get rid of pointless iov_length() in ->direct_IO()
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
ccd979bd 31
ccd979bd
MF
32#include <cluster/masklog.h>
33
34#include "ocfs2.h"
35
36#include "alloc.h"
37#include "aops.h"
38#include "dlmglue.h"
39#include "extent_map.h"
40#include "file.h"
41#include "inode.h"
42#include "journal.h"
9517bac6 43#include "suballoc.h"
ccd979bd
MF
44#include "super.h"
45#include "symlink.h"
293b2f70 46#include "refcounttree.h"
9558156b 47#include "ocfs2_trace.h"
ccd979bd
MF
48
49#include "buffer_head_io.h"
50
51static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
52 struct buffer_head *bh_result, int create)
53{
54 int err = -EIO;
55 int status;
56 struct ocfs2_dinode *fe = NULL;
57 struct buffer_head *bh = NULL;
58 struct buffer_head *buffer_cache_bh = NULL;
59 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
60 void *kaddr;
61
9558156b
TM
62 trace_ocfs2_symlink_get_block(
63 (unsigned long long)OCFS2_I(inode)->ip_blkno,
64 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
65
66 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
67
68 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
69 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
70 (unsigned long long)iblock);
71 goto bail;
72 }
73
b657c95c 74 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
75 if (status < 0) {
76 mlog_errno(status);
77 goto bail;
78 }
79 fe = (struct ocfs2_dinode *) bh->b_data;
80
ccd979bd
MF
81 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
82 le32_to_cpu(fe->i_clusters))) {
7391a294 83 err = -ENOMEM;
ccd979bd
MF
84 mlog(ML_ERROR, "block offset is outside the allocated size: "
85 "%llu\n", (unsigned long long)iblock);
86 goto bail;
87 }
88
89 /* We don't use the page cache to create symlink data, so if
90 * need be, copy it over from the buffer cache. */
91 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
92 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
93 iblock;
94 buffer_cache_bh = sb_getblk(osb->sb, blkno);
95 if (!buffer_cache_bh) {
7391a294 96 err = -ENOMEM;
ccd979bd
MF
97 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
98 goto bail;
99 }
100
101 /* we haven't locked out transactions, so a commit
102 * could've happened. Since we've got a reference on
103 * the bh, even if it commits while we're doing the
104 * copy, the data is still good. */
105 if (buffer_jbd(buffer_cache_bh)
106 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 107 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
108 if (!kaddr) {
109 mlog(ML_ERROR, "couldn't kmap!\n");
110 goto bail;
111 }
112 memcpy(kaddr + (bh_result->b_size * iblock),
113 buffer_cache_bh->b_data,
114 bh_result->b_size);
c4bc8dcb 115 kunmap_atomic(kaddr);
ccd979bd
MF
116 set_buffer_uptodate(bh_result);
117 }
118 brelse(buffer_cache_bh);
119 }
120
121 map_bh(bh_result, inode->i_sb,
122 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
123
124 err = 0;
125
126bail:
a81cb88b 127 brelse(bh);
ccd979bd 128
ccd979bd
MF
129 return err;
130}
131
6f70fa51
TM
132int ocfs2_get_block(struct inode *inode, sector_t iblock,
133 struct buffer_head *bh_result, int create)
ccd979bd
MF
134{
135 int err = 0;
49cb8d2d 136 unsigned int ext_flags;
628a24f5
MF
137 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
138 u64 p_blkno, count, past_eof;
25baf2da 139 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 140
9558156b
TM
141 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
142 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
143
144 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
145 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
146 inode, inode->i_ino);
147
148 if (S_ISLNK(inode->i_mode)) {
149 /* this always does I/O for some reason. */
150 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151 goto bail;
152 }
153
628a24f5 154 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 155 &ext_flags);
ccd979bd
MF
156 if (err) {
157 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
158 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
159 (unsigned long long)p_blkno);
ccd979bd
MF
160 goto bail;
161 }
162
628a24f5
MF
163 if (max_blocks < count)
164 count = max_blocks;
165
25baf2da
MF
166 /*
167 * ocfs2 never allocates in this function - the only time we
168 * need to use BH_New is when we're extending i_size on a file
169 * system which doesn't support holes, in which case BH_New
ebdec241 170 * allows __block_write_begin() to zero.
c0420ad2
CL
171 *
172 * If we see this on a sparse file system, then a truncate has
173 * raced us and removed the cluster. In this case, we clear
174 * the buffers dirty and uptodate bits and let the buffer code
175 * ignore it as a hole.
25baf2da 176 */
c0420ad2
CL
177 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
178 clear_buffer_dirty(bh_result);
179 clear_buffer_uptodate(bh_result);
180 goto bail;
181 }
25baf2da 182
49cb8d2d
MF
183 /* Treat the unwritten extent as a hole for zeroing purposes. */
184 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
185 map_bh(bh_result, inode->i_sb, p_blkno);
186
628a24f5
MF
187 bh_result->b_size = count << inode->i_blkbits;
188
25baf2da
MF
189 if (!ocfs2_sparse_alloc(osb)) {
190 if (p_blkno == 0) {
191 err = -EIO;
192 mlog(ML_ERROR,
193 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
194 (unsigned long long)iblock,
195 (unsigned long long)p_blkno,
196 (unsigned long long)OCFS2_I(inode)->ip_blkno);
197 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198 dump_stack();
1f4cea37 199 goto bail;
25baf2da 200 }
25baf2da 201 }
ccd979bd 202
5693486b 203 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
204
205 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
206 (unsigned long long)past_eof);
5693486b
JB
207 if (create && (iblock >= past_eof))
208 set_buffer_new(bh_result);
209
ccd979bd
MF
210bail:
211 if (err < 0)
212 err = -EIO;
213
ccd979bd
MF
214 return err;
215}
216
1afc32b9
MF
217int ocfs2_read_inline_data(struct inode *inode, struct page *page,
218 struct buffer_head *di_bh)
6798d35a
MF
219{
220 void *kaddr;
d2849fb2 221 loff_t size;
6798d35a
MF
222 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
223
224 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
225 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
226 (unsigned long long)OCFS2_I(inode)->ip_blkno);
227 return -EROFS;
228 }
229
230 size = i_size_read(inode);
231
232 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 233 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 234 ocfs2_error(inode->i_sb,
d2849fb2
JK
235 "Inode %llu has with inline data has bad size: %Lu",
236 (unsigned long long)OCFS2_I(inode)->ip_blkno,
237 (unsigned long long)size);
6798d35a
MF
238 return -EROFS;
239 }
240
c4bc8dcb 241 kaddr = kmap_atomic(page);
6798d35a
MF
242 if (size)
243 memcpy(kaddr, di->id2.i_data.id_data, size);
244 /* Clear the remaining part of the page */
245 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
246 flush_dcache_page(page);
c4bc8dcb 247 kunmap_atomic(kaddr);
6798d35a
MF
248
249 SetPageUptodate(page);
250
251 return 0;
252}
253
254static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
255{
256 int ret;
257 struct buffer_head *di_bh = NULL;
6798d35a
MF
258
259 BUG_ON(!PageLocked(page));
86c838b0 260 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 261
b657c95c 262 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
263 if (ret) {
264 mlog_errno(ret);
265 goto out;
266 }
267
268 ret = ocfs2_read_inline_data(inode, page, di_bh);
269out:
270 unlock_page(page);
271
272 brelse(di_bh);
273 return ret;
274}
275
ccd979bd
MF
276static int ocfs2_readpage(struct file *file, struct page *page)
277{
278 struct inode *inode = page->mapping->host;
6798d35a 279 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
280 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
281 int ret, unlock = 1;
282
9558156b
TM
283 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
284 (page ? page->index : 0));
ccd979bd 285
e63aecb6 286 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
287 if (ret != 0) {
288 if (ret == AOP_TRUNCATED_PAGE)
289 unlock = 0;
290 mlog_errno(ret);
291 goto out;
292 }
293
6798d35a 294 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
295 /*
296 * Unlock the page and cycle ip_alloc_sem so that we don't
297 * busyloop waiting for ip_alloc_sem to unlock
298 */
e9dfc0b2 299 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
300 unlock_page(page);
301 unlock = 0;
302 down_read(&oi->ip_alloc_sem);
303 up_read(&oi->ip_alloc_sem);
e63aecb6 304 goto out_inode_unlock;
e9dfc0b2 305 }
ccd979bd
MF
306
307 /*
308 * i_size might have just been updated as we grabed the meta lock. We
309 * might now be discovering a truncate that hit on another node.
310 * block_read_full_page->get_block freaks out if it is asked to read
311 * beyond the end of a file, so we check here. Callers
54cb8821 312 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
313 * and notice that the page they just read isn't needed.
314 *
315 * XXX sys_readahead() seems to get that wrong?
316 */
317 if (start >= i_size_read(inode)) {
eebd2aa3 318 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
319 SetPageUptodate(page);
320 ret = 0;
321 goto out_alloc;
322 }
323
6798d35a
MF
324 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
325 ret = ocfs2_readpage_inline(inode, page);
326 else
327 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
328 unlock = 0;
329
ccd979bd
MF
330out_alloc:
331 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
332out_inode_unlock:
333 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
334out:
335 if (unlock)
336 unlock_page(page);
ccd979bd
MF
337 return ret;
338}
339
628a24f5
MF
340/*
341 * This is used only for read-ahead. Failures or difficult to handle
342 * situations are safe to ignore.
343 *
344 * Right now, we don't bother with BH_Boundary - in-inode extent lists
345 * are quite large (243 extents on 4k blocks), so most inodes don't
346 * grow out to a tree. If need be, detecting boundary extents could
347 * trivially be added in a future version of ocfs2_get_block().
348 */
349static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
350 struct list_head *pages, unsigned nr_pages)
351{
352 int ret, err = -EIO;
353 struct inode *inode = mapping->host;
354 struct ocfs2_inode_info *oi = OCFS2_I(inode);
355 loff_t start;
356 struct page *last;
357
358 /*
359 * Use the nonblocking flag for the dlm code to avoid page
360 * lock inversion, but don't bother with retrying.
361 */
362 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
363 if (ret)
364 return err;
365
366 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
367 ocfs2_inode_unlock(inode, 0);
368 return err;
369 }
370
371 /*
372 * Don't bother with inline-data. There isn't anything
373 * to read-ahead in that case anyway...
374 */
375 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
376 goto out_unlock;
377
378 /*
379 * Check whether a remote node truncated this file - we just
380 * drop out in that case as it's not worth handling here.
381 */
382 last = list_entry(pages->prev, struct page, lru);
383 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
384 if (start >= i_size_read(inode))
385 goto out_unlock;
386
387 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
388
389out_unlock:
390 up_read(&oi->ip_alloc_sem);
391 ocfs2_inode_unlock(inode, 0);
392
393 return err;
394}
395
ccd979bd
MF
396/* Note: Because we don't support holes, our allocation has
397 * already happened (allocation writes zeros to the file data)
398 * so we don't have to worry about ordered writes in
399 * ocfs2_writepage.
400 *
401 * ->writepage is called during the process of invalidating the page cache
402 * during blocked lock processing. It can't block on any cluster locks
403 * to during block mapping. It's relying on the fact that the block
404 * mapping can't have disappeared under the dirty pages that it is
405 * being asked to write back.
406 */
407static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
408{
9558156b
TM
409 trace_ocfs2_writepage(
410 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
411 page->index);
ccd979bd 412
9558156b 413 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
414}
415
ccd979bd
MF
416/* Taken from ext3. We don't necessarily need the full blown
417 * functionality yet, but IMHO it's better to cut and paste the whole
418 * thing so we can avoid introducing our own bugs (and easily pick up
419 * their fixes when they happen) --Mark */
60b11392
MF
420int walk_page_buffers( handle_t *handle,
421 struct buffer_head *head,
422 unsigned from,
423 unsigned to,
424 int *partial,
425 int (*fn)( handle_t *handle,
426 struct buffer_head *bh))
ccd979bd
MF
427{
428 struct buffer_head *bh;
429 unsigned block_start, block_end;
430 unsigned blocksize = head->b_size;
431 int err, ret = 0;
432 struct buffer_head *next;
433
434 for ( bh = head, block_start = 0;
435 ret == 0 && (bh != head || !block_start);
436 block_start = block_end, bh = next)
437 {
438 next = bh->b_this_page;
439 block_end = block_start + blocksize;
440 if (block_end <= from || block_start >= to) {
441 if (partial && !buffer_uptodate(bh))
442 *partial = 1;
443 continue;
444 }
445 err = (*fn)(handle, bh);
446 if (!ret)
447 ret = err;
448 }
449 return ret;
450}
451
ccd979bd
MF
452static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
453{
454 sector_t status;
455 u64 p_blkno = 0;
456 int err = 0;
457 struct inode *inode = mapping->host;
458
9558156b
TM
459 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
460 (unsigned long long)block);
ccd979bd
MF
461
462 /* We don't need to lock journal system files, since they aren't
463 * accessed concurrently from multiple nodes.
464 */
465 if (!INODE_JOURNAL(inode)) {
e63aecb6 466 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
467 if (err) {
468 if (err != -ENOENT)
469 mlog_errno(err);
470 goto bail;
471 }
472 down_read(&OCFS2_I(inode)->ip_alloc_sem);
473 }
474
6798d35a
MF
475 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
476 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
477 NULL);
ccd979bd
MF
478
479 if (!INODE_JOURNAL(inode)) {
480 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 481 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
482 }
483
484 if (err) {
485 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
486 (unsigned long long)block);
487 mlog_errno(err);
488 goto bail;
489 }
490
ccd979bd
MF
491bail:
492 status = err ? 0 : p_blkno;
493
ccd979bd
MF
494 return status;
495}
496
497/*
498 * TODO: Make this into a generic get_blocks function.
499 *
500 * From do_direct_io in direct-io.c:
501 * "So what we do is to permit the ->get_blocks function to populate
502 * bh.b_size with the size of IO which is permitted at this offset and
503 * this i_blkbits."
504 *
505 * This function is called directly from get_more_blocks in direct-io.c.
506 *
507 * called like this: dio->get_blocks(dio->inode, fs_startblk,
508 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
509 *
510 * Note that we never bother to allocate blocks here, and thus ignore the
511 * create argument.
ccd979bd
MF
512 */
513static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
514 struct buffer_head *bh_result, int create)
515{
516 int ret;
4f902c37 517 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 518 unsigned int ext_flags;
184d7d20 519 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 520 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 521
ccd979bd
MF
522 /* This function won't even be called if the request isn't all
523 * nicely aligned and of the right size, so there's no need
524 * for us to check any of that. */
525
25baf2da 526 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 527
ccd979bd
MF
528 /* This figures out the size of the next contiguous block, and
529 * our logical offset */
363041a5 530 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 531 &contig_blocks, &ext_flags);
ccd979bd
MF
532 if (ret) {
533 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
534 (unsigned long long)iblock);
535 ret = -EIO;
536 goto bail;
537 }
538
cbaee472
TM
539 /* We should already CoW the refcounted extent in case of create. */
540 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
541
25baf2da
MF
542 /*
543 * get_more_blocks() expects us to describe a hole by clearing
544 * the mapped bit on bh_result().
49cb8d2d
MF
545 *
546 * Consider an unwritten extent as a hole.
25baf2da 547 */
49cb8d2d 548 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 549 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 550 else
25baf2da 551 clear_buffer_mapped(bh_result);
ccd979bd
MF
552
553 /* make sure we don't map more than max_blocks blocks here as
554 that's all the kernel will handle at this point. */
555 if (max_blocks < contig_blocks)
556 contig_blocks = max_blocks;
557 bh_result->b_size = contig_blocks << blocksize_bits;
558bail:
559 return ret;
560}
561
2bd63216 562/*
ccd979bd 563 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
564 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
565 * to protect io on one node from truncation on another.
ccd979bd
MF
566 */
567static void ocfs2_dio_end_io(struct kiocb *iocb,
568 loff_t offset,
569 ssize_t bytes,
7b7a8665 570 void *private)
ccd979bd 571{
496ad9aa 572 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 573 int level;
ccd979bd
MF
574
575 /* this io's submitter should not have unlocked this before we could */
576 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 577
df2d6f26 578 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 579 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 580
a11f7e63
MF
581 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
582 ocfs2_iocb_clear_unaligned_aio(iocb);
583
c18ceab0 584 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
585 }
586
ccd979bd 587 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
588
589 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 590 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
591}
592
03f981cf
JB
593static int ocfs2_releasepage(struct page *page, gfp_t wait)
594{
03f981cf
JB
595 if (!page_has_buffers(page))
596 return 0;
41ecc345 597 return try_to_free_buffers(page);
03f981cf
JB
598}
599
ccd979bd
MF
600static ssize_t ocfs2_direct_IO(int rw,
601 struct kiocb *iocb,
d8d3d94b
AV
602 struct iov_iter *iter,
603 loff_t offset)
ccd979bd
MF
604{
605 struct file *file = iocb->ki_filp;
496ad9aa 606 struct inode *inode = file_inode(file)->i_mapping->host;
53013cba 607
6798d35a
MF
608 /*
609 * Fallback to buffered I/O if we see an inode without
610 * extents.
611 */
612 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
613 return 0;
614
b80474b4
TM
615 /* Fallback to buffered I/O if we are appending. */
616 if (i_size_read(inode) <= offset)
617 return 0;
618
c1e8d35e 619 return __blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev,
d8d3d94b 620 iter->iov, offset, iter->nr_segs,
c1e8d35e
TM
621 ocfs2_direct_IO_get_blocks,
622 ocfs2_dio_end_io, NULL, 0);
ccd979bd
MF
623}
624
9517bac6
MF
625static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
626 u32 cpos,
627 unsigned int *start,
628 unsigned int *end)
629{
630 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
631
632 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
633 unsigned int cpp;
634
635 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
636
637 cluster_start = cpos % cpp;
638 cluster_start = cluster_start << osb->s_clustersize_bits;
639
640 cluster_end = cluster_start + osb->s_clustersize;
641 }
642
643 BUG_ON(cluster_start > PAGE_SIZE);
644 BUG_ON(cluster_end > PAGE_SIZE);
645
646 if (start)
647 *start = cluster_start;
648 if (end)
649 *end = cluster_end;
650}
651
652/*
653 * 'from' and 'to' are the region in the page to avoid zeroing.
654 *
655 * If pagesize > clustersize, this function will avoid zeroing outside
656 * of the cluster boundary.
657 *
658 * from == to == 0 is code for "zero the entire cluster region"
659 */
660static void ocfs2_clear_page_regions(struct page *page,
661 struct ocfs2_super *osb, u32 cpos,
662 unsigned from, unsigned to)
663{
664 void *kaddr;
665 unsigned int cluster_start, cluster_end;
666
667 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
668
c4bc8dcb 669 kaddr = kmap_atomic(page);
9517bac6
MF
670
671 if (from || to) {
672 if (from > cluster_start)
673 memset(kaddr + cluster_start, 0, from - cluster_start);
674 if (to < cluster_end)
675 memset(kaddr + to, 0, cluster_end - to);
676 } else {
677 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
678 }
679
c4bc8dcb 680 kunmap_atomic(kaddr);
9517bac6
MF
681}
682
4e9563fd
MF
683/*
684 * Nonsparse file systems fully allocate before we get to the write
685 * code. This prevents ocfs2_write() from tagging the write as an
686 * allocating one, which means ocfs2_map_page_blocks() might try to
687 * read-in the blocks at the tail of our file. Avoid reading them by
688 * testing i_size against each block offset.
689 */
690static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
691 unsigned int block_start)
692{
693 u64 offset = page_offset(page) + block_start;
694
695 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
696 return 1;
697
698 if (i_size_read(inode) > offset)
699 return 1;
700
701 return 0;
702}
703
9517bac6 704/*
ebdec241 705 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
706 * mapping by now though, and the entire write will be allocating or
707 * it won't, so not much need to use BH_New.
708 *
709 * This will also skip zeroing, which is handled externally.
710 */
60b11392
MF
711int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
712 struct inode *inode, unsigned int from,
713 unsigned int to, int new)
9517bac6
MF
714{
715 int ret = 0;
716 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
717 unsigned int block_end, block_start;
718 unsigned int bsize = 1 << inode->i_blkbits;
719
720 if (!page_has_buffers(page))
721 create_empty_buffers(page, bsize, 0);
722
723 head = page_buffers(page);
724 for (bh = head, block_start = 0; bh != head || !block_start;
725 bh = bh->b_this_page, block_start += bsize) {
726 block_end = block_start + bsize;
727
3a307ffc
MF
728 clear_buffer_new(bh);
729
9517bac6
MF
730 /*
731 * Ignore blocks outside of our i/o range -
732 * they may belong to unallocated clusters.
733 */
60b11392 734 if (block_start >= to || block_end <= from) {
9517bac6
MF
735 if (PageUptodate(page))
736 set_buffer_uptodate(bh);
737 continue;
738 }
739
740 /*
741 * For an allocating write with cluster size >= page
742 * size, we always write the entire page.
743 */
3a307ffc
MF
744 if (new)
745 set_buffer_new(bh);
9517bac6
MF
746
747 if (!buffer_mapped(bh)) {
748 map_bh(bh, inode->i_sb, *p_blkno);
749 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
750 }
751
752 if (PageUptodate(page)) {
753 if (!buffer_uptodate(bh))
754 set_buffer_uptodate(bh);
755 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 756 !buffer_new(bh) &&
4e9563fd 757 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 758 (block_start < from || block_end > to)) {
9517bac6
MF
759 ll_rw_block(READ, 1, &bh);
760 *wait_bh++=bh;
761 }
762
763 *p_blkno = *p_blkno + 1;
764 }
765
766 /*
767 * If we issued read requests - let them complete.
768 */
769 while(wait_bh > wait) {
770 wait_on_buffer(*--wait_bh);
771 if (!buffer_uptodate(*wait_bh))
772 ret = -EIO;
773 }
774
775 if (ret == 0 || !new)
776 return ret;
777
778 /*
779 * If we get -EIO above, zero out any newly allocated blocks
780 * to avoid exposing stale data.
781 */
782 bh = head;
783 block_start = 0;
784 do {
9517bac6
MF
785 block_end = block_start + bsize;
786 if (block_end <= from)
787 goto next_bh;
788 if (block_start >= to)
789 break;
790
eebd2aa3 791 zero_user(page, block_start, bh->b_size);
9517bac6
MF
792 set_buffer_uptodate(bh);
793 mark_buffer_dirty(bh);
794
795next_bh:
796 block_start = block_end;
797 bh = bh->b_this_page;
798 } while (bh != head);
799
800 return ret;
801}
802
3a307ffc
MF
803#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
804#define OCFS2_MAX_CTXT_PAGES 1
805#else
806#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
807#endif
808
809#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
810
6af67d82 811/*
3a307ffc 812 * Describe the state of a single cluster to be written to.
6af67d82 813 */
3a307ffc
MF
814struct ocfs2_write_cluster_desc {
815 u32 c_cpos;
816 u32 c_phys;
817 /*
818 * Give this a unique field because c_phys eventually gets
819 * filled.
820 */
821 unsigned c_new;
b27b7cbc 822 unsigned c_unwritten;
e7432675 823 unsigned c_needs_zero;
3a307ffc 824};
6af67d82 825
3a307ffc
MF
826struct ocfs2_write_ctxt {
827 /* Logical cluster position / len of write */
828 u32 w_cpos;
829 u32 w_clen;
6af67d82 830
e7432675
SM
831 /* First cluster allocated in a nonsparse extend */
832 u32 w_first_new_cpos;
833
3a307ffc 834 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 835
3a307ffc
MF
836 /*
837 * This is true if page_size > cluster_size.
838 *
839 * It triggers a set of special cases during write which might
840 * have to deal with allocating writes to partial pages.
841 */
842 unsigned int w_large_pages;
6af67d82 843
3a307ffc
MF
844 /*
845 * Pages involved in this write.
846 *
847 * w_target_page is the page being written to by the user.
848 *
849 * w_pages is an array of pages which always contains
850 * w_target_page, and in the case of an allocating write with
851 * page_size < cluster size, it will contain zero'd and mapped
852 * pages adjacent to w_target_page which need to be written
853 * out in so that future reads from that region will get
854 * zero's.
855 */
3a307ffc 856 unsigned int w_num_pages;
83fd9c7f 857 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 858 struct page *w_target_page;
eeb47d12 859
5cffff9e
WW
860 /*
861 * w_target_locked is used for page_mkwrite path indicating no unlocking
862 * against w_target_page in ocfs2_write_end_nolock.
863 */
864 unsigned int w_target_locked:1;
865
3a307ffc
MF
866 /*
867 * ocfs2_write_end() uses this to know what the real range to
868 * write in the target should be.
869 */
870 unsigned int w_target_from;
871 unsigned int w_target_to;
872
873 /*
874 * We could use journal_current_handle() but this is cleaner,
875 * IMHO -Mark
876 */
877 handle_t *w_handle;
878
879 struct buffer_head *w_di_bh;
b27b7cbc
MF
880
881 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
882};
883
1d410a6e 884void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
885{
886 int i;
887
1d410a6e
MF
888 for(i = 0; i < num_pages; i++) {
889 if (pages[i]) {
890 unlock_page(pages[i]);
891 mark_page_accessed(pages[i]);
892 page_cache_release(pages[i]);
893 }
6af67d82 894 }
1d410a6e
MF
895}
896
897static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
898{
5cffff9e
WW
899 int i;
900
901 /*
902 * w_target_locked is only set to true in the page_mkwrite() case.
903 * The intent is to allow us to lock the target page from write_begin()
904 * to write_end(). The caller must hold a ref on w_target_page.
905 */
906 if (wc->w_target_locked) {
907 BUG_ON(!wc->w_target_page);
908 for (i = 0; i < wc->w_num_pages; i++) {
909 if (wc->w_target_page == wc->w_pages[i]) {
910 wc->w_pages[i] = NULL;
911 break;
912 }
913 }
914 mark_page_accessed(wc->w_target_page);
915 page_cache_release(wc->w_target_page);
916 }
1d410a6e 917 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
6af67d82 918
3a307ffc
MF
919 brelse(wc->w_di_bh);
920 kfree(wc);
921}
922
923static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
924 struct ocfs2_super *osb, loff_t pos,
607d44aa 925 unsigned len, struct buffer_head *di_bh)
3a307ffc 926{
30b8548f 927 u32 cend;
3a307ffc
MF
928 struct ocfs2_write_ctxt *wc;
929
930 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
931 if (!wc)
932 return -ENOMEM;
6af67d82 933
3a307ffc 934 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 935 wc->w_first_new_cpos = UINT_MAX;
30b8548f 936 cend = (pos + len - 1) >> osb->s_clustersize_bits;
937 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
938 get_bh(di_bh);
939 wc->w_di_bh = di_bh;
6af67d82 940
3a307ffc
MF
941 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
942 wc->w_large_pages = 1;
943 else
944 wc->w_large_pages = 0;
945
b27b7cbc
MF
946 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
947
3a307ffc 948 *wcp = wc;
6af67d82 949
3a307ffc 950 return 0;
6af67d82
MF
951}
952
9517bac6 953/*
3a307ffc
MF
954 * If a page has any new buffers, zero them out here, and mark them uptodate
955 * and dirty so they'll be written out (in order to prevent uninitialised
956 * block data from leaking). And clear the new bit.
9517bac6 957 */
3a307ffc 958static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 959{
3a307ffc
MF
960 unsigned int block_start, block_end;
961 struct buffer_head *head, *bh;
9517bac6 962
3a307ffc
MF
963 BUG_ON(!PageLocked(page));
964 if (!page_has_buffers(page))
965 return;
9517bac6 966
3a307ffc
MF
967 bh = head = page_buffers(page);
968 block_start = 0;
969 do {
970 block_end = block_start + bh->b_size;
971
972 if (buffer_new(bh)) {
973 if (block_end > from && block_start < to) {
974 if (!PageUptodate(page)) {
975 unsigned start, end;
3a307ffc
MF
976
977 start = max(from, block_start);
978 end = min(to, block_end);
979
eebd2aa3 980 zero_user_segment(page, start, end);
3a307ffc
MF
981 set_buffer_uptodate(bh);
982 }
983
984 clear_buffer_new(bh);
985 mark_buffer_dirty(bh);
986 }
987 }
9517bac6 988
3a307ffc
MF
989 block_start = block_end;
990 bh = bh->b_this_page;
991 } while (bh != head);
992}
993
994/*
995 * Only called when we have a failure during allocating write to write
996 * zero's to the newly allocated region.
997 */
998static void ocfs2_write_failure(struct inode *inode,
999 struct ocfs2_write_ctxt *wc,
1000 loff_t user_pos, unsigned user_len)
1001{
1002 int i;
5c26a7b7
MF
1003 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1004 to = user_pos + user_len;
3a307ffc
MF
1005 struct page *tmppage;
1006
5c26a7b7 1007 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1008
3a307ffc
MF
1009 for(i = 0; i < wc->w_num_pages; i++) {
1010 tmppage = wc->w_pages[i];
9517bac6 1011
961cecbe 1012 if (page_has_buffers(tmppage)) {
53ef99ca 1013 if (ocfs2_should_order_data(inode))
2b4e30fb 1014 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1015
1016 block_commit_write(tmppage, from, to);
1017 }
9517bac6 1018 }
9517bac6
MF
1019}
1020
3a307ffc
MF
1021static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1022 struct ocfs2_write_ctxt *wc,
1023 struct page *page, u32 cpos,
1024 loff_t user_pos, unsigned user_len,
1025 int new)
9517bac6 1026{
3a307ffc
MF
1027 int ret;
1028 unsigned int map_from = 0, map_to = 0;
9517bac6 1029 unsigned int cluster_start, cluster_end;
3a307ffc 1030 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1031
3a307ffc 1032 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1033 &cluster_start, &cluster_end);
1034
272b62c1
GR
1035 /* treat the write as new if the a hole/lseek spanned across
1036 * the page boundary.
1037 */
1038 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1039 (page_offset(page) <= user_pos));
1040
3a307ffc
MF
1041 if (page == wc->w_target_page) {
1042 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1043 map_to = map_from + user_len;
1044
1045 if (new)
1046 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047 cluster_start, cluster_end,
1048 new);
1049 else
1050 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1051 map_from, map_to, new);
1052 if (ret) {
9517bac6
MF
1053 mlog_errno(ret);
1054 goto out;
1055 }
1056
3a307ffc
MF
1057 user_data_from = map_from;
1058 user_data_to = map_to;
9517bac6 1059 if (new) {
3a307ffc
MF
1060 map_from = cluster_start;
1061 map_to = cluster_end;
9517bac6
MF
1062 }
1063 } else {
1064 /*
1065 * If we haven't allocated the new page yet, we
1066 * shouldn't be writing it out without copying user
1067 * data. This is likely a math error from the caller.
1068 */
1069 BUG_ON(!new);
1070
3a307ffc
MF
1071 map_from = cluster_start;
1072 map_to = cluster_end;
9517bac6
MF
1073
1074 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1075 cluster_start, cluster_end, new);
9517bac6
MF
1076 if (ret) {
1077 mlog_errno(ret);
1078 goto out;
1079 }
1080 }
1081
1082 /*
1083 * Parts of newly allocated pages need to be zero'd.
1084 *
1085 * Above, we have also rewritten 'to' and 'from' - as far as
1086 * the rest of the function is concerned, the entire cluster
1087 * range inside of a page needs to be written.
1088 *
1089 * We can skip this if the page is up to date - it's already
1090 * been zero'd from being read in as a hole.
1091 */
1092 if (new && !PageUptodate(page))
1093 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1094 cpos, user_data_from, user_data_to);
9517bac6
MF
1095
1096 flush_dcache_page(page);
1097
9517bac6 1098out:
3a307ffc 1099 return ret;
9517bac6
MF
1100}
1101
1102/*
3a307ffc 1103 * This function will only grab one clusters worth of pages.
9517bac6 1104 */
3a307ffc
MF
1105static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1106 struct ocfs2_write_ctxt *wc,
693c241a
JB
1107 u32 cpos, loff_t user_pos,
1108 unsigned user_len, int new,
7307de80 1109 struct page *mmap_page)
9517bac6 1110{
3a307ffc 1111 int ret = 0, i;
693c241a 1112 unsigned long start, target_index, end_index, index;
9517bac6 1113 struct inode *inode = mapping->host;
693c241a 1114 loff_t last_byte;
9517bac6 1115
3a307ffc 1116 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1117
1118 /*
1119 * Figure out how many pages we'll be manipulating here. For
60b11392 1120 * non allocating write, we just change the one
693c241a
JB
1121 * page. Otherwise, we'll need a whole clusters worth. If we're
1122 * writing past i_size, we only need enough pages to cover the
1123 * last page of the write.
9517bac6 1124 */
9517bac6 1125 if (new) {
3a307ffc
MF
1126 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1127 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1128 /*
1129 * We need the index *past* the last page we could possibly
1130 * touch. This is the page past the end of the write or
1131 * i_size, whichever is greater.
1132 */
1133 last_byte = max(user_pos + user_len, i_size_read(inode));
1134 BUG_ON(last_byte < 1);
1135 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1136 if ((start + wc->w_num_pages) > end_index)
1137 wc->w_num_pages = end_index - start;
9517bac6 1138 } else {
3a307ffc
MF
1139 wc->w_num_pages = 1;
1140 start = target_index;
9517bac6
MF
1141 }
1142
3a307ffc 1143 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1144 index = start + i;
1145
7307de80
MF
1146 if (index == target_index && mmap_page) {
1147 /*
1148 * ocfs2_pagemkwrite() is a little different
1149 * and wants us to directly use the page
1150 * passed in.
1151 */
1152 lock_page(mmap_page);
1153
5cffff9e 1154 /* Exit and let the caller retry */
7307de80 1155 if (mmap_page->mapping != mapping) {
5cffff9e 1156 WARN_ON(mmap_page->mapping);
7307de80 1157 unlock_page(mmap_page);
5cffff9e 1158 ret = -EAGAIN;
7307de80
MF
1159 goto out;
1160 }
1161
1162 page_cache_get(mmap_page);
1163 wc->w_pages[i] = mmap_page;
5cffff9e 1164 wc->w_target_locked = true;
7307de80
MF
1165 } else {
1166 wc->w_pages[i] = find_or_create_page(mapping, index,
1167 GFP_NOFS);
1168 if (!wc->w_pages[i]) {
1169 ret = -ENOMEM;
1170 mlog_errno(ret);
1171 goto out;
1172 }
9517bac6 1173 }
1269529b 1174 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1175
1176 if (index == target_index)
1177 wc->w_target_page = wc->w_pages[i];
9517bac6 1178 }
3a307ffc 1179out:
5cffff9e
WW
1180 if (ret)
1181 wc->w_target_locked = false;
3a307ffc
MF
1182 return ret;
1183}
1184
1185/*
1186 * Prepare a single cluster for write one cluster into the file.
1187 */
1188static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1189 u32 phys, unsigned int unwritten,
e7432675 1190 unsigned int should_zero,
b27b7cbc 1191 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1192 struct ocfs2_alloc_context *meta_ac,
1193 struct ocfs2_write_ctxt *wc, u32 cpos,
1194 loff_t user_pos, unsigned user_len)
1195{
e7432675 1196 int ret, i, new;
3a307ffc
MF
1197 u64 v_blkno, p_blkno;
1198 struct inode *inode = mapping->host;
f99b9b7c 1199 struct ocfs2_extent_tree et;
3a307ffc
MF
1200
1201 new = phys == 0 ? 1 : 0;
9517bac6 1202 if (new) {
3a307ffc
MF
1203 u32 tmp_pos;
1204
9517bac6
MF
1205 /*
1206 * This is safe to call with the page locks - it won't take
1207 * any additional semaphores or cluster locks.
1208 */
3a307ffc 1209 tmp_pos = cpos;
0eb8d47e
TM
1210 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1211 &tmp_pos, 1, 0, wc->w_di_bh,
1212 wc->w_handle, data_ac,
1213 meta_ac, NULL);
9517bac6
MF
1214 /*
1215 * This shouldn't happen because we must have already
1216 * calculated the correct meta data allocation required. The
1217 * internal tree allocation code should know how to increase
1218 * transaction credits itself.
1219 *
1220 * If need be, we could handle -EAGAIN for a
1221 * RESTART_TRANS here.
1222 */
1223 mlog_bug_on_msg(ret == -EAGAIN,
1224 "Inode %llu: EAGAIN return during allocation.\n",
1225 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1226 if (ret < 0) {
1227 mlog_errno(ret);
1228 goto out;
1229 }
b27b7cbc 1230 } else if (unwritten) {
5e404e9e
JB
1231 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1232 wc->w_di_bh);
f99b9b7c 1233 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1234 wc->w_handle, cpos, 1, phys,
f99b9b7c 1235 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1236 if (ret < 0) {
1237 mlog_errno(ret);
1238 goto out;
1239 }
1240 }
3a307ffc 1241
b27b7cbc 1242 if (should_zero)
3a307ffc 1243 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1244 else
3a307ffc 1245 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1246
3a307ffc
MF
1247 /*
1248 * The only reason this should fail is due to an inability to
1249 * find the extent added.
1250 */
49cb8d2d
MF
1251 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1252 NULL);
9517bac6 1253 if (ret < 0) {
3a307ffc
MF
1254 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1255 "at logical block %llu",
1256 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1257 (unsigned long long)v_blkno);
9517bac6
MF
1258 goto out;
1259 }
1260
1261 BUG_ON(p_blkno == 0);
1262
3a307ffc
MF
1263 for(i = 0; i < wc->w_num_pages; i++) {
1264 int tmpret;
9517bac6 1265
3a307ffc
MF
1266 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1267 wc->w_pages[i], cpos,
b27b7cbc
MF
1268 user_pos, user_len,
1269 should_zero);
3a307ffc
MF
1270 if (tmpret) {
1271 mlog_errno(tmpret);
1272 if (ret == 0)
cbfa9639 1273 ret = tmpret;
3a307ffc 1274 }
9517bac6
MF
1275 }
1276
3a307ffc
MF
1277 /*
1278 * We only have cleanup to do in case of allocating write.
1279 */
1280 if (ret && new)
1281 ocfs2_write_failure(inode, wc, user_pos, user_len);
1282
9517bac6 1283out:
9517bac6 1284
3a307ffc 1285 return ret;
9517bac6
MF
1286}
1287
0d172baa
MF
1288static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1289 struct ocfs2_alloc_context *data_ac,
1290 struct ocfs2_alloc_context *meta_ac,
1291 struct ocfs2_write_ctxt *wc,
1292 loff_t pos, unsigned len)
1293{
1294 int ret, i;
db56246c
MF
1295 loff_t cluster_off;
1296 unsigned int local_len = len;
0d172baa 1297 struct ocfs2_write_cluster_desc *desc;
db56246c 1298 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1299
1300 for (i = 0; i < wc->w_clen; i++) {
1301 desc = &wc->w_desc[i];
1302
db56246c
MF
1303 /*
1304 * We have to make sure that the total write passed in
1305 * doesn't extend past a single cluster.
1306 */
1307 local_len = len;
1308 cluster_off = pos & (osb->s_clustersize - 1);
1309 if ((cluster_off + local_len) > osb->s_clustersize)
1310 local_len = osb->s_clustersize - cluster_off;
1311
b27b7cbc 1312 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1313 desc->c_unwritten,
1314 desc->c_needs_zero,
1315 data_ac, meta_ac,
db56246c 1316 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1317 if (ret) {
1318 mlog_errno(ret);
1319 goto out;
1320 }
db56246c
MF
1321
1322 len -= local_len;
1323 pos += local_len;
0d172baa
MF
1324 }
1325
1326 ret = 0;
1327out:
1328 return ret;
1329}
1330
3a307ffc
MF
1331/*
1332 * ocfs2_write_end() wants to know which parts of the target page it
1333 * should complete the write on. It's easiest to compute them ahead of
1334 * time when a more complete view of the write is available.
1335 */
1336static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1337 struct ocfs2_write_ctxt *wc,
1338 loff_t pos, unsigned len, int alloc)
9517bac6 1339{
3a307ffc 1340 struct ocfs2_write_cluster_desc *desc;
9517bac6 1341
3a307ffc
MF
1342 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1343 wc->w_target_to = wc->w_target_from + len;
1344
1345 if (alloc == 0)
1346 return;
1347
1348 /*
1349 * Allocating write - we may have different boundaries based
1350 * on page size and cluster size.
1351 *
1352 * NOTE: We can no longer compute one value from the other as
1353 * the actual write length and user provided length may be
1354 * different.
1355 */
9517bac6 1356
3a307ffc
MF
1357 if (wc->w_large_pages) {
1358 /*
1359 * We only care about the 1st and last cluster within
b27b7cbc 1360 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1361 * value may be extended out to the start/end of a
1362 * newly allocated cluster.
1363 */
1364 desc = &wc->w_desc[0];
e7432675 1365 if (desc->c_needs_zero)
3a307ffc
MF
1366 ocfs2_figure_cluster_boundaries(osb,
1367 desc->c_cpos,
1368 &wc->w_target_from,
1369 NULL);
1370
1371 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1372 if (desc->c_needs_zero)
3a307ffc
MF
1373 ocfs2_figure_cluster_boundaries(osb,
1374 desc->c_cpos,
1375 NULL,
1376 &wc->w_target_to);
1377 } else {
1378 wc->w_target_from = 0;
1379 wc->w_target_to = PAGE_CACHE_SIZE;
1380 }
9517bac6
MF
1381}
1382
0d172baa
MF
1383/*
1384 * Populate each single-cluster write descriptor in the write context
1385 * with information about the i/o to be done.
b27b7cbc
MF
1386 *
1387 * Returns the number of clusters that will have to be allocated, as
1388 * well as a worst case estimate of the number of extent records that
1389 * would have to be created during a write to an unwritten region.
0d172baa
MF
1390 */
1391static int ocfs2_populate_write_desc(struct inode *inode,
1392 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1393 unsigned int *clusters_to_alloc,
1394 unsigned int *extents_to_split)
9517bac6 1395{
0d172baa 1396 int ret;
3a307ffc 1397 struct ocfs2_write_cluster_desc *desc;
0d172baa 1398 unsigned int num_clusters = 0;
b27b7cbc 1399 unsigned int ext_flags = 0;
0d172baa
MF
1400 u32 phys = 0;
1401 int i;
9517bac6 1402
b27b7cbc
MF
1403 *clusters_to_alloc = 0;
1404 *extents_to_split = 0;
1405
3a307ffc
MF
1406 for (i = 0; i < wc->w_clen; i++) {
1407 desc = &wc->w_desc[i];
1408 desc->c_cpos = wc->w_cpos + i;
1409
1410 if (num_clusters == 0) {
b27b7cbc
MF
1411 /*
1412 * Need to look up the next extent record.
1413 */
3a307ffc 1414 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1415 &num_clusters, &ext_flags);
3a307ffc
MF
1416 if (ret) {
1417 mlog_errno(ret);
607d44aa 1418 goto out;
3a307ffc 1419 }
b27b7cbc 1420
293b2f70
TM
1421 /* We should already CoW the refcountd extent. */
1422 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1423
b27b7cbc
MF
1424 /*
1425 * Assume worst case - that we're writing in
1426 * the middle of the extent.
1427 *
1428 * We can assume that the write proceeds from
1429 * left to right, in which case the extent
1430 * insert code is smart enough to coalesce the
1431 * next splits into the previous records created.
1432 */
1433 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1434 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1435 } else if (phys) {
1436 /*
1437 * Only increment phys if it doesn't describe
1438 * a hole.
1439 */
1440 phys++;
1441 }
1442
e7432675
SM
1443 /*
1444 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1445 * file that got extended. w_first_new_cpos tells us
1446 * where the newly allocated clusters are so we can
1447 * zero them.
1448 */
1449 if (desc->c_cpos >= wc->w_first_new_cpos) {
1450 BUG_ON(phys == 0);
1451 desc->c_needs_zero = 1;
1452 }
1453
3a307ffc
MF
1454 desc->c_phys = phys;
1455 if (phys == 0) {
1456 desc->c_new = 1;
e7432675 1457 desc->c_needs_zero = 1;
0d172baa 1458 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1459 }
e7432675
SM
1460
1461 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1462 desc->c_unwritten = 1;
e7432675
SM
1463 desc->c_needs_zero = 1;
1464 }
3a307ffc
MF
1465
1466 num_clusters--;
9517bac6
MF
1467 }
1468
0d172baa
MF
1469 ret = 0;
1470out:
1471 return ret;
1472}
1473
1afc32b9
MF
1474static int ocfs2_write_begin_inline(struct address_space *mapping,
1475 struct inode *inode,
1476 struct ocfs2_write_ctxt *wc)
1477{
1478 int ret;
1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 struct page *page;
1481 handle_t *handle;
1482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
1484 page = find_or_create_page(mapping, 0, GFP_NOFS);
1485 if (!page) {
1486 ret = -ENOMEM;
1487 mlog_errno(ret);
1488 goto out;
1489 }
1490 /*
1491 * If we don't set w_num_pages then this page won't get unlocked
1492 * and freed on cleanup of the write context.
1493 */
1494 wc->w_pages[0] = wc->w_target_page = page;
1495 wc->w_num_pages = 1;
1496
1497 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1498 if (IS_ERR(handle)) {
1499 ret = PTR_ERR(handle);
1500 mlog_errno(ret);
1501 goto out;
1502 }
1503
0cf2f763 1504 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1505 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1506 if (ret) {
1507 ocfs2_commit_trans(osb, handle);
1508
1509 mlog_errno(ret);
1510 goto out;
1511 }
1512
1513 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1514 ocfs2_set_inode_data_inline(inode, di);
1515
1516 if (!PageUptodate(page)) {
1517 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1518 if (ret) {
1519 ocfs2_commit_trans(osb, handle);
1520
1521 goto out;
1522 }
1523 }
1524
1525 wc->w_handle = handle;
1526out:
1527 return ret;
1528}
1529
1530int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1531{
1532 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1533
0d8a4e0c 1534 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1535 return 1;
1536 return 0;
1537}
1538
1539static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1540 struct inode *inode, loff_t pos,
1541 unsigned len, struct page *mmap_page,
1542 struct ocfs2_write_ctxt *wc)
1543{
1544 int ret, written = 0;
1545 loff_t end = pos + len;
1546 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1547 struct ocfs2_dinode *di = NULL;
1afc32b9 1548
9558156b
TM
1549 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1550 len, (unsigned long long)pos,
1551 oi->ip_dyn_features);
1afc32b9
MF
1552
1553 /*
1554 * Handle inodes which already have inline data 1st.
1555 */
1556 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1557 if (mmap_page == NULL &&
1558 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1559 goto do_inline_write;
1560
1561 /*
1562 * The write won't fit - we have to give this inode an
1563 * inline extent list now.
1564 */
1565 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1566 if (ret)
1567 mlog_errno(ret);
1568 goto out;
1569 }
1570
1571 /*
1572 * Check whether the inode can accept inline data.
1573 */
1574 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1575 return 0;
1576
1577 /*
1578 * Check whether the write can fit.
1579 */
d9ae49d6
TY
1580 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1581 if (mmap_page ||
1582 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1583 return 0;
1584
1585do_inline_write:
1586 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1587 if (ret) {
1588 mlog_errno(ret);
1589 goto out;
1590 }
1591
1592 /*
1593 * This signals to the caller that the data can be written
1594 * inline.
1595 */
1596 written = 1;
1597out:
1598 return written ? written : ret;
1599}
1600
65ed39d6
MF
1601/*
1602 * This function only does anything for file systems which can't
1603 * handle sparse files.
1604 *
1605 * What we want to do here is fill in any hole between the current end
1606 * of allocation and the end of our write. That way the rest of the
1607 * write path can treat it as an non-allocating write, which has no
1608 * special case code for sparse/nonsparse files.
1609 */
5693486b
JB
1610static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1611 struct buffer_head *di_bh,
1612 loff_t pos, unsigned len,
65ed39d6
MF
1613 struct ocfs2_write_ctxt *wc)
1614{
1615 int ret;
65ed39d6
MF
1616 loff_t newsize = pos + len;
1617
5693486b 1618 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1619
1620 if (newsize <= i_size_read(inode))
1621 return 0;
1622
5693486b 1623 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1624 if (ret)
1625 mlog_errno(ret);
1626
e7432675
SM
1627 wc->w_first_new_cpos =
1628 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1629
65ed39d6
MF
1630 return ret;
1631}
1632
5693486b
JB
1633static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1634 loff_t pos)
1635{
1636 int ret = 0;
1637
1638 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1639 if (pos > i_size_read(inode))
1640 ret = ocfs2_zero_extend(inode, di_bh, pos);
1641
1642 return ret;
1643}
1644
50308d81
TM
1645/*
1646 * Try to flush truncate logs if we can free enough clusters from it.
1647 * As for return value, "< 0" means error, "0" no space and "1" means
1648 * we have freed enough spaces and let the caller try to allocate again.
1649 */
1650static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1651 unsigned int needed)
1652{
1653 tid_t target;
1654 int ret = 0;
1655 unsigned int truncated_clusters;
1656
1657 mutex_lock(&osb->osb_tl_inode->i_mutex);
1658 truncated_clusters = osb->truncated_clusters;
1659 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1660
1661 /*
1662 * Check whether we can succeed in allocating if we free
1663 * the truncate log.
1664 */
1665 if (truncated_clusters < needed)
1666 goto out;
1667
1668 ret = ocfs2_flush_truncate_log(osb);
1669 if (ret) {
1670 mlog_errno(ret);
1671 goto out;
1672 }
1673
1674 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1675 jbd2_log_wait_commit(osb->journal->j_journal, target);
1676 ret = 1;
1677 }
1678out:
1679 return ret;
1680}
1681
0378da0f
TM
1682int ocfs2_write_begin_nolock(struct file *filp,
1683 struct address_space *mapping,
0d172baa
MF
1684 loff_t pos, unsigned len, unsigned flags,
1685 struct page **pagep, void **fsdata,
1686 struct buffer_head *di_bh, struct page *mmap_page)
1687{
e7432675 1688 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1689 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1690 struct ocfs2_write_ctxt *wc;
1691 struct inode *inode = mapping->host;
1692 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1693 struct ocfs2_dinode *di;
1694 struct ocfs2_alloc_context *data_ac = NULL;
1695 struct ocfs2_alloc_context *meta_ac = NULL;
1696 handle_t *handle;
f99b9b7c 1697 struct ocfs2_extent_tree et;
50308d81 1698 int try_free = 1, ret1;
0d172baa 1699
50308d81 1700try_again:
0d172baa
MF
1701 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1702 if (ret) {
1703 mlog_errno(ret);
1704 return ret;
1705 }
1706
1afc32b9
MF
1707 if (ocfs2_supports_inline_data(osb)) {
1708 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1709 mmap_page, wc);
1710 if (ret == 1) {
1711 ret = 0;
1712 goto success;
1713 }
1714 if (ret < 0) {
1715 mlog_errno(ret);
1716 goto out;
1717 }
1718 }
1719
5693486b
JB
1720 if (ocfs2_sparse_alloc(osb))
1721 ret = ocfs2_zero_tail(inode, di_bh, pos);
1722 else
1723 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1724 wc);
65ed39d6
MF
1725 if (ret) {
1726 mlog_errno(ret);
1727 goto out;
1728 }
1729
293b2f70
TM
1730 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1731 if (ret < 0) {
1732 mlog_errno(ret);
1733 goto out;
1734 } else if (ret == 1) {
50308d81 1735 clusters_need = wc->w_clen;
c7dd3392 1736 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1737 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1738 if (ret) {
1739 mlog_errno(ret);
1740 goto out;
1741 }
1742 }
1743
b27b7cbc
MF
1744 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1745 &extents_to_split);
0d172baa
MF
1746 if (ret) {
1747 mlog_errno(ret);
1748 goto out;
1749 }
50308d81 1750 clusters_need += clusters_to_alloc;
0d172baa
MF
1751
1752 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1753
9558156b
TM
1754 trace_ocfs2_write_begin_nolock(
1755 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1756 (long long)i_size_read(inode),
1757 le32_to_cpu(di->i_clusters),
1758 pos, len, flags, mmap_page,
1759 clusters_to_alloc, extents_to_split);
1760
3a307ffc
MF
1761 /*
1762 * We set w_target_from, w_target_to here so that
1763 * ocfs2_write_end() knows which range in the target page to
1764 * write out. An allocation requires that we write the entire
1765 * cluster range.
1766 */
b27b7cbc 1767 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1768 /*
1769 * XXX: We are stretching the limits of
b27b7cbc 1770 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1771 * the work to be done.
1772 */
5e404e9e
JB
1773 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1774 wc->w_di_bh);
f99b9b7c 1775 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1776 clusters_to_alloc, extents_to_split,
f99b9b7c 1777 &data_ac, &meta_ac);
9517bac6
MF
1778 if (ret) {
1779 mlog_errno(ret);
607d44aa 1780 goto out;
9517bac6
MF
1781 }
1782
4fe370af
MF
1783 if (data_ac)
1784 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1785
811f933d 1786 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 1787 &di->id2.i_list);
3a307ffc 1788
9517bac6
MF
1789 }
1790
e7432675
SM
1791 /*
1792 * We have to zero sparse allocated clusters, unwritten extent clusters,
1793 * and non-sparse clusters we just extended. For non-sparse writes,
1794 * we know zeros will only be needed in the first and/or last cluster.
1795 */
1796 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1797 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1798 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1799 cluster_of_pages = 1;
1800 else
1801 cluster_of_pages = 0;
1802
1803 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1804
9517bac6
MF
1805 handle = ocfs2_start_trans(osb, credits);
1806 if (IS_ERR(handle)) {
1807 ret = PTR_ERR(handle);
1808 mlog_errno(ret);
607d44aa 1809 goto out;
9517bac6
MF
1810 }
1811
3a307ffc
MF
1812 wc->w_handle = handle;
1813
5dd4056d
CH
1814 if (clusters_to_alloc) {
1815 ret = dquot_alloc_space_nodirty(inode,
1816 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1817 if (ret)
1818 goto out_commit;
a90714c1 1819 }
3a307ffc
MF
1820 /*
1821 * We don't want this to fail in ocfs2_write_end(), so do it
1822 * here.
1823 */
0cf2f763 1824 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1825 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1826 if (ret) {
9517bac6 1827 mlog_errno(ret);
a90714c1 1828 goto out_quota;
9517bac6
MF
1829 }
1830
3a307ffc
MF
1831 /*
1832 * Fill our page array first. That way we've grabbed enough so
1833 * that we can zero and flush if we error after adding the
1834 * extent.
1835 */
693c241a 1836 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1837 cluster_of_pages, mmap_page);
5cffff9e 1838 if (ret && ret != -EAGAIN) {
9517bac6 1839 mlog_errno(ret);
a90714c1 1840 goto out_quota;
9517bac6
MF
1841 }
1842
5cffff9e
WW
1843 /*
1844 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1845 * the target page. In this case, we exit with no error and no target
1846 * page. This will trigger the caller, page_mkwrite(), to re-try
1847 * the operation.
1848 */
1849 if (ret == -EAGAIN) {
1850 BUG_ON(wc->w_target_page);
1851 ret = 0;
1852 goto out_quota;
1853 }
1854
0d172baa
MF
1855 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1856 len);
1857 if (ret) {
1858 mlog_errno(ret);
a90714c1 1859 goto out_quota;
9517bac6 1860 }
9517bac6 1861
3a307ffc
MF
1862 if (data_ac)
1863 ocfs2_free_alloc_context(data_ac);
1864 if (meta_ac)
1865 ocfs2_free_alloc_context(meta_ac);
9517bac6 1866
1afc32b9 1867success:
3a307ffc
MF
1868 *pagep = wc->w_target_page;
1869 *fsdata = wc;
1870 return 0;
a90714c1
JK
1871out_quota:
1872 if (clusters_to_alloc)
5dd4056d 1873 dquot_free_space(inode,
a90714c1 1874 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1875out_commit:
1876 ocfs2_commit_trans(osb, handle);
1877
9517bac6 1878out:
3a307ffc
MF
1879 ocfs2_free_write_ctxt(wc);
1880
b1214e47 1881 if (data_ac) {
9517bac6 1882 ocfs2_free_alloc_context(data_ac);
b1214e47
X
1883 data_ac = NULL;
1884 }
1885 if (meta_ac) {
9517bac6 1886 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
1887 meta_ac = NULL;
1888 }
50308d81
TM
1889
1890 if (ret == -ENOSPC && try_free) {
1891 /*
1892 * Try to free some truncate log so that we can have enough
1893 * clusters to allocate.
1894 */
1895 try_free = 0;
1896
1897 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1898 if (ret1 == 1)
1899 goto try_again;
1900
1901 if (ret1 < 0)
1902 mlog_errno(ret1);
1903 }
1904
3a307ffc
MF
1905 return ret;
1906}
1907
b6af1bcd
NP
1908static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1909 loff_t pos, unsigned len, unsigned flags,
1910 struct page **pagep, void **fsdata)
607d44aa
MF
1911{
1912 int ret;
1913 struct buffer_head *di_bh = NULL;
1914 struct inode *inode = mapping->host;
1915
e63aecb6 1916 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1917 if (ret) {
1918 mlog_errno(ret);
1919 return ret;
1920 }
1921
1922 /*
1923 * Take alloc sem here to prevent concurrent lookups. That way
1924 * the mapping, zeroing and tree manipulation within
1925 * ocfs2_write() will be safe against ->readpage(). This
1926 * should also serve to lock out allocation from a shared
1927 * writeable region.
1928 */
1929 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1930
0378da0f 1931 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 1932 fsdata, di_bh, NULL);
607d44aa
MF
1933 if (ret) {
1934 mlog_errno(ret);
c934a92d 1935 goto out_fail;
607d44aa
MF
1936 }
1937
1938 brelse(di_bh);
1939
1940 return 0;
1941
607d44aa
MF
1942out_fail:
1943 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1944
1945 brelse(di_bh);
e63aecb6 1946 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1947
1948 return ret;
1949}
1950
1afc32b9
MF
1951static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1952 unsigned len, unsigned *copied,
1953 struct ocfs2_dinode *di,
1954 struct ocfs2_write_ctxt *wc)
1955{
1956 void *kaddr;
1957
1958 if (unlikely(*copied < len)) {
1959 if (!PageUptodate(wc->w_target_page)) {
1960 *copied = 0;
1961 return;
1962 }
1963 }
1964
c4bc8dcb 1965 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1966 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1967 kunmap_atomic(kaddr);
1afc32b9 1968
9558156b
TM
1969 trace_ocfs2_write_end_inline(
1970 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1971 (unsigned long long)pos, *copied,
1972 le16_to_cpu(di->id2.i_data.id_count),
1973 le16_to_cpu(di->i_dyn_features));
1974}
1975
7307de80
MF
1976int ocfs2_write_end_nolock(struct address_space *mapping,
1977 loff_t pos, unsigned len, unsigned copied,
1978 struct page *page, void *fsdata)
3a307ffc
MF
1979{
1980 int i;
1981 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1982 struct inode *inode = mapping->host;
1983 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1984 struct ocfs2_write_ctxt *wc = fsdata;
1985 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1986 handle_t *handle = wc->w_handle;
1987 struct page *tmppage;
1988
1afc32b9
MF
1989 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1990 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1991 goto out_write_size;
1992 }
1993
3a307ffc
MF
1994 if (unlikely(copied < len)) {
1995 if (!PageUptodate(wc->w_target_page))
1996 copied = 0;
1997
1998 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1999 start+len);
2000 }
2001 flush_dcache_page(wc->w_target_page);
2002
2003 for(i = 0; i < wc->w_num_pages; i++) {
2004 tmppage = wc->w_pages[i];
2005
2006 if (tmppage == wc->w_target_page) {
2007 from = wc->w_target_from;
2008 to = wc->w_target_to;
2009
2010 BUG_ON(from > PAGE_CACHE_SIZE ||
2011 to > PAGE_CACHE_SIZE ||
2012 to < from);
2013 } else {
2014 /*
2015 * Pages adjacent to the target (if any) imply
2016 * a hole-filling write in which case we want
2017 * to flush their entire range.
2018 */
2019 from = 0;
2020 to = PAGE_CACHE_SIZE;
2021 }
2022
961cecbe 2023 if (page_has_buffers(tmppage)) {
53ef99ca 2024 if (ocfs2_should_order_data(inode))
2b4e30fb 2025 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2026 block_commit_write(tmppage, from, to);
2027 }
3a307ffc
MF
2028 }
2029
1afc32b9 2030out_write_size:
3a307ffc 2031 pos += copied;
f17c20dd 2032 if (pos > i_size_read(inode)) {
3a307ffc
MF
2033 i_size_write(inode, pos);
2034 mark_inode_dirty(inode);
2035 }
2036 inode->i_blocks = ocfs2_inode_sector_count(inode);
2037 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2038 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2039 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2040 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2931cdcb 2041 ocfs2_update_inode_fsync_trans(handle, inode, 1);
3a307ffc
MF
2042 ocfs2_journal_dirty(handle, wc->w_di_bh);
2043
2044 ocfs2_commit_trans(osb, handle);
59a5e416 2045
b27b7cbc
MF
2046 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2047
607d44aa
MF
2048 ocfs2_free_write_ctxt(wc);
2049
2050 return copied;
2051}
2052
b6af1bcd
NP
2053static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2054 loff_t pos, unsigned len, unsigned copied,
2055 struct page *page, void *fsdata)
607d44aa
MF
2056{
2057 int ret;
2058 struct inode *inode = mapping->host;
2059
2060 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2061
3a307ffc 2062 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2063 ocfs2_inode_unlock(inode, 1);
9517bac6 2064
607d44aa 2065 return ret;
9517bac6
MF
2066}
2067
f5e54d6e 2068const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2069 .readpage = ocfs2_readpage,
2070 .readpages = ocfs2_readpages,
2071 .writepage = ocfs2_writepage,
2072 .write_begin = ocfs2_write_begin,
2073 .write_end = ocfs2_write_end,
2074 .bmap = ocfs2_bmap,
1fca3a05 2075 .direct_IO = ocfs2_direct_IO,
41ecc345 2076 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2077 .releasepage = ocfs2_releasepage,
2078 .migratepage = buffer_migrate_page,
2079 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2080 .error_remove_page = generic_error_remove_page,
ccd979bd 2081};