Merge tag 'dma-mapping-4.18-2' of git://git.infradead.org/users/hch/dma-mapping
[linux-2.6-block.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
1da177e4 70
7ee3d4e8 71#include <asm/sections.h>
1da177e4 72#include <asm/tlbflush.h>
ac924c60 73#include <asm/div64.h>
1da177e4
LT
74#include "internal.h"
75
c8e251fa
CS
76/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 78#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 79
72812019
LS
80#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81DEFINE_PER_CPU(int, numa_node);
82EXPORT_PER_CPU_SYMBOL(numa_node);
83#endif
84
4518085e
KW
85DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86
7aac7898
LS
87#ifdef CONFIG_HAVE_MEMORYLESS_NODES
88/*
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
93 */
94DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
95EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 96int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
97#endif
98
bd233f53
MG
99/* work_structs for global per-cpu drains */
100DEFINE_MUTEX(pcpu_drain_mutex);
101DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102
38addce8 103#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 104volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
105EXPORT_SYMBOL(latent_entropy);
106#endif
107
1da177e4 108/*
13808910 109 * Array of node states.
1da177e4 110 */
13808910
CL
111nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 [N_POSSIBLE] = NODE_MASK_ALL,
113 [N_ONLINE] = { { [0] = 1UL } },
114#ifndef CONFIG_NUMA
115 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
116#ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 118#endif
20b2f52b 119 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
120 [N_CPU] = { { [0] = 1UL } },
121#endif /* NUMA */
122};
123EXPORT_SYMBOL(node_states);
124
c3d5f5f0
JL
125/* Protect totalram_pages and zone->managed_pages */
126static DEFINE_SPINLOCK(managed_page_count_lock);
127
6c231b7b 128unsigned long totalram_pages __read_mostly;
cb45b0e9 129unsigned long totalreserve_pages __read_mostly;
e48322ab 130unsigned long totalcma_pages __read_mostly;
ab8fabd4 131
1b76b02f 132int percpu_pagelist_fraction;
dcce284a 133gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 134
bb14c2c7
VB
135/*
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
142 */
143static inline int get_pcppage_migratetype(struct page *page)
144{
145 return page->index;
146}
147
148static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149{
150 page->index = migratetype;
151}
152
452aa699
RW
153#ifdef CONFIG_PM_SLEEP
154/*
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
161 */
c9e664f1
RW
162
163static gfp_t saved_gfp_mask;
164
165void pm_restore_gfp_mask(void)
452aa699
RW
166{
167 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
168 if (saved_gfp_mask) {
169 gfp_allowed_mask = saved_gfp_mask;
170 saved_gfp_mask = 0;
171 }
452aa699
RW
172}
173
c9e664f1 174void pm_restrict_gfp_mask(void)
452aa699 175{
452aa699 176 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
177 WARN_ON(saved_gfp_mask);
178 saved_gfp_mask = gfp_allowed_mask;
d0164adc 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 180}
f90ac398
MG
181
182bool pm_suspended_storage(void)
183{
d0164adc 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
185 return false;
186 return true;
187}
452aa699
RW
188#endif /* CONFIG_PM_SLEEP */
189
d9c23400 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 191unsigned int pageblock_order __read_mostly;
d9c23400
MG
192#endif
193
d98c7a09 194static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 195
1da177e4
LT
196/*
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
203 *
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
1da177e4 206 */
d3cda233 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
4b51d669 208#ifdef CONFIG_ZONE_DMA
d3cda233 209 [ZONE_DMA] = 256,
4b51d669 210#endif
fb0e7942 211#ifdef CONFIG_ZONE_DMA32
d3cda233 212 [ZONE_DMA32] = 256,
fb0e7942 213#endif
d3cda233 214 [ZONE_NORMAL] = 32,
e53ef38d 215#ifdef CONFIG_HIGHMEM
d3cda233 216 [ZONE_HIGHMEM] = 0,
e53ef38d 217#endif
d3cda233 218 [ZONE_MOVABLE] = 0,
2f1b6248 219};
1da177e4
LT
220
221EXPORT_SYMBOL(totalram_pages);
1da177e4 222
15ad7cdc 223static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 224#ifdef CONFIG_ZONE_DMA
2f1b6248 225 "DMA",
4b51d669 226#endif
fb0e7942 227#ifdef CONFIG_ZONE_DMA32
2f1b6248 228 "DMA32",
fb0e7942 229#endif
2f1b6248 230 "Normal",
e53ef38d 231#ifdef CONFIG_HIGHMEM
2a1e274a 232 "HighMem",
e53ef38d 233#endif
2a1e274a 234 "Movable",
033fbae9
DW
235#ifdef CONFIG_ZONE_DEVICE
236 "Device",
237#endif
2f1b6248
CL
238};
239
60f30350
VB
240char * const migratetype_names[MIGRATE_TYPES] = {
241 "Unmovable",
242 "Movable",
243 "Reclaimable",
244 "HighAtomic",
245#ifdef CONFIG_CMA
246 "CMA",
247#endif
248#ifdef CONFIG_MEMORY_ISOLATION
249 "Isolate",
250#endif
251};
252
f1e61557
KS
253compound_page_dtor * const compound_page_dtors[] = {
254 NULL,
255 free_compound_page,
256#ifdef CONFIG_HUGETLB_PAGE
257 free_huge_page,
258#endif
9a982250
KS
259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
260 free_transhuge_page,
261#endif
f1e61557
KS
262};
263
1da177e4 264int min_free_kbytes = 1024;
42aa83cb 265int user_min_free_kbytes = -1;
795ae7a0 266int watermark_scale_factor = 10;
1da177e4 267
7f16f91f
DR
268static unsigned long nr_kernel_pages __meminitdata;
269static unsigned long nr_all_pages __meminitdata;
270static unsigned long dma_reserve __meminitdata;
1da177e4 271
0ee332c1 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
7f16f91f
DR
273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
275static unsigned long required_kernelcore __initdata;
a5c6d650 276static unsigned long required_kernelcore_percent __initdata;
7f16f91f 277static unsigned long required_movablecore __initdata;
a5c6d650 278static unsigned long required_movablecore_percent __initdata;
7f16f91f
DR
279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
280static bool mirrored_kernelcore __meminitdata;
0ee332c1
TH
281
282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
283int movable_zone;
284EXPORT_SYMBOL(movable_zone);
285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 286
418508c1
MS
287#if MAX_NUMNODES > 1
288int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 289int nr_online_nodes __read_mostly = 1;
418508c1 290EXPORT_SYMBOL(nr_node_ids);
62bc62a8 291EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
292#endif
293
9ef9acb0
MG
294int page_group_by_mobility_disabled __read_mostly;
295
3a80a7fa 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3a80a7fa 297/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 299{
ef70b6f4
MG
300 int nid = early_pfn_to_nid(pfn);
301
302 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
303 return true;
304
305 return false;
306}
307
308/*
309 * Returns false when the remaining initialisation should be deferred until
310 * later in the boot cycle when it can be parallelised.
311 */
312static inline bool update_defer_init(pg_data_t *pgdat,
313 unsigned long pfn, unsigned long zone_end,
314 unsigned long *nr_initialised)
315{
3c2c6488 316 /* Always populate low zones for address-constrained allocations */
3a80a7fa
MG
317 if (zone_end < pgdat_end_pfn(pgdat))
318 return true;
3a80a7fa 319 (*nr_initialised)++;
d135e575 320 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
321 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
322 pgdat->first_deferred_pfn = pfn;
323 return false;
324 }
325
326 return true;
327}
328#else
3a80a7fa
MG
329static inline bool early_page_uninitialised(unsigned long pfn)
330{
331 return false;
332}
333
334static inline bool update_defer_init(pg_data_t *pgdat,
335 unsigned long pfn, unsigned long zone_end,
336 unsigned long *nr_initialised)
337{
338 return true;
339}
340#endif
341
0b423ca2
MG
342/* Return a pointer to the bitmap storing bits affecting a block of pages */
343static inline unsigned long *get_pageblock_bitmap(struct page *page,
344 unsigned long pfn)
345{
346#ifdef CONFIG_SPARSEMEM
347 return __pfn_to_section(pfn)->pageblock_flags;
348#else
349 return page_zone(page)->pageblock_flags;
350#endif /* CONFIG_SPARSEMEM */
351}
352
353static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
354{
355#ifdef CONFIG_SPARSEMEM
356 pfn &= (PAGES_PER_SECTION-1);
357 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
358#else
359 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361#endif /* CONFIG_SPARSEMEM */
362}
363
364/**
365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366 * @page: The page within the block of interest
367 * @pfn: The target page frame number
368 * @end_bitidx: The last bit of interest to retrieve
369 * @mask: mask of bits that the caller is interested in
370 *
371 * Return: pageblock_bits flags
372 */
373static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
374 unsigned long pfn,
375 unsigned long end_bitidx,
376 unsigned long mask)
377{
378 unsigned long *bitmap;
379 unsigned long bitidx, word_bitidx;
380 unsigned long word;
381
382 bitmap = get_pageblock_bitmap(page, pfn);
383 bitidx = pfn_to_bitidx(page, pfn);
384 word_bitidx = bitidx / BITS_PER_LONG;
385 bitidx &= (BITS_PER_LONG-1);
386
387 word = bitmap[word_bitidx];
388 bitidx += end_bitidx;
389 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
390}
391
392unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
393 unsigned long end_bitidx,
394 unsigned long mask)
395{
396 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
397}
398
399static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
400{
401 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
402}
403
404/**
405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
406 * @page: The page within the block of interest
407 * @flags: The flags to set
408 * @pfn: The target page frame number
409 * @end_bitidx: The last bit of interest
410 * @mask: mask of bits that the caller is interested in
411 */
412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
413 unsigned long pfn,
414 unsigned long end_bitidx,
415 unsigned long mask)
416{
417 unsigned long *bitmap;
418 unsigned long bitidx, word_bitidx;
419 unsigned long old_word, word;
420
421 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
422
423 bitmap = get_pageblock_bitmap(page, pfn);
424 bitidx = pfn_to_bitidx(page, pfn);
425 word_bitidx = bitidx / BITS_PER_LONG;
426 bitidx &= (BITS_PER_LONG-1);
427
428 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
429
430 bitidx += end_bitidx;
431 mask <<= (BITS_PER_LONG - bitidx - 1);
432 flags <<= (BITS_PER_LONG - bitidx - 1);
433
434 word = READ_ONCE(bitmap[word_bitidx]);
435 for (;;) {
436 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
437 if (word == old_word)
438 break;
439 word = old_word;
440 }
441}
3a80a7fa 442
ee6f509c 443void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 444{
5d0f3f72
KM
445 if (unlikely(page_group_by_mobility_disabled &&
446 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
447 migratetype = MIGRATE_UNMOVABLE;
448
b2a0ac88
MG
449 set_pageblock_flags_group(page, (unsigned long)migratetype,
450 PB_migrate, PB_migrate_end);
451}
452
13e7444b 453#ifdef CONFIG_DEBUG_VM
c6a57e19 454static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 455{
bdc8cb98
DH
456 int ret = 0;
457 unsigned seq;
458 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 459 unsigned long sp, start_pfn;
c6a57e19 460
bdc8cb98
DH
461 do {
462 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
463 start_pfn = zone->zone_start_pfn;
464 sp = zone->spanned_pages;
108bcc96 465 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
466 ret = 1;
467 } while (zone_span_seqretry(zone, seq));
468
b5e6a5a2 469 if (ret)
613813e8
DH
470 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
471 pfn, zone_to_nid(zone), zone->name,
472 start_pfn, start_pfn + sp);
b5e6a5a2 473
bdc8cb98 474 return ret;
c6a57e19
DH
475}
476
477static int page_is_consistent(struct zone *zone, struct page *page)
478{
14e07298 479 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 480 return 0;
1da177e4 481 if (zone != page_zone(page))
c6a57e19
DH
482 return 0;
483
484 return 1;
485}
486/*
487 * Temporary debugging check for pages not lying within a given zone.
488 */
d73d3c9f 489static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
490{
491 if (page_outside_zone_boundaries(zone, page))
1da177e4 492 return 1;
c6a57e19
DH
493 if (!page_is_consistent(zone, page))
494 return 1;
495
1da177e4
LT
496 return 0;
497}
13e7444b 498#else
d73d3c9f 499static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
500{
501 return 0;
502}
503#endif
504
d230dec1
KS
505static void bad_page(struct page *page, const char *reason,
506 unsigned long bad_flags)
1da177e4 507{
d936cf9b
HD
508 static unsigned long resume;
509 static unsigned long nr_shown;
510 static unsigned long nr_unshown;
511
512 /*
513 * Allow a burst of 60 reports, then keep quiet for that minute;
514 * or allow a steady drip of one report per second.
515 */
516 if (nr_shown == 60) {
517 if (time_before(jiffies, resume)) {
518 nr_unshown++;
519 goto out;
520 }
521 if (nr_unshown) {
ff8e8116 522 pr_alert(
1e9e6365 523 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
524 nr_unshown);
525 nr_unshown = 0;
526 }
527 nr_shown = 0;
528 }
529 if (nr_shown++ == 0)
530 resume = jiffies + 60 * HZ;
531
ff8e8116 532 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 533 current->comm, page_to_pfn(page));
ff8e8116
VB
534 __dump_page(page, reason);
535 bad_flags &= page->flags;
536 if (bad_flags)
537 pr_alert("bad because of flags: %#lx(%pGp)\n",
538 bad_flags, &bad_flags);
4e462112 539 dump_page_owner(page);
3dc14741 540
4f31888c 541 print_modules();
1da177e4 542 dump_stack();
d936cf9b 543out:
8cc3b392 544 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 545 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 546 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
547}
548
1da177e4
LT
549/*
550 * Higher-order pages are called "compound pages". They are structured thusly:
551 *
1d798ca3 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 553 *
1d798ca3
KS
554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 556 *
1d798ca3
KS
557 * The first tail page's ->compound_dtor holds the offset in array of compound
558 * page destructors. See compound_page_dtors.
1da177e4 559 *
1d798ca3 560 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 561 * This usage means that zero-order pages may not be compound.
1da177e4 562 */
d98c7a09 563
9a982250 564void free_compound_page(struct page *page)
d98c7a09 565{
d85f3385 566 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
567}
568
d00181b9 569void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
570{
571 int i;
572 int nr_pages = 1 << order;
573
f1e61557 574 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
575 set_compound_order(page, order);
576 __SetPageHead(page);
577 for (i = 1; i < nr_pages; i++) {
578 struct page *p = page + i;
58a84aa9 579 set_page_count(p, 0);
1c290f64 580 p->mapping = TAIL_MAPPING;
1d798ca3 581 set_compound_head(p, page);
18229df5 582 }
53f9263b 583 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
584}
585
c0a32fc5
SG
586#ifdef CONFIG_DEBUG_PAGEALLOC
587unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
588bool _debug_pagealloc_enabled __read_mostly
589 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 590EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
591bool _debug_guardpage_enabled __read_mostly;
592
031bc574
JK
593static int __init early_debug_pagealloc(char *buf)
594{
595 if (!buf)
596 return -EINVAL;
2a138dc7 597 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
598}
599early_param("debug_pagealloc", early_debug_pagealloc);
600
e30825f1
JK
601static bool need_debug_guardpage(void)
602{
031bc574
JK
603 /* If we don't use debug_pagealloc, we don't need guard page */
604 if (!debug_pagealloc_enabled())
605 return false;
606
f1c1e9f7
JK
607 if (!debug_guardpage_minorder())
608 return false;
609
e30825f1
JK
610 return true;
611}
612
613static void init_debug_guardpage(void)
614{
031bc574
JK
615 if (!debug_pagealloc_enabled())
616 return;
617
f1c1e9f7
JK
618 if (!debug_guardpage_minorder())
619 return;
620
e30825f1
JK
621 _debug_guardpage_enabled = true;
622}
623
624struct page_ext_operations debug_guardpage_ops = {
625 .need = need_debug_guardpage,
626 .init = init_debug_guardpage,
627};
c0a32fc5
SG
628
629static int __init debug_guardpage_minorder_setup(char *buf)
630{
631 unsigned long res;
632
633 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 634 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
635 return 0;
636 }
637 _debug_guardpage_minorder = res;
1170532b 638 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
639 return 0;
640}
f1c1e9f7 641early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 642
acbc15a4 643static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 644 unsigned int order, int migratetype)
c0a32fc5 645{
e30825f1
JK
646 struct page_ext *page_ext;
647
648 if (!debug_guardpage_enabled())
acbc15a4
JK
649 return false;
650
651 if (order >= debug_guardpage_minorder())
652 return false;
e30825f1
JK
653
654 page_ext = lookup_page_ext(page);
f86e4271 655 if (unlikely(!page_ext))
acbc15a4 656 return false;
f86e4271 657
e30825f1
JK
658 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
659
2847cf95
JK
660 INIT_LIST_HEAD(&page->lru);
661 set_page_private(page, order);
662 /* Guard pages are not available for any usage */
663 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
664
665 return true;
c0a32fc5
SG
666}
667
2847cf95
JK
668static inline void clear_page_guard(struct zone *zone, struct page *page,
669 unsigned int order, int migratetype)
c0a32fc5 670{
e30825f1
JK
671 struct page_ext *page_ext;
672
673 if (!debug_guardpage_enabled())
674 return;
675
676 page_ext = lookup_page_ext(page);
f86e4271
YS
677 if (unlikely(!page_ext))
678 return;
679
e30825f1
JK
680 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
681
2847cf95
JK
682 set_page_private(page, 0);
683 if (!is_migrate_isolate(migratetype))
684 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
685}
686#else
980ac167 687struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
688static inline bool set_page_guard(struct zone *zone, struct page *page,
689 unsigned int order, int migratetype) { return false; }
2847cf95
JK
690static inline void clear_page_guard(struct zone *zone, struct page *page,
691 unsigned int order, int migratetype) {}
c0a32fc5
SG
692#endif
693
7aeb09f9 694static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 695{
4c21e2f2 696 set_page_private(page, order);
676165a8 697 __SetPageBuddy(page);
1da177e4
LT
698}
699
700static inline void rmv_page_order(struct page *page)
701{
676165a8 702 __ClearPageBuddy(page);
4c21e2f2 703 set_page_private(page, 0);
1da177e4
LT
704}
705
1da177e4
LT
706/*
707 * This function checks whether a page is free && is the buddy
6e292b9b 708 * we can coalesce a page and its buddy if
13ad59df 709 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 710 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
711 * (c) a page and its buddy have the same order &&
712 * (d) a page and its buddy are in the same zone.
676165a8 713 *
6e292b9b
MW
714 * For recording whether a page is in the buddy system, we set PageBuddy.
715 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
1da177e4 716 *
676165a8 717 * For recording page's order, we use page_private(page).
1da177e4 718 */
cb2b95e1 719static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 720 unsigned int order)
1da177e4 721{
c0a32fc5 722 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
723 if (page_zone_id(page) != page_zone_id(buddy))
724 return 0;
725
4c5018ce
WY
726 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
727
c0a32fc5
SG
728 return 1;
729 }
730
cb2b95e1 731 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
732 /*
733 * zone check is done late to avoid uselessly
734 * calculating zone/node ids for pages that could
735 * never merge.
736 */
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
4c5018ce
WY
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
6aa3001b 742 return 1;
676165a8 743 }
6aa3001b 744 return 0;
1da177e4
LT
745}
746
747/*
748 * Freeing function for a buddy system allocator.
749 *
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
6e292b9b
MW
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
1da177e4 762 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
1da177e4 765 * If a block is freed, and its buddy is also free, then this
5f63b720 766 * triggers coalescing into a block of larger size.
1da177e4 767 *
6d49e352 768 * -- nyc
1da177e4
LT
769 */
770
48db57f8 771static inline void __free_one_page(struct page *page,
dc4b0caf 772 unsigned long pfn,
ed0ae21d
MG
773 struct zone *zone, unsigned int order,
774 int migratetype)
1da177e4 775{
76741e77
VB
776 unsigned long combined_pfn;
777 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 778 struct page *buddy;
d9dddbf5
VB
779 unsigned int max_order;
780
781 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 782
d29bb978 783 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 784 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 785
ed0ae21d 786 VM_BUG_ON(migratetype == -1);
d9dddbf5 787 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 788 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 789
76741e77 790 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 791 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 792
d9dddbf5 793continue_merging:
3c605096 794 while (order < max_order - 1) {
76741e77
VB
795 buddy_pfn = __find_buddy_pfn(pfn, order);
796 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
797
798 if (!pfn_valid_within(buddy_pfn))
799 goto done_merging;
cb2b95e1 800 if (!page_is_buddy(page, buddy, order))
d9dddbf5 801 goto done_merging;
c0a32fc5
SG
802 /*
803 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
804 * merge with it and move up one order.
805 */
806 if (page_is_guard(buddy)) {
2847cf95 807 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
808 } else {
809 list_del(&buddy->lru);
810 zone->free_area[order].nr_free--;
811 rmv_page_order(buddy);
812 }
76741e77
VB
813 combined_pfn = buddy_pfn & pfn;
814 page = page + (combined_pfn - pfn);
815 pfn = combined_pfn;
1da177e4
LT
816 order++;
817 }
d9dddbf5
VB
818 if (max_order < MAX_ORDER) {
819 /* If we are here, it means order is >= pageblock_order.
820 * We want to prevent merge between freepages on isolate
821 * pageblock and normal pageblock. Without this, pageblock
822 * isolation could cause incorrect freepage or CMA accounting.
823 *
824 * We don't want to hit this code for the more frequent
825 * low-order merging.
826 */
827 if (unlikely(has_isolate_pageblock(zone))) {
828 int buddy_mt;
829
76741e77
VB
830 buddy_pfn = __find_buddy_pfn(pfn, order);
831 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
832 buddy_mt = get_pageblock_migratetype(buddy);
833
834 if (migratetype != buddy_mt
835 && (is_migrate_isolate(migratetype) ||
836 is_migrate_isolate(buddy_mt)))
837 goto done_merging;
838 }
839 max_order++;
840 goto continue_merging;
841 }
842
843done_merging:
1da177e4 844 set_page_order(page, order);
6dda9d55
CZ
845
846 /*
847 * If this is not the largest possible page, check if the buddy
848 * of the next-highest order is free. If it is, it's possible
849 * that pages are being freed that will coalesce soon. In case,
850 * that is happening, add the free page to the tail of the list
851 * so it's less likely to be used soon and more likely to be merged
852 * as a higher order page
853 */
13ad59df 854 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 855 struct page *higher_page, *higher_buddy;
76741e77
VB
856 combined_pfn = buddy_pfn & pfn;
857 higher_page = page + (combined_pfn - pfn);
858 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
859 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
860 if (pfn_valid_within(buddy_pfn) &&
861 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
862 list_add_tail(&page->lru,
863 &zone->free_area[order].free_list[migratetype]);
864 goto out;
865 }
866 }
867
868 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
869out:
1da177e4
LT
870 zone->free_area[order].nr_free++;
871}
872
7bfec6f4
MG
873/*
874 * A bad page could be due to a number of fields. Instead of multiple branches,
875 * try and check multiple fields with one check. The caller must do a detailed
876 * check if necessary.
877 */
878static inline bool page_expected_state(struct page *page,
879 unsigned long check_flags)
880{
881 if (unlikely(atomic_read(&page->_mapcount) != -1))
882 return false;
883
884 if (unlikely((unsigned long)page->mapping |
885 page_ref_count(page) |
886#ifdef CONFIG_MEMCG
887 (unsigned long)page->mem_cgroup |
888#endif
889 (page->flags & check_flags)))
890 return false;
891
892 return true;
893}
894
bb552ac6 895static void free_pages_check_bad(struct page *page)
1da177e4 896{
7bfec6f4
MG
897 const char *bad_reason;
898 unsigned long bad_flags;
899
7bfec6f4
MG
900 bad_reason = NULL;
901 bad_flags = 0;
f0b791a3 902
53f9263b 903 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
904 bad_reason = "nonzero mapcount";
905 if (unlikely(page->mapping != NULL))
906 bad_reason = "non-NULL mapping";
fe896d18 907 if (unlikely(page_ref_count(page) != 0))
0139aa7b 908 bad_reason = "nonzero _refcount";
f0b791a3
DH
909 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
910 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
911 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
912 }
9edad6ea
JW
913#ifdef CONFIG_MEMCG
914 if (unlikely(page->mem_cgroup))
915 bad_reason = "page still charged to cgroup";
916#endif
7bfec6f4 917 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
918}
919
920static inline int free_pages_check(struct page *page)
921{
da838d4f 922 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 923 return 0;
bb552ac6
MG
924
925 /* Something has gone sideways, find it */
926 free_pages_check_bad(page);
7bfec6f4 927 return 1;
1da177e4
LT
928}
929
4db7548c
MG
930static int free_tail_pages_check(struct page *head_page, struct page *page)
931{
932 int ret = 1;
933
934 /*
935 * We rely page->lru.next never has bit 0 set, unless the page
936 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
937 */
938 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
939
940 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
941 ret = 0;
942 goto out;
943 }
944 switch (page - head_page) {
945 case 1:
4da1984e 946 /* the first tail page: ->mapping may be compound_mapcount() */
4db7548c
MG
947 if (unlikely(compound_mapcount(page))) {
948 bad_page(page, "nonzero compound_mapcount", 0);
949 goto out;
950 }
951 break;
952 case 2:
953 /*
954 * the second tail page: ->mapping is
fa3015b7 955 * deferred_list.next -- ignore value.
4db7548c
MG
956 */
957 break;
958 default:
959 if (page->mapping != TAIL_MAPPING) {
960 bad_page(page, "corrupted mapping in tail page", 0);
961 goto out;
962 }
963 break;
964 }
965 if (unlikely(!PageTail(page))) {
966 bad_page(page, "PageTail not set", 0);
967 goto out;
968 }
969 if (unlikely(compound_head(page) != head_page)) {
970 bad_page(page, "compound_head not consistent", 0);
971 goto out;
972 }
973 ret = 0;
974out:
975 page->mapping = NULL;
976 clear_compound_head(page);
977 return ret;
978}
979
e2769dbd
MG
980static __always_inline bool free_pages_prepare(struct page *page,
981 unsigned int order, bool check_free)
4db7548c 982{
e2769dbd 983 int bad = 0;
4db7548c 984
4db7548c
MG
985 VM_BUG_ON_PAGE(PageTail(page), page);
986
e2769dbd 987 trace_mm_page_free(page, order);
e2769dbd
MG
988
989 /*
990 * Check tail pages before head page information is cleared to
991 * avoid checking PageCompound for order-0 pages.
992 */
993 if (unlikely(order)) {
994 bool compound = PageCompound(page);
995 int i;
996
997 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 998
9a73f61b
KS
999 if (compound)
1000 ClearPageDoubleMap(page);
e2769dbd
MG
1001 for (i = 1; i < (1 << order); i++) {
1002 if (compound)
1003 bad += free_tail_pages_check(page, page + i);
1004 if (unlikely(free_pages_check(page + i))) {
1005 bad++;
1006 continue;
1007 }
1008 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1009 }
1010 }
bda807d4 1011 if (PageMappingFlags(page))
4db7548c 1012 page->mapping = NULL;
c4159a75 1013 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1014 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1015 if (check_free)
1016 bad += free_pages_check(page);
1017 if (bad)
1018 return false;
4db7548c 1019
e2769dbd
MG
1020 page_cpupid_reset_last(page);
1021 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022 reset_page_owner(page, order);
4db7548c
MG
1023
1024 if (!PageHighMem(page)) {
1025 debug_check_no_locks_freed(page_address(page),
e2769dbd 1026 PAGE_SIZE << order);
4db7548c 1027 debug_check_no_obj_freed(page_address(page),
e2769dbd 1028 PAGE_SIZE << order);
4db7548c 1029 }
e2769dbd
MG
1030 arch_free_page(page, order);
1031 kernel_poison_pages(page, 1 << order, 0);
1032 kernel_map_pages(page, 1 << order, 0);
29b52de1 1033 kasan_free_pages(page, order);
4db7548c 1034
4db7548c
MG
1035 return true;
1036}
1037
e2769dbd
MG
1038#ifdef CONFIG_DEBUG_VM
1039static inline bool free_pcp_prepare(struct page *page)
1040{
1041 return free_pages_prepare(page, 0, true);
1042}
1043
1044static inline bool bulkfree_pcp_prepare(struct page *page)
1045{
1046 return false;
1047}
1048#else
1049static bool free_pcp_prepare(struct page *page)
1050{
1051 return free_pages_prepare(page, 0, false);
1052}
1053
4db7548c
MG
1054static bool bulkfree_pcp_prepare(struct page *page)
1055{
1056 return free_pages_check(page);
1057}
1058#endif /* CONFIG_DEBUG_VM */
1059
97334162
AL
1060static inline void prefetch_buddy(struct page *page)
1061{
1062 unsigned long pfn = page_to_pfn(page);
1063 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1064 struct page *buddy = page + (buddy_pfn - pfn);
1065
1066 prefetch(buddy);
1067}
1068
1da177e4 1069/*
5f8dcc21 1070 * Frees a number of pages from the PCP lists
1da177e4 1071 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1072 * count is the number of pages to free.
1da177e4
LT
1073 *
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1076 *
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1079 */
5f8dcc21
MG
1080static void free_pcppages_bulk(struct zone *zone, int count,
1081 struct per_cpu_pages *pcp)
1da177e4 1082{
5f8dcc21 1083 int migratetype = 0;
a6f9edd6 1084 int batch_free = 0;
97334162 1085 int prefetch_nr = 0;
3777999d 1086 bool isolated_pageblocks;
0a5f4e5b
AL
1087 struct page *page, *tmp;
1088 LIST_HEAD(head);
f2260e6b 1089
e5b31ac2 1090 while (count) {
5f8dcc21
MG
1091 struct list_head *list;
1092
1093 /*
a6f9edd6
MG
1094 * Remove pages from lists in a round-robin fashion. A
1095 * batch_free count is maintained that is incremented when an
1096 * empty list is encountered. This is so more pages are freed
1097 * off fuller lists instead of spinning excessively around empty
1098 * lists
5f8dcc21
MG
1099 */
1100 do {
a6f9edd6 1101 batch_free++;
5f8dcc21
MG
1102 if (++migratetype == MIGRATE_PCPTYPES)
1103 migratetype = 0;
1104 list = &pcp->lists[migratetype];
1105 } while (list_empty(list));
48db57f8 1106
1d16871d
NK
1107 /* This is the only non-empty list. Free them all. */
1108 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1109 batch_free = count;
1d16871d 1110
a6f9edd6 1111 do {
a16601c5 1112 page = list_last_entry(list, struct page, lru);
0a5f4e5b 1113 /* must delete to avoid corrupting pcp list */
a6f9edd6 1114 list_del(&page->lru);
77ba9062 1115 pcp->count--;
aa016d14 1116
4db7548c
MG
1117 if (bulkfree_pcp_prepare(page))
1118 continue;
1119
0a5f4e5b 1120 list_add_tail(&page->lru, &head);
97334162
AL
1121
1122 /*
1123 * We are going to put the page back to the global
1124 * pool, prefetch its buddy to speed up later access
1125 * under zone->lock. It is believed the overhead of
1126 * an additional test and calculating buddy_pfn here
1127 * can be offset by reduced memory latency later. To
1128 * avoid excessive prefetching due to large count, only
1129 * prefetch buddy for the first pcp->batch nr of pages.
1130 */
1131 if (prefetch_nr++ < pcp->batch)
1132 prefetch_buddy(page);
e5b31ac2 1133 } while (--count && --batch_free && !list_empty(list));
1da177e4 1134 }
0a5f4e5b
AL
1135
1136 spin_lock(&zone->lock);
1137 isolated_pageblocks = has_isolate_pageblock(zone);
1138
1139 /*
1140 * Use safe version since after __free_one_page(),
1141 * page->lru.next will not point to original list.
1142 */
1143 list_for_each_entry_safe(page, tmp, &head, lru) {
1144 int mt = get_pcppage_migratetype(page);
1145 /* MIGRATE_ISOLATE page should not go to pcplists */
1146 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1147 /* Pageblock could have been isolated meanwhile */
1148 if (unlikely(isolated_pageblocks))
1149 mt = get_pageblock_migratetype(page);
1150
1151 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1152 trace_mm_page_pcpu_drain(page, 0, mt);
1153 }
d34b0733 1154 spin_unlock(&zone->lock);
1da177e4
LT
1155}
1156
dc4b0caf
MG
1157static void free_one_page(struct zone *zone,
1158 struct page *page, unsigned long pfn,
7aeb09f9 1159 unsigned int order,
ed0ae21d 1160 int migratetype)
1da177e4 1161{
d34b0733 1162 spin_lock(&zone->lock);
ad53f92e
JK
1163 if (unlikely(has_isolate_pageblock(zone) ||
1164 is_migrate_isolate(migratetype))) {
1165 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1166 }
dc4b0caf 1167 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1168 spin_unlock(&zone->lock);
48db57f8
NP
1169}
1170
1e8ce83c 1171static void __meminit __init_single_page(struct page *page, unsigned long pfn,
d0dc12e8 1172 unsigned long zone, int nid)
1e8ce83c 1173{
d0dc12e8 1174 mm_zero_struct_page(page);
1e8ce83c 1175 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1176 init_page_count(page);
1177 page_mapcount_reset(page);
1178 page_cpupid_reset_last(page);
1e8ce83c 1179
1e8ce83c
RH
1180 INIT_LIST_HEAD(&page->lru);
1181#ifdef WANT_PAGE_VIRTUAL
1182 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1183 if (!is_highmem_idx(zone))
1184 set_page_address(page, __va(pfn << PAGE_SHIFT));
1185#endif
1186}
1187
7e18adb4 1188#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1189static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1190{
1191 pg_data_t *pgdat;
1192 int nid, zid;
1193
1194 if (!early_page_uninitialised(pfn))
1195 return;
1196
1197 nid = early_pfn_to_nid(pfn);
1198 pgdat = NODE_DATA(nid);
1199
1200 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1201 struct zone *zone = &pgdat->node_zones[zid];
1202
1203 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1204 break;
1205 }
d0dc12e8 1206 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
7e18adb4
MG
1207}
1208#else
1209static inline void init_reserved_page(unsigned long pfn)
1210{
1211}
1212#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1213
92923ca3
NZ
1214/*
1215 * Initialised pages do not have PageReserved set. This function is
1216 * called for each range allocated by the bootmem allocator and
1217 * marks the pages PageReserved. The remaining valid pages are later
1218 * sent to the buddy page allocator.
1219 */
4b50bcc7 1220void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1221{
1222 unsigned long start_pfn = PFN_DOWN(start);
1223 unsigned long end_pfn = PFN_UP(end);
1224
7e18adb4
MG
1225 for (; start_pfn < end_pfn; start_pfn++) {
1226 if (pfn_valid(start_pfn)) {
1227 struct page *page = pfn_to_page(start_pfn);
1228
1229 init_reserved_page(start_pfn);
1d798ca3
KS
1230
1231 /* Avoid false-positive PageTail() */
1232 INIT_LIST_HEAD(&page->lru);
1233
7e18adb4
MG
1234 SetPageReserved(page);
1235 }
1236 }
92923ca3
NZ
1237}
1238
ec95f53a
KM
1239static void __free_pages_ok(struct page *page, unsigned int order)
1240{
d34b0733 1241 unsigned long flags;
95e34412 1242 int migratetype;
dc4b0caf 1243 unsigned long pfn = page_to_pfn(page);
ec95f53a 1244
e2769dbd 1245 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1246 return;
1247
cfc47a28 1248 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1249 local_irq_save(flags);
1250 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1251 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1252 local_irq_restore(flags);
1da177e4
LT
1253}
1254
949698a3 1255static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1256{
c3993076 1257 unsigned int nr_pages = 1 << order;
e2d0bd2b 1258 struct page *p = page;
c3993076 1259 unsigned int loop;
a226f6c8 1260
e2d0bd2b
YL
1261 prefetchw(p);
1262 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1263 prefetchw(p + 1);
c3993076
JW
1264 __ClearPageReserved(p);
1265 set_page_count(p, 0);
a226f6c8 1266 }
e2d0bd2b
YL
1267 __ClearPageReserved(p);
1268 set_page_count(p, 0);
c3993076 1269
e2d0bd2b 1270 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1271 set_page_refcounted(page);
1272 __free_pages(page, order);
a226f6c8
DH
1273}
1274
75a592a4
MG
1275#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1276 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1277
75a592a4
MG
1278static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1279
1280int __meminit early_pfn_to_nid(unsigned long pfn)
1281{
7ace9917 1282 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1283 int nid;
1284
7ace9917 1285 spin_lock(&early_pfn_lock);
75a592a4 1286 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1287 if (nid < 0)
e4568d38 1288 nid = first_online_node;
7ace9917
MG
1289 spin_unlock(&early_pfn_lock);
1290
1291 return nid;
75a592a4
MG
1292}
1293#endif
1294
1295#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1296static inline bool __meminit __maybe_unused
1297meminit_pfn_in_nid(unsigned long pfn, int node,
1298 struct mminit_pfnnid_cache *state)
75a592a4
MG
1299{
1300 int nid;
1301
1302 nid = __early_pfn_to_nid(pfn, state);
1303 if (nid >= 0 && nid != node)
1304 return false;
1305 return true;
1306}
1307
1308/* Only safe to use early in boot when initialisation is single-threaded */
1309static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1310{
1311 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1312}
1313
1314#else
1315
1316static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1317{
1318 return true;
1319}
d73d3c9f
MK
1320static inline bool __meminit __maybe_unused
1321meminit_pfn_in_nid(unsigned long pfn, int node,
1322 struct mminit_pfnnid_cache *state)
75a592a4
MG
1323{
1324 return true;
1325}
1326#endif
1327
1328
0e1cc95b 1329void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1330 unsigned int order)
1331{
1332 if (early_page_uninitialised(pfn))
1333 return;
949698a3 1334 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1335}
1336
7cf91a98
JK
1337/*
1338 * Check that the whole (or subset of) a pageblock given by the interval of
1339 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1340 * with the migration of free compaction scanner. The scanners then need to
1341 * use only pfn_valid_within() check for arches that allow holes within
1342 * pageblocks.
1343 *
1344 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1345 *
1346 * It's possible on some configurations to have a setup like node0 node1 node0
1347 * i.e. it's possible that all pages within a zones range of pages do not
1348 * belong to a single zone. We assume that a border between node0 and node1
1349 * can occur within a single pageblock, but not a node0 node1 node0
1350 * interleaving within a single pageblock. It is therefore sufficient to check
1351 * the first and last page of a pageblock and avoid checking each individual
1352 * page in a pageblock.
1353 */
1354struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1355 unsigned long end_pfn, struct zone *zone)
1356{
1357 struct page *start_page;
1358 struct page *end_page;
1359
1360 /* end_pfn is one past the range we are checking */
1361 end_pfn--;
1362
1363 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1364 return NULL;
1365
2d070eab
MH
1366 start_page = pfn_to_online_page(start_pfn);
1367 if (!start_page)
1368 return NULL;
7cf91a98
JK
1369
1370 if (page_zone(start_page) != zone)
1371 return NULL;
1372
1373 end_page = pfn_to_page(end_pfn);
1374
1375 /* This gives a shorter code than deriving page_zone(end_page) */
1376 if (page_zone_id(start_page) != page_zone_id(end_page))
1377 return NULL;
1378
1379 return start_page;
1380}
1381
1382void set_zone_contiguous(struct zone *zone)
1383{
1384 unsigned long block_start_pfn = zone->zone_start_pfn;
1385 unsigned long block_end_pfn;
1386
1387 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1388 for (; block_start_pfn < zone_end_pfn(zone);
1389 block_start_pfn = block_end_pfn,
1390 block_end_pfn += pageblock_nr_pages) {
1391
1392 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1393
1394 if (!__pageblock_pfn_to_page(block_start_pfn,
1395 block_end_pfn, zone))
1396 return;
1397 }
1398
1399 /* We confirm that there is no hole */
1400 zone->contiguous = true;
1401}
1402
1403void clear_zone_contiguous(struct zone *zone)
1404{
1405 zone->contiguous = false;
1406}
1407
7e18adb4 1408#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2f47a91f
PT
1409static void __init deferred_free_range(unsigned long pfn,
1410 unsigned long nr_pages)
a4de83dd 1411{
2f47a91f
PT
1412 struct page *page;
1413 unsigned long i;
a4de83dd 1414
2f47a91f 1415 if (!nr_pages)
a4de83dd
MG
1416 return;
1417
2f47a91f
PT
1418 page = pfn_to_page(pfn);
1419
a4de83dd 1420 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1421 if (nr_pages == pageblock_nr_pages &&
1422 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1423 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1424 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1425 return;
1426 }
1427
e780149b
XQ
1428 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1429 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1430 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1431 __free_pages_boot_core(page, 0);
e780149b 1432 }
a4de83dd
MG
1433}
1434
d3cd131d
NS
1435/* Completion tracking for deferred_init_memmap() threads */
1436static atomic_t pgdat_init_n_undone __initdata;
1437static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1438
1439static inline void __init pgdat_init_report_one_done(void)
1440{
1441 if (atomic_dec_and_test(&pgdat_init_n_undone))
1442 complete(&pgdat_init_all_done_comp);
1443}
0e1cc95b 1444
2f47a91f 1445/*
80b1f41c
PT
1446 * Returns true if page needs to be initialized or freed to buddy allocator.
1447 *
1448 * First we check if pfn is valid on architectures where it is possible to have
1449 * holes within pageblock_nr_pages. On systems where it is not possible, this
1450 * function is optimized out.
1451 *
1452 * Then, we check if a current large page is valid by only checking the validity
1453 * of the head pfn.
1454 *
1455 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1456 * within a node: a pfn is between start and end of a node, but does not belong
1457 * to this memory node.
2f47a91f 1458 */
80b1f41c
PT
1459static inline bool __init
1460deferred_pfn_valid(int nid, unsigned long pfn,
1461 struct mminit_pfnnid_cache *nid_init_state)
2f47a91f 1462{
80b1f41c
PT
1463 if (!pfn_valid_within(pfn))
1464 return false;
1465 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1466 return false;
1467 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1468 return false;
1469 return true;
1470}
2f47a91f 1471
80b1f41c
PT
1472/*
1473 * Free pages to buddy allocator. Try to free aligned pages in
1474 * pageblock_nr_pages sizes.
1475 */
1476static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1477 unsigned long end_pfn)
1478{
1479 struct mminit_pfnnid_cache nid_init_state = { };
1480 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1481 unsigned long nr_free = 0;
2f47a91f 1482
80b1f41c
PT
1483 for (; pfn < end_pfn; pfn++) {
1484 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1485 deferred_free_range(pfn - nr_free, nr_free);
1486 nr_free = 0;
1487 } else if (!(pfn & nr_pgmask)) {
1488 deferred_free_range(pfn - nr_free, nr_free);
1489 nr_free = 1;
3a2d7fa8 1490 touch_nmi_watchdog();
80b1f41c
PT
1491 } else {
1492 nr_free++;
1493 }
1494 }
1495 /* Free the last block of pages to allocator */
1496 deferred_free_range(pfn - nr_free, nr_free);
2f47a91f
PT
1497}
1498
80b1f41c
PT
1499/*
1500 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1501 * by performing it only once every pageblock_nr_pages.
1502 * Return number of pages initialized.
1503 */
1504static unsigned long __init deferred_init_pages(int nid, int zid,
1505 unsigned long pfn,
1506 unsigned long end_pfn)
2f47a91f
PT
1507{
1508 struct mminit_pfnnid_cache nid_init_state = { };
1509 unsigned long nr_pgmask = pageblock_nr_pages - 1;
2f47a91f 1510 unsigned long nr_pages = 0;
2f47a91f 1511 struct page *page = NULL;
2f47a91f 1512
80b1f41c
PT
1513 for (; pfn < end_pfn; pfn++) {
1514 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1515 page = NULL;
2f47a91f 1516 continue;
80b1f41c 1517 } else if (!page || !(pfn & nr_pgmask)) {
2f47a91f 1518 page = pfn_to_page(pfn);
3a2d7fa8 1519 touch_nmi_watchdog();
80b1f41c
PT
1520 } else {
1521 page++;
2f47a91f 1522 }
d0dc12e8 1523 __init_single_page(page, pfn, zid, nid);
80b1f41c 1524 nr_pages++;
2f47a91f 1525 }
80b1f41c 1526 return (nr_pages);
2f47a91f
PT
1527}
1528
7e18adb4 1529/* Initialise remaining memory on a node */
0e1cc95b 1530static int __init deferred_init_memmap(void *data)
7e18adb4 1531{
0e1cc95b
MG
1532 pg_data_t *pgdat = data;
1533 int nid = pgdat->node_id;
7e18adb4
MG
1534 unsigned long start = jiffies;
1535 unsigned long nr_pages = 0;
3a2d7fa8 1536 unsigned long spfn, epfn, first_init_pfn, flags;
2f47a91f
PT
1537 phys_addr_t spa, epa;
1538 int zid;
7e18adb4 1539 struct zone *zone;
0e1cc95b 1540 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2f47a91f 1541 u64 i;
7e18adb4 1542
3a2d7fa8
PT
1543 /* Bind memory initialisation thread to a local node if possible */
1544 if (!cpumask_empty(cpumask))
1545 set_cpus_allowed_ptr(current, cpumask);
1546
1547 pgdat_resize_lock(pgdat, &flags);
1548 first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1549 if (first_init_pfn == ULONG_MAX) {
3a2d7fa8 1550 pgdat_resize_unlock(pgdat, &flags);
d3cd131d 1551 pgdat_init_report_one_done();
0e1cc95b
MG
1552 return 0;
1553 }
1554
7e18adb4
MG
1555 /* Sanity check boundaries */
1556 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1557 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1558 pgdat->first_deferred_pfn = ULONG_MAX;
1559
1560 /* Only the highest zone is deferred so find it */
1561 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1562 zone = pgdat->node_zones + zid;
1563 if (first_init_pfn < zone_end_pfn(zone))
1564 break;
1565 }
2f47a91f 1566 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
7e18adb4 1567
80b1f41c
PT
1568 /*
1569 * Initialize and free pages. We do it in two loops: first we initialize
1570 * struct page, than free to buddy allocator, because while we are
1571 * freeing pages we can access pages that are ahead (computing buddy
1572 * page in __free_one_page()).
1573 */
1574 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1575 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1576 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1577 nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1578 }
2f47a91f
PT
1579 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1580 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1581 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
80b1f41c 1582 deferred_free_pages(nid, zid, spfn, epfn);
7e18adb4 1583 }
3a2d7fa8 1584 pgdat_resize_unlock(pgdat, &flags);
7e18adb4
MG
1585
1586 /* Sanity check that the next zone really is unpopulated */
1587 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1588
0e1cc95b 1589 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1590 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1591
1592 pgdat_init_report_one_done();
0e1cc95b
MG
1593 return 0;
1594}
c9e97a19
PT
1595
1596/*
1597 * During boot we initialize deferred pages on-demand, as needed, but once
1598 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1599 * and we can permanently disable that path.
1600 */
1601static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1602
1603/*
1604 * If this zone has deferred pages, try to grow it by initializing enough
1605 * deferred pages to satisfy the allocation specified by order, rounded up to
1606 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
1607 * of SECTION_SIZE bytes by initializing struct pages in increments of
1608 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1609 *
1610 * Return true when zone was grown, otherwise return false. We return true even
1611 * when we grow less than requested, to let the caller decide if there are
1612 * enough pages to satisfy the allocation.
1613 *
1614 * Note: We use noinline because this function is needed only during boot, and
1615 * it is called from a __ref function _deferred_grow_zone. This way we are
1616 * making sure that it is not inlined into permanent text section.
1617 */
1618static noinline bool __init
1619deferred_grow_zone(struct zone *zone, unsigned int order)
1620{
1621 int zid = zone_idx(zone);
1622 int nid = zone_to_nid(zone);
1623 pg_data_t *pgdat = NODE_DATA(nid);
1624 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1625 unsigned long nr_pages = 0;
1626 unsigned long first_init_pfn, spfn, epfn, t, flags;
1627 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1628 phys_addr_t spa, epa;
1629 u64 i;
1630
1631 /* Only the last zone may have deferred pages */
1632 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1633 return false;
1634
1635 pgdat_resize_lock(pgdat, &flags);
1636
1637 /*
1638 * If deferred pages have been initialized while we were waiting for
1639 * the lock, return true, as the zone was grown. The caller will retry
1640 * this zone. We won't return to this function since the caller also
1641 * has this static branch.
1642 */
1643 if (!static_branch_unlikely(&deferred_pages)) {
1644 pgdat_resize_unlock(pgdat, &flags);
1645 return true;
1646 }
1647
1648 /*
1649 * If someone grew this zone while we were waiting for spinlock, return
1650 * true, as there might be enough pages already.
1651 */
1652 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1653 pgdat_resize_unlock(pgdat, &flags);
1654 return true;
1655 }
1656
1657 first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1658
1659 if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1660 pgdat_resize_unlock(pgdat, &flags);
1661 return false;
1662 }
1663
1664 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1665 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1666 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1667
1668 while (spfn < epfn && nr_pages < nr_pages_needed) {
1669 t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1670 first_deferred_pfn = min(t, epfn);
1671 nr_pages += deferred_init_pages(nid, zid, spfn,
1672 first_deferred_pfn);
1673 spfn = first_deferred_pfn;
1674 }
1675
1676 if (nr_pages >= nr_pages_needed)
1677 break;
1678 }
1679
1680 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1681 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1682 epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1683 deferred_free_pages(nid, zid, spfn, epfn);
1684
1685 if (first_deferred_pfn == epfn)
1686 break;
1687 }
1688 pgdat->first_deferred_pfn = first_deferred_pfn;
1689 pgdat_resize_unlock(pgdat, &flags);
1690
1691 return nr_pages > 0;
1692}
1693
1694/*
1695 * deferred_grow_zone() is __init, but it is called from
1696 * get_page_from_freelist() during early boot until deferred_pages permanently
1697 * disables this call. This is why we have refdata wrapper to avoid warning,
1698 * and to ensure that the function body gets unloaded.
1699 */
1700static bool __ref
1701_deferred_grow_zone(struct zone *zone, unsigned int order)
1702{
1703 return deferred_grow_zone(zone, order);
1704}
1705
7cf91a98 1706#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1707
1708void __init page_alloc_init_late(void)
1709{
7cf91a98
JK
1710 struct zone *zone;
1711
1712#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1713 int nid;
1714
d3cd131d
NS
1715 /* There will be num_node_state(N_MEMORY) threads */
1716 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1717 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1718 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1719 }
1720
1721 /* Block until all are initialised */
d3cd131d 1722 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da 1723
c9e97a19
PT
1724 /*
1725 * We initialized the rest of the deferred pages. Permanently disable
1726 * on-demand struct page initialization.
1727 */
1728 static_branch_disable(&deferred_pages);
1729
4248b0da
MG
1730 /* Reinit limits that are based on free pages after the kernel is up */
1731 files_maxfiles_init();
7cf91a98 1732#endif
3010f876
PT
1733#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1734 /* Discard memblock private memory */
1735 memblock_discard();
1736#endif
7cf91a98
JK
1737
1738 for_each_populated_zone(zone)
1739 set_zone_contiguous(zone);
7e18adb4 1740}
7e18adb4 1741
47118af0 1742#ifdef CONFIG_CMA
9cf510a5 1743/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1744void __init init_cma_reserved_pageblock(struct page *page)
1745{
1746 unsigned i = pageblock_nr_pages;
1747 struct page *p = page;
1748
1749 do {
1750 __ClearPageReserved(p);
1751 set_page_count(p, 0);
d883c6cf 1752 } while (++p, --i);
47118af0 1753
47118af0 1754 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1755
1756 if (pageblock_order >= MAX_ORDER) {
1757 i = pageblock_nr_pages;
1758 p = page;
1759 do {
1760 set_page_refcounted(p);
1761 __free_pages(p, MAX_ORDER - 1);
1762 p += MAX_ORDER_NR_PAGES;
1763 } while (i -= MAX_ORDER_NR_PAGES);
1764 } else {
1765 set_page_refcounted(page);
1766 __free_pages(page, pageblock_order);
1767 }
1768
3dcc0571 1769 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1770}
1771#endif
1da177e4
LT
1772
1773/*
1774 * The order of subdivision here is critical for the IO subsystem.
1775 * Please do not alter this order without good reasons and regression
1776 * testing. Specifically, as large blocks of memory are subdivided,
1777 * the order in which smaller blocks are delivered depends on the order
1778 * they're subdivided in this function. This is the primary factor
1779 * influencing the order in which pages are delivered to the IO
1780 * subsystem according to empirical testing, and this is also justified
1781 * by considering the behavior of a buddy system containing a single
1782 * large block of memory acted on by a series of small allocations.
1783 * This behavior is a critical factor in sglist merging's success.
1784 *
6d49e352 1785 * -- nyc
1da177e4 1786 */
085cc7d5 1787static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1788 int low, int high, struct free_area *area,
1789 int migratetype)
1da177e4
LT
1790{
1791 unsigned long size = 1 << high;
1792
1793 while (high > low) {
1794 area--;
1795 high--;
1796 size >>= 1;
309381fe 1797 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1798
acbc15a4
JK
1799 /*
1800 * Mark as guard pages (or page), that will allow to
1801 * merge back to allocator when buddy will be freed.
1802 * Corresponding page table entries will not be touched,
1803 * pages will stay not present in virtual address space
1804 */
1805 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1806 continue;
acbc15a4 1807
b2a0ac88 1808 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1809 area->nr_free++;
1810 set_page_order(&page[size], high);
1811 }
1da177e4
LT
1812}
1813
4e611801 1814static void check_new_page_bad(struct page *page)
1da177e4 1815{
4e611801
VB
1816 const char *bad_reason = NULL;
1817 unsigned long bad_flags = 0;
7bfec6f4 1818
53f9263b 1819 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1820 bad_reason = "nonzero mapcount";
1821 if (unlikely(page->mapping != NULL))
1822 bad_reason = "non-NULL mapping";
fe896d18 1823 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1824 bad_reason = "nonzero _count";
f4c18e6f
NH
1825 if (unlikely(page->flags & __PG_HWPOISON)) {
1826 bad_reason = "HWPoisoned (hardware-corrupted)";
1827 bad_flags = __PG_HWPOISON;
e570f56c
NH
1828 /* Don't complain about hwpoisoned pages */
1829 page_mapcount_reset(page); /* remove PageBuddy */
1830 return;
f4c18e6f 1831 }
f0b791a3
DH
1832 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1833 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1834 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1835 }
9edad6ea
JW
1836#ifdef CONFIG_MEMCG
1837 if (unlikely(page->mem_cgroup))
1838 bad_reason = "page still charged to cgroup";
1839#endif
4e611801
VB
1840 bad_page(page, bad_reason, bad_flags);
1841}
1842
1843/*
1844 * This page is about to be returned from the page allocator
1845 */
1846static inline int check_new_page(struct page *page)
1847{
1848 if (likely(page_expected_state(page,
1849 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1850 return 0;
1851
1852 check_new_page_bad(page);
1853 return 1;
2a7684a2
WF
1854}
1855
bd33ef36 1856static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1857{
1858 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1859 page_poisoning_enabled();
1414c7f4
LA
1860}
1861
479f854a
MG
1862#ifdef CONFIG_DEBUG_VM
1863static bool check_pcp_refill(struct page *page)
1864{
1865 return false;
1866}
1867
1868static bool check_new_pcp(struct page *page)
1869{
1870 return check_new_page(page);
1871}
1872#else
1873static bool check_pcp_refill(struct page *page)
1874{
1875 return check_new_page(page);
1876}
1877static bool check_new_pcp(struct page *page)
1878{
1879 return false;
1880}
1881#endif /* CONFIG_DEBUG_VM */
1882
1883static bool check_new_pages(struct page *page, unsigned int order)
1884{
1885 int i;
1886 for (i = 0; i < (1 << order); i++) {
1887 struct page *p = page + i;
1888
1889 if (unlikely(check_new_page(p)))
1890 return true;
1891 }
1892
1893 return false;
1894}
1895
46f24fd8
JK
1896inline void post_alloc_hook(struct page *page, unsigned int order,
1897 gfp_t gfp_flags)
1898{
1899 set_page_private(page, 0);
1900 set_page_refcounted(page);
1901
1902 arch_alloc_page(page, order);
1903 kernel_map_pages(page, 1 << order, 1);
1904 kernel_poison_pages(page, 1 << order, 1);
1905 kasan_alloc_pages(page, order);
1906 set_page_owner(page, order, gfp_flags);
1907}
1908
479f854a 1909static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1910 unsigned int alloc_flags)
2a7684a2
WF
1911{
1912 int i;
689bcebf 1913
46f24fd8 1914 post_alloc_hook(page, order, gfp_flags);
17cf4406 1915
bd33ef36 1916 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1917 for (i = 0; i < (1 << order); i++)
1918 clear_highpage(page + i);
17cf4406
NP
1919
1920 if (order && (gfp_flags & __GFP_COMP))
1921 prep_compound_page(page, order);
1922
75379191 1923 /*
2f064f34 1924 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1925 * allocate the page. The expectation is that the caller is taking
1926 * steps that will free more memory. The caller should avoid the page
1927 * being used for !PFMEMALLOC purposes.
1928 */
2f064f34
MH
1929 if (alloc_flags & ALLOC_NO_WATERMARKS)
1930 set_page_pfmemalloc(page);
1931 else
1932 clear_page_pfmemalloc(page);
1da177e4
LT
1933}
1934
56fd56b8
MG
1935/*
1936 * Go through the free lists for the given migratetype and remove
1937 * the smallest available page from the freelists
1938 */
85ccc8fa 1939static __always_inline
728ec980 1940struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1941 int migratetype)
1942{
1943 unsigned int current_order;
b8af2941 1944 struct free_area *area;
56fd56b8
MG
1945 struct page *page;
1946
1947 /* Find a page of the appropriate size in the preferred list */
1948 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1949 area = &(zone->free_area[current_order]);
a16601c5 1950 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1951 struct page, lru);
a16601c5
GT
1952 if (!page)
1953 continue;
56fd56b8
MG
1954 list_del(&page->lru);
1955 rmv_page_order(page);
1956 area->nr_free--;
56fd56b8 1957 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1958 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1959 return page;
1960 }
1961
1962 return NULL;
1963}
1964
1965
b2a0ac88
MG
1966/*
1967 * This array describes the order lists are fallen back to when
1968 * the free lists for the desirable migrate type are depleted
1969 */
47118af0 1970static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1971 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1972 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1973 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1974#ifdef CONFIG_CMA
974a786e 1975 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1976#endif
194159fb 1977#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1978 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1979#endif
b2a0ac88
MG
1980};
1981
dc67647b 1982#ifdef CONFIG_CMA
85ccc8fa 1983static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
dc67647b
JK
1984 unsigned int order)
1985{
1986 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1987}
1988#else
1989static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1990 unsigned int order) { return NULL; }
1991#endif
1992
c361be55
MG
1993/*
1994 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1995 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1996 * boundary. If alignment is required, use move_freepages_block()
1997 */
02aa0cdd 1998static int move_freepages(struct zone *zone,
b69a7288 1999 struct page *start_page, struct page *end_page,
02aa0cdd 2000 int migratetype, int *num_movable)
c361be55
MG
2001{
2002 struct page *page;
d00181b9 2003 unsigned int order;
d100313f 2004 int pages_moved = 0;
c361be55
MG
2005
2006#ifndef CONFIG_HOLES_IN_ZONE
2007 /*
2008 * page_zone is not safe to call in this context when
2009 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2010 * anyway as we check zone boundaries in move_freepages_block().
2011 * Remove at a later date when no bug reports exist related to
ac0e5b7a 2012 * grouping pages by mobility
c361be55 2013 */
3e04040d
AB
2014 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2015 pfn_valid(page_to_pfn(end_page)) &&
2016 page_zone(start_page) != page_zone(end_page));
c361be55
MG
2017#endif
2018
02aa0cdd
VB
2019 if (num_movable)
2020 *num_movable = 0;
2021
c361be55
MG
2022 for (page = start_page; page <= end_page;) {
2023 if (!pfn_valid_within(page_to_pfn(page))) {
2024 page++;
2025 continue;
2026 }
2027
f073bdc5
AB
2028 /* Make sure we are not inadvertently changing nodes */
2029 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2030
c361be55 2031 if (!PageBuddy(page)) {
02aa0cdd
VB
2032 /*
2033 * We assume that pages that could be isolated for
2034 * migration are movable. But we don't actually try
2035 * isolating, as that would be expensive.
2036 */
2037 if (num_movable &&
2038 (PageLRU(page) || __PageMovable(page)))
2039 (*num_movable)++;
2040
c361be55
MG
2041 page++;
2042 continue;
2043 }
2044
2045 order = page_order(page);
84be48d8
KS
2046 list_move(&page->lru,
2047 &zone->free_area[order].free_list[migratetype]);
c361be55 2048 page += 1 << order;
d100313f 2049 pages_moved += 1 << order;
c361be55
MG
2050 }
2051
d100313f 2052 return pages_moved;
c361be55
MG
2053}
2054
ee6f509c 2055int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 2056 int migratetype, int *num_movable)
c361be55
MG
2057{
2058 unsigned long start_pfn, end_pfn;
2059 struct page *start_page, *end_page;
2060
2061 start_pfn = page_to_pfn(page);
d9c23400 2062 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 2063 start_page = pfn_to_page(start_pfn);
d9c23400
MG
2064 end_page = start_page + pageblock_nr_pages - 1;
2065 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
2066
2067 /* Do not cross zone boundaries */
108bcc96 2068 if (!zone_spans_pfn(zone, start_pfn))
c361be55 2069 start_page = page;
108bcc96 2070 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
2071 return 0;
2072
02aa0cdd
VB
2073 return move_freepages(zone, start_page, end_page, migratetype,
2074 num_movable);
c361be55
MG
2075}
2076
2f66a68f
MG
2077static void change_pageblock_range(struct page *pageblock_page,
2078 int start_order, int migratetype)
2079{
2080 int nr_pageblocks = 1 << (start_order - pageblock_order);
2081
2082 while (nr_pageblocks--) {
2083 set_pageblock_migratetype(pageblock_page, migratetype);
2084 pageblock_page += pageblock_nr_pages;
2085 }
2086}
2087
fef903ef 2088/*
9c0415eb
VB
2089 * When we are falling back to another migratetype during allocation, try to
2090 * steal extra free pages from the same pageblocks to satisfy further
2091 * allocations, instead of polluting multiple pageblocks.
2092 *
2093 * If we are stealing a relatively large buddy page, it is likely there will
2094 * be more free pages in the pageblock, so try to steal them all. For
2095 * reclaimable and unmovable allocations, we steal regardless of page size,
2096 * as fragmentation caused by those allocations polluting movable pageblocks
2097 * is worse than movable allocations stealing from unmovable and reclaimable
2098 * pageblocks.
fef903ef 2099 */
4eb7dce6
JK
2100static bool can_steal_fallback(unsigned int order, int start_mt)
2101{
2102 /*
2103 * Leaving this order check is intended, although there is
2104 * relaxed order check in next check. The reason is that
2105 * we can actually steal whole pageblock if this condition met,
2106 * but, below check doesn't guarantee it and that is just heuristic
2107 * so could be changed anytime.
2108 */
2109 if (order >= pageblock_order)
2110 return true;
2111
2112 if (order >= pageblock_order / 2 ||
2113 start_mt == MIGRATE_RECLAIMABLE ||
2114 start_mt == MIGRATE_UNMOVABLE ||
2115 page_group_by_mobility_disabled)
2116 return true;
2117
2118 return false;
2119}
2120
2121/*
2122 * This function implements actual steal behaviour. If order is large enough,
2123 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
2124 * pageblock to our migratetype and determine how many already-allocated pages
2125 * are there in the pageblock with a compatible migratetype. If at least half
2126 * of pages are free or compatible, we can change migratetype of the pageblock
2127 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
2128 */
2129static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 2130 int start_type, bool whole_block)
fef903ef 2131{
d00181b9 2132 unsigned int current_order = page_order(page);
3bc48f96 2133 struct free_area *area;
02aa0cdd
VB
2134 int free_pages, movable_pages, alike_pages;
2135 int old_block_type;
2136
2137 old_block_type = get_pageblock_migratetype(page);
fef903ef 2138
3bc48f96
VB
2139 /*
2140 * This can happen due to races and we want to prevent broken
2141 * highatomic accounting.
2142 */
02aa0cdd 2143 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2144 goto single_page;
2145
fef903ef
SB
2146 /* Take ownership for orders >= pageblock_order */
2147 if (current_order >= pageblock_order) {
2148 change_pageblock_range(page, current_order, start_type);
3bc48f96 2149 goto single_page;
fef903ef
SB
2150 }
2151
3bc48f96
VB
2152 /* We are not allowed to try stealing from the whole block */
2153 if (!whole_block)
2154 goto single_page;
2155
02aa0cdd
VB
2156 free_pages = move_freepages_block(zone, page, start_type,
2157 &movable_pages);
2158 /*
2159 * Determine how many pages are compatible with our allocation.
2160 * For movable allocation, it's the number of movable pages which
2161 * we just obtained. For other types it's a bit more tricky.
2162 */
2163 if (start_type == MIGRATE_MOVABLE) {
2164 alike_pages = movable_pages;
2165 } else {
2166 /*
2167 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2168 * to MOVABLE pageblock, consider all non-movable pages as
2169 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2170 * vice versa, be conservative since we can't distinguish the
2171 * exact migratetype of non-movable pages.
2172 */
2173 if (old_block_type == MIGRATE_MOVABLE)
2174 alike_pages = pageblock_nr_pages
2175 - (free_pages + movable_pages);
2176 else
2177 alike_pages = 0;
2178 }
2179
3bc48f96 2180 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2181 if (!free_pages)
3bc48f96 2182 goto single_page;
fef903ef 2183
02aa0cdd
VB
2184 /*
2185 * If a sufficient number of pages in the block are either free or of
2186 * comparable migratability as our allocation, claim the whole block.
2187 */
2188 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2189 page_group_by_mobility_disabled)
2190 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2191
2192 return;
2193
2194single_page:
2195 area = &zone->free_area[current_order];
2196 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2197}
2198
2149cdae
JK
2199/*
2200 * Check whether there is a suitable fallback freepage with requested order.
2201 * If only_stealable is true, this function returns fallback_mt only if
2202 * we can steal other freepages all together. This would help to reduce
2203 * fragmentation due to mixed migratetype pages in one pageblock.
2204 */
2205int find_suitable_fallback(struct free_area *area, unsigned int order,
2206 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2207{
2208 int i;
2209 int fallback_mt;
2210
2211 if (area->nr_free == 0)
2212 return -1;
2213
2214 *can_steal = false;
2215 for (i = 0;; i++) {
2216 fallback_mt = fallbacks[migratetype][i];
974a786e 2217 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2218 break;
2219
2220 if (list_empty(&area->free_list[fallback_mt]))
2221 continue;
fef903ef 2222
4eb7dce6
JK
2223 if (can_steal_fallback(order, migratetype))
2224 *can_steal = true;
2225
2149cdae
JK
2226 if (!only_stealable)
2227 return fallback_mt;
2228
2229 if (*can_steal)
2230 return fallback_mt;
fef903ef 2231 }
4eb7dce6
JK
2232
2233 return -1;
fef903ef
SB
2234}
2235
0aaa29a5
MG
2236/*
2237 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2238 * there are no empty page blocks that contain a page with a suitable order
2239 */
2240static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2241 unsigned int alloc_order)
2242{
2243 int mt;
2244 unsigned long max_managed, flags;
2245
2246 /*
2247 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2248 * Check is race-prone but harmless.
2249 */
2250 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2251 if (zone->nr_reserved_highatomic >= max_managed)
2252 return;
2253
2254 spin_lock_irqsave(&zone->lock, flags);
2255
2256 /* Recheck the nr_reserved_highatomic limit under the lock */
2257 if (zone->nr_reserved_highatomic >= max_managed)
2258 goto out_unlock;
2259
2260 /* Yoink! */
2261 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2262 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2263 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2264 zone->nr_reserved_highatomic += pageblock_nr_pages;
2265 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2266 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2267 }
2268
2269out_unlock:
2270 spin_unlock_irqrestore(&zone->lock, flags);
2271}
2272
2273/*
2274 * Used when an allocation is about to fail under memory pressure. This
2275 * potentially hurts the reliability of high-order allocations when under
2276 * intense memory pressure but failed atomic allocations should be easier
2277 * to recover from than an OOM.
29fac03b
MK
2278 *
2279 * If @force is true, try to unreserve a pageblock even though highatomic
2280 * pageblock is exhausted.
0aaa29a5 2281 */
29fac03b
MK
2282static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2283 bool force)
0aaa29a5
MG
2284{
2285 struct zonelist *zonelist = ac->zonelist;
2286 unsigned long flags;
2287 struct zoneref *z;
2288 struct zone *zone;
2289 struct page *page;
2290 int order;
04c8716f 2291 bool ret;
0aaa29a5
MG
2292
2293 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2294 ac->nodemask) {
29fac03b
MK
2295 /*
2296 * Preserve at least one pageblock unless memory pressure
2297 * is really high.
2298 */
2299 if (!force && zone->nr_reserved_highatomic <=
2300 pageblock_nr_pages)
0aaa29a5
MG
2301 continue;
2302
2303 spin_lock_irqsave(&zone->lock, flags);
2304 for (order = 0; order < MAX_ORDER; order++) {
2305 struct free_area *area = &(zone->free_area[order]);
2306
a16601c5
GT
2307 page = list_first_entry_or_null(
2308 &area->free_list[MIGRATE_HIGHATOMIC],
2309 struct page, lru);
2310 if (!page)
0aaa29a5
MG
2311 continue;
2312
0aaa29a5 2313 /*
4855e4a7
MK
2314 * In page freeing path, migratetype change is racy so
2315 * we can counter several free pages in a pageblock
2316 * in this loop althoug we changed the pageblock type
2317 * from highatomic to ac->migratetype. So we should
2318 * adjust the count once.
0aaa29a5 2319 */
a6ffdc07 2320 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2321 /*
2322 * It should never happen but changes to
2323 * locking could inadvertently allow a per-cpu
2324 * drain to add pages to MIGRATE_HIGHATOMIC
2325 * while unreserving so be safe and watch for
2326 * underflows.
2327 */
2328 zone->nr_reserved_highatomic -= min(
2329 pageblock_nr_pages,
2330 zone->nr_reserved_highatomic);
2331 }
0aaa29a5
MG
2332
2333 /*
2334 * Convert to ac->migratetype and avoid the normal
2335 * pageblock stealing heuristics. Minimally, the caller
2336 * is doing the work and needs the pages. More
2337 * importantly, if the block was always converted to
2338 * MIGRATE_UNMOVABLE or another type then the number
2339 * of pageblocks that cannot be completely freed
2340 * may increase.
2341 */
2342 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2343 ret = move_freepages_block(zone, page, ac->migratetype,
2344 NULL);
29fac03b
MK
2345 if (ret) {
2346 spin_unlock_irqrestore(&zone->lock, flags);
2347 return ret;
2348 }
0aaa29a5
MG
2349 }
2350 spin_unlock_irqrestore(&zone->lock, flags);
2351 }
04c8716f
MK
2352
2353 return false;
0aaa29a5
MG
2354}
2355
3bc48f96
VB
2356/*
2357 * Try finding a free buddy page on the fallback list and put it on the free
2358 * list of requested migratetype, possibly along with other pages from the same
2359 * block, depending on fragmentation avoidance heuristics. Returns true if
2360 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2361 *
2362 * The use of signed ints for order and current_order is a deliberate
2363 * deviation from the rest of this file, to make the for loop
2364 * condition simpler.
3bc48f96 2365 */
85ccc8fa 2366static __always_inline bool
b002529d 2367__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2368{
b8af2941 2369 struct free_area *area;
b002529d 2370 int current_order;
b2a0ac88 2371 struct page *page;
4eb7dce6
JK
2372 int fallback_mt;
2373 bool can_steal;
b2a0ac88 2374
7a8f58f3
VB
2375 /*
2376 * Find the largest available free page in the other list. This roughly
2377 * approximates finding the pageblock with the most free pages, which
2378 * would be too costly to do exactly.
2379 */
b002529d 2380 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2381 --current_order) {
4eb7dce6
JK
2382 area = &(zone->free_area[current_order]);
2383 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2384 start_migratetype, false, &can_steal);
4eb7dce6
JK
2385 if (fallback_mt == -1)
2386 continue;
b2a0ac88 2387
7a8f58f3
VB
2388 /*
2389 * We cannot steal all free pages from the pageblock and the
2390 * requested migratetype is movable. In that case it's better to
2391 * steal and split the smallest available page instead of the
2392 * largest available page, because even if the next movable
2393 * allocation falls back into a different pageblock than this
2394 * one, it won't cause permanent fragmentation.
2395 */
2396 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2397 && current_order > order)
2398 goto find_smallest;
b2a0ac88 2399
7a8f58f3
VB
2400 goto do_steal;
2401 }
e0fff1bd 2402
7a8f58f3 2403 return false;
e0fff1bd 2404
7a8f58f3
VB
2405find_smallest:
2406 for (current_order = order; current_order < MAX_ORDER;
2407 current_order++) {
2408 area = &(zone->free_area[current_order]);
2409 fallback_mt = find_suitable_fallback(area, current_order,
2410 start_migratetype, false, &can_steal);
2411 if (fallback_mt != -1)
2412 break;
b2a0ac88
MG
2413 }
2414
7a8f58f3
VB
2415 /*
2416 * This should not happen - we already found a suitable fallback
2417 * when looking for the largest page.
2418 */
2419 VM_BUG_ON(current_order == MAX_ORDER);
2420
2421do_steal:
2422 page = list_first_entry(&area->free_list[fallback_mt],
2423 struct page, lru);
2424
2425 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2426
2427 trace_mm_page_alloc_extfrag(page, order, current_order,
2428 start_migratetype, fallback_mt);
2429
2430 return true;
2431
b2a0ac88
MG
2432}
2433
56fd56b8 2434/*
1da177e4
LT
2435 * Do the hard work of removing an element from the buddy allocator.
2436 * Call me with the zone->lock already held.
2437 */
85ccc8fa
AL
2438static __always_inline struct page *
2439__rmqueue(struct zone *zone, unsigned int order, int migratetype)
1da177e4 2440{
1da177e4
LT
2441 struct page *page;
2442
3bc48f96 2443retry:
56fd56b8 2444 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2445 if (unlikely(!page)) {
dc67647b
JK
2446 if (migratetype == MIGRATE_MOVABLE)
2447 page = __rmqueue_cma_fallback(zone, order);
2448
3bc48f96
VB
2449 if (!page && __rmqueue_fallback(zone, order, migratetype))
2450 goto retry;
728ec980
MG
2451 }
2452
0d3d062a 2453 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2454 return page;
1da177e4
LT
2455}
2456
5f63b720 2457/*
1da177e4
LT
2458 * Obtain a specified number of elements from the buddy allocator, all under
2459 * a single hold of the lock, for efficiency. Add them to the supplied list.
2460 * Returns the number of new pages which were placed at *list.
2461 */
5f63b720 2462static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2463 unsigned long count, struct list_head *list,
453f85d4 2464 int migratetype)
1da177e4 2465{
a6de734b 2466 int i, alloced = 0;
5f63b720 2467
d34b0733 2468 spin_lock(&zone->lock);
1da177e4 2469 for (i = 0; i < count; ++i) {
6ac0206b 2470 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2471 if (unlikely(page == NULL))
1da177e4 2472 break;
81eabcbe 2473
479f854a
MG
2474 if (unlikely(check_pcp_refill(page)))
2475 continue;
2476
81eabcbe 2477 /*
0fac3ba5
VB
2478 * Split buddy pages returned by expand() are received here in
2479 * physical page order. The page is added to the tail of
2480 * caller's list. From the callers perspective, the linked list
2481 * is ordered by page number under some conditions. This is
2482 * useful for IO devices that can forward direction from the
2483 * head, thus also in the physical page order. This is useful
2484 * for IO devices that can merge IO requests if the physical
2485 * pages are ordered properly.
81eabcbe 2486 */
0fac3ba5 2487 list_add_tail(&page->lru, list);
a6de734b 2488 alloced++;
bb14c2c7 2489 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2490 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2491 -(1 << order));
1da177e4 2492 }
a6de734b
MG
2493
2494 /*
2495 * i pages were removed from the buddy list even if some leak due
2496 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2497 * on i. Do not confuse with 'alloced' which is the number of
2498 * pages added to the pcp list.
2499 */
f2260e6b 2500 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2501 spin_unlock(&zone->lock);
a6de734b 2502 return alloced;
1da177e4
LT
2503}
2504
4ae7c039 2505#ifdef CONFIG_NUMA
8fce4d8e 2506/*
4037d452
CL
2507 * Called from the vmstat counter updater to drain pagesets of this
2508 * currently executing processor on remote nodes after they have
2509 * expired.
2510 *
879336c3
CL
2511 * Note that this function must be called with the thread pinned to
2512 * a single processor.
8fce4d8e 2513 */
4037d452 2514void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2515{
4ae7c039 2516 unsigned long flags;
7be12fc9 2517 int to_drain, batch;
4ae7c039 2518
4037d452 2519 local_irq_save(flags);
4db0c3c2 2520 batch = READ_ONCE(pcp->batch);
7be12fc9 2521 to_drain = min(pcp->count, batch);
77ba9062 2522 if (to_drain > 0)
2a13515c 2523 free_pcppages_bulk(zone, to_drain, pcp);
4037d452 2524 local_irq_restore(flags);
4ae7c039
CL
2525}
2526#endif
2527
9f8f2172 2528/*
93481ff0 2529 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2530 *
2531 * The processor must either be the current processor and the
2532 * thread pinned to the current processor or a processor that
2533 * is not online.
2534 */
93481ff0 2535static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2536{
c54ad30c 2537 unsigned long flags;
93481ff0
VB
2538 struct per_cpu_pageset *pset;
2539 struct per_cpu_pages *pcp;
1da177e4 2540
93481ff0
VB
2541 local_irq_save(flags);
2542 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2543
93481ff0 2544 pcp = &pset->pcp;
77ba9062 2545 if (pcp->count)
93481ff0 2546 free_pcppages_bulk(zone, pcp->count, pcp);
93481ff0
VB
2547 local_irq_restore(flags);
2548}
3dfa5721 2549
93481ff0
VB
2550/*
2551 * Drain pcplists of all zones on the indicated processor.
2552 *
2553 * The processor must either be the current processor and the
2554 * thread pinned to the current processor or a processor that
2555 * is not online.
2556 */
2557static void drain_pages(unsigned int cpu)
2558{
2559 struct zone *zone;
2560
2561 for_each_populated_zone(zone) {
2562 drain_pages_zone(cpu, zone);
1da177e4
LT
2563 }
2564}
1da177e4 2565
9f8f2172
CL
2566/*
2567 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2568 *
2569 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2570 * the single zone's pages.
9f8f2172 2571 */
93481ff0 2572void drain_local_pages(struct zone *zone)
9f8f2172 2573{
93481ff0
VB
2574 int cpu = smp_processor_id();
2575
2576 if (zone)
2577 drain_pages_zone(cpu, zone);
2578 else
2579 drain_pages(cpu);
9f8f2172
CL
2580}
2581
0ccce3b9
MG
2582static void drain_local_pages_wq(struct work_struct *work)
2583{
a459eeb7
MH
2584 /*
2585 * drain_all_pages doesn't use proper cpu hotplug protection so
2586 * we can race with cpu offline when the WQ can move this from
2587 * a cpu pinned worker to an unbound one. We can operate on a different
2588 * cpu which is allright but we also have to make sure to not move to
2589 * a different one.
2590 */
2591 preempt_disable();
0ccce3b9 2592 drain_local_pages(NULL);
a459eeb7 2593 preempt_enable();
0ccce3b9
MG
2594}
2595
9f8f2172 2596/*
74046494
GBY
2597 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2598 *
93481ff0
VB
2599 * When zone parameter is non-NULL, spill just the single zone's pages.
2600 *
0ccce3b9 2601 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2602 */
93481ff0 2603void drain_all_pages(struct zone *zone)
9f8f2172 2604{
74046494 2605 int cpu;
74046494
GBY
2606
2607 /*
2608 * Allocate in the BSS so we wont require allocation in
2609 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2610 */
2611 static cpumask_t cpus_with_pcps;
2612
ce612879
MH
2613 /*
2614 * Make sure nobody triggers this path before mm_percpu_wq is fully
2615 * initialized.
2616 */
2617 if (WARN_ON_ONCE(!mm_percpu_wq))
2618 return;
2619
bd233f53
MG
2620 /*
2621 * Do not drain if one is already in progress unless it's specific to
2622 * a zone. Such callers are primarily CMA and memory hotplug and need
2623 * the drain to be complete when the call returns.
2624 */
2625 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2626 if (!zone)
2627 return;
2628 mutex_lock(&pcpu_drain_mutex);
2629 }
0ccce3b9 2630
74046494
GBY
2631 /*
2632 * We don't care about racing with CPU hotplug event
2633 * as offline notification will cause the notified
2634 * cpu to drain that CPU pcps and on_each_cpu_mask
2635 * disables preemption as part of its processing
2636 */
2637 for_each_online_cpu(cpu) {
93481ff0
VB
2638 struct per_cpu_pageset *pcp;
2639 struct zone *z;
74046494 2640 bool has_pcps = false;
93481ff0
VB
2641
2642 if (zone) {
74046494 2643 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2644 if (pcp->pcp.count)
74046494 2645 has_pcps = true;
93481ff0
VB
2646 } else {
2647 for_each_populated_zone(z) {
2648 pcp = per_cpu_ptr(z->pageset, cpu);
2649 if (pcp->pcp.count) {
2650 has_pcps = true;
2651 break;
2652 }
74046494
GBY
2653 }
2654 }
93481ff0 2655
74046494
GBY
2656 if (has_pcps)
2657 cpumask_set_cpu(cpu, &cpus_with_pcps);
2658 else
2659 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2660 }
0ccce3b9 2661
bd233f53
MG
2662 for_each_cpu(cpu, &cpus_with_pcps) {
2663 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2664 INIT_WORK(work, drain_local_pages_wq);
ce612879 2665 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2666 }
bd233f53
MG
2667 for_each_cpu(cpu, &cpus_with_pcps)
2668 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2669
2670 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2671}
2672
296699de 2673#ifdef CONFIG_HIBERNATION
1da177e4 2674
556b969a
CY
2675/*
2676 * Touch the watchdog for every WD_PAGE_COUNT pages.
2677 */
2678#define WD_PAGE_COUNT (128*1024)
2679
1da177e4
LT
2680void mark_free_pages(struct zone *zone)
2681{
556b969a 2682 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2683 unsigned long flags;
7aeb09f9 2684 unsigned int order, t;
86760a2c 2685 struct page *page;
1da177e4 2686
8080fc03 2687 if (zone_is_empty(zone))
1da177e4
LT
2688 return;
2689
2690 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2691
108bcc96 2692 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2693 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2694 if (pfn_valid(pfn)) {
86760a2c 2695 page = pfn_to_page(pfn);
ba6b0979 2696
556b969a
CY
2697 if (!--page_count) {
2698 touch_nmi_watchdog();
2699 page_count = WD_PAGE_COUNT;
2700 }
2701
ba6b0979
JK
2702 if (page_zone(page) != zone)
2703 continue;
2704
7be98234
RW
2705 if (!swsusp_page_is_forbidden(page))
2706 swsusp_unset_page_free(page);
f623f0db 2707 }
1da177e4 2708
b2a0ac88 2709 for_each_migratetype_order(order, t) {
86760a2c
GT
2710 list_for_each_entry(page,
2711 &zone->free_area[order].free_list[t], lru) {
f623f0db 2712 unsigned long i;
1da177e4 2713
86760a2c 2714 pfn = page_to_pfn(page);
556b969a
CY
2715 for (i = 0; i < (1UL << order); i++) {
2716 if (!--page_count) {
2717 touch_nmi_watchdog();
2718 page_count = WD_PAGE_COUNT;
2719 }
7be98234 2720 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2721 }
f623f0db 2722 }
b2a0ac88 2723 }
1da177e4
LT
2724 spin_unlock_irqrestore(&zone->lock, flags);
2725}
e2c55dc8 2726#endif /* CONFIG_PM */
1da177e4 2727
2d4894b5 2728static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
1da177e4 2729{
5f8dcc21 2730 int migratetype;
1da177e4 2731
4db7548c 2732 if (!free_pcp_prepare(page))
9cca35d4 2733 return false;
689bcebf 2734
dc4b0caf 2735 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2736 set_pcppage_migratetype(page, migratetype);
9cca35d4
MG
2737 return true;
2738}
2739
2d4894b5 2740static void free_unref_page_commit(struct page *page, unsigned long pfn)
9cca35d4
MG
2741{
2742 struct zone *zone = page_zone(page);
2743 struct per_cpu_pages *pcp;
2744 int migratetype;
2745
2746 migratetype = get_pcppage_migratetype(page);
d34b0733 2747 __count_vm_event(PGFREE);
da456f14 2748
5f8dcc21
MG
2749 /*
2750 * We only track unmovable, reclaimable and movable on pcp lists.
2751 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2752 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2753 * areas back if necessary. Otherwise, we may have to free
2754 * excessively into the page allocator
2755 */
2756 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2757 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2758 free_one_page(zone, page, pfn, 0, migratetype);
9cca35d4 2759 return;
5f8dcc21
MG
2760 }
2761 migratetype = MIGRATE_MOVABLE;
2762 }
2763
99dcc3e5 2764 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2d4894b5 2765 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 2766 pcp->count++;
48db57f8 2767 if (pcp->count >= pcp->high) {
4db0c3c2 2768 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb 2769 free_pcppages_bulk(zone, batch, pcp);
48db57f8 2770 }
9cca35d4 2771}
5f8dcc21 2772
9cca35d4
MG
2773/*
2774 * Free a 0-order page
9cca35d4 2775 */
2d4894b5 2776void free_unref_page(struct page *page)
9cca35d4
MG
2777{
2778 unsigned long flags;
2779 unsigned long pfn = page_to_pfn(page);
2780
2d4894b5 2781 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2782 return;
2783
2784 local_irq_save(flags);
2d4894b5 2785 free_unref_page_commit(page, pfn);
d34b0733 2786 local_irq_restore(flags);
1da177e4
LT
2787}
2788
cc59850e
KK
2789/*
2790 * Free a list of 0-order pages
2791 */
2d4894b5 2792void free_unref_page_list(struct list_head *list)
cc59850e
KK
2793{
2794 struct page *page, *next;
9cca35d4 2795 unsigned long flags, pfn;
c24ad77d 2796 int batch_count = 0;
9cca35d4
MG
2797
2798 /* Prepare pages for freeing */
2799 list_for_each_entry_safe(page, next, list, lru) {
2800 pfn = page_to_pfn(page);
2d4894b5 2801 if (!free_unref_page_prepare(page, pfn))
9cca35d4
MG
2802 list_del(&page->lru);
2803 set_page_private(page, pfn);
2804 }
cc59850e 2805
9cca35d4 2806 local_irq_save(flags);
cc59850e 2807 list_for_each_entry_safe(page, next, list, lru) {
9cca35d4
MG
2808 unsigned long pfn = page_private(page);
2809
2810 set_page_private(page, 0);
2d4894b5
MG
2811 trace_mm_page_free_batched(page);
2812 free_unref_page_commit(page, pfn);
c24ad77d
LS
2813
2814 /*
2815 * Guard against excessive IRQ disabled times when we get
2816 * a large list of pages to free.
2817 */
2818 if (++batch_count == SWAP_CLUSTER_MAX) {
2819 local_irq_restore(flags);
2820 batch_count = 0;
2821 local_irq_save(flags);
2822 }
cc59850e 2823 }
9cca35d4 2824 local_irq_restore(flags);
cc59850e
KK
2825}
2826
8dfcc9ba
NP
2827/*
2828 * split_page takes a non-compound higher-order page, and splits it into
2829 * n (1<<order) sub-pages: page[0..n]
2830 * Each sub-page must be freed individually.
2831 *
2832 * Note: this is probably too low level an operation for use in drivers.
2833 * Please consult with lkml before using this in your driver.
2834 */
2835void split_page(struct page *page, unsigned int order)
2836{
2837 int i;
2838
309381fe
SL
2839 VM_BUG_ON_PAGE(PageCompound(page), page);
2840 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2841
a9627bc5 2842 for (i = 1; i < (1 << order); i++)
7835e98b 2843 set_page_refcounted(page + i);
a9627bc5 2844 split_page_owner(page, order);
8dfcc9ba 2845}
5853ff23 2846EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2847
3c605096 2848int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2849{
748446bb
MG
2850 unsigned long watermark;
2851 struct zone *zone;
2139cbe6 2852 int mt;
748446bb
MG
2853
2854 BUG_ON(!PageBuddy(page));
2855
2856 zone = page_zone(page);
2e30abd1 2857 mt = get_pageblock_migratetype(page);
748446bb 2858
194159fb 2859 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2860 /*
2861 * Obey watermarks as if the page was being allocated. We can
2862 * emulate a high-order watermark check with a raised order-0
2863 * watermark, because we already know our high-order page
2864 * exists.
2865 */
2866 watermark = min_wmark_pages(zone) + (1UL << order);
d883c6cf 2867 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2e30abd1
MS
2868 return 0;
2869
8fb74b9f 2870 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2871 }
748446bb
MG
2872
2873 /* Remove page from free list */
2874 list_del(&page->lru);
2875 zone->free_area[order].nr_free--;
2876 rmv_page_order(page);
2139cbe6 2877
400bc7fd 2878 /*
2879 * Set the pageblock if the isolated page is at least half of a
2880 * pageblock
2881 */
748446bb
MG
2882 if (order >= pageblock_order - 1) {
2883 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2884 for (; page < endpage; page += pageblock_nr_pages) {
2885 int mt = get_pageblock_migratetype(page);
88ed365e 2886 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2887 && !is_migrate_highatomic(mt))
47118af0
MN
2888 set_pageblock_migratetype(page,
2889 MIGRATE_MOVABLE);
2890 }
748446bb
MG
2891 }
2892
f3a14ced 2893
8fb74b9f 2894 return 1UL << order;
1fb3f8ca
MG
2895}
2896
060e7417
MG
2897/*
2898 * Update NUMA hit/miss statistics
2899 *
2900 * Must be called with interrupts disabled.
060e7417 2901 */
41b6167e 2902static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2903{
2904#ifdef CONFIG_NUMA
3a321d2a 2905 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2906
4518085e
KW
2907 /* skip numa counters update if numa stats is disabled */
2908 if (!static_branch_likely(&vm_numa_stat_key))
2909 return;
2910
2df26639 2911 if (z->node != numa_node_id())
060e7417 2912 local_stat = NUMA_OTHER;
060e7417 2913
2df26639 2914 if (z->node == preferred_zone->node)
3a321d2a 2915 __inc_numa_state(z, NUMA_HIT);
2df26639 2916 else {
3a321d2a
KW
2917 __inc_numa_state(z, NUMA_MISS);
2918 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2919 }
3a321d2a 2920 __inc_numa_state(z, local_stat);
060e7417
MG
2921#endif
2922}
2923
066b2393
MG
2924/* Remove page from the per-cpu list, caller must protect the list */
2925static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
453f85d4 2926 struct per_cpu_pages *pcp,
066b2393
MG
2927 struct list_head *list)
2928{
2929 struct page *page;
2930
2931 do {
2932 if (list_empty(list)) {
2933 pcp->count += rmqueue_bulk(zone, 0,
2934 pcp->batch, list,
453f85d4 2935 migratetype);
066b2393
MG
2936 if (unlikely(list_empty(list)))
2937 return NULL;
2938 }
2939
453f85d4 2940 page = list_first_entry(list, struct page, lru);
066b2393
MG
2941 list_del(&page->lru);
2942 pcp->count--;
2943 } while (check_new_pcp(page));
2944
2945 return page;
2946}
2947
2948/* Lock and remove page from the per-cpu list */
2949static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2950 struct zone *zone, unsigned int order,
2951 gfp_t gfp_flags, int migratetype)
2952{
2953 struct per_cpu_pages *pcp;
2954 struct list_head *list;
066b2393 2955 struct page *page;
d34b0733 2956 unsigned long flags;
066b2393 2957
d34b0733 2958 local_irq_save(flags);
066b2393
MG
2959 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2960 list = &pcp->lists[migratetype];
453f85d4 2961 page = __rmqueue_pcplist(zone, migratetype, pcp, list);
066b2393
MG
2962 if (page) {
2963 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2964 zone_statistics(preferred_zone, zone);
2965 }
d34b0733 2966 local_irq_restore(flags);
066b2393
MG
2967 return page;
2968}
2969
1da177e4 2970/*
75379191 2971 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2972 */
0a15c3e9 2973static inline
066b2393 2974struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2975 struct zone *zone, unsigned int order,
c603844b
MG
2976 gfp_t gfp_flags, unsigned int alloc_flags,
2977 int migratetype)
1da177e4
LT
2978{
2979 unsigned long flags;
689bcebf 2980 struct page *page;
1da177e4 2981
d34b0733 2982 if (likely(order == 0)) {
066b2393
MG
2983 page = rmqueue_pcplist(preferred_zone, zone, order,
2984 gfp_flags, migratetype);
2985 goto out;
2986 }
83b9355b 2987
066b2393
MG
2988 /*
2989 * We most definitely don't want callers attempting to
2990 * allocate greater than order-1 page units with __GFP_NOFAIL.
2991 */
2992 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2993 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2994
066b2393
MG
2995 do {
2996 page = NULL;
2997 if (alloc_flags & ALLOC_HARDER) {
2998 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2999 if (page)
3000 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3001 }
a74609fa 3002 if (!page)
066b2393
MG
3003 page = __rmqueue(zone, order, migratetype);
3004 } while (page && check_new_pages(page, order));
3005 spin_unlock(&zone->lock);
3006 if (!page)
3007 goto failed;
3008 __mod_zone_freepage_state(zone, -(1 << order),
3009 get_pcppage_migratetype(page));
1da177e4 3010
16709d1d 3011 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 3012 zone_statistics(preferred_zone, zone);
a74609fa 3013 local_irq_restore(flags);
1da177e4 3014
066b2393
MG
3015out:
3016 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 3017 return page;
a74609fa
NP
3018
3019failed:
3020 local_irq_restore(flags);
a74609fa 3021 return NULL;
1da177e4
LT
3022}
3023
933e312e
AM
3024#ifdef CONFIG_FAIL_PAGE_ALLOC
3025
b2588c4b 3026static struct {
933e312e
AM
3027 struct fault_attr attr;
3028
621a5f7a 3029 bool ignore_gfp_highmem;
71baba4b 3030 bool ignore_gfp_reclaim;
54114994 3031 u32 min_order;
933e312e
AM
3032} fail_page_alloc = {
3033 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 3034 .ignore_gfp_reclaim = true,
621a5f7a 3035 .ignore_gfp_highmem = true,
54114994 3036 .min_order = 1,
933e312e
AM
3037};
3038
3039static int __init setup_fail_page_alloc(char *str)
3040{
3041 return setup_fault_attr(&fail_page_alloc.attr, str);
3042}
3043__setup("fail_page_alloc=", setup_fail_page_alloc);
3044
deaf386e 3045static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3046{
54114994 3047 if (order < fail_page_alloc.min_order)
deaf386e 3048 return false;
933e312e 3049 if (gfp_mask & __GFP_NOFAIL)
deaf386e 3050 return false;
933e312e 3051 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 3052 return false;
71baba4b
MG
3053 if (fail_page_alloc.ignore_gfp_reclaim &&
3054 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 3055 return false;
933e312e
AM
3056
3057 return should_fail(&fail_page_alloc.attr, 1 << order);
3058}
3059
3060#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3061
3062static int __init fail_page_alloc_debugfs(void)
3063{
0825a6f9 3064 umode_t mode = S_IFREG | 0600;
933e312e 3065 struct dentry *dir;
933e312e 3066
dd48c085
AM
3067 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3068 &fail_page_alloc.attr);
3069 if (IS_ERR(dir))
3070 return PTR_ERR(dir);
933e312e 3071
b2588c4b 3072 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 3073 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
3074 goto fail;
3075 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3076 &fail_page_alloc.ignore_gfp_highmem))
3077 goto fail;
3078 if (!debugfs_create_u32("min-order", mode, dir,
3079 &fail_page_alloc.min_order))
3080 goto fail;
3081
3082 return 0;
3083fail:
dd48c085 3084 debugfs_remove_recursive(dir);
933e312e 3085
b2588c4b 3086 return -ENOMEM;
933e312e
AM
3087}
3088
3089late_initcall(fail_page_alloc_debugfs);
3090
3091#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3092
3093#else /* CONFIG_FAIL_PAGE_ALLOC */
3094
deaf386e 3095static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 3096{
deaf386e 3097 return false;
933e312e
AM
3098}
3099
3100#endif /* CONFIG_FAIL_PAGE_ALLOC */
3101
1da177e4 3102/*
97a16fc8
MG
3103 * Return true if free base pages are above 'mark'. For high-order checks it
3104 * will return true of the order-0 watermark is reached and there is at least
3105 * one free page of a suitable size. Checking now avoids taking the zone lock
3106 * to check in the allocation paths if no pages are free.
1da177e4 3107 */
86a294a8
MH
3108bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3109 int classzone_idx, unsigned int alloc_flags,
3110 long free_pages)
1da177e4 3111{
d23ad423 3112 long min = mark;
1da177e4 3113 int o;
cd04ae1e 3114 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 3115
0aaa29a5 3116 /* free_pages may go negative - that's OK */
df0a6daa 3117 free_pages -= (1 << order) - 1;
0aaa29a5 3118
7fb1d9fc 3119 if (alloc_flags & ALLOC_HIGH)
1da177e4 3120 min -= min / 2;
0aaa29a5
MG
3121
3122 /*
3123 * If the caller does not have rights to ALLOC_HARDER then subtract
3124 * the high-atomic reserves. This will over-estimate the size of the
3125 * atomic reserve but it avoids a search.
3126 */
cd04ae1e 3127 if (likely(!alloc_harder)) {
0aaa29a5 3128 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3129 } else {
3130 /*
3131 * OOM victims can try even harder than normal ALLOC_HARDER
3132 * users on the grounds that it's definitely going to be in
3133 * the exit path shortly and free memory. Any allocation it
3134 * makes during the free path will be small and short-lived.
3135 */
3136 if (alloc_flags & ALLOC_OOM)
3137 min -= min / 2;
3138 else
3139 min -= min / 4;
3140 }
3141
e2b19197 3142
d883c6cf
JK
3143#ifdef CONFIG_CMA
3144 /* If allocation can't use CMA areas don't use free CMA pages */
3145 if (!(alloc_flags & ALLOC_CMA))
3146 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3147#endif
3148
97a16fc8
MG
3149 /*
3150 * Check watermarks for an order-0 allocation request. If these
3151 * are not met, then a high-order request also cannot go ahead
3152 * even if a suitable page happened to be free.
3153 */
3154 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3155 return false;
1da177e4 3156
97a16fc8
MG
3157 /* If this is an order-0 request then the watermark is fine */
3158 if (!order)
3159 return true;
3160
3161 /* For a high-order request, check at least one suitable page is free */
3162 for (o = order; o < MAX_ORDER; o++) {
3163 struct free_area *area = &z->free_area[o];
3164 int mt;
3165
3166 if (!area->nr_free)
3167 continue;
3168
97a16fc8
MG
3169 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3170 if (!list_empty(&area->free_list[mt]))
3171 return true;
3172 }
3173
3174#ifdef CONFIG_CMA
d883c6cf
JK
3175 if ((alloc_flags & ALLOC_CMA) &&
3176 !list_empty(&area->free_list[MIGRATE_CMA])) {
97a16fc8 3177 return true;
d883c6cf 3178 }
97a16fc8 3179#endif
b050e376
VB
3180 if (alloc_harder &&
3181 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3182 return true;
1da177e4 3183 }
97a16fc8 3184 return false;
88f5acf8
MG
3185}
3186
7aeb09f9 3187bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3188 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3189{
3190 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3191 zone_page_state(z, NR_FREE_PAGES));
3192}
3193
48ee5f36
MG
3194static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3195 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3196{
3197 long free_pages = zone_page_state(z, NR_FREE_PAGES);
d883c6cf
JK
3198 long cma_pages = 0;
3199
3200#ifdef CONFIG_CMA
3201 /* If allocation can't use CMA areas don't use free CMA pages */
3202 if (!(alloc_flags & ALLOC_CMA))
3203 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3204#endif
48ee5f36
MG
3205
3206 /*
3207 * Fast check for order-0 only. If this fails then the reserves
3208 * need to be calculated. There is a corner case where the check
3209 * passes but only the high-order atomic reserve are free. If
3210 * the caller is !atomic then it'll uselessly search the free
3211 * list. That corner case is then slower but it is harmless.
3212 */
d883c6cf 3213 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
48ee5f36
MG
3214 return true;
3215
3216 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3217 free_pages);
3218}
3219
7aeb09f9 3220bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3221 unsigned long mark, int classzone_idx)
88f5acf8
MG
3222{
3223 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3224
3225 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3226 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3227
e2b19197 3228 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3229 free_pages);
1da177e4
LT
3230}
3231
9276b1bc 3232#ifdef CONFIG_NUMA
957f822a
DR
3233static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3234{
e02dc017 3235 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3236 RECLAIM_DISTANCE;
957f822a 3237}
9276b1bc 3238#else /* CONFIG_NUMA */
957f822a
DR
3239static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3240{
3241 return true;
3242}
9276b1bc
PJ
3243#endif /* CONFIG_NUMA */
3244
7fb1d9fc 3245/*
0798e519 3246 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3247 * a page.
3248 */
3249static struct page *
a9263751
VB
3250get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3251 const struct alloc_context *ac)
753ee728 3252{
c33d6c06 3253 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3254 struct zone *zone;
3b8c0be4
MG
3255 struct pglist_data *last_pgdat_dirty_limit = NULL;
3256
7fb1d9fc 3257 /*
9276b1bc 3258 * Scan zonelist, looking for a zone with enough free.
344736f2 3259 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3260 */
c33d6c06 3261 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3262 ac->nodemask) {
be06af00 3263 struct page *page;
e085dbc5
JW
3264 unsigned long mark;
3265
664eedde
MG
3266 if (cpusets_enabled() &&
3267 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3268 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3269 continue;
a756cf59
JW
3270 /*
3271 * When allocating a page cache page for writing, we
281e3726
MG
3272 * want to get it from a node that is within its dirty
3273 * limit, such that no single node holds more than its
a756cf59 3274 * proportional share of globally allowed dirty pages.
281e3726 3275 * The dirty limits take into account the node's
a756cf59
JW
3276 * lowmem reserves and high watermark so that kswapd
3277 * should be able to balance it without having to
3278 * write pages from its LRU list.
3279 *
a756cf59 3280 * XXX: For now, allow allocations to potentially
281e3726 3281 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3282 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3283 * which is important when on a NUMA setup the allowed
281e3726 3284 * nodes are together not big enough to reach the
a756cf59 3285 * global limit. The proper fix for these situations
281e3726 3286 * will require awareness of nodes in the
a756cf59
JW
3287 * dirty-throttling and the flusher threads.
3288 */
3b8c0be4
MG
3289 if (ac->spread_dirty_pages) {
3290 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3291 continue;
3292
3293 if (!node_dirty_ok(zone->zone_pgdat)) {
3294 last_pgdat_dirty_limit = zone->zone_pgdat;
3295 continue;
3296 }
3297 }
7fb1d9fc 3298
e085dbc5 3299 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3300 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3301 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3302 int ret;
3303
c9e97a19
PT
3304#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3305 /*
3306 * Watermark failed for this zone, but see if we can
3307 * grow this zone if it contains deferred pages.
3308 */
3309 if (static_branch_unlikely(&deferred_pages)) {
3310 if (_deferred_grow_zone(zone, order))
3311 goto try_this_zone;
3312 }
3313#endif
5dab2911
MG
3314 /* Checked here to keep the fast path fast */
3315 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3316 if (alloc_flags & ALLOC_NO_WATERMARKS)
3317 goto try_this_zone;
3318
a5f5f91d 3319 if (node_reclaim_mode == 0 ||
c33d6c06 3320 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3321 continue;
3322
a5f5f91d 3323 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3324 switch (ret) {
a5f5f91d 3325 case NODE_RECLAIM_NOSCAN:
fa5e084e 3326 /* did not scan */
cd38b115 3327 continue;
a5f5f91d 3328 case NODE_RECLAIM_FULL:
fa5e084e 3329 /* scanned but unreclaimable */
cd38b115 3330 continue;
fa5e084e
MG
3331 default:
3332 /* did we reclaim enough */
fed2719e 3333 if (zone_watermark_ok(zone, order, mark,
93ea9964 3334 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3335 goto try_this_zone;
3336
fed2719e 3337 continue;
0798e519 3338 }
7fb1d9fc
RS
3339 }
3340
fa5e084e 3341try_this_zone:
066b2393 3342 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3343 gfp_mask, alloc_flags, ac->migratetype);
75379191 3344 if (page) {
479f854a 3345 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3346
3347 /*
3348 * If this is a high-order atomic allocation then check
3349 * if the pageblock should be reserved for the future
3350 */
3351 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3352 reserve_highatomic_pageblock(page, zone, order);
3353
75379191 3354 return page;
c9e97a19
PT
3355 } else {
3356#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3357 /* Try again if zone has deferred pages */
3358 if (static_branch_unlikely(&deferred_pages)) {
3359 if (_deferred_grow_zone(zone, order))
3360 goto try_this_zone;
3361 }
3362#endif
75379191 3363 }
54a6eb5c 3364 }
9276b1bc 3365
4ffeaf35 3366 return NULL;
753ee728
MH
3367}
3368
29423e77
DR
3369/*
3370 * Large machines with many possible nodes should not always dump per-node
3371 * meminfo in irq context.
3372 */
3373static inline bool should_suppress_show_mem(void)
3374{
3375 bool ret = false;
3376
3377#if NODES_SHIFT > 8
3378 ret = in_interrupt();
3379#endif
3380 return ret;
3381}
3382
9af744d7 3383static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3384{
a238ab5b 3385 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3386 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3387
aa187507 3388 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3389 return;
3390
3391 /*
3392 * This documents exceptions given to allocations in certain
3393 * contexts that are allowed to allocate outside current's set
3394 * of allowed nodes.
3395 */
3396 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3397 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3398 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3399 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3400 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3401 filter &= ~SHOW_MEM_FILTER_NODES;
3402
9af744d7 3403 show_mem(filter, nodemask);
aa187507
MH
3404}
3405
a8e99259 3406void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3407{
3408 struct va_format vaf;
3409 va_list args;
3410 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3411 DEFAULT_RATELIMIT_BURST);
3412
0f7896f1 3413 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3414 return;
3415
7877cdcc
MH
3416 va_start(args, fmt);
3417 vaf.fmt = fmt;
3418 vaf.va = &args;
0205f755
MH
3419 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3420 current->comm, &vaf, gfp_mask, &gfp_mask,
3421 nodemask_pr_args(nodemask));
7877cdcc 3422 va_end(args);
3ee9a4f0 3423
a8e99259 3424 cpuset_print_current_mems_allowed();
3ee9a4f0 3425
a238ab5b 3426 dump_stack();
685dbf6f 3427 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3428}
3429
6c18ba7a
MH
3430static inline struct page *
3431__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3432 unsigned int alloc_flags,
3433 const struct alloc_context *ac)
3434{
3435 struct page *page;
3436
3437 page = get_page_from_freelist(gfp_mask, order,
3438 alloc_flags|ALLOC_CPUSET, ac);
3439 /*
3440 * fallback to ignore cpuset restriction if our nodes
3441 * are depleted
3442 */
3443 if (!page)
3444 page = get_page_from_freelist(gfp_mask, order,
3445 alloc_flags, ac);
3446
3447 return page;
3448}
3449
11e33f6a
MG
3450static inline struct page *
3451__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3452 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3453{
6e0fc46d
DR
3454 struct oom_control oc = {
3455 .zonelist = ac->zonelist,
3456 .nodemask = ac->nodemask,
2a966b77 3457 .memcg = NULL,
6e0fc46d
DR
3458 .gfp_mask = gfp_mask,
3459 .order = order,
6e0fc46d 3460 };
11e33f6a
MG
3461 struct page *page;
3462
9879de73
JW
3463 *did_some_progress = 0;
3464
9879de73 3465 /*
dc56401f
JW
3466 * Acquire the oom lock. If that fails, somebody else is
3467 * making progress for us.
9879de73 3468 */
dc56401f 3469 if (!mutex_trylock(&oom_lock)) {
9879de73 3470 *did_some_progress = 1;
11e33f6a 3471 schedule_timeout_uninterruptible(1);
1da177e4
LT
3472 return NULL;
3473 }
6b1de916 3474
11e33f6a
MG
3475 /*
3476 * Go through the zonelist yet one more time, keep very high watermark
3477 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3478 * we're still under heavy pressure. But make sure that this reclaim
3479 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3480 * allocation which will never fail due to oom_lock already held.
11e33f6a 3481 */
e746bf73
TH
3482 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3483 ~__GFP_DIRECT_RECLAIM, order,
3484 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3485 if (page)
11e33f6a
MG
3486 goto out;
3487
06ad276a
MH
3488 /* Coredumps can quickly deplete all memory reserves */
3489 if (current->flags & PF_DUMPCORE)
3490 goto out;
3491 /* The OOM killer will not help higher order allocs */
3492 if (order > PAGE_ALLOC_COSTLY_ORDER)
3493 goto out;
dcda9b04
MH
3494 /*
3495 * We have already exhausted all our reclaim opportunities without any
3496 * success so it is time to admit defeat. We will skip the OOM killer
3497 * because it is very likely that the caller has a more reasonable
3498 * fallback than shooting a random task.
3499 */
3500 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3501 goto out;
06ad276a
MH
3502 /* The OOM killer does not needlessly kill tasks for lowmem */
3503 if (ac->high_zoneidx < ZONE_NORMAL)
3504 goto out;
3505 if (pm_suspended_storage())
3506 goto out;
3507 /*
3508 * XXX: GFP_NOFS allocations should rather fail than rely on
3509 * other request to make a forward progress.
3510 * We are in an unfortunate situation where out_of_memory cannot
3511 * do much for this context but let's try it to at least get
3512 * access to memory reserved if the current task is killed (see
3513 * out_of_memory). Once filesystems are ready to handle allocation
3514 * failures more gracefully we should just bail out here.
3515 */
3516
3517 /* The OOM killer may not free memory on a specific node */
3518 if (gfp_mask & __GFP_THISNODE)
3519 goto out;
3da88fb3 3520
3c2c6488 3521 /* Exhausted what can be done so it's blame time */
5020e285 3522 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3523 *did_some_progress = 1;
5020e285 3524
6c18ba7a
MH
3525 /*
3526 * Help non-failing allocations by giving them access to memory
3527 * reserves
3528 */
3529 if (gfp_mask & __GFP_NOFAIL)
3530 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3531 ALLOC_NO_WATERMARKS, ac);
5020e285 3532 }
11e33f6a 3533out:
dc56401f 3534 mutex_unlock(&oom_lock);
11e33f6a
MG
3535 return page;
3536}
3537
33c2d214
MH
3538/*
3539 * Maximum number of compaction retries wit a progress before OOM
3540 * killer is consider as the only way to move forward.
3541 */
3542#define MAX_COMPACT_RETRIES 16
3543
56de7263
MG
3544#ifdef CONFIG_COMPACTION
3545/* Try memory compaction for high-order allocations before reclaim */
3546static struct page *
3547__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3548 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3549 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3550{
98dd3b48 3551 struct page *page;
499118e9 3552 unsigned int noreclaim_flag;
53853e2d
VB
3553
3554 if (!order)
66199712 3555 return NULL;
66199712 3556
499118e9 3557 noreclaim_flag = memalloc_noreclaim_save();
c5d01d0d 3558 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3559 prio);
499118e9 3560 memalloc_noreclaim_restore(noreclaim_flag);
56de7263 3561
c5d01d0d 3562 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3563 return NULL;
53853e2d 3564
98dd3b48
VB
3565 /*
3566 * At least in one zone compaction wasn't deferred or skipped, so let's
3567 * count a compaction stall
3568 */
3569 count_vm_event(COMPACTSTALL);
8fb74b9f 3570
31a6c190 3571 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3572
98dd3b48
VB
3573 if (page) {
3574 struct zone *zone = page_zone(page);
53853e2d 3575
98dd3b48
VB
3576 zone->compact_blockskip_flush = false;
3577 compaction_defer_reset(zone, order, true);
3578 count_vm_event(COMPACTSUCCESS);
3579 return page;
3580 }
56de7263 3581
98dd3b48
VB
3582 /*
3583 * It's bad if compaction run occurs and fails. The most likely reason
3584 * is that pages exist, but not enough to satisfy watermarks.
3585 */
3586 count_vm_event(COMPACTFAIL);
66199712 3587
98dd3b48 3588 cond_resched();
56de7263
MG
3589
3590 return NULL;
3591}
33c2d214 3592
3250845d
VB
3593static inline bool
3594should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3595 enum compact_result compact_result,
3596 enum compact_priority *compact_priority,
d9436498 3597 int *compaction_retries)
3250845d
VB
3598{
3599 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3600 int min_priority;
65190cff
MH
3601 bool ret = false;
3602 int retries = *compaction_retries;
3603 enum compact_priority priority = *compact_priority;
3250845d
VB
3604
3605 if (!order)
3606 return false;
3607
d9436498
VB
3608 if (compaction_made_progress(compact_result))
3609 (*compaction_retries)++;
3610
3250845d
VB
3611 /*
3612 * compaction considers all the zone as desperately out of memory
3613 * so it doesn't really make much sense to retry except when the
3614 * failure could be caused by insufficient priority
3615 */
d9436498
VB
3616 if (compaction_failed(compact_result))
3617 goto check_priority;
3250845d
VB
3618
3619 /*
3620 * make sure the compaction wasn't deferred or didn't bail out early
3621 * due to locks contention before we declare that we should give up.
3622 * But do not retry if the given zonelist is not suitable for
3623 * compaction.
3624 */
65190cff
MH
3625 if (compaction_withdrawn(compact_result)) {
3626 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3627 goto out;
3628 }
3250845d
VB
3629
3630 /*
dcda9b04 3631 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3632 * costly ones because they are de facto nofail and invoke OOM
3633 * killer to move on while costly can fail and users are ready
3634 * to cope with that. 1/4 retries is rather arbitrary but we
3635 * would need much more detailed feedback from compaction to
3636 * make a better decision.
3637 */
3638 if (order > PAGE_ALLOC_COSTLY_ORDER)
3639 max_retries /= 4;
65190cff
MH
3640 if (*compaction_retries <= max_retries) {
3641 ret = true;
3642 goto out;
3643 }
3250845d 3644
d9436498
VB
3645 /*
3646 * Make sure there are attempts at the highest priority if we exhausted
3647 * all retries or failed at the lower priorities.
3648 */
3649check_priority:
c2033b00
VB
3650 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3651 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3652
c2033b00 3653 if (*compact_priority > min_priority) {
d9436498
VB
3654 (*compact_priority)--;
3655 *compaction_retries = 0;
65190cff 3656 ret = true;
d9436498 3657 }
65190cff
MH
3658out:
3659 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3660 return ret;
3250845d 3661}
56de7263
MG
3662#else
3663static inline struct page *
3664__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3665 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3666 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3667{
33c2d214 3668 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3669 return NULL;
3670}
33c2d214
MH
3671
3672static inline bool
86a294a8
MH
3673should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3674 enum compact_result compact_result,
a5508cd8 3675 enum compact_priority *compact_priority,
d9436498 3676 int *compaction_retries)
33c2d214 3677{
31e49bfd
MH
3678 struct zone *zone;
3679 struct zoneref *z;
3680
3681 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3682 return false;
3683
3684 /*
3685 * There are setups with compaction disabled which would prefer to loop
3686 * inside the allocator rather than hit the oom killer prematurely.
3687 * Let's give them a good hope and keep retrying while the order-0
3688 * watermarks are OK.
3689 */
3690 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3691 ac->nodemask) {
3692 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3693 ac_classzone_idx(ac), alloc_flags))
3694 return true;
3695 }
33c2d214
MH
3696 return false;
3697}
3250845d 3698#endif /* CONFIG_COMPACTION */
56de7263 3699
d92a8cfc 3700#ifdef CONFIG_LOCKDEP
93781325 3701static struct lockdep_map __fs_reclaim_map =
d92a8cfc
PZ
3702 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3703
3704static bool __need_fs_reclaim(gfp_t gfp_mask)
3705{
3706 gfp_mask = current_gfp_context(gfp_mask);
3707
3708 /* no reclaim without waiting on it */
3709 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3710 return false;
3711
3712 /* this guy won't enter reclaim */
2e517d68 3713 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3714 return false;
3715
3716 /* We're only interested __GFP_FS allocations for now */
3717 if (!(gfp_mask & __GFP_FS))
3718 return false;
3719
3720 if (gfp_mask & __GFP_NOLOCKDEP)
3721 return false;
3722
3723 return true;
3724}
3725
93781325
OS
3726void __fs_reclaim_acquire(void)
3727{
3728 lock_map_acquire(&__fs_reclaim_map);
3729}
3730
3731void __fs_reclaim_release(void)
3732{
3733 lock_map_release(&__fs_reclaim_map);
3734}
3735
d92a8cfc
PZ
3736void fs_reclaim_acquire(gfp_t gfp_mask)
3737{
3738 if (__need_fs_reclaim(gfp_mask))
93781325 3739 __fs_reclaim_acquire();
d92a8cfc
PZ
3740}
3741EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3742
3743void fs_reclaim_release(gfp_t gfp_mask)
3744{
3745 if (__need_fs_reclaim(gfp_mask))
93781325 3746 __fs_reclaim_release();
d92a8cfc
PZ
3747}
3748EXPORT_SYMBOL_GPL(fs_reclaim_release);
3749#endif
3750
bba90710
MS
3751/* Perform direct synchronous page reclaim */
3752static int
a9263751
VB
3753__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3754 const struct alloc_context *ac)
11e33f6a 3755{
11e33f6a 3756 struct reclaim_state reclaim_state;
bba90710 3757 int progress;
499118e9 3758 unsigned int noreclaim_flag;
11e33f6a
MG
3759
3760 cond_resched();
3761
3762 /* We now go into synchronous reclaim */
3763 cpuset_memory_pressure_bump();
d92a8cfc 3764 fs_reclaim_acquire(gfp_mask);
93781325 3765 noreclaim_flag = memalloc_noreclaim_save();
11e33f6a 3766 reclaim_state.reclaimed_slab = 0;
c06b1fca 3767 current->reclaim_state = &reclaim_state;
11e33f6a 3768
a9263751
VB
3769 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3770 ac->nodemask);
11e33f6a 3771
c06b1fca 3772 current->reclaim_state = NULL;
499118e9 3773 memalloc_noreclaim_restore(noreclaim_flag);
93781325 3774 fs_reclaim_release(gfp_mask);
11e33f6a
MG
3775
3776 cond_resched();
3777
bba90710
MS
3778 return progress;
3779}
3780
3781/* The really slow allocator path where we enter direct reclaim */
3782static inline struct page *
3783__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3784 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3785 unsigned long *did_some_progress)
bba90710
MS
3786{
3787 struct page *page = NULL;
3788 bool drained = false;
3789
a9263751 3790 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3791 if (unlikely(!(*did_some_progress)))
3792 return NULL;
11e33f6a 3793
9ee493ce 3794retry:
31a6c190 3795 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3796
3797 /*
3798 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3799 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 * Shrink them them and try again
9ee493ce
MG
3801 */
3802 if (!page && !drained) {
29fac03b 3803 unreserve_highatomic_pageblock(ac, false);
93481ff0 3804 drain_all_pages(NULL);
9ee493ce
MG
3805 drained = true;
3806 goto retry;
3807 }
3808
11e33f6a
MG
3809 return page;
3810}
3811
5ecd9d40
DR
3812static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3813 const struct alloc_context *ac)
3a025760
JW
3814{
3815 struct zoneref *z;
3816 struct zone *zone;
e1a55637 3817 pg_data_t *last_pgdat = NULL;
5ecd9d40 3818 enum zone_type high_zoneidx = ac->high_zoneidx;
3a025760 3819
5ecd9d40
DR
3820 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3821 ac->nodemask) {
e1a55637 3822 if (last_pgdat != zone->zone_pgdat)
5ecd9d40 3823 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
e1a55637
MG
3824 last_pgdat = zone->zone_pgdat;
3825 }
3a025760
JW
3826}
3827
c603844b 3828static inline unsigned int
341ce06f
PZ
3829gfp_to_alloc_flags(gfp_t gfp_mask)
3830{
c603844b 3831 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3832
a56f57ff 3833 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3834 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3835
341ce06f
PZ
3836 /*
3837 * The caller may dip into page reserves a bit more if the caller
3838 * cannot run direct reclaim, or if the caller has realtime scheduling
3839 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3840 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3841 */
e6223a3b 3842 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3843
d0164adc 3844 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3845 /*
b104a35d
DR
3846 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847 * if it can't schedule.
5c3240d9 3848 */
b104a35d 3849 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3850 alloc_flags |= ALLOC_HARDER;
523b9458 3851 /*
b104a35d 3852 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3853 * comment for __cpuset_node_allowed().
523b9458 3854 */
341ce06f 3855 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3856 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3857 alloc_flags |= ALLOC_HARDER;
3858
d883c6cf
JK
3859#ifdef CONFIG_CMA
3860 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3861 alloc_flags |= ALLOC_CMA;
3862#endif
341ce06f
PZ
3863 return alloc_flags;
3864}
3865
cd04ae1e 3866static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3867{
cd04ae1e
MH
3868 if (!tsk_is_oom_victim(tsk))
3869 return false;
3870
3871 /*
3872 * !MMU doesn't have oom reaper so give access to memory reserves
3873 * only to the thread with TIF_MEMDIE set
3874 */
3875 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3876 return false;
3877
cd04ae1e
MH
3878 return true;
3879}
3880
3881/*
3882 * Distinguish requests which really need access to full memory
3883 * reserves from oom victims which can live with a portion of it
3884 */
3885static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3886{
3887 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3888 return 0;
31a6c190 3889 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3890 return ALLOC_NO_WATERMARKS;
31a6c190 3891 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3892 return ALLOC_NO_WATERMARKS;
3893 if (!in_interrupt()) {
3894 if (current->flags & PF_MEMALLOC)
3895 return ALLOC_NO_WATERMARKS;
3896 else if (oom_reserves_allowed(current))
3897 return ALLOC_OOM;
3898 }
31a6c190 3899
cd04ae1e
MH
3900 return 0;
3901}
3902
3903bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3904{
3905 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3906}
3907
0a0337e0
MH
3908/*
3909 * Checks whether it makes sense to retry the reclaim to make a forward progress
3910 * for the given allocation request.
491d79ae
JW
3911 *
3912 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3913 * without success, or when we couldn't even meet the watermark if we
3914 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3915 *
3916 * Returns true if a retry is viable or false to enter the oom path.
3917 */
3918static inline bool
3919should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3920 struct alloc_context *ac, int alloc_flags,
423b452e 3921 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3922{
3923 struct zone *zone;
3924 struct zoneref *z;
3925
423b452e
VB
3926 /*
3927 * Costly allocations might have made a progress but this doesn't mean
3928 * their order will become available due to high fragmentation so
3929 * always increment the no progress counter for them
3930 */
3931 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3932 *no_progress_loops = 0;
3933 else
3934 (*no_progress_loops)++;
3935
0a0337e0
MH
3936 /*
3937 * Make sure we converge to OOM if we cannot make any progress
3938 * several times in the row.
3939 */
04c8716f
MK
3940 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3941 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3942 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3943 }
0a0337e0 3944
bca67592
MG
3945 /*
3946 * Keep reclaiming pages while there is a chance this will lead
3947 * somewhere. If none of the target zones can satisfy our allocation
3948 * request even if all reclaimable pages are considered then we are
3949 * screwed and have to go OOM.
0a0337e0
MH
3950 */
3951 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3952 ac->nodemask) {
3953 unsigned long available;
ede37713 3954 unsigned long reclaimable;
d379f01d
MH
3955 unsigned long min_wmark = min_wmark_pages(zone);
3956 bool wmark;
0a0337e0 3957
5a1c84b4 3958 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3959 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3960
3961 /*
491d79ae
JW
3962 * Would the allocation succeed if we reclaimed all
3963 * reclaimable pages?
0a0337e0 3964 */
d379f01d
MH
3965 wmark = __zone_watermark_ok(zone, order, min_wmark,
3966 ac_classzone_idx(ac), alloc_flags, available);
3967 trace_reclaim_retry_zone(z, order, reclaimable,
3968 available, min_wmark, *no_progress_loops, wmark);
3969 if (wmark) {
ede37713
MH
3970 /*
3971 * If we didn't make any progress and have a lot of
3972 * dirty + writeback pages then we should wait for
3973 * an IO to complete to slow down the reclaim and
3974 * prevent from pre mature OOM
3975 */
3976 if (!did_some_progress) {
11fb9989 3977 unsigned long write_pending;
ede37713 3978
5a1c84b4
MG
3979 write_pending = zone_page_state_snapshot(zone,
3980 NR_ZONE_WRITE_PENDING);
ede37713 3981
11fb9989 3982 if (2 * write_pending > reclaimable) {
ede37713
MH
3983 congestion_wait(BLK_RW_ASYNC, HZ/10);
3984 return true;
3985 }
3986 }
5a1c84b4 3987
ede37713
MH
3988 /*
3989 * Memory allocation/reclaim might be called from a WQ
3990 * context and the current implementation of the WQ
3991 * concurrency control doesn't recognize that
3992 * a particular WQ is congested if the worker thread is
3993 * looping without ever sleeping. Therefore we have to
3994 * do a short sleep here rather than calling
3995 * cond_resched().
3996 */
3997 if (current->flags & PF_WQ_WORKER)
3998 schedule_timeout_uninterruptible(1);
3999 else
4000 cond_resched();
4001
0a0337e0
MH
4002 return true;
4003 }
4004 }
4005
4006 return false;
4007}
4008
902b6281
VB
4009static inline bool
4010check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4011{
4012 /*
4013 * It's possible that cpuset's mems_allowed and the nodemask from
4014 * mempolicy don't intersect. This should be normally dealt with by
4015 * policy_nodemask(), but it's possible to race with cpuset update in
4016 * such a way the check therein was true, and then it became false
4017 * before we got our cpuset_mems_cookie here.
4018 * This assumes that for all allocations, ac->nodemask can come only
4019 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4020 * when it does not intersect with the cpuset restrictions) or the
4021 * caller can deal with a violated nodemask.
4022 */
4023 if (cpusets_enabled() && ac->nodemask &&
4024 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4025 ac->nodemask = NULL;
4026 return true;
4027 }
4028
4029 /*
4030 * When updating a task's mems_allowed or mempolicy nodemask, it is
4031 * possible to race with parallel threads in such a way that our
4032 * allocation can fail while the mask is being updated. If we are about
4033 * to fail, check if the cpuset changed during allocation and if so,
4034 * retry.
4035 */
4036 if (read_mems_allowed_retry(cpuset_mems_cookie))
4037 return true;
4038
4039 return false;
4040}
4041
11e33f6a
MG
4042static inline struct page *
4043__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 4044 struct alloc_context *ac)
11e33f6a 4045{
d0164adc 4046 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 4047 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 4048 struct page *page = NULL;
c603844b 4049 unsigned int alloc_flags;
11e33f6a 4050 unsigned long did_some_progress;
5ce9bfef 4051 enum compact_priority compact_priority;
c5d01d0d 4052 enum compact_result compact_result;
5ce9bfef
VB
4053 int compaction_retries;
4054 int no_progress_loops;
5ce9bfef 4055 unsigned int cpuset_mems_cookie;
cd04ae1e 4056 int reserve_flags;
1da177e4 4057
72807a74
MG
4058 /*
4059 * In the slowpath, we sanity check order to avoid ever trying to
4060 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4061 * be using allocators in order of preference for an area that is
4062 * too large.
4063 */
1fc28b70
MG
4064 if (order >= MAX_ORDER) {
4065 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 4066 return NULL;
1fc28b70 4067 }
1da177e4 4068
d0164adc
MG
4069 /*
4070 * We also sanity check to catch abuse of atomic reserves being used by
4071 * callers that are not in atomic context.
4072 */
4073 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4074 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4075 gfp_mask &= ~__GFP_ATOMIC;
4076
5ce9bfef
VB
4077retry_cpuset:
4078 compaction_retries = 0;
4079 no_progress_loops = 0;
4080 compact_priority = DEF_COMPACT_PRIORITY;
4081 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
4082
4083 /*
4084 * The fast path uses conservative alloc_flags to succeed only until
4085 * kswapd needs to be woken up, and to avoid the cost of setting up
4086 * alloc_flags precisely. So we do that now.
4087 */
4088 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4089
e47483bc
VB
4090 /*
4091 * We need to recalculate the starting point for the zonelist iterator
4092 * because we might have used different nodemask in the fast path, or
4093 * there was a cpuset modification and we are retrying - otherwise we
4094 * could end up iterating over non-eligible zones endlessly.
4095 */
4096 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4097 ac->high_zoneidx, ac->nodemask);
4098 if (!ac->preferred_zoneref->zone)
4099 goto nopage;
4100
23771235 4101 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4102 wake_all_kswapds(order, gfp_mask, ac);
23771235
VB
4103
4104 /*
4105 * The adjusted alloc_flags might result in immediate success, so try
4106 * that first
4107 */
4108 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4109 if (page)
4110 goto got_pg;
4111
a8161d1e
VB
4112 /*
4113 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
4114 * that we have enough base pages and don't need to reclaim. For non-
4115 * movable high-order allocations, do that as well, as compaction will
4116 * try prevent permanent fragmentation by migrating from blocks of the
4117 * same migratetype.
4118 * Don't try this for allocations that are allowed to ignore
4119 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 4120 */
282722b0
VB
4121 if (can_direct_reclaim &&
4122 (costly_order ||
4123 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
4125 page = __alloc_pages_direct_compact(gfp_mask, order,
4126 alloc_flags, ac,
a5508cd8 4127 INIT_COMPACT_PRIORITY,
a8161d1e
VB
4128 &compact_result);
4129 if (page)
4130 goto got_pg;
4131
3eb2771b
VB
4132 /*
4133 * Checks for costly allocations with __GFP_NORETRY, which
4134 * includes THP page fault allocations
4135 */
282722b0 4136 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
4137 /*
4138 * If compaction is deferred for high-order allocations,
4139 * it is because sync compaction recently failed. If
4140 * this is the case and the caller requested a THP
4141 * allocation, we do not want to heavily disrupt the
4142 * system, so we fail the allocation instead of entering
4143 * direct reclaim.
4144 */
4145 if (compact_result == COMPACT_DEFERRED)
4146 goto nopage;
4147
a8161d1e 4148 /*
3eb2771b
VB
4149 * Looks like reclaim/compaction is worth trying, but
4150 * sync compaction could be very expensive, so keep
25160354 4151 * using async compaction.
a8161d1e 4152 */
a5508cd8 4153 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4154 }
4155 }
23771235 4156
31a6c190 4157retry:
23771235 4158 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190 4159 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
5ecd9d40 4160 wake_all_kswapds(order, gfp_mask, ac);
31a6c190 4161
cd04ae1e
MH
4162 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4163 if (reserve_flags)
4164 alloc_flags = reserve_flags;
23771235 4165
e46e7b77
MG
4166 /*
4167 * Reset the zonelist iterators if memory policies can be ignored.
4168 * These allocations are high priority and system rather than user
4169 * orientated.
4170 */
cd04ae1e 4171 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4172 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4173 ac->high_zoneidx, ac->nodemask);
4174 }
4175
23771235 4176 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4177 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4178 if (page)
4179 goto got_pg;
1da177e4 4180
d0164adc 4181 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4182 if (!can_direct_reclaim)
1da177e4
LT
4183 goto nopage;
4184
9a67f648
MH
4185 /* Avoid recursion of direct reclaim */
4186 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4187 goto nopage;
4188
a8161d1e
VB
4189 /* Try direct reclaim and then allocating */
4190 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4191 &did_some_progress);
4192 if (page)
4193 goto got_pg;
4194
4195 /* Try direct compaction and then allocating */
a9263751 4196 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4197 compact_priority, &compact_result);
56de7263
MG
4198 if (page)
4199 goto got_pg;
75f30861 4200
9083905a
JW
4201 /* Do not loop if specifically requested */
4202 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4203 goto nopage;
9083905a 4204
0a0337e0
MH
4205 /*
4206 * Do not retry costly high order allocations unless they are
dcda9b04 4207 * __GFP_RETRY_MAYFAIL
0a0337e0 4208 */
dcda9b04 4209 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4210 goto nopage;
0a0337e0 4211
0a0337e0 4212 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4213 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4214 goto retry;
4215
33c2d214
MH
4216 /*
4217 * It doesn't make any sense to retry for the compaction if the order-0
4218 * reclaim is not able to make any progress because the current
4219 * implementation of the compaction depends on the sufficient amount
4220 * of free memory (see __compaction_suitable)
4221 */
4222 if (did_some_progress > 0 &&
86a294a8 4223 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4224 compact_result, &compact_priority,
d9436498 4225 &compaction_retries))
33c2d214
MH
4226 goto retry;
4227
902b6281
VB
4228
4229 /* Deal with possible cpuset update races before we start OOM killing */
4230 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4231 goto retry_cpuset;
4232
9083905a
JW
4233 /* Reclaim has failed us, start killing things */
4234 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4235 if (page)
4236 goto got_pg;
4237
9a67f648 4238 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4239 if (tsk_is_oom_victim(current) &&
4240 (alloc_flags == ALLOC_OOM ||
c288983d 4241 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4242 goto nopage;
4243
9083905a 4244 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4245 if (did_some_progress) {
4246 no_progress_loops = 0;
9083905a 4247 goto retry;
0a0337e0 4248 }
9083905a 4249
1da177e4 4250nopage:
902b6281
VB
4251 /* Deal with possible cpuset update races before we fail */
4252 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4253 goto retry_cpuset;
4254
9a67f648
MH
4255 /*
4256 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4257 * we always retry
4258 */
4259 if (gfp_mask & __GFP_NOFAIL) {
4260 /*
4261 * All existing users of the __GFP_NOFAIL are blockable, so warn
4262 * of any new users that actually require GFP_NOWAIT
4263 */
4264 if (WARN_ON_ONCE(!can_direct_reclaim))
4265 goto fail;
4266
4267 /*
4268 * PF_MEMALLOC request from this context is rather bizarre
4269 * because we cannot reclaim anything and only can loop waiting
4270 * for somebody to do a work for us
4271 */
4272 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4273
4274 /*
4275 * non failing costly orders are a hard requirement which we
4276 * are not prepared for much so let's warn about these users
4277 * so that we can identify them and convert them to something
4278 * else.
4279 */
4280 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4281
6c18ba7a
MH
4282 /*
4283 * Help non-failing allocations by giving them access to memory
4284 * reserves but do not use ALLOC_NO_WATERMARKS because this
4285 * could deplete whole memory reserves which would just make
4286 * the situation worse
4287 */
4288 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4289 if (page)
4290 goto got_pg;
4291
9a67f648
MH
4292 cond_resched();
4293 goto retry;
4294 }
4295fail:
a8e99259 4296 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4297 "page allocation failure: order:%u", order);
1da177e4 4298got_pg:
072bb0aa 4299 return page;
1da177e4 4300}
11e33f6a 4301
9cd75558 4302static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4303 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4304 struct alloc_context *ac, gfp_t *alloc_mask,
4305 unsigned int *alloc_flags)
11e33f6a 4306{
9cd75558 4307 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4308 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4309 ac->nodemask = nodemask;
4310 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4311
682a3385 4312 if (cpusets_enabled()) {
9cd75558 4313 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4314 if (!ac->nodemask)
4315 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4316 else
4317 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4318 }
4319
d92a8cfc
PZ
4320 fs_reclaim_acquire(gfp_mask);
4321 fs_reclaim_release(gfp_mask);
11e33f6a 4322
d0164adc 4323 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4324
4325 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4326 return false;
11e33f6a 4327
d883c6cf
JK
4328 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4329 *alloc_flags |= ALLOC_CMA;
4330
9cd75558
MG
4331 return true;
4332}
21bb9bd1 4333
9cd75558 4334/* Determine whether to spread dirty pages and what the first usable zone */
a380b40a 4335static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
9cd75558 4336{
c9ab0c4f 4337 /* Dirty zone balancing only done in the fast path */
9cd75558 4338 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4339
e46e7b77
MG
4340 /*
4341 * The preferred zone is used for statistics but crucially it is
4342 * also used as the starting point for the zonelist iterator. It
4343 * may get reset for allocations that ignore memory policies.
4344 */
9cd75558
MG
4345 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4346 ac->high_zoneidx, ac->nodemask);
4347}
4348
4349/*
4350 * This is the 'heart' of the zoned buddy allocator.
4351 */
4352struct page *
04ec6264
VB
4353__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4354 nodemask_t *nodemask)
9cd75558
MG
4355{
4356 struct page *page;
4357 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4358 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4359 struct alloc_context ac = { };
4360
4361 gfp_mask &= gfp_allowed_mask;
f19360f0 4362 alloc_mask = gfp_mask;
04ec6264 4363 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4364 return NULL;
4365
a380b40a 4366 finalise_ac(gfp_mask, &ac);
5bb1b169 4367
5117f45d 4368 /* First allocation attempt */
a9263751 4369 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4370 if (likely(page))
4371 goto out;
11e33f6a 4372
4fcb0971 4373 /*
7dea19f9
MH
4374 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4375 * resp. GFP_NOIO which has to be inherited for all allocation requests
4376 * from a particular context which has been marked by
4377 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4378 */
7dea19f9 4379 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4380 ac.spread_dirty_pages = false;
23f086f9 4381
4741526b
MG
4382 /*
4383 * Restore the original nodemask if it was potentially replaced with
4384 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4385 */
e47483bc 4386 if (unlikely(ac.nodemask != nodemask))
4741526b 4387 ac.nodemask = nodemask;
16096c25 4388
4fcb0971 4389 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4390
4fcb0971 4391out:
c4159a75
VD
4392 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4393 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4394 __free_pages(page, order);
4395 page = NULL;
4949148a
VD
4396 }
4397
4fcb0971
MG
4398 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4399
11e33f6a 4400 return page;
1da177e4 4401}
d239171e 4402EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4403
4404/*
4405 * Common helper functions.
4406 */
920c7a5d 4407unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4408{
945a1113
AM
4409 struct page *page;
4410
4411 /*
48128397 4412 * __get_free_pages() returns a virtual address, which cannot represent
945a1113
AM
4413 * a highmem page
4414 */
4415 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4416
1da177e4
LT
4417 page = alloc_pages(gfp_mask, order);
4418 if (!page)
4419 return 0;
4420 return (unsigned long) page_address(page);
4421}
1da177e4
LT
4422EXPORT_SYMBOL(__get_free_pages);
4423
920c7a5d 4424unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4425{
945a1113 4426 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4427}
1da177e4
LT
4428EXPORT_SYMBOL(get_zeroed_page);
4429
920c7a5d 4430void __free_pages(struct page *page, unsigned int order)
1da177e4 4431{
b5810039 4432 if (put_page_testzero(page)) {
1da177e4 4433 if (order == 0)
2d4894b5 4434 free_unref_page(page);
1da177e4
LT
4435 else
4436 __free_pages_ok(page, order);
4437 }
4438}
4439
4440EXPORT_SYMBOL(__free_pages);
4441
920c7a5d 4442void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4443{
4444 if (addr != 0) {
725d704e 4445 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4446 __free_pages(virt_to_page((void *)addr), order);
4447 }
4448}
4449
4450EXPORT_SYMBOL(free_pages);
4451
b63ae8ca
AD
4452/*
4453 * Page Fragment:
4454 * An arbitrary-length arbitrary-offset area of memory which resides
4455 * within a 0 or higher order page. Multiple fragments within that page
4456 * are individually refcounted, in the page's reference counter.
4457 *
4458 * The page_frag functions below provide a simple allocation framework for
4459 * page fragments. This is used by the network stack and network device
4460 * drivers to provide a backing region of memory for use as either an
4461 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4462 */
2976db80
AD
4463static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4464 gfp_t gfp_mask)
b63ae8ca
AD
4465{
4466 struct page *page = NULL;
4467 gfp_t gfp = gfp_mask;
4468
4469#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4470 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4471 __GFP_NOMEMALLOC;
4472 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4473 PAGE_FRAG_CACHE_MAX_ORDER);
4474 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4475#endif
4476 if (unlikely(!page))
4477 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4478
4479 nc->va = page ? page_address(page) : NULL;
4480
4481 return page;
4482}
4483
2976db80 4484void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4485{
4486 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4487
4488 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4489 unsigned int order = compound_order(page);
4490
44fdffd7 4491 if (order == 0)
2d4894b5 4492 free_unref_page(page);
44fdffd7
AD
4493 else
4494 __free_pages_ok(page, order);
4495 }
4496}
2976db80 4497EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4498
8c2dd3e4
AD
4499void *page_frag_alloc(struct page_frag_cache *nc,
4500 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4501{
4502 unsigned int size = PAGE_SIZE;
4503 struct page *page;
4504 int offset;
4505
4506 if (unlikely(!nc->va)) {
4507refill:
2976db80 4508 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4509 if (!page)
4510 return NULL;
4511
4512#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4513 /* if size can vary use size else just use PAGE_SIZE */
4514 size = nc->size;
4515#endif
4516 /* Even if we own the page, we do not use atomic_set().
4517 * This would break get_page_unless_zero() users.
4518 */
fe896d18 4519 page_ref_add(page, size - 1);
b63ae8ca
AD
4520
4521 /* reset page count bias and offset to start of new frag */
2f064f34 4522 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
4523 nc->pagecnt_bias = size;
4524 nc->offset = size;
4525 }
4526
4527 offset = nc->offset - fragsz;
4528 if (unlikely(offset < 0)) {
4529 page = virt_to_page(nc->va);
4530
fe896d18 4531 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4532 goto refill;
4533
4534#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4535 /* if size can vary use size else just use PAGE_SIZE */
4536 size = nc->size;
4537#endif
4538 /* OK, page count is 0, we can safely set it */
fe896d18 4539 set_page_count(page, size);
b63ae8ca
AD
4540
4541 /* reset page count bias and offset to start of new frag */
4542 nc->pagecnt_bias = size;
4543 offset = size - fragsz;
4544 }
4545
4546 nc->pagecnt_bias--;
4547 nc->offset = offset;
4548
4549 return nc->va + offset;
4550}
8c2dd3e4 4551EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4552
4553/*
4554 * Frees a page fragment allocated out of either a compound or order 0 page.
4555 */
8c2dd3e4 4556void page_frag_free(void *addr)
b63ae8ca
AD
4557{
4558 struct page *page = virt_to_head_page(addr);
4559
4560 if (unlikely(put_page_testzero(page)))
4561 __free_pages_ok(page, compound_order(page));
4562}
8c2dd3e4 4563EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4564
d00181b9
KS
4565static void *make_alloc_exact(unsigned long addr, unsigned int order,
4566 size_t size)
ee85c2e1
AK
4567{
4568 if (addr) {
4569 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4570 unsigned long used = addr + PAGE_ALIGN(size);
4571
4572 split_page(virt_to_page((void *)addr), order);
4573 while (used < alloc_end) {
4574 free_page(used);
4575 used += PAGE_SIZE;
4576 }
4577 }
4578 return (void *)addr;
4579}
4580
2be0ffe2
TT
4581/**
4582 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4583 * @size: the number of bytes to allocate
4584 * @gfp_mask: GFP flags for the allocation
4585 *
4586 * This function is similar to alloc_pages(), except that it allocates the
4587 * minimum number of pages to satisfy the request. alloc_pages() can only
4588 * allocate memory in power-of-two pages.
4589 *
4590 * This function is also limited by MAX_ORDER.
4591 *
4592 * Memory allocated by this function must be released by free_pages_exact().
4593 */
4594void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4595{
4596 unsigned int order = get_order(size);
4597 unsigned long addr;
4598
4599 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4600 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4601}
4602EXPORT_SYMBOL(alloc_pages_exact);
4603
ee85c2e1
AK
4604/**
4605 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4606 * pages on a node.
b5e6ab58 4607 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4608 * @size: the number of bytes to allocate
4609 * @gfp_mask: GFP flags for the allocation
4610 *
4611 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4612 * back.
ee85c2e1 4613 */
e1931811 4614void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4615{
d00181b9 4616 unsigned int order = get_order(size);
ee85c2e1
AK
4617 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4618 if (!p)
4619 return NULL;
4620 return make_alloc_exact((unsigned long)page_address(p), order, size);
4621}
ee85c2e1 4622
2be0ffe2
TT
4623/**
4624 * free_pages_exact - release memory allocated via alloc_pages_exact()
4625 * @virt: the value returned by alloc_pages_exact.
4626 * @size: size of allocation, same value as passed to alloc_pages_exact().
4627 *
4628 * Release the memory allocated by a previous call to alloc_pages_exact.
4629 */
4630void free_pages_exact(void *virt, size_t size)
4631{
4632 unsigned long addr = (unsigned long)virt;
4633 unsigned long end = addr + PAGE_ALIGN(size);
4634
4635 while (addr < end) {
4636 free_page(addr);
4637 addr += PAGE_SIZE;
4638 }
4639}
4640EXPORT_SYMBOL(free_pages_exact);
4641
e0fb5815
ZY
4642/**
4643 * nr_free_zone_pages - count number of pages beyond high watermark
4644 * @offset: The zone index of the highest zone
4645 *
4646 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4647 * high watermark within all zones at or below a given zone index. For each
4648 * zone, the number of pages is calculated as:
0e056eb5 4649 *
4650 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4651 */
ebec3862 4652static unsigned long nr_free_zone_pages(int offset)
1da177e4 4653{
dd1a239f 4654 struct zoneref *z;
54a6eb5c
MG
4655 struct zone *zone;
4656
e310fd43 4657 /* Just pick one node, since fallback list is circular */
ebec3862 4658 unsigned long sum = 0;
1da177e4 4659
0e88460d 4660 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4661
54a6eb5c 4662 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4663 unsigned long size = zone->managed_pages;
41858966 4664 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4665 if (size > high)
4666 sum += size - high;
1da177e4
LT
4667 }
4668
4669 return sum;
4670}
4671
e0fb5815
ZY
4672/**
4673 * nr_free_buffer_pages - count number of pages beyond high watermark
4674 *
4675 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4676 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4677 */
ebec3862 4678unsigned long nr_free_buffer_pages(void)
1da177e4 4679{
af4ca457 4680 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4681}
c2f1a551 4682EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4683
e0fb5815
ZY
4684/**
4685 * nr_free_pagecache_pages - count number of pages beyond high watermark
4686 *
4687 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4688 * high watermark within all zones.
1da177e4 4689 */
ebec3862 4690unsigned long nr_free_pagecache_pages(void)
1da177e4 4691{
2a1e274a 4692 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4693}
08e0f6a9
CL
4694
4695static inline void show_node(struct zone *zone)
1da177e4 4696{
e5adfffc 4697 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4698 printk("Node %d ", zone_to_nid(zone));
1da177e4 4699}
1da177e4 4700
d02bd27b
IR
4701long si_mem_available(void)
4702{
4703 long available;
4704 unsigned long pagecache;
4705 unsigned long wmark_low = 0;
4706 unsigned long pages[NR_LRU_LISTS];
4707 struct zone *zone;
4708 int lru;
4709
4710 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4711 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4712
4713 for_each_zone(zone)
4714 wmark_low += zone->watermark[WMARK_LOW];
4715
4716 /*
4717 * Estimate the amount of memory available for userspace allocations,
4718 * without causing swapping.
4719 */
c41f012a 4720 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4721
4722 /*
4723 * Not all the page cache can be freed, otherwise the system will
4724 * start swapping. Assume at least half of the page cache, or the
4725 * low watermark worth of cache, needs to stay.
4726 */
4727 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4728 pagecache -= min(pagecache / 2, wmark_low);
4729 available += pagecache;
4730
4731 /*
4732 * Part of the reclaimable slab consists of items that are in use,
4733 * and cannot be freed. Cap this estimate at the low watermark.
4734 */
d507e2eb
JW
4735 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4736 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4737 wmark_low);
d02bd27b 4738
034ebf65
RG
4739 /*
4740 * Part of the kernel memory, which can be released under memory
4741 * pressure.
4742 */
4743 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4744 PAGE_SHIFT;
4745
d02bd27b
IR
4746 if (available < 0)
4747 available = 0;
4748 return available;
4749}
4750EXPORT_SYMBOL_GPL(si_mem_available);
4751
1da177e4
LT
4752void si_meminfo(struct sysinfo *val)
4753{
4754 val->totalram = totalram_pages;
11fb9989 4755 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4756 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4757 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4758 val->totalhigh = totalhigh_pages;
4759 val->freehigh = nr_free_highpages();
1da177e4
LT
4760 val->mem_unit = PAGE_SIZE;
4761}
4762
4763EXPORT_SYMBOL(si_meminfo);
4764
4765#ifdef CONFIG_NUMA
4766void si_meminfo_node(struct sysinfo *val, int nid)
4767{
cdd91a77
JL
4768 int zone_type; /* needs to be signed */
4769 unsigned long managed_pages = 0;
fc2bd799
JK
4770 unsigned long managed_highpages = 0;
4771 unsigned long free_highpages = 0;
1da177e4
LT
4772 pg_data_t *pgdat = NODE_DATA(nid);
4773
cdd91a77
JL
4774 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4775 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4776 val->totalram = managed_pages;
11fb9989 4777 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4778 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4779#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4780 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4781 struct zone *zone = &pgdat->node_zones[zone_type];
4782
4783 if (is_highmem(zone)) {
4784 managed_highpages += zone->managed_pages;
4785 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4786 }
4787 }
4788 val->totalhigh = managed_highpages;
4789 val->freehigh = free_highpages;
98d2b0eb 4790#else
fc2bd799
JK
4791 val->totalhigh = managed_highpages;
4792 val->freehigh = free_highpages;
98d2b0eb 4793#endif
1da177e4
LT
4794 val->mem_unit = PAGE_SIZE;
4795}
4796#endif
4797
ddd588b5 4798/*
7bf02ea2
DR
4799 * Determine whether the node should be displayed or not, depending on whether
4800 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4801 */
9af744d7 4802static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4803{
ddd588b5 4804 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4805 return false;
ddd588b5 4806
9af744d7
MH
4807 /*
4808 * no node mask - aka implicit memory numa policy. Do not bother with
4809 * the synchronization - read_mems_allowed_begin - because we do not
4810 * have to be precise here.
4811 */
4812 if (!nodemask)
4813 nodemask = &cpuset_current_mems_allowed;
4814
4815 return !node_isset(nid, *nodemask);
ddd588b5
DR
4816}
4817
1da177e4
LT
4818#define K(x) ((x) << (PAGE_SHIFT-10))
4819
377e4f16
RV
4820static void show_migration_types(unsigned char type)
4821{
4822 static const char types[MIGRATE_TYPES] = {
4823 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4824 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4825 [MIGRATE_RECLAIMABLE] = 'E',
4826 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4827#ifdef CONFIG_CMA
4828 [MIGRATE_CMA] = 'C',
4829#endif
194159fb 4830#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4831 [MIGRATE_ISOLATE] = 'I',
194159fb 4832#endif
377e4f16
RV
4833 };
4834 char tmp[MIGRATE_TYPES + 1];
4835 char *p = tmp;
4836 int i;
4837
4838 for (i = 0; i < MIGRATE_TYPES; i++) {
4839 if (type & (1 << i))
4840 *p++ = types[i];
4841 }
4842
4843 *p = '\0';
1f84a18f 4844 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4845}
4846
1da177e4
LT
4847/*
4848 * Show free area list (used inside shift_scroll-lock stuff)
4849 * We also calculate the percentage fragmentation. We do this by counting the
4850 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4851 *
4852 * Bits in @filter:
4853 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4854 * cpuset.
1da177e4 4855 */
9af744d7 4856void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4857{
d1bfcdb8 4858 unsigned long free_pcp = 0;
c7241913 4859 int cpu;
1da177e4 4860 struct zone *zone;
599d0c95 4861 pg_data_t *pgdat;
1da177e4 4862
ee99c71c 4863 for_each_populated_zone(zone) {
9af744d7 4864 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4865 continue;
d1bfcdb8 4866
761b0677
KK
4867 for_each_online_cpu(cpu)
4868 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4869 }
4870
a731286d
KM
4871 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4872 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4873 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4874 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4875 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4876 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4877 global_node_page_state(NR_ACTIVE_ANON),
4878 global_node_page_state(NR_INACTIVE_ANON),
4879 global_node_page_state(NR_ISOLATED_ANON),
4880 global_node_page_state(NR_ACTIVE_FILE),
4881 global_node_page_state(NR_INACTIVE_FILE),
4882 global_node_page_state(NR_ISOLATED_FILE),
4883 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4884 global_node_page_state(NR_FILE_DIRTY),
4885 global_node_page_state(NR_WRITEBACK),
4886 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4887 global_node_page_state(NR_SLAB_RECLAIMABLE),
4888 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4889 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4890 global_node_page_state(NR_SHMEM),
c41f012a
MH
4891 global_zone_page_state(NR_PAGETABLE),
4892 global_zone_page_state(NR_BOUNCE),
4893 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4894 free_pcp,
c41f012a 4895 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4896
599d0c95 4897 for_each_online_pgdat(pgdat) {
9af744d7 4898 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4899 continue;
4900
599d0c95
MG
4901 printk("Node %d"
4902 " active_anon:%lukB"
4903 " inactive_anon:%lukB"
4904 " active_file:%lukB"
4905 " inactive_file:%lukB"
4906 " unevictable:%lukB"
4907 " isolated(anon):%lukB"
4908 " isolated(file):%lukB"
50658e2e 4909 " mapped:%lukB"
11fb9989
MG
4910 " dirty:%lukB"
4911 " writeback:%lukB"
4912 " shmem:%lukB"
4913#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4914 " shmem_thp: %lukB"
4915 " shmem_pmdmapped: %lukB"
4916 " anon_thp: %lukB"
4917#endif
4918 " writeback_tmp:%lukB"
4919 " unstable:%lukB"
599d0c95
MG
4920 " all_unreclaimable? %s"
4921 "\n",
4922 pgdat->node_id,
4923 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4924 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4925 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4926 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4927 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4928 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4929 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4930 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4931 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4932 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4933 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4934#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4935 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4936 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4937 * HPAGE_PMD_NR),
4938 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4939#endif
11fb9989
MG
4940 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4941 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4942 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4943 "yes" : "no");
599d0c95
MG
4944 }
4945
ee99c71c 4946 for_each_populated_zone(zone) {
1da177e4
LT
4947 int i;
4948
9af744d7 4949 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4950 continue;
d1bfcdb8
KK
4951
4952 free_pcp = 0;
4953 for_each_online_cpu(cpu)
4954 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4955
1da177e4 4956 show_node(zone);
1f84a18f
JP
4957 printk(KERN_CONT
4958 "%s"
1da177e4
LT
4959 " free:%lukB"
4960 " min:%lukB"
4961 " low:%lukB"
4962 " high:%lukB"
71c799f4
MK
4963 " active_anon:%lukB"
4964 " inactive_anon:%lukB"
4965 " active_file:%lukB"
4966 " inactive_file:%lukB"
4967 " unevictable:%lukB"
5a1c84b4 4968 " writepending:%lukB"
1da177e4 4969 " present:%lukB"
9feedc9d 4970 " managed:%lukB"
4a0aa73f 4971 " mlocked:%lukB"
c6a7f572 4972 " kernel_stack:%lukB"
4a0aa73f 4973 " pagetables:%lukB"
4a0aa73f 4974 " bounce:%lukB"
d1bfcdb8
KK
4975 " free_pcp:%lukB"
4976 " local_pcp:%ukB"
d1ce749a 4977 " free_cma:%lukB"
1da177e4
LT
4978 "\n",
4979 zone->name,
88f5acf8 4980 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4981 K(min_wmark_pages(zone)),
4982 K(low_wmark_pages(zone)),
4983 K(high_wmark_pages(zone)),
71c799f4
MK
4984 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4985 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4986 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4987 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4988 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4989 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4990 K(zone->present_pages),
9feedc9d 4991 K(zone->managed_pages),
4a0aa73f 4992 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4993 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4994 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4995 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4996 K(free_pcp),
4997 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4998 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4999 printk("lowmem_reserve[]:");
5000 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
5001 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5002 printk(KERN_CONT "\n");
1da177e4
LT
5003 }
5004
ee99c71c 5005 for_each_populated_zone(zone) {
d00181b9
KS
5006 unsigned int order;
5007 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 5008 unsigned char types[MAX_ORDER];
1da177e4 5009
9af744d7 5010 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 5011 continue;
1da177e4 5012 show_node(zone);
1f84a18f 5013 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
5014
5015 spin_lock_irqsave(&zone->lock, flags);
5016 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
5017 struct free_area *area = &zone->free_area[order];
5018 int type;
5019
5020 nr[order] = area->nr_free;
8f9de51a 5021 total += nr[order] << order;
377e4f16
RV
5022
5023 types[order] = 0;
5024 for (type = 0; type < MIGRATE_TYPES; type++) {
5025 if (!list_empty(&area->free_list[type]))
5026 types[order] |= 1 << type;
5027 }
1da177e4
LT
5028 }
5029 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 5030 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
5031 printk(KERN_CONT "%lu*%lukB ",
5032 nr[order], K(1UL) << order);
377e4f16
RV
5033 if (nr[order])
5034 show_migration_types(types[order]);
5035 }
1f84a18f 5036 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
5037 }
5038
949f7ec5
DR
5039 hugetlb_show_meminfo();
5040
11fb9989 5041 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 5042
1da177e4
LT
5043 show_swap_cache_info();
5044}
5045
19770b32
MG
5046static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5047{
5048 zoneref->zone = zone;
5049 zoneref->zone_idx = zone_idx(zone);
5050}
5051
1da177e4
LT
5052/*
5053 * Builds allocation fallback zone lists.
1a93205b
CL
5054 *
5055 * Add all populated zones of a node to the zonelist.
1da177e4 5056 */
9d3be21b 5057static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 5058{
1a93205b 5059 struct zone *zone;
bc732f1d 5060 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 5061 int nr_zones = 0;
02a68a5e
CL
5062
5063 do {
2f6726e5 5064 zone_type--;
070f8032 5065 zone = pgdat->node_zones + zone_type;
6aa303de 5066 if (managed_zone(zone)) {
9d3be21b 5067 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 5068 check_highest_zone(zone_type);
1da177e4 5069 }
2f6726e5 5070 } while (zone_type);
bc732f1d 5071
070f8032 5072 return nr_zones;
1da177e4
LT
5073}
5074
5075#ifdef CONFIG_NUMA
f0c0b2b8
KH
5076
5077static int __parse_numa_zonelist_order(char *s)
5078{
c9bff3ee
MH
5079 /*
5080 * We used to support different zonlists modes but they turned
5081 * out to be just not useful. Let's keep the warning in place
5082 * if somebody still use the cmd line parameter so that we do
5083 * not fail it silently
5084 */
5085 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5086 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
5087 return -EINVAL;
5088 }
5089 return 0;
5090}
5091
5092static __init int setup_numa_zonelist_order(char *s)
5093{
ecb256f8
VL
5094 if (!s)
5095 return 0;
5096
c9bff3ee 5097 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
5098}
5099early_param("numa_zonelist_order", setup_numa_zonelist_order);
5100
c9bff3ee
MH
5101char numa_zonelist_order[] = "Node";
5102
f0c0b2b8
KH
5103/*
5104 * sysctl handler for numa_zonelist_order
5105 */
cccad5b9 5106int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 5107 void __user *buffer, size_t *length,
f0c0b2b8
KH
5108 loff_t *ppos)
5109{
c9bff3ee 5110 char *str;
f0c0b2b8
KH
5111 int ret;
5112
c9bff3ee
MH
5113 if (!write)
5114 return proc_dostring(table, write, buffer, length, ppos);
5115 str = memdup_user_nul(buffer, 16);
5116 if (IS_ERR(str))
5117 return PTR_ERR(str);
dacbde09 5118
c9bff3ee
MH
5119 ret = __parse_numa_zonelist_order(str);
5120 kfree(str);
443c6f14 5121 return ret;
f0c0b2b8
KH
5122}
5123
5124
62bc62a8 5125#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
5126static int node_load[MAX_NUMNODES];
5127
1da177e4 5128/**
4dc3b16b 5129 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
5130 * @node: node whose fallback list we're appending
5131 * @used_node_mask: nodemask_t of already used nodes
5132 *
5133 * We use a number of factors to determine which is the next node that should
5134 * appear on a given node's fallback list. The node should not have appeared
5135 * already in @node's fallback list, and it should be the next closest node
5136 * according to the distance array (which contains arbitrary distance values
5137 * from each node to each node in the system), and should also prefer nodes
5138 * with no CPUs, since presumably they'll have very little allocation pressure
5139 * on them otherwise.
5140 * It returns -1 if no node is found.
5141 */
f0c0b2b8 5142static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5143{
4cf808eb 5144 int n, val;
1da177e4 5145 int min_val = INT_MAX;
00ef2d2f 5146 int best_node = NUMA_NO_NODE;
a70f7302 5147 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5148
4cf808eb
LT
5149 /* Use the local node if we haven't already */
5150 if (!node_isset(node, *used_node_mask)) {
5151 node_set(node, *used_node_mask);
5152 return node;
5153 }
1da177e4 5154
4b0ef1fe 5155 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5156
5157 /* Don't want a node to appear more than once */
5158 if (node_isset(n, *used_node_mask))
5159 continue;
5160
1da177e4
LT
5161 /* Use the distance array to find the distance */
5162 val = node_distance(node, n);
5163
4cf808eb
LT
5164 /* Penalize nodes under us ("prefer the next node") */
5165 val += (n < node);
5166
1da177e4 5167 /* Give preference to headless and unused nodes */
a70f7302
RR
5168 tmp = cpumask_of_node(n);
5169 if (!cpumask_empty(tmp))
1da177e4
LT
5170 val += PENALTY_FOR_NODE_WITH_CPUS;
5171
5172 /* Slight preference for less loaded node */
5173 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5174 val += node_load[n];
5175
5176 if (val < min_val) {
5177 min_val = val;
5178 best_node = n;
5179 }
5180 }
5181
5182 if (best_node >= 0)
5183 node_set(best_node, *used_node_mask);
5184
5185 return best_node;
5186}
5187
f0c0b2b8
KH
5188
5189/*
5190 * Build zonelists ordered by node and zones within node.
5191 * This results in maximum locality--normal zone overflows into local
5192 * DMA zone, if any--but risks exhausting DMA zone.
5193 */
9d3be21b
MH
5194static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5195 unsigned nr_nodes)
1da177e4 5196{
9d3be21b
MH
5197 struct zoneref *zonerefs;
5198 int i;
5199
5200 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5201
5202 for (i = 0; i < nr_nodes; i++) {
5203 int nr_zones;
5204
5205 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5206
9d3be21b
MH
5207 nr_zones = build_zonerefs_node(node, zonerefs);
5208 zonerefs += nr_zones;
5209 }
5210 zonerefs->zone = NULL;
5211 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5212}
5213
523b9458
CL
5214/*
5215 * Build gfp_thisnode zonelists
5216 */
5217static void build_thisnode_zonelists(pg_data_t *pgdat)
5218{
9d3be21b
MH
5219 struct zoneref *zonerefs;
5220 int nr_zones;
523b9458 5221
9d3be21b
MH
5222 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5223 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5224 zonerefs += nr_zones;
5225 zonerefs->zone = NULL;
5226 zonerefs->zone_idx = 0;
523b9458
CL
5227}
5228
f0c0b2b8
KH
5229/*
5230 * Build zonelists ordered by zone and nodes within zones.
5231 * This results in conserving DMA zone[s] until all Normal memory is
5232 * exhausted, but results in overflowing to remote node while memory
5233 * may still exist in local DMA zone.
5234 */
f0c0b2b8 5235
f0c0b2b8
KH
5236static void build_zonelists(pg_data_t *pgdat)
5237{
9d3be21b
MH
5238 static int node_order[MAX_NUMNODES];
5239 int node, load, nr_nodes = 0;
1da177e4 5240 nodemask_t used_mask;
f0c0b2b8 5241 int local_node, prev_node;
1da177e4
LT
5242
5243 /* NUMA-aware ordering of nodes */
5244 local_node = pgdat->node_id;
62bc62a8 5245 load = nr_online_nodes;
1da177e4
LT
5246 prev_node = local_node;
5247 nodes_clear(used_mask);
f0c0b2b8 5248
f0c0b2b8 5249 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5250 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5251 /*
5252 * We don't want to pressure a particular node.
5253 * So adding penalty to the first node in same
5254 * distance group to make it round-robin.
5255 */
957f822a
DR
5256 if (node_distance(local_node, node) !=
5257 node_distance(local_node, prev_node))
f0c0b2b8
KH
5258 node_load[node] = load;
5259
9d3be21b 5260 node_order[nr_nodes++] = node;
1da177e4
LT
5261 prev_node = node;
5262 load--;
1da177e4 5263 }
523b9458 5264
9d3be21b 5265 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5266 build_thisnode_zonelists(pgdat);
1da177e4
LT
5267}
5268
7aac7898
LS
5269#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5270/*
5271 * Return node id of node used for "local" allocations.
5272 * I.e., first node id of first zone in arg node's generic zonelist.
5273 * Used for initializing percpu 'numa_mem', which is used primarily
5274 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5275 */
5276int local_memory_node(int node)
5277{
c33d6c06 5278 struct zoneref *z;
7aac7898 5279
c33d6c06 5280 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5281 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5282 NULL);
5283 return z->zone->node;
7aac7898
LS
5284}
5285#endif
f0c0b2b8 5286
6423aa81
JK
5287static void setup_min_unmapped_ratio(void);
5288static void setup_min_slab_ratio(void);
1da177e4
LT
5289#else /* CONFIG_NUMA */
5290
f0c0b2b8 5291static void build_zonelists(pg_data_t *pgdat)
1da177e4 5292{
19655d34 5293 int node, local_node;
9d3be21b
MH
5294 struct zoneref *zonerefs;
5295 int nr_zones;
1da177e4
LT
5296
5297 local_node = pgdat->node_id;
1da177e4 5298
9d3be21b
MH
5299 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5300 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5301 zonerefs += nr_zones;
1da177e4 5302
54a6eb5c
MG
5303 /*
5304 * Now we build the zonelist so that it contains the zones
5305 * of all the other nodes.
5306 * We don't want to pressure a particular node, so when
5307 * building the zones for node N, we make sure that the
5308 * zones coming right after the local ones are those from
5309 * node N+1 (modulo N)
5310 */
5311 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5312 if (!node_online(node))
5313 continue;
9d3be21b
MH
5314 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5315 zonerefs += nr_zones;
1da177e4 5316 }
54a6eb5c
MG
5317 for (node = 0; node < local_node; node++) {
5318 if (!node_online(node))
5319 continue;
9d3be21b
MH
5320 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5321 zonerefs += nr_zones;
54a6eb5c
MG
5322 }
5323
9d3be21b
MH
5324 zonerefs->zone = NULL;
5325 zonerefs->zone_idx = 0;
1da177e4
LT
5326}
5327
5328#endif /* CONFIG_NUMA */
5329
99dcc3e5
CL
5330/*
5331 * Boot pageset table. One per cpu which is going to be used for all
5332 * zones and all nodes. The parameters will be set in such a way
5333 * that an item put on a list will immediately be handed over to
5334 * the buddy list. This is safe since pageset manipulation is done
5335 * with interrupts disabled.
5336 *
5337 * The boot_pagesets must be kept even after bootup is complete for
5338 * unused processors and/or zones. They do play a role for bootstrapping
5339 * hotplugged processors.
5340 *
5341 * zoneinfo_show() and maybe other functions do
5342 * not check if the processor is online before following the pageset pointer.
5343 * Other parts of the kernel may not check if the zone is available.
5344 */
5345static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5346static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5347static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5348
11cd8638 5349static void __build_all_zonelists(void *data)
1da177e4 5350{
6811378e 5351 int nid;
afb6ebb3 5352 int __maybe_unused cpu;
9adb62a5 5353 pg_data_t *self = data;
b93e0f32
MH
5354 static DEFINE_SPINLOCK(lock);
5355
5356 spin_lock(&lock);
9276b1bc 5357
7f9cfb31
BL
5358#ifdef CONFIG_NUMA
5359 memset(node_load, 0, sizeof(node_load));
5360#endif
9adb62a5 5361
c1152583
WY
5362 /*
5363 * This node is hotadded and no memory is yet present. So just
5364 * building zonelists is fine - no need to touch other nodes.
5365 */
9adb62a5
JL
5366 if (self && !node_online(self->node_id)) {
5367 build_zonelists(self);
c1152583
WY
5368 } else {
5369 for_each_online_node(nid) {
5370 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5371
c1152583
WY
5372 build_zonelists(pgdat);
5373 }
99dcc3e5 5374
7aac7898
LS
5375#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5376 /*
5377 * We now know the "local memory node" for each node--
5378 * i.e., the node of the first zone in the generic zonelist.
5379 * Set up numa_mem percpu variable for on-line cpus. During
5380 * boot, only the boot cpu should be on-line; we'll init the
5381 * secondary cpus' numa_mem as they come on-line. During
5382 * node/memory hotplug, we'll fixup all on-line cpus.
5383 */
d9c9a0b9 5384 for_each_online_cpu(cpu)
7aac7898 5385 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5386#endif
d9c9a0b9 5387 }
b93e0f32
MH
5388
5389 spin_unlock(&lock);
6811378e
YG
5390}
5391
061f67bc
RV
5392static noinline void __init
5393build_all_zonelists_init(void)
5394{
afb6ebb3
MH
5395 int cpu;
5396
061f67bc 5397 __build_all_zonelists(NULL);
afb6ebb3
MH
5398
5399 /*
5400 * Initialize the boot_pagesets that are going to be used
5401 * for bootstrapping processors. The real pagesets for
5402 * each zone will be allocated later when the per cpu
5403 * allocator is available.
5404 *
5405 * boot_pagesets are used also for bootstrapping offline
5406 * cpus if the system is already booted because the pagesets
5407 * are needed to initialize allocators on a specific cpu too.
5408 * F.e. the percpu allocator needs the page allocator which
5409 * needs the percpu allocator in order to allocate its pagesets
5410 * (a chicken-egg dilemma).
5411 */
5412 for_each_possible_cpu(cpu)
5413 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5414
061f67bc
RV
5415 mminit_verify_zonelist();
5416 cpuset_init_current_mems_allowed();
5417}
5418
4eaf3f64 5419/*
4eaf3f64 5420 * unless system_state == SYSTEM_BOOTING.
061f67bc 5421 *
72675e13 5422 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5423 * [protected by SYSTEM_BOOTING].
4eaf3f64 5424 */
72675e13 5425void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5426{
5427 if (system_state == SYSTEM_BOOTING) {
061f67bc 5428 build_all_zonelists_init();
6811378e 5429 } else {
11cd8638 5430 __build_all_zonelists(pgdat);
6811378e
YG
5431 /* cpuset refresh routine should be here */
5432 }
bd1e22b8 5433 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5434 /*
5435 * Disable grouping by mobility if the number of pages in the
5436 * system is too low to allow the mechanism to work. It would be
5437 * more accurate, but expensive to check per-zone. This check is
5438 * made on memory-hotadd so a system can start with mobility
5439 * disabled and enable it later
5440 */
d9c23400 5441 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5442 page_group_by_mobility_disabled = 1;
5443 else
5444 page_group_by_mobility_disabled = 0;
5445
c9bff3ee 5446 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5447 nr_online_nodes,
756a025f
JP
5448 page_group_by_mobility_disabled ? "off" : "on",
5449 vm_total_pages);
f0c0b2b8 5450#ifdef CONFIG_NUMA
f88dfff5 5451 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5452#endif
1da177e4
LT
5453}
5454
1da177e4
LT
5455/*
5456 * Initially all pages are reserved - free ones are freed
5457 * up by free_all_bootmem() once the early boot process is
5458 * done. Non-atomic initialization, single-pass.
5459 */
c09b4240 5460void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a99583e7
CH
5461 unsigned long start_pfn, enum memmap_context context,
5462 struct vmem_altmap *altmap)
1da177e4 5463{
29751f69 5464 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5465 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5466 unsigned long pfn;
3a80a7fa 5467 unsigned long nr_initialised = 0;
d0dc12e8 5468 struct page *page;
342332e6
TI
5469#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5470 struct memblock_region *r = NULL, *tmp;
5471#endif
1da177e4 5472
22b31eec
HD
5473 if (highest_memmap_pfn < end_pfn - 1)
5474 highest_memmap_pfn = end_pfn - 1;
5475
4b94ffdc
DW
5476 /*
5477 * Honor reservation requested by the driver for this ZONE_DEVICE
5478 * memory
5479 */
5480 if (altmap && start_pfn == altmap->base_pfn)
5481 start_pfn += altmap->reserve;
5482
cbe8dd4a 5483 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5484 /*
b72d0ffb
AM
5485 * There can be holes in boot-time mem_map[]s handed to this
5486 * function. They do not exist on hotplugged memory.
a2f3aa02 5487 */
b72d0ffb
AM
5488 if (context != MEMMAP_EARLY)
5489 goto not_early;
5490
f59f1caf 5491 if (!early_pfn_valid(pfn))
b72d0ffb
AM
5492 continue;
5493 if (!early_pfn_in_nid(pfn, nid))
5494 continue;
5495 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5496 break;
342332e6
TI
5497
5498#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5499 /*
5500 * Check given memblock attribute by firmware which can affect
5501 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5502 * mirrored, it's an overlapped memmap init. skip it.
5503 */
5504 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5505 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5506 for_each_memblock(memory, tmp)
5507 if (pfn < memblock_region_memory_end_pfn(tmp))
5508 break;
5509 r = tmp;
5510 }
5511 if (pfn >= memblock_region_memory_base_pfn(r) &&
5512 memblock_is_mirror(r)) {
5513 /* already initialized as NORMAL */
5514 pfn = memblock_region_memory_end_pfn(r);
5515 continue;
342332e6 5516 }
a2f3aa02 5517 }
b72d0ffb 5518#endif
ac5d2539 5519
b72d0ffb 5520not_early:
d0dc12e8
PT
5521 page = pfn_to_page(pfn);
5522 __init_single_page(page, pfn, zone, nid);
5523 if (context == MEMMAP_HOTPLUG)
5524 SetPageReserved(page);
5525
ac5d2539
MG
5526 /*
5527 * Mark the block movable so that blocks are reserved for
5528 * movable at startup. This will force kernel allocations
5529 * to reserve their blocks rather than leaking throughout
5530 * the address space during boot when many long-lived
974a786e 5531 * kernel allocations are made.
ac5d2539
MG
5532 *
5533 * bitmap is created for zone's valid pfn range. but memmap
5534 * can be created for invalid pages (for alignment)
5535 * check here not to call set_pageblock_migratetype() against
5536 * pfn out of zone.
9bb5a391
MH
5537 *
5538 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5539 * because this is done early in sparse_add_one_section
ac5d2539
MG
5540 */
5541 if (!(pfn & (pageblock_nr_pages - 1))) {
ac5d2539 5542 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5543 cond_resched();
ac5d2539 5544 }
1da177e4
LT
5545 }
5546}
5547
1e548deb 5548static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5549{
7aeb09f9 5550 unsigned int order, t;
b2a0ac88
MG
5551 for_each_migratetype_order(order, t) {
5552 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5553 zone->free_area[order].nr_free = 0;
5554 }
5555}
5556
5557#ifndef __HAVE_ARCH_MEMMAP_INIT
5558#define memmap_init(size, nid, zone, start_pfn) \
a99583e7 5559 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
1da177e4
LT
5560#endif
5561
7cd2b0a3 5562static int zone_batchsize(struct zone *zone)
e7c8d5c9 5563{
3a6be87f 5564#ifdef CONFIG_MMU
e7c8d5c9
CL
5565 int batch;
5566
5567 /*
5568 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5569 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5570 *
5571 * OK, so we don't know how big the cache is. So guess.
5572 */
b40da049 5573 batch = zone->managed_pages / 1024;
ba56e91c
SR
5574 if (batch * PAGE_SIZE > 512 * 1024)
5575 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5576 batch /= 4; /* We effectively *= 4 below */
5577 if (batch < 1)
5578 batch = 1;
5579
5580 /*
0ceaacc9
NP
5581 * Clamp the batch to a 2^n - 1 value. Having a power
5582 * of 2 value was found to be more likely to have
5583 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5584 *
0ceaacc9
NP
5585 * For example if 2 tasks are alternately allocating
5586 * batches of pages, one task can end up with a lot
5587 * of pages of one half of the possible page colors
5588 * and the other with pages of the other colors.
e7c8d5c9 5589 */
9155203a 5590 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5591
e7c8d5c9 5592 return batch;
3a6be87f
DH
5593
5594#else
5595 /* The deferral and batching of frees should be suppressed under NOMMU
5596 * conditions.
5597 *
5598 * The problem is that NOMMU needs to be able to allocate large chunks
5599 * of contiguous memory as there's no hardware page translation to
5600 * assemble apparent contiguous memory from discontiguous pages.
5601 *
5602 * Queueing large contiguous runs of pages for batching, however,
5603 * causes the pages to actually be freed in smaller chunks. As there
5604 * can be a significant delay between the individual batches being
5605 * recycled, this leads to the once large chunks of space being
5606 * fragmented and becoming unavailable for high-order allocations.
5607 */
5608 return 0;
5609#endif
e7c8d5c9
CL
5610}
5611
8d7a8fa9
CS
5612/*
5613 * pcp->high and pcp->batch values are related and dependent on one another:
5614 * ->batch must never be higher then ->high.
5615 * The following function updates them in a safe manner without read side
5616 * locking.
5617 *
5618 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5619 * those fields changing asynchronously (acording the the above rule).
5620 *
5621 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5622 * outside of boot time (or some other assurance that no concurrent updaters
5623 * exist).
5624 */
5625static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5626 unsigned long batch)
5627{
5628 /* start with a fail safe value for batch */
5629 pcp->batch = 1;
5630 smp_wmb();
5631
5632 /* Update high, then batch, in order */
5633 pcp->high = high;
5634 smp_wmb();
5635
5636 pcp->batch = batch;
5637}
5638
3664033c 5639/* a companion to pageset_set_high() */
4008bab7
CS
5640static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5641{
8d7a8fa9 5642 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5643}
5644
88c90dbc 5645static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5646{
5647 struct per_cpu_pages *pcp;
5f8dcc21 5648 int migratetype;
2caaad41 5649
1c6fe946
MD
5650 memset(p, 0, sizeof(*p));
5651
3dfa5721 5652 pcp = &p->pcp;
2caaad41 5653 pcp->count = 0;
5f8dcc21
MG
5654 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5655 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5656}
5657
88c90dbc
CS
5658static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5659{
5660 pageset_init(p);
5661 pageset_set_batch(p, batch);
5662}
5663
8ad4b1fb 5664/*
3664033c 5665 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5666 * to the value high for the pageset p.
5667 */
3664033c 5668static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5669 unsigned long high)
5670{
8d7a8fa9
CS
5671 unsigned long batch = max(1UL, high / 4);
5672 if ((high / 4) > (PAGE_SHIFT * 8))
5673 batch = PAGE_SHIFT * 8;
8ad4b1fb 5674
8d7a8fa9 5675 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5676}
5677
7cd2b0a3
DR
5678static void pageset_set_high_and_batch(struct zone *zone,
5679 struct per_cpu_pageset *pcp)
56cef2b8 5680{
56cef2b8 5681 if (percpu_pagelist_fraction)
3664033c 5682 pageset_set_high(pcp,
56cef2b8
CS
5683 (zone->managed_pages /
5684 percpu_pagelist_fraction));
5685 else
5686 pageset_set_batch(pcp, zone_batchsize(zone));
5687}
5688
169f6c19
CS
5689static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5690{
5691 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5692
5693 pageset_init(pcp);
5694 pageset_set_high_and_batch(zone, pcp);
5695}
5696
72675e13 5697void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5698{
5699 int cpu;
319774e2 5700 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5701 for_each_possible_cpu(cpu)
5702 zone_pageset_init(zone, cpu);
319774e2
WF
5703}
5704
2caaad41 5705/*
99dcc3e5
CL
5706 * Allocate per cpu pagesets and initialize them.
5707 * Before this call only boot pagesets were available.
e7c8d5c9 5708 */
99dcc3e5 5709void __init setup_per_cpu_pageset(void)
e7c8d5c9 5710{
b4911ea2 5711 struct pglist_data *pgdat;
99dcc3e5 5712 struct zone *zone;
e7c8d5c9 5713
319774e2
WF
5714 for_each_populated_zone(zone)
5715 setup_zone_pageset(zone);
b4911ea2
MG
5716
5717 for_each_online_pgdat(pgdat)
5718 pgdat->per_cpu_nodestats =
5719 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5720}
5721
c09b4240 5722static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5723{
99dcc3e5
CL
5724 /*
5725 * per cpu subsystem is not up at this point. The following code
5726 * relies on the ability of the linker to provide the
5727 * offset of a (static) per cpu variable into the per cpu area.
5728 */
5729 zone->pageset = &boot_pageset;
ed8ece2e 5730
b38a8725 5731 if (populated_zone(zone))
99dcc3e5
CL
5732 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5733 zone->name, zone->present_pages,
5734 zone_batchsize(zone));
ed8ece2e
DH
5735}
5736
dc0bbf3b 5737void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5738 unsigned long zone_start_pfn,
b171e409 5739 unsigned long size)
ed8ece2e
DH
5740{
5741 struct pglist_data *pgdat = zone->zone_pgdat;
9dcb8b68 5742
ed8ece2e
DH
5743 pgdat->nr_zones = zone_idx(zone) + 1;
5744
ed8ece2e
DH
5745 zone->zone_start_pfn = zone_start_pfn;
5746
708614e6
MG
5747 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5748 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5749 pgdat->node_id,
5750 (unsigned long)zone_idx(zone),
5751 zone_start_pfn, (zone_start_pfn + size));
5752
1e548deb 5753 zone_init_free_lists(zone);
9dcb8b68 5754 zone->initialized = 1;
ed8ece2e
DH
5755}
5756
0ee332c1 5757#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5758#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5759
c713216d
MG
5760/*
5761 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5762 */
8a942fde
MG
5763int __meminit __early_pfn_to_nid(unsigned long pfn,
5764 struct mminit_pfnnid_cache *state)
c713216d 5765{
c13291a5 5766 unsigned long start_pfn, end_pfn;
e76b63f8 5767 int nid;
7c243c71 5768
8a942fde
MG
5769 if (state->last_start <= pfn && pfn < state->last_end)
5770 return state->last_nid;
c713216d 5771
e76b63f8
YL
5772 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5773 if (nid != -1) {
8a942fde
MG
5774 state->last_start = start_pfn;
5775 state->last_end = end_pfn;
5776 state->last_nid = nid;
e76b63f8
YL
5777 }
5778
5779 return nid;
c713216d
MG
5780}
5781#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5782
c713216d 5783/**
6782832e 5784 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5785 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5786 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5787 *
7d018176
ZZ
5788 * If an architecture guarantees that all ranges registered contain no holes
5789 * and may be freed, this this function may be used instead of calling
5790 * memblock_free_early_nid() manually.
c713216d 5791 */
c13291a5 5792void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5793{
c13291a5
TH
5794 unsigned long start_pfn, end_pfn;
5795 int i, this_nid;
edbe7d23 5796
c13291a5
TH
5797 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5798 start_pfn = min(start_pfn, max_low_pfn);
5799 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5800
c13291a5 5801 if (start_pfn < end_pfn)
6782832e
SS
5802 memblock_free_early_nid(PFN_PHYS(start_pfn),
5803 (end_pfn - start_pfn) << PAGE_SHIFT,
5804 this_nid);
edbe7d23 5805 }
edbe7d23 5806}
edbe7d23 5807
c713216d
MG
5808/**
5809 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5810 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5811 *
7d018176
ZZ
5812 * If an architecture guarantees that all ranges registered contain no holes and may
5813 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5814 */
5815void __init sparse_memory_present_with_active_regions(int nid)
5816{
c13291a5
TH
5817 unsigned long start_pfn, end_pfn;
5818 int i, this_nid;
c713216d 5819
c13291a5
TH
5820 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5821 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5822}
5823
5824/**
5825 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5826 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5827 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5828 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5829 *
5830 * It returns the start and end page frame of a node based on information
7d018176 5831 * provided by memblock_set_node(). If called for a node
c713216d 5832 * with no available memory, a warning is printed and the start and end
88ca3b94 5833 * PFNs will be 0.
c713216d 5834 */
a3142c8e 5835void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5836 unsigned long *start_pfn, unsigned long *end_pfn)
5837{
c13291a5 5838 unsigned long this_start_pfn, this_end_pfn;
c713216d 5839 int i;
c13291a5 5840
c713216d
MG
5841 *start_pfn = -1UL;
5842 *end_pfn = 0;
5843
c13291a5
TH
5844 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5845 *start_pfn = min(*start_pfn, this_start_pfn);
5846 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5847 }
5848
633c0666 5849 if (*start_pfn == -1UL)
c713216d 5850 *start_pfn = 0;
c713216d
MG
5851}
5852
2a1e274a
MG
5853/*
5854 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5855 * assumption is made that zones within a node are ordered in monotonic
5856 * increasing memory addresses so that the "highest" populated zone is used
5857 */
b69a7288 5858static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5859{
5860 int zone_index;
5861 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5862 if (zone_index == ZONE_MOVABLE)
5863 continue;
5864
5865 if (arch_zone_highest_possible_pfn[zone_index] >
5866 arch_zone_lowest_possible_pfn[zone_index])
5867 break;
5868 }
5869
5870 VM_BUG_ON(zone_index == -1);
5871 movable_zone = zone_index;
5872}
5873
5874/*
5875 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5876 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5877 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5878 * in each node depending on the size of each node and how evenly kernelcore
5879 * is distributed. This helper function adjusts the zone ranges
5880 * provided by the architecture for a given node by using the end of the
5881 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5882 * zones within a node are in order of monotonic increases memory addresses
5883 */
b69a7288 5884static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5885 unsigned long zone_type,
5886 unsigned long node_start_pfn,
5887 unsigned long node_end_pfn,
5888 unsigned long *zone_start_pfn,
5889 unsigned long *zone_end_pfn)
5890{
5891 /* Only adjust if ZONE_MOVABLE is on this node */
5892 if (zone_movable_pfn[nid]) {
5893 /* Size ZONE_MOVABLE */
5894 if (zone_type == ZONE_MOVABLE) {
5895 *zone_start_pfn = zone_movable_pfn[nid];
5896 *zone_end_pfn = min(node_end_pfn,
5897 arch_zone_highest_possible_pfn[movable_zone]);
5898
e506b996
XQ
5899 /* Adjust for ZONE_MOVABLE starting within this range */
5900 } else if (!mirrored_kernelcore &&
5901 *zone_start_pfn < zone_movable_pfn[nid] &&
5902 *zone_end_pfn > zone_movable_pfn[nid]) {
5903 *zone_end_pfn = zone_movable_pfn[nid];
5904
2a1e274a
MG
5905 /* Check if this whole range is within ZONE_MOVABLE */
5906 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5907 *zone_start_pfn = *zone_end_pfn;
5908 }
5909}
5910
c713216d
MG
5911/*
5912 * Return the number of pages a zone spans in a node, including holes
5913 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5914 */
6ea6e688 5915static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5916 unsigned long zone_type,
7960aedd
ZY
5917 unsigned long node_start_pfn,
5918 unsigned long node_end_pfn,
d91749c1
TI
5919 unsigned long *zone_start_pfn,
5920 unsigned long *zone_end_pfn,
c713216d
MG
5921 unsigned long *ignored)
5922{
b5685e92 5923 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5924 if (!node_start_pfn && !node_end_pfn)
5925 return 0;
5926
7960aedd 5927 /* Get the start and end of the zone */
d91749c1
TI
5928 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5929 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5930 adjust_zone_range_for_zone_movable(nid, zone_type,
5931 node_start_pfn, node_end_pfn,
d91749c1 5932 zone_start_pfn, zone_end_pfn);
c713216d
MG
5933
5934 /* Check that this node has pages within the zone's required range */
d91749c1 5935 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5936 return 0;
5937
5938 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5939 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5940 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5941
5942 /* Return the spanned pages */
d91749c1 5943 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5944}
5945
5946/*
5947 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5948 * then all holes in the requested range will be accounted for.
c713216d 5949 */
32996250 5950unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5951 unsigned long range_start_pfn,
5952 unsigned long range_end_pfn)
5953{
96e907d1
TH
5954 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5955 unsigned long start_pfn, end_pfn;
5956 int i;
c713216d 5957
96e907d1
TH
5958 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5959 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5960 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5961 nr_absent -= end_pfn - start_pfn;
c713216d 5962 }
96e907d1 5963 return nr_absent;
c713216d
MG
5964}
5965
5966/**
5967 * absent_pages_in_range - Return number of page frames in holes within a range
5968 * @start_pfn: The start PFN to start searching for holes
5969 * @end_pfn: The end PFN to stop searching for holes
5970 *
88ca3b94 5971 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5972 */
5973unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5974 unsigned long end_pfn)
5975{
5976 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5977}
5978
5979/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5980static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5981 unsigned long zone_type,
7960aedd
ZY
5982 unsigned long node_start_pfn,
5983 unsigned long node_end_pfn,
c713216d
MG
5984 unsigned long *ignored)
5985{
96e907d1
TH
5986 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5987 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5988 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5989 unsigned long nr_absent;
9c7cd687 5990
b5685e92 5991 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5992 if (!node_start_pfn && !node_end_pfn)
5993 return 0;
5994
96e907d1
TH
5995 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5996 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5997
2a1e274a
MG
5998 adjust_zone_range_for_zone_movable(nid, zone_type,
5999 node_start_pfn, node_end_pfn,
6000 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
6001 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6002
6003 /*
6004 * ZONE_MOVABLE handling.
6005 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6006 * and vice versa.
6007 */
e506b996
XQ
6008 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6009 unsigned long start_pfn, end_pfn;
6010 struct memblock_region *r;
6011
6012 for_each_memblock(memory, r) {
6013 start_pfn = clamp(memblock_region_memory_base_pfn(r),
6014 zone_start_pfn, zone_end_pfn);
6015 end_pfn = clamp(memblock_region_memory_end_pfn(r),
6016 zone_start_pfn, zone_end_pfn);
6017
6018 if (zone_type == ZONE_MOVABLE &&
6019 memblock_is_mirror(r))
6020 nr_absent += end_pfn - start_pfn;
6021
6022 if (zone_type == ZONE_NORMAL &&
6023 !memblock_is_mirror(r))
6024 nr_absent += end_pfn - start_pfn;
342332e6
TI
6025 }
6026 }
6027
6028 return nr_absent;
c713216d 6029}
0e0b864e 6030
0ee332c1 6031#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 6032static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 6033 unsigned long zone_type,
7960aedd
ZY
6034 unsigned long node_start_pfn,
6035 unsigned long node_end_pfn,
d91749c1
TI
6036 unsigned long *zone_start_pfn,
6037 unsigned long *zone_end_pfn,
c713216d
MG
6038 unsigned long *zones_size)
6039{
d91749c1
TI
6040 unsigned int zone;
6041
6042 *zone_start_pfn = node_start_pfn;
6043 for (zone = 0; zone < zone_type; zone++)
6044 *zone_start_pfn += zones_size[zone];
6045
6046 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6047
c713216d
MG
6048 return zones_size[zone_type];
6049}
6050
6ea6e688 6051static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 6052 unsigned long zone_type,
7960aedd
ZY
6053 unsigned long node_start_pfn,
6054 unsigned long node_end_pfn,
c713216d
MG
6055 unsigned long *zholes_size)
6056{
6057 if (!zholes_size)
6058 return 0;
6059
6060 return zholes_size[zone_type];
6061}
20e6926d 6062
0ee332c1 6063#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6064
a3142c8e 6065static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
6066 unsigned long node_start_pfn,
6067 unsigned long node_end_pfn,
6068 unsigned long *zones_size,
6069 unsigned long *zholes_size)
c713216d 6070{
febd5949 6071 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
6072 enum zone_type i;
6073
febd5949
GZ
6074 for (i = 0; i < MAX_NR_ZONES; i++) {
6075 struct zone *zone = pgdat->node_zones + i;
d91749c1 6076 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 6077 unsigned long size, real_size;
c713216d 6078
febd5949
GZ
6079 size = zone_spanned_pages_in_node(pgdat->node_id, i,
6080 node_start_pfn,
6081 node_end_pfn,
d91749c1
TI
6082 &zone_start_pfn,
6083 &zone_end_pfn,
febd5949
GZ
6084 zones_size);
6085 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
6086 node_start_pfn, node_end_pfn,
6087 zholes_size);
d91749c1
TI
6088 if (size)
6089 zone->zone_start_pfn = zone_start_pfn;
6090 else
6091 zone->zone_start_pfn = 0;
febd5949
GZ
6092 zone->spanned_pages = size;
6093 zone->present_pages = real_size;
6094
6095 totalpages += size;
6096 realtotalpages += real_size;
6097 }
6098
6099 pgdat->node_spanned_pages = totalpages;
c713216d
MG
6100 pgdat->node_present_pages = realtotalpages;
6101 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6102 realtotalpages);
6103}
6104
835c134e
MG
6105#ifndef CONFIG_SPARSEMEM
6106/*
6107 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
6108 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6109 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
6110 * round what is now in bits to nearest long in bits, then return it in
6111 * bytes.
6112 */
7c45512d 6113static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
6114{
6115 unsigned long usemapsize;
6116
7c45512d 6117 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
6118 usemapsize = roundup(zonesize, pageblock_nr_pages);
6119 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
6120 usemapsize *= NR_PAGEBLOCK_BITS;
6121 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6122
6123 return usemapsize / 8;
6124}
6125
6126static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
6127 struct zone *zone,
6128 unsigned long zone_start_pfn,
6129 unsigned long zonesize)
835c134e 6130{
7c45512d 6131 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 6132 zone->pageblock_flags = NULL;
58a01a45 6133 if (usemapsize)
6782832e
SS
6134 zone->pageblock_flags =
6135 memblock_virt_alloc_node_nopanic(usemapsize,
6136 pgdat->node_id);
835c134e
MG
6137}
6138#else
7c45512d
LT
6139static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6140 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6141#endif /* CONFIG_SPARSEMEM */
6142
d9c23400 6143#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6144
d9c23400 6145/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6146void __paginginit set_pageblock_order(void)
d9c23400 6147{
955c1cd7
AM
6148 unsigned int order;
6149
d9c23400
MG
6150 /* Check that pageblock_nr_pages has not already been setup */
6151 if (pageblock_order)
6152 return;
6153
955c1cd7
AM
6154 if (HPAGE_SHIFT > PAGE_SHIFT)
6155 order = HUGETLB_PAGE_ORDER;
6156 else
6157 order = MAX_ORDER - 1;
6158
d9c23400
MG
6159 /*
6160 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6161 * This value may be variable depending on boot parameters on IA64 and
6162 * powerpc.
d9c23400
MG
6163 */
6164 pageblock_order = order;
6165}
6166#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6167
ba72cb8c
MG
6168/*
6169 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6170 * is unused as pageblock_order is set at compile-time. See
6171 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6172 * the kernel config
ba72cb8c 6173 */
15ca220e 6174void __paginginit set_pageblock_order(void)
ba72cb8c 6175{
ba72cb8c 6176}
d9c23400
MG
6177
6178#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6179
01cefaef
JL
6180static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6181 unsigned long present_pages)
6182{
6183 unsigned long pages = spanned_pages;
6184
6185 /*
6186 * Provide a more accurate estimation if there are holes within
6187 * the zone and SPARSEMEM is in use. If there are holes within the
6188 * zone, each populated memory region may cost us one or two extra
6189 * memmap pages due to alignment because memmap pages for each
89d790ab 6190 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6191 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6192 */
6193 if (spanned_pages > present_pages + (present_pages >> 4) &&
6194 IS_ENABLED(CONFIG_SPARSEMEM))
6195 pages = present_pages;
6196
6197 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6198}
6199
1da177e4
LT
6200/*
6201 * Set up the zone data structures:
6202 * - mark all pages reserved
6203 * - mark all memory queues empty
6204 * - clear the memory bitmaps
6527af5d
MK
6205 *
6206 * NOTE: pgdat should get zeroed by caller.
1da177e4 6207 */
7f3eb55b 6208static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6209{
2f1b6248 6210 enum zone_type j;
ed8ece2e 6211 int nid = pgdat->node_id;
1da177e4 6212
208d54e5 6213 pgdat_resize_init(pgdat);
8177a420
AA
6214#ifdef CONFIG_NUMA_BALANCING
6215 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6216 pgdat->numabalancing_migrate_nr_pages = 0;
6217 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6218#endif
6219#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6220 spin_lock_init(&pgdat->split_queue_lock);
6221 INIT_LIST_HEAD(&pgdat->split_queue);
6222 pgdat->split_queue_len = 0;
8177a420 6223#endif
1da177e4 6224 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6225 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6226#ifdef CONFIG_COMPACTION
6227 init_waitqueue_head(&pgdat->kcompactd_wait);
6228#endif
eefa864b 6229 pgdat_page_ext_init(pgdat);
a52633d8 6230 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6231 lruvec_init(node_lruvec(pgdat));
5f63b720 6232
385386cf
JW
6233 pgdat->per_cpu_nodestats = &boot_nodestats;
6234
1da177e4
LT
6235 for (j = 0; j < MAX_NR_ZONES; j++) {
6236 struct zone *zone = pgdat->node_zones + j;
e6943859 6237 unsigned long size, freesize, memmap_pages;
d91749c1 6238 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6239
febd5949 6240 size = zone->spanned_pages;
e6943859 6241 freesize = zone->present_pages;
1da177e4 6242
0e0b864e 6243 /*
9feedc9d 6244 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6245 * is used by this zone for memmap. This affects the watermark
6246 * and per-cpu initialisations
6247 */
e6943859 6248 memmap_pages = calc_memmap_size(size, freesize);
ba914f48
ZH
6249 if (!is_highmem_idx(j)) {
6250 if (freesize >= memmap_pages) {
6251 freesize -= memmap_pages;
6252 if (memmap_pages)
6253 printk(KERN_DEBUG
6254 " %s zone: %lu pages used for memmap\n",
6255 zone_names[j], memmap_pages);
6256 } else
1170532b 6257 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6258 zone_names[j], memmap_pages, freesize);
6259 }
0e0b864e 6260
6267276f 6261 /* Account for reserved pages */
9feedc9d
JL
6262 if (j == 0 && freesize > dma_reserve) {
6263 freesize -= dma_reserve;
d903ef9f 6264 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6265 zone_names[0], dma_reserve);
0e0b864e
MG
6266 }
6267
98d2b0eb 6268 if (!is_highmem_idx(j))
9feedc9d 6269 nr_kernel_pages += freesize;
01cefaef
JL
6270 /* Charge for highmem memmap if there are enough kernel pages */
6271 else if (nr_kernel_pages > memmap_pages * 2)
6272 nr_kernel_pages -= memmap_pages;
9feedc9d 6273 nr_all_pages += freesize;
1da177e4 6274
9feedc9d
JL
6275 /*
6276 * Set an approximate value for lowmem here, it will be adjusted
6277 * when the bootmem allocator frees pages into the buddy system.
6278 * And all highmem pages will be managed by the buddy system.
6279 */
e6943859 6280 zone->managed_pages = freesize;
9614634f 6281#ifdef CONFIG_NUMA
d5f541ed 6282 zone->node = nid;
9614634f 6283#endif
1da177e4 6284 zone->name = zone_names[j];
a52633d8 6285 zone->zone_pgdat = pgdat;
1da177e4 6286 spin_lock_init(&zone->lock);
bdc8cb98 6287 zone_seqlock_init(zone);
ed8ece2e 6288 zone_pcp_init(zone);
81c0a2bb 6289
d883c6cf 6290 if (!size)
1da177e4
LT
6291 continue;
6292
955c1cd7 6293 set_pageblock_order();
d883c6cf
JK
6294 setup_usemap(pgdat, zone, zone_start_pfn, size);
6295 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6296 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6297 }
6298}
6299
0cd842f9 6300#ifdef CONFIG_FLAT_NODE_MEM_MAP
bd721ea7 6301static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6302{
b0aeba74 6303 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6304 unsigned long __maybe_unused offset = 0;
6305
1da177e4
LT
6306 /* Skip empty nodes */
6307 if (!pgdat->node_spanned_pages)
6308 return;
6309
b0aeba74
TL
6310 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6311 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6312 /* ia64 gets its own node_mem_map, before this, without bootmem */
6313 if (!pgdat->node_mem_map) {
b0aeba74 6314 unsigned long size, end;
d41dee36
AW
6315 struct page *map;
6316
e984bb43
BP
6317 /*
6318 * The zone's endpoints aren't required to be MAX_ORDER
6319 * aligned but the node_mem_map endpoints must be in order
6320 * for the buddy allocator to function correctly.
6321 */
108bcc96 6322 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6323 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6324 size = (end - start) * sizeof(struct page);
79375ea3 6325 map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
a1c34a3b 6326 pgdat->node_mem_map = map + offset;
1da177e4 6327 }
0cd842f9
OS
6328 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6329 __func__, pgdat->node_id, (unsigned long)pgdat,
6330 (unsigned long)pgdat->node_mem_map);
12d810c1 6331#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6332 /*
6333 * With no DISCONTIG, the global mem_map is just set as node 0's
6334 */
c713216d 6335 if (pgdat == NODE_DATA(0)) {
1da177e4 6336 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6337#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6338 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6339 mem_map -= offset;
0ee332c1 6340#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6341 }
1da177e4
LT
6342#endif
6343}
0cd842f9
OS
6344#else
6345static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6346#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4 6347
9109fb7b
JW
6348void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6349 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6350{
9109fb7b 6351 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6352 unsigned long start_pfn = 0;
6353 unsigned long end_pfn = 0;
9109fb7b 6354
88fdf75d 6355 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6356 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6357
1da177e4
LT
6358 pgdat->node_id = nid;
6359 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6360 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6361#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6362 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6363 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6364 (u64)start_pfn << PAGE_SHIFT,
6365 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6366#else
6367 start_pfn = node_start_pfn;
7960aedd
ZY
6368#endif
6369 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6370 zones_size, zholes_size);
1da177e4
LT
6371
6372 alloc_node_mem_map(pgdat);
6373
c9e97a19
PT
6374#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6375 /*
6376 * We start only with one section of pages, more pages are added as
6377 * needed until the rest of deferred pages are initialized.
6378 */
6379 pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6380 pgdat->node_spanned_pages);
6381 pgdat->first_deferred_pfn = ULONG_MAX;
6382#endif
7f3eb55b 6383 free_area_init_core(pgdat);
1da177e4
LT
6384}
6385
a4a3ede2
PT
6386#ifdef CONFIG_HAVE_MEMBLOCK
6387/*
6388 * Only struct pages that are backed by physical memory are zeroed and
6389 * initialized by going through __init_single_page(). But, there are some
6390 * struct pages which are reserved in memblock allocator and their fields
6391 * may be accessed (for example page_to_pfn() on some configuration accesses
6392 * flags). We must explicitly zero those struct pages.
6393 */
6394void __paginginit zero_resv_unavail(void)
6395{
6396 phys_addr_t start, end;
6397 unsigned long pfn;
6398 u64 i, pgcnt;
6399
6400 /*
6401 * Loop through ranges that are reserved, but do not have reported
6402 * physical memory backing.
6403 */
6404 pgcnt = 0;
6405 for_each_resv_unavail_range(i, &start, &end) {
6406 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
e8c24773
DY
6407 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
6408 continue;
a4a3ede2
PT
6409 mm_zero_struct_page(pfn_to_page(pfn));
6410 pgcnt++;
6411 }
6412 }
6413
6414 /*
6415 * Struct pages that do not have backing memory. This could be because
6416 * firmware is using some of this memory, or for some other reasons.
6417 * Once memblock is changed so such behaviour is not allowed: i.e.
6418 * list of "reserved" memory must be a subset of list of "memory", then
6419 * this code can be removed.
6420 */
6421 if (pgcnt)
6422 pr_info("Reserved but unavailable: %lld pages", pgcnt);
6423}
6424#endif /* CONFIG_HAVE_MEMBLOCK */
6425
0ee332c1 6426#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6427
6428#if MAX_NUMNODES > 1
6429/*
6430 * Figure out the number of possible node ids.
6431 */
f9872caf 6432void __init setup_nr_node_ids(void)
418508c1 6433{
904a9553 6434 unsigned int highest;
418508c1 6435
904a9553 6436 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6437 nr_node_ids = highest + 1;
6438}
418508c1
MS
6439#endif
6440
1e01979c
TH
6441/**
6442 * node_map_pfn_alignment - determine the maximum internode alignment
6443 *
6444 * This function should be called after node map is populated and sorted.
6445 * It calculates the maximum power of two alignment which can distinguish
6446 * all the nodes.
6447 *
6448 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6449 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6450 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6451 * shifted, 1GiB is enough and this function will indicate so.
6452 *
6453 * This is used to test whether pfn -> nid mapping of the chosen memory
6454 * model has fine enough granularity to avoid incorrect mapping for the
6455 * populated node map.
6456 *
6457 * Returns the determined alignment in pfn's. 0 if there is no alignment
6458 * requirement (single node).
6459 */
6460unsigned long __init node_map_pfn_alignment(void)
6461{
6462 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6463 unsigned long start, end, mask;
1e01979c 6464 int last_nid = -1;
c13291a5 6465 int i, nid;
1e01979c 6466
c13291a5 6467 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6468 if (!start || last_nid < 0 || last_nid == nid) {
6469 last_nid = nid;
6470 last_end = end;
6471 continue;
6472 }
6473
6474 /*
6475 * Start with a mask granular enough to pin-point to the
6476 * start pfn and tick off bits one-by-one until it becomes
6477 * too coarse to separate the current node from the last.
6478 */
6479 mask = ~((1 << __ffs(start)) - 1);
6480 while (mask && last_end <= (start & (mask << 1)))
6481 mask <<= 1;
6482
6483 /* accumulate all internode masks */
6484 accl_mask |= mask;
6485 }
6486
6487 /* convert mask to number of pages */
6488 return ~accl_mask + 1;
6489}
6490
a6af2bc3 6491/* Find the lowest pfn for a node */
b69a7288 6492static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6493{
a6af2bc3 6494 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6495 unsigned long start_pfn;
6496 int i;
1abbfb41 6497
c13291a5
TH
6498 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6499 min_pfn = min(min_pfn, start_pfn);
c713216d 6500
a6af2bc3 6501 if (min_pfn == ULONG_MAX) {
1170532b 6502 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6503 return 0;
6504 }
6505
6506 return min_pfn;
c713216d
MG
6507}
6508
6509/**
6510 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6511 *
6512 * It returns the minimum PFN based on information provided via
7d018176 6513 * memblock_set_node().
c713216d
MG
6514 */
6515unsigned long __init find_min_pfn_with_active_regions(void)
6516{
6517 return find_min_pfn_for_node(MAX_NUMNODES);
6518}
6519
37b07e41
LS
6520/*
6521 * early_calculate_totalpages()
6522 * Sum pages in active regions for movable zone.
4b0ef1fe 6523 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6524 */
484f51f8 6525static unsigned long __init early_calculate_totalpages(void)
7e63efef 6526{
7e63efef 6527 unsigned long totalpages = 0;
c13291a5
TH
6528 unsigned long start_pfn, end_pfn;
6529 int i, nid;
6530
6531 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6532 unsigned long pages = end_pfn - start_pfn;
7e63efef 6533
37b07e41
LS
6534 totalpages += pages;
6535 if (pages)
4b0ef1fe 6536 node_set_state(nid, N_MEMORY);
37b07e41 6537 }
b8af2941 6538 return totalpages;
7e63efef
MG
6539}
6540
2a1e274a
MG
6541/*
6542 * Find the PFN the Movable zone begins in each node. Kernel memory
6543 * is spread evenly between nodes as long as the nodes have enough
6544 * memory. When they don't, some nodes will have more kernelcore than
6545 * others
6546 */
b224ef85 6547static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6548{
6549 int i, nid;
6550 unsigned long usable_startpfn;
6551 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6552 /* save the state before borrow the nodemask */
4b0ef1fe 6553 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6554 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6555 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6556 struct memblock_region *r;
b2f3eebe
TC
6557
6558 /* Need to find movable_zone earlier when movable_node is specified. */
6559 find_usable_zone_for_movable();
6560
6561 /*
6562 * If movable_node is specified, ignore kernelcore and movablecore
6563 * options.
6564 */
6565 if (movable_node_is_enabled()) {
136199f0
EM
6566 for_each_memblock(memory, r) {
6567 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6568 continue;
6569
136199f0 6570 nid = r->nid;
b2f3eebe 6571
136199f0 6572 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6573 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6574 min(usable_startpfn, zone_movable_pfn[nid]) :
6575 usable_startpfn;
6576 }
6577
6578 goto out2;
6579 }
2a1e274a 6580
342332e6
TI
6581 /*
6582 * If kernelcore=mirror is specified, ignore movablecore option
6583 */
6584 if (mirrored_kernelcore) {
6585 bool mem_below_4gb_not_mirrored = false;
6586
6587 for_each_memblock(memory, r) {
6588 if (memblock_is_mirror(r))
6589 continue;
6590
6591 nid = r->nid;
6592
6593 usable_startpfn = memblock_region_memory_base_pfn(r);
6594
6595 if (usable_startpfn < 0x100000) {
6596 mem_below_4gb_not_mirrored = true;
6597 continue;
6598 }
6599
6600 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6601 min(usable_startpfn, zone_movable_pfn[nid]) :
6602 usable_startpfn;
6603 }
6604
6605 if (mem_below_4gb_not_mirrored)
6606 pr_warn("This configuration results in unmirrored kernel memory.");
6607
6608 goto out2;
6609 }
6610
7e63efef 6611 /*
a5c6d650
DR
6612 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6613 * amount of necessary memory.
6614 */
6615 if (required_kernelcore_percent)
6616 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6617 10000UL;
6618 if (required_movablecore_percent)
6619 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6620 10000UL;
6621
6622 /*
6623 * If movablecore= was specified, calculate what size of
7e63efef
MG
6624 * kernelcore that corresponds so that memory usable for
6625 * any allocation type is evenly spread. If both kernelcore
6626 * and movablecore are specified, then the value of kernelcore
6627 * will be used for required_kernelcore if it's greater than
6628 * what movablecore would have allowed.
6629 */
6630 if (required_movablecore) {
7e63efef
MG
6631 unsigned long corepages;
6632
6633 /*
6634 * Round-up so that ZONE_MOVABLE is at least as large as what
6635 * was requested by the user
6636 */
6637 required_movablecore =
6638 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6639 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6640 corepages = totalpages - required_movablecore;
6641
6642 required_kernelcore = max(required_kernelcore, corepages);
6643 }
6644
bde304bd
XQ
6645 /*
6646 * If kernelcore was not specified or kernelcore size is larger
6647 * than totalpages, there is no ZONE_MOVABLE.
6648 */
6649 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6650 goto out;
2a1e274a
MG
6651
6652 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6653 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6654
6655restart:
6656 /* Spread kernelcore memory as evenly as possible throughout nodes */
6657 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6658 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6659 unsigned long start_pfn, end_pfn;
6660
2a1e274a
MG
6661 /*
6662 * Recalculate kernelcore_node if the division per node
6663 * now exceeds what is necessary to satisfy the requested
6664 * amount of memory for the kernel
6665 */
6666 if (required_kernelcore < kernelcore_node)
6667 kernelcore_node = required_kernelcore / usable_nodes;
6668
6669 /*
6670 * As the map is walked, we track how much memory is usable
6671 * by the kernel using kernelcore_remaining. When it is
6672 * 0, the rest of the node is usable by ZONE_MOVABLE
6673 */
6674 kernelcore_remaining = kernelcore_node;
6675
6676 /* Go through each range of PFNs within this node */
c13291a5 6677 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6678 unsigned long size_pages;
6679
c13291a5 6680 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6681 if (start_pfn >= end_pfn)
6682 continue;
6683
6684 /* Account for what is only usable for kernelcore */
6685 if (start_pfn < usable_startpfn) {
6686 unsigned long kernel_pages;
6687 kernel_pages = min(end_pfn, usable_startpfn)
6688 - start_pfn;
6689
6690 kernelcore_remaining -= min(kernel_pages,
6691 kernelcore_remaining);
6692 required_kernelcore -= min(kernel_pages,
6693 required_kernelcore);
6694
6695 /* Continue if range is now fully accounted */
6696 if (end_pfn <= usable_startpfn) {
6697
6698 /*
6699 * Push zone_movable_pfn to the end so
6700 * that if we have to rebalance
6701 * kernelcore across nodes, we will
6702 * not double account here
6703 */
6704 zone_movable_pfn[nid] = end_pfn;
6705 continue;
6706 }
6707 start_pfn = usable_startpfn;
6708 }
6709
6710 /*
6711 * The usable PFN range for ZONE_MOVABLE is from
6712 * start_pfn->end_pfn. Calculate size_pages as the
6713 * number of pages used as kernelcore
6714 */
6715 size_pages = end_pfn - start_pfn;
6716 if (size_pages > kernelcore_remaining)
6717 size_pages = kernelcore_remaining;
6718 zone_movable_pfn[nid] = start_pfn + size_pages;
6719
6720 /*
6721 * Some kernelcore has been met, update counts and
6722 * break if the kernelcore for this node has been
b8af2941 6723 * satisfied
2a1e274a
MG
6724 */
6725 required_kernelcore -= min(required_kernelcore,
6726 size_pages);
6727 kernelcore_remaining -= size_pages;
6728 if (!kernelcore_remaining)
6729 break;
6730 }
6731 }
6732
6733 /*
6734 * If there is still required_kernelcore, we do another pass with one
6735 * less node in the count. This will push zone_movable_pfn[nid] further
6736 * along on the nodes that still have memory until kernelcore is
b8af2941 6737 * satisfied
2a1e274a
MG
6738 */
6739 usable_nodes--;
6740 if (usable_nodes && required_kernelcore > usable_nodes)
6741 goto restart;
6742
b2f3eebe 6743out2:
2a1e274a
MG
6744 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6745 for (nid = 0; nid < MAX_NUMNODES; nid++)
6746 zone_movable_pfn[nid] =
6747 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6748
20e6926d 6749out:
66918dcd 6750 /* restore the node_state */
4b0ef1fe 6751 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6752}
6753
4b0ef1fe
LJ
6754/* Any regular or high memory on that node ? */
6755static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6756{
37b07e41
LS
6757 enum zone_type zone_type;
6758
4b0ef1fe
LJ
6759 if (N_MEMORY == N_NORMAL_MEMORY)
6760 return;
6761
6762 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6763 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6764 if (populated_zone(zone)) {
4b0ef1fe
LJ
6765 node_set_state(nid, N_HIGH_MEMORY);
6766 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6767 zone_type <= ZONE_NORMAL)
6768 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6769 break;
6770 }
37b07e41 6771 }
37b07e41
LS
6772}
6773
c713216d
MG
6774/**
6775 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6776 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6777 *
6778 * This will call free_area_init_node() for each active node in the system.
7d018176 6779 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6780 * zone in each node and their holes is calculated. If the maximum PFN
6781 * between two adjacent zones match, it is assumed that the zone is empty.
6782 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6783 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6784 * starts where the previous one ended. For example, ZONE_DMA32 starts
6785 * at arch_max_dma_pfn.
6786 */
6787void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6788{
c13291a5
TH
6789 unsigned long start_pfn, end_pfn;
6790 int i, nid;
a6af2bc3 6791
c713216d
MG
6792 /* Record where the zone boundaries are */
6793 memset(arch_zone_lowest_possible_pfn, 0,
6794 sizeof(arch_zone_lowest_possible_pfn));
6795 memset(arch_zone_highest_possible_pfn, 0,
6796 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6797
6798 start_pfn = find_min_pfn_with_active_regions();
6799
6800 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6801 if (i == ZONE_MOVABLE)
6802 continue;
90cae1fe
OH
6803
6804 end_pfn = max(max_zone_pfn[i], start_pfn);
6805 arch_zone_lowest_possible_pfn[i] = start_pfn;
6806 arch_zone_highest_possible_pfn[i] = end_pfn;
6807
6808 start_pfn = end_pfn;
c713216d 6809 }
2a1e274a
MG
6810
6811 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6812 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6813 find_zone_movable_pfns_for_nodes();
c713216d 6814
c713216d 6815 /* Print out the zone ranges */
f88dfff5 6816 pr_info("Zone ranges:\n");
2a1e274a
MG
6817 for (i = 0; i < MAX_NR_ZONES; i++) {
6818 if (i == ZONE_MOVABLE)
6819 continue;
f88dfff5 6820 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6821 if (arch_zone_lowest_possible_pfn[i] ==
6822 arch_zone_highest_possible_pfn[i])
f88dfff5 6823 pr_cont("empty\n");
72f0ba02 6824 else
8d29e18a
JG
6825 pr_cont("[mem %#018Lx-%#018Lx]\n",
6826 (u64)arch_zone_lowest_possible_pfn[i]
6827 << PAGE_SHIFT,
6828 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6829 << PAGE_SHIFT) - 1);
2a1e274a
MG
6830 }
6831
6832 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6833 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6834 for (i = 0; i < MAX_NUMNODES; i++) {
6835 if (zone_movable_pfn[i])
8d29e18a
JG
6836 pr_info(" Node %d: %#018Lx\n", i,
6837 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6838 }
c713216d 6839
f2d52fe5 6840 /* Print out the early node map */
f88dfff5 6841 pr_info("Early memory node ranges\n");
c13291a5 6842 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6843 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6844 (u64)start_pfn << PAGE_SHIFT,
6845 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6846
6847 /* Initialise every node */
708614e6 6848 mminit_verify_pageflags_layout();
8ef82866 6849 setup_nr_node_ids();
c713216d
MG
6850 for_each_online_node(nid) {
6851 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6852 free_area_init_node(nid, NULL,
c713216d 6853 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6854
6855 /* Any memory on that node */
6856 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6857 node_set_state(nid, N_MEMORY);
6858 check_for_memory(pgdat, nid);
c713216d 6859 }
a4a3ede2 6860 zero_resv_unavail();
c713216d 6861}
2a1e274a 6862
a5c6d650
DR
6863static int __init cmdline_parse_core(char *p, unsigned long *core,
6864 unsigned long *percent)
2a1e274a
MG
6865{
6866 unsigned long long coremem;
a5c6d650
DR
6867 char *endptr;
6868
2a1e274a
MG
6869 if (!p)
6870 return -EINVAL;
6871
a5c6d650
DR
6872 /* Value may be a percentage of total memory, otherwise bytes */
6873 coremem = simple_strtoull(p, &endptr, 0);
6874 if (*endptr == '%') {
6875 /* Paranoid check for percent values greater than 100 */
6876 WARN_ON(coremem > 100);
2a1e274a 6877
a5c6d650
DR
6878 *percent = coremem;
6879 } else {
6880 coremem = memparse(p, &p);
6881 /* Paranoid check that UL is enough for the coremem value */
6882 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
2a1e274a 6883
a5c6d650
DR
6884 *core = coremem >> PAGE_SHIFT;
6885 *percent = 0UL;
6886 }
2a1e274a
MG
6887 return 0;
6888}
ed7ed365 6889
7e63efef
MG
6890/*
6891 * kernelcore=size sets the amount of memory for use for allocations that
6892 * cannot be reclaimed or migrated.
6893 */
6894static int __init cmdline_parse_kernelcore(char *p)
6895{
342332e6
TI
6896 /* parse kernelcore=mirror */
6897 if (parse_option_str(p, "mirror")) {
6898 mirrored_kernelcore = true;
6899 return 0;
6900 }
6901
a5c6d650
DR
6902 return cmdline_parse_core(p, &required_kernelcore,
6903 &required_kernelcore_percent);
7e63efef
MG
6904}
6905
6906/*
6907 * movablecore=size sets the amount of memory for use for allocations that
6908 * can be reclaimed or migrated.
6909 */
6910static int __init cmdline_parse_movablecore(char *p)
6911{
a5c6d650
DR
6912 return cmdline_parse_core(p, &required_movablecore,
6913 &required_movablecore_percent);
7e63efef
MG
6914}
6915
ed7ed365 6916early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6917early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6918
0ee332c1 6919#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6920
c3d5f5f0
JL
6921void adjust_managed_page_count(struct page *page, long count)
6922{
6923 spin_lock(&managed_page_count_lock);
6924 page_zone(page)->managed_pages += count;
6925 totalram_pages += count;
3dcc0571
JL
6926#ifdef CONFIG_HIGHMEM
6927 if (PageHighMem(page))
6928 totalhigh_pages += count;
6929#endif
c3d5f5f0
JL
6930 spin_unlock(&managed_page_count_lock);
6931}
3dcc0571 6932EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6933
11199692 6934unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6935{
11199692
JL
6936 void *pos;
6937 unsigned long pages = 0;
69afade7 6938
11199692
JL
6939 start = (void *)PAGE_ALIGN((unsigned long)start);
6940 end = (void *)((unsigned long)end & PAGE_MASK);
6941 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6942 if ((unsigned int)poison <= 0xFF)
11199692
JL
6943 memset(pos, poison, PAGE_SIZE);
6944 free_reserved_page(virt_to_page(pos));
69afade7
JL
6945 }
6946
6947 if (pages && s)
adb1fe9a
JP
6948 pr_info("Freeing %s memory: %ldK\n",
6949 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6950
6951 return pages;
6952}
11199692 6953EXPORT_SYMBOL(free_reserved_area);
69afade7 6954
cfa11e08
JL
6955#ifdef CONFIG_HIGHMEM
6956void free_highmem_page(struct page *page)
6957{
6958 __free_reserved_page(page);
6959 totalram_pages++;
7b4b2a0d 6960 page_zone(page)->managed_pages++;
cfa11e08
JL
6961 totalhigh_pages++;
6962}
6963#endif
6964
7ee3d4e8
JL
6965
6966void __init mem_init_print_info(const char *str)
6967{
6968 unsigned long physpages, codesize, datasize, rosize, bss_size;
6969 unsigned long init_code_size, init_data_size;
6970
6971 physpages = get_num_physpages();
6972 codesize = _etext - _stext;
6973 datasize = _edata - _sdata;
6974 rosize = __end_rodata - __start_rodata;
6975 bss_size = __bss_stop - __bss_start;
6976 init_data_size = __init_end - __init_begin;
6977 init_code_size = _einittext - _sinittext;
6978
6979 /*
6980 * Detect special cases and adjust section sizes accordingly:
6981 * 1) .init.* may be embedded into .data sections
6982 * 2) .init.text.* may be out of [__init_begin, __init_end],
6983 * please refer to arch/tile/kernel/vmlinux.lds.S.
6984 * 3) .rodata.* may be embedded into .text or .data sections.
6985 */
6986#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6987 do { \
6988 if (start <= pos && pos < end && size > adj) \
6989 size -= adj; \
6990 } while (0)
7ee3d4e8
JL
6991
6992 adj_init_size(__init_begin, __init_end, init_data_size,
6993 _sinittext, init_code_size);
6994 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6995 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6996 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6997 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6998
6999#undef adj_init_size
7000
756a025f 7001 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 7002#ifdef CONFIG_HIGHMEM
756a025f 7003 ", %luK highmem"
7ee3d4e8 7004#endif
756a025f
JP
7005 "%s%s)\n",
7006 nr_free_pages() << (PAGE_SHIFT - 10),
7007 physpages << (PAGE_SHIFT - 10),
7008 codesize >> 10, datasize >> 10, rosize >> 10,
7009 (init_data_size + init_code_size) >> 10, bss_size >> 10,
7010 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7011 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7012#ifdef CONFIG_HIGHMEM
756a025f 7013 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 7014#endif
756a025f 7015 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
7016}
7017
0e0b864e 7018/**
88ca3b94
RD
7019 * set_dma_reserve - set the specified number of pages reserved in the first zone
7020 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 7021 *
013110a7 7022 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
7023 * In the DMA zone, a significant percentage may be consumed by kernel image
7024 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
7025 * function may optionally be used to account for unfreeable pages in the
7026 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7027 * smaller per-cpu batchsize.
0e0b864e
MG
7028 */
7029void __init set_dma_reserve(unsigned long new_dma_reserve)
7030{
7031 dma_reserve = new_dma_reserve;
7032}
7033
1da177e4
LT
7034void __init free_area_init(unsigned long *zones_size)
7035{
9109fb7b 7036 free_area_init_node(0, zones_size,
1da177e4 7037 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
a4a3ede2 7038 zero_resv_unavail();
1da177e4 7039}
1da177e4 7040
005fd4bb 7041static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 7042{
1da177e4 7043
005fd4bb
SAS
7044 lru_add_drain_cpu(cpu);
7045 drain_pages(cpu);
9f8f2172 7046
005fd4bb
SAS
7047 /*
7048 * Spill the event counters of the dead processor
7049 * into the current processors event counters.
7050 * This artificially elevates the count of the current
7051 * processor.
7052 */
7053 vm_events_fold_cpu(cpu);
9f8f2172 7054
005fd4bb
SAS
7055 /*
7056 * Zero the differential counters of the dead processor
7057 * so that the vm statistics are consistent.
7058 *
7059 * This is only okay since the processor is dead and cannot
7060 * race with what we are doing.
7061 */
7062 cpu_vm_stats_fold(cpu);
7063 return 0;
1da177e4 7064}
1da177e4
LT
7065
7066void __init page_alloc_init(void)
7067{
005fd4bb
SAS
7068 int ret;
7069
7070 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7071 "mm/page_alloc:dead", NULL,
7072 page_alloc_cpu_dead);
7073 WARN_ON(ret < 0);
1da177e4
LT
7074}
7075
cb45b0e9 7076/*
34b10060 7077 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
7078 * or min_free_kbytes changes.
7079 */
7080static void calculate_totalreserve_pages(void)
7081{
7082 struct pglist_data *pgdat;
7083 unsigned long reserve_pages = 0;
2f6726e5 7084 enum zone_type i, j;
cb45b0e9
HA
7085
7086 for_each_online_pgdat(pgdat) {
281e3726
MG
7087
7088 pgdat->totalreserve_pages = 0;
7089
cb45b0e9
HA
7090 for (i = 0; i < MAX_NR_ZONES; i++) {
7091 struct zone *zone = pgdat->node_zones + i;
3484b2de 7092 long max = 0;
cb45b0e9
HA
7093
7094 /* Find valid and maximum lowmem_reserve in the zone */
7095 for (j = i; j < MAX_NR_ZONES; j++) {
7096 if (zone->lowmem_reserve[j] > max)
7097 max = zone->lowmem_reserve[j];
7098 }
7099
41858966
MG
7100 /* we treat the high watermark as reserved pages. */
7101 max += high_wmark_pages(zone);
cb45b0e9 7102
b40da049
JL
7103 if (max > zone->managed_pages)
7104 max = zone->managed_pages;
a8d01437 7105
281e3726 7106 pgdat->totalreserve_pages += max;
a8d01437 7107
cb45b0e9
HA
7108 reserve_pages += max;
7109 }
7110 }
7111 totalreserve_pages = reserve_pages;
7112}
7113
1da177e4
LT
7114/*
7115 * setup_per_zone_lowmem_reserve - called whenever
34b10060 7116 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
7117 * has a correct pages reserved value, so an adequate number of
7118 * pages are left in the zone after a successful __alloc_pages().
7119 */
7120static void setup_per_zone_lowmem_reserve(void)
7121{
7122 struct pglist_data *pgdat;
2f6726e5 7123 enum zone_type j, idx;
1da177e4 7124
ec936fc5 7125 for_each_online_pgdat(pgdat) {
1da177e4
LT
7126 for (j = 0; j < MAX_NR_ZONES; j++) {
7127 struct zone *zone = pgdat->node_zones + j;
b40da049 7128 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
7129
7130 zone->lowmem_reserve[j] = 0;
7131
2f6726e5
CL
7132 idx = j;
7133 while (idx) {
1da177e4
LT
7134 struct zone *lower_zone;
7135
2f6726e5 7136 idx--;
1da177e4 7137 lower_zone = pgdat->node_zones + idx;
d3cda233
JK
7138
7139 if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7140 sysctl_lowmem_reserve_ratio[idx] = 0;
7141 lower_zone->lowmem_reserve[j] = 0;
7142 } else {
7143 lower_zone->lowmem_reserve[j] =
7144 managed_pages / sysctl_lowmem_reserve_ratio[idx];
7145 }
b40da049 7146 managed_pages += lower_zone->managed_pages;
1da177e4
LT
7147 }
7148 }
7149 }
cb45b0e9
HA
7150
7151 /* update totalreserve_pages */
7152 calculate_totalreserve_pages();
1da177e4
LT
7153}
7154
cfd3da1e 7155static void __setup_per_zone_wmarks(void)
1da177e4
LT
7156{
7157 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7158 unsigned long lowmem_pages = 0;
7159 struct zone *zone;
7160 unsigned long flags;
7161
7162 /* Calculate total number of !ZONE_HIGHMEM pages */
7163 for_each_zone(zone) {
7164 if (!is_highmem(zone))
b40da049 7165 lowmem_pages += zone->managed_pages;
1da177e4
LT
7166 }
7167
7168 for_each_zone(zone) {
ac924c60
AM
7169 u64 tmp;
7170
1125b4e3 7171 spin_lock_irqsave(&zone->lock, flags);
b40da049 7172 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 7173 do_div(tmp, lowmem_pages);
1da177e4
LT
7174 if (is_highmem(zone)) {
7175 /*
669ed175
NP
7176 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7177 * need highmem pages, so cap pages_min to a small
7178 * value here.
7179 *
41858966 7180 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 7181 * deltas control asynch page reclaim, and so should
669ed175 7182 * not be capped for highmem.
1da177e4 7183 */
90ae8d67 7184 unsigned long min_pages;
1da177e4 7185
b40da049 7186 min_pages = zone->managed_pages / 1024;
90ae8d67 7187 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 7188 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 7189 } else {
669ed175
NP
7190 /*
7191 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
7192 * proportionate to the zone's size.
7193 */
41858966 7194 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
7195 }
7196
795ae7a0
JW
7197 /*
7198 * Set the kswapd watermarks distance according to the
7199 * scale factor in proportion to available memory, but
7200 * ensure a minimum size on small systems.
7201 */
7202 tmp = max_t(u64, tmp >> 2,
7203 mult_frac(zone->managed_pages,
7204 watermark_scale_factor, 10000));
7205
7206 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
7207 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 7208
1125b4e3 7209 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7210 }
cb45b0e9
HA
7211
7212 /* update totalreserve_pages */
7213 calculate_totalreserve_pages();
1da177e4
LT
7214}
7215
cfd3da1e
MG
7216/**
7217 * setup_per_zone_wmarks - called when min_free_kbytes changes
7218 * or when memory is hot-{added|removed}
7219 *
7220 * Ensures that the watermark[min,low,high] values for each zone are set
7221 * correctly with respect to min_free_kbytes.
7222 */
7223void setup_per_zone_wmarks(void)
7224{
b93e0f32
MH
7225 static DEFINE_SPINLOCK(lock);
7226
7227 spin_lock(&lock);
cfd3da1e 7228 __setup_per_zone_wmarks();
b93e0f32 7229 spin_unlock(&lock);
cfd3da1e
MG
7230}
7231
1da177e4
LT
7232/*
7233 * Initialise min_free_kbytes.
7234 *
7235 * For small machines we want it small (128k min). For large machines
7236 * we want it large (64MB max). But it is not linear, because network
7237 * bandwidth does not increase linearly with machine size. We use
7238 *
b8af2941 7239 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7240 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7241 *
7242 * which yields
7243 *
7244 * 16MB: 512k
7245 * 32MB: 724k
7246 * 64MB: 1024k
7247 * 128MB: 1448k
7248 * 256MB: 2048k
7249 * 512MB: 2896k
7250 * 1024MB: 4096k
7251 * 2048MB: 5792k
7252 * 4096MB: 8192k
7253 * 8192MB: 11584k
7254 * 16384MB: 16384k
7255 */
1b79acc9 7256int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7257{
7258 unsigned long lowmem_kbytes;
5f12733e 7259 int new_min_free_kbytes;
1da177e4
LT
7260
7261 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7262 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7263
7264 if (new_min_free_kbytes > user_min_free_kbytes) {
7265 min_free_kbytes = new_min_free_kbytes;
7266 if (min_free_kbytes < 128)
7267 min_free_kbytes = 128;
7268 if (min_free_kbytes > 65536)
7269 min_free_kbytes = 65536;
7270 } else {
7271 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7272 new_min_free_kbytes, user_min_free_kbytes);
7273 }
bc75d33f 7274 setup_per_zone_wmarks();
a6cccdc3 7275 refresh_zone_stat_thresholds();
1da177e4 7276 setup_per_zone_lowmem_reserve();
6423aa81
JK
7277
7278#ifdef CONFIG_NUMA
7279 setup_min_unmapped_ratio();
7280 setup_min_slab_ratio();
7281#endif
7282
1da177e4
LT
7283 return 0;
7284}
bc22af74 7285core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7286
7287/*
b8af2941 7288 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
7289 * that we can call two helper functions whenever min_free_kbytes
7290 * changes.
7291 */
cccad5b9 7292int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7293 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7294{
da8c757b
HP
7295 int rc;
7296
7297 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7298 if (rc)
7299 return rc;
7300
5f12733e
MH
7301 if (write) {
7302 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7303 setup_per_zone_wmarks();
5f12733e 7304 }
1da177e4
LT
7305 return 0;
7306}
7307
795ae7a0
JW
7308int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7309 void __user *buffer, size_t *length, loff_t *ppos)
7310{
7311 int rc;
7312
7313 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7314 if (rc)
7315 return rc;
7316
7317 if (write)
7318 setup_per_zone_wmarks();
7319
7320 return 0;
7321}
7322
9614634f 7323#ifdef CONFIG_NUMA
6423aa81 7324static void setup_min_unmapped_ratio(void)
9614634f 7325{
6423aa81 7326 pg_data_t *pgdat;
9614634f 7327 struct zone *zone;
9614634f 7328
a5f5f91d 7329 for_each_online_pgdat(pgdat)
81cbcbc2 7330 pgdat->min_unmapped_pages = 0;
a5f5f91d 7331
9614634f 7332 for_each_zone(zone)
a5f5f91d 7333 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7334 sysctl_min_unmapped_ratio) / 100;
9614634f 7335}
0ff38490 7336
6423aa81
JK
7337
7338int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7339 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7340{
0ff38490
CL
7341 int rc;
7342
8d65af78 7343 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7344 if (rc)
7345 return rc;
7346
6423aa81
JK
7347 setup_min_unmapped_ratio();
7348
7349 return 0;
7350}
7351
7352static void setup_min_slab_ratio(void)
7353{
7354 pg_data_t *pgdat;
7355 struct zone *zone;
7356
a5f5f91d
MG
7357 for_each_online_pgdat(pgdat)
7358 pgdat->min_slab_pages = 0;
7359
0ff38490 7360 for_each_zone(zone)
a5f5f91d 7361 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7362 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7363}
7364
7365int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7366 void __user *buffer, size_t *length, loff_t *ppos)
7367{
7368 int rc;
7369
7370 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7371 if (rc)
7372 return rc;
7373
7374 setup_min_slab_ratio();
7375
0ff38490
CL
7376 return 0;
7377}
9614634f
CL
7378#endif
7379
1da177e4
LT
7380/*
7381 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7382 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7383 * whenever sysctl_lowmem_reserve_ratio changes.
7384 *
7385 * The reserve ratio obviously has absolutely no relation with the
41858966 7386 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7387 * if in function of the boot time zone sizes.
7388 */
cccad5b9 7389int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7390 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7391{
8d65af78 7392 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7393 setup_per_zone_lowmem_reserve();
7394 return 0;
7395}
7396
8ad4b1fb
RS
7397/*
7398 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7399 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7400 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7401 */
cccad5b9 7402int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7403 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7404{
7405 struct zone *zone;
7cd2b0a3 7406 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7407 int ret;
7408
7cd2b0a3
DR
7409 mutex_lock(&pcp_batch_high_lock);
7410 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7411
8d65af78 7412 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7413 if (!write || ret < 0)
7414 goto out;
7415
7416 /* Sanity checking to avoid pcp imbalance */
7417 if (percpu_pagelist_fraction &&
7418 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7419 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7420 ret = -EINVAL;
7421 goto out;
7422 }
7423
7424 /* No change? */
7425 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7426 goto out;
c8e251fa 7427
364df0eb 7428 for_each_populated_zone(zone) {
7cd2b0a3
DR
7429 unsigned int cpu;
7430
22a7f12b 7431 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7432 pageset_set_high_and_batch(zone,
7433 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7434 }
7cd2b0a3 7435out:
c8e251fa 7436 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7437 return ret;
8ad4b1fb
RS
7438}
7439
a9919c79 7440#ifdef CONFIG_NUMA
f034b5d4 7441int hashdist = HASHDIST_DEFAULT;
1da177e4 7442
1da177e4
LT
7443static int __init set_hashdist(char *str)
7444{
7445 if (!str)
7446 return 0;
7447 hashdist = simple_strtoul(str, &str, 0);
7448 return 1;
7449}
7450__setup("hashdist=", set_hashdist);
7451#endif
7452
f6f34b43
SD
7453#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7454/*
7455 * Returns the number of pages that arch has reserved but
7456 * is not known to alloc_large_system_hash().
7457 */
7458static unsigned long __init arch_reserved_kernel_pages(void)
7459{
7460 return 0;
7461}
7462#endif
7463
9017217b
PT
7464/*
7465 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7466 * machines. As memory size is increased the scale is also increased but at
7467 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7468 * quadruples the scale is increased by one, which means the size of hash table
7469 * only doubles, instead of quadrupling as well.
7470 * Because 32-bit systems cannot have large physical memory, where this scaling
7471 * makes sense, it is disabled on such platforms.
7472 */
7473#if __BITS_PER_LONG > 32
7474#define ADAPT_SCALE_BASE (64ul << 30)
7475#define ADAPT_SCALE_SHIFT 2
7476#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7477#endif
7478
1da177e4
LT
7479/*
7480 * allocate a large system hash table from bootmem
7481 * - it is assumed that the hash table must contain an exact power-of-2
7482 * quantity of entries
7483 * - limit is the number of hash buckets, not the total allocation size
7484 */
7485void *__init alloc_large_system_hash(const char *tablename,
7486 unsigned long bucketsize,
7487 unsigned long numentries,
7488 int scale,
7489 int flags,
7490 unsigned int *_hash_shift,
7491 unsigned int *_hash_mask,
31fe62b9
TB
7492 unsigned long low_limit,
7493 unsigned long high_limit)
1da177e4 7494{
31fe62b9 7495 unsigned long long max = high_limit;
1da177e4
LT
7496 unsigned long log2qty, size;
7497 void *table = NULL;
3749a8f0 7498 gfp_t gfp_flags;
1da177e4
LT
7499
7500 /* allow the kernel cmdline to have a say */
7501 if (!numentries) {
7502 /* round applicable memory size up to nearest megabyte */
04903664 7503 numentries = nr_kernel_pages;
f6f34b43 7504 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7505
7506 /* It isn't necessary when PAGE_SIZE >= 1MB */
7507 if (PAGE_SHIFT < 20)
7508 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7509
9017217b
PT
7510#if __BITS_PER_LONG > 32
7511 if (!high_limit) {
7512 unsigned long adapt;
7513
7514 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7515 adapt <<= ADAPT_SCALE_SHIFT)
7516 scale++;
7517 }
7518#endif
7519
1da177e4
LT
7520 /* limit to 1 bucket per 2^scale bytes of low memory */
7521 if (scale > PAGE_SHIFT)
7522 numentries >>= (scale - PAGE_SHIFT);
7523 else
7524 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7525
7526 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7527 if (unlikely(flags & HASH_SMALL)) {
7528 /* Makes no sense without HASH_EARLY */
7529 WARN_ON(!(flags & HASH_EARLY));
7530 if (!(numentries >> *_hash_shift)) {
7531 numentries = 1UL << *_hash_shift;
7532 BUG_ON(!numentries);
7533 }
7534 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7535 numentries = PAGE_SIZE / bucketsize;
1da177e4 7536 }
6e692ed3 7537 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7538
7539 /* limit allocation size to 1/16 total memory by default */
7540 if (max == 0) {
7541 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7542 do_div(max, bucketsize);
7543 }
074b8517 7544 max = min(max, 0x80000000ULL);
1da177e4 7545
31fe62b9
TB
7546 if (numentries < low_limit)
7547 numentries = low_limit;
1da177e4
LT
7548 if (numentries > max)
7549 numentries = max;
7550
f0d1b0b3 7551 log2qty = ilog2(numentries);
1da177e4 7552
3749a8f0 7553 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7554 do {
7555 size = bucketsize << log2qty;
ea1f5f37
PT
7556 if (flags & HASH_EARLY) {
7557 if (flags & HASH_ZERO)
7558 table = memblock_virt_alloc_nopanic(size, 0);
7559 else
7560 table = memblock_virt_alloc_raw(size, 0);
7561 } else if (hashdist) {
3749a8f0 7562 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
ea1f5f37 7563 } else {
1037b83b
ED
7564 /*
7565 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7566 * some pages at the end of hash table which
7567 * alloc_pages_exact() automatically does
1037b83b 7568 */
264ef8a9 7569 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7570 table = alloc_pages_exact(size, gfp_flags);
7571 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7572 }
1da177e4
LT
7573 }
7574 } while (!table && size > PAGE_SIZE && --log2qty);
7575
7576 if (!table)
7577 panic("Failed to allocate %s hash table\n", tablename);
7578
1170532b
JP
7579 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7580 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7581
7582 if (_hash_shift)
7583 *_hash_shift = log2qty;
7584 if (_hash_mask)
7585 *_hash_mask = (1 << log2qty) - 1;
7586
7587 return table;
7588}
a117e66e 7589
a5d76b54 7590/*
80934513
MK
7591 * This function checks whether pageblock includes unmovable pages or not.
7592 * If @count is not zero, it is okay to include less @count unmovable pages
7593 *
b8af2941 7594 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7595 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7596 * check without lock_page also may miss some movable non-lru pages at
7597 * race condition. So you can't expect this function should be exact.
a5d76b54 7598 */
b023f468 7599bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
4da2ce25 7600 int migratetype,
b023f468 7601 bool skip_hwpoisoned_pages)
49ac8255
KH
7602{
7603 unsigned long pfn, iter, found;
47118af0 7604
49ac8255 7605 /*
15c30bc0
MH
7606 * TODO we could make this much more efficient by not checking every
7607 * page in the range if we know all of them are in MOVABLE_ZONE and
7608 * that the movable zone guarantees that pages are migratable but
7609 * the later is not the case right now unfortunatelly. E.g. movablecore
7610 * can still lead to having bootmem allocations in zone_movable.
49ac8255 7611 */
49ac8255 7612
4da2ce25
MH
7613 /*
7614 * CMA allocations (alloc_contig_range) really need to mark isolate
7615 * CMA pageblocks even when they are not movable in fact so consider
7616 * them movable here.
7617 */
7618 if (is_migrate_cma(migratetype) &&
7619 is_migrate_cma(get_pageblock_migratetype(page)))
7620 return false;
7621
49ac8255
KH
7622 pfn = page_to_pfn(page);
7623 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7624 unsigned long check = pfn + iter;
7625
29723fcc 7626 if (!pfn_valid_within(check))
49ac8255 7627 continue;
29723fcc 7628
49ac8255 7629 page = pfn_to_page(check);
c8721bbb 7630
d7ab3672 7631 if (PageReserved(page))
15c30bc0 7632 goto unmovable;
d7ab3672 7633
c8721bbb
NH
7634 /*
7635 * Hugepages are not in LRU lists, but they're movable.
7636 * We need not scan over tail pages bacause we don't
7637 * handle each tail page individually in migration.
7638 */
7639 if (PageHuge(page)) {
7640 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7641 continue;
7642 }
7643
97d255c8
MK
7644 /*
7645 * We can't use page_count without pin a page
7646 * because another CPU can free compound page.
7647 * This check already skips compound tails of THP
0139aa7b 7648 * because their page->_refcount is zero at all time.
97d255c8 7649 */
fe896d18 7650 if (!page_ref_count(page)) {
49ac8255
KH
7651 if (PageBuddy(page))
7652 iter += (1 << page_order(page)) - 1;
7653 continue;
7654 }
97d255c8 7655
b023f468
WC
7656 /*
7657 * The HWPoisoned page may be not in buddy system, and
7658 * page_count() is not 0.
7659 */
7660 if (skip_hwpoisoned_pages && PageHWPoison(page))
7661 continue;
7662
0efadf48
YX
7663 if (__PageMovable(page))
7664 continue;
7665
49ac8255
KH
7666 if (!PageLRU(page))
7667 found++;
7668 /*
6b4f7799
JW
7669 * If there are RECLAIMABLE pages, we need to check
7670 * it. But now, memory offline itself doesn't call
7671 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7672 */
7673 /*
7674 * If the page is not RAM, page_count()should be 0.
7675 * we don't need more check. This is an _used_ not-movable page.
7676 *
7677 * The problematic thing here is PG_reserved pages. PG_reserved
7678 * is set to both of a memory hole page and a _used_ kernel
7679 * page at boot.
7680 */
7681 if (found > count)
15c30bc0 7682 goto unmovable;
49ac8255 7683 }
80934513 7684 return false;
15c30bc0
MH
7685unmovable:
7686 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7687 return true;
49ac8255
KH
7688}
7689
080fe206 7690#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7691
7692static unsigned long pfn_max_align_down(unsigned long pfn)
7693{
7694 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7695 pageblock_nr_pages) - 1);
7696}
7697
7698static unsigned long pfn_max_align_up(unsigned long pfn)
7699{
7700 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7701 pageblock_nr_pages));
7702}
7703
041d3a8c 7704/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7705static int __alloc_contig_migrate_range(struct compact_control *cc,
7706 unsigned long start, unsigned long end)
041d3a8c
MN
7707{
7708 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7709 unsigned long nr_reclaimed;
041d3a8c
MN
7710 unsigned long pfn = start;
7711 unsigned int tries = 0;
7712 int ret = 0;
7713
be49a6e1 7714 migrate_prep();
041d3a8c 7715
bb13ffeb 7716 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7717 if (fatal_signal_pending(current)) {
7718 ret = -EINTR;
7719 break;
7720 }
7721
bb13ffeb
MG
7722 if (list_empty(&cc->migratepages)) {
7723 cc->nr_migratepages = 0;
edc2ca61 7724 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7725 if (!pfn) {
7726 ret = -EINTR;
7727 break;
7728 }
7729 tries = 0;
7730 } else if (++tries == 5) {
7731 ret = ret < 0 ? ret : -EBUSY;
7732 break;
7733 }
7734
beb51eaa
MK
7735 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7736 &cc->migratepages);
7737 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7738
9c620e2b 7739 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
31025351 7740 NULL, 0, cc->mode, MR_CONTIG_RANGE);
041d3a8c 7741 }
2a6f5124
SP
7742 if (ret < 0) {
7743 putback_movable_pages(&cc->migratepages);
7744 return ret;
7745 }
7746 return 0;
041d3a8c
MN
7747}
7748
7749/**
7750 * alloc_contig_range() -- tries to allocate given range of pages
7751 * @start: start PFN to allocate
7752 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7753 * @migratetype: migratetype of the underlaying pageblocks (either
7754 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7755 * in range must have the same migratetype and it must
7756 * be either of the two.
ca96b625 7757 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7758 *
7759 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
2c7452a0 7760 * aligned. The PFN range must belong to a single zone.
041d3a8c 7761 *
2c7452a0
MK
7762 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7763 * pageblocks in the range. Once isolated, the pageblocks should not
7764 * be modified by others.
041d3a8c
MN
7765 *
7766 * Returns zero on success or negative error code. On success all
7767 * pages which PFN is in [start, end) are allocated for the caller and
7768 * need to be freed with free_contig_range().
7769 */
0815f3d8 7770int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 7771 unsigned migratetype, gfp_t gfp_mask)
041d3a8c 7772{
041d3a8c 7773 unsigned long outer_start, outer_end;
d00181b9
KS
7774 unsigned int order;
7775 int ret = 0;
041d3a8c 7776
bb13ffeb
MG
7777 struct compact_control cc = {
7778 .nr_migratepages = 0,
7779 .order = -1,
7780 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7781 .mode = MIGRATE_SYNC,
bb13ffeb 7782 .ignore_skip_hint = true,
2583d671 7783 .no_set_skip_hint = true,
7dea19f9 7784 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7785 };
7786 INIT_LIST_HEAD(&cc.migratepages);
7787
041d3a8c
MN
7788 /*
7789 * What we do here is we mark all pageblocks in range as
7790 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7791 * have different sizes, and due to the way page allocator
7792 * work, we align the range to biggest of the two pages so
7793 * that page allocator won't try to merge buddies from
7794 * different pageblocks and change MIGRATE_ISOLATE to some
7795 * other migration type.
7796 *
7797 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7798 * migrate the pages from an unaligned range (ie. pages that
7799 * we are interested in). This will put all the pages in
7800 * range back to page allocator as MIGRATE_ISOLATE.
7801 *
7802 * When this is done, we take the pages in range from page
7803 * allocator removing them from the buddy system. This way
7804 * page allocator will never consider using them.
7805 *
7806 * This lets us mark the pageblocks back as
7807 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7808 * aligned range but not in the unaligned, original range are
7809 * put back to page allocator so that buddy can use them.
7810 */
7811
7812 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7813 pfn_max_align_up(end), migratetype,
7814 false);
041d3a8c 7815 if (ret)
86a595f9 7816 return ret;
041d3a8c 7817
8ef5849f
JK
7818 /*
7819 * In case of -EBUSY, we'd like to know which page causes problem.
63cd4489
MK
7820 * So, just fall through. test_pages_isolated() has a tracepoint
7821 * which will report the busy page.
7822 *
7823 * It is possible that busy pages could become available before
7824 * the call to test_pages_isolated, and the range will actually be
7825 * allocated. So, if we fall through be sure to clear ret so that
7826 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7827 */
bb13ffeb 7828 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7829 if (ret && ret != -EBUSY)
041d3a8c 7830 goto done;
63cd4489 7831 ret =0;
041d3a8c
MN
7832
7833 /*
7834 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7835 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7836 * more, all pages in [start, end) are free in page allocator.
7837 * What we are going to do is to allocate all pages from
7838 * [start, end) (that is remove them from page allocator).
7839 *
7840 * The only problem is that pages at the beginning and at the
7841 * end of interesting range may be not aligned with pages that
7842 * page allocator holds, ie. they can be part of higher order
7843 * pages. Because of this, we reserve the bigger range and
7844 * once this is done free the pages we are not interested in.
7845 *
7846 * We don't have to hold zone->lock here because the pages are
7847 * isolated thus they won't get removed from buddy.
7848 */
7849
7850 lru_add_drain_all();
510f5507 7851 drain_all_pages(cc.zone);
041d3a8c
MN
7852
7853 order = 0;
7854 outer_start = start;
7855 while (!PageBuddy(pfn_to_page(outer_start))) {
7856 if (++order >= MAX_ORDER) {
8ef5849f
JK
7857 outer_start = start;
7858 break;
041d3a8c
MN
7859 }
7860 outer_start &= ~0UL << order;
7861 }
7862
8ef5849f
JK
7863 if (outer_start != start) {
7864 order = page_order(pfn_to_page(outer_start));
7865
7866 /*
7867 * outer_start page could be small order buddy page and
7868 * it doesn't include start page. Adjust outer_start
7869 * in this case to report failed page properly
7870 * on tracepoint in test_pages_isolated()
7871 */
7872 if (outer_start + (1UL << order) <= start)
7873 outer_start = start;
7874 }
7875
041d3a8c 7876 /* Make sure the range is really isolated. */
b023f468 7877 if (test_pages_isolated(outer_start, end, false)) {
75dddef3 7878 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
dae803e1 7879 __func__, outer_start, end);
041d3a8c
MN
7880 ret = -EBUSY;
7881 goto done;
7882 }
7883
49f223a9 7884 /* Grab isolated pages from freelists. */
bb13ffeb 7885 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7886 if (!outer_end) {
7887 ret = -EBUSY;
7888 goto done;
7889 }
7890
7891 /* Free head and tail (if any) */
7892 if (start != outer_start)
7893 free_contig_range(outer_start, start - outer_start);
7894 if (end != outer_end)
7895 free_contig_range(end, outer_end - end);
7896
7897done:
7898 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7899 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7900 return ret;
7901}
7902
7903void free_contig_range(unsigned long pfn, unsigned nr_pages)
7904{
bcc2b02f
MS
7905 unsigned int count = 0;
7906
7907 for (; nr_pages--; pfn++) {
7908 struct page *page = pfn_to_page(pfn);
7909
7910 count += page_count(page) != 1;
7911 __free_page(page);
7912 }
7913 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7914}
7915#endif
7916
d883c6cf 7917#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7918/*
7919 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7920 * page high values need to be recalulated.
7921 */
4ed7e022
JL
7922void __meminit zone_pcp_update(struct zone *zone)
7923{
0a647f38 7924 unsigned cpu;
c8e251fa 7925 mutex_lock(&pcp_batch_high_lock);
0a647f38 7926 for_each_possible_cpu(cpu)
169f6c19
CS
7927 pageset_set_high_and_batch(zone,
7928 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7929 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7930}
7931#endif
7932
340175b7
JL
7933void zone_pcp_reset(struct zone *zone)
7934{
7935 unsigned long flags;
5a883813
MK
7936 int cpu;
7937 struct per_cpu_pageset *pset;
340175b7
JL
7938
7939 /* avoid races with drain_pages() */
7940 local_irq_save(flags);
7941 if (zone->pageset != &boot_pageset) {
5a883813
MK
7942 for_each_online_cpu(cpu) {
7943 pset = per_cpu_ptr(zone->pageset, cpu);
7944 drain_zonestat(zone, pset);
7945 }
340175b7
JL
7946 free_percpu(zone->pageset);
7947 zone->pageset = &boot_pageset;
7948 }
7949 local_irq_restore(flags);
7950}
7951
6dcd73d7 7952#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7953/*
b9eb6319
JK
7954 * All pages in the range must be in a single zone and isolated
7955 * before calling this.
0c0e6195
KH
7956 */
7957void
7958__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7959{
7960 struct page *page;
7961 struct zone *zone;
7aeb09f9 7962 unsigned int order, i;
0c0e6195
KH
7963 unsigned long pfn;
7964 unsigned long flags;
7965 /* find the first valid pfn */
7966 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7967 if (pfn_valid(pfn))
7968 break;
7969 if (pfn == end_pfn)
7970 return;
2d070eab 7971 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7972 zone = page_zone(pfn_to_page(pfn));
7973 spin_lock_irqsave(&zone->lock, flags);
7974 pfn = start_pfn;
7975 while (pfn < end_pfn) {
7976 if (!pfn_valid(pfn)) {
7977 pfn++;
7978 continue;
7979 }
7980 page = pfn_to_page(pfn);
b023f468
WC
7981 /*
7982 * The HWPoisoned page may be not in buddy system, and
7983 * page_count() is not 0.
7984 */
7985 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7986 pfn++;
7987 SetPageReserved(page);
7988 continue;
7989 }
7990
0c0e6195
KH
7991 BUG_ON(page_count(page));
7992 BUG_ON(!PageBuddy(page));
7993 order = page_order(page);
7994#ifdef CONFIG_DEBUG_VM
1170532b
JP
7995 pr_info("remove from free list %lx %d %lx\n",
7996 pfn, 1 << order, end_pfn);
0c0e6195
KH
7997#endif
7998 list_del(&page->lru);
7999 rmv_page_order(page);
8000 zone->free_area[order].nr_free--;
0c0e6195
KH
8001 for (i = 0; i < (1 << order); i++)
8002 SetPageReserved((page+i));
8003 pfn += (1 << order);
8004 }
8005 spin_unlock_irqrestore(&zone->lock, flags);
8006}
8007#endif
8d22ba1b 8008
8d22ba1b
WF
8009bool is_free_buddy_page(struct page *page)
8010{
8011 struct zone *zone = page_zone(page);
8012 unsigned long pfn = page_to_pfn(page);
8013 unsigned long flags;
7aeb09f9 8014 unsigned int order;
8d22ba1b
WF
8015
8016 spin_lock_irqsave(&zone->lock, flags);
8017 for (order = 0; order < MAX_ORDER; order++) {
8018 struct page *page_head = page - (pfn & ((1 << order) - 1));
8019
8020 if (PageBuddy(page_head) && page_order(page_head) >= order)
8021 break;
8022 }
8023 spin_unlock_irqrestore(&zone->lock, flags);
8024
8025 return order < MAX_ORDER;
8026}