drm/amdgpu/powerplay/smu7: fix AVFS handling with custom powerplay table
[linux-2.6-block.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
71cd3113 101static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
102 "inactive_anon",
103 "active_anon",
104 "inactive_file",
105 "active_file",
106 "unevictable",
107};
108
a0db00fc
KS
109#define THRESHOLDS_EVENTS_TARGET 128
110#define SOFTLIMIT_EVENTS_TARGET 1024
111#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 112
bb4cc1a8
AM
113/*
114 * Cgroups above their limits are maintained in a RB-Tree, independent of
115 * their hierarchy representation
116 */
117
ef8f2327 118struct mem_cgroup_tree_per_node {
bb4cc1a8 119 struct rb_root rb_root;
fa90b2fd 120 struct rb_node *rb_rightmost;
bb4cc1a8
AM
121 spinlock_t lock;
122};
123
bb4cc1a8
AM
124struct mem_cgroup_tree {
125 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
126};
127
128static struct mem_cgroup_tree soft_limit_tree __read_mostly;
129
9490ff27
KH
130/* for OOM */
131struct mem_cgroup_eventfd_list {
132 struct list_head list;
133 struct eventfd_ctx *eventfd;
134};
2e72b634 135
79bd9814
TH
136/*
137 * cgroup_event represents events which userspace want to receive.
138 */
3bc942f3 139struct mem_cgroup_event {
79bd9814 140 /*
59b6f873 141 * memcg which the event belongs to.
79bd9814 142 */
59b6f873 143 struct mem_cgroup *memcg;
79bd9814
TH
144 /*
145 * eventfd to signal userspace about the event.
146 */
147 struct eventfd_ctx *eventfd;
148 /*
149 * Each of these stored in a list by the cgroup.
150 */
151 struct list_head list;
fba94807
TH
152 /*
153 * register_event() callback will be used to add new userspace
154 * waiter for changes related to this event. Use eventfd_signal()
155 * on eventfd to send notification to userspace.
156 */
59b6f873 157 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 158 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
159 /*
160 * unregister_event() callback will be called when userspace closes
161 * the eventfd or on cgroup removing. This callback must be set,
162 * if you want provide notification functionality.
163 */
59b6f873 164 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 165 struct eventfd_ctx *eventfd);
79bd9814
TH
166 /*
167 * All fields below needed to unregister event when
168 * userspace closes eventfd.
169 */
170 poll_table pt;
171 wait_queue_head_t *wqh;
ac6424b9 172 wait_queue_entry_t wait;
79bd9814
TH
173 struct work_struct remove;
174};
175
c0ff4b85
R
176static void mem_cgroup_threshold(struct mem_cgroup *memcg);
177static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 178
7dc74be0
DN
179/* Stuffs for move charges at task migration. */
180/*
1dfab5ab 181 * Types of charges to be moved.
7dc74be0 182 */
1dfab5ab
JW
183#define MOVE_ANON 0x1U
184#define MOVE_FILE 0x2U
185#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 186
4ffef5fe
DN
187/* "mc" and its members are protected by cgroup_mutex */
188static struct move_charge_struct {
b1dd693e 189 spinlock_t lock; /* for from, to */
264a0ae1 190 struct mm_struct *mm;
4ffef5fe
DN
191 struct mem_cgroup *from;
192 struct mem_cgroup *to;
1dfab5ab 193 unsigned long flags;
4ffef5fe 194 unsigned long precharge;
854ffa8d 195 unsigned long moved_charge;
483c30b5 196 unsigned long moved_swap;
8033b97c
DN
197 struct task_struct *moving_task; /* a task moving charges */
198 wait_queue_head_t waitq; /* a waitq for other context */
199} mc = {
2bd9bb20 200 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
201 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
202};
4ffef5fe 203
4e416953
BS
204/*
205 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
206 * limit reclaim to prevent infinite loops, if they ever occur.
207 */
a0db00fc 208#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 209#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 210
217bc319
KH
211enum charge_type {
212 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 213 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 214 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 215 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
216 NR_CHARGE_TYPE,
217};
218
8c7c6e34 219/* for encoding cft->private value on file */
86ae53e1
GC
220enum res_type {
221 _MEM,
222 _MEMSWAP,
223 _OOM_TYPE,
510fc4e1 224 _KMEM,
d55f90bf 225 _TCP,
86ae53e1
GC
226};
227
a0db00fc
KS
228#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
229#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 230#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
231/* Used for OOM nofiier */
232#define OOM_CONTROL (0)
8c7c6e34 233
b05706f1
KT
234/*
235 * Iteration constructs for visiting all cgroups (under a tree). If
236 * loops are exited prematurely (break), mem_cgroup_iter_break() must
237 * be used for reference counting.
238 */
239#define for_each_mem_cgroup_tree(iter, root) \
240 for (iter = mem_cgroup_iter(root, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(root, iter, NULL))
243
244#define for_each_mem_cgroup(iter) \
245 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
246 iter != NULL; \
247 iter = mem_cgroup_iter(NULL, iter, NULL))
248
7775face
TH
249static inline bool should_force_charge(void)
250{
251 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
252 (current->flags & PF_EXITING);
253}
254
70ddf637
AV
255/* Some nice accessors for the vmpressure. */
256struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
257{
258 if (!memcg)
259 memcg = root_mem_cgroup;
260 return &memcg->vmpressure;
261}
262
263struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264{
265 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
266}
267
84c07d11 268#ifdef CONFIG_MEMCG_KMEM
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
17cc4dfe 320struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 321#endif
17cc4dfe 322
0a4465d3
KT
323static int memcg_shrinker_map_size;
324static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325
326static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327{
328 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329}
330
331static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 int size, int old_size)
333{
334 struct memcg_shrinker_map *new, *old;
335 int nid;
336
337 lockdep_assert_held(&memcg_shrinker_map_mutex);
338
339 for_each_node(nid) {
340 old = rcu_dereference_protected(
341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 /* Not yet online memcg */
343 if (!old)
344 return 0;
345
346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 if (!new)
348 return -ENOMEM;
349
350 /* Set all old bits, clear all new bits */
351 memset(new->map, (int)0xff, old_size);
352 memset((void *)new->map + old_size, 0, size - old_size);
353
354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 }
357
358 return 0;
359}
360
361static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362{
363 struct mem_cgroup_per_node *pn;
364 struct memcg_shrinker_map *map;
365 int nid;
366
367 if (mem_cgroup_is_root(memcg))
368 return;
369
370 for_each_node(nid) {
371 pn = mem_cgroup_nodeinfo(memcg, nid);
372 map = rcu_dereference_protected(pn->shrinker_map, true);
373 if (map)
374 kvfree(map);
375 rcu_assign_pointer(pn->shrinker_map, NULL);
376 }
377}
378
379static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380{
381 struct memcg_shrinker_map *map;
382 int nid, size, ret = 0;
383
384 if (mem_cgroup_is_root(memcg))
385 return 0;
386
387 mutex_lock(&memcg_shrinker_map_mutex);
388 size = memcg_shrinker_map_size;
389 for_each_node(nid) {
390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 if (!map) {
392 memcg_free_shrinker_maps(memcg);
393 ret = -ENOMEM;
394 break;
395 }
396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 }
398 mutex_unlock(&memcg_shrinker_map_mutex);
399
400 return ret;
401}
402
403int memcg_expand_shrinker_maps(int new_id)
404{
405 int size, old_size, ret = 0;
406 struct mem_cgroup *memcg;
407
408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 old_size = memcg_shrinker_map_size;
410 if (size <= old_size)
411 return 0;
412
413 mutex_lock(&memcg_shrinker_map_mutex);
414 if (!root_mem_cgroup)
415 goto unlock;
416
417 for_each_mem_cgroup(memcg) {
418 if (mem_cgroup_is_root(memcg))
419 continue;
420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 if (ret)
422 goto unlock;
423 }
424unlock:
425 if (!ret)
426 memcg_shrinker_map_size = size;
427 mutex_unlock(&memcg_shrinker_map_mutex);
428 return ret;
429}
fae91d6d
KT
430
431void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
432{
433 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
434 struct memcg_shrinker_map *map;
435
436 rcu_read_lock();
437 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
438 /* Pairs with smp mb in shrink_slab() */
439 smp_mb__before_atomic();
fae91d6d
KT
440 set_bit(shrinker_id, map->map);
441 rcu_read_unlock();
442 }
443}
444
ad7fa852
TH
445/**
446 * mem_cgroup_css_from_page - css of the memcg associated with a page
447 * @page: page of interest
448 *
449 * If memcg is bound to the default hierarchy, css of the memcg associated
450 * with @page is returned. The returned css remains associated with @page
451 * until it is released.
452 *
453 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
454 * is returned.
ad7fa852
TH
455 */
456struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
457{
458 struct mem_cgroup *memcg;
459
ad7fa852
TH
460 memcg = page->mem_cgroup;
461
9e10a130 462 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
463 memcg = root_mem_cgroup;
464
ad7fa852
TH
465 return &memcg->css;
466}
467
2fc04524
VD
468/**
469 * page_cgroup_ino - return inode number of the memcg a page is charged to
470 * @page: the page
471 *
472 * Look up the closest online ancestor of the memory cgroup @page is charged to
473 * and return its inode number or 0 if @page is not charged to any cgroup. It
474 * is safe to call this function without holding a reference to @page.
475 *
476 * Note, this function is inherently racy, because there is nothing to prevent
477 * the cgroup inode from getting torn down and potentially reallocated a moment
478 * after page_cgroup_ino() returns, so it only should be used by callers that
479 * do not care (such as procfs interfaces).
480 */
481ino_t page_cgroup_ino(struct page *page)
482{
483 struct mem_cgroup *memcg;
484 unsigned long ino = 0;
485
486 rcu_read_lock();
4d96ba35
RG
487 if (PageHead(page) && PageSlab(page))
488 memcg = memcg_from_slab_page(page);
489 else
490 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497}
498
ef8f2327
MG
499static struct mem_cgroup_per_node *
500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 501{
97a6c37b 502 int nid = page_to_nid(page);
f64c3f54 503
ef8f2327 504 return memcg->nodeinfo[nid];
f64c3f54
BS
505}
506
ef8f2327
MG
507static struct mem_cgroup_tree_per_node *
508soft_limit_tree_node(int nid)
bb4cc1a8 509{
ef8f2327 510 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
511}
512
ef8f2327 513static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
bb4cc1a8 517
ef8f2327 518 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
519}
520
ef8f2327
MG
521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 523 unsigned long new_usage_in_excess)
bb4cc1a8
AM
524{
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
ef8f2327 527 struct mem_cgroup_per_node *mz_node;
fa90b2fd 528 bool rightmost = true;
bb4cc1a8
AM
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
ef8f2327 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 539 tree_node);
fa90b2fd 540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 541 p = &(*p)->rb_left;
fa90b2fd
DB
542 rightmost = false;
543 }
544
bb4cc1a8
AM
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
fa90b2fd
DB
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
bb4cc1a8
AM
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559}
560
ef8f2327
MG
561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
563{
564 if (!mz->on_tree)
565 return;
fa90b2fd
DB
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
bb4cc1a8
AM
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572}
573
ef8f2327
MG
574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 576{
0a31bc97
JW
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 580 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 581 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
582}
583
3e32cb2e
JW
584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585{
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594}
bb4cc1a8
AM
595
596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597{
3e32cb2e 598 unsigned long excess;
ef8f2327
MG
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 601
e231875b 602 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
603 if (!mctz)
604 return;
bb4cc1a8
AM
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 610 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 611 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
0a31bc97
JW
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
620 /* if on-tree, remove it */
621 if (mz->on_tree)
cf2c8127 622 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
cf2c8127 627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 628 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
629 }
630 }
631}
632
633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634{
ef8f2327
MG
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
bb4cc1a8 638
e231875b 639 for_each_node(nid) {
ef8f2327
MG
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
644 }
645}
646
ef8f2327
MG
647static struct mem_cgroup_per_node *
648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 649{
ef8f2327 650 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
651
652retry:
653 mz = NULL;
fa90b2fd 654 if (!mctz->rb_rightmost)
bb4cc1a8
AM
655 goto done; /* Nothing to reclaim from */
656
fa90b2fd
DB
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
cf2c8127 664 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 665 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 666 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
667 goto retry;
668done:
669 return mz;
670}
671
ef8f2327
MG
672static struct mem_cgroup_per_node *
673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 674{
ef8f2327 675 struct mem_cgroup_per_node *mz;
bb4cc1a8 676
0a31bc97 677 spin_lock_irq(&mctz->lock);
bb4cc1a8 678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 679 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
680 return mz;
681}
682
db9adbcb
JW
683/**
684 * __mod_memcg_state - update cgroup memory statistics
685 * @memcg: the memory cgroup
686 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
687 * @val: delta to add to the counter, can be negative
688 */
689void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
690{
691 long x;
692
693 if (mem_cgroup_disabled())
694 return;
695
696 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
697 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
698 struct mem_cgroup *mi;
699
766a4c19
YS
700 /*
701 * Batch local counters to keep them in sync with
702 * the hierarchical ones.
703 */
704 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
705 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
706 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
707 x = 0;
708 }
709 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
710}
711
42a30035
JW
712static struct mem_cgroup_per_node *
713parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
714{
715 struct mem_cgroup *parent;
716
717 parent = parent_mem_cgroup(pn->memcg);
718 if (!parent)
719 return NULL;
720 return mem_cgroup_nodeinfo(parent, nid);
721}
722
db9adbcb
JW
723/**
724 * __mod_lruvec_state - update lruvec memory statistics
725 * @lruvec: the lruvec
726 * @idx: the stat item
727 * @val: delta to add to the counter, can be negative
728 *
729 * The lruvec is the intersection of the NUMA node and a cgroup. This
730 * function updates the all three counters that are affected by a
731 * change of state at this level: per-node, per-cgroup, per-lruvec.
732 */
733void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
734 int val)
735{
42a30035 736 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 737 struct mem_cgroup_per_node *pn;
42a30035 738 struct mem_cgroup *memcg;
db9adbcb
JW
739 long x;
740
741 /* Update node */
42a30035 742 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
743
744 if (mem_cgroup_disabled())
745 return;
746
747 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 748 memcg = pn->memcg;
db9adbcb
JW
749
750 /* Update memcg */
42a30035 751 __mod_memcg_state(memcg, idx, val);
db9adbcb 752
b4c46484
RG
753 /* Update lruvec */
754 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
755
db9adbcb
JW
756 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
757 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
758 struct mem_cgroup_per_node *pi;
759
42a30035
JW
760 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
761 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
762 x = 0;
763 }
764 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
765}
766
ec9f0238
RG
767void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
768{
769 struct page *page = virt_to_head_page(p);
770 pg_data_t *pgdat = page_pgdat(page);
771 struct mem_cgroup *memcg;
772 struct lruvec *lruvec;
773
774 rcu_read_lock();
775 memcg = memcg_from_slab_page(page);
776
777 /* Untracked pages have no memcg, no lruvec. Update only the node */
778 if (!memcg || memcg == root_mem_cgroup) {
779 __mod_node_page_state(pgdat, idx, val);
780 } else {
781 lruvec = mem_cgroup_lruvec(pgdat, memcg);
782 __mod_lruvec_state(lruvec, idx, val);
783 }
784 rcu_read_unlock();
785}
786
db9adbcb
JW
787/**
788 * __count_memcg_events - account VM events in a cgroup
789 * @memcg: the memory cgroup
790 * @idx: the event item
791 * @count: the number of events that occured
792 */
793void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
794 unsigned long count)
795{
796 unsigned long x;
797
798 if (mem_cgroup_disabled())
799 return;
800
801 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
802 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
803 struct mem_cgroup *mi;
804
766a4c19
YS
805 /*
806 * Batch local counters to keep them in sync with
807 * the hierarchical ones.
808 */
809 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
810 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
811 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
812 x = 0;
813 }
814 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
815}
816
42a30035 817static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 818{
871789d4 819 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
820}
821
42a30035
JW
822static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
823{
815744d7
JW
824 long x = 0;
825 int cpu;
826
827 for_each_possible_cpu(cpu)
828 x += per_cpu(memcg->vmstats_local->events[event], cpu);
829 return x;
42a30035
JW
830}
831
c0ff4b85 832static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 833 struct page *page,
f627c2f5 834 bool compound, int nr_pages)
d52aa412 835{
b2402857
KH
836 /*
837 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
838 * counted as CACHE even if it's on ANON LRU.
839 */
0a31bc97 840 if (PageAnon(page))
c9019e9b 841 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 842 else {
c9019e9b 843 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 844 if (PageSwapBacked(page))
c9019e9b 845 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 846 }
55e462b0 847
f627c2f5
KS
848 if (compound) {
849 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 850 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 851 }
b070e65c 852
e401f176
KH
853 /* pagein of a big page is an event. So, ignore page size */
854 if (nr_pages > 0)
c9019e9b 855 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 856 else {
c9019e9b 857 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
858 nr_pages = -nr_pages; /* for event */
859 }
e401f176 860
871789d4 861 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
862}
863
f53d7ce3
JW
864static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
865 enum mem_cgroup_events_target target)
7a159cc9
JW
866{
867 unsigned long val, next;
868
871789d4
CD
869 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
870 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 871 /* from time_after() in jiffies.h */
6a1a8b80 872 if ((long)(next - val) < 0) {
f53d7ce3
JW
873 switch (target) {
874 case MEM_CGROUP_TARGET_THRESH:
875 next = val + THRESHOLDS_EVENTS_TARGET;
876 break;
bb4cc1a8
AM
877 case MEM_CGROUP_TARGET_SOFTLIMIT:
878 next = val + SOFTLIMIT_EVENTS_TARGET;
879 break;
f53d7ce3
JW
880 case MEM_CGROUP_TARGET_NUMAINFO:
881 next = val + NUMAINFO_EVENTS_TARGET;
882 break;
883 default:
884 break;
885 }
871789d4 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 887 return true;
7a159cc9 888 }
f53d7ce3 889 return false;
d2265e6f
KH
890}
891
892/*
893 * Check events in order.
894 *
895 */
c0ff4b85 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
897{
898 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 901 bool do_softlimit;
82b3f2a7 902 bool do_numainfo __maybe_unused;
f53d7ce3 903
bb4cc1a8
AM
904 do_softlimit = mem_cgroup_event_ratelimit(memcg,
905 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
906#if MAX_NUMNODES > 1
907 do_numainfo = mem_cgroup_event_ratelimit(memcg,
908 MEM_CGROUP_TARGET_NUMAINFO);
909#endif
c0ff4b85 910 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
911 if (unlikely(do_softlimit))
912 mem_cgroup_update_tree(memcg, page);
453a9bf3 913#if MAX_NUMNODES > 1
f53d7ce3 914 if (unlikely(do_numainfo))
c0ff4b85 915 atomic_inc(&memcg->numainfo_events);
453a9bf3 916#endif
0a31bc97 917 }
d2265e6f
KH
918}
919
cf475ad2 920struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 921{
31a78f23
BS
922 /*
923 * mm_update_next_owner() may clear mm->owner to NULL
924 * if it races with swapoff, page migration, etc.
925 * So this can be called with p == NULL.
926 */
927 if (unlikely(!p))
928 return NULL;
929
073219e9 930 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 931}
33398cf2 932EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 933
d46eb14b
SB
934/**
935 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
936 * @mm: mm from which memcg should be extracted. It can be NULL.
937 *
938 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
939 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
940 * returned.
941 */
942struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 943{
d46eb14b
SB
944 struct mem_cgroup *memcg;
945
946 if (mem_cgroup_disabled())
947 return NULL;
0b7f569e 948
54595fe2
KH
949 rcu_read_lock();
950 do {
6f6acb00
MH
951 /*
952 * Page cache insertions can happen withou an
953 * actual mm context, e.g. during disk probing
954 * on boot, loopback IO, acct() writes etc.
955 */
956 if (unlikely(!mm))
df381975 957 memcg = root_mem_cgroup;
6f6acb00
MH
958 else {
959 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
960 if (unlikely(!memcg))
961 memcg = root_mem_cgroup;
962 }
ec903c0c 963 } while (!css_tryget_online(&memcg->css));
54595fe2 964 rcu_read_unlock();
c0ff4b85 965 return memcg;
54595fe2 966}
d46eb14b
SB
967EXPORT_SYMBOL(get_mem_cgroup_from_mm);
968
f745c6f5
SB
969/**
970 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
971 * @page: page from which memcg should be extracted.
972 *
973 * Obtain a reference on page->memcg and returns it if successful. Otherwise
974 * root_mem_cgroup is returned.
975 */
976struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
977{
978 struct mem_cgroup *memcg = page->mem_cgroup;
979
980 if (mem_cgroup_disabled())
981 return NULL;
982
983 rcu_read_lock();
984 if (!memcg || !css_tryget_online(&memcg->css))
985 memcg = root_mem_cgroup;
986 rcu_read_unlock();
987 return memcg;
988}
989EXPORT_SYMBOL(get_mem_cgroup_from_page);
990
d46eb14b
SB
991/**
992 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
993 */
994static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
995{
996 if (unlikely(current->active_memcg)) {
997 struct mem_cgroup *memcg = root_mem_cgroup;
998
999 rcu_read_lock();
1000 if (css_tryget_online(&current->active_memcg->css))
1001 memcg = current->active_memcg;
1002 rcu_read_unlock();
1003 return memcg;
1004 }
1005 return get_mem_cgroup_from_mm(current->mm);
1006}
54595fe2 1007
5660048c
JW
1008/**
1009 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1010 * @root: hierarchy root
1011 * @prev: previously returned memcg, NULL on first invocation
1012 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1013 *
1014 * Returns references to children of the hierarchy below @root, or
1015 * @root itself, or %NULL after a full round-trip.
1016 *
1017 * Caller must pass the return value in @prev on subsequent
1018 * invocations for reference counting, or use mem_cgroup_iter_break()
1019 * to cancel a hierarchy walk before the round-trip is complete.
1020 *
b213b54f 1021 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1022 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1023 * reclaimers operating on the same node and priority.
5660048c 1024 */
694fbc0f 1025struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1026 struct mem_cgroup *prev,
694fbc0f 1027 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1028{
33398cf2 1029 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1030 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1031 struct mem_cgroup *memcg = NULL;
5ac8fb31 1032 struct mem_cgroup *pos = NULL;
711d3d2c 1033
694fbc0f
AM
1034 if (mem_cgroup_disabled())
1035 return NULL;
5660048c 1036
9f3a0d09
JW
1037 if (!root)
1038 root = root_mem_cgroup;
7d74b06f 1039
9f3a0d09 1040 if (prev && !reclaim)
5ac8fb31 1041 pos = prev;
14067bb3 1042
9f3a0d09
JW
1043 if (!root->use_hierarchy && root != root_mem_cgroup) {
1044 if (prev)
5ac8fb31 1045 goto out;
694fbc0f 1046 return root;
9f3a0d09 1047 }
14067bb3 1048
542f85f9 1049 rcu_read_lock();
5f578161 1050
5ac8fb31 1051 if (reclaim) {
ef8f2327 1052 struct mem_cgroup_per_node *mz;
5ac8fb31 1053
ef8f2327 1054 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
1055 iter = &mz->iter[reclaim->priority];
1056
1057 if (prev && reclaim->generation != iter->generation)
1058 goto out_unlock;
1059
6df38689 1060 while (1) {
4db0c3c2 1061 pos = READ_ONCE(iter->position);
6df38689
VD
1062 if (!pos || css_tryget(&pos->css))
1063 break;
5ac8fb31 1064 /*
6df38689
VD
1065 * css reference reached zero, so iter->position will
1066 * be cleared by ->css_released. However, we should not
1067 * rely on this happening soon, because ->css_released
1068 * is called from a work queue, and by busy-waiting we
1069 * might block it. So we clear iter->position right
1070 * away.
5ac8fb31 1071 */
6df38689
VD
1072 (void)cmpxchg(&iter->position, pos, NULL);
1073 }
5ac8fb31
JW
1074 }
1075
1076 if (pos)
1077 css = &pos->css;
1078
1079 for (;;) {
1080 css = css_next_descendant_pre(css, &root->css);
1081 if (!css) {
1082 /*
1083 * Reclaimers share the hierarchy walk, and a
1084 * new one might jump in right at the end of
1085 * the hierarchy - make sure they see at least
1086 * one group and restart from the beginning.
1087 */
1088 if (!prev)
1089 continue;
1090 break;
527a5ec9 1091 }
7d74b06f 1092
5ac8fb31
JW
1093 /*
1094 * Verify the css and acquire a reference. The root
1095 * is provided by the caller, so we know it's alive
1096 * and kicking, and don't take an extra reference.
1097 */
1098 memcg = mem_cgroup_from_css(css);
14067bb3 1099
5ac8fb31
JW
1100 if (css == &root->css)
1101 break;
14067bb3 1102
0b8f73e1
JW
1103 if (css_tryget(css))
1104 break;
9f3a0d09 1105
5ac8fb31 1106 memcg = NULL;
9f3a0d09 1107 }
5ac8fb31
JW
1108
1109 if (reclaim) {
5ac8fb31 1110 /*
6df38689
VD
1111 * The position could have already been updated by a competing
1112 * thread, so check that the value hasn't changed since we read
1113 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1114 */
6df38689
VD
1115 (void)cmpxchg(&iter->position, pos, memcg);
1116
5ac8fb31
JW
1117 if (pos)
1118 css_put(&pos->css);
1119
1120 if (!memcg)
1121 iter->generation++;
1122 else if (!prev)
1123 reclaim->generation = iter->generation;
9f3a0d09 1124 }
5ac8fb31 1125
542f85f9
MH
1126out_unlock:
1127 rcu_read_unlock();
5ac8fb31 1128out:
c40046f3
MH
1129 if (prev && prev != root)
1130 css_put(&prev->css);
1131
9f3a0d09 1132 return memcg;
14067bb3 1133}
7d74b06f 1134
5660048c
JW
1135/**
1136 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1137 * @root: hierarchy root
1138 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1139 */
1140void mem_cgroup_iter_break(struct mem_cgroup *root,
1141 struct mem_cgroup *prev)
9f3a0d09
JW
1142{
1143 if (!root)
1144 root = root_mem_cgroup;
1145 if (prev && prev != root)
1146 css_put(&prev->css);
1147}
7d74b06f 1148
54a83d6b
MC
1149static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1150 struct mem_cgroup *dead_memcg)
6df38689 1151{
6df38689 1152 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1153 struct mem_cgroup_per_node *mz;
1154 int nid;
6df38689
VD
1155 int i;
1156
54a83d6b
MC
1157 for_each_node(nid) {
1158 mz = mem_cgroup_nodeinfo(from, nid);
1159 for (i = 0; i <= DEF_PRIORITY; i++) {
1160 iter = &mz->iter[i];
1161 cmpxchg(&iter->position,
1162 dead_memcg, NULL);
6df38689
VD
1163 }
1164 }
1165}
1166
54a83d6b
MC
1167static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1168{
1169 struct mem_cgroup *memcg = dead_memcg;
1170 struct mem_cgroup *last;
1171
1172 do {
1173 __invalidate_reclaim_iterators(memcg, dead_memcg);
1174 last = memcg;
1175 } while ((memcg = parent_mem_cgroup(memcg)));
1176
1177 /*
1178 * When cgruop1 non-hierarchy mode is used,
1179 * parent_mem_cgroup() does not walk all the way up to the
1180 * cgroup root (root_mem_cgroup). So we have to handle
1181 * dead_memcg from cgroup root separately.
1182 */
1183 if (last != root_mem_cgroup)
1184 __invalidate_reclaim_iterators(root_mem_cgroup,
1185 dead_memcg);
1186}
1187
7c5f64f8
VD
1188/**
1189 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1190 * @memcg: hierarchy root
1191 * @fn: function to call for each task
1192 * @arg: argument passed to @fn
1193 *
1194 * This function iterates over tasks attached to @memcg or to any of its
1195 * descendants and calls @fn for each task. If @fn returns a non-zero
1196 * value, the function breaks the iteration loop and returns the value.
1197 * Otherwise, it will iterate over all tasks and return 0.
1198 *
1199 * This function must not be called for the root memory cgroup.
1200 */
1201int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1202 int (*fn)(struct task_struct *, void *), void *arg)
1203{
1204 struct mem_cgroup *iter;
1205 int ret = 0;
1206
1207 BUG_ON(memcg == root_mem_cgroup);
1208
1209 for_each_mem_cgroup_tree(iter, memcg) {
1210 struct css_task_iter it;
1211 struct task_struct *task;
1212
f168a9a5 1213 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1214 while (!ret && (task = css_task_iter_next(&it)))
1215 ret = fn(task, arg);
1216 css_task_iter_end(&it);
1217 if (ret) {
1218 mem_cgroup_iter_break(memcg, iter);
1219 break;
1220 }
1221 }
1222 return ret;
1223}
1224
925b7673 1225/**
dfe0e773 1226 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1227 * @page: the page
f144c390 1228 * @pgdat: pgdat of the page
dfe0e773
JW
1229 *
1230 * This function is only safe when following the LRU page isolation
1231 * and putback protocol: the LRU lock must be held, and the page must
1232 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1233 */
599d0c95 1234struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1235{
ef8f2327 1236 struct mem_cgroup_per_node *mz;
925b7673 1237 struct mem_cgroup *memcg;
bea8c150 1238 struct lruvec *lruvec;
6d12e2d8 1239
bea8c150 1240 if (mem_cgroup_disabled()) {
599d0c95 1241 lruvec = &pgdat->lruvec;
bea8c150
HD
1242 goto out;
1243 }
925b7673 1244
1306a85a 1245 memcg = page->mem_cgroup;
7512102c 1246 /*
dfe0e773 1247 * Swapcache readahead pages are added to the LRU - and
29833315 1248 * possibly migrated - before they are charged.
7512102c 1249 */
29833315
JW
1250 if (!memcg)
1251 memcg = root_mem_cgroup;
7512102c 1252
ef8f2327 1253 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1254 lruvec = &mz->lruvec;
1255out:
1256 /*
1257 * Since a node can be onlined after the mem_cgroup was created,
1258 * we have to be prepared to initialize lruvec->zone here;
1259 * and if offlined then reonlined, we need to reinitialize it.
1260 */
599d0c95
MG
1261 if (unlikely(lruvec->pgdat != pgdat))
1262 lruvec->pgdat = pgdat;
bea8c150 1263 return lruvec;
08e552c6 1264}
b69408e8 1265
925b7673 1266/**
fa9add64
HD
1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268 * @lruvec: mem_cgroup per zone lru vector
1269 * @lru: index of lru list the page is sitting on
b4536f0c 1270 * @zid: zone id of the accounted pages
fa9add64 1271 * @nr_pages: positive when adding or negative when removing
925b7673 1272 *
ca707239
HD
1273 * This function must be called under lru_lock, just before a page is added
1274 * to or just after a page is removed from an lru list (that ordering being
1275 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1276 */
fa9add64 1277void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1278 int zid, int nr_pages)
3f58a829 1279{
ef8f2327 1280 struct mem_cgroup_per_node *mz;
fa9add64 1281 unsigned long *lru_size;
ca707239 1282 long size;
3f58a829
MK
1283
1284 if (mem_cgroup_disabled())
1285 return;
1286
ef8f2327 1287 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1288 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1289
1290 if (nr_pages < 0)
1291 *lru_size += nr_pages;
1292
1293 size = *lru_size;
b4536f0c
MH
1294 if (WARN_ONCE(size < 0,
1295 "%s(%p, %d, %d): lru_size %ld\n",
1296 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1297 VM_BUG_ON(1);
1298 *lru_size = 0;
1299 }
1300
1301 if (nr_pages > 0)
1302 *lru_size += nr_pages;
08e552c6 1303}
544122e5 1304
19942822 1305/**
9d11ea9f 1306 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1307 * @memcg: the memory cgroup
19942822 1308 *
9d11ea9f 1309 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1310 * pages.
19942822 1311 */
c0ff4b85 1312static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1313{
3e32cb2e
JW
1314 unsigned long margin = 0;
1315 unsigned long count;
1316 unsigned long limit;
9d11ea9f 1317
3e32cb2e 1318 count = page_counter_read(&memcg->memory);
bbec2e15 1319 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1320 if (count < limit)
1321 margin = limit - count;
1322
7941d214 1323 if (do_memsw_account()) {
3e32cb2e 1324 count = page_counter_read(&memcg->memsw);
bbec2e15 1325 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1326 if (count <= limit)
1327 margin = min(margin, limit - count);
cbedbac3
LR
1328 else
1329 margin = 0;
3e32cb2e
JW
1330 }
1331
1332 return margin;
19942822
JW
1333}
1334
32047e2a 1335/*
bdcbb659 1336 * A routine for checking "mem" is under move_account() or not.
32047e2a 1337 *
bdcbb659
QH
1338 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1339 * moving cgroups. This is for waiting at high-memory pressure
1340 * caused by "move".
32047e2a 1341 */
c0ff4b85 1342static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1343{
2bd9bb20
KH
1344 struct mem_cgroup *from;
1345 struct mem_cgroup *to;
4b534334 1346 bool ret = false;
2bd9bb20
KH
1347 /*
1348 * Unlike task_move routines, we access mc.to, mc.from not under
1349 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1350 */
1351 spin_lock(&mc.lock);
1352 from = mc.from;
1353 to = mc.to;
1354 if (!from)
1355 goto unlock;
3e92041d 1356
2314b42d
JW
1357 ret = mem_cgroup_is_descendant(from, memcg) ||
1358 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1359unlock:
1360 spin_unlock(&mc.lock);
4b534334
KH
1361 return ret;
1362}
1363
c0ff4b85 1364static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1365{
1366 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1367 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1368 DEFINE_WAIT(wait);
1369 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1370 /* moving charge context might have finished. */
1371 if (mc.moving_task)
1372 schedule();
1373 finish_wait(&mc.waitq, &wait);
1374 return true;
1375 }
1376 }
1377 return false;
1378}
1379
c8713d0b
JW
1380static char *memory_stat_format(struct mem_cgroup *memcg)
1381{
1382 struct seq_buf s;
1383 int i;
71cd3113 1384
c8713d0b
JW
1385 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1386 if (!s.buffer)
1387 return NULL;
1388
1389 /*
1390 * Provide statistics on the state of the memory subsystem as
1391 * well as cumulative event counters that show past behavior.
1392 *
1393 * This list is ordered following a combination of these gradients:
1394 * 1) generic big picture -> specifics and details
1395 * 2) reflecting userspace activity -> reflecting kernel heuristics
1396 *
1397 * Current memory state:
1398 */
1399
1400 seq_buf_printf(&s, "anon %llu\n",
1401 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1402 PAGE_SIZE);
1403 seq_buf_printf(&s, "file %llu\n",
1404 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1405 PAGE_SIZE);
1406 seq_buf_printf(&s, "kernel_stack %llu\n",
1407 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1408 1024);
1409 seq_buf_printf(&s, "slab %llu\n",
1410 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1411 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1412 PAGE_SIZE);
1413 seq_buf_printf(&s, "sock %llu\n",
1414 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1415 PAGE_SIZE);
1416
1417 seq_buf_printf(&s, "shmem %llu\n",
1418 (u64)memcg_page_state(memcg, NR_SHMEM) *
1419 PAGE_SIZE);
1420 seq_buf_printf(&s, "file_mapped %llu\n",
1421 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1422 PAGE_SIZE);
1423 seq_buf_printf(&s, "file_dirty %llu\n",
1424 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1425 PAGE_SIZE);
1426 seq_buf_printf(&s, "file_writeback %llu\n",
1427 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1428 PAGE_SIZE);
1429
1430 /*
1431 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1432 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1433 * arse because it requires migrating the work out of rmap to a place
1434 * where the page->mem_cgroup is set up and stable.
1435 */
1436 seq_buf_printf(&s, "anon_thp %llu\n",
1437 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1438 PAGE_SIZE);
1439
1440 for (i = 0; i < NR_LRU_LISTS; i++)
1441 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1442 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1443 PAGE_SIZE);
1444
1445 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1446 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1447 PAGE_SIZE);
1448 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1449 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1450 PAGE_SIZE);
1451
1452 /* Accumulated memory events */
1453
1454 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1455 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1456
1457 seq_buf_printf(&s, "workingset_refault %lu\n",
1458 memcg_page_state(memcg, WORKINGSET_REFAULT));
1459 seq_buf_printf(&s, "workingset_activate %lu\n",
1460 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1461 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1462 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1463
1464 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1465 seq_buf_printf(&s, "pgscan %lu\n",
1466 memcg_events(memcg, PGSCAN_KSWAPD) +
1467 memcg_events(memcg, PGSCAN_DIRECT));
1468 seq_buf_printf(&s, "pgsteal %lu\n",
1469 memcg_events(memcg, PGSTEAL_KSWAPD) +
1470 memcg_events(memcg, PGSTEAL_DIRECT));
1471 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1472 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1473 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1474 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1475
1476#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1477 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1478 memcg_events(memcg, THP_FAULT_ALLOC));
1479 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1480 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1482
1483 /* The above should easily fit into one page */
1484 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1485
1486 return s.buffer;
1487}
71cd3113 1488
58cf188e 1489#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1490/**
f0c867d9 1491 * mem_cgroup_print_oom_context: Print OOM information relevant to
1492 * memory controller.
e222432b
BS
1493 * @memcg: The memory cgroup that went over limit
1494 * @p: Task that is going to be killed
1495 *
1496 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1497 * enabled
1498 */
f0c867d9 1499void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1500{
e222432b
BS
1501 rcu_read_lock();
1502
f0c867d9 1503 if (memcg) {
1504 pr_cont(",oom_memcg=");
1505 pr_cont_cgroup_path(memcg->css.cgroup);
1506 } else
1507 pr_cont(",global_oom");
2415b9f5 1508 if (p) {
f0c867d9 1509 pr_cont(",task_memcg=");
2415b9f5 1510 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1511 }
e222432b 1512 rcu_read_unlock();
f0c867d9 1513}
1514
1515/**
1516 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1517 * memory controller.
1518 * @memcg: The memory cgroup that went over limit
1519 */
1520void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1521{
c8713d0b 1522 char *buf;
e222432b 1523
3e32cb2e
JW
1524 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1525 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1526 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1527 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1528 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->swap)),
1530 K((u64)memcg->swap.max), memcg->swap.failcnt);
1531 else {
1532 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64)page_counter_read(&memcg->memsw)),
1534 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1535 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1536 K((u64)page_counter_read(&memcg->kmem)),
1537 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1538 }
c8713d0b
JW
1539
1540 pr_info("Memory cgroup stats for ");
1541 pr_cont_cgroup_path(memcg->css.cgroup);
1542 pr_cont(":");
1543 buf = memory_stat_format(memcg);
1544 if (!buf)
1545 return;
1546 pr_info("%s", buf);
1547 kfree(buf);
e222432b
BS
1548}
1549
a63d83f4
DR
1550/*
1551 * Return the memory (and swap, if configured) limit for a memcg.
1552 */
bbec2e15 1553unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1554{
bbec2e15 1555 unsigned long max;
f3e8eb70 1556
bbec2e15 1557 max = memcg->memory.max;
9a5a8f19 1558 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1559 unsigned long memsw_max;
1560 unsigned long swap_max;
9a5a8f19 1561
bbec2e15
RG
1562 memsw_max = memcg->memsw.max;
1563 swap_max = memcg->swap.max;
1564 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1565 max = min(max + swap_max, memsw_max);
9a5a8f19 1566 }
bbec2e15 1567 return max;
a63d83f4
DR
1568}
1569
9783aa99
CD
1570unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1571{
1572 return page_counter_read(&memcg->memory);
1573}
1574
b6e6edcf 1575static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1576 int order)
9cbb78bb 1577{
6e0fc46d
DR
1578 struct oom_control oc = {
1579 .zonelist = NULL,
1580 .nodemask = NULL,
2a966b77 1581 .memcg = memcg,
6e0fc46d
DR
1582 .gfp_mask = gfp_mask,
1583 .order = order,
6e0fc46d 1584 };
7c5f64f8 1585 bool ret;
9cbb78bb 1586
7775face
TH
1587 if (mutex_lock_killable(&oom_lock))
1588 return true;
1589 /*
1590 * A few threads which were not waiting at mutex_lock_killable() can
1591 * fail to bail out. Therefore, check again after holding oom_lock.
1592 */
1593 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1594 mutex_unlock(&oom_lock);
7c5f64f8 1595 return ret;
9cbb78bb
DR
1596}
1597
ae6e71d3
MC
1598#if MAX_NUMNODES > 1
1599
4d0c066d
KH
1600/**
1601 * test_mem_cgroup_node_reclaimable
dad7557e 1602 * @memcg: the target memcg
4d0c066d
KH
1603 * @nid: the node ID to be checked.
1604 * @noswap : specify true here if the user wants flle only information.
1605 *
1606 * This function returns whether the specified memcg contains any
1607 * reclaimable pages on a node. Returns true if there are any reclaimable
1608 * pages in the node.
1609 */
c0ff4b85 1610static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1611 int nid, bool noswap)
1612{
2b487e59
JW
1613 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1614
def0fdae
JW
1615 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1616 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1617 return true;
1618 if (noswap || !total_swap_pages)
1619 return false;
def0fdae
JW
1620 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1621 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1622 return true;
1623 return false;
1624
1625}
889976db
YH
1626
1627/*
1628 * Always updating the nodemask is not very good - even if we have an empty
1629 * list or the wrong list here, we can start from some node and traverse all
1630 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1631 *
1632 */
c0ff4b85 1633static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1634{
1635 int nid;
453a9bf3
KH
1636 /*
1637 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1638 * pagein/pageout changes since the last update.
1639 */
c0ff4b85 1640 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1641 return;
c0ff4b85 1642 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1643 return;
1644
889976db 1645 /* make a nodemask where this memcg uses memory from */
31aaea4a 1646 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1647
31aaea4a 1648 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1649
c0ff4b85
R
1650 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1651 node_clear(nid, memcg->scan_nodes);
889976db 1652 }
453a9bf3 1653
c0ff4b85
R
1654 atomic_set(&memcg->numainfo_events, 0);
1655 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1656}
1657
1658/*
1659 * Selecting a node where we start reclaim from. Because what we need is just
1660 * reducing usage counter, start from anywhere is O,K. Considering
1661 * memory reclaim from current node, there are pros. and cons.
1662 *
1663 * Freeing memory from current node means freeing memory from a node which
1664 * we'll use or we've used. So, it may make LRU bad. And if several threads
1665 * hit limits, it will see a contention on a node. But freeing from remote
1666 * node means more costs for memory reclaim because of memory latency.
1667 *
1668 * Now, we use round-robin. Better algorithm is welcomed.
1669 */
c0ff4b85 1670int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1671{
1672 int node;
1673
c0ff4b85
R
1674 mem_cgroup_may_update_nodemask(memcg);
1675 node = memcg->last_scanned_node;
889976db 1676
0edaf86c 1677 node = next_node_in(node, memcg->scan_nodes);
889976db 1678 /*
fda3d69b
MH
1679 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1680 * last time it really checked all the LRUs due to rate limiting.
1681 * Fallback to the current node in that case for simplicity.
889976db
YH
1682 */
1683 if (unlikely(node == MAX_NUMNODES))
1684 node = numa_node_id();
1685
c0ff4b85 1686 memcg->last_scanned_node = node;
889976db
YH
1687 return node;
1688}
889976db 1689#else
c0ff4b85 1690int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1691{
1692 return 0;
1693}
1694#endif
1695
0608f43d 1696static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1697 pg_data_t *pgdat,
0608f43d
AM
1698 gfp_t gfp_mask,
1699 unsigned long *total_scanned)
1700{
1701 struct mem_cgroup *victim = NULL;
1702 int total = 0;
1703 int loop = 0;
1704 unsigned long excess;
1705 unsigned long nr_scanned;
1706 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1707 .pgdat = pgdat,
0608f43d
AM
1708 .priority = 0,
1709 };
1710
3e32cb2e 1711 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1712
1713 while (1) {
1714 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1715 if (!victim) {
1716 loop++;
1717 if (loop >= 2) {
1718 /*
1719 * If we have not been able to reclaim
1720 * anything, it might because there are
1721 * no reclaimable pages under this hierarchy
1722 */
1723 if (!total)
1724 break;
1725 /*
1726 * We want to do more targeted reclaim.
1727 * excess >> 2 is not to excessive so as to
1728 * reclaim too much, nor too less that we keep
1729 * coming back to reclaim from this cgroup
1730 */
1731 if (total >= (excess >> 2) ||
1732 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1733 break;
1734 }
1735 continue;
1736 }
a9dd0a83 1737 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1738 pgdat, &nr_scanned);
0608f43d 1739 *total_scanned += nr_scanned;
3e32cb2e 1740 if (!soft_limit_excess(root_memcg))
0608f43d 1741 break;
6d61ef40 1742 }
0608f43d
AM
1743 mem_cgroup_iter_break(root_memcg, victim);
1744 return total;
6d61ef40
BS
1745}
1746
0056f4e6
JW
1747#ifdef CONFIG_LOCKDEP
1748static struct lockdep_map memcg_oom_lock_dep_map = {
1749 .name = "memcg_oom_lock",
1750};
1751#endif
1752
fb2a6fc5
JW
1753static DEFINE_SPINLOCK(memcg_oom_lock);
1754
867578cb
KH
1755/*
1756 * Check OOM-Killer is already running under our hierarchy.
1757 * If someone is running, return false.
1758 */
fb2a6fc5 1759static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1760{
79dfdacc 1761 struct mem_cgroup *iter, *failed = NULL;
a636b327 1762
fb2a6fc5
JW
1763 spin_lock(&memcg_oom_lock);
1764
9f3a0d09 1765 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1766 if (iter->oom_lock) {
79dfdacc
MH
1767 /*
1768 * this subtree of our hierarchy is already locked
1769 * so we cannot give a lock.
1770 */
79dfdacc 1771 failed = iter;
9f3a0d09
JW
1772 mem_cgroup_iter_break(memcg, iter);
1773 break;
23751be0
JW
1774 } else
1775 iter->oom_lock = true;
7d74b06f 1776 }
867578cb 1777
fb2a6fc5
JW
1778 if (failed) {
1779 /*
1780 * OK, we failed to lock the whole subtree so we have
1781 * to clean up what we set up to the failing subtree
1782 */
1783 for_each_mem_cgroup_tree(iter, memcg) {
1784 if (iter == failed) {
1785 mem_cgroup_iter_break(memcg, iter);
1786 break;
1787 }
1788 iter->oom_lock = false;
79dfdacc 1789 }
0056f4e6
JW
1790 } else
1791 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1792
1793 spin_unlock(&memcg_oom_lock);
1794
1795 return !failed;
a636b327 1796}
0b7f569e 1797
fb2a6fc5 1798static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1799{
7d74b06f
KH
1800 struct mem_cgroup *iter;
1801
fb2a6fc5 1802 spin_lock(&memcg_oom_lock);
0056f4e6 1803 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1804 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1805 iter->oom_lock = false;
fb2a6fc5 1806 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1807}
1808
c0ff4b85 1809static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1810{
1811 struct mem_cgroup *iter;
1812
c2b42d3c 1813 spin_lock(&memcg_oom_lock);
c0ff4b85 1814 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1815 iter->under_oom++;
1816 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1817}
1818
c0ff4b85 1819static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1820{
1821 struct mem_cgroup *iter;
1822
867578cb
KH
1823 /*
1824 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1825 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1826 */
c2b42d3c 1827 spin_lock(&memcg_oom_lock);
c0ff4b85 1828 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1829 if (iter->under_oom > 0)
1830 iter->under_oom--;
1831 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1832}
1833
867578cb
KH
1834static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1835
dc98df5a 1836struct oom_wait_info {
d79154bb 1837 struct mem_cgroup *memcg;
ac6424b9 1838 wait_queue_entry_t wait;
dc98df5a
KH
1839};
1840
ac6424b9 1841static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1842 unsigned mode, int sync, void *arg)
1843{
d79154bb
HD
1844 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1845 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1846 struct oom_wait_info *oom_wait_info;
1847
1848 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1849 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1850
2314b42d
JW
1851 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1852 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1853 return 0;
dc98df5a
KH
1854 return autoremove_wake_function(wait, mode, sync, arg);
1855}
1856
c0ff4b85 1857static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1858{
c2b42d3c
TH
1859 /*
1860 * For the following lockless ->under_oom test, the only required
1861 * guarantee is that it must see the state asserted by an OOM when
1862 * this function is called as a result of userland actions
1863 * triggered by the notification of the OOM. This is trivially
1864 * achieved by invoking mem_cgroup_mark_under_oom() before
1865 * triggering notification.
1866 */
1867 if (memcg && memcg->under_oom)
f4b90b70 1868 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1869}
1870
29ef680a
MH
1871enum oom_status {
1872 OOM_SUCCESS,
1873 OOM_FAILED,
1874 OOM_ASYNC,
1875 OOM_SKIPPED
1876};
1877
1878static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1879{
7056d3a3
MH
1880 enum oom_status ret;
1881 bool locked;
1882
29ef680a
MH
1883 if (order > PAGE_ALLOC_COSTLY_ORDER)
1884 return OOM_SKIPPED;
1885
7a1adfdd
RG
1886 memcg_memory_event(memcg, MEMCG_OOM);
1887
867578cb 1888 /*
49426420
JW
1889 * We are in the middle of the charge context here, so we
1890 * don't want to block when potentially sitting on a callstack
1891 * that holds all kinds of filesystem and mm locks.
1892 *
29ef680a
MH
1893 * cgroup1 allows disabling the OOM killer and waiting for outside
1894 * handling until the charge can succeed; remember the context and put
1895 * the task to sleep at the end of the page fault when all locks are
1896 * released.
49426420 1897 *
29ef680a
MH
1898 * On the other hand, in-kernel OOM killer allows for an async victim
1899 * memory reclaim (oom_reaper) and that means that we are not solely
1900 * relying on the oom victim to make a forward progress and we can
1901 * invoke the oom killer here.
1902 *
1903 * Please note that mem_cgroup_out_of_memory might fail to find a
1904 * victim and then we have to bail out from the charge path.
867578cb 1905 */
29ef680a
MH
1906 if (memcg->oom_kill_disable) {
1907 if (!current->in_user_fault)
1908 return OOM_SKIPPED;
1909 css_get(&memcg->css);
1910 current->memcg_in_oom = memcg;
1911 current->memcg_oom_gfp_mask = mask;
1912 current->memcg_oom_order = order;
1913
1914 return OOM_ASYNC;
1915 }
1916
7056d3a3
MH
1917 mem_cgroup_mark_under_oom(memcg);
1918
1919 locked = mem_cgroup_oom_trylock(memcg);
1920
1921 if (locked)
1922 mem_cgroup_oom_notify(memcg);
1923
1924 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1925 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1926 ret = OOM_SUCCESS;
1927 else
1928 ret = OOM_FAILED;
1929
1930 if (locked)
1931 mem_cgroup_oom_unlock(memcg);
29ef680a 1932
7056d3a3 1933 return ret;
3812c8c8
JW
1934}
1935
1936/**
1937 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1938 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1939 *
49426420
JW
1940 * This has to be called at the end of a page fault if the memcg OOM
1941 * handler was enabled.
3812c8c8 1942 *
49426420 1943 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1944 * sleep on a waitqueue until the userspace task resolves the
1945 * situation. Sleeping directly in the charge context with all kinds
1946 * of locks held is not a good idea, instead we remember an OOM state
1947 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1948 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1949 *
1950 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1951 * completed, %false otherwise.
3812c8c8 1952 */
49426420 1953bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1954{
626ebc41 1955 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1956 struct oom_wait_info owait;
49426420 1957 bool locked;
3812c8c8
JW
1958
1959 /* OOM is global, do not handle */
3812c8c8 1960 if (!memcg)
49426420 1961 return false;
3812c8c8 1962
7c5f64f8 1963 if (!handle)
49426420 1964 goto cleanup;
3812c8c8
JW
1965
1966 owait.memcg = memcg;
1967 owait.wait.flags = 0;
1968 owait.wait.func = memcg_oom_wake_function;
1969 owait.wait.private = current;
2055da97 1970 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1971
3812c8c8 1972 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1973 mem_cgroup_mark_under_oom(memcg);
1974
1975 locked = mem_cgroup_oom_trylock(memcg);
1976
1977 if (locked)
1978 mem_cgroup_oom_notify(memcg);
1979
1980 if (locked && !memcg->oom_kill_disable) {
1981 mem_cgroup_unmark_under_oom(memcg);
1982 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1983 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1984 current->memcg_oom_order);
49426420 1985 } else {
3812c8c8 1986 schedule();
49426420
JW
1987 mem_cgroup_unmark_under_oom(memcg);
1988 finish_wait(&memcg_oom_waitq, &owait.wait);
1989 }
1990
1991 if (locked) {
fb2a6fc5
JW
1992 mem_cgroup_oom_unlock(memcg);
1993 /*
1994 * There is no guarantee that an OOM-lock contender
1995 * sees the wakeups triggered by the OOM kill
1996 * uncharges. Wake any sleepers explicitely.
1997 */
1998 memcg_oom_recover(memcg);
1999 }
49426420 2000cleanup:
626ebc41 2001 current->memcg_in_oom = NULL;
3812c8c8 2002 css_put(&memcg->css);
867578cb 2003 return true;
0b7f569e
KH
2004}
2005
3d8b38eb
RG
2006/**
2007 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2008 * @victim: task to be killed by the OOM killer
2009 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2010 *
2011 * Returns a pointer to a memory cgroup, which has to be cleaned up
2012 * by killing all belonging OOM-killable tasks.
2013 *
2014 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2015 */
2016struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2017 struct mem_cgroup *oom_domain)
2018{
2019 struct mem_cgroup *oom_group = NULL;
2020 struct mem_cgroup *memcg;
2021
2022 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2023 return NULL;
2024
2025 if (!oom_domain)
2026 oom_domain = root_mem_cgroup;
2027
2028 rcu_read_lock();
2029
2030 memcg = mem_cgroup_from_task(victim);
2031 if (memcg == root_mem_cgroup)
2032 goto out;
2033
2034 /*
2035 * Traverse the memory cgroup hierarchy from the victim task's
2036 * cgroup up to the OOMing cgroup (or root) to find the
2037 * highest-level memory cgroup with oom.group set.
2038 */
2039 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2040 if (memcg->oom_group)
2041 oom_group = memcg;
2042
2043 if (memcg == oom_domain)
2044 break;
2045 }
2046
2047 if (oom_group)
2048 css_get(&oom_group->css);
2049out:
2050 rcu_read_unlock();
2051
2052 return oom_group;
2053}
2054
2055void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2056{
2057 pr_info("Tasks in ");
2058 pr_cont_cgroup_path(memcg->css.cgroup);
2059 pr_cont(" are going to be killed due to memory.oom.group set\n");
2060}
2061
d7365e78 2062/**
81f8c3a4
JW
2063 * lock_page_memcg - lock a page->mem_cgroup binding
2064 * @page: the page
32047e2a 2065 *
81f8c3a4 2066 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2067 * another cgroup.
2068 *
2069 * It ensures lifetime of the returned memcg. Caller is responsible
2070 * for the lifetime of the page; __unlock_page_memcg() is available
2071 * when @page might get freed inside the locked section.
d69b042f 2072 */
739f79fc 2073struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
2074{
2075 struct mem_cgroup *memcg;
6de22619 2076 unsigned long flags;
89c06bd5 2077
6de22619
JW
2078 /*
2079 * The RCU lock is held throughout the transaction. The fast
2080 * path can get away without acquiring the memcg->move_lock
2081 * because page moving starts with an RCU grace period.
739f79fc
JW
2082 *
2083 * The RCU lock also protects the memcg from being freed when
2084 * the page state that is going to change is the only thing
2085 * preventing the page itself from being freed. E.g. writeback
2086 * doesn't hold a page reference and relies on PG_writeback to
2087 * keep off truncation, migration and so forth.
2088 */
d7365e78
JW
2089 rcu_read_lock();
2090
2091 if (mem_cgroup_disabled())
739f79fc 2092 return NULL;
89c06bd5 2093again:
1306a85a 2094 memcg = page->mem_cgroup;
29833315 2095 if (unlikely(!memcg))
739f79fc 2096 return NULL;
d7365e78 2097
bdcbb659 2098 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2099 return memcg;
89c06bd5 2100
6de22619 2101 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2102 if (memcg != page->mem_cgroup) {
6de22619 2103 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2104 goto again;
2105 }
6de22619
JW
2106
2107 /*
2108 * When charge migration first begins, we can have locked and
2109 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2110 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2111 */
2112 memcg->move_lock_task = current;
2113 memcg->move_lock_flags = flags;
d7365e78 2114
739f79fc 2115 return memcg;
89c06bd5 2116}
81f8c3a4 2117EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2118
d7365e78 2119/**
739f79fc
JW
2120 * __unlock_page_memcg - unlock and unpin a memcg
2121 * @memcg: the memcg
2122 *
2123 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2124 */
739f79fc 2125void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2126{
6de22619
JW
2127 if (memcg && memcg->move_lock_task == current) {
2128 unsigned long flags = memcg->move_lock_flags;
2129
2130 memcg->move_lock_task = NULL;
2131 memcg->move_lock_flags = 0;
2132
2133 spin_unlock_irqrestore(&memcg->move_lock, flags);
2134 }
89c06bd5 2135
d7365e78 2136 rcu_read_unlock();
89c06bd5 2137}
739f79fc
JW
2138
2139/**
2140 * unlock_page_memcg - unlock a page->mem_cgroup binding
2141 * @page: the page
2142 */
2143void unlock_page_memcg(struct page *page)
2144{
2145 __unlock_page_memcg(page->mem_cgroup);
2146}
81f8c3a4 2147EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2148
cdec2e42
KH
2149struct memcg_stock_pcp {
2150 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2151 unsigned int nr_pages;
cdec2e42 2152 struct work_struct work;
26fe6168 2153 unsigned long flags;
a0db00fc 2154#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2155};
2156static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2157static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2158
a0956d54
SS
2159/**
2160 * consume_stock: Try to consume stocked charge on this cpu.
2161 * @memcg: memcg to consume from.
2162 * @nr_pages: how many pages to charge.
2163 *
2164 * The charges will only happen if @memcg matches the current cpu's memcg
2165 * stock, and at least @nr_pages are available in that stock. Failure to
2166 * service an allocation will refill the stock.
2167 *
2168 * returns true if successful, false otherwise.
cdec2e42 2169 */
a0956d54 2170static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2171{
2172 struct memcg_stock_pcp *stock;
db2ba40c 2173 unsigned long flags;
3e32cb2e 2174 bool ret = false;
cdec2e42 2175
a983b5eb 2176 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2177 return ret;
a0956d54 2178
db2ba40c
JW
2179 local_irq_save(flags);
2180
2181 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2182 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2183 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2184 ret = true;
2185 }
db2ba40c
JW
2186
2187 local_irq_restore(flags);
2188
cdec2e42
KH
2189 return ret;
2190}
2191
2192/*
3e32cb2e 2193 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2194 */
2195static void drain_stock(struct memcg_stock_pcp *stock)
2196{
2197 struct mem_cgroup *old = stock->cached;
2198
11c9ea4e 2199 if (stock->nr_pages) {
3e32cb2e 2200 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2201 if (do_memsw_account())
3e32cb2e 2202 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2203 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2204 stock->nr_pages = 0;
cdec2e42
KH
2205 }
2206 stock->cached = NULL;
cdec2e42
KH
2207}
2208
cdec2e42
KH
2209static void drain_local_stock(struct work_struct *dummy)
2210{
db2ba40c
JW
2211 struct memcg_stock_pcp *stock;
2212 unsigned long flags;
2213
72f0184c
MH
2214 /*
2215 * The only protection from memory hotplug vs. drain_stock races is
2216 * that we always operate on local CPU stock here with IRQ disabled
2217 */
db2ba40c
JW
2218 local_irq_save(flags);
2219
2220 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2221 drain_stock(stock);
26fe6168 2222 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2223
2224 local_irq_restore(flags);
cdec2e42
KH
2225}
2226
2227/*
3e32cb2e 2228 * Cache charges(val) to local per_cpu area.
320cc51d 2229 * This will be consumed by consume_stock() function, later.
cdec2e42 2230 */
c0ff4b85 2231static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2232{
db2ba40c
JW
2233 struct memcg_stock_pcp *stock;
2234 unsigned long flags;
2235
2236 local_irq_save(flags);
cdec2e42 2237
db2ba40c 2238 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2239 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2240 drain_stock(stock);
c0ff4b85 2241 stock->cached = memcg;
cdec2e42 2242 }
11c9ea4e 2243 stock->nr_pages += nr_pages;
db2ba40c 2244
a983b5eb 2245 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2246 drain_stock(stock);
2247
db2ba40c 2248 local_irq_restore(flags);
cdec2e42
KH
2249}
2250
2251/*
c0ff4b85 2252 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2253 * of the hierarchy under it.
cdec2e42 2254 */
6d3d6aa2 2255static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2256{
26fe6168 2257 int cpu, curcpu;
d38144b7 2258
6d3d6aa2
JW
2259 /* If someone's already draining, avoid adding running more workers. */
2260 if (!mutex_trylock(&percpu_charge_mutex))
2261 return;
72f0184c
MH
2262 /*
2263 * Notify other cpus that system-wide "drain" is running
2264 * We do not care about races with the cpu hotplug because cpu down
2265 * as well as workers from this path always operate on the local
2266 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2267 */
5af12d0e 2268 curcpu = get_cpu();
cdec2e42
KH
2269 for_each_online_cpu(cpu) {
2270 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2271 struct mem_cgroup *memcg;
e1a366be 2272 bool flush = false;
26fe6168 2273
e1a366be 2274 rcu_read_lock();
c0ff4b85 2275 memcg = stock->cached;
e1a366be
RG
2276 if (memcg && stock->nr_pages &&
2277 mem_cgroup_is_descendant(memcg, root_memcg))
2278 flush = true;
2279 rcu_read_unlock();
2280
2281 if (flush &&
2282 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2283 if (cpu == curcpu)
2284 drain_local_stock(&stock->work);
2285 else
2286 schedule_work_on(cpu, &stock->work);
2287 }
cdec2e42 2288 }
5af12d0e 2289 put_cpu();
9f50fad6 2290 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2291}
2292
308167fc 2293static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2294{
cdec2e42 2295 struct memcg_stock_pcp *stock;
42a30035 2296 struct mem_cgroup *memcg, *mi;
cdec2e42 2297
cdec2e42
KH
2298 stock = &per_cpu(memcg_stock, cpu);
2299 drain_stock(stock);
a983b5eb
JW
2300
2301 for_each_mem_cgroup(memcg) {
2302 int i;
2303
2304 for (i = 0; i < MEMCG_NR_STAT; i++) {
2305 int nid;
2306 long x;
2307
871789d4 2308 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2309 if (x)
42a30035
JW
2310 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2311 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2312
2313 if (i >= NR_VM_NODE_STAT_ITEMS)
2314 continue;
2315
2316 for_each_node(nid) {
2317 struct mem_cgroup_per_node *pn;
2318
2319 pn = mem_cgroup_nodeinfo(memcg, nid);
2320 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2321 if (x)
42a30035
JW
2322 do {
2323 atomic_long_add(x, &pn->lruvec_stat[i]);
2324 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2325 }
2326 }
2327
e27be240 2328 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2329 long x;
2330
871789d4 2331 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2332 if (x)
42a30035
JW
2333 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2334 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2335 }
2336 }
2337
308167fc 2338 return 0;
cdec2e42
KH
2339}
2340
f7e1cb6e
JW
2341static void reclaim_high(struct mem_cgroup *memcg,
2342 unsigned int nr_pages,
2343 gfp_t gfp_mask)
2344{
2345 do {
2346 if (page_counter_read(&memcg->memory) <= memcg->high)
2347 continue;
e27be240 2348 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2349 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2350 } while ((memcg = parent_mem_cgroup(memcg)));
2351}
2352
2353static void high_work_func(struct work_struct *work)
2354{
2355 struct mem_cgroup *memcg;
2356
2357 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2358 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2359}
2360
0e4b01df
CD
2361/*
2362 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2363 * enough to still cause a significant slowdown in most cases, while still
2364 * allowing diagnostics and tracing to proceed without becoming stuck.
2365 */
2366#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2367
2368/*
2369 * When calculating the delay, we use these either side of the exponentiation to
2370 * maintain precision and scale to a reasonable number of jiffies (see the table
2371 * below.
2372 *
2373 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2374 * overage ratio to a delay.
2375 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2376 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2377 * to produce a reasonable delay curve.
2378 *
2379 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2380 * reasonable delay curve compared to precision-adjusted overage, not
2381 * penalising heavily at first, but still making sure that growth beyond the
2382 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2383 * example, with a high of 100 megabytes:
2384 *
2385 * +-------+------------------------+
2386 * | usage | time to allocate in ms |
2387 * +-------+------------------------+
2388 * | 100M | 0 |
2389 * | 101M | 6 |
2390 * | 102M | 25 |
2391 * | 103M | 57 |
2392 * | 104M | 102 |
2393 * | 105M | 159 |
2394 * | 106M | 230 |
2395 * | 107M | 313 |
2396 * | 108M | 409 |
2397 * | 109M | 518 |
2398 * | 110M | 639 |
2399 * | 111M | 774 |
2400 * | 112M | 921 |
2401 * | 113M | 1081 |
2402 * | 114M | 1254 |
2403 * | 115M | 1439 |
2404 * | 116M | 1638 |
2405 * | 117M | 1849 |
2406 * | 118M | 2000 |
2407 * | 119M | 2000 |
2408 * | 120M | 2000 |
2409 * +-------+------------------------+
2410 */
2411 #define MEMCG_DELAY_PRECISION_SHIFT 20
2412 #define MEMCG_DELAY_SCALING_SHIFT 14
2413
b23afb93
TH
2414/*
2415 * Scheduled by try_charge() to be executed from the userland return path
2416 * and reclaims memory over the high limit.
2417 */
2418void mem_cgroup_handle_over_high(void)
2419{
0e4b01df
CD
2420 unsigned long usage, high, clamped_high;
2421 unsigned long pflags;
2422 unsigned long penalty_jiffies, overage;
b23afb93 2423 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2424 struct mem_cgroup *memcg;
b23afb93
TH
2425
2426 if (likely(!nr_pages))
2427 return;
2428
f7e1cb6e
JW
2429 memcg = get_mem_cgroup_from_mm(current->mm);
2430 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93 2431 current->memcg_nr_pages_over_high = 0;
0e4b01df
CD
2432
2433 /*
2434 * memory.high is breached and reclaim is unable to keep up. Throttle
2435 * allocators proactively to slow down excessive growth.
2436 *
2437 * We use overage compared to memory.high to calculate the number of
2438 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2439 * fairly lenient on small overages, and increasingly harsh when the
2440 * memcg in question makes it clear that it has no intention of stopping
2441 * its crazy behaviour, so we exponentially increase the delay based on
2442 * overage amount.
2443 */
2444
2445 usage = page_counter_read(&memcg->memory);
2446 high = READ_ONCE(memcg->high);
2447
2448 if (usage <= high)
2449 goto out;
2450
2451 /*
2452 * Prevent division by 0 in overage calculation by acting as if it was a
2453 * threshold of 1 page
2454 */
2455 clamped_high = max(high, 1UL);
2456
2457 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2458 clamped_high);
2459
2460 penalty_jiffies = ((u64)overage * overage * HZ)
2461 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2462
2463 /*
2464 * Factor in the task's own contribution to the overage, such that four
2465 * N-sized allocations are throttled approximately the same as one
2466 * 4N-sized allocation.
2467 *
2468 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2469 * larger the current charge patch is than that.
2470 */
2471 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2472
2473 /*
2474 * Clamp the max delay per usermode return so as to still keep the
2475 * application moving forwards and also permit diagnostics, albeit
2476 * extremely slowly.
2477 */
2478 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2479
2480 /*
2481 * Don't sleep if the amount of jiffies this memcg owes us is so low
2482 * that it's not even worth doing, in an attempt to be nice to those who
2483 * go only a small amount over their memory.high value and maybe haven't
2484 * been aggressively reclaimed enough yet.
2485 */
2486 if (penalty_jiffies <= HZ / 100)
2487 goto out;
2488
2489 /*
2490 * If we exit early, we're guaranteed to die (since
2491 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2492 * need to account for any ill-begotten jiffies to pay them off later.
2493 */
2494 psi_memstall_enter(&pflags);
2495 schedule_timeout_killable(penalty_jiffies);
2496 psi_memstall_leave(&pflags);
2497
2498out:
2499 css_put(&memcg->css);
b23afb93
TH
2500}
2501
00501b53
JW
2502static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2503 unsigned int nr_pages)
8a9f3ccd 2504{
a983b5eb 2505 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2506 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2507 struct mem_cgroup *mem_over_limit;
3e32cb2e 2508 struct page_counter *counter;
6539cc05 2509 unsigned long nr_reclaimed;
b70a2a21
JW
2510 bool may_swap = true;
2511 bool drained = false;
29ef680a 2512 enum oom_status oom_status;
a636b327 2513
ce00a967 2514 if (mem_cgroup_is_root(memcg))
10d53c74 2515 return 0;
6539cc05 2516retry:
b6b6cc72 2517 if (consume_stock(memcg, nr_pages))
10d53c74 2518 return 0;
8a9f3ccd 2519
7941d214 2520 if (!do_memsw_account() ||
6071ca52
JW
2521 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2522 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2523 goto done_restock;
7941d214 2524 if (do_memsw_account())
3e32cb2e
JW
2525 page_counter_uncharge(&memcg->memsw, batch);
2526 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2527 } else {
3e32cb2e 2528 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2529 may_swap = false;
3fbe7244 2530 }
7a81b88c 2531
6539cc05
JW
2532 if (batch > nr_pages) {
2533 batch = nr_pages;
2534 goto retry;
2535 }
6d61ef40 2536
06b078fc
JW
2537 /*
2538 * Unlike in global OOM situations, memcg is not in a physical
2539 * memory shortage. Allow dying and OOM-killed tasks to
2540 * bypass the last charges so that they can exit quickly and
2541 * free their memory.
2542 */
7775face 2543 if (unlikely(should_force_charge()))
10d53c74 2544 goto force;
06b078fc 2545
89a28483
JW
2546 /*
2547 * Prevent unbounded recursion when reclaim operations need to
2548 * allocate memory. This might exceed the limits temporarily,
2549 * but we prefer facilitating memory reclaim and getting back
2550 * under the limit over triggering OOM kills in these cases.
2551 */
2552 if (unlikely(current->flags & PF_MEMALLOC))
2553 goto force;
2554
06b078fc
JW
2555 if (unlikely(task_in_memcg_oom(current)))
2556 goto nomem;
2557
d0164adc 2558 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2559 goto nomem;
4b534334 2560
e27be240 2561 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2562
b70a2a21
JW
2563 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2564 gfp_mask, may_swap);
6539cc05 2565
61e02c74 2566 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2567 goto retry;
28c34c29 2568
b70a2a21 2569 if (!drained) {
6d3d6aa2 2570 drain_all_stock(mem_over_limit);
b70a2a21
JW
2571 drained = true;
2572 goto retry;
2573 }
2574
28c34c29
JW
2575 if (gfp_mask & __GFP_NORETRY)
2576 goto nomem;
6539cc05
JW
2577 /*
2578 * Even though the limit is exceeded at this point, reclaim
2579 * may have been able to free some pages. Retry the charge
2580 * before killing the task.
2581 *
2582 * Only for regular pages, though: huge pages are rather
2583 * unlikely to succeed so close to the limit, and we fall back
2584 * to regular pages anyway in case of failure.
2585 */
61e02c74 2586 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2587 goto retry;
2588 /*
2589 * At task move, charge accounts can be doubly counted. So, it's
2590 * better to wait until the end of task_move if something is going on.
2591 */
2592 if (mem_cgroup_wait_acct_move(mem_over_limit))
2593 goto retry;
2594
9b130619
JW
2595 if (nr_retries--)
2596 goto retry;
2597
38d38493 2598 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2599 goto nomem;
2600
06b078fc 2601 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2602 goto force;
06b078fc 2603
6539cc05 2604 if (fatal_signal_pending(current))
10d53c74 2605 goto force;
6539cc05 2606
29ef680a
MH
2607 /*
2608 * keep retrying as long as the memcg oom killer is able to make
2609 * a forward progress or bypass the charge if the oom killer
2610 * couldn't make any progress.
2611 */
2612 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2613 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2614 switch (oom_status) {
2615 case OOM_SUCCESS:
2616 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2617 goto retry;
2618 case OOM_FAILED:
2619 goto force;
2620 default:
2621 goto nomem;
2622 }
7a81b88c 2623nomem:
6d1fdc48 2624 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2625 return -ENOMEM;
10d53c74
TH
2626force:
2627 /*
2628 * The allocation either can't fail or will lead to more memory
2629 * being freed very soon. Allow memory usage go over the limit
2630 * temporarily by force charging it.
2631 */
2632 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2633 if (do_memsw_account())
10d53c74
TH
2634 page_counter_charge(&memcg->memsw, nr_pages);
2635 css_get_many(&memcg->css, nr_pages);
2636
2637 return 0;
6539cc05
JW
2638
2639done_restock:
e8ea14cc 2640 css_get_many(&memcg->css, batch);
6539cc05
JW
2641 if (batch > nr_pages)
2642 refill_stock(memcg, batch - nr_pages);
b23afb93 2643
241994ed 2644 /*
b23afb93
TH
2645 * If the hierarchy is above the normal consumption range, schedule
2646 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2647 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2648 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2649 * not recorded as it most likely matches current's and won't
2650 * change in the meantime. As high limit is checked again before
2651 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2652 */
2653 do {
b23afb93 2654 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2655 /* Don't bother a random interrupted task */
2656 if (in_interrupt()) {
2657 schedule_work(&memcg->high_work);
2658 break;
2659 }
9516a18a 2660 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2661 set_notify_resume(current);
2662 break;
2663 }
241994ed 2664 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2665
2666 return 0;
7a81b88c 2667}
8a9f3ccd 2668
00501b53 2669static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2670{
ce00a967
JW
2671 if (mem_cgroup_is_root(memcg))
2672 return;
2673
3e32cb2e 2674 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2675 if (do_memsw_account())
3e32cb2e 2676 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2677
e8ea14cc 2678 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2679}
2680
0a31bc97
JW
2681static void lock_page_lru(struct page *page, int *isolated)
2682{
f4b7e272 2683 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2684
f4b7e272 2685 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2686 if (PageLRU(page)) {
2687 struct lruvec *lruvec;
2688
f4b7e272 2689 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2690 ClearPageLRU(page);
2691 del_page_from_lru_list(page, lruvec, page_lru(page));
2692 *isolated = 1;
2693 } else
2694 *isolated = 0;
2695}
2696
2697static void unlock_page_lru(struct page *page, int isolated)
2698{
f4b7e272 2699 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2700
2701 if (isolated) {
2702 struct lruvec *lruvec;
2703
f4b7e272 2704 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2705 VM_BUG_ON_PAGE(PageLRU(page), page);
2706 SetPageLRU(page);
2707 add_page_to_lru_list(page, lruvec, page_lru(page));
2708 }
f4b7e272 2709 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2710}
2711
00501b53 2712static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2713 bool lrucare)
7a81b88c 2714{
0a31bc97 2715 int isolated;
9ce70c02 2716
1306a85a 2717 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2718
2719 /*
2720 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2721 * may already be on some other mem_cgroup's LRU. Take care of it.
2722 */
0a31bc97
JW
2723 if (lrucare)
2724 lock_page_lru(page, &isolated);
9ce70c02 2725
0a31bc97
JW
2726 /*
2727 * Nobody should be changing or seriously looking at
1306a85a 2728 * page->mem_cgroup at this point:
0a31bc97
JW
2729 *
2730 * - the page is uncharged
2731 *
2732 * - the page is off-LRU
2733 *
2734 * - an anonymous fault has exclusive page access, except for
2735 * a locked page table
2736 *
2737 * - a page cache insertion, a swapin fault, or a migration
2738 * have the page locked
2739 */
1306a85a 2740 page->mem_cgroup = memcg;
9ce70c02 2741
0a31bc97
JW
2742 if (lrucare)
2743 unlock_page_lru(page, isolated);
7a81b88c 2744}
66e1707b 2745
84c07d11 2746#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2747static int memcg_alloc_cache_id(void)
55007d84 2748{
f3bb3043
VD
2749 int id, size;
2750 int err;
2751
dbcf73e2 2752 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2753 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2754 if (id < 0)
2755 return id;
55007d84 2756
dbcf73e2 2757 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2758 return id;
2759
2760 /*
2761 * There's no space for the new id in memcg_caches arrays,
2762 * so we have to grow them.
2763 */
05257a1a 2764 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2765
2766 size = 2 * (id + 1);
55007d84
GC
2767 if (size < MEMCG_CACHES_MIN_SIZE)
2768 size = MEMCG_CACHES_MIN_SIZE;
2769 else if (size > MEMCG_CACHES_MAX_SIZE)
2770 size = MEMCG_CACHES_MAX_SIZE;
2771
f3bb3043 2772 err = memcg_update_all_caches(size);
60d3fd32
VD
2773 if (!err)
2774 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2775 if (!err)
2776 memcg_nr_cache_ids = size;
2777
2778 up_write(&memcg_cache_ids_sem);
2779
f3bb3043 2780 if (err) {
dbcf73e2 2781 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2782 return err;
2783 }
2784 return id;
2785}
2786
2787static void memcg_free_cache_id(int id)
2788{
dbcf73e2 2789 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2790}
2791
d5b3cf71 2792struct memcg_kmem_cache_create_work {
5722d094
VD
2793 struct mem_cgroup *memcg;
2794 struct kmem_cache *cachep;
2795 struct work_struct work;
2796};
2797
d5b3cf71 2798static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2799{
d5b3cf71
VD
2800 struct memcg_kmem_cache_create_work *cw =
2801 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2802 struct mem_cgroup *memcg = cw->memcg;
2803 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2804
d5b3cf71 2805 memcg_create_kmem_cache(memcg, cachep);
bd673145 2806
5722d094 2807 css_put(&memcg->css);
d7f25f8a
GC
2808 kfree(cw);
2809}
2810
2811/*
2812 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2813 */
85cfb245 2814static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2815 struct kmem_cache *cachep)
d7f25f8a 2816{
d5b3cf71 2817 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2818
f0a3a24b
RG
2819 if (!css_tryget_online(&memcg->css))
2820 return;
2821
c892fd82 2822 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2823 if (!cw)
d7f25f8a 2824 return;
8135be5a 2825
d7f25f8a
GC
2826 cw->memcg = memcg;
2827 cw->cachep = cachep;
d5b3cf71 2828 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2829
17cc4dfe 2830 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2831}
2832
45264778
VD
2833static inline bool memcg_kmem_bypass(void)
2834{
2835 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2836 return true;
2837 return false;
2838}
2839
2840/**
2841 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2842 * @cachep: the original global kmem cache
2843 *
d7f25f8a
GC
2844 * Return the kmem_cache we're supposed to use for a slab allocation.
2845 * We try to use the current memcg's version of the cache.
2846 *
45264778
VD
2847 * If the cache does not exist yet, if we are the first user of it, we
2848 * create it asynchronously in a workqueue and let the current allocation
2849 * go through with the original cache.
d7f25f8a 2850 *
45264778
VD
2851 * This function takes a reference to the cache it returns to assure it
2852 * won't get destroyed while we are working with it. Once the caller is
2853 * done with it, memcg_kmem_put_cache() must be called to release the
2854 * reference.
d7f25f8a 2855 */
45264778 2856struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2857{
2858 struct mem_cgroup *memcg;
959c8963 2859 struct kmem_cache *memcg_cachep;
f0a3a24b 2860 struct memcg_cache_array *arr;
2a4db7eb 2861 int kmemcg_id;
d7f25f8a 2862
f7ce3190 2863 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2864
45264778 2865 if (memcg_kmem_bypass())
230e9fc2
VD
2866 return cachep;
2867
f0a3a24b
RG
2868 rcu_read_lock();
2869
2870 if (unlikely(current->active_memcg))
2871 memcg = current->active_memcg;
2872 else
2873 memcg = mem_cgroup_from_task(current);
2874
2875 if (!memcg || memcg == root_mem_cgroup)
2876 goto out_unlock;
2877
4db0c3c2 2878 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2879 if (kmemcg_id < 0)
f0a3a24b 2880 goto out_unlock;
d7f25f8a 2881
f0a3a24b
RG
2882 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2883
2884 /*
2885 * Make sure we will access the up-to-date value. The code updating
2886 * memcg_caches issues a write barrier to match the data dependency
2887 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2888 */
2889 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2890
2891 /*
2892 * If we are in a safe context (can wait, and not in interrupt
2893 * context), we could be be predictable and return right away.
2894 * This would guarantee that the allocation being performed
2895 * already belongs in the new cache.
2896 *
2897 * However, there are some clashes that can arrive from locking.
2898 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2899 * memcg_create_kmem_cache, this means no further allocation
2900 * could happen with the slab_mutex held. So it's better to
2901 * defer everything.
f0a3a24b
RG
2902 *
2903 * If the memcg is dying or memcg_cache is about to be released,
2904 * don't bother creating new kmem_caches. Because memcg_cachep
2905 * is ZEROed as the fist step of kmem offlining, we don't need
2906 * percpu_ref_tryget_live() here. css_tryget_online() check in
2907 * memcg_schedule_kmem_cache_create() will prevent us from
2908 * creation of a new kmem_cache.
ca0dde97 2909 */
f0a3a24b
RG
2910 if (unlikely(!memcg_cachep))
2911 memcg_schedule_kmem_cache_create(memcg, cachep);
2912 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2913 cachep = memcg_cachep;
2914out_unlock:
2915 rcu_read_unlock();
ca0dde97 2916 return cachep;
d7f25f8a 2917}
d7f25f8a 2918
45264778
VD
2919/**
2920 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2921 * @cachep: the cache returned by memcg_kmem_get_cache
2922 */
2923void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2924{
2925 if (!is_root_cache(cachep))
f0a3a24b 2926 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2927}
2928
45264778 2929/**
60cd4bcd 2930 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2931 * @page: page to charge
2932 * @gfp: reclaim mode
2933 * @order: allocation order
2934 * @memcg: memory cgroup to charge
2935 *
2936 * Returns 0 on success, an error code on failure.
2937 */
60cd4bcd 2938int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2939 struct mem_cgroup *memcg)
7ae1e1d0 2940{
f3ccb2c4
VD
2941 unsigned int nr_pages = 1 << order;
2942 struct page_counter *counter;
7ae1e1d0
GC
2943 int ret;
2944
f3ccb2c4 2945 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2946 if (ret)
f3ccb2c4 2947 return ret;
52c29b04
JW
2948
2949 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2950 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2951
2952 /*
2953 * Enforce __GFP_NOFAIL allocation because callers are not
2954 * prepared to see failures and likely do not have any failure
2955 * handling code.
2956 */
2957 if (gfp & __GFP_NOFAIL) {
2958 page_counter_charge(&memcg->kmem, nr_pages);
2959 return 0;
2960 }
52c29b04
JW
2961 cancel_charge(memcg, nr_pages);
2962 return -ENOMEM;
7ae1e1d0 2963 }
f3ccb2c4 2964 return 0;
7ae1e1d0
GC
2965}
2966
45264778 2967/**
60cd4bcd 2968 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2969 * @page: page to charge
2970 * @gfp: reclaim mode
2971 * @order: allocation order
2972 *
2973 * Returns 0 on success, an error code on failure.
2974 */
60cd4bcd 2975int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2976{
f3ccb2c4 2977 struct mem_cgroup *memcg;
fcff7d7e 2978 int ret = 0;
7ae1e1d0 2979
60cd4bcd 2980 if (memcg_kmem_bypass())
45264778
VD
2981 return 0;
2982
d46eb14b 2983 memcg = get_mem_cgroup_from_current();
c4159a75 2984 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2985 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2986 if (!ret) {
2987 page->mem_cgroup = memcg;
c4159a75 2988 __SetPageKmemcg(page);
4d96ba35 2989 }
c4159a75 2990 }
7ae1e1d0 2991 css_put(&memcg->css);
d05e83a6 2992 return ret;
7ae1e1d0 2993}
49a18eae
RG
2994
2995/**
2996 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2997 * @memcg: memcg to uncharge
2998 * @nr_pages: number of pages to uncharge
2999 */
3000void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
3001 unsigned int nr_pages)
3002{
3003 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3004 page_counter_uncharge(&memcg->kmem, nr_pages);
3005
3006 page_counter_uncharge(&memcg->memory, nr_pages);
3007 if (do_memsw_account())
3008 page_counter_uncharge(&memcg->memsw, nr_pages);
3009}
45264778 3010/**
60cd4bcd 3011 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
3012 * @page: page to uncharge
3013 * @order: allocation order
3014 */
60cd4bcd 3015void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 3016{
1306a85a 3017 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3018 unsigned int nr_pages = 1 << order;
7ae1e1d0 3019
7ae1e1d0
GC
3020 if (!memcg)
3021 return;
3022
309381fe 3023 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 3024 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 3025 page->mem_cgroup = NULL;
c4159a75
VD
3026
3027 /* slab pages do not have PageKmemcg flag set */
3028 if (PageKmemcg(page))
3029 __ClearPageKmemcg(page);
3030
f3ccb2c4 3031 css_put_many(&memcg->css, nr_pages);
60d3fd32 3032}
84c07d11 3033#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3034
ca3e0214
KH
3035#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3036
ca3e0214
KH
3037/*
3038 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3039 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3040 */
e94c8a9c 3041void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3042{
e94c8a9c 3043 int i;
ca3e0214 3044
3d37c4a9
KH
3045 if (mem_cgroup_disabled())
3046 return;
b070e65c 3047
29833315 3048 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3049 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3050
c9019e9b 3051 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 3052}
12d27107 3053#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3054
c255a458 3055#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3056/**
3057 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3058 * @entry: swap entry to be moved
3059 * @from: mem_cgroup which the entry is moved from
3060 * @to: mem_cgroup which the entry is moved to
3061 *
3062 * It succeeds only when the swap_cgroup's record for this entry is the same
3063 * as the mem_cgroup's id of @from.
3064 *
3065 * Returns 0 on success, -EINVAL on failure.
3066 *
3e32cb2e 3067 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3068 * both res and memsw, and called css_get().
3069 */
3070static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3071 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3072{
3073 unsigned short old_id, new_id;
3074
34c00c31
LZ
3075 old_id = mem_cgroup_id(from);
3076 new_id = mem_cgroup_id(to);
02491447
DN
3077
3078 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3079 mod_memcg_state(from, MEMCG_SWAP, -1);
3080 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3081 return 0;
3082 }
3083 return -EINVAL;
3084}
3085#else
3086static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3087 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3088{
3089 return -EINVAL;
3090}
8c7c6e34 3091#endif
d13d1443 3092
bbec2e15 3093static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3094
bbec2e15
RG
3095static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3096 unsigned long max, bool memsw)
628f4235 3097{
3e32cb2e 3098 bool enlarge = false;
bb4a7ea2 3099 bool drained = false;
3e32cb2e 3100 int ret;
c054a78c
YZ
3101 bool limits_invariant;
3102 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3103
3e32cb2e 3104 do {
628f4235
KH
3105 if (signal_pending(current)) {
3106 ret = -EINTR;
3107 break;
3108 }
3e32cb2e 3109
bbec2e15 3110 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3111 /*
3112 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3113 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3114 */
bbec2e15
RG
3115 limits_invariant = memsw ? max >= memcg->memory.max :
3116 max <= memcg->memsw.max;
c054a78c 3117 if (!limits_invariant) {
bbec2e15 3118 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3119 ret = -EINVAL;
8c7c6e34
KH
3120 break;
3121 }
bbec2e15 3122 if (max > counter->max)
3e32cb2e 3123 enlarge = true;
bbec2e15
RG
3124 ret = page_counter_set_max(counter, max);
3125 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3126
3127 if (!ret)
3128 break;
3129
bb4a7ea2
SB
3130 if (!drained) {
3131 drain_all_stock(memcg);
3132 drained = true;
3133 continue;
3134 }
3135
1ab5c056
AR
3136 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3137 GFP_KERNEL, !memsw)) {
3138 ret = -EBUSY;
3139 break;
3140 }
3141 } while (true);
3e32cb2e 3142
3c11ecf4
KH
3143 if (!ret && enlarge)
3144 memcg_oom_recover(memcg);
3e32cb2e 3145
628f4235
KH
3146 return ret;
3147}
3148
ef8f2327 3149unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3150 gfp_t gfp_mask,
3151 unsigned long *total_scanned)
3152{
3153 unsigned long nr_reclaimed = 0;
ef8f2327 3154 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3155 unsigned long reclaimed;
3156 int loop = 0;
ef8f2327 3157 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3158 unsigned long excess;
0608f43d
AM
3159 unsigned long nr_scanned;
3160
3161 if (order > 0)
3162 return 0;
3163
ef8f2327 3164 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3165
3166 /*
3167 * Do not even bother to check the largest node if the root
3168 * is empty. Do it lockless to prevent lock bouncing. Races
3169 * are acceptable as soft limit is best effort anyway.
3170 */
bfc7228b 3171 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3172 return 0;
3173
0608f43d
AM
3174 /*
3175 * This loop can run a while, specially if mem_cgroup's continuously
3176 * keep exceeding their soft limit and putting the system under
3177 * pressure
3178 */
3179 do {
3180 if (next_mz)
3181 mz = next_mz;
3182 else
3183 mz = mem_cgroup_largest_soft_limit_node(mctz);
3184 if (!mz)
3185 break;
3186
3187 nr_scanned = 0;
ef8f2327 3188 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3189 gfp_mask, &nr_scanned);
3190 nr_reclaimed += reclaimed;
3191 *total_scanned += nr_scanned;
0a31bc97 3192 spin_lock_irq(&mctz->lock);
bc2f2e7f 3193 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3194
3195 /*
3196 * If we failed to reclaim anything from this memory cgroup
3197 * it is time to move on to the next cgroup
3198 */
3199 next_mz = NULL;
bc2f2e7f
VD
3200 if (!reclaimed)
3201 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3202
3e32cb2e 3203 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3204 /*
3205 * One school of thought says that we should not add
3206 * back the node to the tree if reclaim returns 0.
3207 * But our reclaim could return 0, simply because due
3208 * to priority we are exposing a smaller subset of
3209 * memory to reclaim from. Consider this as a longer
3210 * term TODO.
3211 */
3212 /* If excess == 0, no tree ops */
cf2c8127 3213 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3214 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3215 css_put(&mz->memcg->css);
3216 loop++;
3217 /*
3218 * Could not reclaim anything and there are no more
3219 * mem cgroups to try or we seem to be looping without
3220 * reclaiming anything.
3221 */
3222 if (!nr_reclaimed &&
3223 (next_mz == NULL ||
3224 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3225 break;
3226 } while (!nr_reclaimed);
3227 if (next_mz)
3228 css_put(&next_mz->memcg->css);
3229 return nr_reclaimed;
3230}
3231
ea280e7b
TH
3232/*
3233 * Test whether @memcg has children, dead or alive. Note that this
3234 * function doesn't care whether @memcg has use_hierarchy enabled and
3235 * returns %true if there are child csses according to the cgroup
3236 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3237 */
b5f99b53
GC
3238static inline bool memcg_has_children(struct mem_cgroup *memcg)
3239{
ea280e7b
TH
3240 bool ret;
3241
ea280e7b
TH
3242 rcu_read_lock();
3243 ret = css_next_child(NULL, &memcg->css);
3244 rcu_read_unlock();
3245 return ret;
b5f99b53
GC
3246}
3247
c26251f9 3248/*
51038171 3249 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3250 *
3251 * Caller is responsible for holding css reference for memcg.
3252 */
3253static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3254{
3255 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3256
c1e862c1
KH
3257 /* we call try-to-free pages for make this cgroup empty */
3258 lru_add_drain_all();
d12c60f6
JS
3259
3260 drain_all_stock(memcg);
3261
f817ed48 3262 /* try to free all pages in this cgroup */
3e32cb2e 3263 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3264 int progress;
c1e862c1 3265
c26251f9
MH
3266 if (signal_pending(current))
3267 return -EINTR;
3268
b70a2a21
JW
3269 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3270 GFP_KERNEL, true);
c1e862c1 3271 if (!progress) {
f817ed48 3272 nr_retries--;
c1e862c1 3273 /* maybe some writeback is necessary */
8aa7e847 3274 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3275 }
f817ed48
KH
3276
3277 }
ab5196c2
MH
3278
3279 return 0;
cc847582
KH
3280}
3281
6770c64e
TH
3282static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3283 char *buf, size_t nbytes,
3284 loff_t off)
c1e862c1 3285{
6770c64e 3286 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3287
d8423011
MH
3288 if (mem_cgroup_is_root(memcg))
3289 return -EINVAL;
6770c64e 3290 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3291}
3292
182446d0
TH
3293static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3294 struct cftype *cft)
18f59ea7 3295{
182446d0 3296 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3297}
3298
182446d0
TH
3299static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3300 struct cftype *cft, u64 val)
18f59ea7
BS
3301{
3302 int retval = 0;
182446d0 3303 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3304 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3305
567fb435 3306 if (memcg->use_hierarchy == val)
0b8f73e1 3307 return 0;
567fb435 3308
18f59ea7 3309 /*
af901ca1 3310 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3311 * in the child subtrees. If it is unset, then the change can
3312 * occur, provided the current cgroup has no children.
3313 *
3314 * For the root cgroup, parent_mem is NULL, we allow value to be
3315 * set if there are no children.
3316 */
c0ff4b85 3317 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3318 (val == 1 || val == 0)) {
ea280e7b 3319 if (!memcg_has_children(memcg))
c0ff4b85 3320 memcg->use_hierarchy = val;
18f59ea7
BS
3321 else
3322 retval = -EBUSY;
3323 } else
3324 retval = -EINVAL;
567fb435 3325
18f59ea7
BS
3326 return retval;
3327}
3328
6f646156 3329static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3330{
42a30035 3331 unsigned long val;
ce00a967 3332
3e32cb2e 3333 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3334 val = memcg_page_state(memcg, MEMCG_CACHE) +
3335 memcg_page_state(memcg, MEMCG_RSS);
3336 if (swap)
3337 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3338 } else {
ce00a967 3339 if (!swap)
3e32cb2e 3340 val = page_counter_read(&memcg->memory);
ce00a967 3341 else
3e32cb2e 3342 val = page_counter_read(&memcg->memsw);
ce00a967 3343 }
c12176d3 3344 return val;
ce00a967
JW
3345}
3346
3e32cb2e
JW
3347enum {
3348 RES_USAGE,
3349 RES_LIMIT,
3350 RES_MAX_USAGE,
3351 RES_FAILCNT,
3352 RES_SOFT_LIMIT,
3353};
ce00a967 3354
791badbd 3355static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3356 struct cftype *cft)
8cdea7c0 3357{
182446d0 3358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3359 struct page_counter *counter;
af36f906 3360
3e32cb2e 3361 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3362 case _MEM:
3e32cb2e
JW
3363 counter = &memcg->memory;
3364 break;
8c7c6e34 3365 case _MEMSWAP:
3e32cb2e
JW
3366 counter = &memcg->memsw;
3367 break;
510fc4e1 3368 case _KMEM:
3e32cb2e 3369 counter = &memcg->kmem;
510fc4e1 3370 break;
d55f90bf 3371 case _TCP:
0db15298 3372 counter = &memcg->tcpmem;
d55f90bf 3373 break;
8c7c6e34
KH
3374 default:
3375 BUG();
8c7c6e34 3376 }
3e32cb2e
JW
3377
3378 switch (MEMFILE_ATTR(cft->private)) {
3379 case RES_USAGE:
3380 if (counter == &memcg->memory)
c12176d3 3381 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3382 if (counter == &memcg->memsw)
c12176d3 3383 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3384 return (u64)page_counter_read(counter) * PAGE_SIZE;
3385 case RES_LIMIT:
bbec2e15 3386 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3387 case RES_MAX_USAGE:
3388 return (u64)counter->watermark * PAGE_SIZE;
3389 case RES_FAILCNT:
3390 return counter->failcnt;
3391 case RES_SOFT_LIMIT:
3392 return (u64)memcg->soft_limit * PAGE_SIZE;
3393 default:
3394 BUG();
3395 }
8cdea7c0 3396}
510fc4e1 3397
bee07b33 3398static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
c350a99e
RG
3399{
3400 unsigned long stat[MEMCG_NR_STAT];
3401 struct mem_cgroup *mi;
3402 int node, cpu, i;
bee07b33 3403 int min_idx, max_idx;
c350a99e 3404
bee07b33
RG
3405 if (slab_only) {
3406 min_idx = NR_SLAB_RECLAIMABLE;
3407 max_idx = NR_SLAB_UNRECLAIMABLE;
3408 } else {
3409 min_idx = 0;
3410 max_idx = MEMCG_NR_STAT;
3411 }
3412
3413 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3414 stat[i] = 0;
3415
3416 for_each_online_cpu(cpu)
bee07b33 3417 for (i = min_idx; i < max_idx; i++)
6c1c2808 3418 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3419
3420 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
bee07b33 3421 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3422 atomic_long_add(stat[i], &mi->vmstats[i]);
3423
bee07b33
RG
3424 if (!slab_only)
3425 max_idx = NR_VM_NODE_STAT_ITEMS;
3426
c350a99e
RG
3427 for_each_node(node) {
3428 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3429 struct mem_cgroup_per_node *pi;
3430
bee07b33 3431 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3432 stat[i] = 0;
3433
3434 for_each_online_cpu(cpu)
bee07b33 3435 for (i = min_idx; i < max_idx; i++)
6c1c2808
SB
3436 stat[i] += per_cpu(
3437 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3438
3439 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
bee07b33 3440 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3441 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3442 }
3443}
3444
bb65f89b
RG
3445static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3446{
3447 unsigned long events[NR_VM_EVENT_ITEMS];
3448 struct mem_cgroup *mi;
3449 int cpu, i;
3450
3451 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3452 events[i] = 0;
3453
3454 for_each_online_cpu(cpu)
3455 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3456 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3457 cpu);
bb65f89b
RG
3458
3459 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3460 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3461 atomic_long_add(events[i], &mi->vmevents[i]);
3462}
3463
84c07d11 3464#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3465static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3466{
d6441637
VD
3467 int memcg_id;
3468
b313aeee
VD
3469 if (cgroup_memory_nokmem)
3470 return 0;
3471
2a4db7eb 3472 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3473 BUG_ON(memcg->kmem_state);
d6441637 3474
f3bb3043 3475 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3476 if (memcg_id < 0)
3477 return memcg_id;
d6441637 3478
ef12947c 3479 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3480 /*
567e9ab2 3481 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3482 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3483 * guarantee no one starts accounting before all call sites are
3484 * patched.
3485 */
900a38f0 3486 memcg->kmemcg_id = memcg_id;
567e9ab2 3487 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3488 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3489
3490 return 0;
d6441637
VD
3491}
3492
8e0a8912
JW
3493static void memcg_offline_kmem(struct mem_cgroup *memcg)
3494{
3495 struct cgroup_subsys_state *css;
3496 struct mem_cgroup *parent, *child;
3497 int kmemcg_id;
3498
3499 if (memcg->kmem_state != KMEM_ONLINE)
3500 return;
3501 /*
3502 * Clear the online state before clearing memcg_caches array
3503 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3504 * guarantees that no cache will be created for this cgroup
3505 * after we are done (see memcg_create_kmem_cache()).
3506 */
3507 memcg->kmem_state = KMEM_ALLOCATED;
3508
8e0a8912
JW
3509 parent = parent_mem_cgroup(memcg);
3510 if (!parent)
3511 parent = root_mem_cgroup;
3512
bee07b33
RG
3513 /*
3514 * Deactivate and reparent kmem_caches. Then flush percpu
3515 * slab statistics to have precise values at the parent and
3516 * all ancestor levels. It's required to keep slab stats
3517 * accurate after the reparenting of kmem_caches.
3518 */
fb2f2b0a 3519 memcg_deactivate_kmem_caches(memcg, parent);
bee07b33 3520 memcg_flush_percpu_vmstats(memcg, true);
fb2f2b0a
RG
3521
3522 kmemcg_id = memcg->kmemcg_id;
3523 BUG_ON(kmemcg_id < 0);
3524
8e0a8912
JW
3525 /*
3526 * Change kmemcg_id of this cgroup and all its descendants to the
3527 * parent's id, and then move all entries from this cgroup's list_lrus
3528 * to ones of the parent. After we have finished, all list_lrus
3529 * corresponding to this cgroup are guaranteed to remain empty. The
3530 * ordering is imposed by list_lru_node->lock taken by
3531 * memcg_drain_all_list_lrus().
3532 */
3a06bb78 3533 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3534 css_for_each_descendant_pre(css, &memcg->css) {
3535 child = mem_cgroup_from_css(css);
3536 BUG_ON(child->kmemcg_id != kmemcg_id);
3537 child->kmemcg_id = parent->kmemcg_id;
3538 if (!memcg->use_hierarchy)
3539 break;
3540 }
3a06bb78
TH
3541 rcu_read_unlock();
3542
9bec5c35 3543 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3544
3545 memcg_free_cache_id(kmemcg_id);
3546}
3547
3548static void memcg_free_kmem(struct mem_cgroup *memcg)
3549{
0b8f73e1
JW
3550 /* css_alloc() failed, offlining didn't happen */
3551 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3552 memcg_offline_kmem(memcg);
3553
8e0a8912 3554 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3555 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3556 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3557 }
8e0a8912 3558}
d6441637 3559#else
0b8f73e1 3560static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3561{
3562 return 0;
3563}
3564static void memcg_offline_kmem(struct mem_cgroup *memcg)
3565{
3566}
3567static void memcg_free_kmem(struct mem_cgroup *memcg)
3568{
3569}
84c07d11 3570#endif /* CONFIG_MEMCG_KMEM */
127424c8 3571
bbec2e15
RG
3572static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3573 unsigned long max)
d6441637 3574{
b313aeee 3575 int ret;
127424c8 3576
bbec2e15
RG
3577 mutex_lock(&memcg_max_mutex);
3578 ret = page_counter_set_max(&memcg->kmem, max);
3579 mutex_unlock(&memcg_max_mutex);
127424c8 3580 return ret;
d6441637 3581}
510fc4e1 3582
bbec2e15 3583static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3584{
3585 int ret;
3586
bbec2e15 3587 mutex_lock(&memcg_max_mutex);
d55f90bf 3588
bbec2e15 3589 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3590 if (ret)
3591 goto out;
3592
0db15298 3593 if (!memcg->tcpmem_active) {
d55f90bf
VD
3594 /*
3595 * The active flag needs to be written after the static_key
3596 * update. This is what guarantees that the socket activation
2d758073
JW
3597 * function is the last one to run. See mem_cgroup_sk_alloc()
3598 * for details, and note that we don't mark any socket as
3599 * belonging to this memcg until that flag is up.
d55f90bf
VD
3600 *
3601 * We need to do this, because static_keys will span multiple
3602 * sites, but we can't control their order. If we mark a socket
3603 * as accounted, but the accounting functions are not patched in
3604 * yet, we'll lose accounting.
3605 *
2d758073 3606 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3607 * because when this value change, the code to process it is not
3608 * patched in yet.
3609 */
3610 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3611 memcg->tcpmem_active = true;
d55f90bf
VD
3612 }
3613out:
bbec2e15 3614 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3615 return ret;
3616}
d55f90bf 3617
628f4235
KH
3618/*
3619 * The user of this function is...
3620 * RES_LIMIT.
3621 */
451af504
TH
3622static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3623 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3624{
451af504 3625 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3626 unsigned long nr_pages;
628f4235
KH
3627 int ret;
3628
451af504 3629 buf = strstrip(buf);
650c5e56 3630 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3631 if (ret)
3632 return ret;
af36f906 3633
3e32cb2e 3634 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3635 case RES_LIMIT:
4b3bde4c
BS
3636 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3637 ret = -EINVAL;
3638 break;
3639 }
3e32cb2e
JW
3640 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3641 case _MEM:
bbec2e15 3642 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3643 break;
3e32cb2e 3644 case _MEMSWAP:
bbec2e15 3645 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3646 break;
3e32cb2e 3647 case _KMEM:
0158115f
MH
3648 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3649 "Please report your usecase to linux-mm@kvack.org if you "
3650 "depend on this functionality.\n");
bbec2e15 3651 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3652 break;
d55f90bf 3653 case _TCP:
bbec2e15 3654 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3655 break;
3e32cb2e 3656 }
296c81d8 3657 break;
3e32cb2e
JW
3658 case RES_SOFT_LIMIT:
3659 memcg->soft_limit = nr_pages;
3660 ret = 0;
628f4235
KH
3661 break;
3662 }
451af504 3663 return ret ?: nbytes;
8cdea7c0
BS
3664}
3665
6770c64e
TH
3666static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3667 size_t nbytes, loff_t off)
c84872e1 3668{
6770c64e 3669 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3670 struct page_counter *counter;
c84872e1 3671
3e32cb2e
JW
3672 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3673 case _MEM:
3674 counter = &memcg->memory;
3675 break;
3676 case _MEMSWAP:
3677 counter = &memcg->memsw;
3678 break;
3679 case _KMEM:
3680 counter = &memcg->kmem;
3681 break;
d55f90bf 3682 case _TCP:
0db15298 3683 counter = &memcg->tcpmem;
d55f90bf 3684 break;
3e32cb2e
JW
3685 default:
3686 BUG();
3687 }
af36f906 3688
3e32cb2e 3689 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3690 case RES_MAX_USAGE:
3e32cb2e 3691 page_counter_reset_watermark(counter);
29f2a4da
PE
3692 break;
3693 case RES_FAILCNT:
3e32cb2e 3694 counter->failcnt = 0;
29f2a4da 3695 break;
3e32cb2e
JW
3696 default:
3697 BUG();
29f2a4da 3698 }
f64c3f54 3699
6770c64e 3700 return nbytes;
c84872e1
PE
3701}
3702
182446d0 3703static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3704 struct cftype *cft)
3705{
182446d0 3706 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3707}
3708
02491447 3709#ifdef CONFIG_MMU
182446d0 3710static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3711 struct cftype *cft, u64 val)
3712{
182446d0 3713 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3714
1dfab5ab 3715 if (val & ~MOVE_MASK)
7dc74be0 3716 return -EINVAL;
ee5e8472 3717
7dc74be0 3718 /*
ee5e8472
GC
3719 * No kind of locking is needed in here, because ->can_attach() will
3720 * check this value once in the beginning of the process, and then carry
3721 * on with stale data. This means that changes to this value will only
3722 * affect task migrations starting after the change.
7dc74be0 3723 */
c0ff4b85 3724 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3725 return 0;
3726}
02491447 3727#else
182446d0 3728static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3729 struct cftype *cft, u64 val)
3730{
3731 return -ENOSYS;
3732}
3733#endif
7dc74be0 3734
406eb0c9 3735#ifdef CONFIG_NUMA
113b7dfd
JW
3736
3737#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3738#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3739#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3740
3741static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3742 int nid, unsigned int lru_mask)
3743{
3744 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3745 unsigned long nr = 0;
3746 enum lru_list lru;
3747
3748 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3749
3750 for_each_lru(lru) {
3751 if (!(BIT(lru) & lru_mask))
3752 continue;
205b20cc 3753 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3754 }
3755 return nr;
3756}
3757
3758static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3759 unsigned int lru_mask)
3760{
3761 unsigned long nr = 0;
3762 enum lru_list lru;
3763
3764 for_each_lru(lru) {
3765 if (!(BIT(lru) & lru_mask))
3766 continue;
205b20cc 3767 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3768 }
3769 return nr;
3770}
3771
2da8ca82 3772static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3773{
25485de6
GT
3774 struct numa_stat {
3775 const char *name;
3776 unsigned int lru_mask;
3777 };
3778
3779 static const struct numa_stat stats[] = {
3780 { "total", LRU_ALL },
3781 { "file", LRU_ALL_FILE },
3782 { "anon", LRU_ALL_ANON },
3783 { "unevictable", BIT(LRU_UNEVICTABLE) },
3784 };
3785 const struct numa_stat *stat;
406eb0c9 3786 int nid;
25485de6 3787 unsigned long nr;
aa9694bb 3788 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3789
25485de6
GT
3790 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3791 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3792 seq_printf(m, "%s=%lu", stat->name, nr);
3793 for_each_node_state(nid, N_MEMORY) {
3794 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3795 stat->lru_mask);
3796 seq_printf(m, " N%d=%lu", nid, nr);
3797 }
3798 seq_putc(m, '\n');
406eb0c9 3799 }
406eb0c9 3800
071aee13
YH
3801 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3802 struct mem_cgroup *iter;
3803
3804 nr = 0;
3805 for_each_mem_cgroup_tree(iter, memcg)
3806 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3807 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3808 for_each_node_state(nid, N_MEMORY) {
3809 nr = 0;
3810 for_each_mem_cgroup_tree(iter, memcg)
3811 nr += mem_cgroup_node_nr_lru_pages(
3812 iter, nid, stat->lru_mask);
3813 seq_printf(m, " N%d=%lu", nid, nr);
3814 }
3815 seq_putc(m, '\n');
406eb0c9 3816 }
406eb0c9 3817
406eb0c9
YH
3818 return 0;
3819}
3820#endif /* CONFIG_NUMA */
3821
c8713d0b
JW
3822static const unsigned int memcg1_stats[] = {
3823 MEMCG_CACHE,
3824 MEMCG_RSS,
3825 MEMCG_RSS_HUGE,
3826 NR_SHMEM,
3827 NR_FILE_MAPPED,
3828 NR_FILE_DIRTY,
3829 NR_WRITEBACK,
3830 MEMCG_SWAP,
3831};
3832
3833static const char *const memcg1_stat_names[] = {
3834 "cache",
3835 "rss",
3836 "rss_huge",
3837 "shmem",
3838 "mapped_file",
3839 "dirty",
3840 "writeback",
3841 "swap",
3842};
3843
df0e53d0 3844/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3845static const unsigned int memcg1_events[] = {
df0e53d0
JW
3846 PGPGIN,
3847 PGPGOUT,
3848 PGFAULT,
3849 PGMAJFAULT,
3850};
3851
3852static const char *const memcg1_event_names[] = {
3853 "pgpgin",
3854 "pgpgout",
3855 "pgfault",
3856 "pgmajfault",
3857};
3858
2da8ca82 3859static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3860{
aa9694bb 3861 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3862 unsigned long memory, memsw;
af7c4b0e
JW
3863 struct mem_cgroup *mi;
3864 unsigned int i;
406eb0c9 3865
71cd3113 3866 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3867 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3868
71cd3113
JW
3869 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3870 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3871 continue;
71cd3113 3872 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3873 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3874 PAGE_SIZE);
1dd3a273 3875 }
7b854121 3876
df0e53d0
JW
3877 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3878 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3879 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3880
3881 for (i = 0; i < NR_LRU_LISTS; i++)
3882 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3883 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3884 PAGE_SIZE);
af7c4b0e 3885
14067bb3 3886 /* Hierarchical information */
3e32cb2e
JW
3887 memory = memsw = PAGE_COUNTER_MAX;
3888 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3889 memory = min(memory, mi->memory.max);
3890 memsw = min(memsw, mi->memsw.max);
fee7b548 3891 }
3e32cb2e
JW
3892 seq_printf(m, "hierarchical_memory_limit %llu\n",
3893 (u64)memory * PAGE_SIZE);
7941d214 3894 if (do_memsw_account())
3e32cb2e
JW
3895 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3896 (u64)memsw * PAGE_SIZE);
7f016ee8 3897
8de7ecc6 3898 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3899 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3900 continue;
8de7ecc6 3901 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3902 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3903 PAGE_SIZE);
af7c4b0e
JW
3904 }
3905
8de7ecc6
SB
3906 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3907 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
dd923990 3908 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3909
8de7ecc6
SB
3910 for (i = 0; i < NR_LRU_LISTS; i++)
3911 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
3912 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3913 PAGE_SIZE);
14067bb3 3914
7f016ee8 3915#ifdef CONFIG_DEBUG_VM
7f016ee8 3916 {
ef8f2327
MG
3917 pg_data_t *pgdat;
3918 struct mem_cgroup_per_node *mz;
89abfab1 3919 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3920 unsigned long recent_rotated[2] = {0, 0};
3921 unsigned long recent_scanned[2] = {0, 0};
3922
ef8f2327
MG
3923 for_each_online_pgdat(pgdat) {
3924 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3925 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3926
ef8f2327
MG
3927 recent_rotated[0] += rstat->recent_rotated[0];
3928 recent_rotated[1] += rstat->recent_rotated[1];
3929 recent_scanned[0] += rstat->recent_scanned[0];
3930 recent_scanned[1] += rstat->recent_scanned[1];
3931 }
78ccf5b5
JW
3932 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3933 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3934 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3935 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3936 }
3937#endif
3938
d2ceb9b7
KH
3939 return 0;
3940}
3941
182446d0
TH
3942static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3943 struct cftype *cft)
a7885eb8 3944{
182446d0 3945 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3946
1f4c025b 3947 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3948}
3949
182446d0
TH
3950static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3951 struct cftype *cft, u64 val)
a7885eb8 3952{
182446d0 3953 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3954
3dae7fec 3955 if (val > 100)
a7885eb8
KM
3956 return -EINVAL;
3957
14208b0e 3958 if (css->parent)
3dae7fec
JW
3959 memcg->swappiness = val;
3960 else
3961 vm_swappiness = val;
068b38c1 3962
a7885eb8
KM
3963 return 0;
3964}
3965
2e72b634
KS
3966static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3967{
3968 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3969 unsigned long usage;
2e72b634
KS
3970 int i;
3971
3972 rcu_read_lock();
3973 if (!swap)
2c488db2 3974 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3975 else
2c488db2 3976 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3977
3978 if (!t)
3979 goto unlock;
3980
ce00a967 3981 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3982
3983 /*
748dad36 3984 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3985 * If it's not true, a threshold was crossed after last
3986 * call of __mem_cgroup_threshold().
3987 */
5407a562 3988 i = t->current_threshold;
2e72b634
KS
3989
3990 /*
3991 * Iterate backward over array of thresholds starting from
3992 * current_threshold and check if a threshold is crossed.
3993 * If none of thresholds below usage is crossed, we read
3994 * only one element of the array here.
3995 */
3996 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3997 eventfd_signal(t->entries[i].eventfd, 1);
3998
3999 /* i = current_threshold + 1 */
4000 i++;
4001
4002 /*
4003 * Iterate forward over array of thresholds starting from
4004 * current_threshold+1 and check if a threshold is crossed.
4005 * If none of thresholds above usage is crossed, we read
4006 * only one element of the array here.
4007 */
4008 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4009 eventfd_signal(t->entries[i].eventfd, 1);
4010
4011 /* Update current_threshold */
5407a562 4012 t->current_threshold = i - 1;
2e72b634
KS
4013unlock:
4014 rcu_read_unlock();
4015}
4016
4017static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4018{
ad4ca5f4
KS
4019 while (memcg) {
4020 __mem_cgroup_threshold(memcg, false);
7941d214 4021 if (do_memsw_account())
ad4ca5f4
KS
4022 __mem_cgroup_threshold(memcg, true);
4023
4024 memcg = parent_mem_cgroup(memcg);
4025 }
2e72b634
KS
4026}
4027
4028static int compare_thresholds(const void *a, const void *b)
4029{
4030 const struct mem_cgroup_threshold *_a = a;
4031 const struct mem_cgroup_threshold *_b = b;
4032
2bff24a3
GT
4033 if (_a->threshold > _b->threshold)
4034 return 1;
4035
4036 if (_a->threshold < _b->threshold)
4037 return -1;
4038
4039 return 0;
2e72b634
KS
4040}
4041
c0ff4b85 4042static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4043{
4044 struct mem_cgroup_eventfd_list *ev;
4045
2bcf2e92
MH
4046 spin_lock(&memcg_oom_lock);
4047
c0ff4b85 4048 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4049 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4050
4051 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4052 return 0;
4053}
4054
c0ff4b85 4055static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4056{
7d74b06f
KH
4057 struct mem_cgroup *iter;
4058
c0ff4b85 4059 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4060 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4061}
4062
59b6f873 4063static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4064 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4065{
2c488db2
KS
4066 struct mem_cgroup_thresholds *thresholds;
4067 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4068 unsigned long threshold;
4069 unsigned long usage;
2c488db2 4070 int i, size, ret;
2e72b634 4071
650c5e56 4072 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4073 if (ret)
4074 return ret;
4075
4076 mutex_lock(&memcg->thresholds_lock);
2c488db2 4077
05b84301 4078 if (type == _MEM) {
2c488db2 4079 thresholds = &memcg->thresholds;
ce00a967 4080 usage = mem_cgroup_usage(memcg, false);
05b84301 4081 } else if (type == _MEMSWAP) {
2c488db2 4082 thresholds = &memcg->memsw_thresholds;
ce00a967 4083 usage = mem_cgroup_usage(memcg, true);
05b84301 4084 } else
2e72b634
KS
4085 BUG();
4086
2e72b634 4087 /* Check if a threshold crossed before adding a new one */
2c488db2 4088 if (thresholds->primary)
2e72b634
KS
4089 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4090
2c488db2 4091 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4092
4093 /* Allocate memory for new array of thresholds */
67b8046f 4094 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4095 if (!new) {
2e72b634
KS
4096 ret = -ENOMEM;
4097 goto unlock;
4098 }
2c488db2 4099 new->size = size;
2e72b634
KS
4100
4101 /* Copy thresholds (if any) to new array */
2c488db2
KS
4102 if (thresholds->primary) {
4103 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4104 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4105 }
4106
2e72b634 4107 /* Add new threshold */
2c488db2
KS
4108 new->entries[size - 1].eventfd = eventfd;
4109 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4110
4111 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4112 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4113 compare_thresholds, NULL);
4114
4115 /* Find current threshold */
2c488db2 4116 new->current_threshold = -1;
2e72b634 4117 for (i = 0; i < size; i++) {
748dad36 4118 if (new->entries[i].threshold <= usage) {
2e72b634 4119 /*
2c488db2
KS
4120 * new->current_threshold will not be used until
4121 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4122 * it here.
4123 */
2c488db2 4124 ++new->current_threshold;
748dad36
SZ
4125 } else
4126 break;
2e72b634
KS
4127 }
4128
2c488db2
KS
4129 /* Free old spare buffer and save old primary buffer as spare */
4130 kfree(thresholds->spare);
4131 thresholds->spare = thresholds->primary;
4132
4133 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4134
907860ed 4135 /* To be sure that nobody uses thresholds */
2e72b634
KS
4136 synchronize_rcu();
4137
2e72b634
KS
4138unlock:
4139 mutex_unlock(&memcg->thresholds_lock);
4140
4141 return ret;
4142}
4143
59b6f873 4144static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4145 struct eventfd_ctx *eventfd, const char *args)
4146{
59b6f873 4147 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4148}
4149
59b6f873 4150static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4151 struct eventfd_ctx *eventfd, const char *args)
4152{
59b6f873 4153 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4154}
4155
59b6f873 4156static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4157 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4158{
2c488db2
KS
4159 struct mem_cgroup_thresholds *thresholds;
4160 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4161 unsigned long usage;
2c488db2 4162 int i, j, size;
2e72b634
KS
4163
4164 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4165
4166 if (type == _MEM) {
2c488db2 4167 thresholds = &memcg->thresholds;
ce00a967 4168 usage = mem_cgroup_usage(memcg, false);
05b84301 4169 } else if (type == _MEMSWAP) {
2c488db2 4170 thresholds = &memcg->memsw_thresholds;
ce00a967 4171 usage = mem_cgroup_usage(memcg, true);
05b84301 4172 } else
2e72b634
KS
4173 BUG();
4174
371528ca
AV
4175 if (!thresholds->primary)
4176 goto unlock;
4177
2e72b634
KS
4178 /* Check if a threshold crossed before removing */
4179 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4180
4181 /* Calculate new number of threshold */
2c488db2
KS
4182 size = 0;
4183 for (i = 0; i < thresholds->primary->size; i++) {
4184 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4185 size++;
4186 }
4187
2c488db2 4188 new = thresholds->spare;
907860ed 4189
2e72b634
KS
4190 /* Set thresholds array to NULL if we don't have thresholds */
4191 if (!size) {
2c488db2
KS
4192 kfree(new);
4193 new = NULL;
907860ed 4194 goto swap_buffers;
2e72b634
KS
4195 }
4196
2c488db2 4197 new->size = size;
2e72b634
KS
4198
4199 /* Copy thresholds and find current threshold */
2c488db2
KS
4200 new->current_threshold = -1;
4201 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4202 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4203 continue;
4204
2c488db2 4205 new->entries[j] = thresholds->primary->entries[i];
748dad36 4206 if (new->entries[j].threshold <= usage) {
2e72b634 4207 /*
2c488db2 4208 * new->current_threshold will not be used
2e72b634
KS
4209 * until rcu_assign_pointer(), so it's safe to increment
4210 * it here.
4211 */
2c488db2 4212 ++new->current_threshold;
2e72b634
KS
4213 }
4214 j++;
4215 }
4216
907860ed 4217swap_buffers:
2c488db2
KS
4218 /* Swap primary and spare array */
4219 thresholds->spare = thresholds->primary;
8c757763 4220
2c488db2 4221 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4222
907860ed 4223 /* To be sure that nobody uses thresholds */
2e72b634 4224 synchronize_rcu();
6611d8d7
MC
4225
4226 /* If all events are unregistered, free the spare array */
4227 if (!new) {
4228 kfree(thresholds->spare);
4229 thresholds->spare = NULL;
4230 }
371528ca 4231unlock:
2e72b634 4232 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4233}
c1e862c1 4234
59b6f873 4235static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4236 struct eventfd_ctx *eventfd)
4237{
59b6f873 4238 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4239}
4240
59b6f873 4241static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4242 struct eventfd_ctx *eventfd)
4243{
59b6f873 4244 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4245}
4246
59b6f873 4247static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4248 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4249{
9490ff27 4250 struct mem_cgroup_eventfd_list *event;
9490ff27 4251
9490ff27
KH
4252 event = kmalloc(sizeof(*event), GFP_KERNEL);
4253 if (!event)
4254 return -ENOMEM;
4255
1af8efe9 4256 spin_lock(&memcg_oom_lock);
9490ff27
KH
4257
4258 event->eventfd = eventfd;
4259 list_add(&event->list, &memcg->oom_notify);
4260
4261 /* already in OOM ? */
c2b42d3c 4262 if (memcg->under_oom)
9490ff27 4263 eventfd_signal(eventfd, 1);
1af8efe9 4264 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4265
4266 return 0;
4267}
4268
59b6f873 4269static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4270 struct eventfd_ctx *eventfd)
9490ff27 4271{
9490ff27 4272 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4273
1af8efe9 4274 spin_lock(&memcg_oom_lock);
9490ff27 4275
c0ff4b85 4276 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4277 if (ev->eventfd == eventfd) {
4278 list_del(&ev->list);
4279 kfree(ev);
4280 }
4281 }
4282
1af8efe9 4283 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4284}
4285
2da8ca82 4286static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4287{
aa9694bb 4288 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4289
791badbd 4290 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4291 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4292 seq_printf(sf, "oom_kill %lu\n",
4293 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4294 return 0;
4295}
4296
182446d0 4297static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4298 struct cftype *cft, u64 val)
4299{
182446d0 4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4301
4302 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4303 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4304 return -EINVAL;
4305
c0ff4b85 4306 memcg->oom_kill_disable = val;
4d845ebf 4307 if (!val)
c0ff4b85 4308 memcg_oom_recover(memcg);
3dae7fec 4309
3c11ecf4
KH
4310 return 0;
4311}
4312
52ebea74
TH
4313#ifdef CONFIG_CGROUP_WRITEBACK
4314
3a8e9ac8
TH
4315#include <trace/events/writeback.h>
4316
841710aa
TH
4317static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4318{
4319 return wb_domain_init(&memcg->cgwb_domain, gfp);
4320}
4321
4322static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4323{
4324 wb_domain_exit(&memcg->cgwb_domain);
4325}
4326
2529bb3a
TH
4327static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4328{
4329 wb_domain_size_changed(&memcg->cgwb_domain);
4330}
4331
841710aa
TH
4332struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4333{
4334 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4335
4336 if (!memcg->css.parent)
4337 return NULL;
4338
4339 return &memcg->cgwb_domain;
4340}
4341
0b3d6e6f
GT
4342/*
4343 * idx can be of type enum memcg_stat_item or node_stat_item.
4344 * Keep in sync with memcg_exact_page().
4345 */
4346static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4347{
871789d4 4348 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4349 int cpu;
4350
4351 for_each_online_cpu(cpu)
871789d4 4352 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4353 if (x < 0)
4354 x = 0;
4355 return x;
4356}
4357
c2aa723a
TH
4358/**
4359 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4360 * @wb: bdi_writeback in question
c5edf9cd
TH
4361 * @pfilepages: out parameter for number of file pages
4362 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4363 * @pdirty: out parameter for number of dirty pages
4364 * @pwriteback: out parameter for number of pages under writeback
4365 *
c5edf9cd
TH
4366 * Determine the numbers of file, headroom, dirty, and writeback pages in
4367 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4368 * is a bit more involved.
c2aa723a 4369 *
c5edf9cd
TH
4370 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4371 * headroom is calculated as the lowest headroom of itself and the
4372 * ancestors. Note that this doesn't consider the actual amount of
4373 * available memory in the system. The caller should further cap
4374 * *@pheadroom accordingly.
c2aa723a 4375 */
c5edf9cd
TH
4376void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4377 unsigned long *pheadroom, unsigned long *pdirty,
4378 unsigned long *pwriteback)
c2aa723a
TH
4379{
4380 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4381 struct mem_cgroup *parent;
c2aa723a 4382
0b3d6e6f 4383 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4384
4385 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4386 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4387 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4388 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4389 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4390
c2aa723a 4391 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4392 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4393 unsigned long used = page_counter_read(&memcg->memory);
4394
c5edf9cd 4395 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4396 memcg = parent;
4397 }
c2aa723a
TH
4398}
4399
97b27821
TH
4400/*
4401 * Foreign dirty flushing
4402 *
4403 * There's an inherent mismatch between memcg and writeback. The former
4404 * trackes ownership per-page while the latter per-inode. This was a
4405 * deliberate design decision because honoring per-page ownership in the
4406 * writeback path is complicated, may lead to higher CPU and IO overheads
4407 * and deemed unnecessary given that write-sharing an inode across
4408 * different cgroups isn't a common use-case.
4409 *
4410 * Combined with inode majority-writer ownership switching, this works well
4411 * enough in most cases but there are some pathological cases. For
4412 * example, let's say there are two cgroups A and B which keep writing to
4413 * different but confined parts of the same inode. B owns the inode and
4414 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4415 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4416 * triggering background writeback. A will be slowed down without a way to
4417 * make writeback of the dirty pages happen.
4418 *
4419 * Conditions like the above can lead to a cgroup getting repatedly and
4420 * severely throttled after making some progress after each
4421 * dirty_expire_interval while the underyling IO device is almost
4422 * completely idle.
4423 *
4424 * Solving this problem completely requires matching the ownership tracking
4425 * granularities between memcg and writeback in either direction. However,
4426 * the more egregious behaviors can be avoided by simply remembering the
4427 * most recent foreign dirtying events and initiating remote flushes on
4428 * them when local writeback isn't enough to keep the memory clean enough.
4429 *
4430 * The following two functions implement such mechanism. When a foreign
4431 * page - a page whose memcg and writeback ownerships don't match - is
4432 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4433 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4434 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4435 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4436 * foreign bdi_writebacks which haven't expired. Both the numbers of
4437 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4438 * limited to MEMCG_CGWB_FRN_CNT.
4439 *
4440 * The mechanism only remembers IDs and doesn't hold any object references.
4441 * As being wrong occasionally doesn't matter, updates and accesses to the
4442 * records are lockless and racy.
4443 */
4444void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4445 struct bdi_writeback *wb)
4446{
4447 struct mem_cgroup *memcg = page->mem_cgroup;
4448 struct memcg_cgwb_frn *frn;
4449 u64 now = get_jiffies_64();
4450 u64 oldest_at = now;
4451 int oldest = -1;
4452 int i;
4453
3a8e9ac8
TH
4454 trace_track_foreign_dirty(page, wb);
4455
97b27821
TH
4456 /*
4457 * Pick the slot to use. If there is already a slot for @wb, keep
4458 * using it. If not replace the oldest one which isn't being
4459 * written out.
4460 */
4461 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4462 frn = &memcg->cgwb_frn[i];
4463 if (frn->bdi_id == wb->bdi->id &&
4464 frn->memcg_id == wb->memcg_css->id)
4465 break;
4466 if (time_before64(frn->at, oldest_at) &&
4467 atomic_read(&frn->done.cnt) == 1) {
4468 oldest = i;
4469 oldest_at = frn->at;
4470 }
4471 }
4472
4473 if (i < MEMCG_CGWB_FRN_CNT) {
4474 /*
4475 * Re-using an existing one. Update timestamp lazily to
4476 * avoid making the cacheline hot. We want them to be
4477 * reasonably up-to-date and significantly shorter than
4478 * dirty_expire_interval as that's what expires the record.
4479 * Use the shorter of 1s and dirty_expire_interval / 8.
4480 */
4481 unsigned long update_intv =
4482 min_t(unsigned long, HZ,
4483 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4484
4485 if (time_before64(frn->at, now - update_intv))
4486 frn->at = now;
4487 } else if (oldest >= 0) {
4488 /* replace the oldest free one */
4489 frn = &memcg->cgwb_frn[oldest];
4490 frn->bdi_id = wb->bdi->id;
4491 frn->memcg_id = wb->memcg_css->id;
4492 frn->at = now;
4493 }
4494}
4495
4496/* issue foreign writeback flushes for recorded foreign dirtying events */
4497void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4498{
4499 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4500 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4501 u64 now = jiffies_64;
4502 int i;
4503
4504 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4505 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4506
4507 /*
4508 * If the record is older than dirty_expire_interval,
4509 * writeback on it has already started. No need to kick it
4510 * off again. Also, don't start a new one if there's
4511 * already one in flight.
4512 */
4513 if (time_after64(frn->at, now - intv) &&
4514 atomic_read(&frn->done.cnt) == 1) {
4515 frn->at = 0;
3a8e9ac8 4516 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4517 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4518 WB_REASON_FOREIGN_FLUSH,
4519 &frn->done);
4520 }
4521 }
4522}
4523
841710aa
TH
4524#else /* CONFIG_CGROUP_WRITEBACK */
4525
4526static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4527{
4528 return 0;
4529}
4530
4531static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4532{
4533}
4534
2529bb3a
TH
4535static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4536{
4537}
4538
52ebea74
TH
4539#endif /* CONFIG_CGROUP_WRITEBACK */
4540
3bc942f3
TH
4541/*
4542 * DO NOT USE IN NEW FILES.
4543 *
4544 * "cgroup.event_control" implementation.
4545 *
4546 * This is way over-engineered. It tries to support fully configurable
4547 * events for each user. Such level of flexibility is completely
4548 * unnecessary especially in the light of the planned unified hierarchy.
4549 *
4550 * Please deprecate this and replace with something simpler if at all
4551 * possible.
4552 */
4553
79bd9814
TH
4554/*
4555 * Unregister event and free resources.
4556 *
4557 * Gets called from workqueue.
4558 */
3bc942f3 4559static void memcg_event_remove(struct work_struct *work)
79bd9814 4560{
3bc942f3
TH
4561 struct mem_cgroup_event *event =
4562 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4563 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4564
4565 remove_wait_queue(event->wqh, &event->wait);
4566
59b6f873 4567 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4568
4569 /* Notify userspace the event is going away. */
4570 eventfd_signal(event->eventfd, 1);
4571
4572 eventfd_ctx_put(event->eventfd);
4573 kfree(event);
59b6f873 4574 css_put(&memcg->css);
79bd9814
TH
4575}
4576
4577/*
a9a08845 4578 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4579 *
4580 * Called with wqh->lock held and interrupts disabled.
4581 */
ac6424b9 4582static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4583 int sync, void *key)
79bd9814 4584{
3bc942f3
TH
4585 struct mem_cgroup_event *event =
4586 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4587 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4588 __poll_t flags = key_to_poll(key);
79bd9814 4589
a9a08845 4590 if (flags & EPOLLHUP) {
79bd9814
TH
4591 /*
4592 * If the event has been detached at cgroup removal, we
4593 * can simply return knowing the other side will cleanup
4594 * for us.
4595 *
4596 * We can't race against event freeing since the other
4597 * side will require wqh->lock via remove_wait_queue(),
4598 * which we hold.
4599 */
fba94807 4600 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4601 if (!list_empty(&event->list)) {
4602 list_del_init(&event->list);
4603 /*
4604 * We are in atomic context, but cgroup_event_remove()
4605 * may sleep, so we have to call it in workqueue.
4606 */
4607 schedule_work(&event->remove);
4608 }
fba94807 4609 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4610 }
4611
4612 return 0;
4613}
4614
3bc942f3 4615static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4616 wait_queue_head_t *wqh, poll_table *pt)
4617{
3bc942f3
TH
4618 struct mem_cgroup_event *event =
4619 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4620
4621 event->wqh = wqh;
4622 add_wait_queue(wqh, &event->wait);
4623}
4624
4625/*
3bc942f3
TH
4626 * DO NOT USE IN NEW FILES.
4627 *
79bd9814
TH
4628 * Parse input and register new cgroup event handler.
4629 *
4630 * Input must be in format '<event_fd> <control_fd> <args>'.
4631 * Interpretation of args is defined by control file implementation.
4632 */
451af504
TH
4633static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4634 char *buf, size_t nbytes, loff_t off)
79bd9814 4635{
451af504 4636 struct cgroup_subsys_state *css = of_css(of);
fba94807 4637 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4638 struct mem_cgroup_event *event;
79bd9814
TH
4639 struct cgroup_subsys_state *cfile_css;
4640 unsigned int efd, cfd;
4641 struct fd efile;
4642 struct fd cfile;
fba94807 4643 const char *name;
79bd9814
TH
4644 char *endp;
4645 int ret;
4646
451af504
TH
4647 buf = strstrip(buf);
4648
4649 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4650 if (*endp != ' ')
4651 return -EINVAL;
451af504 4652 buf = endp + 1;
79bd9814 4653
451af504 4654 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4655 if ((*endp != ' ') && (*endp != '\0'))
4656 return -EINVAL;
451af504 4657 buf = endp + 1;
79bd9814
TH
4658
4659 event = kzalloc(sizeof(*event), GFP_KERNEL);
4660 if (!event)
4661 return -ENOMEM;
4662
59b6f873 4663 event->memcg = memcg;
79bd9814 4664 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4665 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4666 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4667 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4668
4669 efile = fdget(efd);
4670 if (!efile.file) {
4671 ret = -EBADF;
4672 goto out_kfree;
4673 }
4674
4675 event->eventfd = eventfd_ctx_fileget(efile.file);
4676 if (IS_ERR(event->eventfd)) {
4677 ret = PTR_ERR(event->eventfd);
4678 goto out_put_efile;
4679 }
4680
4681 cfile = fdget(cfd);
4682 if (!cfile.file) {
4683 ret = -EBADF;
4684 goto out_put_eventfd;
4685 }
4686
4687 /* the process need read permission on control file */
4688 /* AV: shouldn't we check that it's been opened for read instead? */
4689 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4690 if (ret < 0)
4691 goto out_put_cfile;
4692
fba94807
TH
4693 /*
4694 * Determine the event callbacks and set them in @event. This used
4695 * to be done via struct cftype but cgroup core no longer knows
4696 * about these events. The following is crude but the whole thing
4697 * is for compatibility anyway.
3bc942f3
TH
4698 *
4699 * DO NOT ADD NEW FILES.
fba94807 4700 */
b583043e 4701 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4702
4703 if (!strcmp(name, "memory.usage_in_bytes")) {
4704 event->register_event = mem_cgroup_usage_register_event;
4705 event->unregister_event = mem_cgroup_usage_unregister_event;
4706 } else if (!strcmp(name, "memory.oom_control")) {
4707 event->register_event = mem_cgroup_oom_register_event;
4708 event->unregister_event = mem_cgroup_oom_unregister_event;
4709 } else if (!strcmp(name, "memory.pressure_level")) {
4710 event->register_event = vmpressure_register_event;
4711 event->unregister_event = vmpressure_unregister_event;
4712 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4713 event->register_event = memsw_cgroup_usage_register_event;
4714 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4715 } else {
4716 ret = -EINVAL;
4717 goto out_put_cfile;
4718 }
4719
79bd9814 4720 /*
b5557c4c
TH
4721 * Verify @cfile should belong to @css. Also, remaining events are
4722 * automatically removed on cgroup destruction but the removal is
4723 * asynchronous, so take an extra ref on @css.
79bd9814 4724 */
b583043e 4725 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4726 &memory_cgrp_subsys);
79bd9814 4727 ret = -EINVAL;
5a17f543 4728 if (IS_ERR(cfile_css))
79bd9814 4729 goto out_put_cfile;
5a17f543
TH
4730 if (cfile_css != css) {
4731 css_put(cfile_css);
79bd9814 4732 goto out_put_cfile;
5a17f543 4733 }
79bd9814 4734
451af504 4735 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4736 if (ret)
4737 goto out_put_css;
4738
9965ed17 4739 vfs_poll(efile.file, &event->pt);
79bd9814 4740
fba94807
TH
4741 spin_lock(&memcg->event_list_lock);
4742 list_add(&event->list, &memcg->event_list);
4743 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4744
4745 fdput(cfile);
4746 fdput(efile);
4747
451af504 4748 return nbytes;
79bd9814
TH
4749
4750out_put_css:
b5557c4c 4751 css_put(css);
79bd9814
TH
4752out_put_cfile:
4753 fdput(cfile);
4754out_put_eventfd:
4755 eventfd_ctx_put(event->eventfd);
4756out_put_efile:
4757 fdput(efile);
4758out_kfree:
4759 kfree(event);
4760
4761 return ret;
4762}
4763
241994ed 4764static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4765 {
0eea1030 4766 .name = "usage_in_bytes",
8c7c6e34 4767 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4768 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4769 },
c84872e1
PE
4770 {
4771 .name = "max_usage_in_bytes",
8c7c6e34 4772 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4773 .write = mem_cgroup_reset,
791badbd 4774 .read_u64 = mem_cgroup_read_u64,
c84872e1 4775 },
8cdea7c0 4776 {
0eea1030 4777 .name = "limit_in_bytes",
8c7c6e34 4778 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4779 .write = mem_cgroup_write,
791badbd 4780 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4781 },
296c81d8
BS
4782 {
4783 .name = "soft_limit_in_bytes",
4784 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4785 .write = mem_cgroup_write,
791badbd 4786 .read_u64 = mem_cgroup_read_u64,
296c81d8 4787 },
8cdea7c0
BS
4788 {
4789 .name = "failcnt",
8c7c6e34 4790 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4791 .write = mem_cgroup_reset,
791badbd 4792 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4793 },
d2ceb9b7
KH
4794 {
4795 .name = "stat",
2da8ca82 4796 .seq_show = memcg_stat_show,
d2ceb9b7 4797 },
c1e862c1
KH
4798 {
4799 .name = "force_empty",
6770c64e 4800 .write = mem_cgroup_force_empty_write,
c1e862c1 4801 },
18f59ea7
BS
4802 {
4803 .name = "use_hierarchy",
4804 .write_u64 = mem_cgroup_hierarchy_write,
4805 .read_u64 = mem_cgroup_hierarchy_read,
4806 },
79bd9814 4807 {
3bc942f3 4808 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4809 .write = memcg_write_event_control,
7dbdb199 4810 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4811 },
a7885eb8
KM
4812 {
4813 .name = "swappiness",
4814 .read_u64 = mem_cgroup_swappiness_read,
4815 .write_u64 = mem_cgroup_swappiness_write,
4816 },
7dc74be0
DN
4817 {
4818 .name = "move_charge_at_immigrate",
4819 .read_u64 = mem_cgroup_move_charge_read,
4820 .write_u64 = mem_cgroup_move_charge_write,
4821 },
9490ff27
KH
4822 {
4823 .name = "oom_control",
2da8ca82 4824 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4825 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4826 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4827 },
70ddf637
AV
4828 {
4829 .name = "pressure_level",
70ddf637 4830 },
406eb0c9
YH
4831#ifdef CONFIG_NUMA
4832 {
4833 .name = "numa_stat",
2da8ca82 4834 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4835 },
4836#endif
510fc4e1
GC
4837 {
4838 .name = "kmem.limit_in_bytes",
4839 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4840 .write = mem_cgroup_write,
791badbd 4841 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4842 },
4843 {
4844 .name = "kmem.usage_in_bytes",
4845 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4846 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4847 },
4848 {
4849 .name = "kmem.failcnt",
4850 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4851 .write = mem_cgroup_reset,
791badbd 4852 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4853 },
4854 {
4855 .name = "kmem.max_usage_in_bytes",
4856 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4857 .write = mem_cgroup_reset,
791badbd 4858 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4859 },
5b365771 4860#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4861 {
4862 .name = "kmem.slabinfo",
bc2791f8
TH
4863 .seq_start = memcg_slab_start,
4864 .seq_next = memcg_slab_next,
4865 .seq_stop = memcg_slab_stop,
b047501c 4866 .seq_show = memcg_slab_show,
749c5415
GC
4867 },
4868#endif
d55f90bf
VD
4869 {
4870 .name = "kmem.tcp.limit_in_bytes",
4871 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4872 .write = mem_cgroup_write,
4873 .read_u64 = mem_cgroup_read_u64,
4874 },
4875 {
4876 .name = "kmem.tcp.usage_in_bytes",
4877 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4878 .read_u64 = mem_cgroup_read_u64,
4879 },
4880 {
4881 .name = "kmem.tcp.failcnt",
4882 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4883 .write = mem_cgroup_reset,
4884 .read_u64 = mem_cgroup_read_u64,
4885 },
4886 {
4887 .name = "kmem.tcp.max_usage_in_bytes",
4888 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4889 .write = mem_cgroup_reset,
4890 .read_u64 = mem_cgroup_read_u64,
4891 },
6bc10349 4892 { }, /* terminate */
af36f906 4893};
8c7c6e34 4894
73f576c0
JW
4895/*
4896 * Private memory cgroup IDR
4897 *
4898 * Swap-out records and page cache shadow entries need to store memcg
4899 * references in constrained space, so we maintain an ID space that is
4900 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4901 * memory-controlled cgroups to 64k.
4902 *
4903 * However, there usually are many references to the oflline CSS after
4904 * the cgroup has been destroyed, such as page cache or reclaimable
4905 * slab objects, that don't need to hang on to the ID. We want to keep
4906 * those dead CSS from occupying IDs, or we might quickly exhaust the
4907 * relatively small ID space and prevent the creation of new cgroups
4908 * even when there are much fewer than 64k cgroups - possibly none.
4909 *
4910 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4911 * be freed and recycled when it's no longer needed, which is usually
4912 * when the CSS is offlined.
4913 *
4914 * The only exception to that are records of swapped out tmpfs/shmem
4915 * pages that need to be attributed to live ancestors on swapin. But
4916 * those references are manageable from userspace.
4917 */
4918
4919static DEFINE_IDR(mem_cgroup_idr);
4920
7e97de0b
KT
4921static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4922{
4923 if (memcg->id.id > 0) {
4924 idr_remove(&mem_cgroup_idr, memcg->id.id);
4925 memcg->id.id = 0;
4926 }
4927}
4928
615d66c3 4929static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4930{
1c2d479a 4931 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4932}
4933
615d66c3 4934static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4935{
1c2d479a 4936 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4937 mem_cgroup_id_remove(memcg);
73f576c0
JW
4938
4939 /* Memcg ID pins CSS */
4940 css_put(&memcg->css);
4941 }
4942}
4943
615d66c3
VD
4944static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4945{
4946 mem_cgroup_id_put_many(memcg, 1);
4947}
4948
73f576c0
JW
4949/**
4950 * mem_cgroup_from_id - look up a memcg from a memcg id
4951 * @id: the memcg id to look up
4952 *
4953 * Caller must hold rcu_read_lock().
4954 */
4955struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4956{
4957 WARN_ON_ONCE(!rcu_read_lock_held());
4958 return idr_find(&mem_cgroup_idr, id);
4959}
4960
ef8f2327 4961static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4962{
4963 struct mem_cgroup_per_node *pn;
ef8f2327 4964 int tmp = node;
1ecaab2b
KH
4965 /*
4966 * This routine is called against possible nodes.
4967 * But it's BUG to call kmalloc() against offline node.
4968 *
4969 * TODO: this routine can waste much memory for nodes which will
4970 * never be onlined. It's better to use memory hotplug callback
4971 * function.
4972 */
41e3355d
KH
4973 if (!node_state(node, N_NORMAL_MEMORY))
4974 tmp = -1;
17295c88 4975 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4976 if (!pn)
4977 return 1;
1ecaab2b 4978
815744d7
JW
4979 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4980 if (!pn->lruvec_stat_local) {
4981 kfree(pn);
4982 return 1;
4983 }
4984
a983b5eb
JW
4985 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4986 if (!pn->lruvec_stat_cpu) {
815744d7 4987 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4988 kfree(pn);
4989 return 1;
4990 }
4991
ef8f2327
MG
4992 lruvec_init(&pn->lruvec);
4993 pn->usage_in_excess = 0;
4994 pn->on_tree = false;
4995 pn->memcg = memcg;
4996
54f72fe0 4997 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4998 return 0;
4999}
5000
ef8f2327 5001static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5002{
00f3ca2c
JW
5003 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5004
4eaf431f
MH
5005 if (!pn)
5006 return;
5007
a983b5eb 5008 free_percpu(pn->lruvec_stat_cpu);
815744d7 5009 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5010 kfree(pn);
1ecaab2b
KH
5011}
5012
40e952f9 5013static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5014{
c8b2a36f 5015 int node;
59927fb9 5016
c350a99e 5017 /*
bb65f89b 5018 * Flush percpu vmstats and vmevents to guarantee the value correctness
c350a99e
RG
5019 * on parent's and all ancestor levels.
5020 */
bee07b33 5021 memcg_flush_percpu_vmstats(memcg, false);
bb65f89b 5022 memcg_flush_percpu_vmevents(memcg);
c8b2a36f 5023 for_each_node(node)
ef8f2327 5024 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5025 free_percpu(memcg->vmstats_percpu);
815744d7 5026 free_percpu(memcg->vmstats_local);
8ff69e2c 5027 kfree(memcg);
59927fb9 5028}
3afe36b1 5029
40e952f9
TE
5030static void mem_cgroup_free(struct mem_cgroup *memcg)
5031{
5032 memcg_wb_domain_exit(memcg);
5033 __mem_cgroup_free(memcg);
5034}
5035
0b8f73e1 5036static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5037{
d142e3e6 5038 struct mem_cgroup *memcg;
b9726c26 5039 unsigned int size;
6d12e2d8 5040 int node;
97b27821 5041 int __maybe_unused i;
8cdea7c0 5042
0b8f73e1
JW
5043 size = sizeof(struct mem_cgroup);
5044 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5045
5046 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5047 if (!memcg)
0b8f73e1
JW
5048 return NULL;
5049
73f576c0
JW
5050 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5051 1, MEM_CGROUP_ID_MAX,
5052 GFP_KERNEL);
5053 if (memcg->id.id < 0)
5054 goto fail;
5055
815744d7
JW
5056 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5057 if (!memcg->vmstats_local)
5058 goto fail;
5059
871789d4
CD
5060 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5061 if (!memcg->vmstats_percpu)
0b8f73e1 5062 goto fail;
78fb7466 5063
3ed28fa1 5064 for_each_node(node)
ef8f2327 5065 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5066 goto fail;
f64c3f54 5067
0b8f73e1
JW
5068 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5069 goto fail;
28dbc4b6 5070
f7e1cb6e 5071 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
5072 memcg->last_scanned_node = MAX_NUMNODES;
5073 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5074 mutex_init(&memcg->thresholds_lock);
5075 spin_lock_init(&memcg->move_lock);
70ddf637 5076 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5077 INIT_LIST_HEAD(&memcg->event_list);
5078 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5079 memcg->socket_pressure = jiffies;
84c07d11 5080#ifdef CONFIG_MEMCG_KMEM
900a38f0 5081 memcg->kmemcg_id = -1;
900a38f0 5082#endif
52ebea74
TH
5083#ifdef CONFIG_CGROUP_WRITEBACK
5084 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5085 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5086 memcg->cgwb_frn[i].done =
5087 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5088#endif
5089#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5090 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5091 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5092 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5093#endif
73f576c0 5094 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5095 return memcg;
5096fail:
7e97de0b 5097 mem_cgroup_id_remove(memcg);
40e952f9 5098 __mem_cgroup_free(memcg);
0b8f73e1 5099 return NULL;
d142e3e6
GC
5100}
5101
0b8f73e1
JW
5102static struct cgroup_subsys_state * __ref
5103mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5104{
0b8f73e1
JW
5105 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5106 struct mem_cgroup *memcg;
5107 long error = -ENOMEM;
d142e3e6 5108
0b8f73e1
JW
5109 memcg = mem_cgroup_alloc();
5110 if (!memcg)
5111 return ERR_PTR(error);
d142e3e6 5112
0b8f73e1
JW
5113 memcg->high = PAGE_COUNTER_MAX;
5114 memcg->soft_limit = PAGE_COUNTER_MAX;
5115 if (parent) {
5116 memcg->swappiness = mem_cgroup_swappiness(parent);
5117 memcg->oom_kill_disable = parent->oom_kill_disable;
5118 }
5119 if (parent && parent->use_hierarchy) {
5120 memcg->use_hierarchy = true;
3e32cb2e 5121 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5122 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5123 page_counter_init(&memcg->memsw, &parent->memsw);
5124 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5125 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5126 } else {
3e32cb2e 5127 page_counter_init(&memcg->memory, NULL);
37e84351 5128 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5129 page_counter_init(&memcg->memsw, NULL);
5130 page_counter_init(&memcg->kmem, NULL);
0db15298 5131 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5132 /*
5133 * Deeper hierachy with use_hierarchy == false doesn't make
5134 * much sense so let cgroup subsystem know about this
5135 * unfortunate state in our controller.
5136 */
d142e3e6 5137 if (parent != root_mem_cgroup)
073219e9 5138 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5139 }
d6441637 5140
0b8f73e1
JW
5141 /* The following stuff does not apply to the root */
5142 if (!parent) {
fb2f2b0a
RG
5143#ifdef CONFIG_MEMCG_KMEM
5144 INIT_LIST_HEAD(&memcg->kmem_caches);
5145#endif
0b8f73e1
JW
5146 root_mem_cgroup = memcg;
5147 return &memcg->css;
5148 }
5149
b313aeee 5150 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5151 if (error)
5152 goto fail;
127424c8 5153
f7e1cb6e 5154 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5155 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5156
0b8f73e1
JW
5157 return &memcg->css;
5158fail:
7e97de0b 5159 mem_cgroup_id_remove(memcg);
0b8f73e1 5160 mem_cgroup_free(memcg);
ea3a9645 5161 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
5162}
5163
73f576c0 5164static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5165{
58fa2a55
VD
5166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5167
0a4465d3
KT
5168 /*
5169 * A memcg must be visible for memcg_expand_shrinker_maps()
5170 * by the time the maps are allocated. So, we allocate maps
5171 * here, when for_each_mem_cgroup() can't skip it.
5172 */
5173 if (memcg_alloc_shrinker_maps(memcg)) {
5174 mem_cgroup_id_remove(memcg);
5175 return -ENOMEM;
5176 }
5177
73f576c0 5178 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5179 refcount_set(&memcg->id.ref, 1);
73f576c0 5180 css_get(css);
2f7dd7a4 5181 return 0;
8cdea7c0
BS
5182}
5183
eb95419b 5184static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5185{
eb95419b 5186 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5187 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5188
5189 /*
5190 * Unregister events and notify userspace.
5191 * Notify userspace about cgroup removing only after rmdir of cgroup
5192 * directory to avoid race between userspace and kernelspace.
5193 */
fba94807
TH
5194 spin_lock(&memcg->event_list_lock);
5195 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5196 list_del_init(&event->list);
5197 schedule_work(&event->remove);
5198 }
fba94807 5199 spin_unlock(&memcg->event_list_lock);
ec64f515 5200
bf8d5d52 5201 page_counter_set_min(&memcg->memory, 0);
23067153 5202 page_counter_set_low(&memcg->memory, 0);
63677c74 5203
567e9ab2 5204 memcg_offline_kmem(memcg);
52ebea74 5205 wb_memcg_offline(memcg);
73f576c0 5206
591edfb1
RG
5207 drain_all_stock(memcg);
5208
73f576c0 5209 mem_cgroup_id_put(memcg);
df878fb0
KH
5210}
5211
6df38689
VD
5212static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5213{
5214 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5215
5216 invalidate_reclaim_iterators(memcg);
5217}
5218
eb95419b 5219static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5220{
eb95419b 5221 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5222 int __maybe_unused i;
c268e994 5223
97b27821
TH
5224#ifdef CONFIG_CGROUP_WRITEBACK
5225 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5226 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5227#endif
f7e1cb6e 5228 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5229 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5230
0db15298 5231 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5232 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5233
0b8f73e1
JW
5234 vmpressure_cleanup(&memcg->vmpressure);
5235 cancel_work_sync(&memcg->high_work);
5236 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5237 memcg_free_shrinker_maps(memcg);
d886f4e4 5238 memcg_free_kmem(memcg);
0b8f73e1 5239 mem_cgroup_free(memcg);
8cdea7c0
BS
5240}
5241
1ced953b
TH
5242/**
5243 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5244 * @css: the target css
5245 *
5246 * Reset the states of the mem_cgroup associated with @css. This is
5247 * invoked when the userland requests disabling on the default hierarchy
5248 * but the memcg is pinned through dependency. The memcg should stop
5249 * applying policies and should revert to the vanilla state as it may be
5250 * made visible again.
5251 *
5252 * The current implementation only resets the essential configurations.
5253 * This needs to be expanded to cover all the visible parts.
5254 */
5255static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5256{
5257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5258
bbec2e15
RG
5259 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5260 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5261 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5262 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5263 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5264 page_counter_set_min(&memcg->memory, 0);
23067153 5265 page_counter_set_low(&memcg->memory, 0);
241994ed 5266 memcg->high = PAGE_COUNTER_MAX;
24d404dc 5267 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 5268 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5269}
5270
02491447 5271#ifdef CONFIG_MMU
7dc74be0 5272/* Handlers for move charge at task migration. */
854ffa8d 5273static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5274{
05b84301 5275 int ret;
9476db97 5276
d0164adc
MG
5277 /* Try a single bulk charge without reclaim first, kswapd may wake */
5278 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5279 if (!ret) {
854ffa8d 5280 mc.precharge += count;
854ffa8d
DN
5281 return ret;
5282 }
9476db97 5283
3674534b 5284 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5285 while (count--) {
3674534b 5286 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5287 if (ret)
38c5d72f 5288 return ret;
854ffa8d 5289 mc.precharge++;
9476db97 5290 cond_resched();
854ffa8d 5291 }
9476db97 5292 return 0;
4ffef5fe
DN
5293}
5294
4ffef5fe
DN
5295union mc_target {
5296 struct page *page;
02491447 5297 swp_entry_t ent;
4ffef5fe
DN
5298};
5299
4ffef5fe 5300enum mc_target_type {
8d32ff84 5301 MC_TARGET_NONE = 0,
4ffef5fe 5302 MC_TARGET_PAGE,
02491447 5303 MC_TARGET_SWAP,
c733a828 5304 MC_TARGET_DEVICE,
4ffef5fe
DN
5305};
5306
90254a65
DN
5307static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5308 unsigned long addr, pte_t ptent)
4ffef5fe 5309{
25b2995a 5310 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5311
90254a65
DN
5312 if (!page || !page_mapped(page))
5313 return NULL;
5314 if (PageAnon(page)) {
1dfab5ab 5315 if (!(mc.flags & MOVE_ANON))
90254a65 5316 return NULL;
1dfab5ab
JW
5317 } else {
5318 if (!(mc.flags & MOVE_FILE))
5319 return NULL;
5320 }
90254a65
DN
5321 if (!get_page_unless_zero(page))
5322 return NULL;
5323
5324 return page;
5325}
5326
c733a828 5327#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5328static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5329 pte_t ptent, swp_entry_t *entry)
90254a65 5330{
90254a65
DN
5331 struct page *page = NULL;
5332 swp_entry_t ent = pte_to_swp_entry(ptent);
5333
1dfab5ab 5334 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5335 return NULL;
c733a828
JG
5336
5337 /*
5338 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5339 * a device and because they are not accessible by CPU they are store
5340 * as special swap entry in the CPU page table.
5341 */
5342 if (is_device_private_entry(ent)) {
5343 page = device_private_entry_to_page(ent);
5344 /*
5345 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5346 * a refcount of 1 when free (unlike normal page)
5347 */
5348 if (!page_ref_add_unless(page, 1, 1))
5349 return NULL;
5350 return page;
5351 }
5352
4b91355e
KH
5353 /*
5354 * Because lookup_swap_cache() updates some statistics counter,
5355 * we call find_get_page() with swapper_space directly.
5356 */
f6ab1f7f 5357 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5358 if (do_memsw_account())
90254a65
DN
5359 entry->val = ent.val;
5360
5361 return page;
5362}
4b91355e
KH
5363#else
5364static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5365 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5366{
5367 return NULL;
5368}
5369#endif
90254a65 5370
87946a72
DN
5371static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5372 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5373{
5374 struct page *page = NULL;
87946a72
DN
5375 struct address_space *mapping;
5376 pgoff_t pgoff;
5377
5378 if (!vma->vm_file) /* anonymous vma */
5379 return NULL;
1dfab5ab 5380 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5381 return NULL;
5382
87946a72 5383 mapping = vma->vm_file->f_mapping;
0661a336 5384 pgoff = linear_page_index(vma, addr);
87946a72
DN
5385
5386 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5387#ifdef CONFIG_SWAP
5388 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5389 if (shmem_mapping(mapping)) {
5390 page = find_get_entry(mapping, pgoff);
3159f943 5391 if (xa_is_value(page)) {
139b6a6f 5392 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5393 if (do_memsw_account())
139b6a6f 5394 *entry = swp;
f6ab1f7f
HY
5395 page = find_get_page(swap_address_space(swp),
5396 swp_offset(swp));
139b6a6f
JW
5397 }
5398 } else
5399 page = find_get_page(mapping, pgoff);
5400#else
5401 page = find_get_page(mapping, pgoff);
aa3b1895 5402#endif
87946a72
DN
5403 return page;
5404}
5405
b1b0deab
CG
5406/**
5407 * mem_cgroup_move_account - move account of the page
5408 * @page: the page
25843c2b 5409 * @compound: charge the page as compound or small page
b1b0deab
CG
5410 * @from: mem_cgroup which the page is moved from.
5411 * @to: mem_cgroup which the page is moved to. @from != @to.
5412 *
3ac808fd 5413 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5414 *
5415 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5416 * from old cgroup.
5417 */
5418static int mem_cgroup_move_account(struct page *page,
f627c2f5 5419 bool compound,
b1b0deab
CG
5420 struct mem_cgroup *from,
5421 struct mem_cgroup *to)
5422{
ae8af438
KK
5423 struct lruvec *from_vec, *to_vec;
5424 struct pglist_data *pgdat;
b1b0deab 5425 unsigned long flags;
f627c2f5 5426 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5427 int ret;
c4843a75 5428 bool anon;
b1b0deab
CG
5429
5430 VM_BUG_ON(from == to);
5431 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5432 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5433
5434 /*
6a93ca8f 5435 * Prevent mem_cgroup_migrate() from looking at
45637bab 5436 * page->mem_cgroup of its source page while we change it.
b1b0deab 5437 */
f627c2f5 5438 ret = -EBUSY;
b1b0deab
CG
5439 if (!trylock_page(page))
5440 goto out;
5441
5442 ret = -EINVAL;
5443 if (page->mem_cgroup != from)
5444 goto out_unlock;
5445
c4843a75
GT
5446 anon = PageAnon(page);
5447
ae8af438
KK
5448 pgdat = page_pgdat(page);
5449 from_vec = mem_cgroup_lruvec(pgdat, from);
5450 to_vec = mem_cgroup_lruvec(pgdat, to);
5451
b1b0deab
CG
5452 spin_lock_irqsave(&from->move_lock, flags);
5453
c4843a75 5454 if (!anon && page_mapped(page)) {
ae8af438
KK
5455 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5456 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5457 }
5458
c4843a75
GT
5459 /*
5460 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5461 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5462 * So mapping should be stable for dirty pages.
5463 */
5464 if (!anon && PageDirty(page)) {
5465 struct address_space *mapping = page_mapping(page);
5466
5467 if (mapping_cap_account_dirty(mapping)) {
ae8af438
KK
5468 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5469 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5470 }
5471 }
5472
b1b0deab 5473 if (PageWriteback(page)) {
ae8af438
KK
5474 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5475 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5476 }
5477
87eaceb3
YS
5478#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5479 if (compound && !list_empty(page_deferred_list(page))) {
5480 spin_lock(&from->deferred_split_queue.split_queue_lock);
5481 list_del_init(page_deferred_list(page));
5482 from->deferred_split_queue.split_queue_len--;
5483 spin_unlock(&from->deferred_split_queue.split_queue_lock);
5484 }
5485#endif
b1b0deab
CG
5486 /*
5487 * It is safe to change page->mem_cgroup here because the page
5488 * is referenced, charged, and isolated - we can't race with
5489 * uncharging, charging, migration, or LRU putback.
5490 */
5491
5492 /* caller should have done css_get */
5493 page->mem_cgroup = to;
87eaceb3
YS
5494
5495#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5496 if (compound && list_empty(page_deferred_list(page))) {
5497 spin_lock(&to->deferred_split_queue.split_queue_lock);
5498 list_add_tail(page_deferred_list(page),
5499 &to->deferred_split_queue.split_queue);
5500 to->deferred_split_queue.split_queue_len++;
5501 spin_unlock(&to->deferred_split_queue.split_queue_lock);
5502 }
5503#endif
5504
b1b0deab
CG
5505 spin_unlock_irqrestore(&from->move_lock, flags);
5506
5507 ret = 0;
5508
5509 local_irq_disable();
f627c2f5 5510 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5511 memcg_check_events(to, page);
f627c2f5 5512 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5513 memcg_check_events(from, page);
5514 local_irq_enable();
5515out_unlock:
5516 unlock_page(page);
5517out:
5518 return ret;
5519}
5520
7cf7806c
LR
5521/**
5522 * get_mctgt_type - get target type of moving charge
5523 * @vma: the vma the pte to be checked belongs
5524 * @addr: the address corresponding to the pte to be checked
5525 * @ptent: the pte to be checked
5526 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5527 *
5528 * Returns
5529 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5530 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5531 * move charge. if @target is not NULL, the page is stored in target->page
5532 * with extra refcnt got(Callers should handle it).
5533 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5534 * target for charge migration. if @target is not NULL, the entry is stored
5535 * in target->ent.
25b2995a
CH
5536 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5537 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5538 * For now we such page is charge like a regular page would be as for all
5539 * intent and purposes it is just special memory taking the place of a
5540 * regular page.
c733a828
JG
5541 *
5542 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5543 *
5544 * Called with pte lock held.
5545 */
5546
8d32ff84 5547static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5548 unsigned long addr, pte_t ptent, union mc_target *target)
5549{
5550 struct page *page = NULL;
8d32ff84 5551 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5552 swp_entry_t ent = { .val = 0 };
5553
5554 if (pte_present(ptent))
5555 page = mc_handle_present_pte(vma, addr, ptent);
5556 else if (is_swap_pte(ptent))
48406ef8 5557 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5558 else if (pte_none(ptent))
87946a72 5559 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5560
5561 if (!page && !ent.val)
8d32ff84 5562 return ret;
02491447 5563 if (page) {
02491447 5564 /*
0a31bc97 5565 * Do only loose check w/o serialization.
1306a85a 5566 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5567 * not under LRU exclusion.
02491447 5568 */
1306a85a 5569 if (page->mem_cgroup == mc.from) {
02491447 5570 ret = MC_TARGET_PAGE;
25b2995a 5571 if (is_device_private_page(page))
c733a828 5572 ret = MC_TARGET_DEVICE;
02491447
DN
5573 if (target)
5574 target->page = page;
5575 }
5576 if (!ret || !target)
5577 put_page(page);
5578 }
3e14a57b
HY
5579 /*
5580 * There is a swap entry and a page doesn't exist or isn't charged.
5581 * But we cannot move a tail-page in a THP.
5582 */
5583 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5584 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5585 ret = MC_TARGET_SWAP;
5586 if (target)
5587 target->ent = ent;
4ffef5fe 5588 }
4ffef5fe
DN
5589 return ret;
5590}
5591
12724850
NH
5592#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5593/*
d6810d73
HY
5594 * We don't consider PMD mapped swapping or file mapped pages because THP does
5595 * not support them for now.
12724850
NH
5596 * Caller should make sure that pmd_trans_huge(pmd) is true.
5597 */
5598static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5599 unsigned long addr, pmd_t pmd, union mc_target *target)
5600{
5601 struct page *page = NULL;
12724850
NH
5602 enum mc_target_type ret = MC_TARGET_NONE;
5603
84c3fc4e
ZY
5604 if (unlikely(is_swap_pmd(pmd))) {
5605 VM_BUG_ON(thp_migration_supported() &&
5606 !is_pmd_migration_entry(pmd));
5607 return ret;
5608 }
12724850 5609 page = pmd_page(pmd);
309381fe 5610 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5611 if (!(mc.flags & MOVE_ANON))
12724850 5612 return ret;
1306a85a 5613 if (page->mem_cgroup == mc.from) {
12724850
NH
5614 ret = MC_TARGET_PAGE;
5615 if (target) {
5616 get_page(page);
5617 target->page = page;
5618 }
5619 }
5620 return ret;
5621}
5622#else
5623static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5624 unsigned long addr, pmd_t pmd, union mc_target *target)
5625{
5626 return MC_TARGET_NONE;
5627}
5628#endif
5629
4ffef5fe
DN
5630static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5631 unsigned long addr, unsigned long end,
5632 struct mm_walk *walk)
5633{
26bcd64a 5634 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5635 pte_t *pte;
5636 spinlock_t *ptl;
5637
b6ec57f4
KS
5638 ptl = pmd_trans_huge_lock(pmd, vma);
5639 if (ptl) {
c733a828
JG
5640 /*
5641 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5642 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5643 * this might change.
c733a828 5644 */
12724850
NH
5645 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5646 mc.precharge += HPAGE_PMD_NR;
bf929152 5647 spin_unlock(ptl);
1a5a9906 5648 return 0;
12724850 5649 }
03319327 5650
45f83cef
AA
5651 if (pmd_trans_unstable(pmd))
5652 return 0;
4ffef5fe
DN
5653 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5654 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5655 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5656 mc.precharge++; /* increment precharge temporarily */
5657 pte_unmap_unlock(pte - 1, ptl);
5658 cond_resched();
5659
7dc74be0
DN
5660 return 0;
5661}
5662
7b86ac33
CH
5663static const struct mm_walk_ops precharge_walk_ops = {
5664 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5665};
5666
4ffef5fe
DN
5667static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5668{
5669 unsigned long precharge;
4ffef5fe 5670
dfe076b0 5671 down_read(&mm->mmap_sem);
7b86ac33 5672 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5673 up_read(&mm->mmap_sem);
4ffef5fe
DN
5674
5675 precharge = mc.precharge;
5676 mc.precharge = 0;
5677
5678 return precharge;
5679}
5680
4ffef5fe
DN
5681static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5682{
dfe076b0
DN
5683 unsigned long precharge = mem_cgroup_count_precharge(mm);
5684
5685 VM_BUG_ON(mc.moving_task);
5686 mc.moving_task = current;
5687 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5688}
5689
dfe076b0
DN
5690/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5691static void __mem_cgroup_clear_mc(void)
4ffef5fe 5692{
2bd9bb20
KH
5693 struct mem_cgroup *from = mc.from;
5694 struct mem_cgroup *to = mc.to;
5695
4ffef5fe 5696 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5697 if (mc.precharge) {
00501b53 5698 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5699 mc.precharge = 0;
5700 }
5701 /*
5702 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5703 * we must uncharge here.
5704 */
5705 if (mc.moved_charge) {
00501b53 5706 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5707 mc.moved_charge = 0;
4ffef5fe 5708 }
483c30b5
DN
5709 /* we must fixup refcnts and charges */
5710 if (mc.moved_swap) {
483c30b5 5711 /* uncharge swap account from the old cgroup */
ce00a967 5712 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5713 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5714
615d66c3
VD
5715 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5716
05b84301 5717 /*
3e32cb2e
JW
5718 * we charged both to->memory and to->memsw, so we
5719 * should uncharge to->memory.
05b84301 5720 */
ce00a967 5721 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5722 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5723
615d66c3
VD
5724 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5725 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5726
483c30b5
DN
5727 mc.moved_swap = 0;
5728 }
dfe076b0
DN
5729 memcg_oom_recover(from);
5730 memcg_oom_recover(to);
5731 wake_up_all(&mc.waitq);
5732}
5733
5734static void mem_cgroup_clear_mc(void)
5735{
264a0ae1
TH
5736 struct mm_struct *mm = mc.mm;
5737
dfe076b0
DN
5738 /*
5739 * we must clear moving_task before waking up waiters at the end of
5740 * task migration.
5741 */
5742 mc.moving_task = NULL;
5743 __mem_cgroup_clear_mc();
2bd9bb20 5744 spin_lock(&mc.lock);
4ffef5fe
DN
5745 mc.from = NULL;
5746 mc.to = NULL;
264a0ae1 5747 mc.mm = NULL;
2bd9bb20 5748 spin_unlock(&mc.lock);
264a0ae1
TH
5749
5750 mmput(mm);
4ffef5fe
DN
5751}
5752
1f7dd3e5 5753static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5754{
1f7dd3e5 5755 struct cgroup_subsys_state *css;
eed67d75 5756 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5757 struct mem_cgroup *from;
4530eddb 5758 struct task_struct *leader, *p;
9f2115f9 5759 struct mm_struct *mm;
1dfab5ab 5760 unsigned long move_flags;
9f2115f9 5761 int ret = 0;
7dc74be0 5762
1f7dd3e5
TH
5763 /* charge immigration isn't supported on the default hierarchy */
5764 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5765 return 0;
5766
4530eddb
TH
5767 /*
5768 * Multi-process migrations only happen on the default hierarchy
5769 * where charge immigration is not used. Perform charge
5770 * immigration if @tset contains a leader and whine if there are
5771 * multiple.
5772 */
5773 p = NULL;
1f7dd3e5 5774 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5775 WARN_ON_ONCE(p);
5776 p = leader;
1f7dd3e5 5777 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5778 }
5779 if (!p)
5780 return 0;
5781
1f7dd3e5
TH
5782 /*
5783 * We are now commited to this value whatever it is. Changes in this
5784 * tunable will only affect upcoming migrations, not the current one.
5785 * So we need to save it, and keep it going.
5786 */
5787 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5788 if (!move_flags)
5789 return 0;
5790
9f2115f9
TH
5791 from = mem_cgroup_from_task(p);
5792
5793 VM_BUG_ON(from == memcg);
5794
5795 mm = get_task_mm(p);
5796 if (!mm)
5797 return 0;
5798 /* We move charges only when we move a owner of the mm */
5799 if (mm->owner == p) {
5800 VM_BUG_ON(mc.from);
5801 VM_BUG_ON(mc.to);
5802 VM_BUG_ON(mc.precharge);
5803 VM_BUG_ON(mc.moved_charge);
5804 VM_BUG_ON(mc.moved_swap);
5805
5806 spin_lock(&mc.lock);
264a0ae1 5807 mc.mm = mm;
9f2115f9
TH
5808 mc.from = from;
5809 mc.to = memcg;
5810 mc.flags = move_flags;
5811 spin_unlock(&mc.lock);
5812 /* We set mc.moving_task later */
5813
5814 ret = mem_cgroup_precharge_mc(mm);
5815 if (ret)
5816 mem_cgroup_clear_mc();
264a0ae1
TH
5817 } else {
5818 mmput(mm);
7dc74be0
DN
5819 }
5820 return ret;
5821}
5822
1f7dd3e5 5823static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5824{
4e2f245d
JW
5825 if (mc.to)
5826 mem_cgroup_clear_mc();
7dc74be0
DN
5827}
5828
4ffef5fe
DN
5829static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5830 unsigned long addr, unsigned long end,
5831 struct mm_walk *walk)
7dc74be0 5832{
4ffef5fe 5833 int ret = 0;
26bcd64a 5834 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5835 pte_t *pte;
5836 spinlock_t *ptl;
12724850
NH
5837 enum mc_target_type target_type;
5838 union mc_target target;
5839 struct page *page;
4ffef5fe 5840
b6ec57f4
KS
5841 ptl = pmd_trans_huge_lock(pmd, vma);
5842 if (ptl) {
62ade86a 5843 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5844 spin_unlock(ptl);
12724850
NH
5845 return 0;
5846 }
5847 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5848 if (target_type == MC_TARGET_PAGE) {
5849 page = target.page;
5850 if (!isolate_lru_page(page)) {
f627c2f5 5851 if (!mem_cgroup_move_account(page, true,
1306a85a 5852 mc.from, mc.to)) {
12724850
NH
5853 mc.precharge -= HPAGE_PMD_NR;
5854 mc.moved_charge += HPAGE_PMD_NR;
5855 }
5856 putback_lru_page(page);
5857 }
5858 put_page(page);
c733a828
JG
5859 } else if (target_type == MC_TARGET_DEVICE) {
5860 page = target.page;
5861 if (!mem_cgroup_move_account(page, true,
5862 mc.from, mc.to)) {
5863 mc.precharge -= HPAGE_PMD_NR;
5864 mc.moved_charge += HPAGE_PMD_NR;
5865 }
5866 put_page(page);
12724850 5867 }
bf929152 5868 spin_unlock(ptl);
1a5a9906 5869 return 0;
12724850
NH
5870 }
5871
45f83cef
AA
5872 if (pmd_trans_unstable(pmd))
5873 return 0;
4ffef5fe
DN
5874retry:
5875 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5876 for (; addr != end; addr += PAGE_SIZE) {
5877 pte_t ptent = *(pte++);
c733a828 5878 bool device = false;
02491447 5879 swp_entry_t ent;
4ffef5fe
DN
5880
5881 if (!mc.precharge)
5882 break;
5883
8d32ff84 5884 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5885 case MC_TARGET_DEVICE:
5886 device = true;
5887 /* fall through */
4ffef5fe
DN
5888 case MC_TARGET_PAGE:
5889 page = target.page;
53f9263b
KS
5890 /*
5891 * We can have a part of the split pmd here. Moving it
5892 * can be done but it would be too convoluted so simply
5893 * ignore such a partial THP and keep it in original
5894 * memcg. There should be somebody mapping the head.
5895 */
5896 if (PageTransCompound(page))
5897 goto put;
c733a828 5898 if (!device && isolate_lru_page(page))
4ffef5fe 5899 goto put;
f627c2f5
KS
5900 if (!mem_cgroup_move_account(page, false,
5901 mc.from, mc.to)) {
4ffef5fe 5902 mc.precharge--;
854ffa8d
DN
5903 /* we uncharge from mc.from later. */
5904 mc.moved_charge++;
4ffef5fe 5905 }
c733a828
JG
5906 if (!device)
5907 putback_lru_page(page);
8d32ff84 5908put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5909 put_page(page);
5910 break;
02491447
DN
5911 case MC_TARGET_SWAP:
5912 ent = target.ent;
e91cbb42 5913 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5914 mc.precharge--;
483c30b5
DN
5915 /* we fixup refcnts and charges later. */
5916 mc.moved_swap++;
5917 }
02491447 5918 break;
4ffef5fe
DN
5919 default:
5920 break;
5921 }
5922 }
5923 pte_unmap_unlock(pte - 1, ptl);
5924 cond_resched();
5925
5926 if (addr != end) {
5927 /*
5928 * We have consumed all precharges we got in can_attach().
5929 * We try charge one by one, but don't do any additional
5930 * charges to mc.to if we have failed in charge once in attach()
5931 * phase.
5932 */
854ffa8d 5933 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5934 if (!ret)
5935 goto retry;
5936 }
5937
5938 return ret;
5939}
5940
7b86ac33
CH
5941static const struct mm_walk_ops charge_walk_ops = {
5942 .pmd_entry = mem_cgroup_move_charge_pte_range,
5943};
5944
264a0ae1 5945static void mem_cgroup_move_charge(void)
4ffef5fe 5946{
4ffef5fe 5947 lru_add_drain_all();
312722cb 5948 /*
81f8c3a4
JW
5949 * Signal lock_page_memcg() to take the memcg's move_lock
5950 * while we're moving its pages to another memcg. Then wait
5951 * for already started RCU-only updates to finish.
312722cb
JW
5952 */
5953 atomic_inc(&mc.from->moving_account);
5954 synchronize_rcu();
dfe076b0 5955retry:
264a0ae1 5956 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5957 /*
5958 * Someone who are holding the mmap_sem might be waiting in
5959 * waitq. So we cancel all extra charges, wake up all waiters,
5960 * and retry. Because we cancel precharges, we might not be able
5961 * to move enough charges, but moving charge is a best-effort
5962 * feature anyway, so it wouldn't be a big problem.
5963 */
5964 __mem_cgroup_clear_mc();
5965 cond_resched();
5966 goto retry;
5967 }
26bcd64a
NH
5968 /*
5969 * When we have consumed all precharges and failed in doing
5970 * additional charge, the page walk just aborts.
5971 */
7b86ac33
CH
5972 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5973 NULL);
0247f3f4 5974
264a0ae1 5975 up_read(&mc.mm->mmap_sem);
312722cb 5976 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5977}
5978
264a0ae1 5979static void mem_cgroup_move_task(void)
67e465a7 5980{
264a0ae1
TH
5981 if (mc.to) {
5982 mem_cgroup_move_charge();
a433658c 5983 mem_cgroup_clear_mc();
264a0ae1 5984 }
67e465a7 5985}
5cfb80a7 5986#else /* !CONFIG_MMU */
1f7dd3e5 5987static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5988{
5989 return 0;
5990}
1f7dd3e5 5991static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5992{
5993}
264a0ae1 5994static void mem_cgroup_move_task(void)
5cfb80a7
DN
5995{
5996}
5997#endif
67e465a7 5998
f00baae7
TH
5999/*
6000 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6001 * to verify whether we're attached to the default hierarchy on each mount
6002 * attempt.
f00baae7 6003 */
eb95419b 6004static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6005{
6006 /*
aa6ec29b 6007 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6008 * guarantees that @root doesn't have any children, so turning it
6009 * on for the root memcg is enough.
6010 */
9e10a130 6011 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
6012 root_mem_cgroup->use_hierarchy = true;
6013 else
6014 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
6015}
6016
677dc973
CD
6017static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6018{
6019 if (value == PAGE_COUNTER_MAX)
6020 seq_puts(m, "max\n");
6021 else
6022 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6023
6024 return 0;
6025}
6026
241994ed
JW
6027static u64 memory_current_read(struct cgroup_subsys_state *css,
6028 struct cftype *cft)
6029{
f5fc3c5d
JW
6030 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6031
6032 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6033}
6034
bf8d5d52
RG
6035static int memory_min_show(struct seq_file *m, void *v)
6036{
677dc973
CD
6037 return seq_puts_memcg_tunable(m,
6038 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6039}
6040
6041static ssize_t memory_min_write(struct kernfs_open_file *of,
6042 char *buf, size_t nbytes, loff_t off)
6043{
6044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6045 unsigned long min;
6046 int err;
6047
6048 buf = strstrip(buf);
6049 err = page_counter_memparse(buf, "max", &min);
6050 if (err)
6051 return err;
6052
6053 page_counter_set_min(&memcg->memory, min);
6054
6055 return nbytes;
6056}
6057
241994ed
JW
6058static int memory_low_show(struct seq_file *m, void *v)
6059{
677dc973
CD
6060 return seq_puts_memcg_tunable(m,
6061 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6062}
6063
6064static ssize_t memory_low_write(struct kernfs_open_file *of,
6065 char *buf, size_t nbytes, loff_t off)
6066{
6067 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6068 unsigned long low;
6069 int err;
6070
6071 buf = strstrip(buf);
d2973697 6072 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6073 if (err)
6074 return err;
6075
23067153 6076 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6077
6078 return nbytes;
6079}
6080
6081static int memory_high_show(struct seq_file *m, void *v)
6082{
677dc973 6083 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
6084}
6085
6086static ssize_t memory_high_write(struct kernfs_open_file *of,
6087 char *buf, size_t nbytes, loff_t off)
6088{
6089 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 6090 unsigned long nr_pages;
241994ed
JW
6091 unsigned long high;
6092 int err;
6093
6094 buf = strstrip(buf);
d2973697 6095 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6096 if (err)
6097 return err;
6098
6099 memcg->high = high;
6100
588083bb
JW
6101 nr_pages = page_counter_read(&memcg->memory);
6102 if (nr_pages > high)
6103 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6104 GFP_KERNEL, true);
6105
2529bb3a 6106 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6107 return nbytes;
6108}
6109
6110static int memory_max_show(struct seq_file *m, void *v)
6111{
677dc973
CD
6112 return seq_puts_memcg_tunable(m,
6113 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6114}
6115
6116static ssize_t memory_max_write(struct kernfs_open_file *of,
6117 char *buf, size_t nbytes, loff_t off)
6118{
6119 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6120 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6121 bool drained = false;
241994ed
JW
6122 unsigned long max;
6123 int err;
6124
6125 buf = strstrip(buf);
d2973697 6126 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6127 if (err)
6128 return err;
6129
bbec2e15 6130 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6131
6132 for (;;) {
6133 unsigned long nr_pages = page_counter_read(&memcg->memory);
6134
6135 if (nr_pages <= max)
6136 break;
6137
6138 if (signal_pending(current)) {
6139 err = -EINTR;
6140 break;
6141 }
6142
6143 if (!drained) {
6144 drain_all_stock(memcg);
6145 drained = true;
6146 continue;
6147 }
6148
6149 if (nr_reclaims) {
6150 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6151 GFP_KERNEL, true))
6152 nr_reclaims--;
6153 continue;
6154 }
6155
e27be240 6156 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6157 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6158 break;
6159 }
241994ed 6160
2529bb3a 6161 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6162 return nbytes;
6163}
6164
1e577f97
SB
6165static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6166{
6167 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6168 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6169 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6170 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6171 seq_printf(m, "oom_kill %lu\n",
6172 atomic_long_read(&events[MEMCG_OOM_KILL]));
6173}
6174
241994ed
JW
6175static int memory_events_show(struct seq_file *m, void *v)
6176{
aa9694bb 6177 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6178
1e577f97
SB
6179 __memory_events_show(m, memcg->memory_events);
6180 return 0;
6181}
6182
6183static int memory_events_local_show(struct seq_file *m, void *v)
6184{
6185 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6186
1e577f97 6187 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6188 return 0;
6189}
6190
587d9f72
JW
6191static int memory_stat_show(struct seq_file *m, void *v)
6192{
aa9694bb 6193 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6194 char *buf;
1ff9e6e1 6195
c8713d0b
JW
6196 buf = memory_stat_format(memcg);
6197 if (!buf)
6198 return -ENOMEM;
6199 seq_puts(m, buf);
6200 kfree(buf);
587d9f72
JW
6201 return 0;
6202}
6203
3d8b38eb
RG
6204static int memory_oom_group_show(struct seq_file *m, void *v)
6205{
aa9694bb 6206 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6207
6208 seq_printf(m, "%d\n", memcg->oom_group);
6209
6210 return 0;
6211}
6212
6213static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6214 char *buf, size_t nbytes, loff_t off)
6215{
6216 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6217 int ret, oom_group;
6218
6219 buf = strstrip(buf);
6220 if (!buf)
6221 return -EINVAL;
6222
6223 ret = kstrtoint(buf, 0, &oom_group);
6224 if (ret)
6225 return ret;
6226
6227 if (oom_group != 0 && oom_group != 1)
6228 return -EINVAL;
6229
6230 memcg->oom_group = oom_group;
6231
6232 return nbytes;
6233}
6234
241994ed
JW
6235static struct cftype memory_files[] = {
6236 {
6237 .name = "current",
f5fc3c5d 6238 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6239 .read_u64 = memory_current_read,
6240 },
bf8d5d52
RG
6241 {
6242 .name = "min",
6243 .flags = CFTYPE_NOT_ON_ROOT,
6244 .seq_show = memory_min_show,
6245 .write = memory_min_write,
6246 },
241994ed
JW
6247 {
6248 .name = "low",
6249 .flags = CFTYPE_NOT_ON_ROOT,
6250 .seq_show = memory_low_show,
6251 .write = memory_low_write,
6252 },
6253 {
6254 .name = "high",
6255 .flags = CFTYPE_NOT_ON_ROOT,
6256 .seq_show = memory_high_show,
6257 .write = memory_high_write,
6258 },
6259 {
6260 .name = "max",
6261 .flags = CFTYPE_NOT_ON_ROOT,
6262 .seq_show = memory_max_show,
6263 .write = memory_max_write,
6264 },
6265 {
6266 .name = "events",
6267 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6268 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6269 .seq_show = memory_events_show,
6270 },
1e577f97
SB
6271 {
6272 .name = "events.local",
6273 .flags = CFTYPE_NOT_ON_ROOT,
6274 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6275 .seq_show = memory_events_local_show,
6276 },
587d9f72
JW
6277 {
6278 .name = "stat",
6279 .flags = CFTYPE_NOT_ON_ROOT,
6280 .seq_show = memory_stat_show,
6281 },
3d8b38eb
RG
6282 {
6283 .name = "oom.group",
6284 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6285 .seq_show = memory_oom_group_show,
6286 .write = memory_oom_group_write,
6287 },
241994ed
JW
6288 { } /* terminate */
6289};
6290
073219e9 6291struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6292 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6293 .css_online = mem_cgroup_css_online,
92fb9748 6294 .css_offline = mem_cgroup_css_offline,
6df38689 6295 .css_released = mem_cgroup_css_released,
92fb9748 6296 .css_free = mem_cgroup_css_free,
1ced953b 6297 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6298 .can_attach = mem_cgroup_can_attach,
6299 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6300 .post_attach = mem_cgroup_move_task,
f00baae7 6301 .bind = mem_cgroup_bind,
241994ed
JW
6302 .dfl_cftypes = memory_files,
6303 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6304 .early_init = 0,
8cdea7c0 6305};
c077719b 6306
241994ed 6307/**
bf8d5d52 6308 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6309 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6310 * @memcg: the memory cgroup to check
6311 *
23067153
RG
6312 * WARNING: This function is not stateless! It can only be used as part
6313 * of a top-down tree iteration, not for isolated queries.
34c81057 6314 *
bf8d5d52
RG
6315 * Returns one of the following:
6316 * MEMCG_PROT_NONE: cgroup memory is not protected
6317 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6318 * an unprotected supply of reclaimable memory from other cgroups.
6319 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 6320 *
bf8d5d52 6321 * @root is exclusive; it is never protected when looked at directly
34c81057 6322 *
bf8d5d52
RG
6323 * To provide a proper hierarchical behavior, effective memory.min/low values
6324 * are used. Below is the description of how effective memory.low is calculated.
6325 * Effective memory.min values is calculated in the same way.
34c81057 6326 *
23067153
RG
6327 * Effective memory.low is always equal or less than the original memory.low.
6328 * If there is no memory.low overcommittment (which is always true for
6329 * top-level memory cgroups), these two values are equal.
6330 * Otherwise, it's a part of parent's effective memory.low,
6331 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6332 * memory.low usages, where memory.low usage is the size of actually
6333 * protected memory.
34c81057 6334 *
23067153
RG
6335 * low_usage
6336 * elow = min( memory.low, parent->elow * ------------------ ),
6337 * siblings_low_usage
34c81057 6338 *
23067153
RG
6339 * | memory.current, if memory.current < memory.low
6340 * low_usage = |
82ede7ee 6341 * | 0, otherwise.
34c81057 6342 *
23067153
RG
6343 *
6344 * Such definition of the effective memory.low provides the expected
6345 * hierarchical behavior: parent's memory.low value is limiting
6346 * children, unprotected memory is reclaimed first and cgroups,
6347 * which are not using their guarantee do not affect actual memory
6348 * distribution.
6349 *
6350 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6351 *
6352 * A A/memory.low = 2G, A/memory.current = 6G
6353 * //\\
6354 * BC DE B/memory.low = 3G B/memory.current = 2G
6355 * C/memory.low = 1G C/memory.current = 2G
6356 * D/memory.low = 0 D/memory.current = 2G
6357 * E/memory.low = 10G E/memory.current = 0
6358 *
6359 * and the memory pressure is applied, the following memory distribution
6360 * is expected (approximately):
6361 *
6362 * A/memory.current = 2G
6363 *
6364 * B/memory.current = 1.3G
6365 * C/memory.current = 0.6G
6366 * D/memory.current = 0
6367 * E/memory.current = 0
6368 *
6369 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
6370 * (see propagate_protected_usage()), as well as recursive calculation of
6371 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
6372 * path for each memory cgroup top-down from the reclaim,
6373 * it's possible to optimize this part, and save calculated elow
6374 * for next usage. This part is intentionally racy, but it's ok,
6375 * as memory.low is a best-effort mechanism.
241994ed 6376 */
bf8d5d52
RG
6377enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6378 struct mem_cgroup *memcg)
241994ed 6379{
23067153 6380 struct mem_cgroup *parent;
bf8d5d52
RG
6381 unsigned long emin, parent_emin;
6382 unsigned long elow, parent_elow;
6383 unsigned long usage;
23067153 6384
241994ed 6385 if (mem_cgroup_disabled())
bf8d5d52 6386 return MEMCG_PROT_NONE;
241994ed 6387
34c81057
SC
6388 if (!root)
6389 root = root_mem_cgroup;
6390 if (memcg == root)
bf8d5d52 6391 return MEMCG_PROT_NONE;
241994ed 6392
23067153 6393 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6394 if (!usage)
6395 return MEMCG_PROT_NONE;
6396
6397 emin = memcg->memory.min;
6398 elow = memcg->memory.low;
34c81057 6399
bf8d5d52 6400 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6401 /* No parent means a non-hierarchical mode on v1 memcg */
6402 if (!parent)
6403 return MEMCG_PROT_NONE;
6404
23067153
RG
6405 if (parent == root)
6406 goto exit;
6407
bf8d5d52
RG
6408 parent_emin = READ_ONCE(parent->memory.emin);
6409 emin = min(emin, parent_emin);
6410 if (emin && parent_emin) {
6411 unsigned long min_usage, siblings_min_usage;
6412
6413 min_usage = min(usage, memcg->memory.min);
6414 siblings_min_usage = atomic_long_read(
6415 &parent->memory.children_min_usage);
6416
6417 if (min_usage && siblings_min_usage)
6418 emin = min(emin, parent_emin * min_usage /
6419 siblings_min_usage);
6420 }
6421
23067153
RG
6422 parent_elow = READ_ONCE(parent->memory.elow);
6423 elow = min(elow, parent_elow);
bf8d5d52
RG
6424 if (elow && parent_elow) {
6425 unsigned long low_usage, siblings_low_usage;
23067153 6426
bf8d5d52
RG
6427 low_usage = min(usage, memcg->memory.low);
6428 siblings_low_usage = atomic_long_read(
6429 &parent->memory.children_low_usage);
23067153 6430
bf8d5d52
RG
6431 if (low_usage && siblings_low_usage)
6432 elow = min(elow, parent_elow * low_usage /
6433 siblings_low_usage);
6434 }
23067153 6435
23067153 6436exit:
bf8d5d52 6437 memcg->memory.emin = emin;
23067153 6438 memcg->memory.elow = elow;
bf8d5d52
RG
6439
6440 if (usage <= emin)
6441 return MEMCG_PROT_MIN;
6442 else if (usage <= elow)
6443 return MEMCG_PROT_LOW;
6444 else
6445 return MEMCG_PROT_NONE;
241994ed
JW
6446}
6447
00501b53
JW
6448/**
6449 * mem_cgroup_try_charge - try charging a page
6450 * @page: page to charge
6451 * @mm: mm context of the victim
6452 * @gfp_mask: reclaim mode
6453 * @memcgp: charged memcg return
25843c2b 6454 * @compound: charge the page as compound or small page
00501b53
JW
6455 *
6456 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6457 * pages according to @gfp_mask if necessary.
6458 *
6459 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6460 * Otherwise, an error code is returned.
6461 *
6462 * After page->mapping has been set up, the caller must finalize the
6463 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6464 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6465 */
6466int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6467 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6468 bool compound)
00501b53
JW
6469{
6470 struct mem_cgroup *memcg = NULL;
f627c2f5 6471 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6472 int ret = 0;
6473
6474 if (mem_cgroup_disabled())
6475 goto out;
6476
6477 if (PageSwapCache(page)) {
00501b53
JW
6478 /*
6479 * Every swap fault against a single page tries to charge the
6480 * page, bail as early as possible. shmem_unuse() encounters
6481 * already charged pages, too. The USED bit is protected by
6482 * the page lock, which serializes swap cache removal, which
6483 * in turn serializes uncharging.
6484 */
e993d905 6485 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6486 if (compound_head(page)->mem_cgroup)
00501b53 6487 goto out;
e993d905 6488
37e84351 6489 if (do_swap_account) {
e993d905
VD
6490 swp_entry_t ent = { .val = page_private(page), };
6491 unsigned short id = lookup_swap_cgroup_id(ent);
6492
6493 rcu_read_lock();
6494 memcg = mem_cgroup_from_id(id);
6495 if (memcg && !css_tryget_online(&memcg->css))
6496 memcg = NULL;
6497 rcu_read_unlock();
6498 }
00501b53
JW
6499 }
6500
00501b53
JW
6501 if (!memcg)
6502 memcg = get_mem_cgroup_from_mm(mm);
6503
6504 ret = try_charge(memcg, gfp_mask, nr_pages);
6505
6506 css_put(&memcg->css);
00501b53
JW
6507out:
6508 *memcgp = memcg;
6509 return ret;
6510}
6511
2cf85583
TH
6512int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6513 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6514 bool compound)
6515{
6516 struct mem_cgroup *memcg;
6517 int ret;
6518
6519 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6520 memcg = *memcgp;
6521 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6522 return ret;
6523}
6524
00501b53
JW
6525/**
6526 * mem_cgroup_commit_charge - commit a page charge
6527 * @page: page to charge
6528 * @memcg: memcg to charge the page to
6529 * @lrucare: page might be on LRU already
25843c2b 6530 * @compound: charge the page as compound or small page
00501b53
JW
6531 *
6532 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6533 * after page->mapping has been set up. This must happen atomically
6534 * as part of the page instantiation, i.e. under the page table lock
6535 * for anonymous pages, under the page lock for page and swap cache.
6536 *
6537 * In addition, the page must not be on the LRU during the commit, to
6538 * prevent racing with task migration. If it might be, use @lrucare.
6539 *
6540 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6541 */
6542void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6543 bool lrucare, bool compound)
00501b53 6544{
f627c2f5 6545 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6546
6547 VM_BUG_ON_PAGE(!page->mapping, page);
6548 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6549
6550 if (mem_cgroup_disabled())
6551 return;
6552 /*
6553 * Swap faults will attempt to charge the same page multiple
6554 * times. But reuse_swap_page() might have removed the page
6555 * from swapcache already, so we can't check PageSwapCache().
6556 */
6557 if (!memcg)
6558 return;
6559
6abb5a86
JW
6560 commit_charge(page, memcg, lrucare);
6561
6abb5a86 6562 local_irq_disable();
f627c2f5 6563 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6564 memcg_check_events(memcg, page);
6565 local_irq_enable();
00501b53 6566
7941d214 6567 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6568 swp_entry_t entry = { .val = page_private(page) };
6569 /*
6570 * The swap entry might not get freed for a long time,
6571 * let's not wait for it. The page already received a
6572 * memory+swap charge, drop the swap entry duplicate.
6573 */
38d8b4e6 6574 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6575 }
6576}
6577
6578/**
6579 * mem_cgroup_cancel_charge - cancel a page charge
6580 * @page: page to charge
6581 * @memcg: memcg to charge the page to
25843c2b 6582 * @compound: charge the page as compound or small page
00501b53
JW
6583 *
6584 * Cancel a charge transaction started by mem_cgroup_try_charge().
6585 */
f627c2f5
KS
6586void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6587 bool compound)
00501b53 6588{
f627c2f5 6589 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6590
6591 if (mem_cgroup_disabled())
6592 return;
6593 /*
6594 * Swap faults will attempt to charge the same page multiple
6595 * times. But reuse_swap_page() might have removed the page
6596 * from swapcache already, so we can't check PageSwapCache().
6597 */
6598 if (!memcg)
6599 return;
6600
00501b53
JW
6601 cancel_charge(memcg, nr_pages);
6602}
6603
a9d5adee
JG
6604struct uncharge_gather {
6605 struct mem_cgroup *memcg;
6606 unsigned long pgpgout;
6607 unsigned long nr_anon;
6608 unsigned long nr_file;
6609 unsigned long nr_kmem;
6610 unsigned long nr_huge;
6611 unsigned long nr_shmem;
6612 struct page *dummy_page;
6613};
6614
6615static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6616{
a9d5adee
JG
6617 memset(ug, 0, sizeof(*ug));
6618}
6619
6620static void uncharge_batch(const struct uncharge_gather *ug)
6621{
6622 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6623 unsigned long flags;
6624
a9d5adee
JG
6625 if (!mem_cgroup_is_root(ug->memcg)) {
6626 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6627 if (do_memsw_account())
a9d5adee
JG
6628 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6629 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6630 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6631 memcg_oom_recover(ug->memcg);
ce00a967 6632 }
747db954
JW
6633
6634 local_irq_save(flags);
c9019e9b
JW
6635 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6636 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6637 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6638 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6639 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6640 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6641 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6642 local_irq_restore(flags);
e8ea14cc 6643
a9d5adee
JG
6644 if (!mem_cgroup_is_root(ug->memcg))
6645 css_put_many(&ug->memcg->css, nr_pages);
6646}
6647
6648static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6649{
6650 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6651 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6652 !PageHWPoison(page) , page);
a9d5adee
JG
6653
6654 if (!page->mem_cgroup)
6655 return;
6656
6657 /*
6658 * Nobody should be changing or seriously looking at
6659 * page->mem_cgroup at this point, we have fully
6660 * exclusive access to the page.
6661 */
6662
6663 if (ug->memcg != page->mem_cgroup) {
6664 if (ug->memcg) {
6665 uncharge_batch(ug);
6666 uncharge_gather_clear(ug);
6667 }
6668 ug->memcg = page->mem_cgroup;
6669 }
6670
6671 if (!PageKmemcg(page)) {
6672 unsigned int nr_pages = 1;
6673
6674 if (PageTransHuge(page)) {
d8c6546b 6675 nr_pages = compound_nr(page);
a9d5adee
JG
6676 ug->nr_huge += nr_pages;
6677 }
6678 if (PageAnon(page))
6679 ug->nr_anon += nr_pages;
6680 else {
6681 ug->nr_file += nr_pages;
6682 if (PageSwapBacked(page))
6683 ug->nr_shmem += nr_pages;
6684 }
6685 ug->pgpgout++;
6686 } else {
d8c6546b 6687 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6688 __ClearPageKmemcg(page);
6689 }
6690
6691 ug->dummy_page = page;
6692 page->mem_cgroup = NULL;
747db954
JW
6693}
6694
6695static void uncharge_list(struct list_head *page_list)
6696{
a9d5adee 6697 struct uncharge_gather ug;
747db954 6698 struct list_head *next;
a9d5adee
JG
6699
6700 uncharge_gather_clear(&ug);
747db954 6701
8b592656
JW
6702 /*
6703 * Note that the list can be a single page->lru; hence the
6704 * do-while loop instead of a simple list_for_each_entry().
6705 */
747db954
JW
6706 next = page_list->next;
6707 do {
a9d5adee
JG
6708 struct page *page;
6709
747db954
JW
6710 page = list_entry(next, struct page, lru);
6711 next = page->lru.next;
6712
a9d5adee 6713 uncharge_page(page, &ug);
747db954
JW
6714 } while (next != page_list);
6715
a9d5adee
JG
6716 if (ug.memcg)
6717 uncharge_batch(&ug);
747db954
JW
6718}
6719
0a31bc97
JW
6720/**
6721 * mem_cgroup_uncharge - uncharge a page
6722 * @page: page to uncharge
6723 *
6724 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6725 * mem_cgroup_commit_charge().
6726 */
6727void mem_cgroup_uncharge(struct page *page)
6728{
a9d5adee
JG
6729 struct uncharge_gather ug;
6730
0a31bc97
JW
6731 if (mem_cgroup_disabled())
6732 return;
6733
747db954 6734 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6735 if (!page->mem_cgroup)
0a31bc97
JW
6736 return;
6737
a9d5adee
JG
6738 uncharge_gather_clear(&ug);
6739 uncharge_page(page, &ug);
6740 uncharge_batch(&ug);
747db954 6741}
0a31bc97 6742
747db954
JW
6743/**
6744 * mem_cgroup_uncharge_list - uncharge a list of page
6745 * @page_list: list of pages to uncharge
6746 *
6747 * Uncharge a list of pages previously charged with
6748 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6749 */
6750void mem_cgroup_uncharge_list(struct list_head *page_list)
6751{
6752 if (mem_cgroup_disabled())
6753 return;
0a31bc97 6754
747db954
JW
6755 if (!list_empty(page_list))
6756 uncharge_list(page_list);
0a31bc97
JW
6757}
6758
6759/**
6a93ca8f
JW
6760 * mem_cgroup_migrate - charge a page's replacement
6761 * @oldpage: currently circulating page
6762 * @newpage: replacement page
0a31bc97 6763 *
6a93ca8f
JW
6764 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6765 * be uncharged upon free.
0a31bc97
JW
6766 *
6767 * Both pages must be locked, @newpage->mapping must be set up.
6768 */
6a93ca8f 6769void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6770{
29833315 6771 struct mem_cgroup *memcg;
44b7a8d3
JW
6772 unsigned int nr_pages;
6773 bool compound;
d93c4130 6774 unsigned long flags;
0a31bc97
JW
6775
6776 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6777 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6778 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6779 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6780 newpage);
0a31bc97
JW
6781
6782 if (mem_cgroup_disabled())
6783 return;
6784
6785 /* Page cache replacement: new page already charged? */
1306a85a 6786 if (newpage->mem_cgroup)
0a31bc97
JW
6787 return;
6788
45637bab 6789 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6790 memcg = oldpage->mem_cgroup;
29833315 6791 if (!memcg)
0a31bc97
JW
6792 return;
6793
44b7a8d3
JW
6794 /* Force-charge the new page. The old one will be freed soon */
6795 compound = PageTransHuge(newpage);
6796 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6797
6798 page_counter_charge(&memcg->memory, nr_pages);
6799 if (do_memsw_account())
6800 page_counter_charge(&memcg->memsw, nr_pages);
6801 css_get_many(&memcg->css, nr_pages);
0a31bc97 6802
9cf7666a 6803 commit_charge(newpage, memcg, false);
44b7a8d3 6804
d93c4130 6805 local_irq_save(flags);
44b7a8d3
JW
6806 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6807 memcg_check_events(memcg, newpage);
d93c4130 6808 local_irq_restore(flags);
0a31bc97
JW
6809}
6810
ef12947c 6811DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6812EXPORT_SYMBOL(memcg_sockets_enabled_key);
6813
2d758073 6814void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6815{
6816 struct mem_cgroup *memcg;
6817
2d758073
JW
6818 if (!mem_cgroup_sockets_enabled)
6819 return;
6820
edbe69ef
RG
6821 /*
6822 * Socket cloning can throw us here with sk_memcg already
6823 * filled. It won't however, necessarily happen from
6824 * process context. So the test for root memcg given
6825 * the current task's memcg won't help us in this case.
6826 *
6827 * Respecting the original socket's memcg is a better
6828 * decision in this case.
6829 */
6830 if (sk->sk_memcg) {
6831 css_get(&sk->sk_memcg->css);
6832 return;
6833 }
6834
11092087
JW
6835 rcu_read_lock();
6836 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6837 if (memcg == root_mem_cgroup)
6838 goto out;
0db15298 6839 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6840 goto out;
f7e1cb6e 6841 if (css_tryget_online(&memcg->css))
11092087 6842 sk->sk_memcg = memcg;
f7e1cb6e 6843out:
11092087
JW
6844 rcu_read_unlock();
6845}
11092087 6846
2d758073 6847void mem_cgroup_sk_free(struct sock *sk)
11092087 6848{
2d758073
JW
6849 if (sk->sk_memcg)
6850 css_put(&sk->sk_memcg->css);
11092087
JW
6851}
6852
6853/**
6854 * mem_cgroup_charge_skmem - charge socket memory
6855 * @memcg: memcg to charge
6856 * @nr_pages: number of pages to charge
6857 *
6858 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6859 * @memcg's configured limit, %false if the charge had to be forced.
6860 */
6861bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6862{
f7e1cb6e 6863 gfp_t gfp_mask = GFP_KERNEL;
11092087 6864
f7e1cb6e 6865 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6866 struct page_counter *fail;
f7e1cb6e 6867
0db15298
JW
6868 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6869 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6870 return true;
6871 }
0db15298
JW
6872 page_counter_charge(&memcg->tcpmem, nr_pages);
6873 memcg->tcpmem_pressure = 1;
f7e1cb6e 6874 return false;
11092087 6875 }
d886f4e4 6876
f7e1cb6e
JW
6877 /* Don't block in the packet receive path */
6878 if (in_softirq())
6879 gfp_mask = GFP_NOWAIT;
6880
c9019e9b 6881 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6882
f7e1cb6e
JW
6883 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6884 return true;
6885
6886 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6887 return false;
6888}
6889
6890/**
6891 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6892 * @memcg: memcg to uncharge
6893 * @nr_pages: number of pages to uncharge
11092087
JW
6894 */
6895void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6896{
f7e1cb6e 6897 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6898 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6899 return;
6900 }
d886f4e4 6901
c9019e9b 6902 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6903
475d0487 6904 refill_stock(memcg, nr_pages);
11092087
JW
6905}
6906
f7e1cb6e
JW
6907static int __init cgroup_memory(char *s)
6908{
6909 char *token;
6910
6911 while ((token = strsep(&s, ",")) != NULL) {
6912 if (!*token)
6913 continue;
6914 if (!strcmp(token, "nosocket"))
6915 cgroup_memory_nosocket = true;
04823c83
VD
6916 if (!strcmp(token, "nokmem"))
6917 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6918 }
6919 return 0;
6920}
6921__setup("cgroup.memory=", cgroup_memory);
11092087 6922
2d11085e 6923/*
1081312f
MH
6924 * subsys_initcall() for memory controller.
6925 *
308167fc
SAS
6926 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6927 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6928 * basically everything that doesn't depend on a specific mem_cgroup structure
6929 * should be initialized from here.
2d11085e
MH
6930 */
6931static int __init mem_cgroup_init(void)
6932{
95a045f6
JW
6933 int cpu, node;
6934
84c07d11 6935#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6936 /*
6937 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6938 * so use a workqueue with limited concurrency to avoid stalling
6939 * all worker threads in case lots of cgroups are created and
6940 * destroyed simultaneously.
13583c3d 6941 */
17cc4dfe
TH
6942 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6943 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6944#endif
6945
308167fc
SAS
6946 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6947 memcg_hotplug_cpu_dead);
95a045f6
JW
6948
6949 for_each_possible_cpu(cpu)
6950 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6951 drain_local_stock);
6952
6953 for_each_node(node) {
6954 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6955
6956 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6957 node_online(node) ? node : NUMA_NO_NODE);
6958
ef8f2327 6959 rtpn->rb_root = RB_ROOT;
fa90b2fd 6960 rtpn->rb_rightmost = NULL;
ef8f2327 6961 spin_lock_init(&rtpn->lock);
95a045f6
JW
6962 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6963 }
6964
2d11085e
MH
6965 return 0;
6966}
6967subsys_initcall(mem_cgroup_init);
21afa38e
JW
6968
6969#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6970static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6971{
1c2d479a 6972 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6973 /*
6974 * The root cgroup cannot be destroyed, so it's refcount must
6975 * always be >= 1.
6976 */
6977 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6978 VM_BUG_ON(1);
6979 break;
6980 }
6981 memcg = parent_mem_cgroup(memcg);
6982 if (!memcg)
6983 memcg = root_mem_cgroup;
6984 }
6985 return memcg;
6986}
6987
21afa38e
JW
6988/**
6989 * mem_cgroup_swapout - transfer a memsw charge to swap
6990 * @page: page whose memsw charge to transfer
6991 * @entry: swap entry to move the charge to
6992 *
6993 * Transfer the memsw charge of @page to @entry.
6994 */
6995void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6996{
1f47b61f 6997 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6998 unsigned int nr_entries;
21afa38e
JW
6999 unsigned short oldid;
7000
7001 VM_BUG_ON_PAGE(PageLRU(page), page);
7002 VM_BUG_ON_PAGE(page_count(page), page);
7003
7941d214 7004 if (!do_memsw_account())
21afa38e
JW
7005 return;
7006
7007 memcg = page->mem_cgroup;
7008
7009 /* Readahead page, never charged */
7010 if (!memcg)
7011 return;
7012
1f47b61f
VD
7013 /*
7014 * In case the memcg owning these pages has been offlined and doesn't
7015 * have an ID allocated to it anymore, charge the closest online
7016 * ancestor for the swap instead and transfer the memory+swap charge.
7017 */
7018 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
7019 nr_entries = hpage_nr_pages(page);
7020 /* Get references for the tail pages, too */
7021 if (nr_entries > 1)
7022 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7023 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7024 nr_entries);
21afa38e 7025 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7026 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7027
7028 page->mem_cgroup = NULL;
7029
7030 if (!mem_cgroup_is_root(memcg))
d6810d73 7031 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7032
1f47b61f
VD
7033 if (memcg != swap_memcg) {
7034 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7035 page_counter_charge(&swap_memcg->memsw, nr_entries);
7036 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7037 }
7038
ce9ce665
SAS
7039 /*
7040 * Interrupts should be disabled here because the caller holds the
b93b0163 7041 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7042 * important here to have the interrupts disabled because it is the
b93b0163 7043 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7044 */
7045 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
7046 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7047 -nr_entries);
21afa38e 7048 memcg_check_events(memcg, page);
73f576c0
JW
7049
7050 if (!mem_cgroup_is_root(memcg))
d08afa14 7051 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
7052}
7053
38d8b4e6
HY
7054/**
7055 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7056 * @page: page being added to swap
7057 * @entry: swap entry to charge
7058 *
38d8b4e6 7059 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7060 *
7061 * Returns 0 on success, -ENOMEM on failure.
7062 */
7063int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7064{
38d8b4e6 7065 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7066 struct page_counter *counter;
38d8b4e6 7067 struct mem_cgroup *memcg;
37e84351
VD
7068 unsigned short oldid;
7069
7070 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7071 return 0;
7072
7073 memcg = page->mem_cgroup;
7074
7075 /* Readahead page, never charged */
7076 if (!memcg)
7077 return 0;
7078
f3a53a3a
TH
7079 if (!entry.val) {
7080 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7081 return 0;
f3a53a3a 7082 }
bb98f2c5 7083
1f47b61f
VD
7084 memcg = mem_cgroup_id_get_online(memcg);
7085
37e84351 7086 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7087 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7088 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7089 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7090 mem_cgroup_id_put(memcg);
37e84351 7091 return -ENOMEM;
1f47b61f 7092 }
37e84351 7093
38d8b4e6
HY
7094 /* Get references for the tail pages, too */
7095 if (nr_pages > 1)
7096 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7097 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7098 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7099 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7100
37e84351
VD
7101 return 0;
7102}
7103
21afa38e 7104/**
38d8b4e6 7105 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7106 * @entry: swap entry to uncharge
38d8b4e6 7107 * @nr_pages: the amount of swap space to uncharge
21afa38e 7108 */
38d8b4e6 7109void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7110{
7111 struct mem_cgroup *memcg;
7112 unsigned short id;
7113
37e84351 7114 if (!do_swap_account)
21afa38e
JW
7115 return;
7116
38d8b4e6 7117 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7118 rcu_read_lock();
adbe427b 7119 memcg = mem_cgroup_from_id(id);
21afa38e 7120 if (memcg) {
37e84351
VD
7121 if (!mem_cgroup_is_root(memcg)) {
7122 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7123 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7124 else
38d8b4e6 7125 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7126 }
c9019e9b 7127 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7128 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7129 }
7130 rcu_read_unlock();
7131}
7132
d8b38438
VD
7133long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7134{
7135 long nr_swap_pages = get_nr_swap_pages();
7136
7137 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7138 return nr_swap_pages;
7139 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7140 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7141 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7142 page_counter_read(&memcg->swap));
7143 return nr_swap_pages;
7144}
7145
5ccc5aba
VD
7146bool mem_cgroup_swap_full(struct page *page)
7147{
7148 struct mem_cgroup *memcg;
7149
7150 VM_BUG_ON_PAGE(!PageLocked(page), page);
7151
7152 if (vm_swap_full())
7153 return true;
7154 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7155 return false;
7156
7157 memcg = page->mem_cgroup;
7158 if (!memcg)
7159 return false;
7160
7161 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 7162 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
7163 return true;
7164
7165 return false;
7166}
7167
21afa38e
JW
7168/* for remember boot option*/
7169#ifdef CONFIG_MEMCG_SWAP_ENABLED
7170static int really_do_swap_account __initdata = 1;
7171#else
7172static int really_do_swap_account __initdata;
7173#endif
7174
7175static int __init enable_swap_account(char *s)
7176{
7177 if (!strcmp(s, "1"))
7178 really_do_swap_account = 1;
7179 else if (!strcmp(s, "0"))
7180 really_do_swap_account = 0;
7181 return 1;
7182}
7183__setup("swapaccount=", enable_swap_account);
7184
37e84351
VD
7185static u64 swap_current_read(struct cgroup_subsys_state *css,
7186 struct cftype *cft)
7187{
7188 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7189
7190 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7191}
7192
7193static int swap_max_show(struct seq_file *m, void *v)
7194{
677dc973
CD
7195 return seq_puts_memcg_tunable(m,
7196 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7197}
7198
7199static ssize_t swap_max_write(struct kernfs_open_file *of,
7200 char *buf, size_t nbytes, loff_t off)
7201{
7202 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7203 unsigned long max;
7204 int err;
7205
7206 buf = strstrip(buf);
7207 err = page_counter_memparse(buf, "max", &max);
7208 if (err)
7209 return err;
7210
be09102b 7211 xchg(&memcg->swap.max, max);
37e84351
VD
7212
7213 return nbytes;
7214}
7215
f3a53a3a
TH
7216static int swap_events_show(struct seq_file *m, void *v)
7217{
aa9694bb 7218 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
7219
7220 seq_printf(m, "max %lu\n",
7221 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7222 seq_printf(m, "fail %lu\n",
7223 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7224
7225 return 0;
7226}
7227
37e84351
VD
7228static struct cftype swap_files[] = {
7229 {
7230 .name = "swap.current",
7231 .flags = CFTYPE_NOT_ON_ROOT,
7232 .read_u64 = swap_current_read,
7233 },
7234 {
7235 .name = "swap.max",
7236 .flags = CFTYPE_NOT_ON_ROOT,
7237 .seq_show = swap_max_show,
7238 .write = swap_max_write,
7239 },
f3a53a3a
TH
7240 {
7241 .name = "swap.events",
7242 .flags = CFTYPE_NOT_ON_ROOT,
7243 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7244 .seq_show = swap_events_show,
7245 },
37e84351
VD
7246 { } /* terminate */
7247};
7248
21afa38e
JW
7249static struct cftype memsw_cgroup_files[] = {
7250 {
7251 .name = "memsw.usage_in_bytes",
7252 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7253 .read_u64 = mem_cgroup_read_u64,
7254 },
7255 {
7256 .name = "memsw.max_usage_in_bytes",
7257 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7258 .write = mem_cgroup_reset,
7259 .read_u64 = mem_cgroup_read_u64,
7260 },
7261 {
7262 .name = "memsw.limit_in_bytes",
7263 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7264 .write = mem_cgroup_write,
7265 .read_u64 = mem_cgroup_read_u64,
7266 },
7267 {
7268 .name = "memsw.failcnt",
7269 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7270 .write = mem_cgroup_reset,
7271 .read_u64 = mem_cgroup_read_u64,
7272 },
7273 { }, /* terminate */
7274};
7275
7276static int __init mem_cgroup_swap_init(void)
7277{
7278 if (!mem_cgroup_disabled() && really_do_swap_account) {
7279 do_swap_account = 1;
37e84351
VD
7280 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7281 swap_files));
21afa38e
JW
7282 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7283 memsw_cgroup_files));
7284 }
7285 return 0;
7286}
7287subsys_initcall(mem_cgroup_swap_init);
7288
7289#endif /* CONFIG_MEMCG_SWAP */