drm/amdgpu/powerplay/smu7: fix AVFS handling with custom powerplay table
[linux-2.6-block.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a
MK
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
ff9543fd
MN
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
b7aba698
MG
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
06b6640a
VB
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
748446bb
MG
53static unsigned long release_freepages(struct list_head *freelist)
54{
55 struct page *page, *next;
6bace090 56 unsigned long high_pfn = 0;
748446bb
MG
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 59 unsigned long pfn = page_to_pfn(page);
748446bb
MG
60 list_del(&page->lru);
61 __free_page(page);
6bace090
VB
62 if (pfn > high_pfn)
63 high_pfn = pfn;
748446bb
MG
64 }
65
6bace090 66 return high_pfn;
748446bb
MG
67}
68
4469ab98 69static void split_map_pages(struct list_head *list)
ff9543fd 70{
66c64223
JK
71 unsigned int i, order, nr_pages;
72 struct page *page, *next;
73 LIST_HEAD(tmp_list);
74
75 list_for_each_entry_safe(page, next, list, lru) {
76 list_del(&page->lru);
77
78 order = page_private(page);
79 nr_pages = 1 << order;
66c64223 80
46f24fd8 81 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
82 if (order)
83 split_page(page, order);
ff9543fd 84
66c64223
JK
85 for (i = 0; i < nr_pages; i++) {
86 list_add(&page->lru, &tmp_list);
87 page++;
88 }
ff9543fd 89 }
66c64223
JK
90
91 list_splice(&tmp_list, list);
ff9543fd
MN
92}
93
bb13ffeb 94#ifdef CONFIG_COMPACTION
24e2716f 95
bda807d4
MK
96int PageMovable(struct page *page)
97{
98 struct address_space *mapping;
99
100 VM_BUG_ON_PAGE(!PageLocked(page), page);
101 if (!__PageMovable(page))
102 return 0;
103
104 mapping = page_mapping(page);
105 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
106 return 1;
107
108 return 0;
109}
110EXPORT_SYMBOL(PageMovable);
111
112void __SetPageMovable(struct page *page, struct address_space *mapping)
113{
114 VM_BUG_ON_PAGE(!PageLocked(page), page);
115 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
116 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
117}
118EXPORT_SYMBOL(__SetPageMovable);
119
120void __ClearPageMovable(struct page *page)
121{
122 VM_BUG_ON_PAGE(!PageLocked(page), page);
123 VM_BUG_ON_PAGE(!PageMovable(page), page);
124 /*
125 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
126 * flag so that VM can catch up released page by driver after isolation.
127 * With it, VM migration doesn't try to put it back.
128 */
129 page->mapping = (void *)((unsigned long)page->mapping &
130 PAGE_MAPPING_MOVABLE);
131}
132EXPORT_SYMBOL(__ClearPageMovable);
133
24e2716f
JK
134/* Do not skip compaction more than 64 times */
135#define COMPACT_MAX_DEFER_SHIFT 6
136
137/*
138 * Compaction is deferred when compaction fails to result in a page
139 * allocation success. 1 << compact_defer_limit compactions are skipped up
140 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
141 */
142void defer_compaction(struct zone *zone, int order)
143{
144 zone->compact_considered = 0;
145 zone->compact_defer_shift++;
146
147 if (order < zone->compact_order_failed)
148 zone->compact_order_failed = order;
149
150 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
151 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
152
153 trace_mm_compaction_defer_compaction(zone, order);
154}
155
156/* Returns true if compaction should be skipped this time */
157bool compaction_deferred(struct zone *zone, int order)
158{
159 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
160
161 if (order < zone->compact_order_failed)
162 return false;
163
164 /* Avoid possible overflow */
165 if (++zone->compact_considered > defer_limit)
166 zone->compact_considered = defer_limit;
167
168 if (zone->compact_considered >= defer_limit)
169 return false;
170
171 trace_mm_compaction_deferred(zone, order);
172
173 return true;
174}
175
176/*
177 * Update defer tracking counters after successful compaction of given order,
178 * which means an allocation either succeeded (alloc_success == true) or is
179 * expected to succeed.
180 */
181void compaction_defer_reset(struct zone *zone, int order,
182 bool alloc_success)
183{
184 if (alloc_success) {
185 zone->compact_considered = 0;
186 zone->compact_defer_shift = 0;
187 }
188 if (order >= zone->compact_order_failed)
189 zone->compact_order_failed = order + 1;
190
191 trace_mm_compaction_defer_reset(zone, order);
192}
193
194/* Returns true if restarting compaction after many failures */
195bool compaction_restarting(struct zone *zone, int order)
196{
197 if (order < zone->compact_order_failed)
198 return false;
199
200 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
201 zone->compact_considered >= 1UL << zone->compact_defer_shift;
202}
203
bb13ffeb
MG
204/* Returns true if the pageblock should be scanned for pages to isolate. */
205static inline bool isolation_suitable(struct compact_control *cc,
206 struct page *page)
207{
208 if (cc->ignore_skip_hint)
209 return true;
210
211 return !get_pageblock_skip(page);
212}
213
02333641
VB
214static void reset_cached_positions(struct zone *zone)
215{
216 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
217 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 218 zone->compact_cached_free_pfn =
06b6640a 219 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
220}
221
21dc7e02 222/*
b527cfe5
VB
223 * Compound pages of >= pageblock_order should consistenly be skipped until
224 * released. It is always pointless to compact pages of such order (if they are
225 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 226 */
b527cfe5 227static bool pageblock_skip_persistent(struct page *page)
21dc7e02 228{
b527cfe5 229 if (!PageCompound(page))
21dc7e02 230 return false;
b527cfe5
VB
231
232 page = compound_head(page);
233
234 if (compound_order(page) >= pageblock_order)
235 return true;
236
237 return false;
21dc7e02
DR
238}
239
e332f741
MG
240static bool
241__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
242 bool check_target)
243{
244 struct page *page = pfn_to_online_page(pfn);
6b0868c8 245 struct page *block_page;
e332f741
MG
246 struct page *end_page;
247 unsigned long block_pfn;
248
249 if (!page)
250 return false;
251 if (zone != page_zone(page))
252 return false;
253 if (pageblock_skip_persistent(page))
254 return false;
255
256 /*
257 * If skip is already cleared do no further checking once the
258 * restart points have been set.
259 */
260 if (check_source && check_target && !get_pageblock_skip(page))
261 return true;
262
263 /*
264 * If clearing skip for the target scanner, do not select a
265 * non-movable pageblock as the starting point.
266 */
267 if (!check_source && check_target &&
268 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
269 return false;
270
6b0868c8
MG
271 /* Ensure the start of the pageblock or zone is online and valid */
272 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
273 block_pfn = max(block_pfn, zone->zone_start_pfn);
274 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
275 if (block_page) {
276 page = block_page;
277 pfn = block_pfn;
278 }
279
280 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 281 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
282 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
283 end_page = pfn_to_online_page(block_pfn);
284 if (!end_page)
285 return false;
286
e332f741
MG
287 /*
288 * Only clear the hint if a sample indicates there is either a
289 * free page or an LRU page in the block. One or other condition
290 * is necessary for the block to be a migration source/target.
291 */
e332f741
MG
292 do {
293 if (pfn_valid_within(pfn)) {
294 if (check_source && PageLRU(page)) {
295 clear_pageblock_skip(page);
296 return true;
297 }
298
299 if (check_target && PageBuddy(page)) {
300 clear_pageblock_skip(page);
301 return true;
302 }
303 }
304
305 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
306 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 307 } while (page <= end_page);
e332f741
MG
308
309 return false;
310}
311
bb13ffeb
MG
312/*
313 * This function is called to clear all cached information on pageblocks that
314 * should be skipped for page isolation when the migrate and free page scanner
315 * meet.
316 */
62997027 317static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 318{
e332f741 319 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 320 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
321 unsigned long reset_migrate = free_pfn;
322 unsigned long reset_free = migrate_pfn;
323 bool source_set = false;
324 bool free_set = false;
325
326 if (!zone->compact_blockskip_flush)
327 return;
bb13ffeb 328
62997027 329 zone->compact_blockskip_flush = false;
bb13ffeb 330
e332f741
MG
331 /*
332 * Walk the zone and update pageblock skip information. Source looks
333 * for PageLRU while target looks for PageBuddy. When the scanner
334 * is found, both PageBuddy and PageLRU are checked as the pageblock
335 * is suitable as both source and target.
336 */
337 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
338 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
339 cond_resched();
340
e332f741
MG
341 /* Update the migrate PFN */
342 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
343 migrate_pfn < reset_migrate) {
344 source_set = true;
345 reset_migrate = migrate_pfn;
346 zone->compact_init_migrate_pfn = reset_migrate;
347 zone->compact_cached_migrate_pfn[0] = reset_migrate;
348 zone->compact_cached_migrate_pfn[1] = reset_migrate;
349 }
bb13ffeb 350
e332f741
MG
351 /* Update the free PFN */
352 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
353 free_pfn > reset_free) {
354 free_set = true;
355 reset_free = free_pfn;
356 zone->compact_init_free_pfn = reset_free;
357 zone->compact_cached_free_pfn = reset_free;
358 }
bb13ffeb 359 }
02333641 360
e332f741
MG
361 /* Leave no distance if no suitable block was reset */
362 if (reset_migrate >= reset_free) {
363 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
364 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
365 zone->compact_cached_free_pfn = free_pfn;
366 }
bb13ffeb
MG
367}
368
62997027
MG
369void reset_isolation_suitable(pg_data_t *pgdat)
370{
371 int zoneid;
372
373 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
374 struct zone *zone = &pgdat->node_zones[zoneid];
375 if (!populated_zone(zone))
376 continue;
377
378 /* Only flush if a full compaction finished recently */
379 if (zone->compact_blockskip_flush)
380 __reset_isolation_suitable(zone);
381 }
382}
383
e380bebe
MG
384/*
385 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
386 * locks are not required for read/writers. Returns true if it was already set.
387 */
388static bool test_and_set_skip(struct compact_control *cc, struct page *page,
389 unsigned long pfn)
390{
391 bool skip;
392
393 /* Do no update if skip hint is being ignored */
394 if (cc->ignore_skip_hint)
395 return false;
396
397 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
398 return false;
399
400 skip = get_pageblock_skip(page);
401 if (!skip && !cc->no_set_skip_hint)
402 set_pageblock_skip(page);
403
404 return skip;
405}
406
407static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
408{
409 struct zone *zone = cc->zone;
410
411 pfn = pageblock_end_pfn(pfn);
412
413 /* Set for isolation rather than compaction */
414 if (cc->no_set_skip_hint)
415 return;
416
417 if (pfn > zone->compact_cached_migrate_pfn[0])
418 zone->compact_cached_migrate_pfn[0] = pfn;
419 if (cc->mode != MIGRATE_ASYNC &&
420 pfn > zone->compact_cached_migrate_pfn[1])
421 zone->compact_cached_migrate_pfn[1] = pfn;
422}
423
bb13ffeb
MG
424/*
425 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 426 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 427 */
c89511ab 428static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 429 struct page *page, unsigned long pfn)
bb13ffeb 430{
c89511ab 431 struct zone *zone = cc->zone;
6815bf3f 432
2583d671 433 if (cc->no_set_skip_hint)
6815bf3f
JK
434 return;
435
bb13ffeb
MG
436 if (!page)
437 return;
438
edc2ca61 439 set_pageblock_skip(page);
c89511ab 440
35979ef3 441 /* Update where async and sync compaction should restart */
e380bebe
MG
442 if (pfn < zone->compact_cached_free_pfn)
443 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
444}
445#else
446static inline bool isolation_suitable(struct compact_control *cc,
447 struct page *page)
448{
449 return true;
450}
451
b527cfe5 452static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
453{
454 return false;
455}
456
457static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 458 struct page *page, unsigned long pfn)
bb13ffeb
MG
459{
460}
e380bebe
MG
461
462static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463{
464}
465
466static bool test_and_set_skip(struct compact_control *cc, struct page *page,
467 unsigned long pfn)
468{
469 return false;
470}
bb13ffeb
MG
471#endif /* CONFIG_COMPACTION */
472
8b44d279
VB
473/*
474 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
475 * very heavily contended. For async compaction, trylock and record if the
476 * lock is contended. The lock will still be acquired but compaction will
477 * abort when the current block is finished regardless of success rate.
478 * Sync compaction acquires the lock.
8b44d279 479 *
cb2dcaf0 480 * Always returns true which makes it easier to track lock state in callers.
8b44d279 481 */
cb2dcaf0 482static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 483 struct compact_control *cc)
2a1402aa 484{
cb2dcaf0
MG
485 /* Track if the lock is contended in async mode */
486 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
487 if (spin_trylock_irqsave(lock, *flags))
488 return true;
489
490 cc->contended = true;
8b44d279 491 }
1f9efdef 492
cb2dcaf0 493 spin_lock_irqsave(lock, *flags);
8b44d279 494 return true;
2a1402aa
MG
495}
496
c67fe375
MG
497/*
498 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
499 * very heavily contended. The lock should be periodically unlocked to avoid
500 * having disabled IRQs for a long time, even when there is nobody waiting on
501 * the lock. It might also be that allowing the IRQs will result in
502 * need_resched() becoming true. If scheduling is needed, async compaction
503 * aborts. Sync compaction schedules.
504 * Either compaction type will also abort if a fatal signal is pending.
505 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 506 *
8b44d279
VB
507 * Returns true if compaction should abort due to fatal signal pending, or
508 * async compaction due to need_resched()
509 * Returns false when compaction can continue (sync compaction might have
510 * scheduled)
c67fe375 511 */
8b44d279
VB
512static bool compact_unlock_should_abort(spinlock_t *lock,
513 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 514{
8b44d279
VB
515 if (*locked) {
516 spin_unlock_irqrestore(lock, flags);
517 *locked = false;
518 }
1f9efdef 519
8b44d279 520 if (fatal_signal_pending(current)) {
c3486f53 521 cc->contended = true;
8b44d279
VB
522 return true;
523 }
c67fe375 524
cf66f070 525 cond_resched();
be976572
VB
526
527 return false;
528}
529
85aa125f 530/*
9e4be470
JM
531 * Isolate free pages onto a private freelist. If @strict is true, will abort
532 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
533 * (even though it may still end up isolating some pages).
85aa125f 534 */
f40d1e42 535static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 536 unsigned long *start_pfn,
85aa125f
MN
537 unsigned long end_pfn,
538 struct list_head *freelist,
4fca9730 539 unsigned int stride,
85aa125f 540 bool strict)
748446bb 541{
b7aba698 542 int nr_scanned = 0, total_isolated = 0;
d097a6f6 543 struct page *cursor;
b8b2d825 544 unsigned long flags = 0;
f40d1e42 545 bool locked = false;
e14c720e 546 unsigned long blockpfn = *start_pfn;
66c64223 547 unsigned int order;
748446bb 548
4fca9730
MG
549 /* Strict mode is for isolation, speed is secondary */
550 if (strict)
551 stride = 1;
552
748446bb
MG
553 cursor = pfn_to_page(blockpfn);
554
f40d1e42 555 /* Isolate free pages. */
4fca9730 556 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 557 int isolated;
748446bb
MG
558 struct page *page = cursor;
559
8b44d279
VB
560 /*
561 * Periodically drop the lock (if held) regardless of its
562 * contention, to give chance to IRQs. Abort if fatal signal
563 * pending or async compaction detects need_resched()
564 */
565 if (!(blockpfn % SWAP_CLUSTER_MAX)
566 && compact_unlock_should_abort(&cc->zone->lock, flags,
567 &locked, cc))
568 break;
569
b7aba698 570 nr_scanned++;
f40d1e42 571 if (!pfn_valid_within(blockpfn))
2af120bc
LA
572 goto isolate_fail;
573
9fcd6d2e
VB
574 /*
575 * For compound pages such as THP and hugetlbfs, we can save
576 * potentially a lot of iterations if we skip them at once.
577 * The check is racy, but we can consider only valid values
578 * and the only danger is skipping too much.
579 */
580 if (PageCompound(page)) {
21dc7e02
DR
581 const unsigned int order = compound_order(page);
582
d3c85bad 583 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
584 blockpfn += (1UL << order) - 1;
585 cursor += (1UL << order) - 1;
9fcd6d2e 586 }
9fcd6d2e
VB
587 goto isolate_fail;
588 }
589
f40d1e42 590 if (!PageBuddy(page))
2af120bc 591 goto isolate_fail;
f40d1e42
MG
592
593 /*
69b7189f
VB
594 * If we already hold the lock, we can skip some rechecking.
595 * Note that if we hold the lock now, checked_pageblock was
596 * already set in some previous iteration (or strict is true),
597 * so it is correct to skip the suitable migration target
598 * recheck as well.
f40d1e42 599 */
69b7189f 600 if (!locked) {
cb2dcaf0 601 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 602 &flags, cc);
f40d1e42 603
69b7189f
VB
604 /* Recheck this is a buddy page under lock */
605 if (!PageBuddy(page))
606 goto isolate_fail;
607 }
748446bb 608
66c64223
JK
609 /* Found a free page, will break it into order-0 pages */
610 order = page_order(page);
611 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
612 if (!isolated)
613 break;
66c64223 614 set_page_private(page, order);
a4f04f2c 615
748446bb 616 total_isolated += isolated;
a4f04f2c 617 cc->nr_freepages += isolated;
66c64223
JK
618 list_add_tail(&page->lru, freelist);
619
a4f04f2c
DR
620 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
621 blockpfn += isolated;
622 break;
748446bb 623 }
a4f04f2c
DR
624 /* Advance to the end of split page */
625 blockpfn += isolated - 1;
626 cursor += isolated - 1;
627 continue;
2af120bc
LA
628
629isolate_fail:
630 if (strict)
631 break;
632 else
633 continue;
634
748446bb
MG
635 }
636
a4f04f2c
DR
637 if (locked)
638 spin_unlock_irqrestore(&cc->zone->lock, flags);
639
9fcd6d2e
VB
640 /*
641 * There is a tiny chance that we have read bogus compound_order(),
642 * so be careful to not go outside of the pageblock.
643 */
644 if (unlikely(blockpfn > end_pfn))
645 blockpfn = end_pfn;
646
e34d85f0
JK
647 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
648 nr_scanned, total_isolated);
649
e14c720e
VB
650 /* Record how far we have got within the block */
651 *start_pfn = blockpfn;
652
f40d1e42
MG
653 /*
654 * If strict isolation is requested by CMA then check that all the
655 * pages requested were isolated. If there were any failures, 0 is
656 * returned and CMA will fail.
657 */
2af120bc 658 if (strict && blockpfn < end_pfn)
f40d1e42
MG
659 total_isolated = 0;
660
7f354a54 661 cc->total_free_scanned += nr_scanned;
397487db 662 if (total_isolated)
010fc29a 663 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
664 return total_isolated;
665}
666
85aa125f
MN
667/**
668 * isolate_freepages_range() - isolate free pages.
e8b098fc 669 * @cc: Compaction control structure.
85aa125f
MN
670 * @start_pfn: The first PFN to start isolating.
671 * @end_pfn: The one-past-last PFN.
672 *
673 * Non-free pages, invalid PFNs, or zone boundaries within the
674 * [start_pfn, end_pfn) range are considered errors, cause function to
675 * undo its actions and return zero.
676 *
677 * Otherwise, function returns one-past-the-last PFN of isolated page
678 * (which may be greater then end_pfn if end fell in a middle of
679 * a free page).
680 */
ff9543fd 681unsigned long
bb13ffeb
MG
682isolate_freepages_range(struct compact_control *cc,
683 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 684{
e1409c32 685 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
686 LIST_HEAD(freelist);
687
7d49d886 688 pfn = start_pfn;
06b6640a 689 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
690 if (block_start_pfn < cc->zone->zone_start_pfn)
691 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 692 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
693
694 for (; pfn < end_pfn; pfn += isolated,
e1409c32 695 block_start_pfn = block_end_pfn,
7d49d886 696 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
697 /* Protect pfn from changing by isolate_freepages_block */
698 unsigned long isolate_start_pfn = pfn;
85aa125f 699
85aa125f
MN
700 block_end_pfn = min(block_end_pfn, end_pfn);
701
58420016
JK
702 /*
703 * pfn could pass the block_end_pfn if isolated freepage
704 * is more than pageblock order. In this case, we adjust
705 * scanning range to right one.
706 */
707 if (pfn >= block_end_pfn) {
06b6640a
VB
708 block_start_pfn = pageblock_start_pfn(pfn);
709 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
710 block_end_pfn = min(block_end_pfn, end_pfn);
711 }
712
e1409c32
JK
713 if (!pageblock_pfn_to_page(block_start_pfn,
714 block_end_pfn, cc->zone))
7d49d886
VB
715 break;
716
e14c720e 717 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 718 block_end_pfn, &freelist, 0, true);
85aa125f
MN
719
720 /*
721 * In strict mode, isolate_freepages_block() returns 0 if
722 * there are any holes in the block (ie. invalid PFNs or
723 * non-free pages).
724 */
725 if (!isolated)
726 break;
727
728 /*
729 * If we managed to isolate pages, it is always (1 << n) *
730 * pageblock_nr_pages for some non-negative n. (Max order
731 * page may span two pageblocks).
732 */
733 }
734
66c64223 735 /* __isolate_free_page() does not map the pages */
4469ab98 736 split_map_pages(&freelist);
85aa125f
MN
737
738 if (pfn < end_pfn) {
739 /* Loop terminated early, cleanup. */
740 release_freepages(&freelist);
741 return 0;
742 }
743
744 /* We don't use freelists for anything. */
745 return pfn;
746}
747
748446bb 748/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 749static bool too_many_isolated(pg_data_t *pgdat)
748446bb 750{
bc693045 751 unsigned long active, inactive, isolated;
748446bb 752
5f438eee
AR
753 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754 node_page_state(pgdat, NR_INACTIVE_ANON);
755 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756 node_page_state(pgdat, NR_ACTIVE_ANON);
757 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 759
bc693045 760 return isolated > (inactive + active) / 2;
748446bb
MG
761}
762
2fe86e00 763/**
edc2ca61
VB
764 * isolate_migratepages_block() - isolate all migrate-able pages within
765 * a single pageblock
2fe86e00 766 * @cc: Compaction control structure.
edc2ca61
VB
767 * @low_pfn: The first PFN to isolate
768 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
769 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
770 *
771 * Isolate all pages that can be migrated from the range specified by
edc2ca61
VB
772 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
773 * Returns zero if there is a fatal signal pending, otherwise PFN of the
774 * first page that was not scanned (which may be both less, equal to or more
775 * than end_pfn).
2fe86e00 776 *
edc2ca61
VB
777 * The pages are isolated on cc->migratepages list (not required to be empty),
778 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
779 * is neither read nor updated.
748446bb 780 */
edc2ca61
VB
781static unsigned long
782isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
783 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 784{
5f438eee 785 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 786 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 787 struct lruvec *lruvec;
b8b2d825 788 unsigned long flags = 0;
2a1402aa 789 bool locked = false;
bb13ffeb 790 struct page *page = NULL, *valid_page = NULL;
e34d85f0 791 unsigned long start_pfn = low_pfn;
fdd048e1
VB
792 bool skip_on_failure = false;
793 unsigned long next_skip_pfn = 0;
e380bebe 794 bool skip_updated = false;
748446bb 795
748446bb
MG
796 /*
797 * Ensure that there are not too many pages isolated from the LRU
798 * list by either parallel reclaimers or compaction. If there are,
799 * delay for some time until fewer pages are isolated
800 */
5f438eee 801 while (unlikely(too_many_isolated(pgdat))) {
f9e35b3b 802 /* async migration should just abort */
e0b9daeb 803 if (cc->mode == MIGRATE_ASYNC)
2fe86e00 804 return 0;
f9e35b3b 805
748446bb
MG
806 congestion_wait(BLK_RW_ASYNC, HZ/10);
807
808 if (fatal_signal_pending(current))
2fe86e00 809 return 0;
748446bb
MG
810 }
811
cf66f070 812 cond_resched();
aeef4b83 813
fdd048e1
VB
814 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
815 skip_on_failure = true;
816 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
817 }
818
748446bb 819 /* Time to isolate some pages for migration */
748446bb 820 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 821
fdd048e1
VB
822 if (skip_on_failure && low_pfn >= next_skip_pfn) {
823 /*
824 * We have isolated all migration candidates in the
825 * previous order-aligned block, and did not skip it due
826 * to failure. We should migrate the pages now and
827 * hopefully succeed compaction.
828 */
829 if (nr_isolated)
830 break;
831
832 /*
833 * We failed to isolate in the previous order-aligned
834 * block. Set the new boundary to the end of the
835 * current block. Note we can't simply increase
836 * next_skip_pfn by 1 << order, as low_pfn might have
837 * been incremented by a higher number due to skipping
838 * a compound or a high-order buddy page in the
839 * previous loop iteration.
840 */
841 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
842 }
843
8b44d279
VB
844 /*
845 * Periodically drop the lock (if held) regardless of its
670105a2
MG
846 * contention, to give chance to IRQs. Abort completely if
847 * a fatal signal is pending.
8b44d279
VB
848 */
849 if (!(low_pfn % SWAP_CLUSTER_MAX)
f4b7e272 850 && compact_unlock_should_abort(&pgdat->lru_lock,
670105a2
MG
851 flags, &locked, cc)) {
852 low_pfn = 0;
853 goto fatal_pending;
854 }
c67fe375 855
748446bb 856 if (!pfn_valid_within(low_pfn))
fdd048e1 857 goto isolate_fail;
b7aba698 858 nr_scanned++;
748446bb 859
748446bb 860 page = pfn_to_page(low_pfn);
dc908600 861
e380bebe
MG
862 /*
863 * Check if the pageblock has already been marked skipped.
864 * Only the aligned PFN is checked as the caller isolates
865 * COMPACT_CLUSTER_MAX at a time so the second call must
866 * not falsely conclude that the block should be skipped.
867 */
868 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
869 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
870 low_pfn = end_pfn;
871 goto isolate_abort;
872 }
bb13ffeb 873 valid_page = page;
e380bebe 874 }
bb13ffeb 875
6c14466c 876 /*
99c0fd5e
VB
877 * Skip if free. We read page order here without zone lock
878 * which is generally unsafe, but the race window is small and
879 * the worst thing that can happen is that we skip some
880 * potential isolation targets.
6c14466c 881 */
99c0fd5e
VB
882 if (PageBuddy(page)) {
883 unsigned long freepage_order = page_order_unsafe(page);
884
885 /*
886 * Without lock, we cannot be sure that what we got is
887 * a valid page order. Consider only values in the
888 * valid order range to prevent low_pfn overflow.
889 */
890 if (freepage_order > 0 && freepage_order < MAX_ORDER)
891 low_pfn += (1UL << freepage_order) - 1;
748446bb 892 continue;
99c0fd5e 893 }
748446bb 894
bc835011 895 /*
29c0dde8
VB
896 * Regardless of being on LRU, compound pages such as THP and
897 * hugetlbfs are not to be compacted. We can potentially save
898 * a lot of iterations if we skip them at once. The check is
899 * racy, but we can consider only valid values and the only
900 * danger is skipping too much.
bc835011 901 */
29c0dde8 902 if (PageCompound(page)) {
21dc7e02 903 const unsigned int order = compound_order(page);
edc2ca61 904
d3c85bad 905 if (likely(order < MAX_ORDER))
21dc7e02 906 low_pfn += (1UL << order) - 1;
fdd048e1 907 goto isolate_fail;
2a1402aa
MG
908 }
909
bda807d4
MK
910 /*
911 * Check may be lockless but that's ok as we recheck later.
912 * It's possible to migrate LRU and non-lru movable pages.
913 * Skip any other type of page
914 */
915 if (!PageLRU(page)) {
bda807d4
MK
916 /*
917 * __PageMovable can return false positive so we need
918 * to verify it under page_lock.
919 */
920 if (unlikely(__PageMovable(page)) &&
921 !PageIsolated(page)) {
922 if (locked) {
f4b7e272 923 spin_unlock_irqrestore(&pgdat->lru_lock,
bda807d4
MK
924 flags);
925 locked = false;
926 }
927
9e5bcd61 928 if (!isolate_movable_page(page, isolate_mode))
bda807d4
MK
929 goto isolate_success;
930 }
931
fdd048e1 932 goto isolate_fail;
bda807d4 933 }
29c0dde8 934
119d6d59
DR
935 /*
936 * Migration will fail if an anonymous page is pinned in memory,
937 * so avoid taking lru_lock and isolating it unnecessarily in an
938 * admittedly racy check.
939 */
940 if (!page_mapping(page) &&
941 page_count(page) > page_mapcount(page))
fdd048e1 942 goto isolate_fail;
119d6d59 943
73e64c51
MH
944 /*
945 * Only allow to migrate anonymous pages in GFP_NOFS context
946 * because those do not depend on fs locks.
947 */
948 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
949 goto isolate_fail;
950
69b7189f
VB
951 /* If we already hold the lock, we can skip some rechecking */
952 if (!locked) {
f4b7e272 953 locked = compact_lock_irqsave(&pgdat->lru_lock,
8b44d279 954 &flags, cc);
e380bebe 955
e380bebe
MG
956 /* Try get exclusive access under lock */
957 if (!skip_updated) {
958 skip_updated = true;
959 if (test_and_set_skip(cc, page, low_pfn))
960 goto isolate_abort;
961 }
2a1402aa 962
29c0dde8 963 /* Recheck PageLRU and PageCompound under lock */
69b7189f 964 if (!PageLRU(page))
fdd048e1 965 goto isolate_fail;
29c0dde8
VB
966
967 /*
968 * Page become compound since the non-locked check,
969 * and it's on LRU. It can only be a THP so the order
970 * is safe to read and it's 0 for tail pages.
971 */
972 if (unlikely(PageCompound(page))) {
d8c6546b 973 low_pfn += compound_nr(page) - 1;
fdd048e1 974 goto isolate_fail;
69b7189f 975 }
bc835011
AA
976 }
977
f4b7e272 978 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 979
748446bb 980 /* Try isolate the page */
edc2ca61 981 if (__isolate_lru_page(page, isolate_mode) != 0)
fdd048e1 982 goto isolate_fail;
748446bb 983
29c0dde8 984 VM_BUG_ON_PAGE(PageCompound(page), page);
bc835011 985
748446bb 986 /* Successfully isolated */
fa9add64 987 del_page_from_lru_list(page, lruvec, page_lru(page));
6afcf8ef
ML
988 inc_node_page_state(page,
989 NR_ISOLATED_ANON + page_is_file_cache(page));
b6c75016
JK
990
991isolate_success:
fdd048e1 992 list_add(&page->lru, &cc->migratepages);
748446bb 993 cc->nr_migratepages++;
b7aba698 994 nr_isolated++;
748446bb 995
804d3121
MG
996 /*
997 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
998 * rescanned (e.g. dirty/writeback pages, parallel allocation)
999 * or a lock is contended. For contention, isolate quickly to
1000 * potentially remove one source of contention.
804d3121 1001 */
cb2dcaf0
MG
1002 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1003 !cc->rescan && !cc->contended) {
31b8384a 1004 ++low_pfn;
748446bb 1005 break;
31b8384a 1006 }
fdd048e1
VB
1007
1008 continue;
1009isolate_fail:
1010 if (!skip_on_failure)
1011 continue;
1012
1013 /*
1014 * We have isolated some pages, but then failed. Release them
1015 * instead of migrating, as we cannot form the cc->order buddy
1016 * page anyway.
1017 */
1018 if (nr_isolated) {
1019 if (locked) {
f4b7e272 1020 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
fdd048e1
VB
1021 locked = false;
1022 }
fdd048e1
VB
1023 putback_movable_pages(&cc->migratepages);
1024 cc->nr_migratepages = 0;
fdd048e1
VB
1025 nr_isolated = 0;
1026 }
1027
1028 if (low_pfn < next_skip_pfn) {
1029 low_pfn = next_skip_pfn - 1;
1030 /*
1031 * The check near the loop beginning would have updated
1032 * next_skip_pfn too, but this is a bit simpler.
1033 */
1034 next_skip_pfn += 1UL << cc->order;
1035 }
748446bb
MG
1036 }
1037
99c0fd5e
VB
1038 /*
1039 * The PageBuddy() check could have potentially brought us outside
1040 * the range to be scanned.
1041 */
1042 if (unlikely(low_pfn > end_pfn))
1043 low_pfn = end_pfn;
1044
e380bebe 1045isolate_abort:
c67fe375 1046 if (locked)
f4b7e272 1047 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
748446bb 1048
50b5b094 1049 /*
804d3121
MG
1050 * Updated the cached scanner pfn once the pageblock has been scanned
1051 * Pages will either be migrated in which case there is no point
1052 * scanning in the near future or migration failed in which case the
1053 * failure reason may persist. The block is marked for skipping if
1054 * there were no pages isolated in the block or if the block is
1055 * rescanned twice in a row.
50b5b094 1056 */
804d3121 1057 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1058 if (valid_page && !skip_updated)
1059 set_pageblock_skip(valid_page);
1060 update_cached_migrate(cc, low_pfn);
1061 }
bb13ffeb 1062
e34d85f0
JK
1063 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1064 nr_scanned, nr_isolated);
b7aba698 1065
670105a2 1066fatal_pending:
7f354a54 1067 cc->total_migrate_scanned += nr_scanned;
397487db 1068 if (nr_isolated)
010fc29a 1069 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1070
2fe86e00
MN
1071 return low_pfn;
1072}
1073
edc2ca61
VB
1074/**
1075 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1076 * @cc: Compaction control structure.
1077 * @start_pfn: The first PFN to start isolating.
1078 * @end_pfn: The one-past-last PFN.
1079 *
1080 * Returns zero if isolation fails fatally due to e.g. pending signal.
1081 * Otherwise, function returns one-past-the-last PFN of isolated page
1082 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1083 */
1084unsigned long
1085isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1086 unsigned long end_pfn)
1087{
e1409c32 1088 unsigned long pfn, block_start_pfn, block_end_pfn;
edc2ca61
VB
1089
1090 /* Scan block by block. First and last block may be incomplete */
1091 pfn = start_pfn;
06b6640a 1092 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1093 if (block_start_pfn < cc->zone->zone_start_pfn)
1094 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1095 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1096
1097 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1098 block_start_pfn = block_end_pfn,
edc2ca61
VB
1099 block_end_pfn += pageblock_nr_pages) {
1100
1101 block_end_pfn = min(block_end_pfn, end_pfn);
1102
e1409c32
JK
1103 if (!pageblock_pfn_to_page(block_start_pfn,
1104 block_end_pfn, cc->zone))
edc2ca61
VB
1105 continue;
1106
1107 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1108 ISOLATE_UNEVICTABLE);
1109
14af4a5e 1110 if (!pfn)
edc2ca61 1111 break;
6ea41c0c
JK
1112
1113 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1114 break;
edc2ca61 1115 }
edc2ca61
VB
1116
1117 return pfn;
1118}
1119
ff9543fd
MN
1120#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1121#ifdef CONFIG_COMPACTION
018e9a49 1122
b682debd
VB
1123static bool suitable_migration_source(struct compact_control *cc,
1124 struct page *page)
1125{
282722b0
VB
1126 int block_mt;
1127
9bebefd5
MG
1128 if (pageblock_skip_persistent(page))
1129 return false;
1130
282722b0 1131 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1132 return true;
1133
282722b0
VB
1134 block_mt = get_pageblock_migratetype(page);
1135
1136 if (cc->migratetype == MIGRATE_MOVABLE)
1137 return is_migrate_movable(block_mt);
1138 else
1139 return block_mt == cc->migratetype;
b682debd
VB
1140}
1141
018e9a49 1142/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1143static bool suitable_migration_target(struct compact_control *cc,
1144 struct page *page)
018e9a49
AM
1145{
1146 /* If the page is a large free page, then disallow migration */
1147 if (PageBuddy(page)) {
1148 /*
1149 * We are checking page_order without zone->lock taken. But
1150 * the only small danger is that we skip a potentially suitable
1151 * pageblock, so it's not worth to check order for valid range.
1152 */
1153 if (page_order_unsafe(page) >= pageblock_order)
1154 return false;
1155 }
1156
1ef36db2
YX
1157 if (cc->ignore_block_suitable)
1158 return true;
1159
018e9a49 1160 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1161 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1162 return true;
1163
1164 /* Otherwise skip the block */
1165 return false;
1166}
1167
70b44595
MG
1168static inline unsigned int
1169freelist_scan_limit(struct compact_control *cc)
1170{
dd7ef7bd
QC
1171 unsigned short shift = BITS_PER_LONG - 1;
1172
1173 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1174}
1175
f2849aa0
VB
1176/*
1177 * Test whether the free scanner has reached the same or lower pageblock than
1178 * the migration scanner, and compaction should thus terminate.
1179 */
1180static inline bool compact_scanners_met(struct compact_control *cc)
1181{
1182 return (cc->free_pfn >> pageblock_order)
1183 <= (cc->migrate_pfn >> pageblock_order);
1184}
1185
5a811889
MG
1186/*
1187 * Used when scanning for a suitable migration target which scans freelists
1188 * in reverse. Reorders the list such as the unscanned pages are scanned
1189 * first on the next iteration of the free scanner
1190 */
1191static void
1192move_freelist_head(struct list_head *freelist, struct page *freepage)
1193{
1194 LIST_HEAD(sublist);
1195
1196 if (!list_is_last(freelist, &freepage->lru)) {
1197 list_cut_before(&sublist, freelist, &freepage->lru);
1198 if (!list_empty(&sublist))
1199 list_splice_tail(&sublist, freelist);
1200 }
1201}
1202
1203/*
1204 * Similar to move_freelist_head except used by the migration scanner
1205 * when scanning forward. It's possible for these list operations to
1206 * move against each other if they search the free list exactly in
1207 * lockstep.
1208 */
70b44595
MG
1209static void
1210move_freelist_tail(struct list_head *freelist, struct page *freepage)
1211{
1212 LIST_HEAD(sublist);
1213
1214 if (!list_is_first(freelist, &freepage->lru)) {
1215 list_cut_position(&sublist, freelist, &freepage->lru);
1216 if (!list_empty(&sublist))
1217 list_splice_tail(&sublist, freelist);
1218 }
1219}
1220
5a811889
MG
1221static void
1222fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1223{
1224 unsigned long start_pfn, end_pfn;
1225 struct page *page = pfn_to_page(pfn);
1226
1227 /* Do not search around if there are enough pages already */
1228 if (cc->nr_freepages >= cc->nr_migratepages)
1229 return;
1230
1231 /* Minimise scanning during async compaction */
1232 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1233 return;
1234
1235 /* Pageblock boundaries */
1236 start_pfn = pageblock_start_pfn(pfn);
60fce36a 1237 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
5a811889
MG
1238
1239 /* Scan before */
1240 if (start_pfn != pfn) {
4fca9730 1241 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1242 if (cc->nr_freepages >= cc->nr_migratepages)
1243 return;
1244 }
1245
1246 /* Scan after */
1247 start_pfn = pfn + nr_isolated;
60fce36a 1248 if (start_pfn < end_pfn)
4fca9730 1249 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1250
1251 /* Skip this pageblock in the future as it's full or nearly full */
1252 if (cc->nr_freepages < cc->nr_migratepages)
1253 set_pageblock_skip(page);
1254}
1255
dbe2d4e4
MG
1256/* Search orders in round-robin fashion */
1257static int next_search_order(struct compact_control *cc, int order)
1258{
1259 order--;
1260 if (order < 0)
1261 order = cc->order - 1;
1262
1263 /* Search wrapped around? */
1264 if (order == cc->search_order) {
1265 cc->search_order--;
1266 if (cc->search_order < 0)
1267 cc->search_order = cc->order - 1;
1268 return -1;
1269 }
1270
1271 return order;
1272}
1273
5a811889
MG
1274static unsigned long
1275fast_isolate_freepages(struct compact_control *cc)
1276{
1277 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1278 unsigned int nr_scanned = 0;
1279 unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1280 unsigned long nr_isolated = 0;
1281 unsigned long distance;
1282 struct page *page = NULL;
1283 bool scan_start = false;
1284 int order;
1285
1286 /* Full compaction passes in a negative order */
1287 if (cc->order <= 0)
1288 return cc->free_pfn;
1289
1290 /*
1291 * If starting the scan, use a deeper search and use the highest
1292 * PFN found if a suitable one is not found.
1293 */
e332f741 1294 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1295 limit = pageblock_nr_pages >> 1;
1296 scan_start = true;
1297 }
1298
1299 /*
1300 * Preferred point is in the top quarter of the scan space but take
1301 * a pfn from the top half if the search is problematic.
1302 */
1303 distance = (cc->free_pfn - cc->migrate_pfn);
1304 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1305 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1306
1307 if (WARN_ON_ONCE(min_pfn > low_pfn))
1308 low_pfn = min_pfn;
1309
dbe2d4e4
MG
1310 /*
1311 * Search starts from the last successful isolation order or the next
1312 * order to search after a previous failure
1313 */
1314 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1315
1316 for (order = cc->search_order;
1317 !page && order >= 0;
1318 order = next_search_order(cc, order)) {
5a811889
MG
1319 struct free_area *area = &cc->zone->free_area[order];
1320 struct list_head *freelist;
1321 struct page *freepage;
1322 unsigned long flags;
1323 unsigned int order_scanned = 0;
1324
1325 if (!area->nr_free)
1326 continue;
1327
1328 spin_lock_irqsave(&cc->zone->lock, flags);
1329 freelist = &area->free_list[MIGRATE_MOVABLE];
1330 list_for_each_entry_reverse(freepage, freelist, lru) {
1331 unsigned long pfn;
1332
1333 order_scanned++;
1334 nr_scanned++;
1335 pfn = page_to_pfn(freepage);
1336
1337 if (pfn >= highest)
1338 highest = pageblock_start_pfn(pfn);
1339
1340 if (pfn >= low_pfn) {
1341 cc->fast_search_fail = 0;
dbe2d4e4 1342 cc->search_order = order;
5a811889
MG
1343 page = freepage;
1344 break;
1345 }
1346
1347 if (pfn >= min_pfn && pfn > high_pfn) {
1348 high_pfn = pfn;
1349
1350 /* Shorten the scan if a candidate is found */
1351 limit >>= 1;
1352 }
1353
1354 if (order_scanned >= limit)
1355 break;
1356 }
1357
1358 /* Use a minimum pfn if a preferred one was not found */
1359 if (!page && high_pfn) {
1360 page = pfn_to_page(high_pfn);
1361
1362 /* Update freepage for the list reorder below */
1363 freepage = page;
1364 }
1365
1366 /* Reorder to so a future search skips recent pages */
1367 move_freelist_head(freelist, freepage);
1368
1369 /* Isolate the page if available */
1370 if (page) {
1371 if (__isolate_free_page(page, order)) {
1372 set_page_private(page, order);
1373 nr_isolated = 1 << order;
1374 cc->nr_freepages += nr_isolated;
1375 list_add_tail(&page->lru, &cc->freepages);
1376 count_compact_events(COMPACTISOLATED, nr_isolated);
1377 } else {
1378 /* If isolation fails, abort the search */
5b56d996 1379 order = cc->search_order + 1;
5a811889
MG
1380 page = NULL;
1381 }
1382 }
1383
1384 spin_unlock_irqrestore(&cc->zone->lock, flags);
1385
1386 /*
1387 * Smaller scan on next order so the total scan ig related
1388 * to freelist_scan_limit.
1389 */
1390 if (order_scanned >= limit)
1391 limit = min(1U, limit >> 1);
1392 }
1393
1394 if (!page) {
1395 cc->fast_search_fail++;
1396 if (scan_start) {
1397 /*
1398 * Use the highest PFN found above min. If one was
1399 * not found, be pessemistic for direct compaction
1400 * and use the min mark.
1401 */
1402 if (highest) {
1403 page = pfn_to_page(highest);
1404 cc->free_pfn = highest;
1405 } else {
e577c8b6 1406 if (cc->direct_compaction && pfn_valid(min_pfn)) {
5a811889
MG
1407 page = pfn_to_page(min_pfn);
1408 cc->free_pfn = min_pfn;
1409 }
1410 }
1411 }
1412 }
1413
d097a6f6
MG
1414 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1415 highest -= pageblock_nr_pages;
5a811889 1416 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1417 }
5a811889
MG
1418
1419 cc->total_free_scanned += nr_scanned;
1420 if (!page)
1421 return cc->free_pfn;
1422
1423 low_pfn = page_to_pfn(page);
1424 fast_isolate_around(cc, low_pfn, nr_isolated);
1425 return low_pfn;
1426}
1427
2fe86e00 1428/*
ff9543fd
MN
1429 * Based on information in the current compact_control, find blocks
1430 * suitable for isolating free pages from and then isolate them.
2fe86e00 1431 */
edc2ca61 1432static void isolate_freepages(struct compact_control *cc)
2fe86e00 1433{
edc2ca61 1434 struct zone *zone = cc->zone;
ff9543fd 1435 struct page *page;
c96b9e50 1436 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1437 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1438 unsigned long block_end_pfn; /* end of current pageblock */
1439 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1440 struct list_head *freelist = &cc->freepages;
4fca9730 1441 unsigned int stride;
2fe86e00 1442
5a811889
MG
1443 /* Try a small search of the free lists for a candidate */
1444 isolate_start_pfn = fast_isolate_freepages(cc);
1445 if (cc->nr_freepages)
1446 goto splitmap;
1447
ff9543fd
MN
1448 /*
1449 * Initialise the free scanner. The starting point is where we last
49e068f0 1450 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1451 * zone when isolating for the first time. For looping we also need
1452 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1453 * block_start_pfn -= pageblock_nr_pages in the for loop.
1454 * For ending point, take care when isolating in last pageblock of a
1455 * a zone which ends in the middle of a pageblock.
49e068f0
VB
1456 * The low boundary is the end of the pageblock the migration scanner
1457 * is using.
ff9543fd 1458 */
e14c720e 1459 isolate_start_pfn = cc->free_pfn;
5a811889 1460 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1461 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1462 zone_end_pfn(zone));
06b6640a 1463 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1464 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1465
ff9543fd
MN
1466 /*
1467 * Isolate free pages until enough are available to migrate the
1468 * pages on cc->migratepages. We stop searching if the migrate
1469 * and free page scanners meet or enough free pages are isolated.
1470 */
f5f61a32 1471 for (; block_start_pfn >= low_pfn;
c96b9e50 1472 block_end_pfn = block_start_pfn,
e14c720e
VB
1473 block_start_pfn -= pageblock_nr_pages,
1474 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1475 unsigned long nr_isolated;
1476
f6ea3adb
DR
1477 /*
1478 * This can iterate a massively long zone without finding any
cb810ad2 1479 * suitable migration targets, so periodically check resched.
f6ea3adb 1480 */
cb810ad2 1481 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1482 cond_resched();
f6ea3adb 1483
7d49d886
VB
1484 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1485 zone);
1486 if (!page)
ff9543fd
MN
1487 continue;
1488
1489 /* Check the block is suitable for migration */
9f7e3387 1490 if (!suitable_migration_target(cc, page))
ff9543fd 1491 continue;
68e3e926 1492
bb13ffeb
MG
1493 /* If isolation recently failed, do not retry */
1494 if (!isolation_suitable(cc, page))
1495 continue;
1496
e14c720e 1497 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1498 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1499 block_end_pfn, freelist, stride, false);
ff9543fd 1500
d097a6f6
MG
1501 /* Update the skip hint if the full pageblock was scanned */
1502 if (isolate_start_pfn == block_end_pfn)
1503 update_pageblock_skip(cc, page, block_start_pfn);
1504
cb2dcaf0
MG
1505 /* Are enough freepages isolated? */
1506 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1507 if (isolate_start_pfn >= block_end_pfn) {
1508 /*
1509 * Restart at previous pageblock if more
1510 * freepages can be isolated next time.
1511 */
f5f61a32
VB
1512 isolate_start_pfn =
1513 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1514 }
be976572 1515 break;
a46cbf3b 1516 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1517 /*
a46cbf3b
DR
1518 * If isolation failed early, do not continue
1519 * needlessly.
f5f61a32 1520 */
a46cbf3b 1521 break;
f5f61a32 1522 }
4fca9730
MG
1523
1524 /* Adjust stride depending on isolation */
1525 if (nr_isolated) {
1526 stride = 1;
1527 continue;
1528 }
1529 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1530 }
1531
7ed695e0 1532 /*
f5f61a32
VB
1533 * Record where the free scanner will restart next time. Either we
1534 * broke from the loop and set isolate_start_pfn based on the last
1535 * call to isolate_freepages_block(), or we met the migration scanner
1536 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1537 */
f5f61a32 1538 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1539
1540splitmap:
1541 /* __isolate_free_page() does not map the pages */
1542 split_map_pages(freelist);
748446bb
MG
1543}
1544
1545/*
1546 * This is a migrate-callback that "allocates" freepages by taking pages
1547 * from the isolated freelists in the block we are migrating to.
1548 */
1549static struct page *compaction_alloc(struct page *migratepage,
666feb21 1550 unsigned long data)
748446bb
MG
1551{
1552 struct compact_control *cc = (struct compact_control *)data;
1553 struct page *freepage;
1554
748446bb 1555 if (list_empty(&cc->freepages)) {
cb2dcaf0 1556 isolate_freepages(cc);
748446bb
MG
1557
1558 if (list_empty(&cc->freepages))
1559 return NULL;
1560 }
1561
1562 freepage = list_entry(cc->freepages.next, struct page, lru);
1563 list_del(&freepage->lru);
1564 cc->nr_freepages--;
1565
1566 return freepage;
1567}
1568
1569/*
d53aea3d
DR
1570 * This is a migrate-callback that "frees" freepages back to the isolated
1571 * freelist. All pages on the freelist are from the same zone, so there is no
1572 * special handling needed for NUMA.
1573 */
1574static void compaction_free(struct page *page, unsigned long data)
1575{
1576 struct compact_control *cc = (struct compact_control *)data;
1577
1578 list_add(&page->lru, &cc->freepages);
1579 cc->nr_freepages++;
1580}
1581
ff9543fd
MN
1582/* possible outcome of isolate_migratepages */
1583typedef enum {
1584 ISOLATE_ABORT, /* Abort compaction now */
1585 ISOLATE_NONE, /* No pages isolated, continue scanning */
1586 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1587} isolate_migrate_t;
1588
5bbe3547
EM
1589/*
1590 * Allow userspace to control policy on scanning the unevictable LRU for
1591 * compactable pages.
1592 */
1593int sysctl_compact_unevictable_allowed __read_mostly = 1;
1594
70b44595
MG
1595static inline void
1596update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1597{
1598 if (cc->fast_start_pfn == ULONG_MAX)
1599 return;
1600
1601 if (!cc->fast_start_pfn)
1602 cc->fast_start_pfn = pfn;
1603
1604 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1605}
1606
1607static inline unsigned long
1608reinit_migrate_pfn(struct compact_control *cc)
1609{
1610 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1611 return cc->migrate_pfn;
1612
1613 cc->migrate_pfn = cc->fast_start_pfn;
1614 cc->fast_start_pfn = ULONG_MAX;
1615
1616 return cc->migrate_pfn;
1617}
1618
1619/*
1620 * Briefly search the free lists for a migration source that already has
1621 * some free pages to reduce the number of pages that need migration
1622 * before a pageblock is free.
1623 */
1624static unsigned long fast_find_migrateblock(struct compact_control *cc)
1625{
1626 unsigned int limit = freelist_scan_limit(cc);
1627 unsigned int nr_scanned = 0;
1628 unsigned long distance;
1629 unsigned long pfn = cc->migrate_pfn;
1630 unsigned long high_pfn;
1631 int order;
1632
1633 /* Skip hints are relied on to avoid repeats on the fast search */
1634 if (cc->ignore_skip_hint)
1635 return pfn;
1636
1637 /*
1638 * If the migrate_pfn is not at the start of a zone or the start
1639 * of a pageblock then assume this is a continuation of a previous
1640 * scan restarted due to COMPACT_CLUSTER_MAX.
1641 */
1642 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1643 return pfn;
1644
1645 /*
1646 * For smaller orders, just linearly scan as the number of pages
1647 * to migrate should be relatively small and does not necessarily
1648 * justify freeing up a large block for a small allocation.
1649 */
1650 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1651 return pfn;
1652
1653 /*
1654 * Only allow kcompactd and direct requests for movable pages to
1655 * quickly clear out a MOVABLE pageblock for allocation. This
1656 * reduces the risk that a large movable pageblock is freed for
1657 * an unmovable/reclaimable small allocation.
1658 */
1659 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1660 return pfn;
1661
1662 /*
1663 * When starting the migration scanner, pick any pageblock within the
1664 * first half of the search space. Otherwise try and pick a pageblock
1665 * within the first eighth to reduce the chances that a migration
1666 * target later becomes a source.
1667 */
1668 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1669 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1670 distance >>= 2;
1671 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1672
1673 for (order = cc->order - 1;
1674 order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1675 order--) {
1676 struct free_area *area = &cc->zone->free_area[order];
1677 struct list_head *freelist;
1678 unsigned long flags;
1679 struct page *freepage;
1680
1681 if (!area->nr_free)
1682 continue;
1683
1684 spin_lock_irqsave(&cc->zone->lock, flags);
1685 freelist = &area->free_list[MIGRATE_MOVABLE];
1686 list_for_each_entry(freepage, freelist, lru) {
1687 unsigned long free_pfn;
1688
1689 nr_scanned++;
1690 free_pfn = page_to_pfn(freepage);
1691 if (free_pfn < high_pfn) {
70b44595
MG
1692 /*
1693 * Avoid if skipped recently. Ideally it would
1694 * move to the tail but even safe iteration of
1695 * the list assumes an entry is deleted, not
1696 * reordered.
1697 */
1698 if (get_pageblock_skip(freepage)) {
1699 if (list_is_last(freelist, &freepage->lru))
1700 break;
1701
1702 continue;
1703 }
1704
1705 /* Reorder to so a future search skips recent pages */
1706 move_freelist_tail(freelist, freepage);
1707
e380bebe 1708 update_fast_start_pfn(cc, free_pfn);
70b44595
MG
1709 pfn = pageblock_start_pfn(free_pfn);
1710 cc->fast_search_fail = 0;
1711 set_pageblock_skip(freepage);
1712 break;
1713 }
1714
1715 if (nr_scanned >= limit) {
1716 cc->fast_search_fail++;
1717 move_freelist_tail(freelist, freepage);
1718 break;
1719 }
1720 }
1721 spin_unlock_irqrestore(&cc->zone->lock, flags);
1722 }
1723
1724 cc->total_migrate_scanned += nr_scanned;
1725
1726 /*
1727 * If fast scanning failed then use a cached entry for a page block
1728 * that had free pages as the basis for starting a linear scan.
1729 */
1730 if (pfn == cc->migrate_pfn)
1731 pfn = reinit_migrate_pfn(cc);
1732
1733 return pfn;
1734}
1735
ff9543fd 1736/*
edc2ca61
VB
1737 * Isolate all pages that can be migrated from the first suitable block,
1738 * starting at the block pointed to by the migrate scanner pfn within
1739 * compact_control.
ff9543fd 1740 */
32aaf055 1741static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1742{
e1409c32
JK
1743 unsigned long block_start_pfn;
1744 unsigned long block_end_pfn;
1745 unsigned long low_pfn;
edc2ca61
VB
1746 struct page *page;
1747 const isolate_mode_t isolate_mode =
5bbe3547 1748 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1749 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1750 bool fast_find_block;
ff9543fd 1751
edc2ca61
VB
1752 /*
1753 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1754 * initialized by compact_zone(). The first failure will use
1755 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1756 */
70b44595 1757 low_pfn = fast_find_migrateblock(cc);
06b6640a 1758 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1759 if (block_start_pfn < cc->zone->zone_start_pfn)
1760 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1761
70b44595
MG
1762 /*
1763 * fast_find_migrateblock marks a pageblock skipped so to avoid
1764 * the isolation_suitable check below, check whether the fast
1765 * search was successful.
1766 */
1767 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1768
ff9543fd 1769 /* Only scan within a pageblock boundary */
06b6640a 1770 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1771
edc2ca61
VB
1772 /*
1773 * Iterate over whole pageblocks until we find the first suitable.
1774 * Do not cross the free scanner.
1775 */
e1409c32 1776 for (; block_end_pfn <= cc->free_pfn;
70b44595 1777 fast_find_block = false,
e1409c32
JK
1778 low_pfn = block_end_pfn,
1779 block_start_pfn = block_end_pfn,
1780 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1781
edc2ca61
VB
1782 /*
1783 * This can potentially iterate a massively long zone with
1784 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1785 * need to schedule.
edc2ca61 1786 */
cb810ad2 1787 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1788 cond_resched();
ff9543fd 1789
32aaf055
PL
1790 page = pageblock_pfn_to_page(block_start_pfn,
1791 block_end_pfn, cc->zone);
7d49d886 1792 if (!page)
edc2ca61
VB
1793 continue;
1794
e380bebe
MG
1795 /*
1796 * If isolation recently failed, do not retry. Only check the
1797 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1798 * to be visited multiple times. Assume skip was checked
1799 * before making it "skip" so other compaction instances do
1800 * not scan the same block.
1801 */
1802 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1803 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1804 continue;
1805
1806 /*
9bebefd5
MG
1807 * For async compaction, also only scan in MOVABLE blocks
1808 * without huge pages. Async compaction is optimistic to see
1809 * if the minimum amount of work satisfies the allocation.
1810 * The cached PFN is updated as it's possible that all
1811 * remaining blocks between source and target are unsuitable
1812 * and the compaction scanners fail to meet.
edc2ca61 1813 */
9bebefd5
MG
1814 if (!suitable_migration_source(cc, page)) {
1815 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1816 continue;
9bebefd5 1817 }
edc2ca61
VB
1818
1819 /* Perform the isolation */
e1409c32
JK
1820 low_pfn = isolate_migratepages_block(cc, low_pfn,
1821 block_end_pfn, isolate_mode);
edc2ca61 1822
cb2dcaf0 1823 if (!low_pfn)
edc2ca61
VB
1824 return ISOLATE_ABORT;
1825
1826 /*
1827 * Either we isolated something and proceed with migration. Or
1828 * we failed and compact_zone should decide if we should
1829 * continue or not.
1830 */
1831 break;
1832 }
1833
f2849aa0
VB
1834 /* Record where migration scanner will be restarted. */
1835 cc->migrate_pfn = low_pfn;
ff9543fd 1836
edc2ca61 1837 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1838}
1839
21c527a3
YB
1840/*
1841 * order == -1 is expected when compacting via
1842 * /proc/sys/vm/compact_memory
1843 */
1844static inline bool is_via_compact_memory(int order)
1845{
1846 return order == -1;
1847}
1848
40cacbcb 1849static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 1850{
8fb74b9f 1851 unsigned int order;
d39773a0 1852 const int migratetype = cc->migratetype;
cb2dcaf0 1853 int ret;
748446bb 1854
753341a4 1855 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 1856 if (compact_scanners_met(cc)) {
55b7c4c9 1857 /* Let the next compaction start anew. */
40cacbcb 1858 reset_cached_positions(cc->zone);
55b7c4c9 1859
62997027
MG
1860 /*
1861 * Mark that the PG_migrate_skip information should be cleared
accf6242 1862 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
1863 * flag itself as the decision to be clear should be directly
1864 * based on an allocation request.
1865 */
accf6242 1866 if (cc->direct_compaction)
40cacbcb 1867 cc->zone->compact_blockskip_flush = true;
62997027 1868
c8f7de0b
MH
1869 if (cc->whole_zone)
1870 return COMPACT_COMPLETE;
1871 else
1872 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 1873 }
748446bb 1874
21c527a3 1875 if (is_via_compact_memory(cc->order))
56de7263
MG
1876 return COMPACT_CONTINUE;
1877
efe771c7
MG
1878 /*
1879 * Always finish scanning a pageblock to reduce the possibility of
1880 * fallbacks in the future. This is particularly important when
1881 * migration source is unmovable/reclaimable but it's not worth
1882 * special casing.
1883 */
1884 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1885 return COMPACT_CONTINUE;
baf6a9a1 1886
56de7263 1887 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 1888 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 1889 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 1890 struct free_area *area = &cc->zone->free_area[order];
2149cdae 1891 bool can_steal;
8fb74b9f
MG
1892
1893 /* Job done if page is free of the right migratetype */
b03641af 1894 if (!free_area_empty(area, migratetype))
cf378319 1895 return COMPACT_SUCCESS;
8fb74b9f 1896
2149cdae
JK
1897#ifdef CONFIG_CMA
1898 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1899 if (migratetype == MIGRATE_MOVABLE &&
b03641af 1900 !free_area_empty(area, MIGRATE_CMA))
cf378319 1901 return COMPACT_SUCCESS;
2149cdae
JK
1902#endif
1903 /*
1904 * Job done if allocation would steal freepages from
1905 * other migratetype buddy lists.
1906 */
1907 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
1908 true, &can_steal) != -1) {
1909
1910 /* movable pages are OK in any pageblock */
1911 if (migratetype == MIGRATE_MOVABLE)
1912 return COMPACT_SUCCESS;
1913
1914 /*
1915 * We are stealing for a non-movable allocation. Make
1916 * sure we finish compacting the current pageblock
1917 * first so it is as free as possible and we won't
1918 * have to steal another one soon. This only applies
1919 * to sync compaction, as async compaction operates
1920 * on pageblocks of the same migratetype.
1921 */
1922 if (cc->mode == MIGRATE_ASYNC ||
1923 IS_ALIGNED(cc->migrate_pfn,
1924 pageblock_nr_pages)) {
1925 return COMPACT_SUCCESS;
1926 }
1927
cb2dcaf0
MG
1928 ret = COMPACT_CONTINUE;
1929 break;
baf6a9a1 1930 }
56de7263
MG
1931 }
1932
cb2dcaf0
MG
1933 if (cc->contended || fatal_signal_pending(current))
1934 ret = COMPACT_CONTENDED;
1935
1936 return ret;
837d026d
JK
1937}
1938
40cacbcb 1939static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
1940{
1941 int ret;
1942
40cacbcb
MG
1943 ret = __compact_finished(cc);
1944 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
1945 if (ret == COMPACT_NO_SUITABLE_PAGE)
1946 ret = COMPACT_CONTINUE;
1947
1948 return ret;
748446bb
MG
1949}
1950
3e7d3449
MG
1951/*
1952 * compaction_suitable: Is this suitable to run compaction on this zone now?
1953 * Returns
1954 * COMPACT_SKIPPED - If there are too few free pages for compaction
cf378319 1955 * COMPACT_SUCCESS - If the allocation would succeed without compaction
3e7d3449
MG
1956 * COMPACT_CONTINUE - If compaction should run now
1957 */
ea7ab982 1958static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 1959 unsigned int alloc_flags,
86a294a8
MH
1960 int classzone_idx,
1961 unsigned long wmark_target)
3e7d3449 1962{
3e7d3449
MG
1963 unsigned long watermark;
1964
21c527a3 1965 if (is_via_compact_memory(order))
3957c776
MH
1966 return COMPACT_CONTINUE;
1967
a9214443 1968 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
1969 /*
1970 * If watermarks for high-order allocation are already met, there
1971 * should be no need for compaction at all.
1972 */
1973 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1974 alloc_flags))
cf378319 1975 return COMPACT_SUCCESS;
ebff3980 1976
3e7d3449 1977 /*
9861a62c 1978 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
1979 * isolate free pages for migration targets. This means that the
1980 * watermark and alloc_flags have to match, or be more pessimistic than
1981 * the check in __isolate_free_page(). We don't use the direct
1982 * compactor's alloc_flags, as they are not relevant for freepage
1983 * isolation. We however do use the direct compactor's classzone_idx to
1984 * skip over zones where lowmem reserves would prevent allocation even
1985 * if compaction succeeds.
8348faf9
VB
1986 * For costly orders, we require low watermark instead of min for
1987 * compaction to proceed to increase its chances.
d883c6cf
JK
1988 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1989 * suitable migration targets
3e7d3449 1990 */
8348faf9
VB
1991 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1992 low_wmark_pages(zone) : min_wmark_pages(zone);
1993 watermark += compact_gap(order);
86a294a8 1994 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
d883c6cf 1995 ALLOC_CMA, wmark_target))
3e7d3449
MG
1996 return COMPACT_SKIPPED;
1997
cc5c9f09
VB
1998 return COMPACT_CONTINUE;
1999}
2000
2001enum compact_result compaction_suitable(struct zone *zone, int order,
2002 unsigned int alloc_flags,
2003 int classzone_idx)
2004{
2005 enum compact_result ret;
2006 int fragindex;
2007
2008 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
2009 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2010 /*
2011 * fragmentation index determines if allocation failures are due to
2012 * low memory or external fragmentation
2013 *
ebff3980
VB
2014 * index of -1000 would imply allocations might succeed depending on
2015 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2016 * index towards 0 implies failure is due to lack of memory
2017 * index towards 1000 implies failure is due to fragmentation
2018 *
20311420
VB
2019 * Only compact if a failure would be due to fragmentation. Also
2020 * ignore fragindex for non-costly orders where the alternative to
2021 * a successful reclaim/compaction is OOM. Fragindex and the
2022 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2023 * excessive compaction for costly orders, but it should not be at the
2024 * expense of system stability.
3e7d3449 2025 */
20311420 2026 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2027 fragindex = fragmentation_index(zone, order);
2028 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2029 ret = COMPACT_NOT_SUITABLE_ZONE;
2030 }
837d026d 2031
837d026d
JK
2032 trace_mm_compaction_suitable(zone, order, ret);
2033 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2034 ret = COMPACT_SKIPPED;
2035
2036 return ret;
2037}
2038
86a294a8
MH
2039bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2040 int alloc_flags)
2041{
2042 struct zone *zone;
2043 struct zoneref *z;
2044
2045 /*
2046 * Make sure at least one zone would pass __compaction_suitable if we continue
2047 * retrying the reclaim.
2048 */
2049 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2050 ac->nodemask) {
2051 unsigned long available;
2052 enum compact_result compact_result;
2053
2054 /*
2055 * Do not consider all the reclaimable memory because we do not
2056 * want to trash just for a single high order allocation which
2057 * is even not guaranteed to appear even if __compaction_suitable
2058 * is happy about the watermark check.
2059 */
5a1c84b4 2060 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2061 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2062 compact_result = __compaction_suitable(zone, order, alloc_flags,
2063 ac_classzone_idx(ac), available);
cc5c9f09 2064 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
2065 return true;
2066 }
2067
2068 return false;
2069}
2070
5e1f0f09
MG
2071static enum compact_result
2072compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2073{
ea7ab982 2074 enum compact_result ret;
40cacbcb
MG
2075 unsigned long start_pfn = cc->zone->zone_start_pfn;
2076 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2077 unsigned long last_migrated_pfn;
e0b9daeb 2078 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2079 bool update_cached;
748446bb 2080
a94b5252
YS
2081 /*
2082 * These counters track activities during zone compaction. Initialize
2083 * them before compacting a new zone.
2084 */
2085 cc->total_migrate_scanned = 0;
2086 cc->total_free_scanned = 0;
2087 cc->nr_migratepages = 0;
2088 cc->nr_freepages = 0;
2089 INIT_LIST_HEAD(&cc->freepages);
2090 INIT_LIST_HEAD(&cc->migratepages);
2091
d39773a0 2092 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
40cacbcb 2093 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
ebff3980 2094 cc->classzone_idx);
c46649de 2095 /* Compaction is likely to fail */
cf378319 2096 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2097 return ret;
c46649de
MH
2098
2099 /* huh, compaction_suitable is returning something unexpected */
2100 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2101
d3132e4b
VB
2102 /*
2103 * Clear pageblock skip if there were failures recently and compaction
accf6242 2104 * is about to be retried after being deferred.
d3132e4b 2105 */
40cacbcb
MG
2106 if (compaction_restarting(cc->zone, cc->order))
2107 __reset_isolation_suitable(cc->zone);
d3132e4b 2108
c89511ab
MG
2109 /*
2110 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2111 * information on where the scanners should start (unless we explicitly
2112 * want to compact the whole zone), but check that it is initialised
2113 * by ensuring the values are within zone boundaries.
c89511ab 2114 */
70b44595 2115 cc->fast_start_pfn = 0;
06ed2998 2116 if (cc->whole_zone) {
c89511ab 2117 cc->migrate_pfn = start_pfn;
06ed2998
VB
2118 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2119 } else {
40cacbcb
MG
2120 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2121 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2122 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2123 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2124 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2125 }
2126 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2127 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2128 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2129 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2130 }
c8f7de0b 2131
e332f741 2132 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2133 cc->whole_zone = true;
2134 }
c8f7de0b 2135
566e54e1 2136 last_migrated_pfn = 0;
748446bb 2137
8854c55f
MG
2138 /*
2139 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2140 * the basis that some migrations will fail in ASYNC mode. However,
2141 * if the cached PFNs match and pageblocks are skipped due to having
2142 * no isolation candidates, then the sync state does not matter.
2143 * Until a pageblock with isolation candidates is found, keep the
2144 * cached PFNs in sync to avoid revisiting the same blocks.
2145 */
2146 update_cached = !sync &&
2147 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2148
16c4a097
JK
2149 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2150 cc->free_pfn, end_pfn, sync);
0eb927c0 2151
748446bb
MG
2152 migrate_prep_local();
2153
40cacbcb 2154 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2155 int err;
566e54e1 2156 unsigned long start_pfn = cc->migrate_pfn;
748446bb 2157
804d3121
MG
2158 /*
2159 * Avoid multiple rescans which can happen if a page cannot be
2160 * isolated (dirty/writeback in async mode) or if the migrated
2161 * pages are being allocated before the pageblock is cleared.
2162 * The first rescan will capture the entire pageblock for
2163 * migration. If it fails, it'll be marked skip and scanning
2164 * will proceed as normal.
2165 */
2166 cc->rescan = false;
2167 if (pageblock_start_pfn(last_migrated_pfn) ==
2168 pageblock_start_pfn(start_pfn)) {
2169 cc->rescan = true;
2170 }
2171
32aaf055 2172 switch (isolate_migratepages(cc)) {
f9e35b3b 2173 case ISOLATE_ABORT:
2d1e1041 2174 ret = COMPACT_CONTENDED;
5733c7d1 2175 putback_movable_pages(&cc->migratepages);
e64c5237 2176 cc->nr_migratepages = 0;
566e54e1 2177 last_migrated_pfn = 0;
f9e35b3b
MG
2178 goto out;
2179 case ISOLATE_NONE:
8854c55f
MG
2180 if (update_cached) {
2181 cc->zone->compact_cached_migrate_pfn[1] =
2182 cc->zone->compact_cached_migrate_pfn[0];
2183 }
2184
fdaf7f5c
VB
2185 /*
2186 * We haven't isolated and migrated anything, but
2187 * there might still be unflushed migrations from
2188 * previous cc->order aligned block.
2189 */
2190 goto check_drain;
f9e35b3b 2191 case ISOLATE_SUCCESS:
8854c55f 2192 update_cached = false;
566e54e1 2193 last_migrated_pfn = start_pfn;
f9e35b3b
MG
2194 ;
2195 }
748446bb 2196
d53aea3d 2197 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2198 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 2199 MR_COMPACTION);
748446bb 2200
f8c9301f
VB
2201 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2202 &cc->migratepages);
748446bb 2203
f8c9301f
VB
2204 /* All pages were either migrated or will be released */
2205 cc->nr_migratepages = 0;
9d502c1c 2206 if (err) {
5733c7d1 2207 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2208 /*
2209 * migrate_pages() may return -ENOMEM when scanners meet
2210 * and we want compact_finished() to detect it
2211 */
f2849aa0 2212 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2213 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2214 goto out;
2215 }
fdd048e1
VB
2216 /*
2217 * We failed to migrate at least one page in the current
2218 * order-aligned block, so skip the rest of it.
2219 */
2220 if (cc->direct_compaction &&
2221 (cc->mode == MIGRATE_ASYNC)) {
2222 cc->migrate_pfn = block_end_pfn(
2223 cc->migrate_pfn - 1, cc->order);
2224 /* Draining pcplists is useless in this case */
566e54e1 2225 last_migrated_pfn = 0;
fdd048e1 2226 }
748446bb 2227 }
fdaf7f5c 2228
fdaf7f5c
VB
2229check_drain:
2230 /*
2231 * Has the migration scanner moved away from the previous
2232 * cc->order aligned block where we migrated from? If yes,
2233 * flush the pages that were freed, so that they can merge and
2234 * compact_finished() can detect immediately if allocation
2235 * would succeed.
2236 */
566e54e1 2237 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c
VB
2238 int cpu;
2239 unsigned long current_block_start =
06b6640a 2240 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2241
566e54e1 2242 if (last_migrated_pfn < current_block_start) {
fdaf7f5c
VB
2243 cpu = get_cpu();
2244 lru_add_drain_cpu(cpu);
40cacbcb 2245 drain_local_pages(cc->zone);
fdaf7f5c
VB
2246 put_cpu();
2247 /* No more flushing until we migrate again */
566e54e1 2248 last_migrated_pfn = 0;
fdaf7f5c
VB
2249 }
2250 }
2251
5e1f0f09
MG
2252 /* Stop if a page has been captured */
2253 if (capc && capc->page) {
2254 ret = COMPACT_SUCCESS;
2255 break;
2256 }
748446bb
MG
2257 }
2258
f9e35b3b 2259out:
6bace090
VB
2260 /*
2261 * Release free pages and update where the free scanner should restart,
2262 * so we don't leave any returned pages behind in the next attempt.
2263 */
2264 if (cc->nr_freepages > 0) {
2265 unsigned long free_pfn = release_freepages(&cc->freepages);
2266
2267 cc->nr_freepages = 0;
2268 VM_BUG_ON(free_pfn == 0);
2269 /* The cached pfn is always the first in a pageblock */
06b6640a 2270 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2271 /*
2272 * Only go back, not forward. The cached pfn might have been
2273 * already reset to zone end in compact_finished()
2274 */
40cacbcb
MG
2275 if (free_pfn > cc->zone->compact_cached_free_pfn)
2276 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2277 }
748446bb 2278
7f354a54
DR
2279 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2280 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2281
16c4a097
JK
2282 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2283 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 2284
748446bb
MG
2285 return ret;
2286}
76ab0f53 2287
ea7ab982 2288static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2289 gfp_t gfp_mask, enum compact_priority prio,
5e1f0f09
MG
2290 unsigned int alloc_flags, int classzone_idx,
2291 struct page **capture)
56de7263 2292{
ea7ab982 2293 enum compact_result ret;
56de7263 2294 struct compact_control cc = {
56de7263 2295 .order = order,
dbe2d4e4 2296 .search_order = order,
6d7ce559 2297 .gfp_mask = gfp_mask,
56de7263 2298 .zone = zone,
a5508cd8
VB
2299 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2300 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980
VB
2301 .alloc_flags = alloc_flags,
2302 .classzone_idx = classzone_idx,
accf6242 2303 .direct_compaction = true,
a8e025e5 2304 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2305 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2306 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2307 };
5e1f0f09
MG
2308 struct capture_control capc = {
2309 .cc = &cc,
2310 .page = NULL,
2311 };
2312
2313 if (capture)
2314 current->capture_control = &capc;
56de7263 2315
5e1f0f09 2316 ret = compact_zone(&cc, &capc);
e64c5237
SL
2317
2318 VM_BUG_ON(!list_empty(&cc.freepages));
2319 VM_BUG_ON(!list_empty(&cc.migratepages));
2320
5e1f0f09
MG
2321 *capture = capc.page;
2322 current->capture_control = NULL;
2323
e64c5237 2324 return ret;
56de7263
MG
2325}
2326
5e771905
MG
2327int sysctl_extfrag_threshold = 500;
2328
56de7263
MG
2329/**
2330 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2331 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2332 * @order: The order of the current allocation
2333 * @alloc_flags: The allocation flags of the current allocation
2334 * @ac: The context of current allocation
112d2d29 2335 * @prio: Determines how hard direct compaction should try to succeed
56de7263
MG
2336 *
2337 * This is the main entry point for direct page compaction.
2338 */
ea7ab982 2339enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2340 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2341 enum compact_priority prio, struct page **capture)
56de7263 2342{
56de7263 2343 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2344 struct zoneref *z;
2345 struct zone *zone;
1d4746d3 2346 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2347
73e64c51
MH
2348 /*
2349 * Check if the GFP flags allow compaction - GFP_NOIO is really
2350 * tricky context because the migration might require IO
2351 */
2352 if (!may_perform_io)
53853e2d 2353 return COMPACT_SKIPPED;
56de7263 2354
a5508cd8 2355 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2356
56de7263 2357 /* Compact each zone in the list */
1a6d53a1
VB
2358 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2359 ac->nodemask) {
ea7ab982 2360 enum compact_result status;
56de7263 2361
a8e025e5
VB
2362 if (prio > MIN_COMPACT_PRIORITY
2363 && compaction_deferred(zone, order)) {
1d4746d3 2364 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2365 continue;
1d4746d3 2366 }
53853e2d 2367
a5508cd8 2368 status = compact_zone_order(zone, order, gfp_mask, prio,
5e1f0f09 2369 alloc_flags, ac_classzone_idx(ac), capture);
56de7263
MG
2370 rc = max(status, rc);
2371
7ceb009a
VB
2372 /* The allocation should succeed, stop compacting */
2373 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2374 /*
2375 * We think the allocation will succeed in this zone,
2376 * but it is not certain, hence the false. The caller
2377 * will repeat this with true if allocation indeed
2378 * succeeds in this zone.
2379 */
2380 compaction_defer_reset(zone, order, false);
1f9efdef 2381
c3486f53 2382 break;
1f9efdef
VB
2383 }
2384
a5508cd8 2385 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2386 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2387 /*
2388 * We think that allocation won't succeed in this zone
2389 * so we defer compaction there. If it ends up
2390 * succeeding after all, it will be reset.
2391 */
2392 defer_compaction(zone, order);
1f9efdef
VB
2393
2394 /*
2395 * We might have stopped compacting due to need_resched() in
2396 * async compaction, or due to a fatal signal detected. In that
c3486f53 2397 * case do not try further zones
1f9efdef 2398 */
c3486f53
VB
2399 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2400 || fatal_signal_pending(current))
2401 break;
56de7263
MG
2402 }
2403
2404 return rc;
2405}
2406
2407
76ab0f53 2408/* Compact all zones within a node */
791cae96 2409static void compact_node(int nid)
76ab0f53 2410{
791cae96 2411 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2412 int zoneid;
76ab0f53 2413 struct zone *zone;
791cae96
VB
2414 struct compact_control cc = {
2415 .order = -1,
2416 .mode = MIGRATE_SYNC,
2417 .ignore_skip_hint = true,
2418 .whole_zone = true,
73e64c51 2419 .gfp_mask = GFP_KERNEL,
791cae96
VB
2420 };
2421
76ab0f53 2422
76ab0f53 2423 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2424
2425 zone = &pgdat->node_zones[zoneid];
2426 if (!populated_zone(zone))
2427 continue;
2428
791cae96 2429 cc.zone = zone;
76ab0f53 2430
5e1f0f09 2431 compact_zone(&cc, NULL);
75469345 2432
791cae96
VB
2433 VM_BUG_ON(!list_empty(&cc.freepages));
2434 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2435 }
76ab0f53
MG
2436}
2437
2438/* Compact all nodes in the system */
7964c06d 2439static void compact_nodes(void)
76ab0f53
MG
2440{
2441 int nid;
2442
8575ec29
HD
2443 /* Flush pending updates to the LRU lists */
2444 lru_add_drain_all();
2445
76ab0f53
MG
2446 for_each_online_node(nid)
2447 compact_node(nid);
76ab0f53
MG
2448}
2449
2450/* The written value is actually unused, all memory is compacted */
2451int sysctl_compact_memory;
2452
fec4eb2c
YB
2453/*
2454 * This is the entry point for compacting all nodes via
2455 * /proc/sys/vm/compact_memory
2456 */
76ab0f53
MG
2457int sysctl_compaction_handler(struct ctl_table *table, int write,
2458 void __user *buffer, size_t *length, loff_t *ppos)
2459{
2460 if (write)
7964c06d 2461 compact_nodes();
76ab0f53
MG
2462
2463 return 0;
2464}
ed4a6d7f
MG
2465
2466#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 2467static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 2468 struct device_attribute *attr,
ed4a6d7f
MG
2469 const char *buf, size_t count)
2470{
8575ec29
HD
2471 int nid = dev->id;
2472
2473 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2474 /* Flush pending updates to the LRU lists */
2475 lru_add_drain_all();
2476
2477 compact_node(nid);
2478 }
ed4a6d7f
MG
2479
2480 return count;
2481}
0825a6f9 2482static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
ed4a6d7f
MG
2483
2484int compaction_register_node(struct node *node)
2485{
10fbcf4c 2486 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2487}
2488
2489void compaction_unregister_node(struct node *node)
2490{
10fbcf4c 2491 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2492}
2493#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2494
698b1b30
VB
2495static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2496{
172400c6 2497 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
2498}
2499
2500static bool kcompactd_node_suitable(pg_data_t *pgdat)
2501{
2502 int zoneid;
2503 struct zone *zone;
2504 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
2505
6cd9dc3e 2506 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
698b1b30
VB
2507 zone = &pgdat->node_zones[zoneid];
2508
2509 if (!populated_zone(zone))
2510 continue;
2511
2512 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2513 classzone_idx) == COMPACT_CONTINUE)
2514 return true;
2515 }
2516
2517 return false;
2518}
2519
2520static void kcompactd_do_work(pg_data_t *pgdat)
2521{
2522 /*
2523 * With no special task, compact all zones so that a page of requested
2524 * order is allocatable.
2525 */
2526 int zoneid;
2527 struct zone *zone;
2528 struct compact_control cc = {
2529 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2530 .search_order = pgdat->kcompactd_max_order,
698b1b30
VB
2531 .classzone_idx = pgdat->kcompactd_classzone_idx,
2532 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2533 .ignore_skip_hint = false,
73e64c51 2534 .gfp_mask = GFP_KERNEL,
698b1b30 2535 };
698b1b30
VB
2536 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2537 cc.classzone_idx);
7f354a54 2538 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2539
6cd9dc3e 2540 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
698b1b30
VB
2541 int status;
2542
2543 zone = &pgdat->node_zones[zoneid];
2544 if (!populated_zone(zone))
2545 continue;
2546
2547 if (compaction_deferred(zone, cc.order))
2548 continue;
2549
2550 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2551 COMPACT_CONTINUE)
2552 continue;
2553
172400c6
VB
2554 if (kthread_should_stop())
2555 return;
a94b5252
YS
2556
2557 cc.zone = zone;
5e1f0f09 2558 status = compact_zone(&cc, NULL);
698b1b30 2559
7ceb009a 2560 if (status == COMPACT_SUCCESS) {
698b1b30 2561 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2562 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2563 /*
2564 * Buddy pages may become stranded on pcps that could
2565 * otherwise coalesce on the zone's free area for
2566 * order >= cc.order. This is ratelimited by the
2567 * upcoming deferral.
2568 */
2569 drain_all_pages(zone);
2570
698b1b30
VB
2571 /*
2572 * We use sync migration mode here, so we defer like
2573 * sync direct compaction does.
2574 */
2575 defer_compaction(zone, cc.order);
2576 }
2577
7f354a54
DR
2578 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2579 cc.total_migrate_scanned);
2580 count_compact_events(KCOMPACTD_FREE_SCANNED,
2581 cc.total_free_scanned);
2582
698b1b30
VB
2583 VM_BUG_ON(!list_empty(&cc.freepages));
2584 VM_BUG_ON(!list_empty(&cc.migratepages));
2585 }
2586
2587 /*
2588 * Regardless of success, we are done until woken up next. But remember
2589 * the requested order/classzone_idx in case it was higher/tighter than
2590 * our current ones
2591 */
2592 if (pgdat->kcompactd_max_order <= cc.order)
2593 pgdat->kcompactd_max_order = 0;
2594 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2595 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2596}
2597
2598void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2599{
2600 if (!order)
2601 return;
2602
2603 if (pgdat->kcompactd_max_order < order)
2604 pgdat->kcompactd_max_order = order;
2605
2606 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2607 pgdat->kcompactd_classzone_idx = classzone_idx;
2608
6818600f
DB
2609 /*
2610 * Pairs with implicit barrier in wait_event_freezable()
2611 * such that wakeups are not missed.
2612 */
2613 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2614 return;
2615
2616 if (!kcompactd_node_suitable(pgdat))
2617 return;
2618
2619 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2620 classzone_idx);
2621 wake_up_interruptible(&pgdat->kcompactd_wait);
2622}
2623
2624/*
2625 * The background compaction daemon, started as a kernel thread
2626 * from the init process.
2627 */
2628static int kcompactd(void *p)
2629{
2630 pg_data_t *pgdat = (pg_data_t*)p;
2631 struct task_struct *tsk = current;
2632
2633 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2634
2635 if (!cpumask_empty(cpumask))
2636 set_cpus_allowed_ptr(tsk, cpumask);
2637
2638 set_freezable();
2639
2640 pgdat->kcompactd_max_order = 0;
2641 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2642
2643 while (!kthread_should_stop()) {
eb414681
JW
2644 unsigned long pflags;
2645
698b1b30
VB
2646 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2647 wait_event_freezable(pgdat->kcompactd_wait,
2648 kcompactd_work_requested(pgdat));
2649
eb414681 2650 psi_memstall_enter(&pflags);
698b1b30 2651 kcompactd_do_work(pgdat);
eb414681 2652 psi_memstall_leave(&pflags);
698b1b30
VB
2653 }
2654
2655 return 0;
2656}
2657
2658/*
2659 * This kcompactd start function will be called by init and node-hot-add.
2660 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2661 */
2662int kcompactd_run(int nid)
2663{
2664 pg_data_t *pgdat = NODE_DATA(nid);
2665 int ret = 0;
2666
2667 if (pgdat->kcompactd)
2668 return 0;
2669
2670 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2671 if (IS_ERR(pgdat->kcompactd)) {
2672 pr_err("Failed to start kcompactd on node %d\n", nid);
2673 ret = PTR_ERR(pgdat->kcompactd);
2674 pgdat->kcompactd = NULL;
2675 }
2676 return ret;
2677}
2678
2679/*
2680 * Called by memory hotplug when all memory in a node is offlined. Caller must
2681 * hold mem_hotplug_begin/end().
2682 */
2683void kcompactd_stop(int nid)
2684{
2685 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2686
2687 if (kcompactd) {
2688 kthread_stop(kcompactd);
2689 NODE_DATA(nid)->kcompactd = NULL;
2690 }
2691}
2692
2693/*
2694 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2695 * not required for correctness. So if the last cpu in a node goes
2696 * away, we get changed to run anywhere: as the first one comes back,
2697 * restore their cpu bindings.
2698 */
e46b1db2 2699static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
2700{
2701 int nid;
2702
e46b1db2
AMG
2703 for_each_node_state(nid, N_MEMORY) {
2704 pg_data_t *pgdat = NODE_DATA(nid);
2705 const struct cpumask *mask;
698b1b30 2706
e46b1db2 2707 mask = cpumask_of_node(pgdat->node_id);
698b1b30 2708
e46b1db2
AMG
2709 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2710 /* One of our CPUs online: restore mask */
2711 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 2712 }
e46b1db2 2713 return 0;
698b1b30
VB
2714}
2715
2716static int __init kcompactd_init(void)
2717{
2718 int nid;
e46b1db2
AMG
2719 int ret;
2720
2721 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2722 "mm/compaction:online",
2723 kcompactd_cpu_online, NULL);
2724 if (ret < 0) {
2725 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2726 return ret;
2727 }
698b1b30
VB
2728
2729 for_each_node_state(nid, N_MEMORY)
2730 kcompactd_run(nid);
698b1b30
VB
2731 return 0;
2732}
2733subsys_initcall(kcompactd_init)
2734
ff9543fd 2735#endif /* CONFIG_COMPACTION */