bit 0 set, unless the page
1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1077 */
1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1079
1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1081 ret = 0;
1082 goto out;
1083 }
1084 switch (page - head_page) {
1085 case 1:
4da1984e 1086 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
1087 if (unlikely(compound_mapcount(page))) {
1088 bad_page(page, "nonzero compound_mapcount", 0);
1089 goto out;
1090 }
1091 break;
1092 case 2:
1093 /*
1094 * the second tail page: ->mapping is
fa3015b7 1095 * deferred_list.next -- ignore value.
4db7548c
MG
1096 */
1097 break;
1098 default:
1099 if (page->mapping != TAIL_MAPPING) {
1100 bad_page(page, "corrupted mapping in tail page", 0);
1101 goto out;
1102 }
1103 break;
1104 }
1105 if (unlikely(!PageTail(page))) {
1106 bad_page(page, "PageTail not set", 0);
1107 goto out;
1108 }
1109 if (unlikely(compound_head(page) != head_page)) {
1110 bad_page(page, "compound_head not consistent", 0);
1111 goto out;
1112 }
1113 ret = 0;
1114out:
1115 page->mapping = NULL;
1116 clear_compound_head(page);
1117 return ret;
1118}
1119
6471384a
AP
1120static void kernel_init_free_pages(struct page *page, int numpages)
1121{
1122 int i;
1123
1124 for (i = 0; i < numpages; i++)
1125 clear_highpage(page + i);
1126}
1127
e2769dbd
MG
1128static __always_inline bool free_pages_prepare(struct page *page,
1129 unsigned int order, bool check_free)
4db7548c 1130{
e2769dbd 1131 int bad = 0;
4db7548c 1132
4db7548c
MG
1133 VM_BUG_ON_PAGE(PageTail(page), page);
1134
e2769dbd 1135 trace_mm_page_free(page, order);
e2769dbd
MG
1136
1137 /*
1138 * Check tail pages before head page information is cleared to
1139 * avoid checking PageCompound for order-0 pages.
1140 */
1141 if (unlikely(order)) {
1142 bool compound = PageCompound(page);
1143 int i;
1144
1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1146
9a73f61b
KS
1147 if (compound)
1148 ClearPageDoubleMap(page);
e2769dbd
MG
1149 for (i = 1; i < (1 << order); i++) {
1150 if (compound)
1151 bad += free_tail_pages_check(page, page + i);
1152 if (unlikely(free_pages_check(page + i))) {
1153 bad++;
1154 continue;
1155 }
1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1157 }
1158 }
bda807d4 1159 if (PageMappingFlags(page))
4db7548c 1160 page->mapping = NULL;
c4159a75 1161 if (memcg_kmem_enabled() && PageKmemcg(page))
60cd4bcd 1162 __memcg_kmem_uncharge(page, order);
e2769dbd
MG
1163 if (check_free)
1164 bad += free_pages_check(page);
1165 if (bad)
1166 return false;
4db7548c 1167
e2769dbd
MG
1168 page_cpupid_reset_last(page);
1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1170 reset_page_owner(page, order);
4db7548c
MG
1171
1172 if (!PageHighMem(page)) {
1173 debug_check_no_locks_freed(page_address(page),
e2769dbd 1174 PAGE_SIZE << order);
4db7548c 1175 debug_check_no_obj_freed(page_address(page),
e2769dbd 1176 PAGE_SIZE << order);
4db7548c 1177 }
e2769dbd 1178 arch_free_page(page, order);
6471384a
AP
1179 if (want_init_on_free())
1180 kernel_init_free_pages(page, 1 << order);
1181
e2769dbd 1182 kernel_poison_pages(page, 1 << order, 0);
d6332692
RE
1183 if (debug_pagealloc_enabled())
1184 kernel_map_pages(page, 1 << order, 0);
1185
3c0c12cc 1186 kasan_free_nondeferred_pages(page, order);
4db7548c 1187
4db7548c
MG
1188 return true;
1189}
1190
e2769dbd 1191#ifdef CONFIG_DEBUG_VM
4462b32c
VB
1192/*
1193 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1194 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1195 * moved from pcp lists to free lists.
1196 */
1197static bool free_pcp_prepare(struct page *page)
e2769dbd
MG
1198{
1199 return free_pages_prepare(page, 0, true);
1200}
1201
4462b32c 1202static bool bulkfree_pcp_prepare(struct page *page)
e2769dbd 1203{
4462b32c
VB
1204 if (debug_pagealloc_enabled())
1205 return free_pages_check(page);
1206 else
1207 return false;
e2769dbd
MG
1208}
1209#else
4462b32c
VB
1210/*
1211 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1212 * moving from pcp lists to free list in order to reduce overhead. With
1213 * debug_pagealloc enabled, they are checked also immediately when being freed
1214 * to the pcp lists.
1215 */
e2769dbd
MG
1216static bool free_pcp_prepare(struct page *page)
1217{
4462b32c
VB
1218 if (debug_pagealloc_enabled())
1219 return free_pages_prepare(page, 0, true);
1220 else
1221 return free_pages_prepare(page, 0, false);
e2769dbd
MG
1222}
1223
4db7548c
MG
1224static bool bulkfree_pcp_prepare(struct page *page)
1225{
1226 return free_pages_check(page);
1227}
1228#endif /* CONFIG_DEBUG_VM */
1229
97334162
AL
1230static inline void prefetch_buddy(struct page *page)
1231{
1232 unsigned long pfn = page_to_pfn(page);
1233 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1234 struct page *buddy = page + (buddy_pfn - pfn);
1235
1236 prefetch(buddy);
1237}
1238
1da177e4 1239/*
5f8dcc21 1240 * Frees a number of pages from the PCP lists
1da177e4 1241 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1242 * count is the number of pages to free.
1da177e4
LT
1243 *
1244 * If the zone was previously in an "all pages pinned" state then look to
1245 * see if this freeing clears that state.
1246 *
1247 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1248 * pinned" detection logic.
1249 */
5f8dcc21
MG
1250static void free_pcppages_bulk(struct zone *zone, int count,
1251 struct per_cpu_pages *pcp)
1da177e4 1252{
5f8dcc21 1253 int migratetype = 0;
a6f9edd6 1254 int batch_free = 0;
97334162 1255 int prefetch_nr = 0;
3777999d 1256 bool isolated_pageblocks;
0a5f4e5b
AL
1257 struct page *page, *tmp;
1258 LIST_HEAD(head);
f2260e6b 1259
e5b31ac2 1260 while (count) {
5f8dcc21
MG
1261 struct list_head *list;
1262
1263 /*
a6f9edd6
MG
1264 * Remove pages from lists in a round-robin fashion. A
1265 * batch_free count is maintained that is incremented when an
1266 * empty list is encountered. This is so more pages are freed
1267 * off fuller lists instead of spinning excessively around empty
1268 * lists
5f8dcc21
MG
1269 */
1270 do {
a6f9edd6 1271 batch_free++;
5f8dcc21
MG
1272 if (++migratetype == MIGRATE_PCPTYPES)
1273 migratetype = 0;
1274 list = &pcp->lists[migratetype];
1275 } while (list_empty(list));
48db57f8 1276
1d16871d
NK
1277 /* This is the only non-empty list. Free them all. */
1278 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1279 batch_free = count;
1d16871d 1280
a6f9edd6 1281 do {
a16601c5 1282 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1283 /* must delete to avoid corrupting pcp list */
a6f9edd6 1284 list_del(&page->lru);
77ba9062 1285 pcp->count--;
aa016d14 1286
4db7548c
MG
1287 if (bulkfree_pcp_prepare(page))
1288 continue;
1289
0a5f4e5b 1290 list_add_tail(&page->lru, &head);
97334162
AL
1291
1292 /*
1293 * We are going to put the page back to the global
1294 * pool, prefetch its buddy to speed up later access
1295 * under zone->lock. It is believed the overhead of
1296 * an additional test and calculating buddy_pfn here
1297 * can be offset by reduced memory latency later. To
1298 * avoid excessive prefetching due to large count, only
1299 * prefetch buddy for the first pcp->batch nr of pages.
1300 */
1301 if (prefetch_nr++ < pcp->batch)
1302 prefetch_buddy(page);
e5b31ac2 1303 } while (--count && --batch_free && !list_empty(list));
1da177e4 1304 }
0a5f4e5b
AL
1305
1306 spin_lock(&zone->lock);
1307 isolated_pageblocks = has_isolate_pageblock(zone);
1308
1309 /*
1310 * Use safe version since after __free_one_page(),
1311 * page->lru.next will not point to original list.
1312 */
1313 list_for_each_entry_safe(page, tmp, &head, lru) {
1314 int mt = get_pcppage_migratetype(page);
1315 /* MIGRATE_ISOLATE page should not go to pcplists */
1316 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1317 /* Pageblock could have been isolated meanwhile */
1318 if (unlikely(isolated_pageblocks))
1319 mt = get_pageblock_migratetype(page);
1320
1321 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1322 trace_mm_page_pcpu_drain(page, 0, mt);
1323 }
d34b0733 1324 spin_unlock(&zone->lock);
1da177e4
LT
1325}
1326
dc4b0caf
MG
1327static void free_one_page(struct zone *zone,
1328 struct page *page, unsigned long pfn,
7aeb09f9 1329 unsigned int order,
ed0ae21d 1330 int migratetype)
1da177e4 1331{
d34b0733 1332 spin_lock(&zone->lock);
ad53f92e
JK
1333 if (unlikely(has_isolate_pageblock(zone) ||
1334 is_migrate_isolate(migratetype))) {
1335 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1336 }
dc4b0caf 1337 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1338 spin_unlock(&zone->lock);
48db57f8
NP
1339}
1340
1e8ce83c 1341static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1342 unsigned long zone, int nid)
1e8ce83c 1343{
d0dc12e8 1344 mm_zero_struct_page(page);
1e8ce83c 1345 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1346 init_page_count(page);
1347 page_mapcount_reset(page);
1348 page_cpupid_reset_last(page);
2813b9c0 1349 page_kasan_tag_reset(page);
1e8ce83c 1350
1e8ce83c
RH
1351 INIT_LIST_HEAD(&page->lru);
1352#ifdef WANT_PAGE_VIRTUAL
1353 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1354 if (!is_highmem_idx(zone))
1355 set_page_address(page, __va(pfn << PAGE_SHIFT));
1356#endif
1357}
1358
7e18adb4 1359#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1360static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1361{
1362 pg_data_t *pgdat;
1363 int nid, zid;
1364
1365 if (!early_page_uninitialised(pfn))
1366 return;
1367
1368 nid = early_pfn_to_nid(pfn);
1369 pgdat = NODE_DATA(nid);
1370
1371 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1372 struct zone *zone = &pgdat->node_zones[zid];
1373
1374 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1375 break;
1376 }
d0dc12e8 1377 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1378}
1379#else
1380static inline void init_reserved_page(unsigned long pfn)
1381{
1382}
1383#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1384
92923ca3
NZ
1385/*
1386 * Initialised pages do not have PageReserved set. This function is
1387 * called for each range allocated by the bootmem allocator and
1388 * marks the pages PageReserved. The remaining valid pages are later
1389 * sent to the buddy page allocator.
1390 */
4b50bcc7 1391void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1392{
1393 unsigned long start_pfn = PFN_DOWN(start);
1394 unsigned long end_pfn = PFN_UP(end);
1395
7e18adb4
MG
1396 for (; start_pfn < end_pfn; start_pfn++) {
1397 if (pfn_valid(start_pfn)) {
1398 struct page *page = pfn_to_page(start_pfn);
1399
1400 init_reserved_page(start_pfn);
1d798ca3
KS
1401
1402 /* Avoid false-positive PageTail() */
1403 INIT_LIST_HEAD(&page->lru);
1404
d483da5b
AD
1405 /*
1406 * no need for atomic set_bit because the struct
1407 * page is not visible yet so nobody should
1408 * access it yet.
1409 */
1410 __SetPageReserved(page);
7e18adb4
MG
1411 }
1412 }
92923ca3
NZ
1413}
1414
ec95f53a
KM
1415static void __free_pages_ok(struct page *page, unsigned int order)
1416{
d34b0733 1417 unsigned long flags;
95e34412 1418 int migratetype;
dc4b0caf 1419 unsigned long pfn = page_to_pfn(page);
ec95f53a 1420
e2769dbd 1421 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1422 return;
1423
cfc47a28 1424 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1425 local_irq_save(flags);
1426 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1427 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1428 local_irq_restore(flags);
1da177e4
LT
1429}
1430
a9cd410a 1431void __free_pages_core(struct page *page, unsigned int order)
a226f6c8 1432{
c3993076 1433 unsigned int nr_pages = 1 << order;
e2d0bd2b 1434 struct page *p = page;
c3993076 1435 unsigned int loop;
a226f6c8 1436
e2d0bd2b
YL
1437 prefetchw(p);
1438 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1439 prefetchw(p + 1);
c3993076
JW
1440 __ClearPageReserved(p);
1441 set_page_count(p, 0);
a226f6c8 1442 }
e2d0bd2b
YL
1443 __ClearPageReserved(p);
1444 set_page_count(p, 0);
c3993076 1445
9705bea5 1446 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
c3993076
JW
1447 set_page_refcounted(page);
1448 __free_pages(page, order);
a226f6c8
DH
1449}
1450
75a592a4
MG
1451#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1452 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1453
75a592a4
MG
1454static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1455
1456int __meminit early_pfn_to_nid(unsigned long pfn)
1457{
7ace9917 1458 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1459 int nid;
1460
7ace9917 1461 spin_lock(&early_pfn_lock);
75a592a4 1462 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1463 if (nid < 0)
e4568d38 1464 nid = first_online_node;
7ace9917
MG
1465 spin_unlock(&early_pfn_lock);
1466
1467 return nid;
75a592a4
MG
1468}
1469#endif
1470
1471#ifdef CONFIG_NODES_SPAN_OTHER_NODES
56ec43d8
AD
1472/* Only safe to use early in boot when initialisation is single-threaded */
1473static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
75a592a4
MG
1474{
1475 int nid;
1476
56ec43d8 1477 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
75a592a4
MG
1478 if (nid >= 0 && nid != node)
1479 return false;
1480 return true;
1481}
1482
75a592a4 1483#else
75a592a4
MG
1484static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1485{
1486 return true;
1487}
75a592a4
MG
1488#endif
1489
1490
7c2ee349 1491void __init memblock_free_pages(struct page *page, unsigned long pfn,
3a80a7fa
MG
1492 unsigned int order)
1493{
1494 if (early_page_uninitialised(pfn))
1495 return;
a9cd410a 1496 __free_pages_core(page, order);
3a80a7fa
MG
1497}
1498
7cf91a98
JK
1499/*
1500 * Check that the whole (or subset of) a pageblock given by the interval of
1501 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1502 * with the migration of free compaction scanner. The scanners then need to
1503 * use only pfn_valid_within() check for arches that allow holes within
1504 * pageblocks.
1505 *
1506 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1507 *
1508 * It's possible on some configurations to have a setup like node0 node1 node0
1509 * i.e. it's possible that all pages within a zones range of pages do not
1510 * belong to a single zone. We assume that a border between node0 and node1
1511 * can occur within a single pageblock, but not a node0 node1 node0
1512 * interleaving within a single pageblock. It is therefore sufficient to check
1513 * the first and last page of a pageblock and avoid checking each individual
1514 * page in a pageblock.
1515 */
1516struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1517 unsigned long end_pfn, struct zone *zone)
1518{
1519 struct page *start_page;
1520 struct page *end_page;
1521
1522 /* end_pfn is one past the range we are checking */
1523 end_pfn--;
1524
1525 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1526 return NULL;
1527
2d070eab
MH
1528 start_page = pfn_to_online_page(start_pfn);
1529 if (!start_page)
1530 return NULL;
7cf91a98
JK
1531
1532 if (page_zone(start_page) != zone)
1533 return NULL;
1534
1535 end_page = pfn_to_page(end_pfn);
1536
1537 /* This gives a shorter code than deriving page_zone(end_page) */
1538 if (page_zone_id(start_page) != page_zone_id(end_page))
1539 return NULL;
1540
1541 return start_page;
1542}
1543
1544void set_zone_contiguous(struct zone *zone)
1545{
1546 unsigned long block_start_pfn = zone->zone_start_pfn;
1547 unsigned long block_end_pfn;
1548
1549 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1550 for (; block_start_pfn < zone_end_pfn(zone);
1551 block_start_pfn = block_end_pfn,
1552 block_end_pfn += pageblock_nr_pages) {
1553
1554 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1555
1556 if (!__pageblock_pfn_to_page(block_start_pfn,
1557 block_end_pfn, zone))
1558 return;
1559 }
1560
1561 /* We confirm that there is no hole */
1562 zone->contiguous = true;
1563}
1564
1565void clear_zone_contiguous(struct zone *zone)
1566{
1567 zone->contiguous = false;
1568}
1569
7e18adb4 1570#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1571static void __init deferred_free_range(unsigned long pfn,
1572 unsigned long nr_pages)
a4de83dd 1573{
2f47a91f
PT
1574 struct page *page;
1575 unsigned long i;
a4de83dd 1576
2f47a91f 1577 if (!nr_pages)
a4de83dd
MG
1578 return;
1579
2f47a91f
PT
1580 page = pfn_to_page(pfn);
1581
a4de83dd 1582 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1583 if (nr_pages == pageblock_nr_pages &&
1584 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1585 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1586 __free_pages_core(page, pageblock_order);
a4de83dd
MG
1587 return;
1588 }
1589
e780149b
XQ
1590 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1591 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1592 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
a9cd410a 1593 __free_pages_core(page, 0);
e780149b 1594 }
a4de83dd
MG
1595}
1596
d3cd131d
NS
1597/* Completion tracking for deferred_init_memmap() threads */
1598static atomic_t pgdat_init_n_undone __initdata;
1599static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1600
1601static inline void __init pgdat_init_report_one_done(void)
1602{
1603 if (atomic_dec_and_test(&pgdat_init_n_undone))
1604 complete(&pgdat_init_all_done_comp);
1605}
0e1cc95b 1606
2f47a91f 1607/*
80b1f41c
PT
1608 * Returns true if page needs to be initialized or freed to buddy allocator.
1609 *
1610 * First we check if pfn is valid on architectures where it is possible to have
1611 * holes within pageblock_nr_pages. On systems where it is not possible, this
1612 * function is optimized out.
1613 *
1614 * Then, we check if a current large page is valid by only checking the validity
1615 * of the head pfn.
2f47a91f 1616 */
56ec43d8 1617static inline bool __init deferred_pfn_valid(unsigned long pfn)
2f47a91f 1618{
80b1f41c
PT
1619 if (!pfn_valid_within(pfn))
1620 return false;
1621 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1622 return false;
80b1f41c
PT
1623 return true;
1624}
2f47a91f 1625
80b1f41c
PT
1626/*
1627 * Free pages to buddy allocator. Try to free aligned pages in
1628 * pageblock_nr_pages sizes.
1629 */
56ec43d8 1630static void __init deferred_free_pages(unsigned long pfn,
80b1f41c
PT
1631 unsigned long end_pfn)
1632{
80b1f41c
PT
1633 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1634 unsigned long nr_free = 0;
2f47a91f 1635
80b1f41c 1636 for (; pfn < end_pfn; pfn++) {
56ec43d8 1637 if (!deferred_pfn_valid(pfn)) {
80b1f41c
PT
1638 deferred_free_range(pfn - nr_free, nr_free);
1639 nr_free = 0;
1640 } else if (!(pfn & nr_pgmask)) {
1641 deferred_free_range(pfn - nr_free, nr_free);
1642 nr_free = 1;
3a2d7fa8 1643 touch_nmi_watchdog();
80b1f41c
PT
1644 } else {
1645 nr_free++;
1646 }
1647 }
1648 /* Free the last block of pages to allocator */
1649 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1650}
1651
80b1f41c
PT
1652/*
1653 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1654 * by performing it only once every pageblock_nr_pages.
1655 * Return number of pages initialized.
1656 */
56ec43d8 1657static unsigned long __init deferred_init_pages(struct zone *zone,
80b1f41c
PT
1658 unsigned long pfn,
1659 unsigned long end_pfn)
2f47a91f 1660{
2f47a91f 1661 unsigned long nr_pgmask = pageblock_nr_pages - 1;
56ec43d8 1662 int nid = zone_to_nid(zone);
2f47a91f 1663 unsigned long nr_pages = 0;
56ec43d8 1664 int zid = zone_idx(zone);
2f47a91f 1665 struct page *page = NULL;
2f47a91f 1666
80b1f41c 1667 for (; pfn < end_pfn; pfn++) {
56ec43d8 1668 if (!deferred_pfn_valid(pfn)) {
80b1f41c 1669 page = NULL;
2f47a91f 1670 continue;
80b1f41c 1671 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1672 page = pfn_to_page(pfn);
3a2d7fa8 1673 touch_nmi_watchdog();
80b1f41c
PT
1674 } else {
1675 page++;
2f47a91f 1676 }
d0dc12e8 1677 __init_single_page(page, pfn, zid, nid);
80b1f41c 1678 nr_pages++;
2f47a91f 1679 }
80b1f41c 1680 return (nr_pages);
2f47a91f
PT
1681}
1682
0e56acae
AD
1683/*
1684 * This function is meant to pre-load the iterator for the zone init.
1685 * Specifically it walks through the ranges until we are caught up to the
1686 * first_init_pfn value and exits there. If we never encounter the value we
1687 * return false indicating there are no valid ranges left.
1688 */
1689static bool __init
1690deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1691 unsigned long *spfn, unsigned long *epfn,
1692 unsigned long first_init_pfn)
1693{
1694 u64 j;
1695
1696 /*
1697 * Start out by walking through the ranges in this zone that have
1698 * already been initialized. We don't need to do anything with them
1699 * so we just need to flush them out of the system.
1700 */
1701 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1702 if (*epfn <= first_init_pfn)
1703 continue;
1704 if (*spfn < first_init_pfn)
1705 *spfn = first_init_pfn;
1706 *i = j;
1707 return true;
1708 }
1709
1710 return false;
1711}
1712
1713/*
1714 * Initialize and free pages. We do it in two loops: first we initialize
1715 * struct page, then free to buddy allocator, because while we are
1716 * freeing pages we can access pages that are ahead (computing buddy
1717 * page in __free_one_page()).
1718 *
1719 * In order to try and keep some memory in the cache we have the loop
1720 * broken along max page order boundaries. This way we will not cause
1721 * any issues with the buddy page computation.
1722 */
1723static unsigned long __init
1724deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1725 unsigned long *end_pfn)
1726{
1727 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1728 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1729 unsigned long nr_pages = 0;
1730 u64 j = *i;
1731
1732 /* First we loop through and initialize the page values */
1733 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1734 unsigned long t;
1735
1736 if (mo_pfn <= *start_pfn)
1737 break;
1738
1739 t = min(mo_pfn, *end_pfn);
1740 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1741
1742 if (mo_pfn < *end_pfn) {
1743 *start_pfn = mo_pfn;
1744 break;
1745 }
1746 }
1747
1748 /* Reset values and now loop through freeing pages as needed */
1749 swap(j, *i);
1750
1751 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1752 unsigned long t;
1753
1754 if (mo_pfn <= spfn)
1755 break;
1756
1757 t = min(mo_pfn, epfn);
1758 deferred_free_pages(spfn, t);
1759
1760 if (mo_pfn <= epfn)
1761 break;
1762 }
1763
1764 return nr_pages;
1765}
1766
7e18adb4 1767/* Initialise remaining memory on a node */
0e1cc95b 1768static int __init deferred_init_memmap(void *data)
7e18adb4 1769{
0e1cc95b 1770 pg_data_t *pgdat = data;
0e56acae
AD
1771 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1772 unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1773 unsigned long first_init_pfn, flags;
7e18adb4 1774 unsigned long start = jiffies;
7e18adb4 1775 struct zone *zone;
0e56acae 1776 int zid;
2f47a91f 1777 u64 i;
7e18adb4 1778
3a2d7fa8
PT
1779 /* Bind memory initialisation thread to a local node if possible */
1780 if (!cpumask_empty(cpumask))
1781 set_cpus_allowed_ptr(current, cpumask);
1782
1783 pgdat_resize_lock(pgdat, &flags);
1784 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1785 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1786 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1787 pgdat_init_report_one_done();
0e1cc95b
MG
1788 return 0;
1789 }
1790
7e18adb4
MG
1791 /* Sanity check boundaries */
1792 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1793 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1794 pgdat->first_deferred_pfn = ULONG_MAX;
1795
1796 /* Only the highest zone is deferred so find it */
1797 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1798 zone = pgdat->node_zones + zid;
1799 if (first_init_pfn < zone_end_pfn(zone))
1800 break;
1801 }
0e56acae
AD
1802
1803 /* If the zone is empty somebody else may have cleared out the zone */
1804 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1805 first_init_pfn))
1806 goto zone_empty;
7e18adb4 1807
80b1f41c 1808 /*
0e56acae
AD
1809 * Initialize and free pages in MAX_ORDER sized increments so
1810 * that we can avoid introducing any issues with the buddy
1811 * allocator.
80b1f41c 1812 */
0e56acae
AD
1813 while (spfn < epfn)
1814 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1815zone_empty:
3a2d7fa8 1816 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1817
1818 /* Sanity check that the next zone really is unpopulated */
1819 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1820
837566e7
AD
1821 pr_info("node %d initialised, %lu pages in %ums\n",
1822 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1823
1824 pgdat_init_report_one_done();
0e1cc95b
MG
1825 return 0;
1826}
c9e97a19 1827
c9e97a19
PT
1828/*
1829 * If this zone has deferred pages, try to grow it by initializing enough
1830 * deferred pages to satisfy the allocation specified by order, rounded up to
1831 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1832 * of SECTION_SIZE bytes by initializing struct pages in increments of
1833 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1834 *
1835 * Return true when zone was grown, otherwise return false. We return true even
1836 * when we grow less than requested, to let the caller decide if there are
1837 * enough pages to satisfy the allocation.
1838 *
1839 * Note: We use noinline because this function is needed only during boot, and
1840 * it is called from a __ref function _deferred_grow_zone. This way we are
1841 * making sure that it is not inlined into permanent text section.
1842 */
1843static noinline bool __init
1844deferred_grow_zone(struct zone *zone, unsigned int order)
1845{
c9e97a19 1846 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
837566e7 1847 pg_data_t *pgdat = zone->zone_pgdat;
c9e97a19 1848 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
0e56acae
AD
1849 unsigned long spfn, epfn, flags;
1850 unsigned long nr_pages = 0;
c9e97a19
PT
1851 u64 i;
1852
1853 /* Only the last zone may have deferred pages */
1854 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1855 return false;
1856
1857 pgdat_resize_lock(pgdat, &flags);
1858
1859 /*
1860 * If deferred pages have been initialized while we were waiting for
1861 * the lock, return true, as the zone was grown. The caller will retry
1862 * this zone. We won't return to this function since the caller also
1863 * has this static branch.
1864 */
1865 if (!static_branch_unlikely(&deferred_pages)) {
1866 pgdat_resize_unlock(pgdat, &flags);
1867 return true;
1868 }
1869
1870 /*
1871 * If someone grew this zone while we were waiting for spinlock, return
1872 * true, as there might be enough pages already.
1873 */
1874 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1875 pgdat_resize_unlock(pgdat, &flags);
1876 return true;
1877 }
1878
0e56acae
AD
1879 /* If the zone is empty somebody else may have cleared out the zone */
1880 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1881 first_deferred_pfn)) {
1882 pgdat->first_deferred_pfn = ULONG_MAX;
c9e97a19 1883 pgdat_resize_unlock(pgdat, &flags);
b9705d87
JG
1884 /* Retry only once. */
1885 return first_deferred_pfn != ULONG_MAX;
c9e97a19
PT
1886 }
1887
0e56acae
AD
1888 /*
1889 * Initialize and free pages in MAX_ORDER sized increments so
1890 * that we can avoid introducing any issues with the buddy
1891 * allocator.
1892 */
1893 while (spfn < epfn) {
1894 /* update our first deferred PFN for this section */
1895 first_deferred_pfn = spfn;
1896
1897 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
c9e97a19 1898
0e56acae
AD
1899 /* We should only stop along section boundaries */
1900 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1901 continue;
c9e97a19 1902
0e56acae 1903 /* If our quota has been met we can stop here */
c9e97a19
PT
1904 if (nr_pages >= nr_pages_needed)
1905 break;
1906 }
1907
0e56acae 1908 pgdat->first_deferred_pfn = spfn;
c9e97a19
PT
1909 pgdat_resize_unlock(pgdat, &flags);
1910
1911 return nr_pages > 0;
1912}
1913
1914/*
1915 * deferred_grow_zone() is __init, but it is called from
1916 * get_page_from_freelist() during early boot until deferred_pages permanently
1917 * disables this call. This is why we have refdata wrapper to avoid warning,
1918 * and to ensure that the function body gets unloaded.
1919 */
1920static bool __ref
1921_deferred_grow_zone(struct zone *zone, unsigned int order)
1922{
1923 return deferred_grow_zone(zone, order);
1924}
1925
7cf91a98 1926#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1927
1928void __init page_alloc_init_late(void)
1929{
7cf91a98 1930 struct zone *zone;
e900a918 1931 int nid;
7cf91a98
JK
1932
1933#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1934
d3cd131d
NS
1935 /* There will be num_node_state(N_MEMORY) threads */
1936 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1937 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1938 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1939 }
1940
1941 /* Block until all are initialised */
d3cd131d 1942 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1943
c9e97a19
PT
1944 /*
1945 * We initialized the rest of the deferred pages. Permanently disable
1946 * on-demand struct page initialization.
1947 */
1948 static_branch_disable(&deferred_pages);
1949
4248b0da
MG
1950 /* Reinit limits that are based on free pages after the kernel is up */
1951 files_maxfiles_init();
7cf91a98 1952#endif
350e88ba 1953
3010f876
PT
1954 /* Discard memblock private memory */
1955 memblock_discard();
7cf91a98 1956
e900a918
DW
1957 for_each_node_state(nid, N_MEMORY)
1958 shuffle_free_memory(NODE_DATA(nid));
1959
7cf91a98
JK
1960 for_each_populated_zone(zone)
1961 set_zone_contiguous(zone);
3972f6bb
VB
1962
1963#ifdef CONFIG_DEBUG_PAGEALLOC
1964 init_debug_guardpage();
1965#endif
7e18adb4 1966}
7e18adb4 1967
47118af0 1968#ifdef CONFIG_CMA
9cf510a5 1969/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1970void __init init_cma_reserved_pageblock(struct page *page)
1971{
1972 unsigned i = pageblock_nr_pages;
1973 struct page *p = page;
1974
1975 do {
1976 __ClearPageReserved(p);
1977 set_page_count(p, 0);
d883c6cf 1978 } while (++p, --i);
47118af0 1979
47118af0 1980 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1981
1982 if (pageblock_order >= MAX_ORDER) {
1983 i = pageblock_nr_pages;
1984 p = page;
1985 do {
1986 set_page_refcounted(p);
1987 __free_pages(p, MAX_ORDER - 1);
1988 p += MAX_ORDER_NR_PAGES;
1989 } while (i -= MAX_ORDER_NR_PAGES);
1990 } else {
1991 set_page_refcounted(page);
1992 __free_pages(page, pageblock_order);
1993 }
1994
3dcc0571 1995 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1996}
1997#endif
1da177e4
LT
1998
1999/*
2000 * The order of subdivision here is critical for the IO subsystem.
2001 * Please do not alter this order without good reasons and regression
2002 * testing. Specifically, as large blocks of memory are subdivided,
2003 * the order in which smaller blocks are delivered depends on the order
2004 * they're subdivided in this function. This is the primary factor
2005 * influencing the order in which pages are delivered to the IO
2006 * subsystem according to empirical testing, and this is also justified
2007 * by considering the behavior of a buddy system containing a single
2008 * large block of memory acted on by a series of small allocations.
2009 * This behavior is a critical factor in sglist merging's success.
2010 *
6d49e352 2011 * -- nyc
1da177e4 2012 */
085cc7d5 2013static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
2014 int low, int high, struct free_area *area,
2015 int migratetype)
1da177e4
LT
2016{
2017 unsigned long size = 1 << high;
2018
2019 while (high > low) {
2020 area--;
2021 high--;
2022 size >>= 1;
309381fe 2023 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 2024
acbc15a4
JK
2025 /*
2026 * Mark as guard pages (or page), that will allow to
2027 * merge back to allocator when buddy will be freed.
2028 * Corresponding page table entries will not be touched,
2029 * pages will stay not present in virtual address space
2030 */
2031 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 2032 continue;
acbc15a4 2033
b03641af 2034 add_to_free_area(&page[size], area, migratetype);
1da177e4
LT
2035 set_page_order(&page[size], high);
2036 }
1da177e4
LT
2037}
2038
4e611801 2039static void check_new_page_bad(struct page *page)
1da177e4 2040{
4e611801
VB
2041 const char *bad_reason = NULL;
2042 unsigned long bad_flags = 0;
7bfec6f4 2043
53f9263b 2044 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
2045 bad_reason = "nonzero mapcount";
2046 if (unlikely(page->mapping != NULL))
2047 bad_reason = "non-NULL mapping";
fe896d18 2048 if (unlikely(page_ref_count(page) != 0))
136ac591 2049 bad_reason = "nonzero _refcount";
f4c18e6f
NH
2050 if (unlikely(page->flags & __PG_HWPOISON)) {
2051 bad_reason = "HWPoisoned (hardware-corrupted)";
2052 bad_flags = __PG_HWPOISON;
e570f56c
NH
2053 /* Don't complain about hwpoisoned pages */
2054 page_mapcount_reset(page); /* remove PageBuddy */
2055 return;
f4c18e6f 2056 }
f0b791a3
DH
2057 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2058 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2059 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2060 }
9edad6ea
JW
2061#ifdef CONFIG_MEMCG
2062 if (unlikely(page->mem_cgroup))
2063 bad_reason = "page still charged to cgroup";
2064#endif
4e611801
VB
2065 bad_page(page, bad_reason, bad_flags);
2066}
2067
2068/*
2069 * This page is about to be returned from the page allocator
2070 */
2071static inline int check_new_page(struct page *page)
2072{
2073 if (likely(page_expected_state(page,
2074 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2075 return 0;
2076
2077 check_new_page_bad(page);
2078 return 1;
2a7684a2
WF
2079}
2080
bd33ef36 2081static inline bool free_pages_prezeroed(void)
1414c7f4 2082{
6471384a
AP
2083 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2084 page_poisoning_enabled()) || want_init_on_free();
1414c7f4
LA
2085}
2086
479f854a 2087#ifdef CONFIG_DEBUG_VM
4462b32c
VB
2088/*
2089 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2090 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2091 * also checked when pcp lists are refilled from the free lists.
2092 */
2093static inline bool check_pcp_refill(struct page *page)
479f854a 2094{
4462b32c
VB
2095 if (debug_pagealloc_enabled())
2096 return check_new_page(page);
2097 else
2098 return false;
479f854a
MG
2099}
2100
4462b32c 2101static inline bool check_new_pcp(struct page *page)
479f854a
MG
2102{
2103 return check_new_page(page);
2104}
2105#else
4462b32c
VB
2106/*
2107 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2108 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2109 * enabled, they are also checked when being allocated from the pcp lists.
2110 */
2111static inline bool check_pcp_refill(struct page *page)
479f854a
MG
2112{
2113 return check_new_page(page);
2114}
4462b32c 2115static inline bool check_new_pcp(struct page *page)
479f854a 2116{
4462b32c
VB
2117 if (debug_pagealloc_enabled())
2118 return check_new_page(page);
2119 else
2120 return false;
479f854a
MG
2121}
2122#endif /* CONFIG_DEBUG_VM */
2123
2124static bool check_new_pages(struct page *page, unsigned int order)
2125{
2126 int i;
2127 for (i = 0; i < (1 << order); i++) {
2128 struct page *p = page + i;
2129
2130 if (unlikely(check_new_page(p)))
2131 return true;
2132 }
2133
2134 return false;
2135}
2136
46f24fd8
JK
2137inline void post_alloc_hook(struct page *page, unsigned int order,
2138 gfp_t gfp_flags)
2139{
2140 set_page_private(page, 0);
2141 set_page_refcounted(page);
2142
2143 arch_alloc_page(page, order);
d6332692
RE
2144 if (debug_pagealloc_enabled())
2145 kernel_map_pages(page, 1 << order, 1);
46f24fd8 2146 kasan_alloc_pages(page, order);
4117992d 2147 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
2148 set_page_owner(page, order, gfp_flags);
2149}
2150
479f854a 2151static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 2152 unsigned int alloc_flags)
2a7684a2 2153{
46f24fd8 2154 post_alloc_hook(page, order, gfp_flags);
17cf4406 2155
6471384a
AP
2156 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2157 kernel_init_free_pages(page, 1 << order);
17cf4406
NP
2158
2159 if (order && (gfp_flags & __GFP_COMP))
2160 prep_compound_page(page, order);
2161
75379191 2162 /*
2f064f34 2163 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
2164 * allocate the page. The expectation is that the caller is taking
2165 * steps that will free more memory. The caller should avoid the page
2166 * being used for !PFMEMALLOC purposes.
2167 */
2f064f34
MH
2168 if (alloc_flags & ALLOC_NO_WATERMARKS)
2169 set_page_pfmemalloc(page);
2170 else
2171 clear_page_pfmemalloc(page);
1da177e4
LT
2172}
2173
56fd56b8
MG
2174/*
2175 * Go through the free lists for the given migratetype and remove
2176 * the smallest available page from the freelists
2177 */
85ccc8fa 2178static __always_inline
728ec980 2179struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
2180 int migratetype)
2181{
2182 unsigned int current_order;
b8af2941 2183 struct free_area *area;
56fd56b8
MG
2184 struct page *page;
2185
2186 /* Find a page of the appropriate size in the preferred list */
2187 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2188 area = &(zone->free_area[current_order]);
b03641af 2189 page = get_page_from_free_area(area, migratetype);
a16601c5
GT
2190 if (!page)
2191 continue;
b03641af 2192 del_page_from_free_area(page, area);
56fd56b8 2193 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 2194 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
2195 return page;
2196 }
2197
2198 return NULL;
2199}
2200
2201
b2a0ac88
MG
2202/*
2203 * This array describes the order lists are fallen back to when
2204 * the free lists for the desirable migrate type are depleted
2205 */
47118af0 2206static int fallbacks[MIGRATE_TYPES][4] = {
974a786e 2207 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
974a786e 2208 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
7ead3342 2209 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
47118af0 2210#ifdef CONFIG_CMA
974a786e 2211 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 2212#endif
194159fb 2213#ifdef CONFIG_MEMORY_ISOLATION
974a786e 2214 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 2215#endif
b2a0ac88
MG
2216};
2217
dc67647b 2218#ifdef CONFIG_CMA
85ccc8fa 2219static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
2220 unsigned int order)
2221{
2222 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2223}
2224#else
2225static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2226 unsigned int order) { return NULL; }
2227#endif
2228
c361be55
MG
2229/*
2230 * Move the free pages in a range to the free lists of the requested type.
d9c23400 2231 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
2232 * boundary. If alignment is required, use move_freepages_block()
2233 */
02aa0cdd 2234static int move_freepages(struct zone *zone,
b69a7288 2235 struct page *start_page, struct page *end_page,
02aa0cdd 2236 int migratetype, int *num_movable)
c361be55
MG
2237{
2238 struct page *page;
d00181b9 2239 unsigned int order;
d100313f 2240 int pages_moved = 0;
c361be55 2241
c361be55
MG
2242 for (page = start_page; page <= end_page;) {
2243 if (!pfn_valid_within(page_to_pfn(page))) {
2244 page++;
2245 continue;
2246 }
2247
2248 if (!PageBuddy(page)) {
02aa0cdd
VB
2249 /*
2250 * We assume that pages that could be isolated for
2251 * migration are movable. But we don't actually try
2252 * isolating, as that would be expensive.
2253 */
2254 if (num_movable &&
2255 (PageLRU(page) || __PageMovable(page)))
2256 (*num_movable)++;
2257
c361be55
MG
2258 page++;
2259 continue;
2260 }
2261
cd961038
DR
2262 /* Make sure we are not inadvertently changing nodes */
2263 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2264 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2265
c361be55 2266 order = page_order(page);
b03641af 2267 move_to_free_area(page, &zone->free_area[order], migratetype);
c361be55 2268 page += 1 << order;
d100313f 2269 pages_moved += 1 << order;
c361be55
MG
2270 }
2271
d100313f 2272 return pages_moved;
c361be55
MG
2273}
2274
ee6f509c 2275int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2276 int migratetype, int *num_movable)
c361be55
MG
2277{
2278 unsigned long start_pfn, end_pfn;
2279 struct page *start_page, *end_page;
2280
4a222127
DR
2281 if (num_movable)
2282 *num_movable = 0;
2283
c361be55 2284 start_pfn = page_to_pfn(page);
d9c23400 2285 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2286 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2287 end_page = start_page + pageblock_nr_pages - 1;
2288 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2289
2290 /* Do not cross zone boundaries */
108bcc96 2291 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2292 start_page = page;
108bcc96 2293 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2294 return 0;
2295
02aa0cdd
VB
2296 return move_freepages(zone, start_page, end_page, migratetype,
2297 num_movable);
c361be55
MG
2298}
2299
2f66a68f
MG
2300static void change_pageblock_range(struct page *pageblock_page,
2301 int start_order, int migratetype)
2302{
2303 int nr_pageblocks = 1 << (start_order - pageblock_order);
2304
2305 while (nr_pageblocks--) {
2306 set_pageblock_migratetype(pageblock_page, migratetype);
2307 pageblock_page += pageblock_nr_pages;
2308 }
2309}
2310
fef903ef 2311/*
9c0415eb
VB
2312 * When we are falling back to another migratetype during allocation, try to
2313 * steal extra free pages from the same pageblocks to satisfy further
2314 * allocations, instead of polluting multiple pageblocks.
2315 *
2316 * If we are stealing a relatively large buddy page, it is likely there will
2317 * be more free pages in the pageblock, so try to steal them all. For
2318 * reclaimable and unmovable allocations, we steal regardless of page size,
2319 * as fragmentation caused by those allocations polluting movable pageblocks
2320 * is worse than movable allocations stealing from unmovable and reclaimable
2321 * pageblocks.
fef903ef 2322 */
4eb7dce6
JK
2323static bool can_steal_fallback(unsigned int order, int start_mt)
2324{
2325 /*
2326 * Leaving this order check is intended, although there is
2327 * relaxed order check in next check. The reason is that
2328 * we can actually steal whole pageblock if this condition met,
2329 * but, below check doesn't guarantee it and that is just heuristic
2330 * so could be changed anytime.
2331 */
2332 if (order >= pageblock_order)
2333 return true;
2334
2335 if (order >= pageblock_order / 2 ||
2336 start_mt == MIGRATE_RECLAIMABLE ||
2337 start_mt == MIGRATE_UNMOVABLE ||
2338 page_group_by_mobility_disabled)
2339 return true;
2340
2341 return false;
2342}
2343
1c30844d
MG
2344static inline void boost_watermark(struct zone *zone)
2345{
2346 unsigned long max_boost;
2347
2348 if (!watermark_boost_factor)
2349 return;
2350
2351 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2352 watermark_boost_factor, 10000);
94b3334c
MG
2353
2354 /*
2355 * high watermark may be uninitialised if fragmentation occurs
2356 * very early in boot so do not boost. We do not fall
2357 * through and boost by pageblock_nr_pages as failing
2358 * allocations that early means that reclaim is not going
2359 * to help and it may even be impossible to reclaim the
2360 * boosted watermark resulting in a hang.
2361 */
2362 if (!max_boost)
2363 return;
2364
1c30844d
MG
2365 max_boost = max(pageblock_nr_pages, max_boost);
2366
2367 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2368 max_boost);
2369}
2370
4eb7dce6
JK
2371/*
2372 * This function implements actual steal behaviour. If order is large enough,
2373 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2374 * pageblock to our migratetype and determine how many already-allocated pages
2375 * are there in the pageblock with a compatible migratetype. If at least half
2376 * of pages are free or compatible, we can change migratetype of the pageblock
2377 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2378 */
2379static void steal_suitable_fallback(struct zone *zone, struct page *page,
1c30844d 2380 unsigned int alloc_flags, int start_type, bool whole_block)
fef903ef 2381{
d00181b9 2382 unsigned int current_order = page_order(page);
3bc48f96 2383 struct free_area *area;
02aa0cdd
VB
2384 int free_pages, movable_pages, alike_pages;
2385 int old_block_type;
2386
2387 old_block_type = get_pageblock_migratetype(page);
fef903ef 2388
3bc48f96
VB
2389 /*
2390 * This can happen due to races and we want to prevent broken
2391 * highatomic accounting.
2392 */
02aa0cdd 2393 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2394 goto single_page;
2395
fef903ef
SB
2396 /* Take ownership for orders >= pageblock_order */
2397 if (current_order >= pageblock_order) {
2398 change_pageblock_range(page, current_order, start_type);
3bc48f96 2399 goto single_page;
fef903ef
SB
2400 }
2401
1c30844d
MG
2402 /*
2403 * Boost watermarks to increase reclaim pressure to reduce the
2404 * likelihood of future fallbacks. Wake kswapd now as the node
2405 * may be balanced overall and kswapd will not wake naturally.
2406 */
2407 boost_watermark(zone);
2408 if (alloc_flags & ALLOC_KSWAPD)
73444bc4 2409 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1c30844d 2410
3bc48f96
VB
2411 /* We are not allowed to try stealing from the whole block */
2412 if (!whole_block)
2413 goto single_page;
2414
02aa0cdd
VB
2415 free_pages = move_freepages_block(zone, page, start_type,
2416 &movable_pages);
2417 /*
2418 * Determine how many pages are compatible with our allocation.
2419 * For movable allocation, it's the number of movable pages which
2420 * we just obtained. For other types it's a bit more tricky.
2421 */
2422 if (start_type == MIGRATE_MOVABLE) {
2423 alike_pages = movable_pages;
2424 } else {
2425 /*
2426 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2427 * to MOVABLE pageblock, consider all non-movable pages as
2428 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2429 * vice versa, be conservative since we can't distinguish the
2430 * exact migratetype of non-movable pages.
2431 */
2432 if (old_block_type == MIGRATE_MOVABLE)
2433 alike_pages = pageblock_nr_pages
2434 - (free_pages + movable_pages);
2435 else
2436 alike_pages = 0;
2437 }
2438
3bc48f96 2439 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2440 if (!free_pages)
3bc48f96 2441 goto single_page;
fef903ef 2442
02aa0cdd
VB
2443 /*
2444 * If a sufficient number of pages in the block are either free or of
2445 * comparable migratability as our allocation, claim the whole block.
2446 */
2447 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2448 page_group_by_mobility_disabled)
2449 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2450
2451 return;
2452
2453single_page:
2454 area = &zone->free_area[current_order];
b03641af 2455 move_to_free_area(page, area, start_type);
4eb7dce6
JK
2456}
2457
2149cdae
JK
2458/*
2459 * Check whether there is a suitable fallback freepage with requested order.
2460 * If only_stealable is true, this function returns fallback_mt only if
2461 * we can steal other freepages all together. This would help to reduce
2462 * fragmentation due to mixed migratetype pages in one pageblock.
2463 */
2464int find_suitable_fallback(struct free_area *area, unsigned int order,
2465 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2466{
2467 int i;
2468 int fallback_mt;
2469
2470 if (area->nr_free == 0)
2471 return -1;
2472
2473 *can_steal = false;
2474 for (i = 0;; i++) {
2475 fallback_mt = fallbacks[migratetype][i];
974a786e 2476 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2477 break;
2478
b03641af 2479 if (free_area_empty(area, fallback_mt))
4eb7dce6 2480 continue;
fef903ef 2481
4eb7dce6
JK
2482 if (can_steal_fallback(order, migratetype))
2483 *can_steal = true;
2484
2149cdae
JK
2485 if (!only_stealable)
2486 return fallback_mt;
2487
2488 if (*can_steal)
2489 return fallback_mt;
fef903ef 2490 }
4eb7dce6
JK
2491
2492 return -1;
fef903ef
SB
2493}
2494
0aaa29a5
MG
2495/*
2496 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2497 * there are no empty page blocks that contain a page with a suitable order
2498 */
2499static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2500 unsigned int alloc_order)
2501{
2502 int mt;
2503 unsigned long max_managed, flags;
2504
2505 /*
2506 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2507 * Check is race-prone but harmless.
2508 */
9705bea5 2509 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
0aaa29a5
MG
2510 if (zone->nr_reserved_highatomic >= max_managed)
2511 return;
2512
2513 spin_lock_irqsave(&zone->lock, flags);
2514
2515 /* Recheck the nr_reserved_highatomic limit under the lock */
2516 if (zone->nr_reserved_highatomic >= max_managed)
2517 goto out_unlock;
2518
2519 /* Yoink! */
2520 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2521 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2522 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2523 zone->nr_reserved_highatomic += pageblock_nr_pages;
2524 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2525 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2526 }
2527
2528out_unlock:
2529 spin_unlock_irqrestore(&zone->lock, flags);
2530}
2531
2532/*
2533 * Used when an allocation is about to fail under memory pressure. This
2534 * potentially hurts the reliability of high-order allocations when under
2535 * intense memory pressure but failed atomic allocations should be easier
2536 * to recover from than an OOM.
29fac03b
MK
2537 *
2538 * If @force is true, try to unreserve a pageblock even though highatomic
2539 * pageblock is exhausted.
0aaa29a5 2540 */
29fac03b
MK
2541static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2542 bool force)
0aaa29a5
MG
2543{
2544 struct zonelist *zonelist = ac->zonelist;
2545 unsigned long flags;
2546 struct zoneref *z;
2547 struct zone *zone;
2548 struct page *page;
2549 int order;
04c8716f 2550 bool ret;
0aaa29a5
MG
2551
2552 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2553 ac->nodemask) {
29fac03b
MK
2554 /*
2555 * Preserve at least one pageblock unless memory pressure
2556 * is really high.
2557 */
2558 if (!force && zone->nr_reserved_highatomic <=
2559 pageblock_nr_pages)
0aaa29a5
MG
2560 continue;
2561
2562 spin_lock_irqsave(&zone->lock, flags);
2563 for (order = 0; order < MAX_ORDER; order++) {
2564 struct free_area *area = &(zone->free_area[order]);
2565
b03641af 2566 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
a16601c5 2567 if (!page)
0aaa29a5
MG
2568 continue;
2569
0aaa29a5 2570 /*
4855e4a7
MK
2571 * In page freeing path, migratetype change is racy so
2572 * we can counter several free pages in a pageblock
2573 * in this loop althoug we changed the pageblock type
2574 * from highatomic to ac->migratetype. So we should
2575 * adjust the count once.
0aaa29a5 2576 */
a6ffdc07 2577 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2578 /*
2579 * It should never happen but changes to
2580 * locking could inadvertently allow a per-cpu
2581 * drain to add pages to MIGRATE_HIGHATOMIC
2582 * while unreserving so be safe and watch for
2583 * underflows.
2584 */
2585 zone->nr_reserved_highatomic -= min(
2586 pageblock_nr_pages,
2587 zone->nr_reserved_highatomic);
2588 }
0aaa29a5
MG
2589
2590 /*
2591 * Convert to ac->migratetype and avoid the normal
2592 * pageblock stealing heuristics. Minimally, the caller
2593 * is doing the work and needs the pages. More
2594 * importantly, if the block was always converted to
2595 * MIGRATE_UNMOVABLE or another type then the number
2596 * of pageblocks that cannot be completely freed
2597 * may increase.
2598 */
2599 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2600 ret = move_freepages_block(zone, page, ac->migratetype,
2601 NULL);
29fac03b
MK
2602 if (ret) {
2603 spin_unlock_irqrestore(&zone->lock, flags);
2604 return ret;
2605 }
0aaa29a5
MG
2606 }
2607 spin_unlock_irqrestore(&zone->lock, flags);
2608 }
04c8716f
MK
2609
2610 return false;
0aaa29a5
MG
2611}
2612
3bc48f96
VB
2613/*
2614 * Try finding a free buddy page on the fallback list and put it on the free
2615 * list of requested migratetype, possibly along with other pages from the same
2616 * block, depending on fragmentation avoidance heuristics. Returns true if
2617 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2618 *
2619 * The use of signed ints for order and current_order is a deliberate
2620 * deviation from the rest of this file, to make the for loop
2621 * condition simpler.
3bc48f96 2622 */
85ccc8fa 2623static __always_inline bool
6bb15450
MG
2624__rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2625 unsigned int alloc_flags)
b2a0ac88 2626{
b8af2941 2627 struct free_area *area;
b002529d 2628 int current_order;
6bb15450 2629 int min_order = order;
b2a0ac88 2630 struct page *page;
4eb7dce6
JK
2631 int fallback_mt;
2632 bool can_steal;
b2a0ac88 2633
6bb15450
MG
2634 /*
2635 * Do not steal pages from freelists belonging to other pageblocks
2636 * i.e. orders < pageblock_order. If there are no local zones free,
2637 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2638 */
2639 if (alloc_flags & ALLOC_NOFRAGMENT)
2640 min_order = pageblock_order;
2641
7a8f58f3
VB
2642 /*
2643 * Find the largest available free page in the other list. This roughly
2644 * approximates finding the pageblock with the most free pages, which
2645 * would be too costly to do exactly.
2646 */
6bb15450 2647 for (current_order = MAX_ORDER - 1; current_order >= min_order;
7aeb09f9 2648 --current_order) {
4eb7dce6
JK
2649 area = &(zone->free_area[current_order]);
2650 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2651 start_migratetype, false, &can_steal);
4eb7dce6
JK
2652 if (fallback_mt == -1)
2653 continue;
b2a0ac88 2654
7a8f58f3
VB
2655 /*
2656 * We cannot steal all free pages from the pageblock and the
2657 * requested migratetype is movable. In that case it's better to
2658 * steal and split the smallest available page instead of the
2659 * largest available page, because even if the next movable
2660 * allocation falls back into a different pageblock than this
2661 * one, it won't cause permanent fragmentation.
2662 */
2663 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2664 && current_order > order)
2665 goto find_smallest;
b2a0ac88 2666
7a8f58f3
VB
2667 goto do_steal;
2668 }
e0fff1bd 2669
7a8f58f3 2670 return false;
e0fff1bd 2671
7a8f58f3
VB
2672find_smallest:
2673 for (current_order = order; current_order < MAX_ORDER;
2674 current_order++) {
2675 area = &(zone->free_area[current_order]);
2676 fallback_mt = find_suitable_fallback(area, current_order,
2677 start_migratetype, false, &can_steal);
2678 if (fallback_mt != -1)
2679 break;
b2a0ac88
MG
2680 }
2681
7a8f58f3
VB
2682 /*
2683 * This should not happen - we already found a suitable fallback
2684 * when looking for the largest page.
2685 */
2686 VM_BUG_ON(current_order == MAX_ORDER);
2687
2688do_steal:
b03641af 2689 page = get_page_from_free_area(area, fallback_mt);
7a8f58f3 2690
1c30844d
MG
2691 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2692 can_steal);
7a8f58f3
VB
2693
2694 trace_mm_page_alloc_extfrag(page, order, current_order,
2695 start_migratetype, fallback_mt);
2696
2697 return true;
2698
b2a0ac88
MG
2699}
2700
56fd56b8 2701/*
1da177e4
LT
2702 * Do the hard work of removing an element from the buddy allocator.
2703 * Call me with the zone->lock already held.
2704 */
85ccc8fa 2705static __always_inline struct page *
6bb15450
MG
2706__rmqueue(struct zone *zone, unsigned int order, int migratetype,
2707 unsigned int alloc_flags)
1da177e4 2708{
1da177e4
LT
2709 struct page *page;
2710
3bc48f96 2711retry:
56fd56b8 2712 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2713 if (unlikely(!page)) {
dc67647b
JK
2714 if (migratetype == MIGRATE_MOVABLE)
2715 page = __rmqueue_cma_fallback(zone, order);
2716
6bb15450
MG
2717 if (!page && __rmqueue_fallback(zone, order, migratetype,
2718 alloc_flags))
3bc48f96 2719 goto retry;
728ec980
MG
2720 }
2721
0d3d062a 2722 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2723 return page;
1da177e4
LT
2724}
2725
5f63b720 2726/*
1da177e4
LT
2727 * Obtain a specified number of elements from the buddy allocator, all under
2728 * a single hold of the lock, for efficiency. Add them to the supplied list.
2729 * Returns the number of new pages which were placed at *list.
2730 */
5f63b720 2731static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2732 unsigned long count, struct list_head *list,
6bb15450 2733 int migratetype, unsigned int alloc_flags)
1da177e4 2734{
a6de734b 2735 int i, alloced = 0;
5f63b720 2736
d34b0733 2737 spin_lock(&zone->lock);
1da177e4 2738 for (i = 0; i < count; ++i) {
6bb15450
MG
2739 struct page *page = __rmqueue(zone, order, migratetype,
2740 alloc_flags);
085cc7d5 2741 if (unlikely(page == NULL))
1da177e4 2742 break;
81eabcbe 2743
479f854a
MG
2744 if (unlikely(check_pcp_refill(page)))
2745 continue;
2746
81eabcbe 2747 /*
0fac3ba5
VB
2748 * Split buddy pages returned by expand() are received here in
2749 * physical page order. The page is added to the tail of
2750 * caller's list. From the callers perspective, the linked list
2751 * is ordered by page number under some conditions. This is
2752 * useful for IO devices that can forward direction from the
2753 * head, thus also in the physical page order. This is useful
2754 * for IO devices that can merge IO requests if the physical
2755 * pages are ordered properly.
81eabcbe 2756 */
0fac3ba5 2757 list_add_tail(&page->lru, list);
a6de734b 2758 alloced++;
bb14c2c7 2759 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2760 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2761 -(1 << order));
1da177e4 2762 }
a6de734b
MG
2763
2764 /*
2765 * i pages were removed from the buddy list even if some leak due
2766 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2767 * on i. Do not confuse with 'alloced' which is the number of
2768 * pages added to the pcp list.
2769 */
f2260e6b 2770 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2771 spin_unlock(&zone->lock);
a6de734b 2772 return alloced;
1da177e4
LT
2773}
2774
4ae7c039 2775#ifdef CONFIG_NUMA
8fce4d8e 2776/*
4037d452
CL
2777 * Called from the vmstat counter updater to drain pagesets of this
2778 * currently executing processor on remote nodes after they have
2779 * expired.
2780 *
879336c3
CL
2781 * Note that this function must be called with the thread pinned to
2782 * a single processor.
8fce4d8e 2783 */
4037d452 2784void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2785{
4ae7c039 2786 unsigned long flags;
7be12fc9 2787 int to_drain, batch;
4ae7c039 2788
4037d452 2789 local_irq_save(flags);
4db0c3c2 2790 batch = READ_ONCE(pcp->batch);
7be12fc9 2791 to_drain = min(pcp->count, batch);
77ba9062 2792 if (to_drain > 0)
2a13515c 2793 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2794 local_irq_restore(flags);
4ae7c039
CL
2795}
2796#endif
2797
9f8f2172 2798/*
93481ff0 2799 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2800 *
2801 * The processor must either be the current processor and the
2802 * thread pinned to the current processor or a processor that
2803 * is not online.
2804 */
93481ff0 2805static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2806{
c54ad30c 2807 unsigned long flags;
93481ff0
VB
2808 struct per_cpu_pageset *pset;
2809 struct per_cpu_pages *pcp;
1da177e4 2810
93481ff0
VB
2811 local_irq_save(flags);
2812 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2813
93481ff0 2814 pcp = &pset->pcp;
77ba9062 2815 if (pcp->count)
93481ff0 2816 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2817 local_irq_restore(flags);
2818}
3dfa5721 2819
93481ff0
VB
2820/*
2821 * Drain pcplists of all zones on the indicated processor.
2822 *
2823 * The processor must either be the current processor and the
2824 * thread pinned to the current processor or a processor that
2825 * is not online.
2826 */
2827static void drain_pages(unsigned int cpu)
2828{
2829 struct zone *zone;
2830
2831 for_each_populated_zone(zone) {
2832 drain_pages_zone(cpu, zone);
1da177e4
LT
2833 }
2834}
1da177e4 2835
9f8f2172
CL
2836/*
2837 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2838 *
2839 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2840 * the single zone's pages.
9f8f2172 2841 */
93481ff0 2842void drain_local_pages(struct zone *zone)
9f8f2172 2843{
93481ff0
VB
2844 int cpu = smp_processor_id();
2845
2846 if (zone)
2847 drain_pages_zone(cpu, zone);
2848 else
2849 drain_pages(cpu);
9f8f2172
CL
2850}
2851
0ccce3b9
MG
2852static void drain_local_pages_wq(struct work_struct *work)
2853{
d9367bd0
WY
2854 struct pcpu_drain *drain;
2855
2856 drain = container_of(work, struct pcpu_drain, work);
2857
a459eeb7
MH
2858 /*
2859 * drain_all_pages doesn't use proper cpu hotplug protection so
2860 * we can race with cpu offline when the WQ can move this from
2861 * a cpu pinned worker to an unbound one. We can operate on a different
2862 * cpu which is allright but we also have to make sure to not move to
2863 * a different one.
2864 */
2865 preempt_disable();
d9367bd0 2866 drain_local_pages(drain->zone);
a459eeb7 2867 preempt_enable();
0ccce3b9
MG
2868}
2869
9f8f2172 2870/*
74046494
GBY
2871 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2872 *
93481ff0
VB
2873 * When zone parameter is non-NULL, spill just the single zone's pages.
2874 *
0ccce3b9 2875 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2876 */
93481ff0 2877void drain_all_pages(struct zone *zone)
9f8f2172 2878{
74046494 2879 int cpu;
74046494
GBY
2880
2881 /*
2882 * Allocate in the BSS so we wont require allocation in
2883 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2884 */
2885 static cpumask_t cpus_with_pcps;
2886
ce612879
MH
2887 /*
2888 * Make sure nobody triggers this path before mm_percpu_wq is fully
2889 * initialized.
2890 */
2891 if (WARN_ON_ONCE(!mm_percpu_wq))
2892 return;
2893
bd233f53
MG
2894 /*
2895 * Do not drain if one is already in progress unless it's specific to
2896 * a zone. Such callers are primarily CMA and memory hotplug and need
2897 * the drain to be complete when the call returns.
2898 */
2899 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2900 if (!zone)
2901 return;
2902 mutex_lock(&pcpu_drain_mutex);
2903 }
0ccce3b9 2904
74046494
GBY
2905 /*
2906 * We don't care about racing with CPU hotplug event
2907 * as offline notification will cause the notified
2908 * cpu to drain that CPU pcps and on_each_cpu_mask
2909 * disables preemption as part of its processing
2910 */
2911 for_each_online_cpu(cpu) {
93481ff0
VB
2912 struct per_cpu_pageset *pcp;
2913 struct zone *z;
74046494 2914 bool has_pcps = false;
93481ff0
VB
2915
2916 if (zone) {
74046494 2917 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2918 if (pcp->pcp.count)
74046494 2919 has_pcps = true;
93481ff0
VB
2920 } else {
2921 for_each_populated_zone(z) {
2922 pcp = per_cpu_ptr(z->pageset, cpu);
2923 if (pcp->pcp.count) {
2924 has_pcps = true;
2925 break;
2926 }
74046494
GBY
2927 }
2928 }
93481ff0 2929
74046494
GBY
2930 if (has_pcps)
2931 cpumask_set_cpu(cpu, &cpus_with_pcps);
2932 else
2933 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2934 }
0ccce3b9 2935
bd233f53 2936 for_each_cpu(cpu, &cpus_with_pcps) {
d9367bd0
WY
2937 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2938
2939 drain->zone = zone;
2940 INIT_WORK(&drain->work, drain_local_pages_wq);
2941 queue_work_on(cpu, mm_percpu_wq, &drain->work);
0ccce3b9 2942 }
bd233f53 2943 for_each_cpu(cpu, &cpus_with_pcps)
d9367bd0 2944 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
bd233f53
MG
2945
2946 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2947}
2948
296699de 2949#ifdef CONFIG_HIBERNATION
1da177e4 2950
556b969a
CY
2951/*
2952 * Touch the watchdog for every WD_PAGE_COUNT pages.
2953 */
2954#define WD_PAGE_COUNT (128*1024)
2955
1da177e4
LT
2956void mark_free_pages(struct zone *zone)
2957{
556b969a 2958 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2959 unsigned long flags;
7aeb09f9 2960 unsigned int order, t;
86760a2c 2961 struct page *page;
1da177e4 2962
8080fc03 2963 if (zone_is_empty(zone))
1da177e4
LT
2964 return;
2965
2966 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2967
108bcc96 2968 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2969 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2970 if (pfn_valid(pfn)) {
86760a2c 2971 page = pfn_to_page(pfn);
ba6b0979 2972
556b969a
CY
2973 if (!--page_count) {
2974 touch_nmi_watchdog();
2975 page_count = WD_PAGE_COUNT;
2976 }
2977
ba6b0979
JK
2978 if (page_zone(page) != zone)
2979 continue;
2980
7be98234
RW
2981 if (!swsusp_page_is_forbidden(page))
2982 swsusp_unset_page_free(page);
f623f0db 2983 }
1da177e4 2984
b2a0ac88 2985 for_each_migratetype_order(order, t) {
86760a2c
GT
2986 list_for_each_entry(page,
2987 &zone->free_area[order].free_list[t], lru) {
f623f0db 2988 unsigned long i;
1da177e4 2989
86760a2c 2990 pfn = page_to_pfn(page);
556b969a
CY
2991 for (i = 0; i < (1UL << order); i++) {
2992 if (!--page_count) {
2993 touch_nmi_watchdog();
2994 page_count = WD_PAGE_COUNT;
2995 }
7be98234 2996 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2997 }
f623f0db 2998 }
b2a0ac88 2999 }
1da177e4
LT
3000 spin_unlock_irqrestore(&zone->lock, flags);
3001}
e2c55dc8 3002#endif /* CONFIG_PM */
1da177e4 3003
2d4894b5 3004static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 3005{
5f8dcc21 3006 int migratetype;
1da177e4 3007
4db7548c 3008 if (!free_pcp_prepare(page))
9cca35d4 3009 return false;
689bcebf 3010
dc4b0caf 3011 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 3012 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
3013 return true;
3014}
3015
2d4894b5 3016static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
3017{
3018 struct zone *zone = page_zone(page);
3019 struct per_cpu_pages *pcp;
3020 int migratetype;
3021
3022 migratetype = get_pcppage_migratetype(page);
d34b0733 3023 __count_vm_event(PGFREE);
da456f14 3024
5f8dcc21
MG
3025 /*
3026 * We only track unmovable, reclaimable and movable on pcp lists.
3027 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 3028 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
3029 * areas back if necessary. Otherwise, we may have to free
3030 * excessively into the page allocator
3031 */
3032 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 3033 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 3034 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 3035 return;
5f8dcc21
MG
3036 }
3037 migratetype = MIGRATE_MOVABLE;
3038 }
3039
99dcc3e5 3040 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 3041 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 3042 pcp->count++;
48db57f8 3043 if (pcp->count >= pcp->high) {
4db0c3c2 3044 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 3045 free_pcppages_bulk(zone, batch, pcp);
48db57f8 3046 }
9cca35d4 3047}
5f8dcc21 3048
9cca35d4
MG
3049/*
3050 * Free a 0-order page
9cca35d4 3051 */
2d4894b5 3052void free_unref_page(struct page *page)
9cca35d4
MG
3053{
3054 unsigned long flags;
3055 unsigned long pfn = page_to_pfn(page);
3056
2d4894b5 3057 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3058 return;
3059
3060 local_irq_save(flags);
2d4894b5 3061 free_unref_page_commit(page, pfn);
d34b0733 3062 local_irq_restore(flags);
1da177e4
LT
3063}
3064
cc59850e
KK
3065/*
3066 * Free a list of 0-order pages
3067 */
2d4894b5 3068void free_unref_page_list(struct list_head *list)
cc59850e
KK
3069{
3070 struct page *page, *next;
9cca35d4 3071 unsigned long flags, pfn;
c24ad77d 3072 int batch_count = 0;
9cca35d4
MG
3073
3074 /* Prepare pages for freeing */
3075 list_for_each_entry_safe(page, next, list, lru) {
3076 pfn = page_to_pfn(page);
2d4894b5 3077 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
3078 list_del(&page->lru);
3079 set_page_private(page, pfn);
3080 }
cc59850e 3081
9cca35d4 3082 local_irq_save(flags);
cc59850e 3083 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
3084 unsigned long pfn = page_private(page);
3085
3086 set_page_private(page, 0);
2d4894b5
MG
3087 trace_mm_page_free_batched(page);
3088 free_unref_page_commit(page, pfn);
c24ad77d
LS
3089
3090 /*
3091 * Guard against excessive IRQ disabled times when we get
3092 * a large list of pages to free.
3093 */
3094 if (++batch_count == SWAP_CLUSTER_MAX) {
3095 local_irq_restore(flags);
3096 batch_count = 0;
3097 local_irq_save(flags);
3098 }
cc59850e 3099 }
9cca35d4 3100 local_irq_restore(flags);
cc59850e
KK
3101}
3102
8dfcc9ba
NP
3103/*
3104 * split_page takes a non-compound higher-order page, and splits it into
3105 * n (1<<order) sub-pages: page[0..n]
3106 * Each sub-page must be freed individually.
3107 *
3108 * Note: this is probably too low level an operation for use in drivers.
3109 * Please consult with lkml before using this in your driver.
3110 */
3111void split_page(struct page *page, unsigned int order)
3112{
3113 int i;
3114
309381fe
SL
3115 VM_BUG_ON_PAGE(PageCompound(page), page);
3116 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 3117
a9627bc5 3118 for (i = 1; i < (1 << order); i++)
7835e98b 3119 set_page_refcounted(page + i);
a9627bc5 3120 split_page_owner(page, order);
8dfcc9ba 3121}
5853ff23 3122EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 3123
3c605096 3124int __isolate_free_page(struct page *page, unsigned int order)
748446bb 3125{
b03641af 3126 struct free_area *area = &page_zone(page)->free_area[order];
748446bb
MG
3127 unsigned long watermark;
3128 struct zone *zone;
2139cbe6 3129 int mt;
748446bb
MG
3130
3131 BUG_ON(!PageBuddy(page));
3132
3133 zone = page_zone(page);
2e30abd1 3134 mt = get_pageblock_migratetype(page);
748446bb 3135
194159fb 3136 if (!is_migrate_isolate(mt)) {
8348faf9
VB
3137 /*
3138 * Obey watermarks as if the page was being allocated. We can
3139 * emulate a high-order watermark check with a raised order-0
3140 * watermark, because we already know our high-order page
3141 * exists.
3142 */
fd1444b2 3143 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
d883c6cf 3144 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
3145 return 0;
3146
8fb74b9f 3147 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 3148 }
748446bb
MG
3149
3150 /* Remove page from free list */
b03641af
DW
3151
3152 del_page_from_free_area(page, area);
2139cbe6 3153
400bc7fd 3154 /*
3155 * Set the pageblock if the isolated page is at least half of a
3156 * pageblock
3157 */
748446bb
MG
3158 if (order >= pageblock_order - 1) {
3159 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
3160 for (; page < endpage; page += pageblock_nr_pages) {
3161 int mt = get_pageblock_migratetype(page);
88ed365e 3162 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 3163 && !is_migrate_highatomic(mt))
47118af0
MN
3164 set_pageblock_migratetype(page,
3165 MIGRATE_MOVABLE);
3166 }
748446bb
MG
3167 }
3168
f3a14ced 3169
8fb74b9f 3170 return 1UL << order;
1fb3f8ca
MG
3171}
3172
060e7417
MG
3173/*
3174 * Update NUMA hit/miss statistics
3175 *
3176 * Must be called with interrupts disabled.
060e7417 3177 */
41b6167e 3178static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
3179{
3180#ifdef CONFIG_NUMA
3a321d2a 3181 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 3182
4518085e
KW
3183 /* skip numa counters update if numa stats is disabled */
3184 if (!static_branch_likely(&vm_numa_stat_key))
3185 return;
3186
c1093b74 3187 if (zone_to_nid(z) != numa_node_id())
060e7417 3188 local_stat = NUMA_OTHER;
060e7417 3189
c1093b74 3190 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3a321d2a 3191 __inc_numa_state(z, NUMA_HIT);
2df26639 3192 else {
3a321d2a
KW
3193 __inc_numa_state(z, NUMA_MISS);
3194 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 3195 }
3a321d2a 3196 __inc_numa_state(z, local_stat);
060e7417
MG
3197#endif
3198}
3199
066b2393
MG
3200/* Remove page from the per-cpu list, caller must protect the list */
3201static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
6bb15450 3202 unsigned int alloc_flags,
453f85d4 3203 struct per_cpu_pages *pcp,
066b2393
MG
3204 struct list_head *list)
3205{
3206 struct page *page;
3207
3208 do {
3209 if (list_empty(list)) {
3210 pcp->count += rmqueue_bulk(zone, 0,
3211 pcp->batch, list,
6bb15450 3212 migratetype, alloc_flags);
066b2393
MG
3213 if (unlikely(list_empty(list)))
3214 return NULL;
3215 }
3216
453f85d4 3217 page = list_first_entry(list, struct page, lru);
066b2393
MG
3218 list_del(&page->lru);
3219 pcp->count--;
3220 } while (check_new_pcp(page));
3221
3222 return page;
3223}
3224
3225/* Lock and remove page from the per-cpu list */
3226static struct page *rmqueue_pcplist(struct zone *preferred_zone,
1c52e6d0
YS
3227 struct zone *zone, gfp_t gfp_flags,
3228 int migratetype, unsigned int alloc_flags)
066b2393
MG
3229{
3230 struct per_cpu_pages *pcp;
3231 struct list_head *list;
066b2393 3232 struct page *page;
d34b0733 3233 unsigned long flags;
066b2393 3234
d34b0733 3235 local_irq_save(flags);
066b2393
MG
3236 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3237 list = &pcp->lists[migratetype];
6bb15450 3238 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list);
066b2393 3239 if (page) {
1c52e6d0 3240 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
066b2393
MG
3241 zone_statistics(preferred_zone, zone);
3242 }
d34b0733 3243 local_irq_restore(flags);
066b2393
MG
3244 return page;
3245}
3246
1da177e4 3247/*
75379191 3248 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 3249 */
0a15c3e9 3250static inline
066b2393 3251struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 3252 struct zone *zone, unsigned int order,
c603844b
MG
3253 gfp_t gfp_flags, unsigned int alloc_flags,
3254 int migratetype)
1da177e4
LT
3255{
3256 unsigned long flags;
689bcebf 3257 struct page *page;
1da177e4 3258
d34b0733 3259 if (likely(order == 0)) {
1c52e6d0
YS
3260 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3261 migratetype, alloc_flags);
066b2393
MG
3262 goto out;
3263 }
83b9355b 3264
066b2393
MG
3265 /*
3266 * We most definitely don't want callers attempting to
3267 * allocate greater than order-1 page units with __GFP_NOFAIL.
3268 */
3269 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3270 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 3271
066b2393
MG
3272 do {
3273 page = NULL;
3274 if (alloc_flags & ALLOC_HARDER) {
3275 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3276 if (page)
3277 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3278 }
a74609fa 3279 if (!page)
6bb15450 3280 page = __rmqueue(zone, order, migratetype, alloc_flags);
066b2393
MG
3281 } while (page && check_new_pages(page, order));
3282 spin_unlock(&zone->lock);
3283 if (!page)
3284 goto failed;
3285 __mod_zone_freepage_state(zone, -(1 << order),
3286 get_pcppage_migratetype(page));
1da177e4 3287
16709d1d 3288 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3289 zone_statistics(preferred_zone, zone);
a74609fa 3290 local_irq_restore(flags);
1da177e4 3291
066b2393 3292out:
73444bc4
MG
3293 /* Separate test+clear to avoid unnecessary atomics */
3294 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3295 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3296 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3297 }
3298
066b2393 3299 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3300 return page;
a74609fa
NP
3301
3302failed:
3303 local_irq_restore(flags);
a74609fa 3304 return NULL;
1da177e4
LT
3305}
3306
933e312e
AM
3307#ifdef CONFIG_FAIL_PAGE_ALLOC
3308
b2588c4b 3309static struct {
933e312e
AM
3310 struct fault_attr attr;
3311
621a5f7a 3312 bool ignore_gfp_highmem;
71baba4b 3313 bool ignore_gfp_reclaim;
54114994 3314 u32 min_order;
933e312e
AM
3315} fail_page_alloc = {
3316 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3317 .ignore_gfp_reclaim = true,
621a5f7a 3318 .ignore_gfp_highmem = true,
54114994 3319 .min_order = 1,
933e312e
AM
3320};
3321
3322static int __init setup_fail_page_alloc(char *str)
3323{
3324 return setup_fault_attr(&fail_page_alloc.attr, str);
3325}
3326__setup("fail_page_alloc=", setup_fail_page_alloc);
3327
af3b8544 3328static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3329{
54114994 3330 if (order < fail_page_alloc.min_order)
deaf386e 3331 return false;
933e312e 3332 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3333 return false;
933e312e 3334 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3335 return false;
71baba4b
MG
3336 if (fail_page_alloc.ignore_gfp_reclaim &&
3337 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3338 return false;
933e312e
AM
3339
3340 return should_fail(&fail_page_alloc.attr, 1 << order);
3341}
3342
3343#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3344
3345static int __init fail_page_alloc_debugfs(void)
3346{
0825a6f9 3347 umode_t mode = S_IFREG | 0600;
933e312e 3348 struct dentry *dir;
933e312e 3349
dd48c085
AM
3350 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3351 &fail_page_alloc.attr);
b2588c4b 3352
d9f7979c
GKH
3353 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3354 &fail_page_alloc.ignore_gfp_reclaim);
3355 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3356 &fail_page_alloc.ignore_gfp_highmem);
3357 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
933e312e 3358
d9f7979c 3359 return 0;
933e312e
AM
3360}
3361
3362late_initcall(fail_page_alloc_debugfs);
3363
3364#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3365
3366#else /* CONFIG_FAIL_PAGE_ALLOC */
3367
af3b8544 3368static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3369{
deaf386e 3370 return false;
933e312e
AM
3371}
3372
3373#endif /* CONFIG_FAIL_PAGE_ALLOC */
3374
af3b8544
BP
3375static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3376{
3377 return __should_fail_alloc_page(gfp_mask, order);
3378}
3379ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3380
1da177e4 3381/*
97a16fc8
MG
3382 * Return true if free base pages are above 'mark'. For high-order checks it
3383 * will return true of the order-0 watermark is reached and there is at least
3384 * one free page of a suitable size. Checking now avoids taking the zone lock
3385 * to check in the allocation paths if no pages are free.
1da177e4 3386 */
86a294a8
MH
3387bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3388 int classzone_idx, unsigned int alloc_flags,
3389 long free_pages)
1da177e4 3390{
d23ad423 3391 long min = mark;
1da177e4 3392 int o;
cd04ae1e 3393 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3394
0aaa29a5 3395 /* free_pages may go negative - that's OK */
df0a6daa 3396 free_pages -= (1 << order) - 1;
0aaa29a5 3397
7fb1d9fc 3398 if (alloc_flags & ALLOC_HIGH)
1da177e4 3399 min -= min / 2;
0aaa29a5
MG
3400
3401 /*
3402 * If the caller does not have rights to ALLOC_HARDER then subtract
3403 * the high-atomic reserves. This will over-estimate the size of the
3404 * atomic reserve but it avoids a search.
3405 */
cd04ae1e 3406 if (likely(!alloc_harder)) {
0aaa29a5 3407 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3408 } else {
3409 /*
3410 * OOM victims can try even harder than normal ALLOC_HARDER
3411 * users on the grounds that it's definitely going to be in
3412 * the exit path shortly and free memory. Any allocation it
3413 * makes during the free path will be small and short-lived.
3414 */
3415 if (alloc_flags & ALLOC_OOM)
3416 min -= min / 2;
3417 else
3418 min -= min / 4;
3419 }
3420
e2b19197 3421
d883c6cf
JK
3422#ifdef CONFIG_CMA
3423 /* If allocation can't use CMA areas don't use free CMA pages */
3424 if (!(alloc_flags & ALLOC_CMA))
3425 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3426#endif
3427
97a16fc8
MG
3428 /*
3429 * Check watermarks for an order-0 allocation request. If these
3430 * are not met, then a high-order request also cannot go ahead
3431 * even if a suitable page happened to be free.
3432 */
3433 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3434 return false;
1da177e4 3435
97a16fc8
MG
3436 /* If this is an order-0 request then the watermark is fine */
3437 if (!order)
3438 return true;
3439
3440 /* For a high-order request, check at least one suitable page is free */
3441 for (o = order; o < MAX_ORDER; o++) {
3442 struct free_area *area = &z->free_area[o];
3443 int mt;
3444
3445 if (!area->nr_free)
3446 continue;
3447
97a16fc8 3448 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
b03641af 3449 if (!free_area_empty(area, mt))
97a16fc8
MG
3450 return true;
3451 }
3452
3453#ifdef CONFIG_CMA
d883c6cf 3454 if ((alloc_flags & ALLOC_CMA) &&
b03641af 3455 !free_area_empty(area, MIGRATE_CMA)) {
97a16fc8 3456 return true;
d883c6cf 3457 }
97a16fc8 3458#endif
b050e376
VB
3459 if (alloc_harder &&
3460 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3461 return true;
1da177e4 3462 }
97a16fc8 3463 return false;
88f5acf8
MG
3464}
3465
7aeb09f9 3466bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3467 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3468{
3469 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3470 zone_page_state(z, NR_FREE_PAGES));
3471}
3472
48ee5f36
MG
3473static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3474 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3475{
3476 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3477 long cma_pages = 0;
3478
3479#ifdef CONFIG_CMA
3480 /* If allocation can't use CMA areas don't use free CMA pages */
3481 if (!(alloc_flags & ALLOC_CMA))
3482 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3483#endif
48ee5f36
MG
3484
3485 /*
3486 * Fast check for order-0 only. If this fails then the reserves
3487 * need to be calculated. There is a corner case where the check
3488 * passes but only the high-order atomic reserve are free. If
3489 * the caller is !atomic then it'll uselessly search the free
3490 * list. That corner case is then slower but it is harmless.
3491 */
d883c6cf 3492 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3493 return true;
3494
3495 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3496 free_pages);
3497}
3498
7aeb09f9 3499bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3500 unsigned long mark, int classzone_idx)
88f5acf8
MG
3501{
3502 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3503
3504 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3505 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3506
e2b19197 3507 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3508 free_pages);
1da177e4
LT
3509}
3510
9276b1bc 3511#ifdef CONFIG_NUMA
957f822a
DR
3512static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3513{
e02dc017 3514 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
a55c7454 3515 node_reclaim_distance;
957f822a 3516}
9276b1bc 3517#else /* CONFIG_NUMA */
957f822a
DR
3518static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3519{
3520 return true;
3521}
9276b1bc
PJ
3522#endif /* CONFIG_NUMA */
3523
6bb15450
MG
3524/*
3525 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3526 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3527 * premature use of a lower zone may cause lowmem pressure problems that
3528 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3529 * probably too small. It only makes sense to spread allocations to avoid
3530 * fragmentation between the Normal and DMA32 zones.
3531 */
3532static inline unsigned int
0a79cdad 3533alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
6bb15450 3534{
0a79cdad
MG
3535 unsigned int alloc_flags = 0;
3536
3537 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3538 alloc_flags |= ALLOC_KSWAPD;
3539
3540#ifdef CONFIG_ZONE_DMA32
8139ad04
AR
3541 if (!zone)
3542 return alloc_flags;
3543
6bb15450 3544 if (zone_idx(zone) != ZONE_NORMAL)
8118b82e 3545 return alloc_flags;
6bb15450
MG
3546
3547 /*
3548 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3549 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3550 * on UMA that if Normal is populated then so is DMA32.
3551 */
3552 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3553 if (nr_online_nodes > 1 && !populated_zone(--zone))
8118b82e 3554 return alloc_flags;
6bb15450 3555
8118b82e 3556 alloc_flags |= ALLOC_NOFRAGMENT;
0a79cdad
MG
3557#endif /* CONFIG_ZONE_DMA32 */
3558 return alloc_flags;
6bb15450 3559}
6bb15450 3560
7fb1d9fc 3561/*
0798e519 3562 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3563 * a page.
3564 */
3565static struct page *
a9263751
VB
3566get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3567 const struct alloc_context *ac)
753ee728 3568{
6bb15450 3569 struct zoneref *z;
5117f45d 3570 struct zone *zone;
3b8c0be4 3571 struct pglist_data *last_pgdat_dirty_limit = NULL;
6bb15450 3572 bool no_fallback;
3b8c0be4 3573
6bb15450 3574retry:
7fb1d9fc 3575 /*
9276b1bc 3576 * Scan zonelist, looking for a zone with enough free.
344736f2 3577 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3578 */
6bb15450
MG
3579 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3580 z = ac->preferred_zoneref;
c33d6c06 3581 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3582 ac->nodemask) {
be06af00 3583 struct page *page;
e085dbc5
JW
3584 unsigned long mark;
3585
664eedde
MG
3586 if (cpusets_enabled() &&
3587 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3588 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3589 continue;
a756cf59
JW
3590 /*
3591 * When allocating a page cache page for writing, we
281e3726
MG
3592 * want to get it from a node that is within its dirty
3593 * limit, such that no single node holds more than its
a756cf59 3594 * proportional share of globally allowed dirty pages.
281e3726 3595 * The dirty limits take into account the node's
a756cf59
JW
3596 * lowmem reserves and high watermark so that kswapd
3597 * should be able to balance it without having to
3598 * write pages from its LRU list.
3599 *
a756cf59 3600 * XXX: For now, allow allocations to potentially
281e3726 3601 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3602 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3603 * which is important when on a NUMA setup the allowed
281e3726 3604 * nodes are together not big enough to reach the
a756cf59 3605 * global limit. The proper fix for these situations
281e3726 3606 * will require awareness of nodes in the
a756cf59
JW
3607 * dirty-throttling and the flusher threads.
3608 */
3b8c0be4
MG
3609 if (ac->spread_dirty_pages) {
3610 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3611 continue;
3612
3613 if (!node_dirty_ok(zone->zone_pgdat)) {
3614 last_pgdat_dirty_limit = zone->zone_pgdat;
3615 continue;
3616 }
3617 }
7fb1d9fc 3618
6bb15450
MG
3619 if (no_fallback && nr_online_nodes > 1 &&
3620 zone != ac->preferred_zoneref->zone) {
3621 int local_nid;
3622
3623 /*
3624 * If moving to a remote node, retry but allow
3625 * fragmenting fallbacks. Locality is more important
3626 * than fragmentation avoidance.
3627 */
3628 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3629 if (zone_to_nid(zone) != local_nid) {
3630 alloc_flags &= ~ALLOC_NOFRAGMENT;
3631 goto retry;
3632 }
3633 }
3634
a9214443 3635 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
48ee5f36 3636 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3637 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3638 int ret;
3639
c9e97a19
PT
3640#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3641 /*
3642 * Watermark failed for this zone, but see if we can
3643 * grow this zone if it contains deferred pages.
3644 */
3645 if (static_branch_unlikely(&deferred_pages)) {
3646 if (_deferred_grow_zone(zone, order))
3647 goto try_this_zone;
3648 }
3649#endif
5dab2911
MG
3650 /* Checked here to keep the fast path fast */
3651 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3652 if (alloc_flags & ALLOC_NO_WATERMARKS)
3653 goto try_this_zone;
3654
a5f5f91d 3655 if (node_reclaim_mode == 0 ||
c33d6c06 3656 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3657 continue;
3658
a5f5f91d 3659 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3660 switch (ret) {
a5f5f91d 3661 case NODE_RECLAIM_NOSCAN:
fa5e084e 3662 /* did not scan */
cd38b115 3663 continue;
a5f5f91d 3664 case NODE_RECLAIM_FULL:
fa5e084e 3665 /* scanned but unreclaimable */
cd38b115 3666 continue;
fa5e084e
MG
3667 default:
3668 /* did we reclaim enough */
fed2719e 3669 if (zone_watermark_ok(zone, order, mark,
93ea9964 3670 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3671 goto try_this_zone;
3672
fed2719e 3673 continue;
0798e519 3674 }
7fb1d9fc
RS
3675 }
3676
fa5e084e 3677try_this_zone:
066b2393 3678 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3679 gfp_mask, alloc_flags, ac->migratetype);
75379191 3680 if (page) {
479f854a 3681 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3682
3683 /*
3684 * If this is a high-order atomic allocation then check
3685 * if the pageblock should be reserved for the future
3686 */
3687 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3688 reserve_highatomic_pageblock(page, zone, order);
3689
75379191 3690 return page;
c9e97a19
PT
3691 } else {
3692#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3693 /* Try again if zone has deferred pages */
3694 if (static_branch_unlikely(&deferred_pages)) {
3695 if (_deferred_grow_zone(zone, order))
3696 goto try_this_zone;
3697 }
3698#endif
75379191 3699 }
54a6eb5c 3700 }
9276b1bc 3701
6bb15450
MG
3702 /*
3703 * It's possible on a UMA machine to get through all zones that are
3704 * fragmented. If avoiding fragmentation, reset and try again.
3705 */
3706 if (no_fallback) {
3707 alloc_flags &= ~ALLOC_NOFRAGMENT;
3708 goto retry;
3709 }
3710
4ffeaf35 3711 return NULL;
753ee728
MH
3712}
3713
9af744d7 3714static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3715{
a238ab5b 3716 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3717 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3718
2c029a1e 3719 if (!__ratelimit(&show_mem_rs))
a238ab5b
DH
3720 return;
3721
3722 /*
3723 * This documents exceptions given to allocations in certain
3724 * contexts that are allowed to allocate outside current's set
3725 * of allowed nodes.
3726 */
3727 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3728 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3729 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3730 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3731 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3732 filter &= ~SHOW_MEM_FILTER_NODES;
3733
9af744d7 3734 show_mem(filter, nodemask);
aa187507
MH
3735}
3736
a8e99259 3737void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3738{
3739 struct va_format vaf;
3740 va_list args;
3741 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3742 DEFAULT_RATELIMIT_BURST);
3743
0f7896f1 3744 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3745 return;
3746
7877cdcc
MH
3747 va_start(args, fmt);
3748 vaf.fmt = fmt;
3749 vaf.va = &args;
ef8444ea 3750 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
0205f755
MH
3751 current->comm, &vaf, gfp_mask, &gfp_mask,
3752 nodemask_pr_args(nodemask));
7877cdcc 3753 va_end(args);
3ee9a4f0 3754
a8e99259 3755 cpuset_print_current_mems_allowed();
ef8444ea 3756 pr_cont("\n");
a238ab5b 3757 dump_stack();
685dbf6f 3758 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3759}
3760
6c18ba7a
MH
3761static inline struct page *
3762__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3763 unsigned int alloc_flags,
3764 const struct alloc_context *ac)
3765{
3766 struct page *page;
3767
3768 page = get_page_from_freelist(gfp_mask, order,
3769 alloc_flags|ALLOC_CPUSET, ac);
3770 /*
3771 * fallback to ignore cpuset restriction if our nodes
3772 * are depleted
3773 */
3774 if (!page)
3775 page = get_page_from_freelist(gfp_mask, order,
3776 alloc_flags, ac);
3777
3778 return page;
3779}
3780
11e33f6a
MG
3781static inline struct page *
3782__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3783 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3784{
6e0fc46d
DR
3785 struct oom_control oc = {
3786 .zonelist = ac->zonelist,
3787 .nodemask = ac->nodemask,
2a966b77 3788 .memcg = NULL,
6e0fc46d
DR
3789 .gfp_mask = gfp_mask,
3790 .order = order,
6e0fc46d 3791 };
11e33f6a
MG
3792 struct page *page;
3793
9879de73
JW
3794 *did_some_progress = 0;
3795
9879de73 3796 /*
dc56401f
JW
3797 * Acquire the oom lock. If that fails, somebody else is
3798 * making progress for us.
9879de73 3799 */
dc56401f 3800 if (!mutex_trylock(&oom_lock)) {
9879de73 3801 *did_some_progress = 1;
11e33f6a 3802 schedule_timeout_uninterruptible(1);
1da177e4
LT
3803 return NULL;
3804 }
6b1de916 3805
11e33f6a
MG
3806 /*
3807 * Go through the zonelist yet one more time, keep very high watermark
3808 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3809 * we're still under heavy pressure. But make sure that this reclaim
3810 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3811 * allocation which will never fail due to oom_lock already held.
11e33f6a 3812 */
e746bf73
TH
3813 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3814 ~__GFP_DIRECT_RECLAIM, order,
3815 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3816 if (page)
11e33f6a
MG
3817 goto out;
3818
06ad276a
MH
3819 /* Coredumps can quickly deplete all memory reserves */
3820 if (current->flags & PF_DUMPCORE)
3821 goto out;
3822 /* The OOM killer will not help higher order allocs */
3823 if (order > PAGE_ALLOC_COSTLY_ORDER)
3824 goto out;
dcda9b04
MH
3825 /*
3826 * We have already exhausted all our reclaim opportunities without any
3827 * success so it is time to admit defeat. We will skip the OOM killer
3828 * because it is very likely that the caller has a more reasonable
3829 * fallback than shooting a random task.
3830 */
3831 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3832 goto out;
06ad276a
MH
3833 /* The OOM killer does not needlessly kill tasks for lowmem */
3834 if (ac->high_zoneidx < ZONE_NORMAL)
3835 goto out;
3836 if (pm_suspended_storage())
3837 goto out;
3838 /*
3839 * XXX: GFP_NOFS allocations should rather fail than rely on
3840 * other request to make a forward progress.
3841 * We are in an unfortunate situation where out_of_memory cannot
3842 * do much for this context but let's try it to at least get
3843 * access to memory reserved if the current task is killed (see
3844 * out_of_memory). Once filesystems are ready to handle allocation
3845 * failures more gracefully we should just bail out here.
3846 */
3847
3848 /* The OOM killer may not free memory on a specific node */
3849 if (gfp_mask & __GFP_THISNODE)
3850 goto out;
3da88fb3 3851
3c2c6488 3852 /* Exhausted what can be done so it's blame time */
5020e285 3853 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3854 *did_some_progress = 1;
5020e285 3855
6c18ba7a
MH
3856 /*
3857 * Help non-failing allocations by giving them access to memory
3858 * reserves
3859 */
3860 if (gfp_mask & __GFP_NOFAIL)
3861 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3862 ALLOC_NO_WATERMARKS, ac);
5020e285 3863 }
11e33f6a 3864out:
dc56401f 3865 mutex_unlock(&oom_lock);
11e33f6a
MG
3866 return page;
3867}
3868
33c2d214
MH
3869/*
3870 * Maximum number of compaction retries wit a progress before OOM
3871 * killer is consider as the only way to move forward.
3872 */
3873#define MAX_COMPACT_RETRIES 16
3874
56de7263
MG
3875#ifdef CONFIG_COMPACTION
3876/* Try memory compaction for high-order allocations before reclaim */
3877static struct page *
3878__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3879 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3880 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3881{
5e1f0f09 3882 struct page *page = NULL;
eb414681 3883 unsigned long pflags;
499118e9 3884 unsigned int noreclaim_flag;
53853e2d
VB
3885
3886 if (!order)
66199712 3887 return NULL;
66199712 3888
eb414681 3889 psi_memstall_enter(&pflags);
499118e9 3890 noreclaim_flag = memalloc_noreclaim_save();
eb414681 3891
c5d01d0d 3892 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
5e1f0f09 3893 prio, &page);
eb414681 3894
499118e9 3895 memalloc_noreclaim_restore(noreclaim_flag);
eb414681 3896 psi_memstall_leave(&pflags);
56de7263 3897
98dd3b48
VB
3898 /*
3899 * At least in one zone compaction wasn't deferred or skipped, so let's
3900 * count a compaction stall
3901 */
3902 count_vm_event(COMPACTSTALL);
8fb74b9f 3903
5e1f0f09
MG
3904 /* Prep a captured page if available */
3905 if (page)
3906 prep_new_page(page, order, gfp_mask, alloc_flags);
3907
3908 /* Try get a page from the freelist if available */
3909 if (!page)
3910 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3911
98dd3b48
VB
3912 if (page) {
3913 struct zone *zone = page_zone(page);
53853e2d 3914
98dd3b48
VB
3915 zone->compact_blockskip_flush = false;
3916 compaction_defer_reset(zone, order, true);
3917 count_vm_event(COMPACTSUCCESS);
3918 return page;
3919 }
56de7263 3920
98dd3b48
VB
3921 /*
3922 * It's bad if compaction run occurs and fails. The most likely reason
3923 * is that pages exist, but not enough to satisfy watermarks.
3924 */
3925 count_vm_event(COMPACTFAIL);
66199712 3926
98dd3b48 3927 cond_resched();
56de7263
MG
3928
3929 return NULL;
3930}
33c2d214 3931
3250845d
VB
3932static inline bool
3933should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3934 enum compact_result compact_result,
3935 enum compact_priority *compact_priority,
d9436498 3936 int *compaction_retries)
3250845d
VB
3937{
3938 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3939 int min_priority;
65190cff
MH
3940 bool ret = false;
3941 int retries = *compaction_retries;
3942 enum compact_priority priority = *compact_priority;
3250845d
VB
3943
3944 if (!order)
3945 return false;
3946
d9436498
VB
3947 if (compaction_made_progress(compact_result))
3948 (*compaction_retries)++;
3949
3250845d
VB
3950 /*
3951 * compaction considers all the zone as desperately out of memory
3952 * so it doesn't really make much sense to retry except when the
3953 * failure could be caused by insufficient priority
3954 */
d9436498
VB
3955 if (compaction_failed(compact_result))
3956 goto check_priority;
3250845d 3957
49433085
VB
3958 /*
3959 * compaction was skipped because there are not enough order-0 pages
3960 * to work with, so we retry only if it looks like reclaim can help.
3961 */
3962 if (compaction_needs_reclaim(compact_result)) {
3963 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3964 goto out;
3965 }
3966
3250845d
VB
3967 /*
3968 * make sure the compaction wasn't deferred or didn't bail out early
3969 * due to locks contention before we declare that we should give up.
49433085
VB
3970 * But the next retry should use a higher priority if allowed, so
3971 * we don't just keep bailing out endlessly.
3250845d 3972 */
65190cff 3973 if (compaction_withdrawn(compact_result)) {
49433085 3974 goto check_priority;
65190cff 3975 }
3250845d
VB
3976
3977 /*
dcda9b04 3978 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3979 * costly ones because they are de facto nofail and invoke OOM
3980 * killer to move on while costly can fail and users are ready
3981 * to cope with that. 1/4 retries is rather arbitrary but we
3982 * would need much more detailed feedback from compaction to
3983 * make a better decision.
3984 */
3985 if (order > PAGE_ALLOC_COSTLY_ORDER)
3986 max_retries /= 4;
65190cff
MH
3987 if (*compaction_retries <= max_retries) {
3988 ret = true;
3989 goto out;
3990 }
3250845d 3991
d9436498
VB
3992 /*
3993 * Make sure there are attempts at the highest priority if we exhausted
3994 * all retries or failed at the lower priorities.
3995 */
3996check_priority:
c2033b00
VB
3997 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3998 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3999
c2033b00 4000 if (*compact_priority > min_priority) {
d9436498
VB
4001 (*compact_priority)--;
4002 *compaction_retries = 0;
65190cff 4003 ret = true;
d9436498 4004 }
65190cff
MH
4005out:
4006 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4007 return ret;
3250845d 4008}
56de7263
MG
4009#else
4010static inline struct page *
4011__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 4012 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 4013 enum compact_priority prio, enum compact_result *compact_result)
56de7263 4014{
33c2d214 4015 *compact_result = COMPACT_SKIPPED;
56de7263
MG
4016 return NULL;
4017}
33c2d214
MH
4018
4019static inline bool
86a294a8
MH
4020should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4021 enum compact_result compact_result,
a5508cd8 4022 enum compact_priority *compact_priority,
d9436498 4023 int *compaction_retries)
33c2d214 4024{
31e49bfd
MH
4025 struct zone *zone;
4026 struct zoneref *z;
4027
4028 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4029 return false;
4030
4031 /*
4032 * There are setups with compaction disabled which would prefer to loop
4033 * inside the allocator rather than hit the oom killer prematurely.
4034 * Let's give them a good hope and keep retrying while the order-0
4035 * watermarks are OK.
4036 */
4037 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4038 ac->nodemask) {
4039 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4040 ac_classzone_idx(ac), alloc_flags))
4041 return true;
4042 }
33c2d214
MH
4043 return false;
4044}
3250845d 4045#endif /* CONFIG_COMPACTION */
56de7263 4046
d92a8cfc 4047#ifdef CONFIG_LOCKDEP
93781325 4048static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
4049 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4050
4051static bool __need_fs_reclaim(gfp_t gfp_mask)
4052{
4053 gfp_mask = current_gfp_context(gfp_mask);
4054
4055 /* no reclaim without waiting on it */
4056 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4057 return false;
4058
4059 /* this guy won't enter reclaim */
2e517d68 4060 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
4061 return false;
4062
4063 /* We're only interested __GFP_FS allocations for now */
4064 if (!(gfp_mask & __GFP_FS))
4065 return false;
4066
4067 if (gfp_mask & __GFP_NOLOCKDEP)
4068 return false;
4069
4070 return true;
4071}
4072
93781325
OS
4073void __fs_reclaim_acquire(void)
4074{
4075 lock_map_acquire(&__fs_reclaim_map);
4076}
4077
4078void __fs_reclaim_release(void)
4079{
4080 lock_map_release(&__fs_reclaim_map);
4081}
4082
d92a8cfc
PZ
4083void fs_reclaim_acquire(gfp_t gfp_mask)
4084{
4085 if (__need_fs_reclaim(gfp_mask))
93781325 4086 __fs_reclaim_acquire();
d92a8cfc
PZ
4087}
4088EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4089
4090void fs_reclaim_release(gfp_t gfp_mask)
4091{
4092 if (__need_fs_reclaim(gfp_mask))
93781325 4093 __fs_reclaim_release();
d92a8cfc
PZ
4094}
4095EXPORT_SYMBOL_GPL(fs_reclaim_release);
4096#endif
4097
bba90710
MS
4098/* Perform direct synchronous page reclaim */
4099static int
a9263751
VB
4100__perform_reclaim(gfp_t gfp_mask, unsigned int order,
4101 const struct alloc_context *ac)
11e33f6a 4102{
bba90710 4103 int progress;
499118e9 4104 unsigned int noreclaim_flag;
eb414681 4105 unsigned long pflags;
11e33f6a
MG
4106
4107 cond_resched();
4108
4109 /* We now go into synchronous reclaim */
4110 cpuset_memory_pressure_bump();
eb414681 4111 psi_memstall_enter(&pflags);
d92a8cfc 4112 fs_reclaim_acquire(gfp_mask);
93781325 4113 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 4114
a9263751
VB
4115 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4116 ac->nodemask);
11e33f6a 4117
499118e9 4118 memalloc_noreclaim_restore(noreclaim_flag);
93781325 4119 fs_reclaim_release(gfp_mask);
eb414681 4120 psi_memstall_leave(&pflags);
11e33f6a
MG
4121
4122 cond_resched();
4123
bba90710
MS
4124 return progress;
4125}
4126
4127/* The really slow allocator path where we enter direct reclaim */
4128static inline struct page *
4129__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 4130 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 4131 unsigned long *did_some_progress)
bba90710
MS
4132{
4133 struct page *page = NULL;
4134 bool drained = false;
4135
a9263751 4136 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
4137 if (unlikely(!(*did_some_progress)))
4138 return NULL;
11e33f6a 4139
9ee493ce 4140retry:
31a6c190 4141 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
4142
4143 /*
4144 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
4145 * pages are pinned on the per-cpu lists or in high alloc reserves.
4146 * Shrink them them and try again
9ee493ce
MG
4147 */
4148 if (!page && !drained) {
29fac03b 4149 unreserve_highatomic_pageblock(ac, false);
93481ff0 4150 drain_all_pages(NULL);
9ee493ce
MG
4151 drained = true;
4152 goto retry;
4153 }
4154
11e33f6a
MG
4155 return page;
4156}
4157
5ecd9d40
DR
4158static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4159 const struct alloc_context *ac)
3a025760
JW
4160{
4161 struct zoneref *z;
4162 struct zone *zone;
e1a55637 4163 pg_data_t *last_pgdat = NULL;
5ecd9d40 4164 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 4165
5ecd9d40
DR
4166 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4167 ac->nodemask) {
e1a55637 4168 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 4169 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
4170 last_pgdat = zone->zone_pgdat;
4171 }
3a025760
JW
4172}
4173
c603844b 4174static inline unsigned int
341ce06f
PZ
4175gfp_to_alloc_flags(gfp_t gfp_mask)
4176{
c603844b 4177 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 4178
a56f57ff 4179 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 4180 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 4181
341ce06f
PZ
4182 /*
4183 * The caller may dip into page reserves a bit more if the caller
4184 * cannot run direct reclaim, or if the caller has realtime scheduling
4185 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 4186 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 4187 */
e6223a3b 4188 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 4189
d0164adc 4190 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 4191 /*
b104a35d
DR
4192 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4193 * if it can't schedule.
5c3240d9 4194 */
b104a35d 4195 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 4196 alloc_flags |= ALLOC_HARDER;
523b9458 4197 /*
b104a35d 4198 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 4199 * comment for __cpuset_node_allowed().
523b9458 4200 */
341ce06f 4201 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 4202 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
4203 alloc_flags |= ALLOC_HARDER;
4204
0a79cdad
MG
4205 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4206 alloc_flags |= ALLOC_KSWAPD;
4207
d883c6cf
JK
4208#ifdef CONFIG_CMA
4209 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4210 alloc_flags |= ALLOC_CMA;
4211#endif
341ce06f
PZ
4212 return alloc_flags;
4213}
4214
cd04ae1e 4215static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 4216{
cd04ae1e
MH
4217 if (!tsk_is_oom_victim(tsk))
4218 return false;
4219
4220 /*
4221 * !MMU doesn't have oom reaper so give access to memory reserves
4222 * only to the thread with TIF_MEMDIE set
4223 */
4224 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
4225 return false;
4226
cd04ae1e
MH
4227 return true;
4228}
4229
4230/*
4231 * Distinguish requests which really need access to full memory
4232 * reserves from oom victims which can live with a portion of it
4233 */
4234static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4235{
4236 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4237 return 0;
31a6c190 4238 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 4239 return ALLOC_NO_WATERMARKS;
31a6c190 4240 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
4241 return ALLOC_NO_WATERMARKS;
4242 if (!in_interrupt()) {
4243 if (current->flags & PF_MEMALLOC)
4244 return ALLOC_NO_WATERMARKS;
4245 else if (oom_reserves_allowed(current))
4246 return ALLOC_OOM;
4247 }
31a6c190 4248
cd04ae1e
MH
4249 return 0;
4250}
4251
4252bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4253{
4254 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
4255}
4256
0a0337e0
MH
4257/*
4258 * Checks whether it makes sense to retry the reclaim to make a forward progress
4259 * for the given allocation request.
491d79ae
JW
4260 *
4261 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4262 * without success, or when we couldn't even meet the watermark if we
4263 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
4264 *
4265 * Returns true if a retry is viable or false to enter the oom path.
4266 */
4267static inline bool
4268should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4269 struct alloc_context *ac, int alloc_flags,
423b452e 4270 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
4271{
4272 struct zone *zone;
4273 struct zoneref *z;
15f570bf 4274 bool ret = false;
0a0337e0 4275
423b452e
VB
4276 /*
4277 * Costly allocations might have made a progress but this doesn't mean
4278 * their order will become available due to high fragmentation so
4279 * always increment the no progress counter for them
4280 */
4281 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4282 *no_progress_loops = 0;
4283 else
4284 (*no_progress_loops)++;
4285
0a0337e0
MH
4286 /*
4287 * Make sure we converge to OOM if we cannot make any progress
4288 * several times in the row.
4289 */
04c8716f
MK
4290 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4291 /* Before OOM, exhaust highatomic_reserve */
29fac03b 4292 return unreserve_highatomic_pageblock(ac, true);
04c8716f 4293 }
0a0337e0 4294
bca67592
MG
4295 /*
4296 * Keep reclaiming pages while there is a chance this will lead
4297 * somewhere. If none of the target zones can satisfy our allocation
4298 * request even if all reclaimable pages are considered then we are
4299 * screwed and have to go OOM.
0a0337e0
MH
4300 */
4301 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4302 ac->nodemask) {
4303 unsigned long available;
ede37713 4304 unsigned long reclaimable;
d379f01d
MH
4305 unsigned long min_wmark = min_wmark_pages(zone);
4306 bool wmark;
0a0337e0 4307
5a1c84b4 4308 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 4309 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
4310
4311 /*
491d79ae
JW
4312 * Would the allocation succeed if we reclaimed all
4313 * reclaimable pages?
0a0337e0 4314 */
d379f01d
MH
4315 wmark = __zone_watermark_ok(zone, order, min_wmark,
4316 ac_classzone_idx(ac), alloc_flags, available);
4317 trace_reclaim_retry_zone(z, order, reclaimable,
4318 available, min_wmark, *no_progress_loops, wmark);
4319 if (wmark) {
ede37713
MH
4320 /*
4321 * If we didn't make any progress and have a lot of
4322 * dirty + writeback pages then we should wait for
4323 * an IO to complete to slow down the reclaim and
4324 * prevent from pre mature OOM
4325 */
4326 if (!did_some_progress) {
11fb9989 4327 unsigned long write_pending;
ede37713 4328
5a1c84b4
MG
4329 write_pending = zone_page_state_snapshot(zone,
4330 NR_ZONE_WRITE_PENDING);
ede37713 4331
11fb9989 4332 if (2 * write_pending > reclaimable) {
ede37713
MH
4333 congestion_wait(BLK_RW_ASYNC, HZ/10);
4334 return true;
4335 }
4336 }
5a1c84b4 4337
15f570bf
MH
4338 ret = true;
4339 goto out;
0a0337e0
MH
4340 }
4341 }
4342
15f570bf
MH
4343out:
4344 /*
4345 * Memory allocation/reclaim might be called from a WQ context and the
4346 * current implementation of the WQ concurrency control doesn't
4347 * recognize that a particular WQ is congested if the worker thread is
4348 * looping without ever sleeping. Therefore we have to do a short sleep
4349 * here rather than calling cond_resched().
4350 */
4351 if (current->flags & PF_WQ_WORKER)
4352 schedule_timeout_uninterruptible(1);
4353 else
4354 cond_resched();
4355 return ret;
0a0337e0
MH
4356}
4357
902b6281
VB
4358static inline bool
4359check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4360{
4361 /*
4362 * It's possible that cpuset's mems_allowed and the nodemask from
4363 * mempolicy don't intersect. This should be normally dealt with by
4364 * policy_nodemask(), but it's possible to race with cpuset update in
4365 * such a way the check therein was true, and then it became false
4366 * before we got our cpuset_mems_cookie here.
4367 * This assumes that for all allocations, ac->nodemask can come only
4368 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4369 * when it does not intersect with the cpuset restrictions) or the
4370 * caller can deal with a violated nodemask.
4371 */
4372 if (cpusets_enabled() && ac->nodemask &&
4373 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4374 ac->nodemask = NULL;
4375 return true;
4376 }
4377
4378 /*
4379 * When updating a task's mems_allowed or mempolicy nodemask, it is
4380 * possible to race with parallel threads in such a way that our
4381 * allocation can fail while the mask is being updated. If we are about
4382 * to fail, check if the cpuset changed during allocation and if so,
4383 * retry.
4384 */
4385 if (read_mems_allowed_retry(cpuset_mems_cookie))
4386 return true;
4387
4388 return false;
4389}
4390
11e33f6a
MG
4391static inline struct page *
4392__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4393 struct alloc_context *ac)
11e33f6a 4394{
d0164adc 4395 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4396 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4397 struct page *page = NULL;
c603844b 4398 unsigned int alloc_flags;
11e33f6a 4399 unsigned long did_some_progress;
5ce9bfef 4400 enum compact_priority compact_priority;
c5d01d0d 4401 enum compact_result compact_result;
5ce9bfef
VB
4402 int compaction_retries;
4403 int no_progress_loops;
5ce9bfef 4404 unsigned int cpuset_mems_cookie;
cd04ae1e 4405 int reserve_flags;
1da177e4 4406
d0164adc
MG
4407 /*
4408 * We also sanity check to catch abuse of atomic reserves being used by
4409 * callers that are not in atomic context.
4410 */
4411 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4412 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4413 gfp_mask &= ~__GFP_ATOMIC;
4414
5ce9bfef
VB
4415retry_cpuset:
4416 compaction_retries = 0;
4417 no_progress_loops = 0;
4418 compact_priority = DEF_COMPACT_PRIORITY;
4419 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4420
4421 /*
4422 * The fast path uses conservative alloc_flags to succeed only until
4423 * kswapd needs to be woken up, and to avoid the cost of setting up
4424 * alloc_flags precisely. So we do that now.
4425 */
4426 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4427
e47483bc
VB
4428 /*
4429 * We need to recalculate the starting point for the zonelist iterator
4430 * because we might have used different nodemask in the fast path, or
4431 * there was a cpuset modification and we are retrying - otherwise we
4432 * could end up iterating over non-eligible zones endlessly.
4433 */
4434 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4435 ac->high_zoneidx, ac->nodemask);
4436 if (!ac->preferred_zoneref->zone)
4437 goto nopage;
4438
0a79cdad 4439 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4440 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4441
4442 /*
4443 * The adjusted alloc_flags might result in immediate success, so try
4444 * that first
4445 */
4446 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4447 if (page)
4448 goto got_pg;
4449
a8161d1e
VB
4450 /*
4451 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4452 * that we have enough base pages and don't need to reclaim. For non-
4453 * movable high-order allocations, do that as well, as compaction will
4454 * try prevent permanent fragmentation by migrating from blocks of the
4455 * same migratetype.
4456 * Don't try this for allocations that are allowed to ignore
4457 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4458 */
282722b0
VB
4459 if (can_direct_reclaim &&
4460 (costly_order ||
4461 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4462 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4463 page = __alloc_pages_direct_compact(gfp_mask, order,
4464 alloc_flags, ac,
a5508cd8 4465 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4466 &compact_result);
4467 if (page)
4468 goto got_pg;
4469
b39d0ee2
DR
4470 if (order >= pageblock_order && (gfp_mask & __GFP_IO)) {
4471 /*
4472 * If allocating entire pageblock(s) and compaction
4473 * failed because all zones are below low watermarks
4474 * or is prohibited because it recently failed at this
4475 * order, fail immediately.
4476 *
4477 * Reclaim is
4478 * - potentially very expensive because zones are far
4479 * below their low watermarks or this is part of very
4480 * bursty high order allocations,
4481 * - not guaranteed to help because isolate_freepages()
4482 * may not iterate over freed pages as part of its
4483 * linear scan, and
4484 * - unlikely to make entire pageblocks free on its
4485 * own.
4486 */
4487 if (compact_result == COMPACT_SKIPPED ||
4488 compact_result == COMPACT_DEFERRED)
4489 goto nopage;
4490 }
4491
3eb2771b
VB
4492 /*
4493 * Checks for costly allocations with __GFP_NORETRY, which
4494 * includes THP page fault allocations
4495 */
282722b0 4496 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4497 /*
4498 * If compaction is deferred for high-order allocations,
4499 * it is because sync compaction recently failed. If
4500 * this is the case and the caller requested a THP
4501 * allocation, we do not want to heavily disrupt the
4502 * system, so we fail the allocation instead of entering
4503 * direct reclaim.
4504 */
4505 if (compact_result == COMPACT_DEFERRED)
4506 goto nopage;
4507
a8161d1e 4508 /*
3eb2771b
VB
4509 * Looks like reclaim/compaction is worth trying, but
4510 * sync compaction could be very expensive, so keep
25160354 4511 * using async compaction.
a8161d1e 4512 */
a5508cd8 4513 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4514 }
4515 }
23771235 4516
31a6c190 4517retry:
23771235 4518 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
0a79cdad 4519 if (alloc_flags & ALLOC_KSWAPD)
5ecd9d40 4520 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4521
cd04ae1e
MH
4522 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4523 if (reserve_flags)
4524 alloc_flags = reserve_flags;
23771235 4525
e46e7b77 4526 /*
d6a24df0
VB
4527 * Reset the nodemask and zonelist iterators if memory policies can be
4528 * ignored. These allocations are high priority and system rather than
4529 * user oriented.
e46e7b77 4530 */
cd04ae1e 4531 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
d6a24df0 4532 ac->nodemask = NULL;
e46e7b77
MG
4533 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4534 ac->high_zoneidx, ac->nodemask);
4535 }
4536
23771235 4537 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4538 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4539 if (page)
4540 goto got_pg;
1da177e4 4541
d0164adc 4542 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4543 if (!can_direct_reclaim)
1da177e4
LT
4544 goto nopage;
4545
9a67f648
MH
4546 /* Avoid recursion of direct reclaim */
4547 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4548 goto nopage;
4549
a8161d1e
VB
4550 /* Try direct reclaim and then allocating */
4551 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4552 &did_some_progress);
4553 if (page)
4554 goto got_pg;
4555
4556 /* Try direct compaction and then allocating */
a9263751 4557 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4558 compact_priority, &compact_result);
56de7263
MG
4559 if (page)
4560 goto got_pg;
75f30861 4561
9083905a
JW
4562 /* Do not loop if specifically requested */
4563 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4564 goto nopage;
9083905a 4565
0a0337e0
MH
4566 /*
4567 * Do not retry costly high order allocations unless they are
dcda9b04 4568 * __GFP_RETRY_MAYFAIL
0a0337e0 4569 */
dcda9b04 4570 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4571 goto nopage;
0a0337e0 4572
0a0337e0 4573 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4574 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4575 goto retry;
4576
33c2d214
MH
4577 /*
4578 * It doesn't make any sense to retry for the compaction if the order-0
4579 * reclaim is not able to make any progress because the current
4580 * implementation of the compaction depends on the sufficient amount
4581 * of free memory (see __compaction_suitable)
4582 */
4583 if (did_some_progress > 0 &&
86a294a8 4584 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4585 compact_result, &compact_priority,
d9436498 4586 &compaction_retries))
33c2d214
MH
4587 goto retry;
4588
902b6281
VB
4589
4590 /* Deal with possible cpuset update races before we start OOM killing */
4591 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4592 goto retry_cpuset;
4593
9083905a
JW
4594 /* Reclaim has failed us, start killing things */
4595 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4596 if (page)
4597 goto got_pg;
4598
9a67f648 4599 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4600 if (tsk_is_oom_victim(current) &&
4601 (alloc_flags == ALLOC_OOM ||
c288983d 4602 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4603 goto nopage;
4604
9083905a 4605 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4606 if (did_some_progress) {
4607 no_progress_loops = 0;
9083905a 4608 goto retry;
0a0337e0 4609 }
9083905a 4610
1da177e4 4611nopage:
902b6281
VB
4612 /* Deal with possible cpuset update races before we fail */
4613 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4614 goto retry_cpuset;
4615
9a67f648
MH
4616 /*
4617 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4618 * we always retry
4619 */
4620 if (gfp_mask & __GFP_NOFAIL) {
4621 /*
4622 * All existing users of the __GFP_NOFAIL are blockable, so warn
4623 * of any new users that actually require GFP_NOWAIT
4624 */
4625 if (WARN_ON_ONCE(!can_direct_reclaim))
4626 goto fail;
4627
4628 /*
4629 * PF_MEMALLOC request from this context is rather bizarre
4630 * because we cannot reclaim anything and only can loop waiting
4631 * for somebody to do a work for us
4632 */
4633 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4634
4635 /*
4636 * non failing costly orders are a hard requirement which we
4637 * are not prepared for much so let's warn about these users
4638 * so that we can identify them and convert them to something
4639 * else.
4640 */
4641 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4642
6c18ba7a
MH
4643 /*
4644 * Help non-failing allocations by giving them access to memory
4645 * reserves but do not use ALLOC_NO_WATERMARKS because this
4646 * could deplete whole memory reserves which would just make
4647 * the situation worse
4648 */
4649 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4650 if (page)
4651 goto got_pg;
4652
9a67f648
MH
4653 cond_resched();
4654 goto retry;
4655 }
4656fail:
a8e99259 4657 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4658 "page allocation failure: order:%u", order);
1da177e4 4659got_pg:
072bb0aa 4660 return page;
1da177e4 4661}
11e33f6a 4662
9cd75558 4663static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4664 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4665 struct alloc_context *ac, gfp_t *alloc_mask,
4666 unsigned int *alloc_flags)
11e33f6a 4667{
9cd75558 4668 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4669 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4670 ac->nodemask = nodemask;
4671 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4672
682a3385 4673 if (cpusets_enabled()) {
9cd75558 4674 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4675 if (!ac->nodemask)
4676 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4677 else
4678 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4679 }
4680
d92a8cfc
PZ
4681 fs_reclaim_acquire(gfp_mask);
4682 fs_reclaim_release(gfp_mask);
11e33f6a 4683
d0164adc 4684 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4685
4686 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4687 return false;
11e33f6a 4688
d883c6cf
JK
4689 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4690 *alloc_flags |= ALLOC_CMA;
4691
9cd75558
MG
4692 return true;
4693}
21bb9bd1 4694
9cd75558 4695/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4696static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4697{
c9ab0c4f 4698 /* Dirty zone balancing only done in the fast path */
9cd75558 4699 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4700
e46e7b77
MG
4701 /*
4702 * The preferred zone is used for statistics but crucially it is
4703 * also used as the starting point for the zonelist iterator. It
4704 * may get reset for allocations that ignore memory policies.
4705 */
9cd75558
MG
4706 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4707 ac->high_zoneidx, ac->nodemask);
4708}
4709
4710/*
4711 * This is the 'heart' of the zoned buddy allocator.
4712 */
4713struct page *
04ec6264
VB
4714__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4715 nodemask_t *nodemask)
9cd75558
MG
4716{
4717 struct page *page;
4718 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4719 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4720 struct alloc_context ac = { };
4721
c63ae43b
MH
4722 /*
4723 * There are several places where we assume that the order value is sane
4724 * so bail out early if the request is out of bound.
4725 */
4726 if (unlikely(order >= MAX_ORDER)) {
4727 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4728 return NULL;
4729 }
4730
9cd75558 4731 gfp_mask &= gfp_allowed_mask;
f19360f0 4732 alloc_mask = gfp_mask;
04ec6264 4733 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4734 return NULL;
4735
a380b40a 4736 finalise_ac(gfp_mask, &ac);
5bb1b169 4737
6bb15450
MG
4738 /*
4739 * Forbid the first pass from falling back to types that fragment
4740 * memory until all local zones are considered.
4741 */
0a79cdad 4742 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
6bb15450 4743
5117f45d 4744 /* First allocation attempt */
a9263751 4745 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4746 if (likely(page))
4747 goto out;
11e33f6a 4748
4fcb0971 4749 /*
7dea19f9
MH
4750 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4751 * resp. GFP_NOIO which has to be inherited for all allocation requests
4752 * from a particular context which has been marked by
4753 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4754 */
7dea19f9 4755 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4756 ac.spread_dirty_pages = false;
23f086f9 4757
4741526b
MG
4758 /*
4759 * Restore the original nodemask if it was potentially replaced with
4760 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4761 */
e47483bc 4762 if (unlikely(ac.nodemask != nodemask))
4741526b 4763 ac.nodemask = nodemask;
16096c25 4764
4fcb0971 4765 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4766
4fcb0971 4767out:
c4159a75 4768 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
60cd4bcd 4769 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
c4159a75
VD
4770 __free_pages(page, order);
4771 page = NULL;
4949148a
VD
4772 }
4773
4fcb0971
MG
4774 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4775
11e33f6a 4776 return page;
1da177e4 4777}
d239171e 4778EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4779
4780/*
9ea9a680
MH
4781 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4782 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4783 * you need to access high mem.
1da177e4 4784 */
920c7a5d 4785unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4786{
945a1113
AM
4787 struct page *page;
4788
9ea9a680 4789 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
1da177e4
LT
4790 if (!page)
4791 return 0;
4792 return (unsigned long) page_address(page);
4793}
1da177e4
LT
4794EXPORT_SYMBOL(__get_free_pages);
4795
920c7a5d 4796unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4797{
945a1113 4798 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4799}
1da177e4
LT
4800EXPORT_SYMBOL(get_zeroed_page);
4801
742aa7fb 4802static inline void free_the_page(struct page *page, unsigned int order)
1da177e4 4803{
742aa7fb
AL
4804 if (order == 0) /* Via pcp? */
4805 free_unref_page(page);
4806 else
4807 __free_pages_ok(page, order);
1da177e4
LT
4808}
4809
742aa7fb
AL
4810void __free_pages(struct page *page, unsigned int order)
4811{
4812 if (put_page_testzero(page))
4813 free_the_page(page, order);
4814}
1da177e4
LT
4815EXPORT_SYMBOL(__free_pages);
4816
920c7a5d 4817void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4818{
4819 if (addr != 0) {
725d704e 4820 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4821 __free_pages(virt_to_page((void *)addr), order);
4822 }
4823}
4824
4825EXPORT_SYMBOL(free_pages);
4826
b63ae8ca
AD
4827/*
4828 * Page Fragment:
4829 * An arbitrary-length arbitrary-offset area of memory which resides
4830 * within a 0 or higher order page. Multiple fragments within that page
4831 * are individually refcounted, in the page's reference counter.
4832 *
4833 * The page_frag functions below provide a simple allocation framework for
4834 * page fragments. This is used by the network stack and network device
4835 * drivers to provide a backing region of memory for use as either an
4836 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4837 */
2976db80
AD
4838static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4839 gfp_t gfp_mask)
b63ae8ca
AD
4840{
4841 struct page *page = NULL;
4842 gfp_t gfp = gfp_mask;
4843
4844#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4845 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4846 __GFP_NOMEMALLOC;
4847 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4848 PAGE_FRAG_CACHE_MAX_ORDER);
4849 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4850#endif
4851 if (unlikely(!page))
4852 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4853
4854 nc->va = page ? page_address(page) : NULL;
4855
4856 return page;
4857}
4858
2976db80 4859void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4860{
4861 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4862
742aa7fb
AL
4863 if (page_ref_sub_and_test(page, count))
4864 free_the_page(page, compound_order(page));
44fdffd7 4865}
2976db80 4866EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4867
8c2dd3e4
AD
4868void *page_frag_alloc(struct page_frag_cache *nc,
4869 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4870{
4871 unsigned int size = PAGE_SIZE;
4872 struct page *page;
4873 int offset;
4874
4875 if (unlikely(!nc->va)) {
4876refill:
2976db80 4877 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4878 if (!page)
4879 return NULL;
4880
4881#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4882 /* if size can vary use size else just use PAGE_SIZE */
4883 size = nc->size;
4884#endif
4885 /* Even if we own the page, we do not use atomic_set().
4886 * This would break get_page_unless_zero() users.
4887 */
86447726 4888 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
b63ae8ca
AD
4889
4890 /* reset page count bias and offset to start of new frag */
2f064f34 4891 nc->pfmemalloc = page_is_pfmemalloc(page);
86447726 4892 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4893 nc->offset = size;
4894 }
4895
4896 offset = nc->offset - fragsz;
4897 if (unlikely(offset < 0)) {
4898 page = virt_to_page(nc->va);
4899
fe896d18 4900 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4901 goto refill;
4902
4903#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4904 /* if size can vary use size else just use PAGE_SIZE */
4905 size = nc->size;
4906#endif
4907 /* OK, page count is 0, we can safely set it */
86447726 4908 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
b63ae8ca
AD
4909
4910 /* reset page count bias and offset to start of new frag */
86447726 4911 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
b63ae8ca
AD
4912 offset = size - fragsz;
4913 }
4914
4915 nc->pagecnt_bias--;
4916 nc->offset = offset;
4917
4918 return nc->va + offset;
4919}
8c2dd3e4 4920EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4921
4922/*
4923 * Frees a page fragment allocated out of either a compound or order 0 page.
4924 */
8c2dd3e4 4925void page_frag_free(void *addr)
b63ae8ca
AD
4926{
4927 struct page *page = virt_to_head_page(addr);
4928
742aa7fb
AL
4929 if (unlikely(put_page_testzero(page)))
4930 free_the_page(page, compound_order(page));
b63ae8ca 4931}
8c2dd3e4 4932EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4933
d00181b9
KS
4934static void *make_alloc_exact(unsigned long addr, unsigned int order,
4935 size_t size)
ee85c2e1
AK
4936{
4937 if (addr) {
4938 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4939 unsigned long used = addr + PAGE_ALIGN(size);
4940
4941 split_page(virt_to_page((void *)addr), order);
4942 while (used < alloc_end) {
4943 free_page(used);
4944 used += PAGE_SIZE;
4945 }
4946 }
4947 return (void *)addr;
4948}
4949
2be0ffe2
TT
4950/**
4951 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4952 * @size: the number of bytes to allocate
63931eb9 4953 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
2be0ffe2
TT
4954 *
4955 * This function is similar to alloc_pages(), except that it allocates the
4956 * minimum number of pages to satisfy the request. alloc_pages() can only
4957 * allocate memory in power-of-two pages.
4958 *
4959 * This function is also limited by MAX_ORDER.
4960 *
4961 * Memory allocated by this function must be released by free_pages_exact().
a862f68a
MR
4962 *
4963 * Return: pointer to the allocated area or %NULL in case of error.
2be0ffe2
TT
4964 */
4965void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4966{
4967 unsigned int order = get_order(size);
4968 unsigned long addr;
4969
63931eb9
VB
4970 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4971 gfp_mask &= ~__GFP_COMP;
4972
2be0ffe2 4973 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4974 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4975}
4976EXPORT_SYMBOL(alloc_pages_exact);
4977
ee85c2e1
AK
4978/**
4979 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4980 * pages on a node.
b5e6ab58 4981 * @nid: the preferred node ID where memory should be allocated
ee85c2e1 4982 * @size: the number of bytes to allocate
63931eb9 4983 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
ee85c2e1
AK
4984 *
4985 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4986 * back.
a862f68a
MR
4987 *
4988 * Return: pointer to the allocated area or %NULL in case of error.
ee85c2e1 4989 */
e1931811 4990void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4991{
d00181b9 4992 unsigned int order = get_order(size);
63931eb9
VB
4993 struct page *p;
4994
4995 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4996 gfp_mask &= ~__GFP_COMP;
4997
4998 p = alloc_pages_node(nid, gfp_mask, order);
ee85c2e1
AK
4999 if (!p)
5000 return NULL;
5001 return make_alloc_exact((unsigned long)page_address(p), order, size);
5002}
ee85c2e1 5003
2be0ffe2
TT
5004/**
5005 * free_pages_exact - release memory allocated via alloc_pages_exact()
5006 * @virt: the value returned by alloc_pages_exact.
5007 * @size: size of allocation, same value as passed to alloc_pages_exact().
5008 *
5009 * Release the memory allocated by a previous call to alloc_pages_exact.
5010 */
5011void free_pages_exact(void *virt, size_t size)
5012{
5013 unsigned long addr = (unsigned long)virt;
5014 unsigned long end = addr + PAGE_ALIGN(size);
5015
5016 while (addr < end) {
5017 free_page(addr);
5018 addr += PAGE_SIZE;
5019 }
5020}
5021EXPORT_SYMBOL(free_pages_exact);
5022
e0fb5815
ZY
5023/**
5024 * nr_free_zone_pages - count number of pages beyond high watermark
5025 * @offset: The zone index of the highest zone
5026 *
a862f68a 5027 * nr_free_zone_pages() counts the number of pages which are beyond the
e0fb5815
ZY
5028 * high watermark within all zones at or below a given zone index. For each
5029 * zone, the number of pages is calculated as:
0e056eb5 5030 *
5031 * nr_free_zone_pages = managed_pages - high_pages
a862f68a
MR
5032 *
5033 * Return: number of pages beyond high watermark.
e0fb5815 5034 */
ebec3862 5035static unsigned long nr_free_zone_pages(int offset)
1da177e4 5036{
dd1a239f 5037 struct zoneref *z;
54a6eb5c
MG
5038 struct zone *zone;
5039
e310fd43 5040 /* Just pick one node, since fallback list is circular */
ebec3862 5041 unsigned long sum = 0;
1da177e4 5042
0e88460d 5043 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 5044
54a6eb5c 5045 for_each_zone_zonelist(zone, z, zonelist, offset) {
9705bea5 5046 unsigned long size = zone_managed_pages(zone);
41858966 5047 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
5048 if (size > high)
5049 sum += size - high;
1da177e4
LT
5050 }
5051
5052 return sum;
5053}
5054
e0fb5815
ZY
5055/**
5056 * nr_free_buffer_pages - count number of pages beyond high watermark
5057 *
5058 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5059 * watermark within ZONE_DMA and ZONE_NORMAL.
a862f68a
MR
5060 *
5061 * Return: number of pages beyond high watermark within ZONE_DMA and
5062 * ZONE_NORMAL.
1da177e4 5063 */
ebec3862 5064unsigned long nr_free_buffer_pages(void)
1da177e4 5065{
af4ca457 5066 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 5067}
c2f1a551 5068EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 5069
e0fb5815
ZY
5070/**
5071 * nr_free_pagecache_pages - count number of pages beyond high watermark
5072 *
5073 * nr_free_pagecache_pages() counts the number of pages which are beyond the
5074 * high watermark within all zones.
a862f68a
MR
5075 *
5076 * Return: number of pages beyond high watermark within all zones.
1da177e4 5077 */
ebec3862 5078unsigned long nr_free_pagecache_pages(void)
1da177e4 5079{
2a1e274a 5080 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 5081}
08e0f6a9
CL
5082
5083static inline void show_node(struct zone *zone)
1da177e4 5084{
e5adfffc 5085 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 5086 printk("Node %d ", zone_to_nid(zone));
1da177e4 5087}
1da177e4 5088
d02bd27b
IR
5089long si_mem_available(void)
5090{
5091 long available;
5092 unsigned long pagecache;
5093 unsigned long wmark_low = 0;
5094 unsigned long pages[NR_LRU_LISTS];
b29940c1 5095 unsigned long reclaimable;
d02bd27b
IR
5096 struct zone *zone;
5097 int lru;
5098
5099 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 5100 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
5101
5102 for_each_zone(zone)
a9214443 5103 wmark_low += low_wmark_pages(zone);
d02bd27b
IR
5104
5105 /*
5106 * Estimate the amount of memory available for userspace allocations,
5107 * without causing swapping.
5108 */
c41f012a 5109 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
5110
5111 /*
5112 * Not all the page cache can be freed, otherwise the system will
5113 * start swapping. Assume at least half of the page cache, or the
5114 * low watermark worth of cache, needs to stay.
5115 */
5116 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5117 pagecache -= min(pagecache / 2, wmark_low);
5118 available += pagecache;
5119
5120 /*
b29940c1
VB
5121 * Part of the reclaimable slab and other kernel memory consists of
5122 * items that are in use, and cannot be freed. Cap this estimate at the
5123 * low watermark.
d02bd27b 5124 */
b29940c1
VB
5125 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5126 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5127 available += reclaimable - min(reclaimable / 2, wmark_low);
034ebf65 5128
d02bd27b
IR
5129 if (available < 0)
5130 available = 0;
5131 return available;
5132}
5133EXPORT_SYMBOL_GPL(si_mem_available);
5134
1da177e4
LT
5135void si_meminfo(struct sysinfo *val)
5136{
ca79b0c2 5137 val->totalram = totalram_pages();
11fb9989 5138 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 5139 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 5140 val->bufferram = nr_blockdev_pages();
ca79b0c2 5141 val->totalhigh = totalhigh_pages();
1da177e4 5142 val->freehigh = nr_free_highpages();
1da177e4
LT
5143 val->mem_unit = PAGE_SIZE;
5144}
5145
5146EXPORT_SYMBOL(si_meminfo);
5147
5148#ifdef CONFIG_NUMA
5149void si_meminfo_node(struct sysinfo *val, int nid)
5150{
cdd91a77
JL
5151 int zone_type; /* needs to be signed */
5152 unsigned long managed_pages = 0;
fc2bd799
JK
5153 unsigned long managed_highpages = 0;
5154 unsigned long free_highpages = 0;
1da177e4
LT
5155 pg_data_t *pgdat = NODE_DATA(nid);
5156
cdd91a77 5157 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
9705bea5 5158 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
cdd91a77 5159 val->totalram = managed_pages;
11fb9989 5160 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 5161 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 5162#ifdef CONFIG_HIGHMEM
fc2bd799
JK
5163 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5164 struct zone *zone = &pgdat->node_zones[zone_type];
5165
5166 if (is_highmem(zone)) {
9705bea5 5167 managed_highpages += zone_managed_pages(zone);
fc2bd799
JK
5168 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5169 }
5170 }
5171 val->totalhigh = managed_highpages;
5172 val->freehigh = free_highpages;
98d2b0eb 5173#else
fc2bd799
JK
5174 val->totalhigh = managed_highpages;
5175 val->freehigh = free_highpages;
98d2b0eb 5176#endif
1da177e4
LT
5177 val->mem_unit = PAGE_SIZE;
5178}
5179#endif
5180
ddd588b5 5181/*
7bf02ea2
DR
5182 * Determine whether the node should be displayed or not, depending on whether
5183 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 5184 */
9af744d7 5185static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 5186{
ddd588b5 5187 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 5188 return false;
ddd588b5 5189
9af744d7
MH
5190 /*
5191 * no node mask - aka implicit memory numa policy. Do not bother with
5192 * the synchronization - read_mems_allowed_begin - because we do not
5193 * have to be precise here.
5194 */
5195 if (!nodemask)
5196 nodemask = &cpuset_current_mems_allowed;
5197
5198 return !node_isset(nid, *nodemask);
ddd588b5
DR
5199}
5200
1da177e4
LT
5201#define K(x) ((x) << (PAGE_SHIFT-10))
5202
377e4f16
RV
5203static void show_migration_types(unsigned char type)
5204{
5205 static const char types[MIGRATE_TYPES] = {
5206 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 5207 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
5208 [MIGRATE_RECLAIMABLE] = 'E',
5209 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
5210#ifdef CONFIG_CMA
5211 [MIGRATE_CMA] = 'C',
5212#endif
194159fb 5213#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 5214 [MIGRATE_ISOLATE] = 'I',
194159fb 5215#endif
377e4f16
RV
5216 };
5217 char tmp[MIGRATE_TYPES + 1];
5218 char *p = tmp;
5219 int i;
5220
5221 for (i = 0; i < MIGRATE_TYPES; i++) {
5222 if (type & (1 << i))
5223 *p++ = types[i];
5224 }
5225
5226 *p = '\0';
1f84a18f 5227 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
5228}
5229
1da177e4
LT
5230/*
5231 * Show free area list (used inside shift_scroll-lock stuff)
5232 * We also calculate the percentage fragmentation. We do this by counting the
5233 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
5234 *
5235 * Bits in @filter:
5236 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5237 * cpuset.
1da177e4 5238 */
9af744d7 5239void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 5240{
d1bfcdb8 5241 unsigned long free_pcp = 0;
c7241913 5242 int cpu;
1da177e4 5243 struct zone *zone;
599d0c95 5244 pg_data_t *pgdat;
1da177e4 5245
ee99c71c 5246 for_each_populated_zone(zone) {
9af744d7 5247 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5248 continue;
d1bfcdb8 5249
761b0677
KK
5250 for_each_online_cpu(cpu)
5251 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
5252 }
5253
a731286d
KM
5254 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5255 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
5256 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5257 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 5258 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 5259 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
5260 global_node_page_state(NR_ACTIVE_ANON),
5261 global_node_page_state(NR_INACTIVE_ANON),
5262 global_node_page_state(NR_ISOLATED_ANON),
5263 global_node_page_state(NR_ACTIVE_FILE),
5264 global_node_page_state(NR_INACTIVE_FILE),
5265 global_node_page_state(NR_ISOLATED_FILE),
5266 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
5267 global_node_page_state(NR_FILE_DIRTY),
5268 global_node_page_state(NR_WRITEBACK),
5269 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
5270 global_node_page_state(NR_SLAB_RECLAIMABLE),
5271 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 5272 global_node_page_state(NR_FILE_MAPPED),
11fb9989 5273 global_node_page_state(NR_SHMEM),
c41f012a
MH
5274 global_zone_page_state(NR_PAGETABLE),
5275 global_zone_page_state(NR_BOUNCE),
5276 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 5277 free_pcp,
c41f012a 5278 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 5279
599d0c95 5280 for_each_online_pgdat(pgdat) {
9af744d7 5281 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
5282 continue;
5283
599d0c95
MG
5284 printk("Node %d"
5285 " active_anon:%lukB"
5286 " inactive_anon:%lukB"
5287 " active_file:%lukB"
5288 " inactive_file:%lukB"
5289 " unevictable:%lukB"
5290 " isolated(anon):%lukB"
5291 " isolated(file):%lukB"
50658e2e 5292 " mapped:%lukB"
11fb9989
MG
5293 " dirty:%lukB"
5294 " writeback:%lukB"
5295 " shmem:%lukB"
5296#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5297 " shmem_thp: %lukB"
5298 " shmem_pmdmapped: %lukB"
5299 " anon_thp: %lukB"
5300#endif
5301 " writeback_tmp:%lukB"
5302 " unstable:%lukB"
599d0c95
MG
5303 " all_unreclaimable? %s"
5304 "\n",
5305 pgdat->node_id,
5306 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5307 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5308 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5309 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5310 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5311 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5312 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 5313 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
5314 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5315 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 5316 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
5317#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5318 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5319 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5320 * HPAGE_PMD_NR),
5321 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5322#endif
11fb9989
MG
5323 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5324 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
5325 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5326 "yes" : "no");
599d0c95
MG
5327 }
5328
ee99c71c 5329 for_each_populated_zone(zone) {
1da177e4
LT
5330 int i;
5331
9af744d7 5332 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5333 continue;
d1bfcdb8
KK
5334
5335 free_pcp = 0;
5336 for_each_online_cpu(cpu)
5337 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5338
1da177e4 5339 show_node(zone);
1f84a18f
JP
5340 printk(KERN_CONT
5341 "%s"
1da177e4
LT
5342 " free:%lukB"
5343 " min:%lukB"
5344 " low:%lukB"
5345 " high:%lukB"
71c799f4
MK
5346 " active_anon:%lukB"
5347 " inactive_anon:%lukB"
5348 " active_file:%lukB"
5349 " inactive_file:%lukB"
5350 " unevictable:%lukB"
5a1c84b4 5351 " writepending:%lukB"
1da177e4 5352 " present:%lukB"
9feedc9d 5353 " managed:%lukB"
4a0aa73f 5354 " mlocked:%lukB"
c6a7f572 5355 " kernel_stack:%lukB"
4a0aa73f 5356 " pagetables:%lukB"
4a0aa73f 5357 " bounce:%lukB"
d1bfcdb8
KK
5358 " free_pcp:%lukB"
5359 " local_pcp:%ukB"
d1ce749a 5360 " free_cma:%lukB"
1da177e4
LT
5361 "\n",
5362 zone->name,
88f5acf8 5363 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
5364 K(min_wmark_pages(zone)),
5365 K(low_wmark_pages(zone)),
5366 K(high_wmark_pages(zone)),
71c799f4
MK
5367 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5368 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5369 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5370 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5371 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 5372 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 5373 K(zone->present_pages),
9705bea5 5374 K(zone_managed_pages(zone)),
4a0aa73f 5375 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 5376 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 5377 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 5378 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
5379 K(free_pcp),
5380 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 5381 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
5382 printk("lowmem_reserve[]:");
5383 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5384 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5385 printk(KERN_CONT "\n");
1da177e4
LT
5386 }
5387
ee99c71c 5388 for_each_populated_zone(zone) {
d00181b9
KS
5389 unsigned int order;
5390 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5391 unsigned char types[MAX_ORDER];
1da177e4 5392
9af744d7 5393 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5394 continue;
1da177e4 5395 show_node(zone);
1f84a18f 5396 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5397
5398 spin_lock_irqsave(&zone->lock, flags);
5399 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5400 struct free_area *area = &zone->free_area[order];
5401 int type;
5402
5403 nr[order] = area->nr_free;
8f9de51a 5404 total += nr[order] << order;
377e4f16
RV
5405
5406 types[order] = 0;
5407 for (type = 0; type < MIGRATE_TYPES; type++) {
b03641af 5408 if (!free_area_empty(area, type))
377e4f16
RV
5409 types[order] |= 1 << type;
5410 }
1da177e4
LT
5411 }
5412 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5413 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5414 printk(KERN_CONT "%lu*%lukB ",
5415 nr[order], K(1UL) << order);
377e4f16
RV
5416 if (nr[order])
5417 show_migration_types(types[order]);
5418 }
1f84a18f 5419 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5420 }
5421
949f7ec5
DR
5422 hugetlb_show_meminfo();
5423
11fb9989 5424 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5425
1da177e4
LT
5426 show_swap_cache_info();
5427}
5428
19770b32
MG
5429static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5430{
5431 zoneref->zone = zone;
5432 zoneref->zone_idx = zone_idx(zone);
5433}
5434
1da177e4
LT
5435/*
5436 * Builds allocation fallback zone lists.
1a93205b
CL
5437 *
5438 * Add all populated zones of a node to the zonelist.
1da177e4 5439 */
9d3be21b 5440static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5441{
1a93205b 5442 struct zone *zone;
bc732f1d 5443 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5444 int nr_zones = 0;
02a68a5e
CL
5445
5446 do {
2f6726e5 5447 zone_type--;
070f8032 5448 zone = pgdat->node_zones + zone_type;
6aa303de 5449 if (managed_zone(zone)) {
9d3be21b 5450 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5451 check_highest_zone(zone_type);
1da177e4 5452 }
2f6726e5 5453 } while (zone_type);
bc732f1d 5454
070f8032 5455 return nr_zones;
1da177e4
LT
5456}
5457
5458#ifdef CONFIG_NUMA
f0c0b2b8
KH
5459
5460static int __parse_numa_zonelist_order(char *s)
5461{
c9bff3ee
MH
5462 /*
5463 * We used to support different zonlists modes but they turned
5464 * out to be just not useful. Let's keep the warning in place
5465 * if somebody still use the cmd line parameter so that we do
5466 * not fail it silently
5467 */
5468 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5469 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5470 return -EINVAL;
5471 }
5472 return 0;
5473}
5474
5475static __init int setup_numa_zonelist_order(char *s)
5476{
ecb256f8
VL
5477 if (!s)
5478 return 0;
5479
c9bff3ee 5480 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5481}
5482early_param("numa_zonelist_order", setup_numa_zonelist_order);
5483
c9bff3ee
MH
5484char numa_zonelist_order[] = "Node";
5485
f0c0b2b8
KH
5486/*
5487 * sysctl handler for numa_zonelist_order
5488 */
cccad5b9 5489int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5490 void __user *buffer, size_t *length,
f0c0b2b8
KH
5491 loff_t *ppos)
5492{
c9bff3ee 5493 char *str;
f0c0b2b8
KH
5494 int ret;
5495
c9bff3ee
MH
5496 if (!write)
5497 return proc_dostring(table, write, buffer, length, ppos);
5498 str = memdup_user_nul(buffer, 16);
5499 if (IS_ERR(str))
5500 return PTR_ERR(str);
dacbde09 5501
c9bff3ee
MH
5502 ret = __parse_numa_zonelist_order(str);
5503 kfree(str);
443c6f14 5504 return ret;
f0c0b2b8
KH
5505}
5506
5507
62bc62a8 5508#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5509static int node_load[MAX_NUMNODES];
5510
1da177e4 5511/**
4dc3b16b 5512 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5513 * @node: node whose fallback list we're appending
5514 * @used_node_mask: nodemask_t of already used nodes
5515 *
5516 * We use a number of factors to determine which is the next node that should
5517 * appear on a given node's fallback list. The node should not have appeared
5518 * already in @node's fallback list, and it should be the next closest node
5519 * according to the distance array (which contains arbitrary distance values
5520 * from each node to each node in the system), and should also prefer nodes
5521 * with no CPUs, since presumably they'll have very little allocation pressure
5522 * on them otherwise.
a862f68a
MR
5523 *
5524 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
1da177e4 5525 */
f0c0b2b8 5526static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5527{
4cf808eb 5528 int n, val;
1da177e4 5529 int min_val = INT_MAX;
00ef2d2f 5530 int best_node = NUMA_NO_NODE;
a70f7302 5531 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5532
4cf808eb
LT
5533 /* Use the local node if we haven't already */
5534 if (!node_isset(node, *used_node_mask)) {
5535 node_set(node, *used_node_mask);
5536 return node;
5537 }
1da177e4 5538
4b0ef1fe 5539 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5540
5541 /* Don't want a node to appear more than once */
5542 if (node_isset(n, *used_node_mask))
5543 continue;
5544
1da177e4
LT
5545 /* Use the distance array to find the distance */
5546 val = node_distance(node, n);
5547
4cf808eb
LT
5548 /* Penalize nodes under us ("prefer the next node") */
5549 val += (n < node);
5550
1da177e4 5551 /* Give preference to headless and unused nodes */
a70f7302
RR
5552 tmp = cpumask_of_node(n);
5553 if (!cpumask_empty(tmp))
1da177e4
LT
5554 val += PENALTY_FOR_NODE_WITH_CPUS;
5555
5556 /* Slight preference for less loaded node */
5557 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5558 val += node_load[n];
5559
5560 if (val < min_val) {
5561 min_val = val;
5562 best_node = n;
5563 }
5564 }
5565
5566 if (best_node >= 0)
5567 node_set(best_node, *used_node_mask);
5568
5569 return best_node;
5570}
5571
f0c0b2b8
KH
5572
5573/*
5574 * Build zonelists ordered by node and zones within node.
5575 * This results in maximum locality--normal zone overflows into local
5576 * DMA zone, if any--but risks exhausting DMA zone.
5577 */
9d3be21b
MH
5578static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5579 unsigned nr_nodes)
1da177e4 5580{
9d3be21b
MH
5581 struct zoneref *zonerefs;
5582 int i;
5583
5584 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5585
5586 for (i = 0; i < nr_nodes; i++) {
5587 int nr_zones;
5588
5589 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5590
9d3be21b
MH
5591 nr_zones = build_zonerefs_node(node, zonerefs);
5592 zonerefs += nr_zones;
5593 }
5594 zonerefs->zone = NULL;
5595 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5596}
5597
523b9458
CL
5598/*
5599 * Build gfp_thisnode zonelists
5600 */
5601static void build_thisnode_zonelists(pg_data_t *pgdat)
5602{
9d3be21b
MH
5603 struct zoneref *zonerefs;
5604 int nr_zones;
523b9458 5605
9d3be21b
MH
5606 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5607 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5608 zonerefs += nr_zones;
5609 zonerefs->zone = NULL;
5610 zonerefs->zone_idx = 0;
523b9458
CL
5611}
5612
f0c0b2b8
KH
5613/*
5614 * Build zonelists ordered by zone and nodes within zones.
5615 * This results in conserving DMA zone[s] until all Normal memory is
5616 * exhausted, but results in overflowing to remote node while memory
5617 * may still exist in local DMA zone.
5618 */
f0c0b2b8 5619
f0c0b2b8
KH
5620static void build_zonelists(pg_data_t *pgdat)
5621{
9d3be21b
MH
5622 static int node_order[MAX_NUMNODES];
5623 int node, load, nr_nodes = 0;
1da177e4 5624 nodemask_t used_mask;
f0c0b2b8 5625 int local_node, prev_node;
1da177e4
LT
5626
5627 /* NUMA-aware ordering of nodes */
5628 local_node = pgdat->node_id;
62bc62a8 5629 load = nr_online_nodes;
1da177e4
LT
5630 prev_node = local_node;
5631 nodes_clear(used_mask);
f0c0b2b8 5632
f0c0b2b8 5633 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5634 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5635 /*
5636 * We don't want to pressure a particular node.
5637 * So adding penalty to the first node in same
5638 * distance group to make it round-robin.
5639 */
957f822a
DR
5640 if (node_distance(local_node, node) !=
5641 node_distance(local_node, prev_node))
f0c0b2b8
KH
5642 node_load[node] = load;
5643
9d3be21b 5644 node_order[nr_nodes++] = node;
1da177e4
LT
5645 prev_node = node;
5646 load--;
1da177e4 5647 }
523b9458 5648
9d3be21b 5649 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5650 build_thisnode_zonelists(pgdat);
1da177e4
LT
5651}
5652
7aac7898
LS
5653#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5654/*
5655 * Return node id of node used for "local" allocations.
5656 * I.e., first node id of first zone in arg node's generic zonelist.
5657 * Used for initializing percpu 'numa_mem', which is used primarily
5658 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5659 */
5660int local_memory_node(int node)
5661{
c33d6c06 5662 struct zoneref *z;
7aac7898 5663
c33d6c06 5664 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5665 gfp_zone(GFP_KERNEL),
c33d6c06 5666 NULL);
c1093b74 5667 return zone_to_nid(z->zone);
7aac7898
LS
5668}
5669#endif
f0c0b2b8 5670
6423aa81
JK
5671static void setup_min_unmapped_ratio(void);
5672static void setup_min_slab_ratio(void);
1da177e4
LT
5673#else /* CONFIG_NUMA */
5674
f0c0b2b8 5675static void build_zonelists(pg_data_t *pgdat)
1da177e4 5676{
19655d34 5677 int node, local_node;
9d3be21b
MH
5678 struct zoneref *zonerefs;
5679 int nr_zones;
1da177e4
LT
5680
5681 local_node = pgdat->node_id;
1da177e4 5682
9d3be21b
MH
5683 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5684 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5685 zonerefs += nr_zones;
1da177e4 5686
54a6eb5c
MG
5687 /*
5688 * Now we build the zonelist so that it contains the zones
5689 * of all the other nodes.
5690 * We don't want to pressure a particular node, so when
5691 * building the zones for node N, we make sure that the
5692 * zones coming right after the local ones are those from
5693 * node N+1 (modulo N)
5694 */
5695 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5696 if (!node_online(node))
5697 continue;
9d3be21b
MH
5698 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5699 zonerefs += nr_zones;
1da177e4 5700 }
54a6eb5c
MG
5701 for (node = 0; node < local_node; node++) {
5702 if (!node_online(node))
5703 continue;
9d3be21b
MH
5704 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5705 zonerefs += nr_zones;
54a6eb5c
MG
5706 }
5707
9d3be21b
MH
5708 zonerefs->zone = NULL;
5709 zonerefs->zone_idx = 0;
1da177e4
LT
5710}
5711
5712#endif /* CONFIG_NUMA */
5713
99dcc3e5
CL
5714/*
5715 * Boot pageset table. One per cpu which is going to be used for all
5716 * zones and all nodes. The parameters will be set in such a way
5717 * that an item put on a list will immediately be handed over to
5718 * the buddy list. This is safe since pageset manipulation is done
5719 * with interrupts disabled.
5720 *
5721 * The boot_pagesets must be kept even after bootup is complete for
5722 * unused processors and/or zones. They do play a role for bootstrapping
5723 * hotplugged processors.
5724 *
5725 * zoneinfo_show() and maybe other functions do
5726 * not check if the processor is online before following the pageset pointer.
5727 * Other parts of the kernel may not check if the zone is available.
5728 */
5729static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5730static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5731static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5732
11cd8638 5733static void __build_all_zonelists(void *data)
1da177e4 5734{
6811378e 5735 int nid;
afb6ebb3 5736 int __maybe_unused cpu;
9adb62a5 5737 pg_data_t *self = data;
b93e0f32
MH
5738 static DEFINE_SPINLOCK(lock);
5739
5740 spin_lock(&lock);
9276b1bc 5741
7f9cfb31
BL
5742#ifdef CONFIG_NUMA
5743 memset(node_load, 0, sizeof(node_load));
5744#endif
9adb62a5 5745
c1152583
WY
5746 /*
5747 * This node is hotadded and no memory is yet present. So just
5748 * building zonelists is fine - no need to touch other nodes.
5749 */
9adb62a5
JL
5750 if (self && !node_online(self->node_id)) {
5751 build_zonelists(self);
c1152583
WY
5752 } else {
5753 for_each_online_node(nid) {
5754 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5755
c1152583
WY
5756 build_zonelists(pgdat);
5757 }
99dcc3e5 5758
7aac7898
LS
5759#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5760 /*
5761 * We now know the "local memory node" for each node--
5762 * i.e., the node of the first zone in the generic zonelist.
5763 * Set up numa_mem percpu variable for on-line cpus. During
5764 * boot, only the boot cpu should be on-line; we'll init the
5765 * secondary cpus' numa_mem as they come on-line. During
5766 * node/memory hotplug, we'll fixup all on-line cpus.
5767 */
d9c9a0b9 5768 for_each_online_cpu(cpu)
7aac7898 5769 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5770#endif
d9c9a0b9 5771 }
b93e0f32
MH
5772
5773 spin_unlock(&lock);
6811378e
YG
5774}
5775
061f67bc
RV
5776static noinline void __init
5777build_all_zonelists_init(void)
5778{
afb6ebb3
MH
5779 int cpu;
5780
061f67bc 5781 __build_all_zonelists(NULL);
afb6ebb3
MH
5782
5783 /*
5784 * Initialize the boot_pagesets that are going to be used
5785 * for bootstrapping processors. The real pagesets for
5786 * each zone will be allocated later when the per cpu
5787 * allocator is available.
5788 *
5789 * boot_pagesets are used also for bootstrapping offline
5790 * cpus if the system is already booted because the pagesets
5791 * are needed to initialize allocators on a specific cpu too.
5792 * F.e. the percpu allocator needs the page allocator which
5793 * needs the percpu allocator in order to allocate its pagesets
5794 * (a chicken-egg dilemma).
5795 */
5796 for_each_possible_cpu(cpu)
5797 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5798
061f67bc
RV
5799 mminit_verify_zonelist();
5800 cpuset_init_current_mems_allowed();
5801}
5802
4eaf3f64 5803/*
4eaf3f64 5804 * unless system_state == SYSTEM_BOOTING.
061f67bc 5805 *
72675e13 5806 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5807 * [protected by SYSTEM_BOOTING].
4eaf3f64 5808 */
72675e13 5809void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5810{
5811 if (system_state == SYSTEM_BOOTING) {
061f67bc 5812 build_all_zonelists_init();
6811378e 5813 } else {
11cd8638 5814 __build_all_zonelists(pgdat);
6811378e
YG
5815 /* cpuset refresh routine should be here */
5816 }
bd1e22b8 5817 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5818 /*
5819 * Disable grouping by mobility if the number of pages in the
5820 * system is too low to allow the mechanism to work. It would be
5821 * more accurate, but expensive to check per-zone. This check is
5822 * made on memory-hotadd so a system can start with mobility
5823 * disabled and enable it later
5824 */
d9c23400 5825 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5826 page_group_by_mobility_disabled = 1;
5827 else
5828 page_group_by_mobility_disabled = 0;
5829
ce0725f7 5830 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5831 nr_online_nodes,
756a025f
JP
5832 page_group_by_mobility_disabled ? "off" : "on",
5833 vm_total_pages);
f0c0b2b8 5834#ifdef CONFIG_NUMA
f88dfff5 5835 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5836#endif
1da177e4
LT
5837}
5838
a9a9e77f
PT
5839/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5840static bool __meminit
5841overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5842{
5843#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5844 static struct memblock_region *r;
5845
5846 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5847 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5848 for_each_memblock(memory, r) {
5849 if (*pfn < memblock_region_memory_end_pfn(r))
5850 break;
5851 }
5852 }
5853 if (*pfn >= memblock_region_memory_base_pfn(r) &&
5854 memblock_is_mirror(r)) {
5855 *pfn = memblock_region_memory_end_pfn(r);
5856 return true;
5857 }
5858 }
5859#endif
5860 return false;
5861}
5862
1da177e4
LT
5863/*
5864 * Initially all pages are reserved - free ones are freed
c6ffc5ca 5865 * up by memblock_free_all() once the early boot process is
1da177e4
LT
5866 * done. Non-atomic initialization, single-pass.
5867 */
c09b4240 5868void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5869 unsigned long start_pfn, enum memmap_context context,
5870 struct vmem_altmap *altmap)
1da177e4 5871{
a9a9e77f 5872 unsigned long pfn, end_pfn = start_pfn + size;
d0dc12e8 5873 struct page *page;
1da177e4 5874
22b31eec
HD
5875 if (highest_memmap_pfn < end_pfn - 1)
5876 highest_memmap_pfn = end_pfn - 1;
5877
966cf44f 5878#ifdef CONFIG_ZONE_DEVICE
4b94ffdc
DW
5879 /*
5880 * Honor reservation requested by the driver for this ZONE_DEVICE
966cf44f
AD
5881 * memory. We limit the total number of pages to initialize to just
5882 * those that might contain the memory mapping. We will defer the
5883 * ZONE_DEVICE page initialization until after we have released
5884 * the hotplug lock.
4b94ffdc 5885 */
966cf44f
AD
5886 if (zone == ZONE_DEVICE) {
5887 if (!altmap)
5888 return;
5889
5890 if (start_pfn == altmap->base_pfn)
5891 start_pfn += altmap->reserve;
5892 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5893 }
5894#endif
4b94ffdc 5895
cbe8dd4a 5896 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5897 /*
b72d0ffb
AM
5898 * There can be holes in boot-time mem_map[]s handed to this
5899 * function. They do not exist on hotplugged memory.
a2f3aa02 5900 */
a9a9e77f
PT
5901 if (context == MEMMAP_EARLY) {
5902 if (!early_pfn_valid(pfn))
b72d0ffb 5903 continue;
a9a9e77f
PT
5904 if (!early_pfn_in_nid(pfn, nid))
5905 continue;
5906 if (overlap_memmap_init(zone, &pfn))
5907 continue;
5908 if (defer_init(nid, pfn, end_pfn))
5909 break;
a2f3aa02 5910 }
ac5d2539 5911
d0dc12e8
PT
5912 page = pfn_to_page(pfn);
5913 __init_single_page(page, pfn, zone, nid);
5914 if (context == MEMMAP_HOTPLUG)
d483da5b 5915 __SetPageReserved(page);
d0dc12e8 5916
ac5d2539
MG
5917 /*
5918 * Mark the block movable so that blocks are reserved for
5919 * movable at startup. This will force kernel allocations
5920 * to reserve their blocks rather than leaking throughout
5921 * the address space during boot when many long-lived
974a786e 5922 * kernel allocations are made.
ac5d2539
MG
5923 *
5924 * bitmap is created for zone's valid pfn range. but memmap
5925 * can be created for invalid pages (for alignment)
5926 * check here not to call set_pageblock_migratetype() against
5927 * pfn out of zone.
5928 */
5929 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5930 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5931 cond_resched();
ac5d2539 5932 }
1da177e4
LT
5933 }
5934}
5935
966cf44f
AD
5936#ifdef CONFIG_ZONE_DEVICE
5937void __ref memmap_init_zone_device(struct zone *zone,
5938 unsigned long start_pfn,
5939 unsigned long size,
5940 struct dev_pagemap *pgmap)
5941{
5942 unsigned long pfn, end_pfn = start_pfn + size;
5943 struct pglist_data *pgdat = zone->zone_pgdat;
514caf23 5944 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
966cf44f
AD
5945 unsigned long zone_idx = zone_idx(zone);
5946 unsigned long start = jiffies;
5947 int nid = pgdat->node_id;
5948
46d945ae 5949 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
966cf44f
AD
5950 return;
5951
5952 /*
5953 * The call to memmap_init_zone should have already taken care
5954 * of the pages reserved for the memmap, so we can just jump to
5955 * the end of that region and start processing the device pages.
5956 */
514caf23 5957 if (altmap) {
966cf44f
AD
5958 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5959 size = end_pfn - start_pfn;
5960 }
5961
5962 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5963 struct page *page = pfn_to_page(pfn);
5964
5965 __init_single_page(page, pfn, zone_idx, nid);
5966
5967 /*
5968 * Mark page reserved as it will need to wait for onlining
5969 * phase for it to be fully associated with a zone.
5970 *
5971 * We can use the non-atomic __set_bit operation for setting
5972 * the flag as we are still initializing the pages.
5973 */
5974 __SetPageReserved(page);
5975
5976 /*
8a164fef
CH
5977 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5978 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
5979 * ever freed or placed on a driver-private list.
966cf44f
AD
5980 */
5981 page->pgmap = pgmap;
8a164fef 5982 page->zone_device_data = NULL;
966cf44f
AD
5983
5984 /*
5985 * Mark the block movable so that blocks are reserved for
5986 * movable at startup. This will force kernel allocations
5987 * to reserve their blocks rather than leaking throughout
5988 * the address space during boot when many long-lived
5989 * kernel allocations are made.
5990 *
5991 * bitmap is created for zone's valid pfn range. but memmap
5992 * can be created for invalid pages (for alignment)
5993 * check here not to call set_pageblock_migratetype() against
5994 * pfn out of zone.
5995 *
5996 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
ba72b4c8 5997 * because this is done early in section_activate()
966cf44f
AD
5998 */
5999 if (!(pfn & (pageblock_nr_pages - 1))) {
6000 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6001 cond_resched();
6002 }
6003 }
6004
fdc029b1 6005 pr_info("%s initialised %lu pages in %ums\n", __func__,
966cf44f
AD
6006 size, jiffies_to_msecs(jiffies - start));
6007}
6008
6009#endif
1e548deb 6010static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 6011{
7aeb09f9 6012 unsigned int order, t;
b2a0ac88
MG
6013 for_each_migratetype_order(order, t) {
6014 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
6015 zone->free_area[order].nr_free = 0;
6016 }
6017}
6018
dfb3ccd0
PT
6019void __meminit __weak memmap_init(unsigned long size, int nid,
6020 unsigned long zone, unsigned long start_pfn)
6021{
6022 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6023}
1da177e4 6024
7cd2b0a3 6025static int zone_batchsize(struct zone *zone)
e7c8d5c9 6026{
3a6be87f 6027#ifdef CONFIG_MMU
e7c8d5c9
CL
6028 int batch;
6029
6030 /*
6031 * The per-cpu-pages pools are set to around 1000th of the
d8a759b5 6032 * size of the zone.
e7c8d5c9 6033 */
9705bea5 6034 batch = zone_managed_pages(zone) / 1024;
d8a759b5
AL
6035 /* But no more than a meg. */
6036 if (batch * PAGE_SIZE > 1024 * 1024)
6037 batch = (1024 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
6038 batch /= 4; /* We effectively *= 4 below */
6039 if (batch < 1)
6040 batch = 1;
6041
6042 /*
0ceaacc9
NP
6043 * Clamp the batch to a 2^n - 1 value. Having a power
6044 * of 2 value was found to be more likely to have
6045 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 6046 *
0ceaacc9
NP
6047 * For example if 2 tasks are alternately allocating
6048 * batches of pages, one task can end up with a lot
6049 * of pages of one half of the possible page colors
6050 * and the other with pages of the other colors.
e7c8d5c9 6051 */
9155203a 6052 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 6053
e7c8d5c9 6054 return batch;
3a6be87f
DH
6055
6056#else
6057 /* The deferral and batching of frees should be suppressed under NOMMU
6058 * conditions.
6059 *
6060 * The problem is that NOMMU needs to be able to allocate large chunks
6061 * of contiguous memory as there's no hardware page translation to
6062 * assemble apparent contiguous memory from discontiguous pages.
6063 *
6064 * Queueing large contiguous runs of pages for batching, however,
6065 * causes the pages to actually be freed in smaller chunks. As there
6066 * can be a significant delay between the individual batches being
6067 * recycled, this leads to the once large chunks of space being
6068 * fragmented and becoming unavailable for high-order allocations.
6069 */
6070 return 0;
6071#endif
e7c8d5c9
CL
6072}
6073
8d7a8fa9
CS
6074/*
6075 * pcp->high and pcp->batch values are related and dependent on one another:
6076 * ->batch must never be higher then ->high.
6077 * The following function updates them in a safe manner without read side
6078 * locking.
6079 *
6080 * Any new users of pcp->batch and pcp->high should ensure they can cope with
6081 * those fields changing asynchronously (acording the the above rule).
6082 *
6083 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6084 * outside of boot time (or some other assurance that no concurrent updaters
6085 * exist).
6086 */
6087static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6088 unsigned long batch)
6089{
6090 /* start with a fail safe value for batch */
6091 pcp->batch = 1;
6092 smp_wmb();
6093
6094 /* Update high, then batch, in order */
6095 pcp->high = high;
6096 smp_wmb();
6097
6098 pcp->batch = batch;
6099}
6100
3664033c 6101/* a companion to pageset_set_high() */
4008bab7
CS
6102static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6103{
8d7a8fa9 6104 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
6105}
6106
88c90dbc 6107static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
6108{
6109 struct per_cpu_pages *pcp;
5f8dcc21 6110 int migratetype;
2caaad41 6111
1c6fe946
MD
6112 memset(p, 0, sizeof(*p));
6113
3dfa5721 6114 pcp = &p->pcp;
5f8dcc21
MG
6115 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6116 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
6117}
6118
88c90dbc
CS
6119static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6120{
6121 pageset_init(p);
6122 pageset_set_batch(p, batch);
6123}
6124
8ad4b1fb 6125/*
3664033c 6126 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
6127 * to the value high for the pageset p.
6128 */
3664033c 6129static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
6130 unsigned long high)
6131{
8d7a8fa9
CS
6132 unsigned long batch = max(1UL, high / 4);
6133 if ((high / 4) > (PAGE_SHIFT * 8))
6134 batch = PAGE_SHIFT * 8;
8ad4b1fb 6135
8d7a8fa9 6136 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
6137}
6138
7cd2b0a3
DR
6139static void pageset_set_high_and_batch(struct zone *zone,
6140 struct per_cpu_pageset *pcp)
56cef2b8 6141{
56cef2b8 6142 if (percpu_pagelist_fraction)
3664033c 6143 pageset_set_high(pcp,
9705bea5 6144 (zone_managed_pages(zone) /
56cef2b8
CS
6145 percpu_pagelist_fraction));
6146 else
6147 pageset_set_batch(pcp, zone_batchsize(zone));
6148}
6149
169f6c19
CS
6150static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6151{
6152 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6153
6154 pageset_init(pcp);
6155 pageset_set_high_and_batch(zone, pcp);
6156}
6157
72675e13 6158void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
6159{
6160 int cpu;
319774e2 6161 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
6162 for_each_possible_cpu(cpu)
6163 zone_pageset_init(zone, cpu);
319774e2
WF
6164}
6165
2caaad41 6166/*
99dcc3e5
CL
6167 * Allocate per cpu pagesets and initialize them.
6168 * Before this call only boot pagesets were available.
e7c8d5c9 6169 */
99dcc3e5 6170void __init setup_per_cpu_pageset(void)
e7c8d5c9 6171{
b4911ea2 6172 struct pglist_data *pgdat;
99dcc3e5 6173 struct zone *zone;
e7c8d5c9 6174
319774e2
WF
6175 for_each_populated_zone(zone)
6176 setup_zone_pageset(zone);
b4911ea2
MG
6177
6178 for_each_online_pgdat(pgdat)
6179 pgdat->per_cpu_nodestats =
6180 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
6181}
6182
c09b4240 6183static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 6184{
99dcc3e5
CL
6185 /*
6186 * per cpu subsystem is not up at this point. The following code
6187 * relies on the ability of the linker to provide the
6188 * offset of a (static) per cpu variable into the per cpu area.
6189 */
6190 zone->pageset = &boot_pageset;
ed8ece2e 6191
b38a8725 6192 if (populated_zone(zone))
99dcc3e5
CL
6193 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
6194 zone->name, zone->present_pages,
6195 zone_batchsize(zone));
ed8ece2e
DH
6196}
6197
dc0bbf3b 6198void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 6199 unsigned long zone_start_pfn,
b171e409 6200 unsigned long size)
ed8ece2e
DH
6201{
6202 struct pglist_data *pgdat = zone->zone_pgdat;
8f416836 6203 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 6204
8f416836
WY
6205 if (zone_idx > pgdat->nr_zones)
6206 pgdat->nr_zones = zone_idx;
ed8ece2e 6207
ed8ece2e
DH
6208 zone->zone_start_pfn = zone_start_pfn;
6209
708614e6
MG
6210 mminit_dprintk(MMINIT_TRACE, "memmap_init",
6211 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
6212 pgdat->node_id,
6213 (unsigned long)zone_idx(zone),
6214 zone_start_pfn, (zone_start_pfn + size));
6215
1e548deb 6216 zone_init_free_lists(zone);
9dcb8b68 6217 zone->initialized = 1;
ed8ece2e
DH
6218}
6219
0ee332c1 6220#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 6221#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 6222
c713216d
MG
6223/*
6224 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 6225 */
8a942fde
MG
6226int __meminit __early_pfn_to_nid(unsigned long pfn,
6227 struct mminit_pfnnid_cache *state)
c713216d 6228{
c13291a5 6229 unsigned long start_pfn, end_pfn;
e76b63f8 6230 int nid;
7c243c71 6231
8a942fde
MG
6232 if (state->last_start <= pfn && pfn < state->last_end)
6233 return state->last_nid;
c713216d 6234
e76b63f8 6235 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
98fa15f3 6236 if (nid != NUMA_NO_NODE) {
8a942fde
MG
6237 state->last_start = start_pfn;
6238 state->last_end = end_pfn;
6239 state->last_nid = nid;
e76b63f8
YL
6240 }
6241
6242 return nid;
c713216d
MG
6243}
6244#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6245
c713216d 6246/**
6782832e 6247 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 6248 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 6249 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 6250 *
7d018176
ZZ
6251 * If an architecture guarantees that all ranges registered contain no holes
6252 * and may be freed, this this function may be used instead of calling
6253 * memblock_free_early_nid() manually.
c713216d 6254 */
c13291a5 6255void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 6256{
c13291a5
TH
6257 unsigned long start_pfn, end_pfn;
6258 int i, this_nid;
edbe7d23 6259
c13291a5
TH
6260 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6261 start_pfn = min(start_pfn, max_low_pfn);
6262 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 6263
c13291a5 6264 if (start_pfn < end_pfn)
6782832e
SS
6265 memblock_free_early_nid(PFN_PHYS(start_pfn),
6266 (end_pfn - start_pfn) << PAGE_SHIFT,
6267 this_nid);
edbe7d23 6268 }
edbe7d23 6269}
edbe7d23 6270
c713216d
MG
6271/**
6272 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 6273 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 6274 *
7d018176
ZZ
6275 * If an architecture guarantees that all ranges registered contain no holes and may
6276 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
6277 */
6278void __init sparse_memory_present_with_active_regions(int nid)
6279{
c13291a5
TH
6280 unsigned long start_pfn, end_pfn;
6281 int i, this_nid;
c713216d 6282
c13291a5
TH
6283 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6284 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
6285}
6286
6287/**
6288 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
6289 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6290 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6291 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
6292 *
6293 * It returns the start and end page frame of a node based on information
7d018176 6294 * provided by memblock_set_node(). If called for a node
c713216d 6295 * with no available memory, a warning is printed and the start and end
88ca3b94 6296 * PFNs will be 0.
c713216d 6297 */
bbe5d993 6298void __init get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
6299 unsigned long *start_pfn, unsigned long *end_pfn)
6300{
c13291a5 6301 unsigned long this_start_pfn, this_end_pfn;
c713216d 6302 int i;
c13291a5 6303
c713216d
MG
6304 *start_pfn = -1UL;
6305 *end_pfn = 0;
6306
c13291a5
TH
6307 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6308 *start_pfn = min(*start_pfn, this_start_pfn);
6309 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
6310 }
6311
633c0666 6312 if (*start_pfn == -1UL)
c713216d 6313 *start_pfn = 0;
c713216d
MG
6314}
6315
2a1e274a
MG
6316/*
6317 * This finds a zone that can be used for ZONE_MOVABLE pages. The
6318 * assumption is made that zones within a node are ordered in monotonic
6319 * increasing memory addresses so that the "highest" populated zone is used
6320 */
b69a7288 6321static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
6322{
6323 int zone_index;
6324 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6325 if (zone_index == ZONE_MOVABLE)
6326 continue;
6327
6328 if (arch_zone_highest_possible_pfn[zone_index] >
6329 arch_zone_lowest_possible_pfn[zone_index])
6330 break;
6331 }
6332
6333 VM_BUG_ON(zone_index == -1);
6334 movable_zone = zone_index;
6335}
6336
6337/*
6338 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 6339 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
6340 * the starting point for ZONE_MOVABLE is not fixed. It may be different
6341 * in each node depending on the size of each node and how evenly kernelcore
6342 * is distributed. This helper function adjusts the zone ranges
6343 * provided by the architecture for a given node by using the end of the
6344 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6345 * zones within a node are in order of monotonic increases memory addresses
6346 */
bbe5d993 6347static void __init adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
6348 unsigned long zone_type,
6349 unsigned long node_start_pfn,
6350 unsigned long node_end_pfn,
6351 unsigned long *zone_start_pfn,
6352 unsigned long *zone_end_pfn)
6353{
6354 /* Only adjust if ZONE_MOVABLE is on this node */
6355 if (zone_movable_pfn[nid]) {
6356 /* Size ZONE_MOVABLE */
6357 if (zone_type == ZONE_MOVABLE) {
6358 *zone_start_pfn = zone_movable_pfn[nid];
6359 *zone_end_pfn = min(node_end_pfn,
6360 arch_zone_highest_possible_pfn[movable_zone]);
6361
e506b996
XQ
6362 /* Adjust for ZONE_MOVABLE starting within this range */
6363 } else if (!mirrored_kernelcore &&
6364 *zone_start_pfn < zone_movable_pfn[nid] &&
6365 *zone_end_pfn > zone_movable_pfn[nid]) {
6366 *zone_end_pfn = zone_movable_pfn[nid];
6367
2a1e274a
MG
6368 /* Check if this whole range is within ZONE_MOVABLE */
6369 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
6370 *zone_start_pfn = *zone_end_pfn;
6371 }
6372}
6373
c713216d
MG
6374/*
6375 * Return the number of pages a zone spans in a node, including holes
6376 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6377 */
bbe5d993 6378static unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6379 unsigned long zone_type,
7960aedd
ZY
6380 unsigned long node_start_pfn,
6381 unsigned long node_end_pfn,
d91749c1
TI
6382 unsigned long *zone_start_pfn,
6383 unsigned long *zone_end_pfn,
c713216d
MG
6384 unsigned long *ignored)
6385{
299c83dc
LF
6386 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6387 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
b5685e92 6388 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6389 if (!node_start_pfn && !node_end_pfn)
6390 return 0;
6391
7960aedd 6392 /* Get the start and end of the zone */
299c83dc
LF
6393 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6394 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
2a1e274a
MG
6395 adjust_zone_range_for_zone_movable(nid, zone_type,
6396 node_start_pfn, node_end_pfn,
d91749c1 6397 zone_start_pfn, zone_end_pfn);
c713216d
MG
6398
6399 /* Check that this node has pages within the zone's required range */
d91749c1 6400 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
6401 return 0;
6402
6403 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
6404 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6405 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
6406
6407 /* Return the spanned pages */
d91749c1 6408 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
6409}
6410
6411/*
6412 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 6413 * then all holes in the requested range will be accounted for.
c713216d 6414 */
bbe5d993 6415unsigned long __init __absent_pages_in_range(int nid,
c713216d
MG
6416 unsigned long range_start_pfn,
6417 unsigned long range_end_pfn)
6418{
96e907d1
TH
6419 unsigned long nr_absent = range_end_pfn - range_start_pfn;
6420 unsigned long start_pfn, end_pfn;
6421 int i;
c713216d 6422
96e907d1
TH
6423 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6424 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6425 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6426 nr_absent -= end_pfn - start_pfn;
c713216d 6427 }
96e907d1 6428 return nr_absent;
c713216d
MG
6429}
6430
6431/**
6432 * absent_pages_in_range - Return number of page frames in holes within a range
6433 * @start_pfn: The start PFN to start searching for holes
6434 * @end_pfn: The end PFN to stop searching for holes
6435 *
a862f68a 6436 * Return: the number of pages frames in memory holes within a range.
c713216d
MG
6437 */
6438unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6439 unsigned long end_pfn)
6440{
6441 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6442}
6443
6444/* Return the number of page frames in holes in a zone on a node */
bbe5d993 6445static unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6446 unsigned long zone_type,
7960aedd
ZY
6447 unsigned long node_start_pfn,
6448 unsigned long node_end_pfn,
c713216d
MG
6449 unsigned long *ignored)
6450{
96e907d1
TH
6451 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6452 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 6453 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 6454 unsigned long nr_absent;
9c7cd687 6455
b5685e92 6456 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
6457 if (!node_start_pfn && !node_end_pfn)
6458 return 0;
6459
96e907d1
TH
6460 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6461 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 6462
2a1e274a
MG
6463 adjust_zone_range_for_zone_movable(nid, zone_type,
6464 node_start_pfn, node_end_pfn,
6465 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6466 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6467
6468 /*
6469 * ZONE_MOVABLE handling.
6470 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6471 * and vice versa.
6472 */
e506b996
XQ
6473 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6474 unsigned long start_pfn, end_pfn;
6475 struct memblock_region *r;
6476
6477 for_each_memblock(memory, r) {
6478 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6479 zone_start_pfn, zone_end_pfn);
6480 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6481 zone_start_pfn, zone_end_pfn);
6482
6483 if (zone_type == ZONE_MOVABLE &&
6484 memblock_is_mirror(r))
6485 nr_absent += end_pfn - start_pfn;
6486
6487 if (zone_type == ZONE_NORMAL &&
6488 !memblock_is_mirror(r))
6489 nr_absent += end_pfn - start_pfn;
342332e6
TI
6490 }
6491 }
6492
6493 return nr_absent;
c713216d 6494}
0e0b864e 6495
0ee332c1 6496#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
bbe5d993 6497static inline unsigned long __init zone_spanned_pages_in_node(int nid,
c713216d 6498 unsigned long zone_type,
7960aedd
ZY
6499 unsigned long node_start_pfn,
6500 unsigned long node_end_pfn,
d91749c1
TI
6501 unsigned long *zone_start_pfn,
6502 unsigned long *zone_end_pfn,
c713216d
MG
6503 unsigned long *zones_size)
6504{
d91749c1
TI
6505 unsigned int zone;
6506
6507 *zone_start_pfn = node_start_pfn;
6508 for (zone = 0; zone < zone_type; zone++)
6509 *zone_start_pfn += zones_size[zone];
6510
6511 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6512
c713216d
MG
6513 return zones_size[zone_type];
6514}
6515
bbe5d993 6516static inline unsigned long __init zone_absent_pages_in_node(int nid,
c713216d 6517 unsigned long zone_type,
7960aedd
ZY
6518 unsigned long node_start_pfn,
6519 unsigned long node_end_pfn,
c713216d
MG
6520 unsigned long *zholes_size)
6521{
6522 if (!zholes_size)
6523 return 0;
6524
6525 return zholes_size[zone_type];
6526}
20e6926d 6527
0ee332c1 6528#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6529
bbe5d993 6530static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6531 unsigned long node_start_pfn,
6532 unsigned long node_end_pfn,
6533 unsigned long *zones_size,
6534 unsigned long *zholes_size)
c713216d 6535{
febd5949 6536 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6537 enum zone_type i;
6538
febd5949
GZ
6539 for (i = 0; i < MAX_NR_ZONES; i++) {
6540 struct zone *zone = pgdat->node_zones + i;
d91749c1 6541 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6542 unsigned long size, real_size;
c713216d 6543
febd5949
GZ
6544 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6545 node_start_pfn,
6546 node_end_pfn,
d91749c1
TI
6547 &zone_start_pfn,
6548 &zone_end_pfn,
febd5949
GZ
6549 zones_size);
6550 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6551 node_start_pfn, node_end_pfn,
6552 zholes_size);
d91749c1
TI
6553 if (size)
6554 zone->zone_start_pfn = zone_start_pfn;
6555 else
6556 zone->zone_start_pfn = 0;
febd5949
GZ
6557 zone->spanned_pages = size;
6558 zone->present_pages = real_size;
6559
6560 totalpages += size;
6561 realtotalpages += real_size;
6562 }
6563
6564 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6565 pgdat->node_present_pages = realtotalpages;
6566 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6567 realtotalpages);
6568}
6569
835c134e
MG
6570#ifndef CONFIG_SPARSEMEM
6571/*
6572 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6573 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6574 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6575 * round what is now in bits to nearest long in bits, then return it in
6576 * bytes.
6577 */
7c45512d 6578static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6579{
6580 unsigned long usemapsize;
6581
7c45512d 6582 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6583 usemapsize = roundup(zonesize, pageblock_nr_pages);
6584 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6585 usemapsize *= NR_PAGEBLOCK_BITS;
6586 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6587
6588 return usemapsize / 8;
6589}
6590
7cc2a959 6591static void __ref setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6592 struct zone *zone,
6593 unsigned long zone_start_pfn,
6594 unsigned long zonesize)
835c134e 6595{
7c45512d 6596 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6597 zone->pageblock_flags = NULL;
23a7052a 6598 if (usemapsize) {
6782832e 6599 zone->pageblock_flags =
26fb3dae
MR
6600 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6601 pgdat->node_id);
23a7052a
MR
6602 if (!zone->pageblock_flags)
6603 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6604 usemapsize, zone->name, pgdat->node_id);
6605 }
835c134e
MG
6606}
6607#else
7c45512d
LT
6608static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6609 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6610#endif /* CONFIG_SPARSEMEM */
6611
d9c23400 6612#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6613
d9c23400 6614/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
03e85f9d 6615void __init set_pageblock_order(void)
d9c23400 6616{
955c1cd7
AM
6617 unsigned int order;
6618
d9c23400
MG
6619 /* Check that pageblock_nr_pages has not already been setup */
6620 if (pageblock_order)
6621 return;
6622
955c1cd7
AM
6623 if (HPAGE_SHIFT > PAGE_SHIFT)
6624 order = HUGETLB_PAGE_ORDER;
6625 else
6626 order = MAX_ORDER - 1;
6627
d9c23400
MG
6628 /*
6629 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6630 * This value may be variable depending on boot parameters on IA64 and
6631 * powerpc.
d9c23400
MG
6632 */
6633 pageblock_order = order;
6634}
6635#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6636
ba72cb8c
MG
6637/*
6638 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6639 * is unused as pageblock_order is set at compile-time. See
6640 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6641 * the kernel config
ba72cb8c 6642 */
03e85f9d 6643void __init set_pageblock_order(void)
ba72cb8c 6644{
ba72cb8c 6645}
d9c23400
MG
6646
6647#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6648
03e85f9d 6649static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7cc2a959 6650 unsigned long present_pages)
01cefaef
JL
6651{
6652 unsigned long pages = spanned_pages;
6653
6654 /*
6655 * Provide a more accurate estimation if there are holes within
6656 * the zone and SPARSEMEM is in use. If there are holes within the
6657 * zone, each populated memory region may cost us one or two extra
6658 * memmap pages due to alignment because memmap pages for each
89d790ab 6659 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6660 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6661 */
6662 if (spanned_pages > present_pages + (present_pages >> 4) &&
6663 IS_ENABLED(CONFIG_SPARSEMEM))
6664 pages = present_pages;
6665
6666 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6667}
6668
ace1db39
OS
6669#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6670static void pgdat_init_split_queue(struct pglist_data *pgdat)
6671{
364c1eeb
YS
6672 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6673
6674 spin_lock_init(&ds_queue->split_queue_lock);
6675 INIT_LIST_HEAD(&ds_queue->split_queue);
6676 ds_queue->split_queue_len = 0;
ace1db39
OS
6677}
6678#else
6679static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6680#endif
6681
6682#ifdef CONFIG_COMPACTION
6683static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6684{
6685 init_waitqueue_head(&pgdat->kcompactd_wait);
6686}
6687#else
6688static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6689#endif
6690
03e85f9d 6691static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
1da177e4 6692{
208d54e5 6693 pgdat_resize_init(pgdat);
ace1db39 6694
ace1db39
OS
6695 pgdat_init_split_queue(pgdat);
6696 pgdat_init_kcompactd(pgdat);
6697
1da177e4 6698 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6699 init_waitqueue_head(&pgdat->pfmemalloc_wait);
ace1db39 6700
eefa864b 6701 pgdat_page_ext_init(pgdat);
a52633d8 6702 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6703 lruvec_init(node_lruvec(pgdat));
03e85f9d
OS
6704}
6705
6706static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6707 unsigned long remaining_pages)
6708{
9705bea5 6709 atomic_long_set(&zone->managed_pages, remaining_pages);
03e85f9d
OS
6710 zone_set_nid(zone, nid);
6711 zone->name = zone_names[idx];
6712 zone->zone_pgdat = NODE_DATA(nid);
6713 spin_lock_init(&zone->lock);
6714 zone_seqlock_init(zone);
6715 zone_pcp_init(zone);
6716}
6717
6718/*
6719 * Set up the zone data structures
6720 * - init pgdat internals
6721 * - init all zones belonging to this node
6722 *
6723 * NOTE: this function is only called during memory hotplug
6724 */
6725#ifdef CONFIG_MEMORY_HOTPLUG
6726void __ref free_area_init_core_hotplug(int nid)
6727{
6728 enum zone_type z;
6729 pg_data_t *pgdat = NODE_DATA(nid);
6730
6731 pgdat_init_internals(pgdat);
6732 for (z = 0; z < MAX_NR_ZONES; z++)
6733 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6734}
6735#endif
6736
6737/*
6738 * Set up the zone data structures:
6739 * - mark all pages reserved
6740 * - mark all memory queues empty
6741 * - clear the memory bitmaps
6742 *
6743 * NOTE: pgdat should get zeroed by caller.
6744 * NOTE: this function is only called during early init.
6745 */
6746static void __init free_area_init_core(struct pglist_data *pgdat)
6747{
6748 enum zone_type j;
6749 int nid = pgdat->node_id;
5f63b720 6750
03e85f9d 6751 pgdat_init_internals(pgdat);
385386cf
JW
6752 pgdat->per_cpu_nodestats = &boot_nodestats;
6753
1da177e4
LT
6754 for (j = 0; j < MAX_NR_ZONES; j++) {
6755 struct zone *zone = pgdat->node_zones + j;
e6943859 6756 unsigned long size, freesize, memmap_pages;
d91749c1 6757 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6758
febd5949 6759 size = zone->spanned_pages;
e6943859 6760 freesize = zone->present_pages;
1da177e4 6761
0e0b864e 6762 /*
9feedc9d 6763 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6764 * is used by this zone for memmap. This affects the watermark
6765 * and per-cpu initialisations
6766 */
e6943859 6767 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6768 if (!is_highmem_idx(j)) {
6769 if (freesize >= memmap_pages) {
6770 freesize -= memmap_pages;
6771 if (memmap_pages)
6772 printk(KERN_DEBUG
6773 " %s zone: %lu pages used for memmap\n",
6774 zone_names[j], memmap_pages);
6775 } else
1170532b 6776 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6777 zone_names[j], memmap_pages, freesize);
6778 }
0e0b864e 6779
6267276f 6780 /* Account for reserved pages */
9feedc9d
JL
6781 if (j == 0 && freesize > dma_reserve) {
6782 freesize -= dma_reserve;
d903ef9f 6783 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6784 zone_names[0], dma_reserve);
0e0b864e
MG
6785 }
6786
98d2b0eb 6787 if (!is_highmem_idx(j))
9feedc9d 6788 nr_kernel_pages += freesize;
01cefaef
JL
6789 /* Charge for highmem memmap if there are enough kernel pages */
6790 else if (nr_kernel_pages > memmap_pages * 2)
6791 nr_kernel_pages -= memmap_pages;
9feedc9d 6792 nr_all_pages += freesize;
1da177e4 6793
9feedc9d
JL
6794 /*
6795 * Set an approximate value for lowmem here, it will be adjusted
6796 * when the bootmem allocator frees pages into the buddy system.
6797 * And all highmem pages will be managed by the buddy system.
6798 */
03e85f9d 6799 zone_init_internals(zone, j, nid, freesize);
81c0a2bb 6800
d883c6cf 6801 if (!size)
1da177e4
LT
6802 continue;
6803
955c1cd7 6804 set_pageblock_order();
d883c6cf
JK
6805 setup_usemap(pgdat, zone, zone_start_pfn, size);
6806 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6807 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6808 }
6809}
6810
0cd842f9 6811#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6812static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6813{
b0aeba74 6814 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6815 unsigned long __maybe_unused offset = 0;
6816
1da177e4
LT
6817 /* Skip empty nodes */
6818 if (!pgdat->node_spanned_pages)
6819 return;
6820
b0aeba74
TL
6821 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6822 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6823 /* ia64 gets its own node_mem_map, before this, without bootmem */
6824 if (!pgdat->node_mem_map) {
b0aeba74 6825 unsigned long size, end;
d41dee36
AW
6826 struct page *map;
6827
e984bb43
BP
6828 /*
6829 * The zone's endpoints aren't required to be MAX_ORDER
6830 * aligned but the node_mem_map endpoints must be in order
6831 * for the buddy allocator to function correctly.
6832 */
108bcc96 6833 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6834 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6835 size = (end - start) * sizeof(struct page);
26fb3dae
MR
6836 map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6837 pgdat->node_id);
23a7052a
MR
6838 if (!map)
6839 panic("Failed to allocate %ld bytes for node %d memory map\n",
6840 size, pgdat->node_id);
a1c34a3b 6841 pgdat->node_mem_map = map + offset;
1da177e4 6842 }
0cd842f9
OS
6843 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6844 __func__, pgdat->node_id, (unsigned long)pgdat,
6845 (unsigned long)pgdat->node_mem_map);
12d810c1 6846#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6847 /*
6848 * With no DISCONTIG, the global mem_map is just set as node 0's
6849 */
c713216d 6850 if (pgdat == NODE_DATA(0)) {
1da177e4 6851 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6852#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6853 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6854 mem_map -= offset;
0ee332c1 6855#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6856 }
1da177e4
LT
6857#endif
6858}
0cd842f9
OS
6859#else
6860static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6861#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6862
0188dc98
OS
6863#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6864static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6865{
0188dc98
OS
6866 pgdat->first_deferred_pfn = ULONG_MAX;
6867}
6868#else
6869static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6870#endif
6871
03e85f9d 6872void __init free_area_init_node(int nid, unsigned long *zones_size,
7cc2a959
PT
6873 unsigned long node_start_pfn,
6874 unsigned long *zholes_size)
1da177e4 6875{
9109fb7b 6876 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6877 unsigned long start_pfn = 0;
6878 unsigned long end_pfn = 0;
9109fb7b 6879
88fdf75d 6880 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6881 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6882
1da177e4
LT
6883 pgdat->node_id = nid;
6884 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6885 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6886#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6887 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6888 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6889 (u64)start_pfn << PAGE_SHIFT,
6890 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6891#else
6892 start_pfn = node_start_pfn;
7960aedd
ZY
6893#endif
6894 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6895 zones_size, zholes_size);
1da177e4
LT
6896
6897 alloc_node_mem_map(pgdat);
0188dc98 6898 pgdat_set_deferred_range(pgdat);
1da177e4 6899
7f3eb55b 6900 free_area_init_core(pgdat);
1da177e4
LT
6901}
6902
aca52c39 6903#if !defined(CONFIG_FLAT_NODE_MEM_MAP)
ec393a0f
PT
6904/*
6905 * Zero all valid struct pages in range [spfn, epfn), return number of struct
6906 * pages zeroed
6907 */
6908static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6909{
6910 unsigned long pfn;
6911 u64 pgcnt = 0;
6912
6913 for (pfn = spfn; pfn < epfn; pfn++) {
6914 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6915 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6916 + pageblock_nr_pages - 1;
6917 continue;
6918 }
6919 mm_zero_struct_page(pfn_to_page(pfn));
6920 pgcnt++;
6921 }
6922
6923 return pgcnt;
6924}
6925
a4a3ede2
PT
6926/*
6927 * Only struct pages that are backed by physical memory are zeroed and
6928 * initialized by going through __init_single_page(). But, there are some
6929 * struct pages which are reserved in memblock allocator and their fields
6930 * may be accessed (for example page_to_pfn() on some configuration accesses
6931 * flags). We must explicitly zero those struct pages.
907ec5fc
NH
6932 *
6933 * This function also addresses a similar issue where struct pages are left
6934 * uninitialized because the physical address range is not covered by
6935 * memblock.memory or memblock.reserved. That could happen when memblock
6936 * layout is manually configured via memmap=.
a4a3ede2 6937 */
03e85f9d 6938void __init zero_resv_unavail(void)
a4a3ede2
PT
6939{
6940 phys_addr_t start, end;
a4a3ede2 6941 u64 i, pgcnt;
907ec5fc 6942 phys_addr_t next = 0;
a4a3ede2
PT
6943
6944 /*
907ec5fc 6945 * Loop through unavailable ranges not covered by memblock.memory.
a4a3ede2
PT
6946 */
6947 pgcnt = 0;
907ec5fc
NH
6948 for_each_mem_range(i, &memblock.memory, NULL,
6949 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
ec393a0f
PT
6950 if (next < start)
6951 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
907ec5fc
NH
6952 next = end;
6953 }
ec393a0f 6954 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
907ec5fc 6955
a4a3ede2
PT
6956 /*
6957 * Struct pages that do not have backing memory. This could be because
6958 * firmware is using some of this memory, or for some other reasons.
a4a3ede2
PT
6959 */
6960 if (pgcnt)
907ec5fc 6961 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
a4a3ede2 6962}
aca52c39 6963#endif /* !CONFIG_FLAT_NODE_MEM_MAP */
a4a3ede2 6964
0ee332c1 6965#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6966
6967#if MAX_NUMNODES > 1
6968/*
6969 * Figure out the number of possible node ids.
6970 */
f9872caf 6971void __init setup_nr_node_ids(void)
418508c1 6972{
904a9553 6973 unsigned int highest;
418508c1 6974
904a9553 6975 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6976 nr_node_ids = highest + 1;
6977}
418508c1
MS
6978#endif
6979
1e01979c
TH
6980/**
6981 * node_map_pfn_alignment - determine the maximum internode alignment
6982 *
6983 * This function should be called after node map is populated and sorted.
6984 * It calculates the maximum power of two alignment which can distinguish
6985 * all the nodes.
6986 *
6987 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6988 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6989 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6990 * shifted, 1GiB is enough and this function will indicate so.
6991 *
6992 * This is used to test whether pfn -> nid mapping of the chosen memory
6993 * model has fine enough granularity to avoid incorrect mapping for the
6994 * populated node map.
6995 *
a862f68a 6996 * Return: the determined alignment in pfn's. 0 if there is no alignment
1e01979c
TH
6997 * requirement (single node).
6998 */
6999unsigned long __init node_map_pfn_alignment(void)
7000{
7001 unsigned long accl_mask = 0, last_end = 0;
c13291a5 7002 unsigned long start, end, mask;
98fa15f3 7003 int last_nid = NUMA_NO_NODE;
c13291a5 7004 int i, nid;
1e01979c 7005
c13291a5 7006 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
7007 if (!start || last_nid < 0 || last_nid == nid) {
7008 last_nid = nid;
7009 last_end = end;
7010 continue;
7011 }
7012
7013 /*
7014 * Start with a mask granular enough to pin-point to the
7015 * start pfn and tick off bits one-by-one until it becomes
7016 * too coarse to separate the current node from the last.
7017 */
7018 mask = ~((1 << __ffs(start)) - 1);
7019 while (mask && last_end <= (start & (mask << 1)))
7020 mask <<= 1;
7021
7022 /* accumulate all internode masks */
7023 accl_mask |= mask;
7024 }
7025
7026 /* convert mask to number of pages */
7027 return ~accl_mask + 1;
7028}
7029
a6af2bc3 7030/* Find the lowest pfn for a node */
b69a7288 7031static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 7032{
a6af2bc3 7033 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
7034 unsigned long start_pfn;
7035 int i;
1abbfb41 7036
c13291a5
TH
7037 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7038 min_pfn = min(min_pfn, start_pfn);
c713216d 7039
a6af2bc3 7040 if (min_pfn == ULONG_MAX) {
1170532b 7041 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
7042 return 0;
7043 }
7044
7045 return min_pfn;
c713216d
MG
7046}
7047
7048/**
7049 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7050 *
a862f68a 7051 * Return: the minimum PFN based on information provided via
7d018176 7052 * memblock_set_node().
c713216d
MG
7053 */
7054unsigned long __init find_min_pfn_with_active_regions(void)
7055{
7056 return find_min_pfn_for_node(MAX_NUMNODES);
7057}
7058
37b07e41
LS
7059/*
7060 * early_calculate_totalpages()
7061 * Sum pages in active regions for movable zone.
4b0ef1fe 7062 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 7063 */
484f51f8 7064static unsigned long __init early_calculate_totalpages(void)
7e63efef 7065{
7e63efef 7066 unsigned long totalpages = 0;
c13291a5
TH
7067 unsigned long start_pfn, end_pfn;
7068 int i, nid;
7069
7070 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7071 unsigned long pages = end_pfn - start_pfn;
7e63efef 7072
37b07e41
LS
7073 totalpages += pages;
7074 if (pages)
4b0ef1fe 7075 node_set_state(nid, N_MEMORY);
37b07e41 7076 }
b8af2941 7077 return totalpages;
7e63efef
MG
7078}
7079
2a1e274a
MG
7080/*
7081 * Find the PFN the Movable zone begins in each node. Kernel memory
7082 * is spread evenly between nodes as long as the nodes have enough
7083 * memory. When they don't, some nodes will have more kernelcore than
7084 * others
7085 */
b224ef85 7086static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
7087{
7088 int i, nid;
7089 unsigned long usable_startpfn;
7090 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 7091 /* save the state before borrow the nodemask */
4b0ef1fe 7092 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 7093 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 7094 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 7095 struct memblock_region *r;
b2f3eebe
TC
7096
7097 /* Need to find movable_zone earlier when movable_node is specified. */
7098 find_usable_zone_for_movable();
7099
7100 /*
7101 * If movable_node is specified, ignore kernelcore and movablecore
7102 * options.
7103 */
7104 if (movable_node_is_enabled()) {
136199f0
EM
7105 for_each_memblock(memory, r) {
7106 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
7107 continue;
7108
136199f0 7109 nid = r->nid;
b2f3eebe 7110
136199f0 7111 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
7112 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7113 min(usable_startpfn, zone_movable_pfn[nid]) :
7114 usable_startpfn;
7115 }
7116
7117 goto out2;
7118 }
2a1e274a 7119
342332e6
TI
7120 /*
7121 * If kernelcore=mirror is specified, ignore movablecore option
7122 */
7123 if (mirrored_kernelcore) {
7124 bool mem_below_4gb_not_mirrored = false;
7125
7126 for_each_memblock(memory, r) {
7127 if (memblock_is_mirror(r))
7128 continue;
7129
7130 nid = r->nid;
7131
7132 usable_startpfn = memblock_region_memory_base_pfn(r);
7133
7134 if (usable_startpfn < 0x100000) {
7135 mem_below_4gb_not_mirrored = true;
7136 continue;
7137 }
7138
7139 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7140 min(usable_startpfn, zone_movable_pfn[nid]) :
7141 usable_startpfn;
7142 }
7143
7144 if (mem_below_4gb_not_mirrored)
7145 pr_warn("This configuration results in unmirrored kernel memory.");
7146
7147 goto out2;
7148 }
7149
7e63efef 7150 /*
a5c6d650
DR
7151 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7152 * amount of necessary memory.
7153 */
7154 if (required_kernelcore_percent)
7155 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7156 10000UL;
7157 if (required_movablecore_percent)
7158 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7159 10000UL;
7160
7161 /*
7162 * If movablecore= was specified, calculate what size of
7e63efef
MG
7163 * kernelcore that corresponds so that memory usable for
7164 * any allocation type is evenly spread. If both kernelcore
7165 * and movablecore are specified, then the value of kernelcore
7166 * will be used for required_kernelcore if it's greater than
7167 * what movablecore would have allowed.
7168 */
7169 if (required_movablecore) {
7e63efef
MG
7170 unsigned long corepages;
7171
7172 /*
7173 * Round-up so that ZONE_MOVABLE is at least as large as what
7174 * was requested by the user
7175 */
7176 required_movablecore =
7177 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 7178 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
7179 corepages = totalpages - required_movablecore;
7180
7181 required_kernelcore = max(required_kernelcore, corepages);
7182 }
7183
bde304bd
XQ
7184 /*
7185 * If kernelcore was not specified or kernelcore size is larger
7186 * than totalpages, there is no ZONE_MOVABLE.
7187 */
7188 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 7189 goto out;
2a1e274a
MG
7190
7191 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
7192 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7193
7194restart:
7195 /* Spread kernelcore memory as evenly as possible throughout nodes */
7196 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 7197 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
7198 unsigned long start_pfn, end_pfn;
7199
2a1e274a
MG
7200 /*
7201 * Recalculate kernelcore_node if the division per node
7202 * now exceeds what is necessary to satisfy the requested
7203 * amount of memory for the kernel
7204 */
7205 if (required_kernelcore < kernelcore_node)
7206 kernelcore_node = required_kernelcore / usable_nodes;
7207
7208 /*
7209 * As the map is walked, we track how much memory is usable
7210 * by the kernel using kernelcore_remaining. When it is
7211 * 0, the rest of the node is usable by ZONE_MOVABLE
7212 */
7213 kernelcore_remaining = kernelcore_node;
7214
7215 /* Go through each range of PFNs within this node */
c13291a5 7216 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
7217 unsigned long size_pages;
7218
c13291a5 7219 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
7220 if (start_pfn >= end_pfn)
7221 continue;
7222
7223 /* Account for what is only usable for kernelcore */
7224 if (start_pfn < usable_startpfn) {
7225 unsigned long kernel_pages;
7226 kernel_pages = min(end_pfn, usable_startpfn)
7227 - start_pfn;
7228
7229 kernelcore_remaining -= min(kernel_pages,
7230 kernelcore_remaining);
7231 required_kernelcore -= min(kernel_pages,
7232 required_kernelcore);
7233
7234 /* Continue if range is now fully accounted */
7235 if (end_pfn <= usable_startpfn) {
7236
7237 /*
7238 * Push zone_movable_pfn to the end so
7239 * that if we have to rebalance
7240 * kernelcore across nodes, we will
7241 * not double account here
7242 */
7243 zone_movable_pfn[nid] = end_pfn;
7244 continue;
7245 }
7246 start_pfn = usable_startpfn;
7247 }
7248
7249 /*
7250 * The usable PFN range for ZONE_MOVABLE is from
7251 * start_pfn->end_pfn. Calculate size_pages as the
7252 * number of pages used as kernelcore
7253 */
7254 size_pages = end_pfn - start_pfn;
7255 if (size_pages > kernelcore_remaining)
7256 size_pages = kernelcore_remaining;
7257 zone_movable_pfn[nid] = start_pfn + size_pages;
7258
7259 /*
7260 * Some kernelcore has been met, update counts and
7261 * break if the kernelcore for this node has been
b8af2941 7262 * satisfied
2a1e274a
MG
7263 */
7264 required_kernelcore -= min(required_kernelcore,
7265 size_pages);
7266 kernelcore_remaining -= size_pages;
7267 if (!kernelcore_remaining)
7268 break;
7269 }
7270 }
7271
7272 /*
7273 * If there is still required_kernelcore, we do another pass with one
7274 * less node in the count. This will push zone_movable_pfn[nid] further
7275 * along on the nodes that still have memory until kernelcore is
b8af2941 7276 * satisfied
2a1e274a
MG
7277 */
7278 usable_nodes--;
7279 if (usable_nodes && required_kernelcore > usable_nodes)
7280 goto restart;
7281
b2f3eebe 7282out2:
2a1e274a
MG
7283 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7284 for (nid = 0; nid < MAX_NUMNODES; nid++)
7285 zone_movable_pfn[nid] =
7286 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 7287
20e6926d 7288out:
66918dcd 7289 /* restore the node_state */
4b0ef1fe 7290 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
7291}
7292
4b0ef1fe
LJ
7293/* Any regular or high memory on that node ? */
7294static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 7295{
37b07e41
LS
7296 enum zone_type zone_type;
7297
4b0ef1fe 7298 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 7299 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 7300 if (populated_zone(zone)) {
7b0e0c0e
OS
7301 if (IS_ENABLED(CONFIG_HIGHMEM))
7302 node_set_state(nid, N_HIGH_MEMORY);
7303 if (zone_type <= ZONE_NORMAL)
4b0ef1fe 7304 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
7305 break;
7306 }
37b07e41 7307 }
37b07e41
LS
7308}
7309
c713216d
MG
7310/**
7311 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 7312 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
7313 *
7314 * This will call free_area_init_node() for each active node in the system.
7d018176 7315 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
7316 * zone in each node and their holes is calculated. If the maximum PFN
7317 * between two adjacent zones match, it is assumed that the zone is empty.
7318 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7319 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7320 * starts where the previous one ended. For example, ZONE_DMA32 starts
7321 * at arch_max_dma_pfn.
7322 */
7323void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7324{
c13291a5
TH
7325 unsigned long start_pfn, end_pfn;
7326 int i, nid;
a6af2bc3 7327
c713216d
MG
7328 /* Record where the zone boundaries are */
7329 memset(arch_zone_lowest_possible_pfn, 0,
7330 sizeof(arch_zone_lowest_possible_pfn));
7331 memset(arch_zone_highest_possible_pfn, 0,
7332 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
7333
7334 start_pfn = find_min_pfn_with_active_regions();
7335
7336 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
7337 if (i == ZONE_MOVABLE)
7338 continue;
90cae1fe
OH
7339
7340 end_pfn = max(max_zone_pfn[i], start_pfn);
7341 arch_zone_lowest_possible_pfn[i] = start_pfn;
7342 arch_zone_highest_possible_pfn[i] = end_pfn;
7343
7344 start_pfn = end_pfn;
c713216d 7345 }
2a1e274a
MG
7346
7347 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7348 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 7349 find_zone_movable_pfns_for_nodes();
c713216d 7350
c713216d 7351 /* Print out the zone ranges */
f88dfff5 7352 pr_info("Zone ranges:\n");
2a1e274a
MG
7353 for (i = 0; i < MAX_NR_ZONES; i++) {
7354 if (i == ZONE_MOVABLE)
7355 continue;
f88dfff5 7356 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
7357 if (arch_zone_lowest_possible_pfn[i] ==
7358 arch_zone_highest_possible_pfn[i])
f88dfff5 7359 pr_cont("empty\n");
72f0ba02 7360 else
8d29e18a
JG
7361 pr_cont("[mem %#018Lx-%#018Lx]\n",
7362 (u64)arch_zone_lowest_possible_pfn[i]
7363 << PAGE_SHIFT,
7364 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 7365 << PAGE_SHIFT) - 1);
2a1e274a
MG
7366 }
7367
7368 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 7369 pr_info("Movable zone start for each node\n");
2a1e274a
MG
7370 for (i = 0; i < MAX_NUMNODES; i++) {
7371 if (zone_movable_pfn[i])
8d29e18a
JG
7372 pr_info(" Node %d: %#018Lx\n", i,
7373 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 7374 }
c713216d 7375
f46edbd1
DW
7376 /*
7377 * Print out the early node map, and initialize the
7378 * subsection-map relative to active online memory ranges to
7379 * enable future "sub-section" extensions of the memory map.
7380 */
f88dfff5 7381 pr_info("Early memory node ranges\n");
f46edbd1 7382 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8d29e18a
JG
7383 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7384 (u64)start_pfn << PAGE_SHIFT,
7385 ((u64)end_pfn << PAGE_SHIFT) - 1);
f46edbd1
DW
7386 subsection_map_init(start_pfn, end_pfn - start_pfn);
7387 }
c713216d
MG
7388
7389 /* Initialise every node */
708614e6 7390 mminit_verify_pageflags_layout();
8ef82866 7391 setup_nr_node_ids();
e181ae0c 7392 zero_resv_unavail();
c713216d
MG
7393 for_each_online_node(nid) {
7394 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 7395 free_area_init_node(nid, NULL,
c713216d 7396 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
7397
7398 /* Any memory on that node */
7399 if (pgdat->node_present_pages)
4b0ef1fe
LJ
7400 node_set_state(nid, N_MEMORY);
7401 check_for_memory(pgdat, nid);
c713216d
MG
7402 }
7403}
2a1e274a 7404
a5c6d650
DR
7405static int __init cmdline_parse_core(char *p, unsigned long *core,
7406 unsigned long *percent)
2a1e274a
MG
7407{
7408 unsigned long long coremem;
a5c6d650
DR
7409 char *endptr;
7410
2a1e274a
MG
7411 if (!p)
7412 return -EINVAL;
7413
a5c6d650
DR
7414 /* Value may be a percentage of total memory, otherwise bytes */
7415 coremem = simple_strtoull(p, &endptr, 0);
7416 if (*endptr == '%') {
7417 /* Paranoid check for percent values greater than 100 */
7418 WARN_ON(coremem > 100);
2a1e274a 7419
a5c6d650
DR
7420 *percent = coremem;
7421 } else {
7422 coremem = memparse(p, &p);
7423 /* Paranoid check that UL is enough for the coremem value */
7424 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 7425
a5c6d650
DR
7426 *core = coremem >> PAGE_SHIFT;
7427 *percent = 0UL;
7428 }
2a1e274a
MG
7429 return 0;
7430}
ed7ed365 7431
7e63efef
MG
7432/*
7433 * kernelcore=size sets the amount of memory for use for allocations that
7434 * cannot be reclaimed or migrated.
7435 */
7436static int __init cmdline_parse_kernelcore(char *p)
7437{
342332e6
TI
7438 /* parse kernelcore=mirror */
7439 if (parse_option_str(p, "mirror")) {
7440 mirrored_kernelcore = true;
7441 return 0;
7442 }
7443
a5c6d650
DR
7444 return cmdline_parse_core(p, &required_kernelcore,
7445 &required_kernelcore_percent);
7e63efef
MG
7446}
7447
7448/*
7449 * movablecore=size sets the amount of memory for use for allocations that
7450 * can be reclaimed or migrated.
7451 */
7452static int __init cmdline_parse_movablecore(char *p)
7453{
a5c6d650
DR
7454 return cmdline_parse_core(p, &required_movablecore,
7455 &required_movablecore_percent);
7e63efef
MG
7456}
7457
ed7ed365 7458early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 7459early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 7460
0ee332c1 7461#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 7462
c3d5f5f0
JL
7463void adjust_managed_page_count(struct page *page, long count)
7464{
9705bea5 7465 atomic_long_add(count, &page_zone(page)->managed_pages);
ca79b0c2 7466 totalram_pages_add(count);
3dcc0571
JL
7467#ifdef CONFIG_HIGHMEM
7468 if (PageHighMem(page))
ca79b0c2 7469 totalhigh_pages_add(count);
3dcc0571 7470#endif
c3d5f5f0 7471}
3dcc0571 7472EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 7473
e5cb113f 7474unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
69afade7 7475{
11199692
JL
7476 void *pos;
7477 unsigned long pages = 0;
69afade7 7478
11199692
JL
7479 start = (void *)PAGE_ALIGN((unsigned long)start);
7480 end = (void *)((unsigned long)end & PAGE_MASK);
7481 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
0d834328
DH
7482 struct page *page = virt_to_page(pos);
7483 void *direct_map_addr;
7484
7485 /*
7486 * 'direct_map_addr' might be different from 'pos'
7487 * because some architectures' virt_to_page()
7488 * work with aliases. Getting the direct map
7489 * address ensures that we get a _writeable_
7490 * alias for the memset().
7491 */
7492 direct_map_addr = page_address(page);
dbe67df4 7493 if ((unsigned int)poison <= 0xFF)
0d834328
DH
7494 memset(direct_map_addr, poison, PAGE_SIZE);
7495
7496 free_reserved_page(page);
69afade7
JL
7497 }
7498
7499 if (pages && s)
adb1fe9a
JP
7500 pr_info("Freeing %s memory: %ldK\n",
7501 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
7502
7503 return pages;
7504}
7505
cfa11e08
JL
7506#ifdef CONFIG_HIGHMEM
7507void free_highmem_page(struct page *page)
7508{
7509 __free_reserved_page(page);
ca79b0c2 7510 totalram_pages_inc();
9705bea5 7511 atomic_long_inc(&page_zone(page)->managed_pages);
ca79b0c2 7512 totalhigh_pages_inc();
cfa11e08
JL
7513}
7514#endif
7515
7ee3d4e8
JL
7516
7517void __init mem_init_print_info(const char *str)
7518{
7519 unsigned long physpages, codesize, datasize, rosize, bss_size;
7520 unsigned long init_code_size, init_data_size;
7521
7522 physpages = get_num_physpages();
7523 codesize = _etext - _stext;
7524 datasize = _edata - _sdata;
7525 rosize = __end_rodata - __start_rodata;
7526 bss_size = __bss_stop - __bss_start;
7527 init_data_size = __init_end - __init_begin;
7528 init_code_size = _einittext - _sinittext;
7529
7530 /*
7531 * Detect special cases and adjust section sizes accordingly:
7532 * 1) .init.* may be embedded into .data sections
7533 * 2) .init.text.* may be out of [__init_begin, __init_end],
7534 * please refer to arch/tile/kernel/vmlinux.lds.S.
7535 * 3) .rodata.* may be embedded into .text or .data sections.
7536 */
7537#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
7538 do { \
7539 if (start <= pos && pos < end && size > adj) \
7540 size -= adj; \
7541 } while (0)
7ee3d4e8
JL
7542
7543 adj_init_size(__init_begin, __init_end, init_data_size,
7544 _sinittext, init_code_size);
7545 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7546 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7547 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7548 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7549
7550#undef adj_init_size
7551
756a025f 7552 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7553#ifdef CONFIG_HIGHMEM
756a025f 7554 ", %luK highmem"
7ee3d4e8 7555#endif
756a025f
JP
7556 "%s%s)\n",
7557 nr_free_pages() << (PAGE_SHIFT - 10),
7558 physpages << (PAGE_SHIFT - 10),
7559 codesize >> 10, datasize >> 10, rosize >> 10,
7560 (init_data_size + init_code_size) >> 10, bss_size >> 10,
ca79b0c2 7561 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
756a025f 7562 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7563#ifdef CONFIG_HIGHMEM
ca79b0c2 7564 totalhigh_pages() << (PAGE_SHIFT - 10),
7ee3d4e8 7565#endif
756a025f 7566 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7567}
7568
0e0b864e 7569/**
88ca3b94
RD
7570 * set_dma_reserve - set the specified number of pages reserved in the first zone
7571 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7572 *
013110a7 7573 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7574 * In the DMA zone, a significant percentage may be consumed by kernel image
7575 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7576 * function may optionally be used to account for unfreeable pages in the
7577 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7578 * smaller per-cpu batchsize.
0e0b864e
MG
7579 */
7580void __init set_dma_reserve(unsigned long new_dma_reserve)
7581{
7582 dma_reserve = new_dma_reserve;
7583}
7584
1da177e4
LT
7585void __init free_area_init(unsigned long *zones_size)
7586{
e181ae0c 7587 zero_resv_unavail();
9109fb7b 7588 free_area_init_node(0, zones_size,
1da177e4
LT
7589 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7590}
1da177e4 7591
005fd4bb 7592static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7593{
1da177e4 7594
005fd4bb
SAS
7595 lru_add_drain_cpu(cpu);
7596 drain_pages(cpu);
9f8f2172 7597
005fd4bb
SAS
7598 /*
7599 * Spill the event counters of the dead processor
7600 * into the current processors event counters.
7601 * This artificially elevates the count of the current
7602 * processor.
7603 */
7604 vm_events_fold_cpu(cpu);
9f8f2172 7605
005fd4bb
SAS
7606 /*
7607 * Zero the differential counters of the dead processor
7608 * so that the vm statistics are consistent.
7609 *
7610 * This is only okay since the processor is dead and cannot
7611 * race with what we are doing.
7612 */
7613 cpu_vm_stats_fold(cpu);
7614 return 0;
1da177e4 7615}
1da177e4 7616
e03a5125
NP
7617#ifdef CONFIG_NUMA
7618int hashdist = HASHDIST_DEFAULT;
7619
7620static int __init set_hashdist(char *str)
7621{
7622 if (!str)
7623 return 0;
7624 hashdist = simple_strtoul(str, &str, 0);
7625 return 1;
7626}
7627__setup("hashdist=", set_hashdist);
7628#endif
7629
1da177e4
LT
7630void __init page_alloc_init(void)
7631{
005fd4bb
SAS
7632 int ret;
7633
e03a5125
NP
7634#ifdef CONFIG_NUMA
7635 if (num_node_state(N_MEMORY) == 1)
7636 hashdist = 0;
7637#endif
7638
005fd4bb
SAS
7639 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7640 "mm/page_alloc:dead", NULL,
7641 page_alloc_cpu_dead);
7642 WARN_ON(ret < 0);
1da177e4
LT
7643}
7644
cb45b0e9 7645/*
34b10060 7646 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7647 * or min_free_kbytes changes.
7648 */
7649static void calculate_totalreserve_pages(void)
7650{
7651 struct pglist_data *pgdat;
7652 unsigned long reserve_pages = 0;
2f6726e5 7653 enum zone_type i, j;
cb45b0e9
HA
7654
7655 for_each_online_pgdat(pgdat) {
281e3726
MG
7656
7657 pgdat->totalreserve_pages = 0;
7658
cb45b0e9
HA
7659 for (i = 0; i < MAX_NR_ZONES; i++) {
7660 struct zone *zone = pgdat->node_zones + i;
3484b2de 7661 long max = 0;
9705bea5 7662 unsigned long managed_pages = zone_managed_pages(zone);
cb45b0e9
HA
7663
7664 /* Find valid and maximum lowmem_reserve in the zone */
7665 for (j = i; j < MAX_NR_ZONES; j++) {
7666 if (zone->lowmem_reserve[j] > max)
7667 max = zone->lowmem_reserve[j];
7668 }
7669
41858966
MG
7670 /* we treat the high watermark as reserved pages. */
7671 max += high_wmark_pages(zone);
cb45b0e9 7672
3d6357de
AK
7673 if (max > managed_pages)
7674 max = managed_pages;
a8d01437 7675
281e3726 7676 pgdat->totalreserve_pages += max;
a8d01437 7677
cb45b0e9
HA
7678 reserve_pages += max;
7679 }
7680 }
7681 totalreserve_pages = reserve_pages;
7682}
7683
1da177e4
LT
7684/*
7685 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7686 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7687 * has a correct pages reserved value, so an adequate number of
7688 * pages are left in the zone after a successful __alloc_pages().
7689 */
7690static void setup_per_zone_lowmem_reserve(void)
7691{
7692 struct pglist_data *pgdat;
2f6726e5 7693 enum zone_type j, idx;
1da177e4 7694
ec936fc5 7695 for_each_online_pgdat(pgdat) {
1da177e4
LT
7696 for (j = 0; j < MAX_NR_ZONES; j++) {
7697 struct zone *zone = pgdat->node_zones + j;
9705bea5 7698 unsigned long managed_pages = zone_managed_pages(zone);
1da177e4
LT
7699
7700 zone->lowmem_reserve[j] = 0;
7701
2f6726e5
CL
7702 idx = j;
7703 while (idx) {
1da177e4
LT
7704 struct zone *lower_zone;
7705
2f6726e5 7706 idx--;
1da177e4 7707 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7708
7709 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7710 sysctl_lowmem_reserve_ratio[idx] = 0;
7711 lower_zone->lowmem_reserve[j] = 0;
7712 } else {
7713 lower_zone->lowmem_reserve[j] =
7714 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7715 }
9705bea5 7716 managed_pages += zone_managed_pages(lower_zone);
1da177e4
LT
7717 }
7718 }
7719 }
cb45b0e9
HA
7720
7721 /* update totalreserve_pages */
7722 calculate_totalreserve_pages();
1da177e4
LT
7723}
7724
cfd3da1e 7725static void __setup_per_zone_wmarks(void)
1da177e4
LT
7726{
7727 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7728 unsigned long lowmem_pages = 0;
7729 struct zone *zone;
7730 unsigned long flags;
7731
7732 /* Calculate total number of !ZONE_HIGHMEM pages */
7733 for_each_zone(zone) {
7734 if (!is_highmem(zone))
9705bea5 7735 lowmem_pages += zone_managed_pages(zone);
1da177e4
LT
7736 }
7737
7738 for_each_zone(zone) {
ac924c60
AM
7739 u64 tmp;
7740
1125b4e3 7741 spin_lock_irqsave(&zone->lock, flags);
9705bea5 7742 tmp = (u64)pages_min * zone_managed_pages(zone);
ac924c60 7743 do_div(tmp, lowmem_pages);
1da177e4
LT
7744 if (is_highmem(zone)) {
7745 /*
669ed175
NP
7746 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7747 * need highmem pages, so cap pages_min to a small
7748 * value here.
7749 *
41858966 7750 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8bb4e7a2 7751 * deltas control async page reclaim, and so should
669ed175 7752 * not be capped for highmem.
1da177e4 7753 */
90ae8d67 7754 unsigned long min_pages;
1da177e4 7755
9705bea5 7756 min_pages = zone_managed_pages(zone) / 1024;
90ae8d67 7757 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
a9214443 7758 zone->_watermark[WMARK_MIN] = min_pages;
1da177e4 7759 } else {
669ed175
NP
7760 /*
7761 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7762 * proportionate to the zone's size.
7763 */
a9214443 7764 zone->_watermark[WMARK_MIN] = tmp;
1da177e4
LT
7765 }
7766
795ae7a0
JW
7767 /*
7768 * Set the kswapd watermarks distance according to the
7769 * scale factor in proportion to available memory, but
7770 * ensure a minimum size on small systems.
7771 */
7772 tmp = max_t(u64, tmp >> 2,
9705bea5 7773 mult_frac(zone_managed_pages(zone),
795ae7a0
JW
7774 watermark_scale_factor, 10000));
7775
a9214443
MG
7776 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7777 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
1c30844d 7778 zone->watermark_boost = 0;
49f223a9 7779
1125b4e3 7780 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7781 }
cb45b0e9
HA
7782
7783 /* update totalreserve_pages */
7784 calculate_totalreserve_pages();
1da177e4
LT
7785}
7786
cfd3da1e
MG
7787/**
7788 * setup_per_zone_wmarks - called when min_free_kbytes changes
7789 * or when memory is hot-{added|removed}
7790 *
7791 * Ensures that the watermark[min,low,high] values for each zone are set
7792 * correctly with respect to min_free_kbytes.
7793 */
7794void setup_per_zone_wmarks(void)
7795{
b93e0f32
MH
7796 static DEFINE_SPINLOCK(lock);
7797
7798 spin_lock(&lock);
cfd3da1e 7799 __setup_per_zone_wmarks();
b93e0f32 7800 spin_unlock(&lock);
cfd3da1e
MG
7801}
7802
1da177e4
LT
7803/*
7804 * Initialise min_free_kbytes.
7805 *
7806 * For small machines we want it small (128k min). For large machines
7807 * we want it large (64MB max). But it is not linear, because network
7808 * bandwidth does not increase linearly with machine size. We use
7809 *
b8af2941 7810 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7811 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7812 *
7813 * which yields
7814 *
7815 * 16MB: 512k
7816 * 32MB: 724k
7817 * 64MB: 1024k
7818 * 128MB: 1448k
7819 * 256MB: 2048k
7820 * 512MB: 2896k
7821 * 1024MB: 4096k
7822 * 2048MB: 5792k
7823 * 4096MB: 8192k
7824 * 8192MB: 11584k
7825 * 16384MB: 16384k
7826 */
1b79acc9 7827int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7828{
7829 unsigned long lowmem_kbytes;
5f12733e 7830 int new_min_free_kbytes;
1da177e4
LT
7831
7832 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7833 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7834
7835 if (new_min_free_kbytes > user_min_free_kbytes) {
7836 min_free_kbytes = new_min_free_kbytes;
7837 if (min_free_kbytes < 128)
7838 min_free_kbytes = 128;
7839 if (min_free_kbytes > 65536)
7840 min_free_kbytes = 65536;
7841 } else {
7842 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7843 new_min_free_kbytes, user_min_free_kbytes);
7844 }
bc75d33f 7845 setup_per_zone_wmarks();
a6cccdc3 7846 refresh_zone_stat_thresholds();
1da177e4 7847 setup_per_zone_lowmem_reserve();
6423aa81
JK
7848
7849#ifdef CONFIG_NUMA
7850 setup_min_unmapped_ratio();
7851 setup_min_slab_ratio();
7852#endif
7853
1da177e4
LT
7854 return 0;
7855}
bc22af74 7856core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7857
7858/*
b8af2941 7859 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7860 * that we can call two helper functions whenever min_free_kbytes
7861 * changes.
7862 */
cccad5b9 7863int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7864 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7865{
da8c757b
HP
7866 int rc;
7867
7868 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7869 if (rc)
7870 return rc;
7871
5f12733e
MH
7872 if (write) {
7873 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7874 setup_per_zone_wmarks();
5f12733e 7875 }
1da177e4
LT
7876 return 0;
7877}
7878
1c30844d
MG
7879int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7880 void __user *buffer, size_t *length, loff_t *ppos)
7881{
7882 int rc;
7883
7884 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7885 if (rc)
7886 return rc;
7887
7888 return 0;
7889}
7890
795ae7a0
JW
7891int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7892 void __user *buffer, size_t *length, loff_t *ppos)
7893{
7894 int rc;
7895
7896 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7897 if (rc)
7898 return rc;
7899
7900 if (write)
7901 setup_per_zone_wmarks();
7902
7903 return 0;
7904}
7905
9614634f 7906#ifdef CONFIG_NUMA
6423aa81 7907static void setup_min_unmapped_ratio(void)
9614634f 7908{
6423aa81 7909 pg_data_t *pgdat;
9614634f 7910 struct zone *zone;
9614634f 7911
a5f5f91d 7912 for_each_online_pgdat(pgdat)
81cbcbc2 7913 pgdat->min_unmapped_pages = 0;
a5f5f91d 7914
9614634f 7915 for_each_zone(zone)
9705bea5
AK
7916 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7917 sysctl_min_unmapped_ratio) / 100;
9614634f 7918}
0ff38490 7919
6423aa81
JK
7920
7921int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7922 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7923{
0ff38490
CL
7924 int rc;
7925
8d65af78 7926 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7927 if (rc)
7928 return rc;
7929
6423aa81
JK
7930 setup_min_unmapped_ratio();
7931
7932 return 0;
7933}
7934
7935static void setup_min_slab_ratio(void)
7936{
7937 pg_data_t *pgdat;
7938 struct zone *zone;
7939
a5f5f91d
MG
7940 for_each_online_pgdat(pgdat)
7941 pgdat->min_slab_pages = 0;
7942
0ff38490 7943 for_each_zone(zone)
9705bea5
AK
7944 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7945 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7946}
7947
7948int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7949 void __user *buffer, size_t *length, loff_t *ppos)
7950{
7951 int rc;
7952
7953 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7954 if (rc)
7955 return rc;
7956
7957 setup_min_slab_ratio();
7958
0ff38490
CL
7959 return 0;
7960}
9614634f
CL
7961#endif
7962
1da177e4
LT
7963/*
7964 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7965 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7966 * whenever sysctl_lowmem_reserve_ratio changes.
7967 *
7968 * The reserve ratio obviously has absolutely no relation with the
41858966 7969 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7970 * if in function of the boot time zone sizes.
7971 */
cccad5b9 7972int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7973 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7974{
8d65af78 7975 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7976 setup_per_zone_lowmem_reserve();
7977 return 0;
7978}
7979
8ad4b1fb
RS
7980/*
7981 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7982 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7983 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7984 */
cccad5b9 7985int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7986 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7987{
7988 struct zone *zone;
7cd2b0a3 7989 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7990 int ret;
7991
7cd2b0a3
DR
7992 mutex_lock(&pcp_batch_high_lock);
7993 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7994
8d65af78 7995 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7996 if (!write || ret < 0)
7997 goto out;
7998
7999 /* Sanity checking to avoid pcp imbalance */
8000 if (percpu_pagelist_fraction &&
8001 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8002 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8003 ret = -EINVAL;
8004 goto out;
8005 }
8006
8007 /* No change? */
8008 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8009 goto out;
c8e251fa 8010
364df0eb 8011 for_each_populated_zone(zone) {
7cd2b0a3
DR
8012 unsigned int cpu;
8013
22a7f12b 8014 for_each_possible_cpu(cpu)
7cd2b0a3
DR
8015 pageset_set_high_and_batch(zone,
8016 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 8017 }
7cd2b0a3 8018out:
c8e251fa 8019 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 8020 return ret;
8ad4b1fb
RS
8021}
8022
f6f34b43
SD
8023#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8024/*
8025 * Returns the number of pages that arch has reserved but
8026 * is not known to alloc_large_system_hash().
8027 */
8028static unsigned long __init arch_reserved_kernel_pages(void)
8029{
8030 return 0;
8031}
8032#endif
8033
9017217b
PT
8034/*
8035 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8036 * machines. As memory size is increased the scale is also increased but at
8037 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8038 * quadruples the scale is increased by one, which means the size of hash table
8039 * only doubles, instead of quadrupling as well.
8040 * Because 32-bit systems cannot have large physical memory, where this scaling
8041 * makes sense, it is disabled on such platforms.
8042 */
8043#if __BITS_PER_LONG > 32
8044#define ADAPT_SCALE_BASE (64ul << 30)
8045#define ADAPT_SCALE_SHIFT 2
8046#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8047#endif
8048
1da177e4
LT
8049/*
8050 * allocate a large system hash table from bootmem
8051 * - it is assumed that the hash table must contain an exact power-of-2
8052 * quantity of entries
8053 * - limit is the number of hash buckets, not the total allocation size
8054 */
8055void *__init alloc_large_system_hash(const char *tablename,
8056 unsigned long bucketsize,
8057 unsigned long numentries,
8058 int scale,
8059 int flags,
8060 unsigned int *_hash_shift,
8061 unsigned int *_hash_mask,
31fe62b9
TB
8062 unsigned long low_limit,
8063 unsigned long high_limit)
1da177e4 8064{
31fe62b9 8065 unsigned long long max = high_limit;
1da177e4
LT
8066 unsigned long log2qty, size;
8067 void *table = NULL;
3749a8f0 8068 gfp_t gfp_flags;
ec11408a 8069 bool virt;
1da177e4
LT
8070
8071 /* allow the kernel cmdline to have a say */
8072 if (!numentries) {
8073 /* round applicable memory size up to nearest megabyte */
04903664 8074 numentries = nr_kernel_pages;
f6f34b43 8075 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
8076
8077 /* It isn't necessary when PAGE_SIZE >= 1MB */
8078 if (PAGE_SHIFT < 20)
8079 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 8080
9017217b
PT
8081#if __BITS_PER_LONG > 32
8082 if (!high_limit) {
8083 unsigned long adapt;
8084
8085 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8086 adapt <<= ADAPT_SCALE_SHIFT)
8087 scale++;
8088 }
8089#endif
8090
1da177e4
LT
8091 /* limit to 1 bucket per 2^scale bytes of low memory */
8092 if (scale > PAGE_SHIFT)
8093 numentries >>= (scale - PAGE_SHIFT);
8094 else
8095 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
8096
8097 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
8098 if (unlikely(flags & HASH_SMALL)) {
8099 /* Makes no sense without HASH_EARLY */
8100 WARN_ON(!(flags & HASH_EARLY));
8101 if (!(numentries >> *_hash_shift)) {
8102 numentries = 1UL << *_hash_shift;
8103 BUG_ON(!numentries);
8104 }
8105 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 8106 numentries = PAGE_SIZE / bucketsize;
1da177e4 8107 }
6e692ed3 8108 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
8109
8110 /* limit allocation size to 1/16 total memory by default */
8111 if (max == 0) {
8112 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8113 do_div(max, bucketsize);
8114 }
074b8517 8115 max = min(max, 0x80000000ULL);
1da177e4 8116
31fe62b9
TB
8117 if (numentries < low_limit)
8118 numentries = low_limit;
1da177e4
LT
8119 if (numentries > max)
8120 numentries = max;
8121
f0d1b0b3 8122 log2qty = ilog2(numentries);
1da177e4 8123
3749a8f0 8124 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4 8125 do {
ec11408a 8126 virt = false;
1da177e4 8127 size = bucketsize << log2qty;
ea1f5f37
PT
8128 if (flags & HASH_EARLY) {
8129 if (flags & HASH_ZERO)
26fb3dae 8130 table = memblock_alloc(size, SMP_CACHE_BYTES);
ea1f5f37 8131 else
7e1c4e27
MR
8132 table = memblock_alloc_raw(size,
8133 SMP_CACHE_BYTES);
ec11408a 8134 } else if (get_order(size) >= MAX_ORDER || hashdist) {
3749a8f0 8135 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ec11408a 8136 virt = true;
ea1f5f37 8137 } else {
1037b83b
ED
8138 /*
8139 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
8140 * some pages at the end of hash table which
8141 * alloc_pages_exact() automatically does
1037b83b 8142 */
ec11408a
NP
8143 table = alloc_pages_exact(size, gfp_flags);
8144 kmemleak_alloc(table, size, 1, gfp_flags);
1da177e4
LT
8145 }
8146 } while (!table && size > PAGE_SIZE && --log2qty);
8147
8148 if (!table)
8149 panic("Failed to allocate %s hash table\n", tablename);
8150
ec11408a
NP
8151 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8152 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8153 virt ? "vmalloc" : "linear");
1da177e4
LT
8154
8155 if (_hash_shift)
8156 *_hash_shift = log2qty;
8157 if (_hash_mask)
8158 *_hash_mask = (1 << log2qty) - 1;
8159
8160 return table;
8161}
a117e66e 8162
a5d76b54 8163/*
80934513
MK
8164 * This function checks whether pageblock includes unmovable pages or not.
8165 * If @count is not zero, it is okay to include less @count unmovable pages
8166 *
b8af2941 8167 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
8168 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8169 * check without lock_page also may miss some movable non-lru pages at
8170 * race condition. So you can't expect this function should be exact.
a5d76b54 8171 */
b023f468 8172bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
d381c547 8173 int migratetype, int flags)
49ac8255 8174{
1a9f2191
QC
8175 unsigned long found;
8176 unsigned long iter = 0;
8177 unsigned long pfn = page_to_pfn(page);
8178 const char *reason = "unmovable page";
47118af0 8179
49ac8255 8180 /*
15c30bc0
MH
8181 * TODO we could make this much more efficient by not checking every
8182 * page in the range if we know all of them are in MOVABLE_ZONE and
8183 * that the movable zone guarantees that pages are migratable but
8184 * the later is not the case right now unfortunatelly. E.g. movablecore
8185 * can still lead to having bootmem allocations in zone_movable.
49ac8255 8186 */
49ac8255 8187
1a9f2191
QC
8188 if (is_migrate_cma_page(page)) {
8189 /*
8190 * CMA allocations (alloc_contig_range) really need to mark
8191 * isolate CMA pageblocks even when they are not movable in fact
8192 * so consider them movable here.
8193 */
8194 if (is_migrate_cma(migratetype))
8195 return false;
8196
8197 reason = "CMA page";
8198 goto unmovable;
8199 }
4da2ce25 8200
1a9f2191 8201 for (found = 0; iter < pageblock_nr_pages; iter++) {
49ac8255
KH
8202 unsigned long check = pfn + iter;
8203
29723fcc 8204 if (!pfn_valid_within(check))
49ac8255 8205 continue;
29723fcc 8206
49ac8255 8207 page = pfn_to_page(check);
c8721bbb 8208
d7ab3672 8209 if (PageReserved(page))
15c30bc0 8210 goto unmovable;
d7ab3672 8211
9d789999
MH
8212 /*
8213 * If the zone is movable and we have ruled out all reserved
8214 * pages then it should be reasonably safe to assume the rest
8215 * is movable.
8216 */
8217 if (zone_idx(zone) == ZONE_MOVABLE)
8218 continue;
8219
c8721bbb
NH
8220 /*
8221 * Hugepages are not in LRU lists, but they're movable.
8bb4e7a2 8222 * We need not scan over tail pages because we don't
c8721bbb
NH
8223 * handle each tail page individually in migration.
8224 */
8225 if (PageHuge(page)) {
17e2e7d7
OS
8226 struct page *head = compound_head(page);
8227 unsigned int skip_pages;
464c7ffb 8228
17e2e7d7 8229 if (!hugepage_migration_supported(page_hstate(head)))
464c7ffb
AK
8230 goto unmovable;
8231
d8c6546b 8232 skip_pages = compound_nr(head) - (page - head);
17e2e7d7 8233 iter += skip_pages - 1;
c8721bbb
NH
8234 continue;
8235 }
8236
97d255c8
MK
8237 /*
8238 * We can't use page_count without pin a page
8239 * because another CPU can free compound page.
8240 * This check already skips compound tails of THP
0139aa7b 8241 * because their page->_refcount is zero at all time.
97d255c8 8242 */
fe896d18 8243 if (!page_ref_count(page)) {
49ac8255
KH
8244 if (PageBuddy(page))
8245 iter += (1 << page_order(page)) - 1;
8246 continue;
8247 }
97d255c8 8248
b023f468
WC
8249 /*
8250 * The HWPoisoned page may be not in buddy system, and
8251 * page_count() is not 0.
8252 */
d381c547 8253 if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
b023f468
WC
8254 continue;
8255
0efadf48
YX
8256 if (__PageMovable(page))
8257 continue;
8258
49ac8255
KH
8259 if (!PageLRU(page))
8260 found++;
8261 /*
6b4f7799
JW
8262 * If there are RECLAIMABLE pages, we need to check
8263 * it. But now, memory offline itself doesn't call
8264 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
8265 */
8266 /*
8267 * If the page is not RAM, page_count()should be 0.
8268 * we don't need more check. This is an _used_ not-movable page.
8269 *
8270 * The problematic thing here is PG_reserved pages. PG_reserved
8271 * is set to both of a memory hole page and a _used_ kernel
8272 * page at boot.
8273 */
8274 if (found > count)
15c30bc0 8275 goto unmovable;
49ac8255 8276 }
80934513 8277 return false;
15c30bc0
MH
8278unmovable:
8279 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
d381c547 8280 if (flags & REPORT_FAILURE)
1a9f2191 8281 dump_page(pfn_to_page(pfn + iter), reason);
15c30bc0 8282 return true;
49ac8255
KH
8283}
8284
8df995f6 8285#ifdef CONFIG_CONTIG_ALLOC
041d3a8c
MN
8286static unsigned long pfn_max_align_down(unsigned long pfn)
8287{
8288 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8289 pageblock_nr_pages) - 1);
8290}
8291
8292static unsigned long pfn_max_align_up(unsigned long pfn)
8293{
8294 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8295 pageblock_nr_pages));
8296}
8297
041d3a8c 8298/* [start, end) must belong to a single zone. */
bb13ffeb
MG
8299static int __alloc_contig_migrate_range(struct compact_control *cc,
8300 unsigned long start, unsigned long end)
041d3a8c
MN
8301{
8302 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 8303 unsigned long nr_reclaimed;
041d3a8c
MN
8304 unsigned long pfn = start;
8305 unsigned int tries = 0;
8306 int ret = 0;
8307
be49a6e1 8308 migrate_prep();
041d3a8c 8309
bb13ffeb 8310 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
8311 if (fatal_signal_pending(current)) {
8312 ret = -EINTR;
8313 break;
8314 }
8315
bb13ffeb
MG
8316 if (list_empty(&cc->migratepages)) {
8317 cc->nr_migratepages = 0;
edc2ca61 8318 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
8319 if (!pfn) {
8320 ret = -EINTR;
8321 break;
8322 }
8323 tries = 0;
8324 } else if (++tries == 5) {
8325 ret = ret < 0 ? ret : -EBUSY;
8326 break;
8327 }
8328
beb51eaa
MK
8329 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8330 &cc->migratepages);
8331 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 8332
9c620e2b 8333 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 8334 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 8335 }
2a6f5124
SP
8336 if (ret < 0) {
8337 putback_movable_pages(&cc->migratepages);
8338 return ret;
8339 }
8340 return 0;
041d3a8c
MN
8341}
8342
8343/**
8344 * alloc_contig_range() -- tries to allocate given range of pages
8345 * @start: start PFN to allocate
8346 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
8347 * @migratetype: migratetype of the underlaying pageblocks (either
8348 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
8349 * in range must have the same migratetype and it must
8350 * be either of the two.
ca96b625 8351 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
8352 *
8353 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 8354 * aligned. The PFN range must belong to a single zone.
041d3a8c 8355 *
2c7452a0
MK
8356 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8357 * pageblocks in the range. Once isolated, the pageblocks should not
8358 * be modified by others.
041d3a8c 8359 *
a862f68a 8360 * Return: zero on success or negative error code. On success all
041d3a8c
MN
8361 * pages which PFN is in [start, end) are allocated for the caller and
8362 * need to be freed with free_contig_range().
8363 */
0815f3d8 8364int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 8365 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 8366{
041d3a8c 8367 unsigned long outer_start, outer_end;
d00181b9
KS
8368 unsigned int order;
8369 int ret = 0;
041d3a8c 8370
bb13ffeb
MG
8371 struct compact_control cc = {
8372 .nr_migratepages = 0,
8373 .order = -1,
8374 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 8375 .mode = MIGRATE_SYNC,
bb13ffeb 8376 .ignore_skip_hint = true,
2583d671 8377 .no_set_skip_hint = true,
7dea19f9 8378 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
8379 };
8380 INIT_LIST_HEAD(&cc.migratepages);
8381
041d3a8c
MN
8382 /*
8383 * What we do here is we mark all pageblocks in range as
8384 * MIGRATE_ISOLATE. Because pageblock and max order pages may
8385 * have different sizes, and due to the way page allocator
8386 * work, we align the range to biggest of the two pages so
8387 * that page allocator won't try to merge buddies from
8388 * different pageblocks and change MIGRATE_ISOLATE to some
8389 * other migration type.
8390 *
8391 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8392 * migrate the pages from an unaligned range (ie. pages that
8393 * we are interested in). This will put all the pages in
8394 * range back to page allocator as MIGRATE_ISOLATE.
8395 *
8396 * When this is done, we take the pages in range from page
8397 * allocator removing them from the buddy system. This way
8398 * page allocator will never consider using them.
8399 *
8400 * This lets us mark the pageblocks back as
8401 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8402 * aligned range but not in the unaligned, original range are
8403 * put back to page allocator so that buddy can use them.
8404 */
8405
8406 ret = start_isolate_page_range(pfn_max_align_down(start),
d381c547 8407 pfn_max_align_up(end), migratetype, 0);
9b7ea46a 8408 if (ret < 0)
86a595f9 8409 return ret;
041d3a8c 8410
8ef5849f
JK
8411 /*
8412 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
8413 * So, just fall through. test_pages_isolated() has a tracepoint
8414 * which will report the busy page.
8415 *
8416 * It is possible that busy pages could become available before
8417 * the call to test_pages_isolated, and the range will actually be
8418 * allocated. So, if we fall through be sure to clear ret so that
8419 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 8420 */
bb13ffeb 8421 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 8422 if (ret && ret != -EBUSY)
041d3a8c 8423 goto done;
63cd4489 8424 ret =0;
041d3a8c
MN
8425
8426 /*
8427 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8428 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
8429 * more, all pages in [start, end) are free in page allocator.
8430 * What we are going to do is to allocate all pages from
8431 * [start, end) (that is remove them from page allocator).
8432 *
8433 * The only problem is that pages at the beginning and at the
8434 * end of interesting range may be not aligned with pages that
8435 * page allocator holds, ie. they can be part of higher order
8436 * pages. Because of this, we reserve the bigger range and
8437 * once this is done free the pages we are not interested in.
8438 *
8439 * We don't have to hold zone->lock here because the pages are
8440 * isolated thus they won't get removed from buddy.
8441 */
8442
8443 lru_add_drain_all();
041d3a8c
MN
8444
8445 order = 0;
8446 outer_start = start;
8447 while (!PageBuddy(pfn_to_page(outer_start))) {
8448 if (++order >= MAX_ORDER) {
8ef5849f
JK
8449 outer_start = start;
8450 break;
041d3a8c
MN
8451 }
8452 outer_start &= ~0UL << order;
8453 }
8454
8ef5849f
JK
8455 if (outer_start != start) {
8456 order = page_order(pfn_to_page(outer_start));
8457
8458 /*
8459 * outer_start page could be small order buddy page and
8460 * it doesn't include start page. Adjust outer_start
8461 * in this case to report failed page properly
8462 * on tracepoint in test_pages_isolated()
8463 */
8464 if (outer_start + (1UL << order) <= start)
8465 outer_start = start;
8466 }
8467
041d3a8c 8468 /* Make sure the range is really isolated. */
b023f468 8469 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 8470 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 8471 __func__, outer_start, end);
041d3a8c
MN
8472 ret = -EBUSY;
8473 goto done;
8474 }
8475
49f223a9 8476 /* Grab isolated pages from freelists. */
bb13ffeb 8477 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
8478 if (!outer_end) {
8479 ret = -EBUSY;
8480 goto done;
8481 }
8482
8483 /* Free head and tail (if any) */
8484 if (start != outer_start)
8485 free_contig_range(outer_start, start - outer_start);
8486 if (end != outer_end)
8487 free_contig_range(end, outer_end - end);
8488
8489done:
8490 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 8491 pfn_max_align_up(end), migratetype);
041d3a8c
MN
8492 return ret;
8493}
4eb0716e 8494#endif /* CONFIG_CONTIG_ALLOC */
041d3a8c 8495
4eb0716e 8496void free_contig_range(unsigned long pfn, unsigned int nr_pages)
041d3a8c 8497{
bcc2b02f
MS
8498 unsigned int count = 0;
8499
8500 for (; nr_pages--; pfn++) {
8501 struct page *page = pfn_to_page(pfn);
8502
8503 count += page_count(page) != 1;
8504 __free_page(page);
8505 }
8506 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c 8507}
041d3a8c 8508
d883c6cf 8509#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
8510/*
8511 * The zone indicated has a new number of managed_pages; batch sizes and percpu
8512 * page high values need to be recalulated.
8513 */
4ed7e022
JL
8514void __meminit zone_pcp_update(struct zone *zone)
8515{
0a647f38 8516 unsigned cpu;
c8e251fa 8517 mutex_lock(&pcp_batch_high_lock);
0a647f38 8518 for_each_possible_cpu(cpu)
169f6c19
CS
8519 pageset_set_high_and_batch(zone,
8520 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 8521 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
8522}
8523#endif
8524
340175b7
JL
8525void zone_pcp_reset(struct zone *zone)
8526{
8527 unsigned long flags;
5a883813
MK
8528 int cpu;
8529 struct per_cpu_pageset *pset;
340175b7
JL
8530
8531 /* avoid races with drain_pages() */
8532 local_irq_save(flags);
8533 if (zone->pageset != &boot_pageset) {
5a883813
MK
8534 for_each_online_cpu(cpu) {
8535 pset = per_cpu_ptr(zone->pageset, cpu);
8536 drain_zonestat(zone, pset);
8537 }
340175b7
JL
8538 free_percpu(zone->pageset);
8539 zone->pageset = &boot_pageset;
8540 }
8541 local_irq_restore(flags);
8542}
8543
6dcd73d7 8544#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 8545/*
b9eb6319
JK
8546 * All pages in the range must be in a single zone and isolated
8547 * before calling this.
0c0e6195 8548 */
5557c766 8549unsigned long
0c0e6195
KH
8550__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8551{
8552 struct page *page;
8553 struct zone *zone;
7aeb09f9 8554 unsigned int order, i;
0c0e6195
KH
8555 unsigned long pfn;
8556 unsigned long flags;
5557c766
MH
8557 unsigned long offlined_pages = 0;
8558
0c0e6195
KH
8559 /* find the first valid pfn */
8560 for (pfn = start_pfn; pfn < end_pfn; pfn++)
8561 if (pfn_valid(pfn))
8562 break;
8563 if (pfn == end_pfn)
5557c766
MH
8564 return offlined_pages;
8565
2d070eab 8566 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
8567 zone = page_zone(pfn_to_page(pfn));
8568 spin_lock_irqsave(&zone->lock, flags);
8569 pfn = start_pfn;
8570 while (pfn < end_pfn) {
8571 if (!pfn_valid(pfn)) {
8572 pfn++;
8573 continue;
8574 }
8575 page = pfn_to_page(pfn);
b023f468
WC
8576 /*
8577 * The HWPoisoned page may be not in buddy system, and
8578 * page_count() is not 0.
8579 */
8580 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8581 pfn++;
8582 SetPageReserved(page);
5557c766 8583 offlined_pages++;
b023f468
WC
8584 continue;
8585 }
8586
0c0e6195
KH
8587 BUG_ON(page_count(page));
8588 BUG_ON(!PageBuddy(page));
8589 order = page_order(page);
5557c766 8590 offlined_pages += 1 << order;
0c0e6195 8591#ifdef CONFIG_DEBUG_VM
1170532b
JP
8592 pr_info("remove from free list %lx %d %lx\n",
8593 pfn, 1 << order, end_pfn);
0c0e6195 8594#endif
b03641af 8595 del_page_from_free_area(page, &zone->free_area[order]);
0c0e6195
KH
8596 for (i = 0; i < (1 << order); i++)
8597 SetPageReserved((page+i));
8598 pfn += (1 << order);
8599 }
8600 spin_unlock_irqrestore(&zone->lock, flags);
5557c766
MH
8601
8602 return offlined_pages;
0c0e6195
KH
8603}
8604#endif
8d22ba1b 8605
8d22ba1b
WF
8606bool is_free_buddy_page(struct page *page)
8607{
8608 struct zone *zone = page_zone(page);
8609 unsigned long pfn = page_to_pfn(page);
8610 unsigned long flags;
7aeb09f9 8611 unsigned int order;
8d22ba1b
WF
8612
8613 spin_lock_irqsave(&zone->lock, flags);
8614 for (order = 0; order < MAX_ORDER; order++) {
8615 struct page *page_head = page - (pfn & ((1 << order) - 1));
8616
8617 if (PageBuddy(page_head) && page_order(page_head) >= order)
8618 break;
8619 }
8620 spin_unlock_irqrestore(&zone->lock, flags);
8621
8622 return order < MAX_ORDER;
8623}
d4ae9916
NH
8624
8625#ifdef CONFIG_MEMORY_FAILURE
8626/*
8627 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This
8628 * test is performed under the zone lock to prevent a race against page
8629 * allocation.
8630 */
8631bool set_hwpoison_free_buddy_page(struct page *page)
8632{
8633 struct zone *zone = page_zone(page);
8634 unsigned long pfn = page_to_pfn(page);
8635 unsigned long flags;
8636 unsigned int order;
8637 bool hwpoisoned = false;
8638
8639 spin_lock_irqsave(&zone->lock, flags);
8640 for (order = 0; order < MAX_ORDER; order++) {
8641 struct page *page_head = page - (pfn & ((1 << order) - 1));
8642
8643 if (PageBuddy(page_head) && page_order(page_head) >= order) {
8644 if (!TestSetPageHWPoison(page))
8645 hwpoisoned = true;
8646 break;
8647 }
8648 }
8649 spin_unlock_irqrestore(&zone->lock, flags);
8650
8651 return hwpoisoned;
8652}
8653#endif