ocfs2: take inode lock when get clusters
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
ccd979bd 32
ccd979bd
MF
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
9517bac6 44#include "suballoc.h"
ccd979bd
MF
45#include "super.h"
46#include "symlink.h"
293b2f70 47#include "refcounttree.h"
9558156b 48#include "ocfs2_trace.h"
ccd979bd
MF
49
50#include "buffer_head_io.h"
24c40b32
JQ
51#include "dir.h"
52#include "namei.h"
53#include "sysfile.h"
ccd979bd
MF
54
55static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
56 struct buffer_head *bh_result, int create)
57{
58 int err = -EIO;
59 int status;
60 struct ocfs2_dinode *fe = NULL;
61 struct buffer_head *bh = NULL;
62 struct buffer_head *buffer_cache_bh = NULL;
63 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
64 void *kaddr;
65
9558156b
TM
66 trace_ocfs2_symlink_get_block(
67 (unsigned long long)OCFS2_I(inode)->ip_blkno,
68 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
69
70 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
71
72 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
73 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
74 (unsigned long long)iblock);
75 goto bail;
76 }
77
b657c95c 78 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
79 if (status < 0) {
80 mlog_errno(status);
81 goto bail;
82 }
83 fe = (struct ocfs2_dinode *) bh->b_data;
84
ccd979bd
MF
85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 le32_to_cpu(fe->i_clusters))) {
7391a294 87 err = -ENOMEM;
ccd979bd
MF
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
90 goto bail;
91 }
92
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 iblock;
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
7391a294 100 err = -ENOMEM;
ccd979bd
MF
101 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 goto bail;
103 }
104
105 /* we haven't locked out transactions, so a commit
106 * could've happened. Since we've got a reference on
107 * the bh, even if it commits while we're doing the
108 * copy, the data is still good. */
109 if (buffer_jbd(buffer_cache_bh)
110 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 111 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
112 if (!kaddr) {
113 mlog(ML_ERROR, "couldn't kmap!\n");
114 goto bail;
115 }
116 memcpy(kaddr + (bh_result->b_size * iblock),
117 buffer_cache_bh->b_data,
118 bh_result->b_size);
c4bc8dcb 119 kunmap_atomic(kaddr);
ccd979bd
MF
120 set_buffer_uptodate(bh_result);
121 }
122 brelse(buffer_cache_bh);
123 }
124
125 map_bh(bh_result, inode->i_sb,
126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128 err = 0;
129
130bail:
a81cb88b 131 brelse(bh);
ccd979bd 132
ccd979bd
MF
133 return err;
134}
135
6f70fa51
TM
136int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 struct buffer_head *bh_result, int create)
ccd979bd
MF
138{
139 int err = 0;
49cb8d2d 140 unsigned int ext_flags;
628a24f5
MF
141 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142 u64 p_blkno, count, past_eof;
25baf2da 143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 144
9558156b
TM
145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
147
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
151
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 goto bail;
156 }
157
628a24f5 158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 159 &ext_flags);
ccd979bd
MF
160 if (err) {
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
ccd979bd
MF
164 goto bail;
165 }
166
628a24f5
MF
167 if (max_blocks < count)
168 count = max_blocks;
169
25baf2da
MF
170 /*
171 * ocfs2 never allocates in this function - the only time we
172 * need to use BH_New is when we're extending i_size on a file
173 * system which doesn't support holes, in which case BH_New
ebdec241 174 * allows __block_write_begin() to zero.
c0420ad2
CL
175 *
176 * If we see this on a sparse file system, then a truncate has
177 * raced us and removed the cluster. In this case, we clear
178 * the buffers dirty and uptodate bits and let the buffer code
179 * ignore it as a hole.
25baf2da 180 */
c0420ad2
CL
181 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182 clear_buffer_dirty(bh_result);
183 clear_buffer_uptodate(bh_result);
184 goto bail;
185 }
25baf2da 186
49cb8d2d
MF
187 /* Treat the unwritten extent as a hole for zeroing purposes. */
188 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
189 map_bh(bh_result, inode->i_sb, p_blkno);
190
628a24f5
MF
191 bh_result->b_size = count << inode->i_blkbits;
192
25baf2da
MF
193 if (!ocfs2_sparse_alloc(osb)) {
194 if (p_blkno == 0) {
195 err = -EIO;
196 mlog(ML_ERROR,
197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 (unsigned long long)iblock,
199 (unsigned long long)p_blkno,
200 (unsigned long long)OCFS2_I(inode)->ip_blkno);
201 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202 dump_stack();
1f4cea37 203 goto bail;
25baf2da 204 }
25baf2da 205 }
ccd979bd 206
5693486b 207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
208
209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210 (unsigned long long)past_eof);
5693486b
JB
211 if (create && (iblock >= past_eof))
212 set_buffer_new(bh_result);
213
ccd979bd
MF
214bail:
215 if (err < 0)
216 err = -EIO;
217
ccd979bd
MF
218 return err;
219}
220
1afc32b9
MF
221int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222 struct buffer_head *di_bh)
6798d35a
MF
223{
224 void *kaddr;
d2849fb2 225 loff_t size;
6798d35a
MF
226 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227
228 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
230 (unsigned long long)OCFS2_I(inode)->ip_blkno);
231 return -EROFS;
232 }
233
234 size = i_size_read(inode);
235
236 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 237 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 238 ocfs2_error(inode->i_sb,
d2849fb2
JK
239 "Inode %llu has with inline data has bad size: %Lu",
240 (unsigned long long)OCFS2_I(inode)->ip_blkno,
241 (unsigned long long)size);
6798d35a
MF
242 return -EROFS;
243 }
244
c4bc8dcb 245 kaddr = kmap_atomic(page);
6798d35a
MF
246 if (size)
247 memcpy(kaddr, di->id2.i_data.id_data, size);
248 /* Clear the remaining part of the page */
249 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
250 flush_dcache_page(page);
c4bc8dcb 251 kunmap_atomic(kaddr);
6798d35a
MF
252
253 SetPageUptodate(page);
254
255 return 0;
256}
257
258static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259{
260 int ret;
261 struct buffer_head *di_bh = NULL;
6798d35a
MF
262
263 BUG_ON(!PageLocked(page));
86c838b0 264 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 265
b657c95c 266 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
267 if (ret) {
268 mlog_errno(ret);
269 goto out;
270 }
271
272 ret = ocfs2_read_inline_data(inode, page, di_bh);
273out:
274 unlock_page(page);
275
276 brelse(di_bh);
277 return ret;
278}
279
ccd979bd
MF
280static int ocfs2_readpage(struct file *file, struct page *page)
281{
282 struct inode *inode = page->mapping->host;
6798d35a 283 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
284 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
285 int ret, unlock = 1;
286
9558156b
TM
287 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288 (page ? page->index : 0));
ccd979bd 289
e63aecb6 290 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
291 if (ret != 0) {
292 if (ret == AOP_TRUNCATED_PAGE)
293 unlock = 0;
294 mlog_errno(ret);
295 goto out;
296 }
297
6798d35a 298 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
299 /*
300 * Unlock the page and cycle ip_alloc_sem so that we don't
301 * busyloop waiting for ip_alloc_sem to unlock
302 */
e9dfc0b2 303 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
304 unlock_page(page);
305 unlock = 0;
306 down_read(&oi->ip_alloc_sem);
307 up_read(&oi->ip_alloc_sem);
e63aecb6 308 goto out_inode_unlock;
e9dfc0b2 309 }
ccd979bd
MF
310
311 /*
312 * i_size might have just been updated as we grabed the meta lock. We
313 * might now be discovering a truncate that hit on another node.
314 * block_read_full_page->get_block freaks out if it is asked to read
315 * beyond the end of a file, so we check here. Callers
54cb8821 316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
317 * and notice that the page they just read isn't needed.
318 *
319 * XXX sys_readahead() seems to get that wrong?
320 */
321 if (start >= i_size_read(inode)) {
eebd2aa3 322 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
323 SetPageUptodate(page);
324 ret = 0;
325 goto out_alloc;
326 }
327
6798d35a
MF
328 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329 ret = ocfs2_readpage_inline(inode, page);
330 else
331 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
332 unlock = 0;
333
ccd979bd
MF
334out_alloc:
335 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
336out_inode_unlock:
337 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
338out:
339 if (unlock)
340 unlock_page(page);
ccd979bd
MF
341 return ret;
342}
343
628a24f5
MF
344/*
345 * This is used only for read-ahead. Failures or difficult to handle
346 * situations are safe to ignore.
347 *
348 * Right now, we don't bother with BH_Boundary - in-inode extent lists
349 * are quite large (243 extents on 4k blocks), so most inodes don't
350 * grow out to a tree. If need be, detecting boundary extents could
351 * trivially be added in a future version of ocfs2_get_block().
352 */
353static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354 struct list_head *pages, unsigned nr_pages)
355{
356 int ret, err = -EIO;
357 struct inode *inode = mapping->host;
358 struct ocfs2_inode_info *oi = OCFS2_I(inode);
359 loff_t start;
360 struct page *last;
361
362 /*
363 * Use the nonblocking flag for the dlm code to avoid page
364 * lock inversion, but don't bother with retrying.
365 */
366 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367 if (ret)
368 return err;
369
370 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371 ocfs2_inode_unlock(inode, 0);
372 return err;
373 }
374
375 /*
376 * Don't bother with inline-data. There isn't anything
377 * to read-ahead in that case anyway...
378 */
379 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380 goto out_unlock;
381
382 /*
383 * Check whether a remote node truncated this file - we just
384 * drop out in that case as it's not worth handling here.
385 */
386 last = list_entry(pages->prev, struct page, lru);
387 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
388 if (start >= i_size_read(inode))
389 goto out_unlock;
390
391 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
392
393out_unlock:
394 up_read(&oi->ip_alloc_sem);
395 ocfs2_inode_unlock(inode, 0);
396
397 return err;
398}
399
ccd979bd
MF
400/* Note: Because we don't support holes, our allocation has
401 * already happened (allocation writes zeros to the file data)
402 * so we don't have to worry about ordered writes in
403 * ocfs2_writepage.
404 *
405 * ->writepage is called during the process of invalidating the page cache
406 * during blocked lock processing. It can't block on any cluster locks
407 * to during block mapping. It's relying on the fact that the block
408 * mapping can't have disappeared under the dirty pages that it is
409 * being asked to write back.
410 */
411static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
412{
9558156b
TM
413 trace_ocfs2_writepage(
414 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415 page->index);
ccd979bd 416
9558156b 417 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
418}
419
ccd979bd
MF
420/* Taken from ext3. We don't necessarily need the full blown
421 * functionality yet, but IMHO it's better to cut and paste the whole
422 * thing so we can avoid introducing our own bugs (and easily pick up
423 * their fixes when they happen) --Mark */
60b11392
MF
424int walk_page_buffers( handle_t *handle,
425 struct buffer_head *head,
426 unsigned from,
427 unsigned to,
428 int *partial,
429 int (*fn)( handle_t *handle,
430 struct buffer_head *bh))
ccd979bd
MF
431{
432 struct buffer_head *bh;
433 unsigned block_start, block_end;
434 unsigned blocksize = head->b_size;
435 int err, ret = 0;
436 struct buffer_head *next;
437
438 for ( bh = head, block_start = 0;
439 ret == 0 && (bh != head || !block_start);
440 block_start = block_end, bh = next)
441 {
442 next = bh->b_this_page;
443 block_end = block_start + blocksize;
444 if (block_end <= from || block_start >= to) {
445 if (partial && !buffer_uptodate(bh))
446 *partial = 1;
447 continue;
448 }
449 err = (*fn)(handle, bh);
450 if (!ret)
451 ret = err;
452 }
453 return ret;
454}
455
ccd979bd
MF
456static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
457{
458 sector_t status;
459 u64 p_blkno = 0;
460 int err = 0;
461 struct inode *inode = mapping->host;
462
9558156b
TM
463 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464 (unsigned long long)block);
ccd979bd
MF
465
466 /* We don't need to lock journal system files, since they aren't
467 * accessed concurrently from multiple nodes.
468 */
469 if (!INODE_JOURNAL(inode)) {
e63aecb6 470 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
471 if (err) {
472 if (err != -ENOENT)
473 mlog_errno(err);
474 goto bail;
475 }
476 down_read(&OCFS2_I(inode)->ip_alloc_sem);
477 }
478
6798d35a
MF
479 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481 NULL);
ccd979bd
MF
482
483 if (!INODE_JOURNAL(inode)) {
484 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 485 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
486 }
487
488 if (err) {
489 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490 (unsigned long long)block);
491 mlog_errno(err);
492 goto bail;
493 }
494
ccd979bd
MF
495bail:
496 status = err ? 0 : p_blkno;
497
ccd979bd
MF
498 return status;
499}
500
501/*
502 * TODO: Make this into a generic get_blocks function.
503 *
504 * From do_direct_io in direct-io.c:
505 * "So what we do is to permit the ->get_blocks function to populate
506 * bh.b_size with the size of IO which is permitted at this offset and
507 * this i_blkbits."
508 *
509 * This function is called directly from get_more_blocks in direct-io.c.
510 *
511 * called like this: dio->get_blocks(dio->inode, fs_startblk,
512 * fs_count, map_bh, dio->rw == WRITE);
513 */
514static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
515 struct buffer_head *bh_result, int create)
516{
517 int ret;
49255dce
JQ
518 u32 cpos = 0;
519 int alloc_locked = 0;
4f902c37 520 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 521 unsigned int ext_flags;
184d7d20 522 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 523 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
49255dce
JQ
524 unsigned long len = bh_result->b_size;
525 unsigned int clusters_to_alloc = 0;
526
527 cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
ccd979bd 528
ccd979bd
MF
529 /* This function won't even be called if the request isn't all
530 * nicely aligned and of the right size, so there's no need
531 * for us to check any of that. */
532
25baf2da 533 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 534
ccd979bd
MF
535 /* This figures out the size of the next contiguous block, and
536 * our logical offset */
363041a5 537 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 538 &contig_blocks, &ext_flags);
ccd979bd
MF
539 if (ret) {
540 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
541 (unsigned long long)iblock);
542 ret = -EIO;
543 goto bail;
544 }
545
cbaee472
TM
546 /* We should already CoW the refcounted extent in case of create. */
547 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
548
49255dce
JQ
549 /* allocate blocks if no p_blkno is found, and create == 1 */
550 if (!p_blkno && create) {
551 ret = ocfs2_inode_lock(inode, NULL, 1);
552 if (ret < 0) {
553 mlog_errno(ret);
554 goto bail;
555 }
556
557 alloc_locked = 1;
558
559 /* fill hole, allocate blocks can't be larger than the size
560 * of the hole */
561 clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
562 if (clusters_to_alloc > contig_blocks)
563 clusters_to_alloc = contig_blocks;
564
565 /* allocate extent and insert them into the extent tree */
566 ret = ocfs2_extend_allocation(inode, cpos,
567 clusters_to_alloc, 0);
568 if (ret < 0) {
569 mlog_errno(ret);
570 goto bail;
571 }
572
573 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
574 &contig_blocks, &ext_flags);
575 if (ret < 0) {
576 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
577 (unsigned long long)iblock);
578 ret = -EIO;
579 goto bail;
580 }
581 }
582
25baf2da
MF
583 /*
584 * get_more_blocks() expects us to describe a hole by clearing
585 * the mapped bit on bh_result().
49cb8d2d
MF
586 *
587 * Consider an unwritten extent as a hole.
25baf2da 588 */
49cb8d2d 589 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 590 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 591 else
25baf2da 592 clear_buffer_mapped(bh_result);
ccd979bd
MF
593
594 /* make sure we don't map more than max_blocks blocks here as
595 that's all the kernel will handle at this point. */
596 if (max_blocks < contig_blocks)
597 contig_blocks = max_blocks;
598 bh_result->b_size = contig_blocks << blocksize_bits;
599bail:
49255dce
JQ
600 if (alloc_locked)
601 ocfs2_inode_unlock(inode, 1);
ccd979bd
MF
602 return ret;
603}
604
2bd63216 605/*
ccd979bd 606 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
607 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
608 * to protect io on one node from truncation on another.
ccd979bd
MF
609 */
610static void ocfs2_dio_end_io(struct kiocb *iocb,
611 loff_t offset,
612 ssize_t bytes,
7b7a8665 613 void *private)
ccd979bd 614{
496ad9aa 615 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 616 int level;
ccd979bd
MF
617
618 /* this io's submitter should not have unlocked this before we could */
619 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 620
df2d6f26 621 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 622 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 623
a11f7e63
MF
624 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
625 ocfs2_iocb_clear_unaligned_aio(iocb);
626
c18ceab0 627 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
628 }
629
ccd979bd 630 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
631
632 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 633 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
634}
635
03f981cf
JB
636static int ocfs2_releasepage(struct page *page, gfp_t wait)
637{
03f981cf
JB
638 if (!page_has_buffers(page))
639 return 0;
41ecc345 640 return try_to_free_buffers(page);
03f981cf
JB
641}
642
24c40b32
JQ
643static int ocfs2_is_overwrite(struct ocfs2_super *osb,
644 struct inode *inode, loff_t offset)
645{
646 int ret = 0;
647 u32 v_cpos = 0;
648 u32 p_cpos = 0;
649 unsigned int num_clusters = 0;
650 unsigned int ext_flags = 0;
651
652 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
653 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
654 &num_clusters, &ext_flags);
655 if (ret < 0) {
656 mlog_errno(ret);
657 return ret;
658 }
659
660 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
661 return 1;
662
663 return 0;
664}
665
666static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
667 struct iov_iter *iter,
668 loff_t offset)
669{
670 ssize_t ret = 0;
671 ssize_t written = 0;
672 bool orphaned = false;
673 int is_overwrite = 0;
674 struct file *file = iocb->ki_filp;
675 struct inode *inode = file_inode(file)->i_mapping->host;
676 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
677 struct buffer_head *di_bh = NULL;
678 size_t count = iter->count;
679 journal_t *journal = osb->journal->j_journal;
680 u32 zero_len;
681 int cluster_align;
682 loff_t final_size = offset + count;
683 int append_write = offset >= i_size_read(inode) ? 1 : 0;
684 unsigned int num_clusters = 0;
685 unsigned int ext_flags = 0;
686
687 {
688 u64 o = offset;
689
690 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
691 cluster_align = !zero_len;
692 }
693
694 /*
695 * when final_size > inode->i_size, inode->i_size will be
696 * updated after direct write, so add the inode to orphan
697 * dir first.
698 */
699 if (final_size > i_size_read(inode)) {
700 ret = ocfs2_add_inode_to_orphan(osb, inode);
701 if (ret < 0) {
702 mlog_errno(ret);
703 goto out;
704 }
705 orphaned = true;
706 }
707
708 if (append_write) {
7e9b1955 709 ret = ocfs2_inode_lock(inode, NULL, 1);
24c40b32
JQ
710 if (ret < 0) {
711 mlog_errno(ret);
712 goto clean_orphan;
713 }
714
715 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
716 ret = ocfs2_zero_extend(inode, di_bh, offset);
717 else
718 ret = ocfs2_extend_no_holes(inode, di_bh, offset,
719 offset);
720 if (ret < 0) {
721 mlog_errno(ret);
722 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
723 goto clean_orphan;
724 }
725
726 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
727 if (is_overwrite < 0) {
728 mlog_errno(is_overwrite);
729 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
730 goto clean_orphan;
731 }
732
733 ocfs2_inode_unlock(inode, 1);
24c40b32
JQ
734 }
735
736 written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
737 iter, offset,
738 ocfs2_direct_IO_get_blocks,
739 ocfs2_dio_end_io, NULL, 0);
740 if (unlikely(written < 0)) {
741 loff_t i_size = i_size_read(inode);
742
743 if (offset + count > i_size) {
744 ret = ocfs2_inode_lock(inode, &di_bh, 1);
745 if (ret < 0) {
746 mlog_errno(ret);
747 goto clean_orphan;
748 }
749
750 if (i_size == i_size_read(inode)) {
751 ret = ocfs2_truncate_file(inode, di_bh,
752 i_size);
753 if (ret < 0) {
754 if (ret != -ENOSPC)
755 mlog_errno(ret);
756
757 ocfs2_inode_unlock(inode, 1);
758 brelse(di_bh);
759 goto clean_orphan;
760 }
761 }
762
763 ocfs2_inode_unlock(inode, 1);
764 brelse(di_bh);
765
766 ret = jbd2_journal_force_commit(journal);
767 if (ret < 0)
768 mlog_errno(ret);
769 }
bdd86215 770 } else if (written > 0 && append_write && !is_overwrite &&
24c40b32
JQ
771 !cluster_align) {
772 u32 p_cpos = 0;
773 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
774
37a8d89a
JQ
775 ret = ocfs2_inode_lock(inode, NULL, 0);
776 if (ret < 0) {
777 mlog_errno(ret);
778 goto clean_orphan;
779 }
780
24c40b32
JQ
781 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
782 &num_clusters, &ext_flags);
783 if (ret < 0) {
784 mlog_errno(ret);
37a8d89a 785 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
786 goto clean_orphan;
787 }
788
789 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
790
791 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
792 p_cpos << (osb->s_clustersize_bits - 9),
37a8d89a 793 zero_len >> 9, GFP_NOFS, false);
24c40b32
JQ
794 if (ret < 0)
795 mlog_errno(ret);
37a8d89a
JQ
796
797 ocfs2_inode_unlock(inode, 0);
24c40b32
JQ
798 }
799
800clean_orphan:
801 if (orphaned) {
802 int tmp_ret;
803 int update_isize = written > 0 ? 1 : 0;
804 loff_t end = update_isize ? offset + written : 0;
805
806 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
807 update_isize, end);
808 if (tmp_ret < 0) {
809 ret = tmp_ret;
810 goto out;
811 }
812
813 tmp_ret = jbd2_journal_force_commit(journal);
814 if (tmp_ret < 0) {
815 ret = tmp_ret;
816 mlog_errno(tmp_ret);
817 }
818 }
819
820out:
821 if (ret >= 0)
822 ret = written;
823 return ret;
824}
825
ccd979bd
MF
826static ssize_t ocfs2_direct_IO(int rw,
827 struct kiocb *iocb,
d8d3d94b
AV
828 struct iov_iter *iter,
829 loff_t offset)
ccd979bd
MF
830{
831 struct file *file = iocb->ki_filp;
496ad9aa 832 struct inode *inode = file_inode(file)->i_mapping->host;
24c40b32
JQ
833 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
834 int full_coherency = !(osb->s_mount_opt &
835 OCFS2_MOUNT_COHERENCY_BUFFERED);
53013cba 836
6798d35a
MF
837 /*
838 * Fallback to buffered I/O if we see an inode without
839 * extents.
840 */
841 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
842 return 0;
843
24c40b32
JQ
844 /* Fallback to buffered I/O if we are appending and
845 * concurrent O_DIRECT writes are allowed.
846 */
847 if (i_size_read(inode) <= offset && !full_coherency)
b80474b4
TM
848 return 0;
849
24c40b32
JQ
850 if (rw == READ)
851 return __blockdev_direct_IO(rw, iocb, inode,
852 inode->i_sb->s_bdev,
31b14039 853 iter, offset,
c1e8d35e
TM
854 ocfs2_direct_IO_get_blocks,
855 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
856 else
857 return ocfs2_direct_IO_write(iocb, iter, offset);
ccd979bd
MF
858}
859
9517bac6
MF
860static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
861 u32 cpos,
862 unsigned int *start,
863 unsigned int *end)
864{
865 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
866
867 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
868 unsigned int cpp;
869
870 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
871
872 cluster_start = cpos % cpp;
873 cluster_start = cluster_start << osb->s_clustersize_bits;
874
875 cluster_end = cluster_start + osb->s_clustersize;
876 }
877
878 BUG_ON(cluster_start > PAGE_SIZE);
879 BUG_ON(cluster_end > PAGE_SIZE);
880
881 if (start)
882 *start = cluster_start;
883 if (end)
884 *end = cluster_end;
885}
886
887/*
888 * 'from' and 'to' are the region in the page to avoid zeroing.
889 *
890 * If pagesize > clustersize, this function will avoid zeroing outside
891 * of the cluster boundary.
892 *
893 * from == to == 0 is code for "zero the entire cluster region"
894 */
895static void ocfs2_clear_page_regions(struct page *page,
896 struct ocfs2_super *osb, u32 cpos,
897 unsigned from, unsigned to)
898{
899 void *kaddr;
900 unsigned int cluster_start, cluster_end;
901
902 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
903
c4bc8dcb 904 kaddr = kmap_atomic(page);
9517bac6
MF
905
906 if (from || to) {
907 if (from > cluster_start)
908 memset(kaddr + cluster_start, 0, from - cluster_start);
909 if (to < cluster_end)
910 memset(kaddr + to, 0, cluster_end - to);
911 } else {
912 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
913 }
914
c4bc8dcb 915 kunmap_atomic(kaddr);
9517bac6
MF
916}
917
4e9563fd
MF
918/*
919 * Nonsparse file systems fully allocate before we get to the write
920 * code. This prevents ocfs2_write() from tagging the write as an
921 * allocating one, which means ocfs2_map_page_blocks() might try to
922 * read-in the blocks at the tail of our file. Avoid reading them by
923 * testing i_size against each block offset.
924 */
925static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
926 unsigned int block_start)
927{
928 u64 offset = page_offset(page) + block_start;
929
930 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
931 return 1;
932
933 if (i_size_read(inode) > offset)
934 return 1;
935
936 return 0;
937}
938
9517bac6 939/*
ebdec241 940 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
941 * mapping by now though, and the entire write will be allocating or
942 * it won't, so not much need to use BH_New.
943 *
944 * This will also skip zeroing, which is handled externally.
945 */
60b11392
MF
946int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
947 struct inode *inode, unsigned int from,
948 unsigned int to, int new)
9517bac6
MF
949{
950 int ret = 0;
951 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
952 unsigned int block_end, block_start;
953 unsigned int bsize = 1 << inode->i_blkbits;
954
955 if (!page_has_buffers(page))
956 create_empty_buffers(page, bsize, 0);
957
958 head = page_buffers(page);
959 for (bh = head, block_start = 0; bh != head || !block_start;
960 bh = bh->b_this_page, block_start += bsize) {
961 block_end = block_start + bsize;
962
3a307ffc
MF
963 clear_buffer_new(bh);
964
9517bac6
MF
965 /*
966 * Ignore blocks outside of our i/o range -
967 * they may belong to unallocated clusters.
968 */
60b11392 969 if (block_start >= to || block_end <= from) {
9517bac6
MF
970 if (PageUptodate(page))
971 set_buffer_uptodate(bh);
972 continue;
973 }
974
975 /*
976 * For an allocating write with cluster size >= page
977 * size, we always write the entire page.
978 */
3a307ffc
MF
979 if (new)
980 set_buffer_new(bh);
9517bac6
MF
981
982 if (!buffer_mapped(bh)) {
983 map_bh(bh, inode->i_sb, *p_blkno);
984 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
985 }
986
987 if (PageUptodate(page)) {
988 if (!buffer_uptodate(bh))
989 set_buffer_uptodate(bh);
990 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 991 !buffer_new(bh) &&
4e9563fd 992 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 993 (block_start < from || block_end > to)) {
9517bac6
MF
994 ll_rw_block(READ, 1, &bh);
995 *wait_bh++=bh;
996 }
997
998 *p_blkno = *p_blkno + 1;
999 }
1000
1001 /*
1002 * If we issued read requests - let them complete.
1003 */
1004 while(wait_bh > wait) {
1005 wait_on_buffer(*--wait_bh);
1006 if (!buffer_uptodate(*wait_bh))
1007 ret = -EIO;
1008 }
1009
1010 if (ret == 0 || !new)
1011 return ret;
1012
1013 /*
1014 * If we get -EIO above, zero out any newly allocated blocks
1015 * to avoid exposing stale data.
1016 */
1017 bh = head;
1018 block_start = 0;
1019 do {
9517bac6
MF
1020 block_end = block_start + bsize;
1021 if (block_end <= from)
1022 goto next_bh;
1023 if (block_start >= to)
1024 break;
1025
eebd2aa3 1026 zero_user(page, block_start, bh->b_size);
9517bac6
MF
1027 set_buffer_uptodate(bh);
1028 mark_buffer_dirty(bh);
1029
1030next_bh:
1031 block_start = block_end;
1032 bh = bh->b_this_page;
1033 } while (bh != head);
1034
1035 return ret;
1036}
1037
3a307ffc
MF
1038#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1039#define OCFS2_MAX_CTXT_PAGES 1
1040#else
1041#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1042#endif
1043
1044#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1045
6af67d82 1046/*
3a307ffc 1047 * Describe the state of a single cluster to be written to.
6af67d82 1048 */
3a307ffc
MF
1049struct ocfs2_write_cluster_desc {
1050 u32 c_cpos;
1051 u32 c_phys;
1052 /*
1053 * Give this a unique field because c_phys eventually gets
1054 * filled.
1055 */
1056 unsigned c_new;
b27b7cbc 1057 unsigned c_unwritten;
e7432675 1058 unsigned c_needs_zero;
3a307ffc 1059};
6af67d82 1060
3a307ffc
MF
1061struct ocfs2_write_ctxt {
1062 /* Logical cluster position / len of write */
1063 u32 w_cpos;
1064 u32 w_clen;
6af67d82 1065
e7432675
SM
1066 /* First cluster allocated in a nonsparse extend */
1067 u32 w_first_new_cpos;
1068
3a307ffc 1069 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 1070
3a307ffc
MF
1071 /*
1072 * This is true if page_size > cluster_size.
1073 *
1074 * It triggers a set of special cases during write which might
1075 * have to deal with allocating writes to partial pages.
1076 */
1077 unsigned int w_large_pages;
6af67d82 1078
3a307ffc
MF
1079 /*
1080 * Pages involved in this write.
1081 *
1082 * w_target_page is the page being written to by the user.
1083 *
1084 * w_pages is an array of pages which always contains
1085 * w_target_page, and in the case of an allocating write with
1086 * page_size < cluster size, it will contain zero'd and mapped
1087 * pages adjacent to w_target_page which need to be written
1088 * out in so that future reads from that region will get
1089 * zero's.
1090 */
3a307ffc 1091 unsigned int w_num_pages;
83fd9c7f 1092 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 1093 struct page *w_target_page;
eeb47d12 1094
5cffff9e
WW
1095 /*
1096 * w_target_locked is used for page_mkwrite path indicating no unlocking
1097 * against w_target_page in ocfs2_write_end_nolock.
1098 */
1099 unsigned int w_target_locked:1;
1100
3a307ffc
MF
1101 /*
1102 * ocfs2_write_end() uses this to know what the real range to
1103 * write in the target should be.
1104 */
1105 unsigned int w_target_from;
1106 unsigned int w_target_to;
1107
1108 /*
1109 * We could use journal_current_handle() but this is cleaner,
1110 * IMHO -Mark
1111 */
1112 handle_t *w_handle;
1113
1114 struct buffer_head *w_di_bh;
b27b7cbc
MF
1115
1116 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
1117};
1118
1d410a6e 1119void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
1120{
1121 int i;
1122
1d410a6e
MF
1123 for(i = 0; i < num_pages; i++) {
1124 if (pages[i]) {
1125 unlock_page(pages[i]);
1126 mark_page_accessed(pages[i]);
1127 page_cache_release(pages[i]);
1128 }
6af67d82 1129 }
1d410a6e
MF
1130}
1131
136f49b9 1132static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 1133{
5cffff9e
WW
1134 int i;
1135
1136 /*
1137 * w_target_locked is only set to true in the page_mkwrite() case.
1138 * The intent is to allow us to lock the target page from write_begin()
1139 * to write_end(). The caller must hold a ref on w_target_page.
1140 */
1141 if (wc->w_target_locked) {
1142 BUG_ON(!wc->w_target_page);
1143 for (i = 0; i < wc->w_num_pages; i++) {
1144 if (wc->w_target_page == wc->w_pages[i]) {
1145 wc->w_pages[i] = NULL;
1146 break;
1147 }
1148 }
1149 mark_page_accessed(wc->w_target_page);
1150 page_cache_release(wc->w_target_page);
1151 }
1d410a6e 1152 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 1153}
6af67d82 1154
136f49b9
JB
1155static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1156{
1157 ocfs2_unlock_pages(wc);
3a307ffc
MF
1158 brelse(wc->w_di_bh);
1159 kfree(wc);
1160}
1161
1162static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1163 struct ocfs2_super *osb, loff_t pos,
607d44aa 1164 unsigned len, struct buffer_head *di_bh)
3a307ffc 1165{
30b8548f 1166 u32 cend;
3a307ffc
MF
1167 struct ocfs2_write_ctxt *wc;
1168
1169 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1170 if (!wc)
1171 return -ENOMEM;
6af67d82 1172
3a307ffc 1173 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 1174 wc->w_first_new_cpos = UINT_MAX;
30b8548f 1175 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1176 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1177 get_bh(di_bh);
1178 wc->w_di_bh = di_bh;
6af67d82 1179
3a307ffc
MF
1180 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1181 wc->w_large_pages = 1;
1182 else
1183 wc->w_large_pages = 0;
1184
b27b7cbc
MF
1185 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1186
3a307ffc 1187 *wcp = wc;
6af67d82 1188
3a307ffc 1189 return 0;
6af67d82
MF
1190}
1191
9517bac6 1192/*
3a307ffc
MF
1193 * If a page has any new buffers, zero them out here, and mark them uptodate
1194 * and dirty so they'll be written out (in order to prevent uninitialised
1195 * block data from leaking). And clear the new bit.
9517bac6 1196 */
3a307ffc 1197static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1198{
3a307ffc
MF
1199 unsigned int block_start, block_end;
1200 struct buffer_head *head, *bh;
9517bac6 1201
3a307ffc
MF
1202 BUG_ON(!PageLocked(page));
1203 if (!page_has_buffers(page))
1204 return;
9517bac6 1205
3a307ffc
MF
1206 bh = head = page_buffers(page);
1207 block_start = 0;
1208 do {
1209 block_end = block_start + bh->b_size;
1210
1211 if (buffer_new(bh)) {
1212 if (block_end > from && block_start < to) {
1213 if (!PageUptodate(page)) {
1214 unsigned start, end;
3a307ffc
MF
1215
1216 start = max(from, block_start);
1217 end = min(to, block_end);
1218
eebd2aa3 1219 zero_user_segment(page, start, end);
3a307ffc
MF
1220 set_buffer_uptodate(bh);
1221 }
1222
1223 clear_buffer_new(bh);
1224 mark_buffer_dirty(bh);
1225 }
1226 }
9517bac6 1227
3a307ffc
MF
1228 block_start = block_end;
1229 bh = bh->b_this_page;
1230 } while (bh != head);
1231}
1232
1233/*
1234 * Only called when we have a failure during allocating write to write
1235 * zero's to the newly allocated region.
1236 */
1237static void ocfs2_write_failure(struct inode *inode,
1238 struct ocfs2_write_ctxt *wc,
1239 loff_t user_pos, unsigned user_len)
1240{
1241 int i;
5c26a7b7
MF
1242 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1243 to = user_pos + user_len;
3a307ffc
MF
1244 struct page *tmppage;
1245
5c26a7b7 1246 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1247
3a307ffc
MF
1248 for(i = 0; i < wc->w_num_pages; i++) {
1249 tmppage = wc->w_pages[i];
9517bac6 1250
961cecbe 1251 if (page_has_buffers(tmppage)) {
53ef99ca 1252 if (ocfs2_should_order_data(inode))
2b4e30fb 1253 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1254
1255 block_commit_write(tmppage, from, to);
1256 }
9517bac6 1257 }
9517bac6
MF
1258}
1259
3a307ffc
MF
1260static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1261 struct ocfs2_write_ctxt *wc,
1262 struct page *page, u32 cpos,
1263 loff_t user_pos, unsigned user_len,
1264 int new)
9517bac6 1265{
3a307ffc
MF
1266 int ret;
1267 unsigned int map_from = 0, map_to = 0;
9517bac6 1268 unsigned int cluster_start, cluster_end;
3a307ffc 1269 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1270
3a307ffc 1271 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1272 &cluster_start, &cluster_end);
1273
272b62c1
GR
1274 /* treat the write as new if the a hole/lseek spanned across
1275 * the page boundary.
1276 */
1277 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1278 (page_offset(page) <= user_pos));
1279
3a307ffc
MF
1280 if (page == wc->w_target_page) {
1281 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1282 map_to = map_from + user_len;
1283
1284 if (new)
1285 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1286 cluster_start, cluster_end,
1287 new);
1288 else
1289 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1290 map_from, map_to, new);
1291 if (ret) {
9517bac6
MF
1292 mlog_errno(ret);
1293 goto out;
1294 }
1295
3a307ffc
MF
1296 user_data_from = map_from;
1297 user_data_to = map_to;
9517bac6 1298 if (new) {
3a307ffc
MF
1299 map_from = cluster_start;
1300 map_to = cluster_end;
9517bac6
MF
1301 }
1302 } else {
1303 /*
1304 * If we haven't allocated the new page yet, we
1305 * shouldn't be writing it out without copying user
1306 * data. This is likely a math error from the caller.
1307 */
1308 BUG_ON(!new);
1309
3a307ffc
MF
1310 map_from = cluster_start;
1311 map_to = cluster_end;
9517bac6
MF
1312
1313 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1314 cluster_start, cluster_end, new);
9517bac6
MF
1315 if (ret) {
1316 mlog_errno(ret);
1317 goto out;
1318 }
1319 }
1320
1321 /*
1322 * Parts of newly allocated pages need to be zero'd.
1323 *
1324 * Above, we have also rewritten 'to' and 'from' - as far as
1325 * the rest of the function is concerned, the entire cluster
1326 * range inside of a page needs to be written.
1327 *
1328 * We can skip this if the page is up to date - it's already
1329 * been zero'd from being read in as a hole.
1330 */
1331 if (new && !PageUptodate(page))
1332 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1333 cpos, user_data_from, user_data_to);
9517bac6
MF
1334
1335 flush_dcache_page(page);
1336
9517bac6 1337out:
3a307ffc 1338 return ret;
9517bac6
MF
1339}
1340
1341/*
3a307ffc 1342 * This function will only grab one clusters worth of pages.
9517bac6 1343 */
3a307ffc
MF
1344static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1345 struct ocfs2_write_ctxt *wc,
693c241a
JB
1346 u32 cpos, loff_t user_pos,
1347 unsigned user_len, int new,
7307de80 1348 struct page *mmap_page)
9517bac6 1349{
3a307ffc 1350 int ret = 0, i;
693c241a 1351 unsigned long start, target_index, end_index, index;
9517bac6 1352 struct inode *inode = mapping->host;
693c241a 1353 loff_t last_byte;
9517bac6 1354
3a307ffc 1355 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1356
1357 /*
1358 * Figure out how many pages we'll be manipulating here. For
60b11392 1359 * non allocating write, we just change the one
693c241a
JB
1360 * page. Otherwise, we'll need a whole clusters worth. If we're
1361 * writing past i_size, we only need enough pages to cover the
1362 * last page of the write.
9517bac6 1363 */
9517bac6 1364 if (new) {
3a307ffc
MF
1365 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1366 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1367 /*
1368 * We need the index *past* the last page we could possibly
1369 * touch. This is the page past the end of the write or
1370 * i_size, whichever is greater.
1371 */
1372 last_byte = max(user_pos + user_len, i_size_read(inode));
1373 BUG_ON(last_byte < 1);
1374 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1375 if ((start + wc->w_num_pages) > end_index)
1376 wc->w_num_pages = end_index - start;
9517bac6 1377 } else {
3a307ffc
MF
1378 wc->w_num_pages = 1;
1379 start = target_index;
9517bac6
MF
1380 }
1381
3a307ffc 1382 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1383 index = start + i;
1384
7307de80
MF
1385 if (index == target_index && mmap_page) {
1386 /*
1387 * ocfs2_pagemkwrite() is a little different
1388 * and wants us to directly use the page
1389 * passed in.
1390 */
1391 lock_page(mmap_page);
1392
5cffff9e 1393 /* Exit and let the caller retry */
7307de80 1394 if (mmap_page->mapping != mapping) {
5cffff9e 1395 WARN_ON(mmap_page->mapping);
7307de80 1396 unlock_page(mmap_page);
5cffff9e 1397 ret = -EAGAIN;
7307de80
MF
1398 goto out;
1399 }
1400
1401 page_cache_get(mmap_page);
1402 wc->w_pages[i] = mmap_page;
5cffff9e 1403 wc->w_target_locked = true;
7307de80
MF
1404 } else {
1405 wc->w_pages[i] = find_or_create_page(mapping, index,
1406 GFP_NOFS);
1407 if (!wc->w_pages[i]) {
1408 ret = -ENOMEM;
1409 mlog_errno(ret);
1410 goto out;
1411 }
9517bac6 1412 }
1269529b 1413 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1414
1415 if (index == target_index)
1416 wc->w_target_page = wc->w_pages[i];
9517bac6 1417 }
3a307ffc 1418out:
5cffff9e
WW
1419 if (ret)
1420 wc->w_target_locked = false;
3a307ffc
MF
1421 return ret;
1422}
1423
1424/*
1425 * Prepare a single cluster for write one cluster into the file.
1426 */
1427static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1428 u32 phys, unsigned int unwritten,
e7432675 1429 unsigned int should_zero,
b27b7cbc 1430 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1431 struct ocfs2_alloc_context *meta_ac,
1432 struct ocfs2_write_ctxt *wc, u32 cpos,
1433 loff_t user_pos, unsigned user_len)
1434{
e7432675 1435 int ret, i, new;
3a307ffc
MF
1436 u64 v_blkno, p_blkno;
1437 struct inode *inode = mapping->host;
f99b9b7c 1438 struct ocfs2_extent_tree et;
3a307ffc
MF
1439
1440 new = phys == 0 ? 1 : 0;
9517bac6 1441 if (new) {
3a307ffc
MF
1442 u32 tmp_pos;
1443
9517bac6
MF
1444 /*
1445 * This is safe to call with the page locks - it won't take
1446 * any additional semaphores or cluster locks.
1447 */
3a307ffc 1448 tmp_pos = cpos;
0eb8d47e
TM
1449 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1450 &tmp_pos, 1, 0, wc->w_di_bh,
1451 wc->w_handle, data_ac,
1452 meta_ac, NULL);
9517bac6
MF
1453 /*
1454 * This shouldn't happen because we must have already
1455 * calculated the correct meta data allocation required. The
1456 * internal tree allocation code should know how to increase
1457 * transaction credits itself.
1458 *
1459 * If need be, we could handle -EAGAIN for a
1460 * RESTART_TRANS here.
1461 */
1462 mlog_bug_on_msg(ret == -EAGAIN,
1463 "Inode %llu: EAGAIN return during allocation.\n",
1464 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1465 if (ret < 0) {
1466 mlog_errno(ret);
1467 goto out;
1468 }
b27b7cbc 1469 } else if (unwritten) {
5e404e9e
JB
1470 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1471 wc->w_di_bh);
f99b9b7c 1472 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1473 wc->w_handle, cpos, 1, phys,
f99b9b7c 1474 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1475 if (ret < 0) {
1476 mlog_errno(ret);
1477 goto out;
1478 }
1479 }
3a307ffc 1480
b27b7cbc 1481 if (should_zero)
3a307ffc 1482 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1483 else
3a307ffc 1484 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1485
3a307ffc
MF
1486 /*
1487 * The only reason this should fail is due to an inability to
1488 * find the extent added.
1489 */
49cb8d2d
MF
1490 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1491 NULL);
9517bac6 1492 if (ret < 0) {
61fb9ea4 1493 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
3a307ffc
MF
1494 "at logical block %llu",
1495 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1496 (unsigned long long)v_blkno);
9517bac6
MF
1497 goto out;
1498 }
1499
1500 BUG_ON(p_blkno == 0);
1501
3a307ffc
MF
1502 for(i = 0; i < wc->w_num_pages; i++) {
1503 int tmpret;
9517bac6 1504
3a307ffc
MF
1505 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1506 wc->w_pages[i], cpos,
b27b7cbc
MF
1507 user_pos, user_len,
1508 should_zero);
3a307ffc
MF
1509 if (tmpret) {
1510 mlog_errno(tmpret);
1511 if (ret == 0)
cbfa9639 1512 ret = tmpret;
3a307ffc 1513 }
9517bac6
MF
1514 }
1515
3a307ffc
MF
1516 /*
1517 * We only have cleanup to do in case of allocating write.
1518 */
1519 if (ret && new)
1520 ocfs2_write_failure(inode, wc, user_pos, user_len);
1521
9517bac6 1522out:
9517bac6 1523
3a307ffc 1524 return ret;
9517bac6
MF
1525}
1526
0d172baa
MF
1527static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1528 struct ocfs2_alloc_context *data_ac,
1529 struct ocfs2_alloc_context *meta_ac,
1530 struct ocfs2_write_ctxt *wc,
1531 loff_t pos, unsigned len)
1532{
1533 int ret, i;
db56246c
MF
1534 loff_t cluster_off;
1535 unsigned int local_len = len;
0d172baa 1536 struct ocfs2_write_cluster_desc *desc;
db56246c 1537 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1538
1539 for (i = 0; i < wc->w_clen; i++) {
1540 desc = &wc->w_desc[i];
1541
db56246c
MF
1542 /*
1543 * We have to make sure that the total write passed in
1544 * doesn't extend past a single cluster.
1545 */
1546 local_len = len;
1547 cluster_off = pos & (osb->s_clustersize - 1);
1548 if ((cluster_off + local_len) > osb->s_clustersize)
1549 local_len = osb->s_clustersize - cluster_off;
1550
b27b7cbc 1551 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1552 desc->c_unwritten,
1553 desc->c_needs_zero,
1554 data_ac, meta_ac,
db56246c 1555 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1556 if (ret) {
1557 mlog_errno(ret);
1558 goto out;
1559 }
db56246c
MF
1560
1561 len -= local_len;
1562 pos += local_len;
0d172baa
MF
1563 }
1564
1565 ret = 0;
1566out:
1567 return ret;
1568}
1569
3a307ffc
MF
1570/*
1571 * ocfs2_write_end() wants to know which parts of the target page it
1572 * should complete the write on. It's easiest to compute them ahead of
1573 * time when a more complete view of the write is available.
1574 */
1575static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1576 struct ocfs2_write_ctxt *wc,
1577 loff_t pos, unsigned len, int alloc)
9517bac6 1578{
3a307ffc 1579 struct ocfs2_write_cluster_desc *desc;
9517bac6 1580
3a307ffc
MF
1581 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1582 wc->w_target_to = wc->w_target_from + len;
1583
1584 if (alloc == 0)
1585 return;
1586
1587 /*
1588 * Allocating write - we may have different boundaries based
1589 * on page size and cluster size.
1590 *
1591 * NOTE: We can no longer compute one value from the other as
1592 * the actual write length and user provided length may be
1593 * different.
1594 */
9517bac6 1595
3a307ffc
MF
1596 if (wc->w_large_pages) {
1597 /*
1598 * We only care about the 1st and last cluster within
b27b7cbc 1599 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1600 * value may be extended out to the start/end of a
1601 * newly allocated cluster.
1602 */
1603 desc = &wc->w_desc[0];
e7432675 1604 if (desc->c_needs_zero)
3a307ffc
MF
1605 ocfs2_figure_cluster_boundaries(osb,
1606 desc->c_cpos,
1607 &wc->w_target_from,
1608 NULL);
1609
1610 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1611 if (desc->c_needs_zero)
3a307ffc
MF
1612 ocfs2_figure_cluster_boundaries(osb,
1613 desc->c_cpos,
1614 NULL,
1615 &wc->w_target_to);
1616 } else {
1617 wc->w_target_from = 0;
1618 wc->w_target_to = PAGE_CACHE_SIZE;
1619 }
9517bac6
MF
1620}
1621
0d172baa
MF
1622/*
1623 * Populate each single-cluster write descriptor in the write context
1624 * with information about the i/o to be done.
b27b7cbc
MF
1625 *
1626 * Returns the number of clusters that will have to be allocated, as
1627 * well as a worst case estimate of the number of extent records that
1628 * would have to be created during a write to an unwritten region.
0d172baa
MF
1629 */
1630static int ocfs2_populate_write_desc(struct inode *inode,
1631 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1632 unsigned int *clusters_to_alloc,
1633 unsigned int *extents_to_split)
9517bac6 1634{
0d172baa 1635 int ret;
3a307ffc 1636 struct ocfs2_write_cluster_desc *desc;
0d172baa 1637 unsigned int num_clusters = 0;
b27b7cbc 1638 unsigned int ext_flags = 0;
0d172baa
MF
1639 u32 phys = 0;
1640 int i;
9517bac6 1641
b27b7cbc
MF
1642 *clusters_to_alloc = 0;
1643 *extents_to_split = 0;
1644
3a307ffc
MF
1645 for (i = 0; i < wc->w_clen; i++) {
1646 desc = &wc->w_desc[i];
1647 desc->c_cpos = wc->w_cpos + i;
1648
1649 if (num_clusters == 0) {
b27b7cbc
MF
1650 /*
1651 * Need to look up the next extent record.
1652 */
3a307ffc 1653 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1654 &num_clusters, &ext_flags);
3a307ffc
MF
1655 if (ret) {
1656 mlog_errno(ret);
607d44aa 1657 goto out;
3a307ffc 1658 }
b27b7cbc 1659
293b2f70
TM
1660 /* We should already CoW the refcountd extent. */
1661 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1662
b27b7cbc
MF
1663 /*
1664 * Assume worst case - that we're writing in
1665 * the middle of the extent.
1666 *
1667 * We can assume that the write proceeds from
1668 * left to right, in which case the extent
1669 * insert code is smart enough to coalesce the
1670 * next splits into the previous records created.
1671 */
1672 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1673 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1674 } else if (phys) {
1675 /*
1676 * Only increment phys if it doesn't describe
1677 * a hole.
1678 */
1679 phys++;
1680 }
1681
e7432675
SM
1682 /*
1683 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1684 * file that got extended. w_first_new_cpos tells us
1685 * where the newly allocated clusters are so we can
1686 * zero them.
1687 */
1688 if (desc->c_cpos >= wc->w_first_new_cpos) {
1689 BUG_ON(phys == 0);
1690 desc->c_needs_zero = 1;
1691 }
1692
3a307ffc
MF
1693 desc->c_phys = phys;
1694 if (phys == 0) {
1695 desc->c_new = 1;
e7432675 1696 desc->c_needs_zero = 1;
0d172baa 1697 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1698 }
e7432675
SM
1699
1700 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1701 desc->c_unwritten = 1;
e7432675
SM
1702 desc->c_needs_zero = 1;
1703 }
3a307ffc
MF
1704
1705 num_clusters--;
9517bac6
MF
1706 }
1707
0d172baa
MF
1708 ret = 0;
1709out:
1710 return ret;
1711}
1712
1afc32b9
MF
1713static int ocfs2_write_begin_inline(struct address_space *mapping,
1714 struct inode *inode,
1715 struct ocfs2_write_ctxt *wc)
1716{
1717 int ret;
1718 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1719 struct page *page;
1720 handle_t *handle;
1721 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1722
f775da2f
JB
1723 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1724 if (IS_ERR(handle)) {
1725 ret = PTR_ERR(handle);
1726 mlog_errno(ret);
1727 goto out;
1728 }
1729
1afc32b9
MF
1730 page = find_or_create_page(mapping, 0, GFP_NOFS);
1731 if (!page) {
f775da2f 1732 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1733 ret = -ENOMEM;
1734 mlog_errno(ret);
1735 goto out;
1736 }
1737 /*
1738 * If we don't set w_num_pages then this page won't get unlocked
1739 * and freed on cleanup of the write context.
1740 */
1741 wc->w_pages[0] = wc->w_target_page = page;
1742 wc->w_num_pages = 1;
1743
0cf2f763 1744 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1745 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1746 if (ret) {
1747 ocfs2_commit_trans(osb, handle);
1748
1749 mlog_errno(ret);
1750 goto out;
1751 }
1752
1753 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1754 ocfs2_set_inode_data_inline(inode, di);
1755
1756 if (!PageUptodate(page)) {
1757 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1758 if (ret) {
1759 ocfs2_commit_trans(osb, handle);
1760
1761 goto out;
1762 }
1763 }
1764
1765 wc->w_handle = handle;
1766out:
1767 return ret;
1768}
1769
1770int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1771{
1772 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1773
0d8a4e0c 1774 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1775 return 1;
1776 return 0;
1777}
1778
1779static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1780 struct inode *inode, loff_t pos,
1781 unsigned len, struct page *mmap_page,
1782 struct ocfs2_write_ctxt *wc)
1783{
1784 int ret, written = 0;
1785 loff_t end = pos + len;
1786 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1787 struct ocfs2_dinode *di = NULL;
1afc32b9 1788
9558156b
TM
1789 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1790 len, (unsigned long long)pos,
1791 oi->ip_dyn_features);
1afc32b9
MF
1792
1793 /*
1794 * Handle inodes which already have inline data 1st.
1795 */
1796 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1797 if (mmap_page == NULL &&
1798 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1799 goto do_inline_write;
1800
1801 /*
1802 * The write won't fit - we have to give this inode an
1803 * inline extent list now.
1804 */
1805 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1806 if (ret)
1807 mlog_errno(ret);
1808 goto out;
1809 }
1810
1811 /*
1812 * Check whether the inode can accept inline data.
1813 */
1814 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1815 return 0;
1816
1817 /*
1818 * Check whether the write can fit.
1819 */
d9ae49d6
TY
1820 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1821 if (mmap_page ||
1822 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1823 return 0;
1824
1825do_inline_write:
1826 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1827 if (ret) {
1828 mlog_errno(ret);
1829 goto out;
1830 }
1831
1832 /*
1833 * This signals to the caller that the data can be written
1834 * inline.
1835 */
1836 written = 1;
1837out:
1838 return written ? written : ret;
1839}
1840
65ed39d6
MF
1841/*
1842 * This function only does anything for file systems which can't
1843 * handle sparse files.
1844 *
1845 * What we want to do here is fill in any hole between the current end
1846 * of allocation and the end of our write. That way the rest of the
1847 * write path can treat it as an non-allocating write, which has no
1848 * special case code for sparse/nonsparse files.
1849 */
5693486b
JB
1850static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1851 struct buffer_head *di_bh,
1852 loff_t pos, unsigned len,
65ed39d6
MF
1853 struct ocfs2_write_ctxt *wc)
1854{
1855 int ret;
65ed39d6
MF
1856 loff_t newsize = pos + len;
1857
5693486b 1858 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1859
1860 if (newsize <= i_size_read(inode))
1861 return 0;
1862
5693486b 1863 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1864 if (ret)
1865 mlog_errno(ret);
1866
e7432675
SM
1867 wc->w_first_new_cpos =
1868 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1869
65ed39d6
MF
1870 return ret;
1871}
1872
5693486b
JB
1873static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1874 loff_t pos)
1875{
1876 int ret = 0;
1877
1878 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1879 if (pos > i_size_read(inode))
1880 ret = ocfs2_zero_extend(inode, di_bh, pos);
1881
1882 return ret;
1883}
1884
50308d81
TM
1885/*
1886 * Try to flush truncate logs if we can free enough clusters from it.
1887 * As for return value, "< 0" means error, "0" no space and "1" means
1888 * we have freed enough spaces and let the caller try to allocate again.
1889 */
1890static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1891 unsigned int needed)
1892{
1893 tid_t target;
1894 int ret = 0;
1895 unsigned int truncated_clusters;
1896
1897 mutex_lock(&osb->osb_tl_inode->i_mutex);
1898 truncated_clusters = osb->truncated_clusters;
1899 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1900
1901 /*
1902 * Check whether we can succeed in allocating if we free
1903 * the truncate log.
1904 */
1905 if (truncated_clusters < needed)
1906 goto out;
1907
1908 ret = ocfs2_flush_truncate_log(osb);
1909 if (ret) {
1910 mlog_errno(ret);
1911 goto out;
1912 }
1913
1914 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1915 jbd2_log_wait_commit(osb->journal->j_journal, target);
1916 ret = 1;
1917 }
1918out:
1919 return ret;
1920}
1921
0378da0f
TM
1922int ocfs2_write_begin_nolock(struct file *filp,
1923 struct address_space *mapping,
0d172baa
MF
1924 loff_t pos, unsigned len, unsigned flags,
1925 struct page **pagep, void **fsdata,
1926 struct buffer_head *di_bh, struct page *mmap_page)
1927{
e7432675 1928 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1929 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1930 struct ocfs2_write_ctxt *wc;
1931 struct inode *inode = mapping->host;
1932 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1933 struct ocfs2_dinode *di;
1934 struct ocfs2_alloc_context *data_ac = NULL;
1935 struct ocfs2_alloc_context *meta_ac = NULL;
1936 handle_t *handle;
f99b9b7c 1937 struct ocfs2_extent_tree et;
50308d81 1938 int try_free = 1, ret1;
0d172baa 1939
50308d81 1940try_again:
0d172baa
MF
1941 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1942 if (ret) {
1943 mlog_errno(ret);
1944 return ret;
1945 }
1946
1afc32b9
MF
1947 if (ocfs2_supports_inline_data(osb)) {
1948 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1949 mmap_page, wc);
1950 if (ret == 1) {
1951 ret = 0;
1952 goto success;
1953 }
1954 if (ret < 0) {
1955 mlog_errno(ret);
1956 goto out;
1957 }
1958 }
1959
5693486b
JB
1960 if (ocfs2_sparse_alloc(osb))
1961 ret = ocfs2_zero_tail(inode, di_bh, pos);
1962 else
1963 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1964 wc);
65ed39d6
MF
1965 if (ret) {
1966 mlog_errno(ret);
1967 goto out;
1968 }
1969
293b2f70
TM
1970 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1971 if (ret < 0) {
1972 mlog_errno(ret);
1973 goto out;
1974 } else if (ret == 1) {
50308d81 1975 clusters_need = wc->w_clen;
c7dd3392 1976 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1977 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1978 if (ret) {
1979 mlog_errno(ret);
1980 goto out;
1981 }
1982 }
1983
b27b7cbc
MF
1984 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1985 &extents_to_split);
0d172baa
MF
1986 if (ret) {
1987 mlog_errno(ret);
1988 goto out;
1989 }
50308d81 1990 clusters_need += clusters_to_alloc;
0d172baa
MF
1991
1992 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1993
9558156b
TM
1994 trace_ocfs2_write_begin_nolock(
1995 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1996 (long long)i_size_read(inode),
1997 le32_to_cpu(di->i_clusters),
1998 pos, len, flags, mmap_page,
1999 clusters_to_alloc, extents_to_split);
2000
3a307ffc
MF
2001 /*
2002 * We set w_target_from, w_target_to here so that
2003 * ocfs2_write_end() knows which range in the target page to
2004 * write out. An allocation requires that we write the entire
2005 * cluster range.
2006 */
b27b7cbc 2007 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
2008 /*
2009 * XXX: We are stretching the limits of
b27b7cbc 2010 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
2011 * the work to be done.
2012 */
5e404e9e
JB
2013 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2014 wc->w_di_bh);
f99b9b7c 2015 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 2016 clusters_to_alloc, extents_to_split,
f99b9b7c 2017 &data_ac, &meta_ac);
9517bac6
MF
2018 if (ret) {
2019 mlog_errno(ret);
607d44aa 2020 goto out;
9517bac6
MF
2021 }
2022
4fe370af
MF
2023 if (data_ac)
2024 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2025
811f933d 2026 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 2027 &di->id2.i_list);
3a307ffc 2028
9517bac6
MF
2029 }
2030
e7432675
SM
2031 /*
2032 * We have to zero sparse allocated clusters, unwritten extent clusters,
2033 * and non-sparse clusters we just extended. For non-sparse writes,
2034 * we know zeros will only be needed in the first and/or last cluster.
2035 */
2036 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
2037 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2038 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
2039 cluster_of_pages = 1;
2040 else
2041 cluster_of_pages = 0;
2042
2043 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 2044
9517bac6
MF
2045 handle = ocfs2_start_trans(osb, credits);
2046 if (IS_ERR(handle)) {
2047 ret = PTR_ERR(handle);
2048 mlog_errno(ret);
607d44aa 2049 goto out;
9517bac6
MF
2050 }
2051
3a307ffc
MF
2052 wc->w_handle = handle;
2053
5dd4056d
CH
2054 if (clusters_to_alloc) {
2055 ret = dquot_alloc_space_nodirty(inode,
2056 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2057 if (ret)
2058 goto out_commit;
a90714c1 2059 }
3a307ffc
MF
2060 /*
2061 * We don't want this to fail in ocfs2_write_end(), so do it
2062 * here.
2063 */
0cf2f763 2064 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2065 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 2066 if (ret) {
9517bac6 2067 mlog_errno(ret);
a90714c1 2068 goto out_quota;
9517bac6
MF
2069 }
2070
3a307ffc
MF
2071 /*
2072 * Fill our page array first. That way we've grabbed enough so
2073 * that we can zero and flush if we error after adding the
2074 * extent.
2075 */
693c241a 2076 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 2077 cluster_of_pages, mmap_page);
5cffff9e 2078 if (ret && ret != -EAGAIN) {
9517bac6 2079 mlog_errno(ret);
a90714c1 2080 goto out_quota;
9517bac6
MF
2081 }
2082
5cffff9e
WW
2083 /*
2084 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2085 * the target page. In this case, we exit with no error and no target
2086 * page. This will trigger the caller, page_mkwrite(), to re-try
2087 * the operation.
2088 */
2089 if (ret == -EAGAIN) {
2090 BUG_ON(wc->w_target_page);
2091 ret = 0;
2092 goto out_quota;
2093 }
2094
0d172baa
MF
2095 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2096 len);
2097 if (ret) {
2098 mlog_errno(ret);
a90714c1 2099 goto out_quota;
9517bac6 2100 }
9517bac6 2101
3a307ffc
MF
2102 if (data_ac)
2103 ocfs2_free_alloc_context(data_ac);
2104 if (meta_ac)
2105 ocfs2_free_alloc_context(meta_ac);
9517bac6 2106
1afc32b9 2107success:
3a307ffc
MF
2108 *pagep = wc->w_target_page;
2109 *fsdata = wc;
2110 return 0;
a90714c1
JK
2111out_quota:
2112 if (clusters_to_alloc)
5dd4056d 2113 dquot_free_space(inode,
a90714c1 2114 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
2115out_commit:
2116 ocfs2_commit_trans(osb, handle);
2117
9517bac6 2118out:
3a307ffc
MF
2119 ocfs2_free_write_ctxt(wc);
2120
b1214e47 2121 if (data_ac) {
9517bac6 2122 ocfs2_free_alloc_context(data_ac);
b1214e47
X
2123 data_ac = NULL;
2124 }
2125 if (meta_ac) {
9517bac6 2126 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
2127 meta_ac = NULL;
2128 }
50308d81
TM
2129
2130 if (ret == -ENOSPC && try_free) {
2131 /*
2132 * Try to free some truncate log so that we can have enough
2133 * clusters to allocate.
2134 */
2135 try_free = 0;
2136
2137 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2138 if (ret1 == 1)
2139 goto try_again;
2140
2141 if (ret1 < 0)
2142 mlog_errno(ret1);
2143 }
2144
3a307ffc
MF
2145 return ret;
2146}
2147
b6af1bcd
NP
2148static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2149 loff_t pos, unsigned len, unsigned flags,
2150 struct page **pagep, void **fsdata)
607d44aa
MF
2151{
2152 int ret;
2153 struct buffer_head *di_bh = NULL;
2154 struct inode *inode = mapping->host;
2155
e63aecb6 2156 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
2157 if (ret) {
2158 mlog_errno(ret);
2159 return ret;
2160 }
2161
2162 /*
2163 * Take alloc sem here to prevent concurrent lookups. That way
2164 * the mapping, zeroing and tree manipulation within
2165 * ocfs2_write() will be safe against ->readpage(). This
2166 * should also serve to lock out allocation from a shared
2167 * writeable region.
2168 */
2169 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2170
0378da0f 2171 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 2172 fsdata, di_bh, NULL);
607d44aa
MF
2173 if (ret) {
2174 mlog_errno(ret);
c934a92d 2175 goto out_fail;
607d44aa
MF
2176 }
2177
2178 brelse(di_bh);
2179
2180 return 0;
2181
607d44aa
MF
2182out_fail:
2183 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2184
2185 brelse(di_bh);
e63aecb6 2186 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
2187
2188 return ret;
2189}
2190
1afc32b9
MF
2191static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2192 unsigned len, unsigned *copied,
2193 struct ocfs2_dinode *di,
2194 struct ocfs2_write_ctxt *wc)
2195{
2196 void *kaddr;
2197
2198 if (unlikely(*copied < len)) {
2199 if (!PageUptodate(wc->w_target_page)) {
2200 *copied = 0;
2201 return;
2202 }
2203 }
2204
c4bc8dcb 2205 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 2206 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 2207 kunmap_atomic(kaddr);
1afc32b9 2208
9558156b
TM
2209 trace_ocfs2_write_end_inline(
2210 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
2211 (unsigned long long)pos, *copied,
2212 le16_to_cpu(di->id2.i_data.id_count),
2213 le16_to_cpu(di->i_dyn_features));
2214}
2215
7307de80
MF
2216int ocfs2_write_end_nolock(struct address_space *mapping,
2217 loff_t pos, unsigned len, unsigned copied,
2218 struct page *page, void *fsdata)
3a307ffc
MF
2219{
2220 int i;
2221 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2222 struct inode *inode = mapping->host;
2223 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2224 struct ocfs2_write_ctxt *wc = fsdata;
2225 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2226 handle_t *handle = wc->w_handle;
2227 struct page *tmppage;
2228
1afc32b9
MF
2229 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2230 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2231 goto out_write_size;
2232 }
2233
3a307ffc
MF
2234 if (unlikely(copied < len)) {
2235 if (!PageUptodate(wc->w_target_page))
2236 copied = 0;
2237
2238 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2239 start+len);
2240 }
2241 flush_dcache_page(wc->w_target_page);
2242
2243 for(i = 0; i < wc->w_num_pages; i++) {
2244 tmppage = wc->w_pages[i];
2245
2246 if (tmppage == wc->w_target_page) {
2247 from = wc->w_target_from;
2248 to = wc->w_target_to;
2249
2250 BUG_ON(from > PAGE_CACHE_SIZE ||
2251 to > PAGE_CACHE_SIZE ||
2252 to < from);
2253 } else {
2254 /*
2255 * Pages adjacent to the target (if any) imply
2256 * a hole-filling write in which case we want
2257 * to flush their entire range.
2258 */
2259 from = 0;
2260 to = PAGE_CACHE_SIZE;
2261 }
2262
961cecbe 2263 if (page_has_buffers(tmppage)) {
53ef99ca 2264 if (ocfs2_should_order_data(inode))
2b4e30fb 2265 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2266 block_commit_write(tmppage, from, to);
2267 }
3a307ffc
MF
2268 }
2269
1afc32b9 2270out_write_size:
3a307ffc 2271 pos += copied;
f17c20dd 2272 if (pos > i_size_read(inode)) {
3a307ffc
MF
2273 i_size_write(inode, pos);
2274 mark_inode_dirty(inode);
2275 }
2276 inode->i_blocks = ocfs2_inode_sector_count(inode);
2277 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2278 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2279 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2280 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2931cdcb 2281 ocfs2_update_inode_fsync_trans(handle, inode, 1);
3a307ffc
MF
2282 ocfs2_journal_dirty(handle, wc->w_di_bh);
2283
136f49b9
JB
2284 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2285 * lock, or it will cause a deadlock since journal commit threads holds
2286 * this lock and will ask for the page lock when flushing the data.
2287 * put it here to preserve the unlock order.
2288 */
2289 ocfs2_unlock_pages(wc);
2290
3a307ffc 2291 ocfs2_commit_trans(osb, handle);
59a5e416 2292
b27b7cbc
MF
2293 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2294
136f49b9
JB
2295 brelse(wc->w_di_bh);
2296 kfree(wc);
607d44aa
MF
2297
2298 return copied;
2299}
2300
b6af1bcd
NP
2301static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2302 loff_t pos, unsigned len, unsigned copied,
2303 struct page *page, void *fsdata)
607d44aa
MF
2304{
2305 int ret;
2306 struct inode *inode = mapping->host;
2307
2308 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2309
3a307ffc 2310 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2311 ocfs2_inode_unlock(inode, 1);
9517bac6 2312
607d44aa 2313 return ret;
9517bac6
MF
2314}
2315
f5e54d6e 2316const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2317 .readpage = ocfs2_readpage,
2318 .readpages = ocfs2_readpages,
2319 .writepage = ocfs2_writepage,
2320 .write_begin = ocfs2_write_begin,
2321 .write_end = ocfs2_write_end,
2322 .bmap = ocfs2_bmap,
1fca3a05 2323 .direct_IO = ocfs2_direct_IO,
41ecc345 2324 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2325 .releasepage = ocfs2_releasepage,
2326 .migratepage = buffer_migrate_page,
2327 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2328 .error_remove_page = generic_error_remove_page,
ccd979bd 2329};