ocfs2: implement ocfs2_direct_IO_write
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
ccd979bd 32
ccd979bd
MF
33#include <cluster/masklog.h>
34
35#include "ocfs2.h"
36
37#include "alloc.h"
38#include "aops.h"
39#include "dlmglue.h"
40#include "extent_map.h"
41#include "file.h"
42#include "inode.h"
43#include "journal.h"
9517bac6 44#include "suballoc.h"
ccd979bd
MF
45#include "super.h"
46#include "symlink.h"
293b2f70 47#include "refcounttree.h"
9558156b 48#include "ocfs2_trace.h"
ccd979bd
MF
49
50#include "buffer_head_io.h"
24c40b32
JQ
51#include "dir.h"
52#include "namei.h"
53#include "sysfile.h"
ccd979bd
MF
54
55static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
56 struct buffer_head *bh_result, int create)
57{
58 int err = -EIO;
59 int status;
60 struct ocfs2_dinode *fe = NULL;
61 struct buffer_head *bh = NULL;
62 struct buffer_head *buffer_cache_bh = NULL;
63 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
64 void *kaddr;
65
9558156b
TM
66 trace_ocfs2_symlink_get_block(
67 (unsigned long long)OCFS2_I(inode)->ip_blkno,
68 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
69
70 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
71
72 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
73 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
74 (unsigned long long)iblock);
75 goto bail;
76 }
77
b657c95c 78 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
79 if (status < 0) {
80 mlog_errno(status);
81 goto bail;
82 }
83 fe = (struct ocfs2_dinode *) bh->b_data;
84
ccd979bd
MF
85 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
86 le32_to_cpu(fe->i_clusters))) {
7391a294 87 err = -ENOMEM;
ccd979bd
MF
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
90 goto bail;
91 }
92
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
97 iblock;
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
7391a294 100 err = -ENOMEM;
ccd979bd
MF
101 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
102 goto bail;
103 }
104
105 /* we haven't locked out transactions, so a commit
106 * could've happened. Since we've got a reference on
107 * the bh, even if it commits while we're doing the
108 * copy, the data is still good. */
109 if (buffer_jbd(buffer_cache_bh)
110 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 111 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
112 if (!kaddr) {
113 mlog(ML_ERROR, "couldn't kmap!\n");
114 goto bail;
115 }
116 memcpy(kaddr + (bh_result->b_size * iblock),
117 buffer_cache_bh->b_data,
118 bh_result->b_size);
c4bc8dcb 119 kunmap_atomic(kaddr);
ccd979bd
MF
120 set_buffer_uptodate(bh_result);
121 }
122 brelse(buffer_cache_bh);
123 }
124
125 map_bh(bh_result, inode->i_sb,
126 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
127
128 err = 0;
129
130bail:
a81cb88b 131 brelse(bh);
ccd979bd 132
ccd979bd
MF
133 return err;
134}
135
6f70fa51
TM
136int ocfs2_get_block(struct inode *inode, sector_t iblock,
137 struct buffer_head *bh_result, int create)
ccd979bd
MF
138{
139 int err = 0;
49cb8d2d 140 unsigned int ext_flags;
628a24f5
MF
141 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
142 u64 p_blkno, count, past_eof;
25baf2da 143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 144
9558156b
TM
145 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
146 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
147
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
151
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
155 goto bail;
156 }
157
628a24f5 158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 159 &ext_flags);
ccd979bd
MF
160 if (err) {
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
ccd979bd
MF
164 goto bail;
165 }
166
628a24f5
MF
167 if (max_blocks < count)
168 count = max_blocks;
169
25baf2da
MF
170 /*
171 * ocfs2 never allocates in this function - the only time we
172 * need to use BH_New is when we're extending i_size on a file
173 * system which doesn't support holes, in which case BH_New
ebdec241 174 * allows __block_write_begin() to zero.
c0420ad2
CL
175 *
176 * If we see this on a sparse file system, then a truncate has
177 * raced us and removed the cluster. In this case, we clear
178 * the buffers dirty and uptodate bits and let the buffer code
179 * ignore it as a hole.
25baf2da 180 */
c0420ad2
CL
181 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
182 clear_buffer_dirty(bh_result);
183 clear_buffer_uptodate(bh_result);
184 goto bail;
185 }
25baf2da 186
49cb8d2d
MF
187 /* Treat the unwritten extent as a hole for zeroing purposes. */
188 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
189 map_bh(bh_result, inode->i_sb, p_blkno);
190
628a24f5
MF
191 bh_result->b_size = count << inode->i_blkbits;
192
25baf2da
MF
193 if (!ocfs2_sparse_alloc(osb)) {
194 if (p_blkno == 0) {
195 err = -EIO;
196 mlog(ML_ERROR,
197 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
198 (unsigned long long)iblock,
199 (unsigned long long)p_blkno,
200 (unsigned long long)OCFS2_I(inode)->ip_blkno);
201 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
202 dump_stack();
1f4cea37 203 goto bail;
25baf2da 204 }
25baf2da 205 }
ccd979bd 206
5693486b 207 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
208
209 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
210 (unsigned long long)past_eof);
5693486b
JB
211 if (create && (iblock >= past_eof))
212 set_buffer_new(bh_result);
213
ccd979bd
MF
214bail:
215 if (err < 0)
216 err = -EIO;
217
ccd979bd
MF
218 return err;
219}
220
1afc32b9
MF
221int ocfs2_read_inline_data(struct inode *inode, struct page *page,
222 struct buffer_head *di_bh)
6798d35a
MF
223{
224 void *kaddr;
d2849fb2 225 loff_t size;
6798d35a
MF
226 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
227
228 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
229 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
230 (unsigned long long)OCFS2_I(inode)->ip_blkno);
231 return -EROFS;
232 }
233
234 size = i_size_read(inode);
235
236 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 237 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 238 ocfs2_error(inode->i_sb,
d2849fb2
JK
239 "Inode %llu has with inline data has bad size: %Lu",
240 (unsigned long long)OCFS2_I(inode)->ip_blkno,
241 (unsigned long long)size);
6798d35a
MF
242 return -EROFS;
243 }
244
c4bc8dcb 245 kaddr = kmap_atomic(page);
6798d35a
MF
246 if (size)
247 memcpy(kaddr, di->id2.i_data.id_data, size);
248 /* Clear the remaining part of the page */
249 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
250 flush_dcache_page(page);
c4bc8dcb 251 kunmap_atomic(kaddr);
6798d35a
MF
252
253 SetPageUptodate(page);
254
255 return 0;
256}
257
258static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
259{
260 int ret;
261 struct buffer_head *di_bh = NULL;
6798d35a
MF
262
263 BUG_ON(!PageLocked(page));
86c838b0 264 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 265
b657c95c 266 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
267 if (ret) {
268 mlog_errno(ret);
269 goto out;
270 }
271
272 ret = ocfs2_read_inline_data(inode, page, di_bh);
273out:
274 unlock_page(page);
275
276 brelse(di_bh);
277 return ret;
278}
279
ccd979bd
MF
280static int ocfs2_readpage(struct file *file, struct page *page)
281{
282 struct inode *inode = page->mapping->host;
6798d35a 283 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
284 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
285 int ret, unlock = 1;
286
9558156b
TM
287 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
288 (page ? page->index : 0));
ccd979bd 289
e63aecb6 290 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
291 if (ret != 0) {
292 if (ret == AOP_TRUNCATED_PAGE)
293 unlock = 0;
294 mlog_errno(ret);
295 goto out;
296 }
297
6798d35a 298 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
299 /*
300 * Unlock the page and cycle ip_alloc_sem so that we don't
301 * busyloop waiting for ip_alloc_sem to unlock
302 */
e9dfc0b2 303 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
304 unlock_page(page);
305 unlock = 0;
306 down_read(&oi->ip_alloc_sem);
307 up_read(&oi->ip_alloc_sem);
e63aecb6 308 goto out_inode_unlock;
e9dfc0b2 309 }
ccd979bd
MF
310
311 /*
312 * i_size might have just been updated as we grabed the meta lock. We
313 * might now be discovering a truncate that hit on another node.
314 * block_read_full_page->get_block freaks out if it is asked to read
315 * beyond the end of a file, so we check here. Callers
54cb8821 316 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
317 * and notice that the page they just read isn't needed.
318 *
319 * XXX sys_readahead() seems to get that wrong?
320 */
321 if (start >= i_size_read(inode)) {
eebd2aa3 322 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
323 SetPageUptodate(page);
324 ret = 0;
325 goto out_alloc;
326 }
327
6798d35a
MF
328 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
329 ret = ocfs2_readpage_inline(inode, page);
330 else
331 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
332 unlock = 0;
333
ccd979bd
MF
334out_alloc:
335 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
336out_inode_unlock:
337 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
338out:
339 if (unlock)
340 unlock_page(page);
ccd979bd
MF
341 return ret;
342}
343
628a24f5
MF
344/*
345 * This is used only for read-ahead. Failures or difficult to handle
346 * situations are safe to ignore.
347 *
348 * Right now, we don't bother with BH_Boundary - in-inode extent lists
349 * are quite large (243 extents on 4k blocks), so most inodes don't
350 * grow out to a tree. If need be, detecting boundary extents could
351 * trivially be added in a future version of ocfs2_get_block().
352 */
353static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
354 struct list_head *pages, unsigned nr_pages)
355{
356 int ret, err = -EIO;
357 struct inode *inode = mapping->host;
358 struct ocfs2_inode_info *oi = OCFS2_I(inode);
359 loff_t start;
360 struct page *last;
361
362 /*
363 * Use the nonblocking flag for the dlm code to avoid page
364 * lock inversion, but don't bother with retrying.
365 */
366 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
367 if (ret)
368 return err;
369
370 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
371 ocfs2_inode_unlock(inode, 0);
372 return err;
373 }
374
375 /*
376 * Don't bother with inline-data. There isn't anything
377 * to read-ahead in that case anyway...
378 */
379 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
380 goto out_unlock;
381
382 /*
383 * Check whether a remote node truncated this file - we just
384 * drop out in that case as it's not worth handling here.
385 */
386 last = list_entry(pages->prev, struct page, lru);
387 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
388 if (start >= i_size_read(inode))
389 goto out_unlock;
390
391 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
392
393out_unlock:
394 up_read(&oi->ip_alloc_sem);
395 ocfs2_inode_unlock(inode, 0);
396
397 return err;
398}
399
ccd979bd
MF
400/* Note: Because we don't support holes, our allocation has
401 * already happened (allocation writes zeros to the file data)
402 * so we don't have to worry about ordered writes in
403 * ocfs2_writepage.
404 *
405 * ->writepage is called during the process of invalidating the page cache
406 * during blocked lock processing. It can't block on any cluster locks
407 * to during block mapping. It's relying on the fact that the block
408 * mapping can't have disappeared under the dirty pages that it is
409 * being asked to write back.
410 */
411static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
412{
9558156b
TM
413 trace_ocfs2_writepage(
414 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
415 page->index);
ccd979bd 416
9558156b 417 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
418}
419
ccd979bd
MF
420/* Taken from ext3. We don't necessarily need the full blown
421 * functionality yet, but IMHO it's better to cut and paste the whole
422 * thing so we can avoid introducing our own bugs (and easily pick up
423 * their fixes when they happen) --Mark */
60b11392
MF
424int walk_page_buffers( handle_t *handle,
425 struct buffer_head *head,
426 unsigned from,
427 unsigned to,
428 int *partial,
429 int (*fn)( handle_t *handle,
430 struct buffer_head *bh))
ccd979bd
MF
431{
432 struct buffer_head *bh;
433 unsigned block_start, block_end;
434 unsigned blocksize = head->b_size;
435 int err, ret = 0;
436 struct buffer_head *next;
437
438 for ( bh = head, block_start = 0;
439 ret == 0 && (bh != head || !block_start);
440 block_start = block_end, bh = next)
441 {
442 next = bh->b_this_page;
443 block_end = block_start + blocksize;
444 if (block_end <= from || block_start >= to) {
445 if (partial && !buffer_uptodate(bh))
446 *partial = 1;
447 continue;
448 }
449 err = (*fn)(handle, bh);
450 if (!ret)
451 ret = err;
452 }
453 return ret;
454}
455
ccd979bd
MF
456static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
457{
458 sector_t status;
459 u64 p_blkno = 0;
460 int err = 0;
461 struct inode *inode = mapping->host;
462
9558156b
TM
463 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
464 (unsigned long long)block);
ccd979bd
MF
465
466 /* We don't need to lock journal system files, since they aren't
467 * accessed concurrently from multiple nodes.
468 */
469 if (!INODE_JOURNAL(inode)) {
e63aecb6 470 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
471 if (err) {
472 if (err != -ENOENT)
473 mlog_errno(err);
474 goto bail;
475 }
476 down_read(&OCFS2_I(inode)->ip_alloc_sem);
477 }
478
6798d35a
MF
479 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
480 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
481 NULL);
ccd979bd
MF
482
483 if (!INODE_JOURNAL(inode)) {
484 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 485 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
486 }
487
488 if (err) {
489 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
490 (unsigned long long)block);
491 mlog_errno(err);
492 goto bail;
493 }
494
ccd979bd
MF
495bail:
496 status = err ? 0 : p_blkno;
497
ccd979bd
MF
498 return status;
499}
500
501/*
502 * TODO: Make this into a generic get_blocks function.
503 *
504 * From do_direct_io in direct-io.c:
505 * "So what we do is to permit the ->get_blocks function to populate
506 * bh.b_size with the size of IO which is permitted at this offset and
507 * this i_blkbits."
508 *
509 * This function is called directly from get_more_blocks in direct-io.c.
510 *
511 * called like this: dio->get_blocks(dio->inode, fs_startblk,
512 * fs_count, map_bh, dio->rw == WRITE);
5fe878ae
CH
513 *
514 * Note that we never bother to allocate blocks here, and thus ignore the
515 * create argument.
ccd979bd
MF
516 */
517static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
ccd979bd
MF
518 struct buffer_head *bh_result, int create)
519{
520 int ret;
4f902c37 521 u64 p_blkno, inode_blocks, contig_blocks;
49cb8d2d 522 unsigned int ext_flags;
184d7d20 523 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1d8fa7a2 524 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
ccd979bd 525
ccd979bd
MF
526 /* This function won't even be called if the request isn't all
527 * nicely aligned and of the right size, so there's no need
528 * for us to check any of that. */
529
25baf2da 530 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
564f8a32 531
ccd979bd
MF
532 /* This figures out the size of the next contiguous block, and
533 * our logical offset */
363041a5 534 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
49cb8d2d 535 &contig_blocks, &ext_flags);
ccd979bd
MF
536 if (ret) {
537 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
538 (unsigned long long)iblock);
539 ret = -EIO;
540 goto bail;
541 }
542
cbaee472
TM
543 /* We should already CoW the refcounted extent in case of create. */
544 BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
545
25baf2da
MF
546 /*
547 * get_more_blocks() expects us to describe a hole by clearing
548 * the mapped bit on bh_result().
49cb8d2d
MF
549 *
550 * Consider an unwritten extent as a hole.
25baf2da 551 */
49cb8d2d 552 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da 553 map_bh(bh_result, inode->i_sb, p_blkno);
5fe878ae 554 else
25baf2da 555 clear_buffer_mapped(bh_result);
ccd979bd
MF
556
557 /* make sure we don't map more than max_blocks blocks here as
558 that's all the kernel will handle at this point. */
559 if (max_blocks < contig_blocks)
560 contig_blocks = max_blocks;
561 bh_result->b_size = contig_blocks << blocksize_bits;
562bail:
563 return ret;
564}
565
2bd63216 566/*
ccd979bd 567 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
bd5fe6c5
CH
568 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
569 * to protect io on one node from truncation on another.
ccd979bd
MF
570 */
571static void ocfs2_dio_end_io(struct kiocb *iocb,
572 loff_t offset,
573 ssize_t bytes,
7b7a8665 574 void *private)
ccd979bd 575{
496ad9aa 576 struct inode *inode = file_inode(iocb->ki_filp);
7cdfc3a1 577 int level;
ccd979bd
MF
578
579 /* this io's submitter should not have unlocked this before we could */
580 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
7cdfc3a1 581
df2d6f26 582 if (ocfs2_iocb_is_sem_locked(iocb))
39c99f12 583 ocfs2_iocb_clear_sem_locked(iocb);
39c99f12 584
a11f7e63
MF
585 if (ocfs2_iocb_is_unaligned_aio(iocb)) {
586 ocfs2_iocb_clear_unaligned_aio(iocb);
587
c18ceab0 588 mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
a11f7e63
MF
589 }
590
ccd979bd 591 ocfs2_iocb_clear_rw_locked(iocb);
7cdfc3a1
MF
592
593 level = ocfs2_iocb_rw_locked_level(iocb);
7cdfc3a1 594 ocfs2_rw_unlock(inode, level);
ccd979bd
MF
595}
596
03f981cf
JB
597static int ocfs2_releasepage(struct page *page, gfp_t wait)
598{
03f981cf
JB
599 if (!page_has_buffers(page))
600 return 0;
41ecc345 601 return try_to_free_buffers(page);
03f981cf
JB
602}
603
24c40b32
JQ
604static int ocfs2_is_overwrite(struct ocfs2_super *osb,
605 struct inode *inode, loff_t offset)
606{
607 int ret = 0;
608 u32 v_cpos = 0;
609 u32 p_cpos = 0;
610 unsigned int num_clusters = 0;
611 unsigned int ext_flags = 0;
612
613 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
614 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
615 &num_clusters, &ext_flags);
616 if (ret < 0) {
617 mlog_errno(ret);
618 return ret;
619 }
620
621 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
622 return 1;
623
624 return 0;
625}
626
627static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
628 struct iov_iter *iter,
629 loff_t offset)
630{
631 ssize_t ret = 0;
632 ssize_t written = 0;
633 bool orphaned = false;
634 int is_overwrite = 0;
635 struct file *file = iocb->ki_filp;
636 struct inode *inode = file_inode(file)->i_mapping->host;
637 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
638 struct buffer_head *di_bh = NULL;
639 size_t count = iter->count;
640 journal_t *journal = osb->journal->j_journal;
641 u32 zero_len;
642 int cluster_align;
643 loff_t final_size = offset + count;
644 int append_write = offset >= i_size_read(inode) ? 1 : 0;
645 unsigned int num_clusters = 0;
646 unsigned int ext_flags = 0;
647
648 {
649 u64 o = offset;
650
651 zero_len = do_div(o, 1 << osb->s_clustersize_bits);
652 cluster_align = !zero_len;
653 }
654
655 /*
656 * when final_size > inode->i_size, inode->i_size will be
657 * updated after direct write, so add the inode to orphan
658 * dir first.
659 */
660 if (final_size > i_size_read(inode)) {
661 ret = ocfs2_add_inode_to_orphan(osb, inode);
662 if (ret < 0) {
663 mlog_errno(ret);
664 goto out;
665 }
666 orphaned = true;
667 }
668
669 if (append_write) {
670 ret = ocfs2_inode_lock(inode, &di_bh, 1);
671 if (ret < 0) {
672 mlog_errno(ret);
673 goto clean_orphan;
674 }
675
676 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
677 ret = ocfs2_zero_extend(inode, di_bh, offset);
678 else
679 ret = ocfs2_extend_no_holes(inode, di_bh, offset,
680 offset);
681 if (ret < 0) {
682 mlog_errno(ret);
683 ocfs2_inode_unlock(inode, 1);
684 brelse(di_bh);
685 goto clean_orphan;
686 }
687
688 is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
689 if (is_overwrite < 0) {
690 mlog_errno(is_overwrite);
691 ocfs2_inode_unlock(inode, 1);
692 brelse(di_bh);
693 goto clean_orphan;
694 }
695
696 ocfs2_inode_unlock(inode, 1);
697 brelse(di_bh);
698 di_bh = NULL;
699 }
700
701 written = __blockdev_direct_IO(WRITE, iocb, inode, inode->i_sb->s_bdev,
702 iter, offset,
703 ocfs2_direct_IO_get_blocks,
704 ocfs2_dio_end_io, NULL, 0);
705 if (unlikely(written < 0)) {
706 loff_t i_size = i_size_read(inode);
707
708 if (offset + count > i_size) {
709 ret = ocfs2_inode_lock(inode, &di_bh, 1);
710 if (ret < 0) {
711 mlog_errno(ret);
712 goto clean_orphan;
713 }
714
715 if (i_size == i_size_read(inode)) {
716 ret = ocfs2_truncate_file(inode, di_bh,
717 i_size);
718 if (ret < 0) {
719 if (ret != -ENOSPC)
720 mlog_errno(ret);
721
722 ocfs2_inode_unlock(inode, 1);
723 brelse(di_bh);
724 goto clean_orphan;
725 }
726 }
727
728 ocfs2_inode_unlock(inode, 1);
729 brelse(di_bh);
730
731 ret = jbd2_journal_force_commit(journal);
732 if (ret < 0)
733 mlog_errno(ret);
734 }
735 } else if (written < 0 && append_write && !is_overwrite &&
736 !cluster_align) {
737 u32 p_cpos = 0;
738 u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
739
740 ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
741 &num_clusters, &ext_flags);
742 if (ret < 0) {
743 mlog_errno(ret);
744 goto clean_orphan;
745 }
746
747 BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
748
749 ret = blkdev_issue_zeroout(osb->sb->s_bdev,
750 p_cpos << (osb->s_clustersize_bits - 9),
751 zero_len >> 9, GFP_KERNEL, false);
752 if (ret < 0)
753 mlog_errno(ret);
754 }
755
756clean_orphan:
757 if (orphaned) {
758 int tmp_ret;
759 int update_isize = written > 0 ? 1 : 0;
760 loff_t end = update_isize ? offset + written : 0;
761
762 tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
763 update_isize, end);
764 if (tmp_ret < 0) {
765 ret = tmp_ret;
766 goto out;
767 }
768
769 tmp_ret = jbd2_journal_force_commit(journal);
770 if (tmp_ret < 0) {
771 ret = tmp_ret;
772 mlog_errno(tmp_ret);
773 }
774 }
775
776out:
777 if (ret >= 0)
778 ret = written;
779 return ret;
780}
781
ccd979bd
MF
782static ssize_t ocfs2_direct_IO(int rw,
783 struct kiocb *iocb,
d8d3d94b
AV
784 struct iov_iter *iter,
785 loff_t offset)
ccd979bd
MF
786{
787 struct file *file = iocb->ki_filp;
496ad9aa 788 struct inode *inode = file_inode(file)->i_mapping->host;
24c40b32
JQ
789 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
790 int full_coherency = !(osb->s_mount_opt &
791 OCFS2_MOUNT_COHERENCY_BUFFERED);
53013cba 792
6798d35a
MF
793 /*
794 * Fallback to buffered I/O if we see an inode without
795 * extents.
796 */
797 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
798 return 0;
799
24c40b32
JQ
800 /* Fallback to buffered I/O if we are appending and
801 * concurrent O_DIRECT writes are allowed.
802 */
803 if (i_size_read(inode) <= offset && !full_coherency)
b80474b4
TM
804 return 0;
805
24c40b32
JQ
806 if (rw == READ)
807 return __blockdev_direct_IO(rw, iocb, inode,
808 inode->i_sb->s_bdev,
31b14039 809 iter, offset,
c1e8d35e
TM
810 ocfs2_direct_IO_get_blocks,
811 ocfs2_dio_end_io, NULL, 0);
24c40b32
JQ
812 else
813 return ocfs2_direct_IO_write(iocb, iter, offset);
ccd979bd
MF
814}
815
9517bac6
MF
816static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
817 u32 cpos,
818 unsigned int *start,
819 unsigned int *end)
820{
821 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
822
823 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
824 unsigned int cpp;
825
826 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
827
828 cluster_start = cpos % cpp;
829 cluster_start = cluster_start << osb->s_clustersize_bits;
830
831 cluster_end = cluster_start + osb->s_clustersize;
832 }
833
834 BUG_ON(cluster_start > PAGE_SIZE);
835 BUG_ON(cluster_end > PAGE_SIZE);
836
837 if (start)
838 *start = cluster_start;
839 if (end)
840 *end = cluster_end;
841}
842
843/*
844 * 'from' and 'to' are the region in the page to avoid zeroing.
845 *
846 * If pagesize > clustersize, this function will avoid zeroing outside
847 * of the cluster boundary.
848 *
849 * from == to == 0 is code for "zero the entire cluster region"
850 */
851static void ocfs2_clear_page_regions(struct page *page,
852 struct ocfs2_super *osb, u32 cpos,
853 unsigned from, unsigned to)
854{
855 void *kaddr;
856 unsigned int cluster_start, cluster_end;
857
858 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
859
c4bc8dcb 860 kaddr = kmap_atomic(page);
9517bac6
MF
861
862 if (from || to) {
863 if (from > cluster_start)
864 memset(kaddr + cluster_start, 0, from - cluster_start);
865 if (to < cluster_end)
866 memset(kaddr + to, 0, cluster_end - to);
867 } else {
868 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
869 }
870
c4bc8dcb 871 kunmap_atomic(kaddr);
9517bac6
MF
872}
873
4e9563fd
MF
874/*
875 * Nonsparse file systems fully allocate before we get to the write
876 * code. This prevents ocfs2_write() from tagging the write as an
877 * allocating one, which means ocfs2_map_page_blocks() might try to
878 * read-in the blocks at the tail of our file. Avoid reading them by
879 * testing i_size against each block offset.
880 */
881static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
882 unsigned int block_start)
883{
884 u64 offset = page_offset(page) + block_start;
885
886 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
887 return 1;
888
889 if (i_size_read(inode) > offset)
890 return 1;
891
892 return 0;
893}
894
9517bac6 895/*
ebdec241 896 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
897 * mapping by now though, and the entire write will be allocating or
898 * it won't, so not much need to use BH_New.
899 *
900 * This will also skip zeroing, which is handled externally.
901 */
60b11392
MF
902int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
903 struct inode *inode, unsigned int from,
904 unsigned int to, int new)
9517bac6
MF
905{
906 int ret = 0;
907 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
908 unsigned int block_end, block_start;
909 unsigned int bsize = 1 << inode->i_blkbits;
910
911 if (!page_has_buffers(page))
912 create_empty_buffers(page, bsize, 0);
913
914 head = page_buffers(page);
915 for (bh = head, block_start = 0; bh != head || !block_start;
916 bh = bh->b_this_page, block_start += bsize) {
917 block_end = block_start + bsize;
918
3a307ffc
MF
919 clear_buffer_new(bh);
920
9517bac6
MF
921 /*
922 * Ignore blocks outside of our i/o range -
923 * they may belong to unallocated clusters.
924 */
60b11392 925 if (block_start >= to || block_end <= from) {
9517bac6
MF
926 if (PageUptodate(page))
927 set_buffer_uptodate(bh);
928 continue;
929 }
930
931 /*
932 * For an allocating write with cluster size >= page
933 * size, we always write the entire page.
934 */
3a307ffc
MF
935 if (new)
936 set_buffer_new(bh);
9517bac6
MF
937
938 if (!buffer_mapped(bh)) {
939 map_bh(bh, inode->i_sb, *p_blkno);
940 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
941 }
942
943 if (PageUptodate(page)) {
944 if (!buffer_uptodate(bh))
945 set_buffer_uptodate(bh);
946 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 947 !buffer_new(bh) &&
4e9563fd 948 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 949 (block_start < from || block_end > to)) {
9517bac6
MF
950 ll_rw_block(READ, 1, &bh);
951 *wait_bh++=bh;
952 }
953
954 *p_blkno = *p_blkno + 1;
955 }
956
957 /*
958 * If we issued read requests - let them complete.
959 */
960 while(wait_bh > wait) {
961 wait_on_buffer(*--wait_bh);
962 if (!buffer_uptodate(*wait_bh))
963 ret = -EIO;
964 }
965
966 if (ret == 0 || !new)
967 return ret;
968
969 /*
970 * If we get -EIO above, zero out any newly allocated blocks
971 * to avoid exposing stale data.
972 */
973 bh = head;
974 block_start = 0;
975 do {
9517bac6
MF
976 block_end = block_start + bsize;
977 if (block_end <= from)
978 goto next_bh;
979 if (block_start >= to)
980 break;
981
eebd2aa3 982 zero_user(page, block_start, bh->b_size);
9517bac6
MF
983 set_buffer_uptodate(bh);
984 mark_buffer_dirty(bh);
985
986next_bh:
987 block_start = block_end;
988 bh = bh->b_this_page;
989 } while (bh != head);
990
991 return ret;
992}
993
3a307ffc
MF
994#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
995#define OCFS2_MAX_CTXT_PAGES 1
996#else
997#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
998#endif
999
1000#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1001
6af67d82 1002/*
3a307ffc 1003 * Describe the state of a single cluster to be written to.
6af67d82 1004 */
3a307ffc
MF
1005struct ocfs2_write_cluster_desc {
1006 u32 c_cpos;
1007 u32 c_phys;
1008 /*
1009 * Give this a unique field because c_phys eventually gets
1010 * filled.
1011 */
1012 unsigned c_new;
b27b7cbc 1013 unsigned c_unwritten;
e7432675 1014 unsigned c_needs_zero;
3a307ffc 1015};
6af67d82 1016
3a307ffc
MF
1017struct ocfs2_write_ctxt {
1018 /* Logical cluster position / len of write */
1019 u32 w_cpos;
1020 u32 w_clen;
6af67d82 1021
e7432675
SM
1022 /* First cluster allocated in a nonsparse extend */
1023 u32 w_first_new_cpos;
1024
3a307ffc 1025 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 1026
3a307ffc
MF
1027 /*
1028 * This is true if page_size > cluster_size.
1029 *
1030 * It triggers a set of special cases during write which might
1031 * have to deal with allocating writes to partial pages.
1032 */
1033 unsigned int w_large_pages;
6af67d82 1034
3a307ffc
MF
1035 /*
1036 * Pages involved in this write.
1037 *
1038 * w_target_page is the page being written to by the user.
1039 *
1040 * w_pages is an array of pages which always contains
1041 * w_target_page, and in the case of an allocating write with
1042 * page_size < cluster size, it will contain zero'd and mapped
1043 * pages adjacent to w_target_page which need to be written
1044 * out in so that future reads from that region will get
1045 * zero's.
1046 */
3a307ffc 1047 unsigned int w_num_pages;
83fd9c7f 1048 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 1049 struct page *w_target_page;
eeb47d12 1050
5cffff9e
WW
1051 /*
1052 * w_target_locked is used for page_mkwrite path indicating no unlocking
1053 * against w_target_page in ocfs2_write_end_nolock.
1054 */
1055 unsigned int w_target_locked:1;
1056
3a307ffc
MF
1057 /*
1058 * ocfs2_write_end() uses this to know what the real range to
1059 * write in the target should be.
1060 */
1061 unsigned int w_target_from;
1062 unsigned int w_target_to;
1063
1064 /*
1065 * We could use journal_current_handle() but this is cleaner,
1066 * IMHO -Mark
1067 */
1068 handle_t *w_handle;
1069
1070 struct buffer_head *w_di_bh;
b27b7cbc
MF
1071
1072 struct ocfs2_cached_dealloc_ctxt w_dealloc;
3a307ffc
MF
1073};
1074
1d410a6e 1075void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
1076{
1077 int i;
1078
1d410a6e
MF
1079 for(i = 0; i < num_pages; i++) {
1080 if (pages[i]) {
1081 unlock_page(pages[i]);
1082 mark_page_accessed(pages[i]);
1083 page_cache_release(pages[i]);
1084 }
6af67d82 1085 }
1d410a6e
MF
1086}
1087
136f49b9 1088static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 1089{
5cffff9e
WW
1090 int i;
1091
1092 /*
1093 * w_target_locked is only set to true in the page_mkwrite() case.
1094 * The intent is to allow us to lock the target page from write_begin()
1095 * to write_end(). The caller must hold a ref on w_target_page.
1096 */
1097 if (wc->w_target_locked) {
1098 BUG_ON(!wc->w_target_page);
1099 for (i = 0; i < wc->w_num_pages; i++) {
1100 if (wc->w_target_page == wc->w_pages[i]) {
1101 wc->w_pages[i] = NULL;
1102 break;
1103 }
1104 }
1105 mark_page_accessed(wc->w_target_page);
1106 page_cache_release(wc->w_target_page);
1107 }
1d410a6e 1108 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 1109}
6af67d82 1110
136f49b9
JB
1111static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1112{
1113 ocfs2_unlock_pages(wc);
3a307ffc
MF
1114 brelse(wc->w_di_bh);
1115 kfree(wc);
1116}
1117
1118static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1119 struct ocfs2_super *osb, loff_t pos,
607d44aa 1120 unsigned len, struct buffer_head *di_bh)
3a307ffc 1121{
30b8548f 1122 u32 cend;
3a307ffc
MF
1123 struct ocfs2_write_ctxt *wc;
1124
1125 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1126 if (!wc)
1127 return -ENOMEM;
6af67d82 1128
3a307ffc 1129 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 1130 wc->w_first_new_cpos = UINT_MAX;
30b8548f 1131 cend = (pos + len - 1) >> osb->s_clustersize_bits;
1132 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
1133 get_bh(di_bh);
1134 wc->w_di_bh = di_bh;
6af67d82 1135
3a307ffc
MF
1136 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1137 wc->w_large_pages = 1;
1138 else
1139 wc->w_large_pages = 0;
1140
b27b7cbc
MF
1141 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1142
3a307ffc 1143 *wcp = wc;
6af67d82 1144
3a307ffc 1145 return 0;
6af67d82
MF
1146}
1147
9517bac6 1148/*
3a307ffc
MF
1149 * If a page has any new buffers, zero them out here, and mark them uptodate
1150 * and dirty so they'll be written out (in order to prevent uninitialised
1151 * block data from leaking). And clear the new bit.
9517bac6 1152 */
3a307ffc 1153static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 1154{
3a307ffc
MF
1155 unsigned int block_start, block_end;
1156 struct buffer_head *head, *bh;
9517bac6 1157
3a307ffc
MF
1158 BUG_ON(!PageLocked(page));
1159 if (!page_has_buffers(page))
1160 return;
9517bac6 1161
3a307ffc
MF
1162 bh = head = page_buffers(page);
1163 block_start = 0;
1164 do {
1165 block_end = block_start + bh->b_size;
1166
1167 if (buffer_new(bh)) {
1168 if (block_end > from && block_start < to) {
1169 if (!PageUptodate(page)) {
1170 unsigned start, end;
3a307ffc
MF
1171
1172 start = max(from, block_start);
1173 end = min(to, block_end);
1174
eebd2aa3 1175 zero_user_segment(page, start, end);
3a307ffc
MF
1176 set_buffer_uptodate(bh);
1177 }
1178
1179 clear_buffer_new(bh);
1180 mark_buffer_dirty(bh);
1181 }
1182 }
9517bac6 1183
3a307ffc
MF
1184 block_start = block_end;
1185 bh = bh->b_this_page;
1186 } while (bh != head);
1187}
1188
1189/*
1190 * Only called when we have a failure during allocating write to write
1191 * zero's to the newly allocated region.
1192 */
1193static void ocfs2_write_failure(struct inode *inode,
1194 struct ocfs2_write_ctxt *wc,
1195 loff_t user_pos, unsigned user_len)
1196{
1197 int i;
5c26a7b7
MF
1198 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1199 to = user_pos + user_len;
3a307ffc
MF
1200 struct page *tmppage;
1201
5c26a7b7 1202 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 1203
3a307ffc
MF
1204 for(i = 0; i < wc->w_num_pages; i++) {
1205 tmppage = wc->w_pages[i];
9517bac6 1206
961cecbe 1207 if (page_has_buffers(tmppage)) {
53ef99ca 1208 if (ocfs2_should_order_data(inode))
2b4e30fb 1209 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
1210
1211 block_commit_write(tmppage, from, to);
1212 }
9517bac6 1213 }
9517bac6
MF
1214}
1215
3a307ffc
MF
1216static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1217 struct ocfs2_write_ctxt *wc,
1218 struct page *page, u32 cpos,
1219 loff_t user_pos, unsigned user_len,
1220 int new)
9517bac6 1221{
3a307ffc
MF
1222 int ret;
1223 unsigned int map_from = 0, map_to = 0;
9517bac6 1224 unsigned int cluster_start, cluster_end;
3a307ffc 1225 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 1226
3a307ffc 1227 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
1228 &cluster_start, &cluster_end);
1229
272b62c1
GR
1230 /* treat the write as new if the a hole/lseek spanned across
1231 * the page boundary.
1232 */
1233 new = new | ((i_size_read(inode) <= page_offset(page)) &&
1234 (page_offset(page) <= user_pos));
1235
3a307ffc
MF
1236 if (page == wc->w_target_page) {
1237 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1238 map_to = map_from + user_len;
1239
1240 if (new)
1241 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1242 cluster_start, cluster_end,
1243 new);
1244 else
1245 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1246 map_from, map_to, new);
1247 if (ret) {
9517bac6
MF
1248 mlog_errno(ret);
1249 goto out;
1250 }
1251
3a307ffc
MF
1252 user_data_from = map_from;
1253 user_data_to = map_to;
9517bac6 1254 if (new) {
3a307ffc
MF
1255 map_from = cluster_start;
1256 map_to = cluster_end;
9517bac6
MF
1257 }
1258 } else {
1259 /*
1260 * If we haven't allocated the new page yet, we
1261 * shouldn't be writing it out without copying user
1262 * data. This is likely a math error from the caller.
1263 */
1264 BUG_ON(!new);
1265
3a307ffc
MF
1266 map_from = cluster_start;
1267 map_to = cluster_end;
9517bac6
MF
1268
1269 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 1270 cluster_start, cluster_end, new);
9517bac6
MF
1271 if (ret) {
1272 mlog_errno(ret);
1273 goto out;
1274 }
1275 }
1276
1277 /*
1278 * Parts of newly allocated pages need to be zero'd.
1279 *
1280 * Above, we have also rewritten 'to' and 'from' - as far as
1281 * the rest of the function is concerned, the entire cluster
1282 * range inside of a page needs to be written.
1283 *
1284 * We can skip this if the page is up to date - it's already
1285 * been zero'd from being read in as a hole.
1286 */
1287 if (new && !PageUptodate(page))
1288 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1289 cpos, user_data_from, user_data_to);
9517bac6
MF
1290
1291 flush_dcache_page(page);
1292
9517bac6 1293out:
3a307ffc 1294 return ret;
9517bac6
MF
1295}
1296
1297/*
3a307ffc 1298 * This function will only grab one clusters worth of pages.
9517bac6 1299 */
3a307ffc
MF
1300static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1301 struct ocfs2_write_ctxt *wc,
693c241a
JB
1302 u32 cpos, loff_t user_pos,
1303 unsigned user_len, int new,
7307de80 1304 struct page *mmap_page)
9517bac6 1305{
3a307ffc 1306 int ret = 0, i;
693c241a 1307 unsigned long start, target_index, end_index, index;
9517bac6 1308 struct inode *inode = mapping->host;
693c241a 1309 loff_t last_byte;
9517bac6 1310
3a307ffc 1311 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1312
1313 /*
1314 * Figure out how many pages we'll be manipulating here. For
60b11392 1315 * non allocating write, we just change the one
693c241a
JB
1316 * page. Otherwise, we'll need a whole clusters worth. If we're
1317 * writing past i_size, we only need enough pages to cover the
1318 * last page of the write.
9517bac6 1319 */
9517bac6 1320 if (new) {
3a307ffc
MF
1321 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1322 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1323 /*
1324 * We need the index *past* the last page we could possibly
1325 * touch. This is the page past the end of the write or
1326 * i_size, whichever is greater.
1327 */
1328 last_byte = max(user_pos + user_len, i_size_read(inode));
1329 BUG_ON(last_byte < 1);
1330 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1331 if ((start + wc->w_num_pages) > end_index)
1332 wc->w_num_pages = end_index - start;
9517bac6 1333 } else {
3a307ffc
MF
1334 wc->w_num_pages = 1;
1335 start = target_index;
9517bac6
MF
1336 }
1337
3a307ffc 1338 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1339 index = start + i;
1340
7307de80
MF
1341 if (index == target_index && mmap_page) {
1342 /*
1343 * ocfs2_pagemkwrite() is a little different
1344 * and wants us to directly use the page
1345 * passed in.
1346 */
1347 lock_page(mmap_page);
1348
5cffff9e 1349 /* Exit and let the caller retry */
7307de80 1350 if (mmap_page->mapping != mapping) {
5cffff9e 1351 WARN_ON(mmap_page->mapping);
7307de80 1352 unlock_page(mmap_page);
5cffff9e 1353 ret = -EAGAIN;
7307de80
MF
1354 goto out;
1355 }
1356
1357 page_cache_get(mmap_page);
1358 wc->w_pages[i] = mmap_page;
5cffff9e 1359 wc->w_target_locked = true;
7307de80
MF
1360 } else {
1361 wc->w_pages[i] = find_or_create_page(mapping, index,
1362 GFP_NOFS);
1363 if (!wc->w_pages[i]) {
1364 ret = -ENOMEM;
1365 mlog_errno(ret);
1366 goto out;
1367 }
9517bac6 1368 }
1269529b 1369 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1370
1371 if (index == target_index)
1372 wc->w_target_page = wc->w_pages[i];
9517bac6 1373 }
3a307ffc 1374out:
5cffff9e
WW
1375 if (ret)
1376 wc->w_target_locked = false;
3a307ffc
MF
1377 return ret;
1378}
1379
1380/*
1381 * Prepare a single cluster for write one cluster into the file.
1382 */
1383static int ocfs2_write_cluster(struct address_space *mapping,
b27b7cbc 1384 u32 phys, unsigned int unwritten,
e7432675 1385 unsigned int should_zero,
b27b7cbc 1386 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1387 struct ocfs2_alloc_context *meta_ac,
1388 struct ocfs2_write_ctxt *wc, u32 cpos,
1389 loff_t user_pos, unsigned user_len)
1390{
e7432675 1391 int ret, i, new;
3a307ffc
MF
1392 u64 v_blkno, p_blkno;
1393 struct inode *inode = mapping->host;
f99b9b7c 1394 struct ocfs2_extent_tree et;
3a307ffc
MF
1395
1396 new = phys == 0 ? 1 : 0;
9517bac6 1397 if (new) {
3a307ffc
MF
1398 u32 tmp_pos;
1399
9517bac6
MF
1400 /*
1401 * This is safe to call with the page locks - it won't take
1402 * any additional semaphores or cluster locks.
1403 */
3a307ffc 1404 tmp_pos = cpos;
0eb8d47e
TM
1405 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1406 &tmp_pos, 1, 0, wc->w_di_bh,
1407 wc->w_handle, data_ac,
1408 meta_ac, NULL);
9517bac6
MF
1409 /*
1410 * This shouldn't happen because we must have already
1411 * calculated the correct meta data allocation required. The
1412 * internal tree allocation code should know how to increase
1413 * transaction credits itself.
1414 *
1415 * If need be, we could handle -EAGAIN for a
1416 * RESTART_TRANS here.
1417 */
1418 mlog_bug_on_msg(ret == -EAGAIN,
1419 "Inode %llu: EAGAIN return during allocation.\n",
1420 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1421 if (ret < 0) {
1422 mlog_errno(ret);
1423 goto out;
1424 }
b27b7cbc 1425 } else if (unwritten) {
5e404e9e
JB
1426 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1427 wc->w_di_bh);
f99b9b7c 1428 ret = ocfs2_mark_extent_written(inode, &et,
b27b7cbc 1429 wc->w_handle, cpos, 1, phys,
f99b9b7c 1430 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1431 if (ret < 0) {
1432 mlog_errno(ret);
1433 goto out;
1434 }
1435 }
3a307ffc 1436
b27b7cbc 1437 if (should_zero)
3a307ffc 1438 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
b27b7cbc 1439 else
3a307ffc 1440 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
9517bac6 1441
3a307ffc
MF
1442 /*
1443 * The only reason this should fail is due to an inability to
1444 * find the extent added.
1445 */
49cb8d2d
MF
1446 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1447 NULL);
9517bac6 1448 if (ret < 0) {
61fb9ea4 1449 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
3a307ffc
MF
1450 "at logical block %llu",
1451 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1452 (unsigned long long)v_blkno);
9517bac6
MF
1453 goto out;
1454 }
1455
1456 BUG_ON(p_blkno == 0);
1457
3a307ffc
MF
1458 for(i = 0; i < wc->w_num_pages; i++) {
1459 int tmpret;
9517bac6 1460
3a307ffc
MF
1461 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1462 wc->w_pages[i], cpos,
b27b7cbc
MF
1463 user_pos, user_len,
1464 should_zero);
3a307ffc
MF
1465 if (tmpret) {
1466 mlog_errno(tmpret);
1467 if (ret == 0)
cbfa9639 1468 ret = tmpret;
3a307ffc 1469 }
9517bac6
MF
1470 }
1471
3a307ffc
MF
1472 /*
1473 * We only have cleanup to do in case of allocating write.
1474 */
1475 if (ret && new)
1476 ocfs2_write_failure(inode, wc, user_pos, user_len);
1477
9517bac6 1478out:
9517bac6 1479
3a307ffc 1480 return ret;
9517bac6
MF
1481}
1482
0d172baa
MF
1483static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1484 struct ocfs2_alloc_context *data_ac,
1485 struct ocfs2_alloc_context *meta_ac,
1486 struct ocfs2_write_ctxt *wc,
1487 loff_t pos, unsigned len)
1488{
1489 int ret, i;
db56246c
MF
1490 loff_t cluster_off;
1491 unsigned int local_len = len;
0d172baa 1492 struct ocfs2_write_cluster_desc *desc;
db56246c 1493 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1494
1495 for (i = 0; i < wc->w_clen; i++) {
1496 desc = &wc->w_desc[i];
1497
db56246c
MF
1498 /*
1499 * We have to make sure that the total write passed in
1500 * doesn't extend past a single cluster.
1501 */
1502 local_len = len;
1503 cluster_off = pos & (osb->s_clustersize - 1);
1504 if ((cluster_off + local_len) > osb->s_clustersize)
1505 local_len = osb->s_clustersize - cluster_off;
1506
b27b7cbc 1507 ret = ocfs2_write_cluster(mapping, desc->c_phys,
e7432675
SM
1508 desc->c_unwritten,
1509 desc->c_needs_zero,
1510 data_ac, meta_ac,
db56246c 1511 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1512 if (ret) {
1513 mlog_errno(ret);
1514 goto out;
1515 }
db56246c
MF
1516
1517 len -= local_len;
1518 pos += local_len;
0d172baa
MF
1519 }
1520
1521 ret = 0;
1522out:
1523 return ret;
1524}
1525
3a307ffc
MF
1526/*
1527 * ocfs2_write_end() wants to know which parts of the target page it
1528 * should complete the write on. It's easiest to compute them ahead of
1529 * time when a more complete view of the write is available.
1530 */
1531static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1532 struct ocfs2_write_ctxt *wc,
1533 loff_t pos, unsigned len, int alloc)
9517bac6 1534{
3a307ffc 1535 struct ocfs2_write_cluster_desc *desc;
9517bac6 1536
3a307ffc
MF
1537 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1538 wc->w_target_to = wc->w_target_from + len;
1539
1540 if (alloc == 0)
1541 return;
1542
1543 /*
1544 * Allocating write - we may have different boundaries based
1545 * on page size and cluster size.
1546 *
1547 * NOTE: We can no longer compute one value from the other as
1548 * the actual write length and user provided length may be
1549 * different.
1550 */
9517bac6 1551
3a307ffc
MF
1552 if (wc->w_large_pages) {
1553 /*
1554 * We only care about the 1st and last cluster within
b27b7cbc 1555 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1556 * value may be extended out to the start/end of a
1557 * newly allocated cluster.
1558 */
1559 desc = &wc->w_desc[0];
e7432675 1560 if (desc->c_needs_zero)
3a307ffc
MF
1561 ocfs2_figure_cluster_boundaries(osb,
1562 desc->c_cpos,
1563 &wc->w_target_from,
1564 NULL);
1565
1566 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1567 if (desc->c_needs_zero)
3a307ffc
MF
1568 ocfs2_figure_cluster_boundaries(osb,
1569 desc->c_cpos,
1570 NULL,
1571 &wc->w_target_to);
1572 } else {
1573 wc->w_target_from = 0;
1574 wc->w_target_to = PAGE_CACHE_SIZE;
1575 }
9517bac6
MF
1576}
1577
0d172baa
MF
1578/*
1579 * Populate each single-cluster write descriptor in the write context
1580 * with information about the i/o to be done.
b27b7cbc
MF
1581 *
1582 * Returns the number of clusters that will have to be allocated, as
1583 * well as a worst case estimate of the number of extent records that
1584 * would have to be created during a write to an unwritten region.
0d172baa
MF
1585 */
1586static int ocfs2_populate_write_desc(struct inode *inode,
1587 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1588 unsigned int *clusters_to_alloc,
1589 unsigned int *extents_to_split)
9517bac6 1590{
0d172baa 1591 int ret;
3a307ffc 1592 struct ocfs2_write_cluster_desc *desc;
0d172baa 1593 unsigned int num_clusters = 0;
b27b7cbc 1594 unsigned int ext_flags = 0;
0d172baa
MF
1595 u32 phys = 0;
1596 int i;
9517bac6 1597
b27b7cbc
MF
1598 *clusters_to_alloc = 0;
1599 *extents_to_split = 0;
1600
3a307ffc
MF
1601 for (i = 0; i < wc->w_clen; i++) {
1602 desc = &wc->w_desc[i];
1603 desc->c_cpos = wc->w_cpos + i;
1604
1605 if (num_clusters == 0) {
b27b7cbc
MF
1606 /*
1607 * Need to look up the next extent record.
1608 */
3a307ffc 1609 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1610 &num_clusters, &ext_flags);
3a307ffc
MF
1611 if (ret) {
1612 mlog_errno(ret);
607d44aa 1613 goto out;
3a307ffc 1614 }
b27b7cbc 1615
293b2f70
TM
1616 /* We should already CoW the refcountd extent. */
1617 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1618
b27b7cbc
MF
1619 /*
1620 * Assume worst case - that we're writing in
1621 * the middle of the extent.
1622 *
1623 * We can assume that the write proceeds from
1624 * left to right, in which case the extent
1625 * insert code is smart enough to coalesce the
1626 * next splits into the previous records created.
1627 */
1628 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1629 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1630 } else if (phys) {
1631 /*
1632 * Only increment phys if it doesn't describe
1633 * a hole.
1634 */
1635 phys++;
1636 }
1637
e7432675
SM
1638 /*
1639 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1640 * file that got extended. w_first_new_cpos tells us
1641 * where the newly allocated clusters are so we can
1642 * zero them.
1643 */
1644 if (desc->c_cpos >= wc->w_first_new_cpos) {
1645 BUG_ON(phys == 0);
1646 desc->c_needs_zero = 1;
1647 }
1648
3a307ffc
MF
1649 desc->c_phys = phys;
1650 if (phys == 0) {
1651 desc->c_new = 1;
e7432675 1652 desc->c_needs_zero = 1;
0d172baa 1653 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1654 }
e7432675
SM
1655
1656 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b27b7cbc 1657 desc->c_unwritten = 1;
e7432675
SM
1658 desc->c_needs_zero = 1;
1659 }
3a307ffc
MF
1660
1661 num_clusters--;
9517bac6
MF
1662 }
1663
0d172baa
MF
1664 ret = 0;
1665out:
1666 return ret;
1667}
1668
1afc32b9
MF
1669static int ocfs2_write_begin_inline(struct address_space *mapping,
1670 struct inode *inode,
1671 struct ocfs2_write_ctxt *wc)
1672{
1673 int ret;
1674 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1675 struct page *page;
1676 handle_t *handle;
1677 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1678
f775da2f
JB
1679 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1680 if (IS_ERR(handle)) {
1681 ret = PTR_ERR(handle);
1682 mlog_errno(ret);
1683 goto out;
1684 }
1685
1afc32b9
MF
1686 page = find_or_create_page(mapping, 0, GFP_NOFS);
1687 if (!page) {
f775da2f 1688 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1689 ret = -ENOMEM;
1690 mlog_errno(ret);
1691 goto out;
1692 }
1693 /*
1694 * If we don't set w_num_pages then this page won't get unlocked
1695 * and freed on cleanup of the write context.
1696 */
1697 wc->w_pages[0] = wc->w_target_page = page;
1698 wc->w_num_pages = 1;
1699
0cf2f763 1700 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1701 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1702 if (ret) {
1703 ocfs2_commit_trans(osb, handle);
1704
1705 mlog_errno(ret);
1706 goto out;
1707 }
1708
1709 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1710 ocfs2_set_inode_data_inline(inode, di);
1711
1712 if (!PageUptodate(page)) {
1713 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1714 if (ret) {
1715 ocfs2_commit_trans(osb, handle);
1716
1717 goto out;
1718 }
1719 }
1720
1721 wc->w_handle = handle;
1722out:
1723 return ret;
1724}
1725
1726int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1727{
1728 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1729
0d8a4e0c 1730 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1731 return 1;
1732 return 0;
1733}
1734
1735static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1736 struct inode *inode, loff_t pos,
1737 unsigned len, struct page *mmap_page,
1738 struct ocfs2_write_ctxt *wc)
1739{
1740 int ret, written = 0;
1741 loff_t end = pos + len;
1742 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1743 struct ocfs2_dinode *di = NULL;
1afc32b9 1744
9558156b
TM
1745 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1746 len, (unsigned long long)pos,
1747 oi->ip_dyn_features);
1afc32b9
MF
1748
1749 /*
1750 * Handle inodes which already have inline data 1st.
1751 */
1752 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1753 if (mmap_page == NULL &&
1754 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1755 goto do_inline_write;
1756
1757 /*
1758 * The write won't fit - we have to give this inode an
1759 * inline extent list now.
1760 */
1761 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1762 if (ret)
1763 mlog_errno(ret);
1764 goto out;
1765 }
1766
1767 /*
1768 * Check whether the inode can accept inline data.
1769 */
1770 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1771 return 0;
1772
1773 /*
1774 * Check whether the write can fit.
1775 */
d9ae49d6
TY
1776 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1777 if (mmap_page ||
1778 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1779 return 0;
1780
1781do_inline_write:
1782 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1783 if (ret) {
1784 mlog_errno(ret);
1785 goto out;
1786 }
1787
1788 /*
1789 * This signals to the caller that the data can be written
1790 * inline.
1791 */
1792 written = 1;
1793out:
1794 return written ? written : ret;
1795}
1796
65ed39d6
MF
1797/*
1798 * This function only does anything for file systems which can't
1799 * handle sparse files.
1800 *
1801 * What we want to do here is fill in any hole between the current end
1802 * of allocation and the end of our write. That way the rest of the
1803 * write path can treat it as an non-allocating write, which has no
1804 * special case code for sparse/nonsparse files.
1805 */
5693486b
JB
1806static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1807 struct buffer_head *di_bh,
1808 loff_t pos, unsigned len,
65ed39d6
MF
1809 struct ocfs2_write_ctxt *wc)
1810{
1811 int ret;
65ed39d6
MF
1812 loff_t newsize = pos + len;
1813
5693486b 1814 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1815
1816 if (newsize <= i_size_read(inode))
1817 return 0;
1818
5693486b 1819 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1820 if (ret)
1821 mlog_errno(ret);
1822
e7432675
SM
1823 wc->w_first_new_cpos =
1824 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1825
65ed39d6
MF
1826 return ret;
1827}
1828
5693486b
JB
1829static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1830 loff_t pos)
1831{
1832 int ret = 0;
1833
1834 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1835 if (pos > i_size_read(inode))
1836 ret = ocfs2_zero_extend(inode, di_bh, pos);
1837
1838 return ret;
1839}
1840
50308d81
TM
1841/*
1842 * Try to flush truncate logs if we can free enough clusters from it.
1843 * As for return value, "< 0" means error, "0" no space and "1" means
1844 * we have freed enough spaces and let the caller try to allocate again.
1845 */
1846static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1847 unsigned int needed)
1848{
1849 tid_t target;
1850 int ret = 0;
1851 unsigned int truncated_clusters;
1852
1853 mutex_lock(&osb->osb_tl_inode->i_mutex);
1854 truncated_clusters = osb->truncated_clusters;
1855 mutex_unlock(&osb->osb_tl_inode->i_mutex);
1856
1857 /*
1858 * Check whether we can succeed in allocating if we free
1859 * the truncate log.
1860 */
1861 if (truncated_clusters < needed)
1862 goto out;
1863
1864 ret = ocfs2_flush_truncate_log(osb);
1865 if (ret) {
1866 mlog_errno(ret);
1867 goto out;
1868 }
1869
1870 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1871 jbd2_log_wait_commit(osb->journal->j_journal, target);
1872 ret = 1;
1873 }
1874out:
1875 return ret;
1876}
1877
0378da0f
TM
1878int ocfs2_write_begin_nolock(struct file *filp,
1879 struct address_space *mapping,
0d172baa
MF
1880 loff_t pos, unsigned len, unsigned flags,
1881 struct page **pagep, void **fsdata,
1882 struct buffer_head *di_bh, struct page *mmap_page)
1883{
e7432675 1884 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1885 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1886 struct ocfs2_write_ctxt *wc;
1887 struct inode *inode = mapping->host;
1888 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1889 struct ocfs2_dinode *di;
1890 struct ocfs2_alloc_context *data_ac = NULL;
1891 struct ocfs2_alloc_context *meta_ac = NULL;
1892 handle_t *handle;
f99b9b7c 1893 struct ocfs2_extent_tree et;
50308d81 1894 int try_free = 1, ret1;
0d172baa 1895
50308d81 1896try_again:
0d172baa
MF
1897 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1898 if (ret) {
1899 mlog_errno(ret);
1900 return ret;
1901 }
1902
1afc32b9
MF
1903 if (ocfs2_supports_inline_data(osb)) {
1904 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1905 mmap_page, wc);
1906 if (ret == 1) {
1907 ret = 0;
1908 goto success;
1909 }
1910 if (ret < 0) {
1911 mlog_errno(ret);
1912 goto out;
1913 }
1914 }
1915
5693486b
JB
1916 if (ocfs2_sparse_alloc(osb))
1917 ret = ocfs2_zero_tail(inode, di_bh, pos);
1918 else
1919 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
1920 wc);
65ed39d6
MF
1921 if (ret) {
1922 mlog_errno(ret);
1923 goto out;
1924 }
1925
293b2f70
TM
1926 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1927 if (ret < 0) {
1928 mlog_errno(ret);
1929 goto out;
1930 } else if (ret == 1) {
50308d81 1931 clusters_need = wc->w_clen;
c7dd3392 1932 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1933 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1934 if (ret) {
1935 mlog_errno(ret);
1936 goto out;
1937 }
1938 }
1939
b27b7cbc
MF
1940 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1941 &extents_to_split);
0d172baa
MF
1942 if (ret) {
1943 mlog_errno(ret);
1944 goto out;
1945 }
50308d81 1946 clusters_need += clusters_to_alloc;
0d172baa
MF
1947
1948 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1949
9558156b
TM
1950 trace_ocfs2_write_begin_nolock(
1951 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1952 (long long)i_size_read(inode),
1953 le32_to_cpu(di->i_clusters),
1954 pos, len, flags, mmap_page,
1955 clusters_to_alloc, extents_to_split);
1956
3a307ffc
MF
1957 /*
1958 * We set w_target_from, w_target_to here so that
1959 * ocfs2_write_end() knows which range in the target page to
1960 * write out. An allocation requires that we write the entire
1961 * cluster range.
1962 */
b27b7cbc 1963 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1964 /*
1965 * XXX: We are stretching the limits of
b27b7cbc 1966 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1967 * the work to be done.
1968 */
5e404e9e
JB
1969 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1970 wc->w_di_bh);
f99b9b7c 1971 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1972 clusters_to_alloc, extents_to_split,
f99b9b7c 1973 &data_ac, &meta_ac);
9517bac6
MF
1974 if (ret) {
1975 mlog_errno(ret);
607d44aa 1976 goto out;
9517bac6
MF
1977 }
1978
4fe370af
MF
1979 if (data_ac)
1980 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1981
811f933d 1982 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 1983 &di->id2.i_list);
3a307ffc 1984
9517bac6
MF
1985 }
1986
e7432675
SM
1987 /*
1988 * We have to zero sparse allocated clusters, unwritten extent clusters,
1989 * and non-sparse clusters we just extended. For non-sparse writes,
1990 * we know zeros will only be needed in the first and/or last cluster.
1991 */
1992 if (clusters_to_alloc || extents_to_split ||
8379e7c4
SM
1993 (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1994 wc->w_desc[wc->w_clen - 1].c_needs_zero)))
e7432675
SM
1995 cluster_of_pages = 1;
1996 else
1997 cluster_of_pages = 0;
1998
1999 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 2000
9517bac6
MF
2001 handle = ocfs2_start_trans(osb, credits);
2002 if (IS_ERR(handle)) {
2003 ret = PTR_ERR(handle);
2004 mlog_errno(ret);
607d44aa 2005 goto out;
9517bac6
MF
2006 }
2007
3a307ffc
MF
2008 wc->w_handle = handle;
2009
5dd4056d
CH
2010 if (clusters_to_alloc) {
2011 ret = dquot_alloc_space_nodirty(inode,
2012 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2013 if (ret)
2014 goto out_commit;
a90714c1 2015 }
3a307ffc
MF
2016 /*
2017 * We don't want this to fail in ocfs2_write_end(), so do it
2018 * here.
2019 */
0cf2f763 2020 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 2021 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 2022 if (ret) {
9517bac6 2023 mlog_errno(ret);
a90714c1 2024 goto out_quota;
9517bac6
MF
2025 }
2026
3a307ffc
MF
2027 /*
2028 * Fill our page array first. That way we've grabbed enough so
2029 * that we can zero and flush if we error after adding the
2030 * extent.
2031 */
693c241a 2032 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 2033 cluster_of_pages, mmap_page);
5cffff9e 2034 if (ret && ret != -EAGAIN) {
9517bac6 2035 mlog_errno(ret);
a90714c1 2036 goto out_quota;
9517bac6
MF
2037 }
2038
5cffff9e
WW
2039 /*
2040 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2041 * the target page. In this case, we exit with no error and no target
2042 * page. This will trigger the caller, page_mkwrite(), to re-try
2043 * the operation.
2044 */
2045 if (ret == -EAGAIN) {
2046 BUG_ON(wc->w_target_page);
2047 ret = 0;
2048 goto out_quota;
2049 }
2050
0d172baa
MF
2051 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2052 len);
2053 if (ret) {
2054 mlog_errno(ret);
a90714c1 2055 goto out_quota;
9517bac6 2056 }
9517bac6 2057
3a307ffc
MF
2058 if (data_ac)
2059 ocfs2_free_alloc_context(data_ac);
2060 if (meta_ac)
2061 ocfs2_free_alloc_context(meta_ac);
9517bac6 2062
1afc32b9 2063success:
3a307ffc
MF
2064 *pagep = wc->w_target_page;
2065 *fsdata = wc;
2066 return 0;
a90714c1
JK
2067out_quota:
2068 if (clusters_to_alloc)
5dd4056d 2069 dquot_free_space(inode,
a90714c1 2070 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
2071out_commit:
2072 ocfs2_commit_trans(osb, handle);
2073
9517bac6 2074out:
3a307ffc
MF
2075 ocfs2_free_write_ctxt(wc);
2076
b1214e47 2077 if (data_ac) {
9517bac6 2078 ocfs2_free_alloc_context(data_ac);
b1214e47
X
2079 data_ac = NULL;
2080 }
2081 if (meta_ac) {
9517bac6 2082 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
2083 meta_ac = NULL;
2084 }
50308d81
TM
2085
2086 if (ret == -ENOSPC && try_free) {
2087 /*
2088 * Try to free some truncate log so that we can have enough
2089 * clusters to allocate.
2090 */
2091 try_free = 0;
2092
2093 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2094 if (ret1 == 1)
2095 goto try_again;
2096
2097 if (ret1 < 0)
2098 mlog_errno(ret1);
2099 }
2100
3a307ffc
MF
2101 return ret;
2102}
2103
b6af1bcd
NP
2104static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2105 loff_t pos, unsigned len, unsigned flags,
2106 struct page **pagep, void **fsdata)
607d44aa
MF
2107{
2108 int ret;
2109 struct buffer_head *di_bh = NULL;
2110 struct inode *inode = mapping->host;
2111
e63aecb6 2112 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
2113 if (ret) {
2114 mlog_errno(ret);
2115 return ret;
2116 }
2117
2118 /*
2119 * Take alloc sem here to prevent concurrent lookups. That way
2120 * the mapping, zeroing and tree manipulation within
2121 * ocfs2_write() will be safe against ->readpage(). This
2122 * should also serve to lock out allocation from a shared
2123 * writeable region.
2124 */
2125 down_write(&OCFS2_I(inode)->ip_alloc_sem);
2126
0378da0f 2127 ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
7307de80 2128 fsdata, di_bh, NULL);
607d44aa
MF
2129 if (ret) {
2130 mlog_errno(ret);
c934a92d 2131 goto out_fail;
607d44aa
MF
2132 }
2133
2134 brelse(di_bh);
2135
2136 return 0;
2137
607d44aa
MF
2138out_fail:
2139 up_write(&OCFS2_I(inode)->ip_alloc_sem);
2140
2141 brelse(di_bh);
e63aecb6 2142 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
2143
2144 return ret;
2145}
2146
1afc32b9
MF
2147static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2148 unsigned len, unsigned *copied,
2149 struct ocfs2_dinode *di,
2150 struct ocfs2_write_ctxt *wc)
2151{
2152 void *kaddr;
2153
2154 if (unlikely(*copied < len)) {
2155 if (!PageUptodate(wc->w_target_page)) {
2156 *copied = 0;
2157 return;
2158 }
2159 }
2160
c4bc8dcb 2161 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 2162 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 2163 kunmap_atomic(kaddr);
1afc32b9 2164
9558156b
TM
2165 trace_ocfs2_write_end_inline(
2166 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
2167 (unsigned long long)pos, *copied,
2168 le16_to_cpu(di->id2.i_data.id_count),
2169 le16_to_cpu(di->i_dyn_features));
2170}
2171
7307de80
MF
2172int ocfs2_write_end_nolock(struct address_space *mapping,
2173 loff_t pos, unsigned len, unsigned copied,
2174 struct page *page, void *fsdata)
3a307ffc
MF
2175{
2176 int i;
2177 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2178 struct inode *inode = mapping->host;
2179 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2180 struct ocfs2_write_ctxt *wc = fsdata;
2181 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2182 handle_t *handle = wc->w_handle;
2183 struct page *tmppage;
2184
1afc32b9
MF
2185 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2186 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2187 goto out_write_size;
2188 }
2189
3a307ffc
MF
2190 if (unlikely(copied < len)) {
2191 if (!PageUptodate(wc->w_target_page))
2192 copied = 0;
2193
2194 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2195 start+len);
2196 }
2197 flush_dcache_page(wc->w_target_page);
2198
2199 for(i = 0; i < wc->w_num_pages; i++) {
2200 tmppage = wc->w_pages[i];
2201
2202 if (tmppage == wc->w_target_page) {
2203 from = wc->w_target_from;
2204 to = wc->w_target_to;
2205
2206 BUG_ON(from > PAGE_CACHE_SIZE ||
2207 to > PAGE_CACHE_SIZE ||
2208 to < from);
2209 } else {
2210 /*
2211 * Pages adjacent to the target (if any) imply
2212 * a hole-filling write in which case we want
2213 * to flush their entire range.
2214 */
2215 from = 0;
2216 to = PAGE_CACHE_SIZE;
2217 }
2218
961cecbe 2219 if (page_has_buffers(tmppage)) {
53ef99ca 2220 if (ocfs2_should_order_data(inode))
2b4e30fb 2221 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
2222 block_commit_write(tmppage, from, to);
2223 }
3a307ffc
MF
2224 }
2225
1afc32b9 2226out_write_size:
3a307ffc 2227 pos += copied;
f17c20dd 2228 if (pos > i_size_read(inode)) {
3a307ffc
MF
2229 i_size_write(inode, pos);
2230 mark_inode_dirty(inode);
2231 }
2232 inode->i_blocks = ocfs2_inode_sector_count(inode);
2233 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2234 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2235 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2236 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2931cdcb 2237 ocfs2_update_inode_fsync_trans(handle, inode, 1);
3a307ffc
MF
2238 ocfs2_journal_dirty(handle, wc->w_di_bh);
2239
136f49b9
JB
2240 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2241 * lock, or it will cause a deadlock since journal commit threads holds
2242 * this lock and will ask for the page lock when flushing the data.
2243 * put it here to preserve the unlock order.
2244 */
2245 ocfs2_unlock_pages(wc);
2246
3a307ffc 2247 ocfs2_commit_trans(osb, handle);
59a5e416 2248
b27b7cbc
MF
2249 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2250
136f49b9
JB
2251 brelse(wc->w_di_bh);
2252 kfree(wc);
607d44aa
MF
2253
2254 return copied;
2255}
2256
b6af1bcd
NP
2257static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2258 loff_t pos, unsigned len, unsigned copied,
2259 struct page *page, void *fsdata)
607d44aa
MF
2260{
2261 int ret;
2262 struct inode *inode = mapping->host;
2263
2264 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2265
3a307ffc 2266 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2267 ocfs2_inode_unlock(inode, 1);
9517bac6 2268
607d44aa 2269 return ret;
9517bac6
MF
2270}
2271
f5e54d6e 2272const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2273 .readpage = ocfs2_readpage,
2274 .readpages = ocfs2_readpages,
2275 .writepage = ocfs2_writepage,
2276 .write_begin = ocfs2_write_begin,
2277 .write_end = ocfs2_write_end,
2278 .bmap = ocfs2_bmap,
1fca3a05 2279 .direct_IO = ocfs2_direct_IO,
41ecc345 2280 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2281 .releasepage = ocfs2_releasepage,
2282 .migratepage = buffer_migrate_page,
2283 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2284 .error_remove_page = generic_error_remove_page,
ccd979bd 2285};