block: remove REQ_NO_TIMEOUT flag
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
8de05535 15#include <linux/bitops.h>
b60503ba 16#include <linux/blkdev.h>
a4aea562 17#include <linux/blk-mq.h>
42f61420 18#include <linux/cpu.h>
fd63e9ce 19#include <linux/delay.h>
b60503ba
MW
20#include <linux/errno.h>
21#include <linux/fs.h>
22#include <linux/genhd.h>
4cc09e2d 23#include <linux/hdreg.h>
5aff9382 24#include <linux/idr.h>
b60503ba
MW
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba
MW
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
2f8e2c87 42#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 43#include <asm/unaligned.h>
797a796a 44
f11bb3e2
CH
45#include "nvme.h"
46
9d43cf64 47#define NVME_Q_DEPTH 1024
d31af0a3 48#define NVME_AQ_DEPTH 256
b60503ba
MW
49#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
adf68f21
CH
51
52/*
53 * We handle AEN commands ourselves and don't even let the
54 * block layer know about them.
55 */
56#define NVME_NR_AEN_COMMANDS 1
57#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
9d43cf64 58
21d34711 59unsigned char admin_timeout = 60;
9d43cf64
KB
60module_param(admin_timeout, byte, 0644);
61MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 62
bd67608a
MW
63unsigned char nvme_io_timeout = 30;
64module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 65MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 66
5fd4ce1b 67unsigned char shutdown_timeout = 5;
2484f407
DM
68module_param(shutdown_timeout, byte, 0644);
69MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
70
58ffacb5
MW
71static int use_threaded_interrupts;
72module_param(use_threaded_interrupts, int, 0);
73
8ffaadf7
JD
74static bool use_cmb_sqes = true;
75module_param(use_cmb_sqes, bool, 0644);
76MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
77
1fa6aead
MW
78static LIST_HEAD(dev_list);
79static struct task_struct *nvme_thread;
9a6b9458 80static struct workqueue_struct *nvme_workq;
b9afca3e 81static wait_queue_head_t nvme_kthread_wait;
1fa6aead 82
1c63dc66
CH
83struct nvme_dev;
84struct nvme_queue;
85
4cc06521 86static int nvme_reset(struct nvme_dev *dev);
a0fa9647 87static void nvme_process_cq(struct nvme_queue *nvmeq);
5c8809e6 88static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
e1569a16 89static void nvme_dev_shutdown(struct nvme_dev *dev);
d4b4ff8e 90
4d115420
KB
91struct async_cmd_info {
92 struct kthread_work work;
93 struct kthread_worker *worker;
4d115420
KB
94 int status;
95 void *ctx;
96};
1fa6aead 97
1c63dc66
CH
98/*
99 * Represents an NVM Express device. Each nvme_dev is a PCI function.
100 */
101struct nvme_dev {
102 struct list_head node;
103 struct nvme_queue **queues;
104 struct blk_mq_tag_set tagset;
105 struct blk_mq_tag_set admin_tagset;
106 u32 __iomem *dbs;
107 struct device *dev;
108 struct dma_pool *prp_page_pool;
109 struct dma_pool *prp_small_pool;
110 unsigned queue_count;
111 unsigned online_queues;
112 unsigned max_qid;
113 int q_depth;
114 u32 db_stride;
1c63dc66
CH
115 struct msix_entry *entry;
116 void __iomem *bar;
1c63dc66 117 struct work_struct reset_work;
1c63dc66 118 struct work_struct scan_work;
5c8809e6 119 struct work_struct remove_work;
77bf25ea 120 struct mutex shutdown_lock;
1c63dc66 121 bool subsystem;
1c63dc66
CH
122 void __iomem *cmb;
123 dma_addr_t cmb_dma_addr;
124 u64 cmb_size;
125 u32 cmbsz;
fd634f41
CH
126 unsigned long flags;
127#define NVME_CTRL_RESETTING 0
1c63dc66
CH
128
129 struct nvme_ctrl ctrl;
130};
131
132static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
133{
134 return container_of(ctrl, struct nvme_dev, ctrl);
135}
136
b60503ba
MW
137/*
138 * An NVM Express queue. Each device has at least two (one for admin
139 * commands and one for I/O commands).
140 */
141struct nvme_queue {
142 struct device *q_dmadev;
091b6092 143 struct nvme_dev *dev;
3193f07b 144 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
145 spinlock_t q_lock;
146 struct nvme_command *sq_cmds;
8ffaadf7 147 struct nvme_command __iomem *sq_cmds_io;
b60503ba 148 volatile struct nvme_completion *cqes;
42483228 149 struct blk_mq_tags **tags;
b60503ba
MW
150 dma_addr_t sq_dma_addr;
151 dma_addr_t cq_dma_addr;
b60503ba
MW
152 u32 __iomem *q_db;
153 u16 q_depth;
6222d172 154 s16 cq_vector;
b60503ba
MW
155 u16 sq_head;
156 u16 sq_tail;
157 u16 cq_head;
c30341dc 158 u16 qid;
e9539f47
MW
159 u8 cq_phase;
160 u8 cqe_seen;
4d115420 161 struct async_cmd_info cmdinfo;
b60503ba
MW
162};
163
71bd150c
CH
164/*
165 * The nvme_iod describes the data in an I/O, including the list of PRP
166 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 167 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
168 * allocated to store the PRP list.
169 */
170struct nvme_iod {
f4800d6d
CH
171 struct nvme_queue *nvmeq;
172 int aborted;
71bd150c 173 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
174 int nents; /* Used in scatterlist */
175 int length; /* Of data, in bytes */
176 dma_addr_t first_dma;
bf684057 177 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
178 struct scatterlist *sg;
179 struct scatterlist inline_sg[0];
71bd150c
CH
180};
181
b60503ba
MW
182/*
183 * Check we didin't inadvertently grow the command struct
184 */
185static inline void _nvme_check_size(void)
186{
187 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
188 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
191 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 192 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 193 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
194 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
195 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
196 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
197 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 198 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
199}
200
ac3dd5bd
JA
201/*
202 * Max size of iod being embedded in the request payload
203 */
204#define NVME_INT_PAGES 2
5fd4ce1b 205#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
206
207/*
208 * Will slightly overestimate the number of pages needed. This is OK
209 * as it only leads to a small amount of wasted memory for the lifetime of
210 * the I/O.
211 */
212static int nvme_npages(unsigned size, struct nvme_dev *dev)
213{
5fd4ce1b
CH
214 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
215 dev->ctrl.page_size);
ac3dd5bd
JA
216 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
217}
218
f4800d6d
CH
219static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
220 unsigned int size, unsigned int nseg)
ac3dd5bd 221{
f4800d6d
CH
222 return sizeof(__le64 *) * nvme_npages(size, dev) +
223 sizeof(struct scatterlist) * nseg;
224}
ac3dd5bd 225
f4800d6d
CH
226static unsigned int nvme_cmd_size(struct nvme_dev *dev)
227{
228 return sizeof(struct nvme_iod) +
229 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
230}
231
a4aea562
MB
232static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
233 unsigned int hctx_idx)
e85248e5 234{
a4aea562
MB
235 struct nvme_dev *dev = data;
236 struct nvme_queue *nvmeq = dev->queues[0];
237
42483228
KB
238 WARN_ON(hctx_idx != 0);
239 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
240 WARN_ON(nvmeq->tags);
241
a4aea562 242 hctx->driver_data = nvmeq;
42483228 243 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 244 return 0;
e85248e5
MW
245}
246
4af0e21c
KB
247static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
248{
249 struct nvme_queue *nvmeq = hctx->driver_data;
250
251 nvmeq->tags = NULL;
252}
253
a4aea562
MB
254static int nvme_admin_init_request(void *data, struct request *req,
255 unsigned int hctx_idx, unsigned int rq_idx,
256 unsigned int numa_node)
22404274 257{
a4aea562 258 struct nvme_dev *dev = data;
f4800d6d 259 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
260 struct nvme_queue *nvmeq = dev->queues[0];
261
262 BUG_ON(!nvmeq);
f4800d6d 263 iod->nvmeq = nvmeq;
a4aea562 264 return 0;
22404274
KB
265}
266
a4aea562
MB
267static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
268 unsigned int hctx_idx)
b60503ba 269{
a4aea562 270 struct nvme_dev *dev = data;
42483228 271 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 272
42483228
KB
273 if (!nvmeq->tags)
274 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 275
42483228 276 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
277 hctx->driver_data = nvmeq;
278 return 0;
b60503ba
MW
279}
280
a4aea562
MB
281static int nvme_init_request(void *data, struct request *req,
282 unsigned int hctx_idx, unsigned int rq_idx,
283 unsigned int numa_node)
b60503ba 284{
a4aea562 285 struct nvme_dev *dev = data;
f4800d6d 286 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
287 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
288
289 BUG_ON(!nvmeq);
f4800d6d 290 iod->nvmeq = nvmeq;
a4aea562
MB
291 return 0;
292}
293
adf68f21
CH
294static void nvme_complete_async_event(struct nvme_dev *dev,
295 struct nvme_completion *cqe)
3c0cf138 296{
adf68f21
CH
297 u16 status = le16_to_cpu(cqe->status) >> 1;
298 u32 result = le32_to_cpu(cqe->result);
a4aea562
MB
299
300 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
adf68f21 301 ++dev->ctrl.event_limit;
a5768aa8
KB
302 if (status != NVME_SC_SUCCESS)
303 return;
304
305 switch (result & 0xff07) {
306 case NVME_AER_NOTICE_NS_CHANGED:
adf68f21
CH
307 dev_info(dev->dev, "rescanning\n");
308 queue_work(nvme_workq, &dev->scan_work);
a5768aa8 309 default:
adf68f21 310 dev_warn(dev->dev, "async event result %08x\n", result);
a5768aa8 311 }
b60503ba
MW
312}
313
b60503ba 314/**
adf68f21 315 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
316 * @nvmeq: The queue to use
317 * @cmd: The command to send
318 *
319 * Safe to use from interrupt context
320 */
e3f879bf
SB
321static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
322 struct nvme_command *cmd)
b60503ba 323{
a4aea562
MB
324 u16 tail = nvmeq->sq_tail;
325
8ffaadf7
JD
326 if (nvmeq->sq_cmds_io)
327 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
328 else
329 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
330
b60503ba
MW
331 if (++tail == nvmeq->q_depth)
332 tail = 0;
7547881d 333 writel(tail, nvmeq->q_db);
b60503ba 334 nvmeq->sq_tail = tail;
b60503ba
MW
335}
336
f4800d6d 337static __le64 **iod_list(struct request *req)
b60503ba 338{
f4800d6d
CH
339 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
340 return (__le64 **)(iod->sg + req->nr_phys_segments);
b60503ba
MW
341}
342
f4800d6d 343static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 344{
f4800d6d
CH
345 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
346 int nseg = rq->nr_phys_segments;
347 unsigned size;
ac3dd5bd 348
f4800d6d
CH
349 if (rq->cmd_flags & REQ_DISCARD)
350 size = sizeof(struct nvme_dsm_range);
351 else
352 size = blk_rq_bytes(rq);
ac3dd5bd 353
f4800d6d
CH
354 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
355 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
356 if (!iod->sg)
357 return BLK_MQ_RQ_QUEUE_BUSY;
358 } else {
359 iod->sg = iod->inline_sg;
ac3dd5bd
JA
360 }
361
f4800d6d
CH
362 iod->aborted = 0;
363 iod->npages = -1;
364 iod->nents = 0;
365 iod->length = size;
366 return 0;
ac3dd5bd
JA
367}
368
f4800d6d 369static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 370{
f4800d6d 371 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 372 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 373 int i;
f4800d6d 374 __le64 **list = iod_list(req);
eca18b23
MW
375 dma_addr_t prp_dma = iod->first_dma;
376
377 if (iod->npages == 0)
378 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
379 for (i = 0; i < iod->npages; i++) {
380 __le64 *prp_list = list[i];
381 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
382 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
383 prp_dma = next_prp_dma;
384 }
ac3dd5bd 385
f4800d6d
CH
386 if (iod->sg != iod->inline_sg)
387 kfree(iod->sg);
b60503ba
MW
388}
389
52b68d7e 390#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
391static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
392{
393 if (be32_to_cpu(pi->ref_tag) == v)
394 pi->ref_tag = cpu_to_be32(p);
395}
396
397static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
398{
399 if (be32_to_cpu(pi->ref_tag) == p)
400 pi->ref_tag = cpu_to_be32(v);
401}
402
403/**
404 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
405 *
406 * The virtual start sector is the one that was originally submitted by the
407 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
408 * start sector may be different. Remap protection information to match the
409 * physical LBA on writes, and back to the original seed on reads.
410 *
411 * Type 0 and 3 do not have a ref tag, so no remapping required.
412 */
413static void nvme_dif_remap(struct request *req,
414 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
415{
416 struct nvme_ns *ns = req->rq_disk->private_data;
417 struct bio_integrity_payload *bip;
418 struct t10_pi_tuple *pi;
419 void *p, *pmap;
420 u32 i, nlb, ts, phys, virt;
421
422 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
423 return;
424
425 bip = bio_integrity(req->bio);
426 if (!bip)
427 return;
428
429 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
430
431 p = pmap;
432 virt = bip_get_seed(bip);
433 phys = nvme_block_nr(ns, blk_rq_pos(req));
434 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 435 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
436
437 for (i = 0; i < nlb; i++, virt++, phys++) {
438 pi = (struct t10_pi_tuple *)p;
439 dif_swap(phys, virt, pi);
440 p += ts;
441 }
442 kunmap_atomic(pmap);
443}
52b68d7e
KB
444#else /* CONFIG_BLK_DEV_INTEGRITY */
445static void nvme_dif_remap(struct request *req,
446 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
447{
448}
449static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
450{
451}
452static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
453{
454}
52b68d7e
KB
455#endif
456
f4800d6d 457static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 458 int total_len)
ff22b54f 459{
f4800d6d 460 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 461 struct dma_pool *pool;
eca18b23
MW
462 int length = total_len;
463 struct scatterlist *sg = iod->sg;
ff22b54f
MW
464 int dma_len = sg_dma_len(sg);
465 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 466 u32 page_size = dev->ctrl.page_size;
f137e0f1 467 int offset = dma_addr & (page_size - 1);
e025344c 468 __le64 *prp_list;
f4800d6d 469 __le64 **list = iod_list(req);
e025344c 470 dma_addr_t prp_dma;
eca18b23 471 int nprps, i;
ff22b54f 472
1d090624 473 length -= (page_size - offset);
ff22b54f 474 if (length <= 0)
69d2b571 475 return true;
ff22b54f 476
1d090624 477 dma_len -= (page_size - offset);
ff22b54f 478 if (dma_len) {
1d090624 479 dma_addr += (page_size - offset);
ff22b54f
MW
480 } else {
481 sg = sg_next(sg);
482 dma_addr = sg_dma_address(sg);
483 dma_len = sg_dma_len(sg);
484 }
485
1d090624 486 if (length <= page_size) {
edd10d33 487 iod->first_dma = dma_addr;
69d2b571 488 return true;
e025344c
SMM
489 }
490
1d090624 491 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
492 if (nprps <= (256 / 8)) {
493 pool = dev->prp_small_pool;
eca18b23 494 iod->npages = 0;
99802a7a
MW
495 } else {
496 pool = dev->prp_page_pool;
eca18b23 497 iod->npages = 1;
99802a7a
MW
498 }
499
69d2b571 500 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 501 if (!prp_list) {
edd10d33 502 iod->first_dma = dma_addr;
eca18b23 503 iod->npages = -1;
69d2b571 504 return false;
b77954cb 505 }
eca18b23
MW
506 list[0] = prp_list;
507 iod->first_dma = prp_dma;
e025344c
SMM
508 i = 0;
509 for (;;) {
1d090624 510 if (i == page_size >> 3) {
e025344c 511 __le64 *old_prp_list = prp_list;
69d2b571 512 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 513 if (!prp_list)
69d2b571 514 return false;
eca18b23 515 list[iod->npages++] = prp_list;
7523d834
MW
516 prp_list[0] = old_prp_list[i - 1];
517 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
518 i = 1;
e025344c
SMM
519 }
520 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
521 dma_len -= page_size;
522 dma_addr += page_size;
523 length -= page_size;
e025344c
SMM
524 if (length <= 0)
525 break;
526 if (dma_len > 0)
527 continue;
528 BUG_ON(dma_len < 0);
529 sg = sg_next(sg);
530 dma_addr = sg_dma_address(sg);
531 dma_len = sg_dma_len(sg);
ff22b54f
MW
532 }
533
69d2b571 534 return true;
ff22b54f
MW
535}
536
f4800d6d 537static int nvme_map_data(struct nvme_dev *dev, struct request *req,
ba1ca37e 538 struct nvme_command *cmnd)
d29ec824 539{
f4800d6d 540 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
541 struct request_queue *q = req->q;
542 enum dma_data_direction dma_dir = rq_data_dir(req) ?
543 DMA_TO_DEVICE : DMA_FROM_DEVICE;
544 int ret = BLK_MQ_RQ_QUEUE_ERROR;
545
546 sg_init_table(iod->sg, req->nr_phys_segments);
547 iod->nents = blk_rq_map_sg(q, req, iod->sg);
548 if (!iod->nents)
549 goto out;
550
551 ret = BLK_MQ_RQ_QUEUE_BUSY;
552 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
553 goto out;
554
f4800d6d 555 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
ba1ca37e
CH
556 goto out_unmap;
557
558 ret = BLK_MQ_RQ_QUEUE_ERROR;
559 if (blk_integrity_rq(req)) {
560 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
561 goto out_unmap;
562
bf684057
CH
563 sg_init_table(&iod->meta_sg, 1);
564 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 565 goto out_unmap;
d29ec824 566
ba1ca37e
CH
567 if (rq_data_dir(req))
568 nvme_dif_remap(req, nvme_dif_prep);
569
bf684057 570 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 571 goto out_unmap;
d29ec824
CH
572 }
573
ba1ca37e
CH
574 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
575 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
576 if (blk_integrity_rq(req))
bf684057 577 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e
CH
578 return BLK_MQ_RQ_QUEUE_OK;
579
580out_unmap:
581 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
582out:
583 return ret;
d29ec824
CH
584}
585
f4800d6d 586static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
d4f6c3ab 587{
f4800d6d 588 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
589 enum dma_data_direction dma_dir = rq_data_dir(req) ?
590 DMA_TO_DEVICE : DMA_FROM_DEVICE;
591
592 if (iod->nents) {
593 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
594 if (blk_integrity_rq(req)) {
595 if (!rq_data_dir(req))
596 nvme_dif_remap(req, nvme_dif_complete);
bf684057 597 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
d4f6c3ab
CH
598 }
599 }
600
f4800d6d 601 nvme_free_iod(dev, req);
d4f6c3ab
CH
602}
603
a4aea562
MB
604/*
605 * We reuse the small pool to allocate the 16-byte range here as it is not
606 * worth having a special pool for these or additional cases to handle freeing
607 * the iod.
608 */
ba1ca37e 609static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
f4800d6d 610 struct request *req, struct nvme_command *cmnd)
0e5e4f0e 611{
f4800d6d 612 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
613 struct nvme_dsm_range *range;
614
615 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
616 &iod->first_dma);
617 if (!range)
618 return BLK_MQ_RQ_QUEUE_BUSY;
f4800d6d 619 iod_list(req)[0] = (__le64 *)range;
ba1ca37e 620 iod->npages = 0;
0e5e4f0e 621
0e5e4f0e 622 range->cattr = cpu_to_le32(0);
a4aea562
MB
623 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
624 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 625
ba1ca37e
CH
626 memset(cmnd, 0, sizeof(*cmnd));
627 cmnd->dsm.opcode = nvme_cmd_dsm;
628 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
629 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
630 cmnd->dsm.nr = 0;
631 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
632 return BLK_MQ_RQ_QUEUE_OK;
0e5e4f0e
KB
633}
634
d29ec824
CH
635/*
636 * NOTE: ns is NULL when called on the admin queue.
637 */
a4aea562
MB
638static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
639 const struct blk_mq_queue_data *bd)
edd10d33 640{
a4aea562
MB
641 struct nvme_ns *ns = hctx->queue->queuedata;
642 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 643 struct nvme_dev *dev = nvmeq->dev;
a4aea562 644 struct request *req = bd->rq;
ba1ca37e
CH
645 struct nvme_command cmnd;
646 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 647
e1e5e564
KB
648 /*
649 * If formated with metadata, require the block layer provide a buffer
650 * unless this namespace is formated such that the metadata can be
651 * stripped/generated by the controller with PRACT=1.
652 */
d29ec824 653 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
654 if (!(ns->pi_type && ns->ms == 8) &&
655 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 656 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
657 return BLK_MQ_RQ_QUEUE_OK;
658 }
659 }
660
f4800d6d
CH
661 ret = nvme_init_iod(req, dev);
662 if (ret)
663 return ret;
a4aea562 664
a4aea562 665 if (req->cmd_flags & REQ_DISCARD) {
f4800d6d 666 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
ba1ca37e
CH
667 } else {
668 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
669 memcpy(&cmnd, req->cmd, sizeof(cmnd));
670 else if (req->cmd_flags & REQ_FLUSH)
671 nvme_setup_flush(ns, &cmnd);
672 else
673 nvme_setup_rw(ns, req, &cmnd);
a4aea562 674
ba1ca37e 675 if (req->nr_phys_segments)
f4800d6d 676 ret = nvme_map_data(dev, req, &cmnd);
edd10d33 677 }
1974b1ae 678
ba1ca37e
CH
679 if (ret)
680 goto out;
681
682 cmnd.common.command_id = req->tag;
aae239e1 683 blk_mq_start_request(req);
a4aea562 684
ba1ca37e
CH
685 spin_lock_irq(&nvmeq->q_lock);
686 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
687 nvme_process_cq(nvmeq);
688 spin_unlock_irq(&nvmeq->q_lock);
689 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 690out:
f4800d6d 691 nvme_free_iod(dev, req);
ba1ca37e 692 return ret;
b60503ba
MW
693}
694
eee417b0
CH
695static void nvme_complete_rq(struct request *req)
696{
f4800d6d
CH
697 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
698 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0
CH
699 int error = 0;
700
f4800d6d 701 nvme_unmap_data(dev, req);
eee417b0
CH
702
703 if (unlikely(req->errors)) {
704 if (nvme_req_needs_retry(req, req->errors)) {
705 nvme_requeue_req(req);
706 return;
707 }
708
709 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
710 error = req->errors;
711 else
712 error = nvme_error_status(req->errors);
713 }
714
f4800d6d 715 if (unlikely(iod->aborted)) {
eee417b0
CH
716 dev_warn(dev->dev,
717 "completing aborted command with status: %04x\n",
718 req->errors);
719 }
720
721 blk_mq_end_request(req, error);
722}
723
a0fa9647 724static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 725{
82123460 726 u16 head, phase;
b60503ba 727
b60503ba 728 head = nvmeq->cq_head;
82123460 729 phase = nvmeq->cq_phase;
b60503ba
MW
730
731 for (;;) {
b60503ba 732 struct nvme_completion cqe = nvmeq->cqes[head];
adf68f21 733 u16 status = le16_to_cpu(cqe.status);
eee417b0 734 struct request *req;
adf68f21
CH
735
736 if ((status & 1) != phase)
b60503ba
MW
737 break;
738 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
739 if (++head == nvmeq->q_depth) {
740 head = 0;
82123460 741 phase = !phase;
b60503ba 742 }
adf68f21 743
a0fa9647
JA
744 if (tag && *tag == cqe.command_id)
745 *tag = -1;
adf68f21 746
aae239e1
CH
747 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
748 dev_warn(nvmeq->q_dmadev,
749 "invalid id %d completed on queue %d\n",
750 cqe.command_id, le16_to_cpu(cqe.sq_id));
751 continue;
752 }
753
adf68f21
CH
754 /*
755 * AEN requests are special as they don't time out and can
756 * survive any kind of queue freeze and often don't respond to
757 * aborts. We don't even bother to allocate a struct request
758 * for them but rather special case them here.
759 */
760 if (unlikely(nvmeq->qid == 0 &&
761 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
762 nvme_complete_async_event(nvmeq->dev, &cqe);
763 continue;
764 }
765
eee417b0
CH
766 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
767 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
768 u32 result = le32_to_cpu(cqe.result);
769 req->special = (void *)(uintptr_t)result;
770 }
771 blk_mq_complete_request(req, status >> 1);
772
b60503ba
MW
773 }
774
775 /* If the controller ignores the cq head doorbell and continuously
776 * writes to the queue, it is theoretically possible to wrap around
777 * the queue twice and mistakenly return IRQ_NONE. Linux only
778 * requires that 0.1% of your interrupts are handled, so this isn't
779 * a big problem.
780 */
82123460 781 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 782 return;
b60503ba 783
604e8c8d
KB
784 if (likely(nvmeq->cq_vector >= 0))
785 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 786 nvmeq->cq_head = head;
82123460 787 nvmeq->cq_phase = phase;
b60503ba 788
e9539f47 789 nvmeq->cqe_seen = 1;
a0fa9647
JA
790}
791
792static void nvme_process_cq(struct nvme_queue *nvmeq)
793{
794 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
795}
796
797static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
798{
799 irqreturn_t result;
800 struct nvme_queue *nvmeq = data;
801 spin_lock(&nvmeq->q_lock);
e9539f47
MW
802 nvme_process_cq(nvmeq);
803 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
804 nvmeq->cqe_seen = 0;
58ffacb5
MW
805 spin_unlock(&nvmeq->q_lock);
806 return result;
807}
808
809static irqreturn_t nvme_irq_check(int irq, void *data)
810{
811 struct nvme_queue *nvmeq = data;
812 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
813 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
814 return IRQ_NONE;
815 return IRQ_WAKE_THREAD;
816}
817
a0fa9647
JA
818static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
819{
820 struct nvme_queue *nvmeq = hctx->driver_data;
821
822 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
823 nvmeq->cq_phase) {
824 spin_lock_irq(&nvmeq->q_lock);
825 __nvme_process_cq(nvmeq, &tag);
826 spin_unlock_irq(&nvmeq->q_lock);
827
828 if (tag == -1)
829 return 1;
830 }
831
832 return 0;
833}
834
adf68f21 835static void nvme_submit_async_event(struct nvme_dev *dev)
a4aea562 836{
a4aea562 837 struct nvme_command c;
a4aea562
MB
838
839 memset(&c, 0, sizeof(c));
840 c.common.opcode = nvme_admin_async_event;
adf68f21 841 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
a4aea562 842
adf68f21 843 __nvme_submit_cmd(dev->queues[0], &c);
a4aea562
MB
844}
845
d8f32166 846static void async_cmd_info_endio(struct request *req, int error)
4d115420 847{
d8f32166 848 struct async_cmd_info *cmdinfo = req->end_io_data;
a4aea562 849
d8f32166
CH
850 cmdinfo->status = req->errors;
851 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
852 blk_mq_free_request(req);
4d115420
KB
853}
854
b60503ba
MW
855static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
856{
b60503ba
MW
857 struct nvme_command c;
858
859 memset(&c, 0, sizeof(c));
860 c.delete_queue.opcode = opcode;
861 c.delete_queue.qid = cpu_to_le16(id);
862
1c63dc66 863 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
864}
865
866static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
867 struct nvme_queue *nvmeq)
868{
b60503ba
MW
869 struct nvme_command c;
870 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
871
d29ec824
CH
872 /*
873 * Note: we (ab)use the fact the the prp fields survive if no data
874 * is attached to the request.
875 */
b60503ba
MW
876 memset(&c, 0, sizeof(c));
877 c.create_cq.opcode = nvme_admin_create_cq;
878 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
879 c.create_cq.cqid = cpu_to_le16(qid);
880 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
881 c.create_cq.cq_flags = cpu_to_le16(flags);
882 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
883
1c63dc66 884 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
885}
886
887static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
888 struct nvme_queue *nvmeq)
889{
b60503ba
MW
890 struct nvme_command c;
891 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
892
d29ec824
CH
893 /*
894 * Note: we (ab)use the fact the the prp fields survive if no data
895 * is attached to the request.
896 */
b60503ba
MW
897 memset(&c, 0, sizeof(c));
898 c.create_sq.opcode = nvme_admin_create_sq;
899 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
900 c.create_sq.sqid = cpu_to_le16(qid);
901 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
902 c.create_sq.sq_flags = cpu_to_le16(flags);
903 c.create_sq.cqid = cpu_to_le16(qid);
904
1c63dc66 905 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
906}
907
908static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
909{
910 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
911}
912
913static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
914{
915 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
916}
917
e7a2a87d
CH
918static void abort_endio(struct request *req, int error)
919{
f4800d6d
CH
920 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
921 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d
CH
922 u32 result = (u32)(uintptr_t)req->special;
923 u16 status = req->errors;
924
925 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
926 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
927
928 blk_mq_free_request(req);
929}
930
31c7c7d2 931static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 932{
f4800d6d
CH
933 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
934 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 935 struct nvme_dev *dev = nvmeq->dev;
a4aea562 936 struct request *abort_req;
a4aea562 937 struct nvme_command cmd;
c30341dc 938
31c7c7d2 939 /*
fd634f41
CH
940 * Shutdown immediately if controller times out while starting. The
941 * reset work will see the pci device disabled when it gets the forced
942 * cancellation error. All outstanding requests are completed on
943 * shutdown, so we return BLK_EH_HANDLED.
944 */
945 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
946 dev_warn(dev->dev,
947 "I/O %d QID %d timeout, disable controller\n",
948 req->tag, nvmeq->qid);
949 nvme_dev_shutdown(dev);
950 req->errors = NVME_SC_CANCELLED;
951 return BLK_EH_HANDLED;
952 }
953
954 /*
955 * Shutdown the controller immediately and schedule a reset if the
956 * command was already aborted once before and still hasn't been
957 * returned to the driver, or if this is the admin queue.
31c7c7d2 958 */
f4800d6d 959 if (!nvmeq->qid || iod->aborted) {
e1569a16
KB
960 dev_warn(dev->dev,
961 "I/O %d QID %d timeout, reset controller\n",
962 req->tag, nvmeq->qid);
963 nvme_dev_shutdown(dev);
964 queue_work(nvme_workq, &dev->reset_work);
965
966 /*
967 * Mark the request as handled, since the inline shutdown
968 * forces all outstanding requests to complete.
969 */
970 req->errors = NVME_SC_CANCELLED;
971 return BLK_EH_HANDLED;
c30341dc
KB
972 }
973
f4800d6d 974 iod->aborted = 1;
c30341dc 975
e7a2a87d 976 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 977 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 978 return BLK_EH_RESET_TIMER;
6bf25d16 979 }
c30341dc
KB
980
981 memset(&cmd, 0, sizeof(cmd));
982 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 983 cmd.abort.cid = req->tag;
c30341dc 984 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 985
31c7c7d2
CH
986 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
987 req->tag, nvmeq->qid);
e7a2a87d
CH
988
989 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
990 BLK_MQ_REQ_NOWAIT);
991 if (IS_ERR(abort_req)) {
992 atomic_inc(&dev->ctrl.abort_limit);
993 return BLK_EH_RESET_TIMER;
994 }
995
996 abort_req->timeout = ADMIN_TIMEOUT;
997 abort_req->end_io_data = NULL;
998 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
31c7c7d2
CH
999
1000 /*
1001 * The aborted req will be completed on receiving the abort req.
1002 * We enable the timer again. If hit twice, it'll cause a device reset,
1003 * as the device then is in a faulty state.
1004 */
1005 return BLK_EH_RESET_TIMER;
c30341dc
KB
1006}
1007
42483228 1008static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1009{
a4aea562 1010 struct nvme_queue *nvmeq = data;
aae239e1 1011 int status;
cef6a948
KB
1012
1013 if (!blk_mq_request_started(req))
1014 return;
a09115b2 1015
aae239e1
CH
1016 dev_warn(nvmeq->q_dmadev,
1017 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
a4aea562 1018
aae239e1 1019 status = NVME_SC_CANCELLED;
cef6a948 1020 if (blk_queue_dying(req->q))
aae239e1
CH
1021 status |= NVME_SC_DNR;
1022 blk_mq_complete_request(req, status);
a09115b2
MW
1023}
1024
a4aea562
MB
1025static void nvme_free_queue(struct nvme_queue *nvmeq)
1026{
9e866774
MW
1027 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1028 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1029 if (nvmeq->sq_cmds)
1030 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1031 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1032 kfree(nvmeq);
1033}
1034
a1a5ef99 1035static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1036{
1037 int i;
1038
a1a5ef99 1039 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1040 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1041 dev->queue_count--;
a4aea562 1042 dev->queues[i] = NULL;
f435c282 1043 nvme_free_queue(nvmeq);
121c7ad4 1044 }
22404274
KB
1045}
1046
4d115420
KB
1047/**
1048 * nvme_suspend_queue - put queue into suspended state
1049 * @nvmeq - queue to suspend
4d115420
KB
1050 */
1051static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1052{
2b25d981 1053 int vector;
b60503ba 1054
a09115b2 1055 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1056 if (nvmeq->cq_vector == -1) {
1057 spin_unlock_irq(&nvmeq->q_lock);
1058 return 1;
1059 }
1060 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1061 nvmeq->dev->online_queues--;
2b25d981 1062 nvmeq->cq_vector = -1;
a09115b2
MW
1063 spin_unlock_irq(&nvmeq->q_lock);
1064
1c63dc66
CH
1065 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1066 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1067
aba2080f
MW
1068 irq_set_affinity_hint(vector, NULL);
1069 free_irq(vector, nvmeq);
b60503ba 1070
4d115420
KB
1071 return 0;
1072}
b60503ba 1073
4d115420
KB
1074static void nvme_clear_queue(struct nvme_queue *nvmeq)
1075{
22404274 1076 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1077 if (nvmeq->tags && *nvmeq->tags)
1078 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1079 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1080}
1081
4d115420
KB
1082static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1083{
a4aea562 1084 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1085
1086 if (!nvmeq)
1087 return;
1088 if (nvme_suspend_queue(nvmeq))
1089 return;
1090
0e53d180
KB
1091 /* Don't tell the adapter to delete the admin queue.
1092 * Don't tell a removed adapter to delete IO queues. */
7a67cbea 1093 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
b60503ba
MW
1094 adapter_delete_sq(dev, qid);
1095 adapter_delete_cq(dev, qid);
1096 }
07836e65
KB
1097
1098 spin_lock_irq(&nvmeq->q_lock);
1099 nvme_process_cq(nvmeq);
1100 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1101}
1102
8ffaadf7
JD
1103static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1104 int entry_size)
1105{
1106 int q_depth = dev->q_depth;
5fd4ce1b
CH
1107 unsigned q_size_aligned = roundup(q_depth * entry_size,
1108 dev->ctrl.page_size);
8ffaadf7
JD
1109
1110 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1111 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1112 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1113 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1114
1115 /*
1116 * Ensure the reduced q_depth is above some threshold where it
1117 * would be better to map queues in system memory with the
1118 * original depth
1119 */
1120 if (q_depth < 64)
1121 return -ENOMEM;
1122 }
1123
1124 return q_depth;
1125}
1126
1127static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1128 int qid, int depth)
1129{
1130 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1131 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1132 dev->ctrl.page_size);
8ffaadf7
JD
1133 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1134 nvmeq->sq_cmds_io = dev->cmb + offset;
1135 } else {
1136 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1137 &nvmeq->sq_dma_addr, GFP_KERNEL);
1138 if (!nvmeq->sq_cmds)
1139 return -ENOMEM;
1140 }
1141
1142 return 0;
1143}
1144
b60503ba 1145static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1146 int depth)
b60503ba 1147{
a4aea562 1148 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1149 if (!nvmeq)
1150 return NULL;
1151
e75ec752 1152 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1153 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1154 if (!nvmeq->cqes)
1155 goto free_nvmeq;
b60503ba 1156
8ffaadf7 1157 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1158 goto free_cqdma;
1159
e75ec752 1160 nvmeq->q_dmadev = dev->dev;
091b6092 1161 nvmeq->dev = dev;
3193f07b 1162 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1163 dev->ctrl.instance, qid);
b60503ba
MW
1164 spin_lock_init(&nvmeq->q_lock);
1165 nvmeq->cq_head = 0;
82123460 1166 nvmeq->cq_phase = 1;
b80d5ccc 1167 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1168 nvmeq->q_depth = depth;
c30341dc 1169 nvmeq->qid = qid;
758dd7fd 1170 nvmeq->cq_vector = -1;
a4aea562 1171 dev->queues[qid] = nvmeq;
b60503ba 1172
36a7e993
JD
1173 /* make sure queue descriptor is set before queue count, for kthread */
1174 mb();
1175 dev->queue_count++;
1176
b60503ba
MW
1177 return nvmeq;
1178
1179 free_cqdma:
e75ec752 1180 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1181 nvmeq->cq_dma_addr);
1182 free_nvmeq:
1183 kfree(nvmeq);
1184 return NULL;
1185}
1186
3001082c
MW
1187static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1188 const char *name)
1189{
58ffacb5
MW
1190 if (use_threaded_interrupts)
1191 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1192 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1193 name, nvmeq);
3001082c 1194 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1195 IRQF_SHARED, name, nvmeq);
3001082c
MW
1196}
1197
22404274 1198static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1199{
22404274 1200 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1201
7be50e93 1202 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1203 nvmeq->sq_tail = 0;
1204 nvmeq->cq_head = 0;
1205 nvmeq->cq_phase = 1;
b80d5ccc 1206 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1207 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1208 dev->online_queues++;
7be50e93 1209 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1210}
1211
1212static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1213{
1214 struct nvme_dev *dev = nvmeq->dev;
1215 int result;
3f85d50b 1216
2b25d981 1217 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1218 result = adapter_alloc_cq(dev, qid, nvmeq);
1219 if (result < 0)
22404274 1220 return result;
b60503ba
MW
1221
1222 result = adapter_alloc_sq(dev, qid, nvmeq);
1223 if (result < 0)
1224 goto release_cq;
1225
3193f07b 1226 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1227 if (result < 0)
1228 goto release_sq;
1229
22404274 1230 nvme_init_queue(nvmeq, qid);
22404274 1231 return result;
b60503ba
MW
1232
1233 release_sq:
1234 adapter_delete_sq(dev, qid);
1235 release_cq:
1236 adapter_delete_cq(dev, qid);
22404274 1237 return result;
b60503ba
MW
1238}
1239
a4aea562 1240static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1241 .queue_rq = nvme_queue_rq,
eee417b0 1242 .complete = nvme_complete_rq,
a4aea562
MB
1243 .map_queue = blk_mq_map_queue,
1244 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1245 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1246 .init_request = nvme_admin_init_request,
1247 .timeout = nvme_timeout,
1248};
1249
1250static struct blk_mq_ops nvme_mq_ops = {
1251 .queue_rq = nvme_queue_rq,
eee417b0 1252 .complete = nvme_complete_rq,
a4aea562
MB
1253 .map_queue = blk_mq_map_queue,
1254 .init_hctx = nvme_init_hctx,
1255 .init_request = nvme_init_request,
1256 .timeout = nvme_timeout,
a0fa9647 1257 .poll = nvme_poll,
a4aea562
MB
1258};
1259
ea191d2f
KB
1260static void nvme_dev_remove_admin(struct nvme_dev *dev)
1261{
1c63dc66
CH
1262 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1263 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1264 blk_mq_free_tag_set(&dev->admin_tagset);
1265 }
1266}
1267
a4aea562
MB
1268static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1269{
1c63dc66 1270 if (!dev->ctrl.admin_q) {
a4aea562
MB
1271 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1272 dev->admin_tagset.nr_hw_queues = 1;
adf68f21 1273 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH;
a4aea562 1274 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1275 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1276 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1277 dev->admin_tagset.driver_data = dev;
1278
1279 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1280 return -ENOMEM;
1281
1c63dc66
CH
1282 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1283 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1284 blk_mq_free_tag_set(&dev->admin_tagset);
1285 return -ENOMEM;
1286 }
1c63dc66 1287 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1288 nvme_dev_remove_admin(dev);
1c63dc66 1289 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1290 return -ENODEV;
1291 }
0fb59cbc 1292 } else
1c63dc66 1293 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
a4aea562
MB
1294
1295 return 0;
1296}
1297
8d85fce7 1298static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1299{
ba47e386 1300 int result;
b60503ba 1301 u32 aqa;
7a67cbea 1302 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1303 struct nvme_queue *nvmeq;
1304
7a67cbea 1305 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1306 NVME_CAP_NSSRC(cap) : 0;
1307
7a67cbea
CH
1308 if (dev->subsystem &&
1309 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1310 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1311
5fd4ce1b 1312 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1313 if (result < 0)
1314 return result;
b60503ba 1315
a4aea562 1316 nvmeq = dev->queues[0];
cd638946 1317 if (!nvmeq) {
2b25d981 1318 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1319 if (!nvmeq)
1320 return -ENOMEM;
cd638946 1321 }
b60503ba
MW
1322
1323 aqa = nvmeq->q_depth - 1;
1324 aqa |= aqa << 16;
1325
7a67cbea
CH
1326 writel(aqa, dev->bar + NVME_REG_AQA);
1327 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1328 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1329
5fd4ce1b 1330 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1331 if (result)
a4aea562
MB
1332 goto free_nvmeq;
1333
2b25d981 1334 nvmeq->cq_vector = 0;
3193f07b 1335 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1336 if (result) {
1337 nvmeq->cq_vector = -1;
0fb59cbc 1338 goto free_nvmeq;
758dd7fd 1339 }
025c557a 1340
b60503ba 1341 return result;
a4aea562 1342
a4aea562
MB
1343 free_nvmeq:
1344 nvme_free_queues(dev, 0);
1345 return result;
b60503ba
MW
1346}
1347
1fa6aead
MW
1348static int nvme_kthread(void *data)
1349{
d4b4ff8e 1350 struct nvme_dev *dev, *next;
1fa6aead
MW
1351
1352 while (!kthread_should_stop()) {
564a232c 1353 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 1354 spin_lock(&dev_list_lock);
d4b4ff8e 1355 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 1356 int i;
7a67cbea 1357 u32 csts = readl(dev->bar + NVME_REG_CSTS);
dfbac8c7 1358
846cc05f
CH
1359 /*
1360 * Skip controllers currently under reset.
1361 */
1362 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1363 continue;
1364
dfbac8c7
KB
1365 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1366 csts & NVME_CSTS_CFS) {
846cc05f 1367 if (queue_work(nvme_workq, &dev->reset_work)) {
90667892
CH
1368 dev_warn(dev->dev,
1369 "Failed status: %x, reset controller\n",
7a67cbea 1370 readl(dev->bar + NVME_REG_CSTS));
90667892 1371 }
d4b4ff8e
KB
1372 continue;
1373 }
1fa6aead 1374 for (i = 0; i < dev->queue_count; i++) {
a4aea562 1375 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1376 if (!nvmeq)
1377 continue;
1fa6aead 1378 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 1379 nvme_process_cq(nvmeq);
6fccf938 1380
adf68f21
CH
1381 while (i == 0 && dev->ctrl.event_limit > 0)
1382 nvme_submit_async_event(dev);
1fa6aead
MW
1383 spin_unlock_irq(&nvmeq->q_lock);
1384 }
1385 }
1386 spin_unlock(&dev_list_lock);
acb7aa0d 1387 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1388 }
1389 return 0;
1390}
1391
749941f2 1392static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1393{
a4aea562 1394 unsigned i;
749941f2 1395 int ret = 0;
42f61420 1396
749941f2
CH
1397 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1398 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1399 ret = -ENOMEM;
42f61420 1400 break;
749941f2
CH
1401 }
1402 }
42f61420 1403
749941f2
CH
1404 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1405 ret = nvme_create_queue(dev->queues[i], i);
1406 if (ret) {
2659e57b 1407 nvme_free_queues(dev, i);
42f61420 1408 break;
2659e57b 1409 }
749941f2
CH
1410 }
1411
1412 /*
1413 * Ignore failing Create SQ/CQ commands, we can continue with less
1414 * than the desired aount of queues, and even a controller without
1415 * I/O queues an still be used to issue admin commands. This might
1416 * be useful to upgrade a buggy firmware for example.
1417 */
1418 return ret >= 0 ? 0 : ret;
42f61420
KB
1419}
1420
8ffaadf7
JD
1421static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1422{
1423 u64 szu, size, offset;
1424 u32 cmbloc;
1425 resource_size_t bar_size;
1426 struct pci_dev *pdev = to_pci_dev(dev->dev);
1427 void __iomem *cmb;
1428 dma_addr_t dma_addr;
1429
1430 if (!use_cmb_sqes)
1431 return NULL;
1432
7a67cbea 1433 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1434 if (!(NVME_CMB_SZ(dev->cmbsz)))
1435 return NULL;
1436
7a67cbea 1437 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1438
1439 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1440 size = szu * NVME_CMB_SZ(dev->cmbsz);
1441 offset = szu * NVME_CMB_OFST(cmbloc);
1442 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1443
1444 if (offset > bar_size)
1445 return NULL;
1446
1447 /*
1448 * Controllers may support a CMB size larger than their BAR,
1449 * for example, due to being behind a bridge. Reduce the CMB to
1450 * the reported size of the BAR
1451 */
1452 if (size > bar_size - offset)
1453 size = bar_size - offset;
1454
1455 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1456 cmb = ioremap_wc(dma_addr, size);
1457 if (!cmb)
1458 return NULL;
1459
1460 dev->cmb_dma_addr = dma_addr;
1461 dev->cmb_size = size;
1462 return cmb;
1463}
1464
1465static inline void nvme_release_cmb(struct nvme_dev *dev)
1466{
1467 if (dev->cmb) {
1468 iounmap(dev->cmb);
1469 dev->cmb = NULL;
1470 }
1471}
1472
9d713c2b
KB
1473static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1474{
b80d5ccc 1475 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1476}
1477
8d85fce7 1478static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1479{
a4aea562 1480 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1481 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1482 int result, i, vecs, nr_io_queues, size;
b60503ba 1483
42f61420 1484 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1485 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1486 if (result < 0)
1b23484b 1487 return result;
9a0be7ab
CH
1488
1489 /*
1490 * Degraded controllers might return an error when setting the queue
1491 * count. We still want to be able to bring them online and offer
1492 * access to the admin queue, as that might be only way to fix them up.
1493 */
1494 if (result > 0) {
1495 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1496 nr_io_queues = 0;
1497 result = 0;
1498 }
b60503ba 1499
8ffaadf7
JD
1500 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1501 result = nvme_cmb_qdepth(dev, nr_io_queues,
1502 sizeof(struct nvme_command));
1503 if (result > 0)
1504 dev->q_depth = result;
1505 else
1506 nvme_release_cmb(dev);
1507 }
1508
9d713c2b
KB
1509 size = db_bar_size(dev, nr_io_queues);
1510 if (size > 8192) {
f1938f6e 1511 iounmap(dev->bar);
9d713c2b
KB
1512 do {
1513 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1514 if (dev->bar)
1515 break;
1516 if (!--nr_io_queues)
1517 return -ENOMEM;
1518 size = db_bar_size(dev, nr_io_queues);
1519 } while (1);
7a67cbea 1520 dev->dbs = dev->bar + 4096;
5a92e700 1521 adminq->q_db = dev->dbs;
f1938f6e
MW
1522 }
1523
9d713c2b 1524 /* Deregister the admin queue's interrupt */
3193f07b 1525 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1526
e32efbfc
JA
1527 /*
1528 * If we enable msix early due to not intx, disable it again before
1529 * setting up the full range we need.
1530 */
1531 if (!pdev->irq)
1532 pci_disable_msix(pdev);
1533
be577fab 1534 for (i = 0; i < nr_io_queues; i++)
1b23484b 1535 dev->entry[i].entry = i;
be577fab
AG
1536 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1537 if (vecs < 0) {
1538 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1539 if (vecs < 0) {
1540 vecs = 1;
1541 } else {
1542 for (i = 0; i < vecs; i++)
1543 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1544 }
1545 }
1546
063a8096
MW
1547 /*
1548 * Should investigate if there's a performance win from allocating
1549 * more queues than interrupt vectors; it might allow the submission
1550 * path to scale better, even if the receive path is limited by the
1551 * number of interrupts.
1552 */
1553 nr_io_queues = vecs;
42f61420 1554 dev->max_qid = nr_io_queues;
063a8096 1555
3193f07b 1556 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1557 if (result) {
1558 adminq->cq_vector = -1;
22404274 1559 goto free_queues;
758dd7fd 1560 }
1b23484b 1561
cd638946 1562 /* Free previously allocated queues that are no longer usable */
42f61420 1563 nvme_free_queues(dev, nr_io_queues + 1);
749941f2 1564 return nvme_create_io_queues(dev);
b60503ba 1565
22404274 1566 free_queues:
a1a5ef99 1567 nvme_free_queues(dev, 1);
22404274 1568 return result;
b60503ba
MW
1569}
1570
bda4e0fb
KB
1571static void nvme_set_irq_hints(struct nvme_dev *dev)
1572{
1573 struct nvme_queue *nvmeq;
1574 int i;
1575
1576 for (i = 0; i < dev->online_queues; i++) {
1577 nvmeq = dev->queues[i];
1578
1579 if (!nvmeq->tags || !(*nvmeq->tags))
1580 continue;
1581
1582 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1583 blk_mq_tags_cpumask(*nvmeq->tags));
1584 }
1585}
1586
a5768aa8
KB
1587static void nvme_dev_scan(struct work_struct *work)
1588{
1589 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1590
1591 if (!dev->tagset.tags)
1592 return;
5bae7f73 1593 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1594 nvme_set_irq_hints(dev);
a5768aa8
KB
1595}
1596
422ef0c7
MW
1597/*
1598 * Return: error value if an error occurred setting up the queues or calling
1599 * Identify Device. 0 if these succeeded, even if adding some of the
1600 * namespaces failed. At the moment, these failures are silent. TBD which
1601 * failures should be reported.
1602 */
8d85fce7 1603static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1604{
5bae7f73 1605 if (!dev->ctrl.tagset) {
ffe7704d
KB
1606 dev->tagset.ops = &nvme_mq_ops;
1607 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1608 dev->tagset.timeout = NVME_IO_TIMEOUT;
1609 dev->tagset.numa_node = dev_to_node(dev->dev);
1610 dev->tagset.queue_depth =
a4aea562 1611 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1612 dev->tagset.cmd_size = nvme_cmd_size(dev);
1613 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1614 dev->tagset.driver_data = dev;
b60503ba 1615
ffe7704d
KB
1616 if (blk_mq_alloc_tag_set(&dev->tagset))
1617 return 0;
5bae7f73 1618 dev->ctrl.tagset = &dev->tagset;
ffe7704d 1619 }
92f7a162 1620 queue_work(nvme_workq, &dev->scan_work);
e1e5e564 1621 return 0;
b60503ba
MW
1622}
1623
0877cb0d
KB
1624static int nvme_dev_map(struct nvme_dev *dev)
1625{
42f61420 1626 u64 cap;
0877cb0d 1627 int bars, result = -ENOMEM;
e75ec752 1628 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1629
1630 if (pci_enable_device_mem(pdev))
1631 return result;
1632
1633 dev->entry[0].vector = pdev->irq;
1634 pci_set_master(pdev);
1635 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
1636 if (!bars)
1637 goto disable_pci;
1638
0877cb0d
KB
1639 if (pci_request_selected_regions(pdev, bars, "nvme"))
1640 goto disable_pci;
1641
e75ec752
CH
1642 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1643 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1644 goto disable;
0877cb0d 1645
0877cb0d
KB
1646 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1647 if (!dev->bar)
1648 goto disable;
e32efbfc 1649
7a67cbea 1650 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180
KB
1651 result = -ENODEV;
1652 goto unmap;
1653 }
e32efbfc
JA
1654
1655 /*
1656 * Some devices don't advertse INTx interrupts, pre-enable a single
1657 * MSIX vec for setup. We'll adjust this later.
1658 */
1659 if (!pdev->irq) {
1660 result = pci_enable_msix(pdev, dev->entry, 1);
1661 if (result < 0)
1662 goto unmap;
1663 }
1664
7a67cbea
CH
1665 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1666
42f61420
KB
1667 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1668 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea
CH
1669 dev->dbs = dev->bar + 4096;
1670 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1671 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
1672
1673 return 0;
1674
0e53d180
KB
1675 unmap:
1676 iounmap(dev->bar);
1677 dev->bar = NULL;
0877cb0d
KB
1678 disable:
1679 pci_release_regions(pdev);
1680 disable_pci:
1681 pci_disable_device(pdev);
1682 return result;
1683}
1684
1685static void nvme_dev_unmap(struct nvme_dev *dev)
1686{
e75ec752
CH
1687 struct pci_dev *pdev = to_pci_dev(dev->dev);
1688
1689 if (pdev->msi_enabled)
1690 pci_disable_msi(pdev);
1691 else if (pdev->msix_enabled)
1692 pci_disable_msix(pdev);
0877cb0d
KB
1693
1694 if (dev->bar) {
1695 iounmap(dev->bar);
1696 dev->bar = NULL;
e75ec752 1697 pci_release_regions(pdev);
0877cb0d
KB
1698 }
1699
e75ec752
CH
1700 if (pci_is_enabled(pdev))
1701 pci_disable_device(pdev);
0877cb0d
KB
1702}
1703
4d115420
KB
1704struct nvme_delq_ctx {
1705 struct task_struct *waiter;
1706 struct kthread_worker *worker;
1707 atomic_t refcount;
1708};
1709
1710static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1711{
1712 dq->waiter = current;
1713 mb();
1714
1715 for (;;) {
1716 set_current_state(TASK_KILLABLE);
1717 if (!atomic_read(&dq->refcount))
1718 break;
1719 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1720 fatal_signal_pending(current)) {
0fb59cbc
KB
1721 /*
1722 * Disable the controller first since we can't trust it
1723 * at this point, but leave the admin queue enabled
1724 * until all queue deletion requests are flushed.
1725 * FIXME: This may take a while if there are more h/w
1726 * queues than admin tags.
1727 */
4d115420 1728 set_current_state(TASK_RUNNING);
5fd4ce1b 1729 nvme_disable_ctrl(&dev->ctrl,
7a67cbea 1730 lo_hi_readq(dev->bar + NVME_REG_CAP));
0fb59cbc 1731 nvme_clear_queue(dev->queues[0]);
4d115420 1732 flush_kthread_worker(dq->worker);
0fb59cbc 1733 nvme_disable_queue(dev, 0);
4d115420
KB
1734 return;
1735 }
1736 }
1737 set_current_state(TASK_RUNNING);
1738}
1739
1740static void nvme_put_dq(struct nvme_delq_ctx *dq)
1741{
1742 atomic_dec(&dq->refcount);
1743 if (dq->waiter)
1744 wake_up_process(dq->waiter);
1745}
1746
1747static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1748{
1749 atomic_inc(&dq->refcount);
1750 return dq;
1751}
1752
1753static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1754{
1755 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420 1756 nvme_put_dq(dq);
604e8c8d
KB
1757
1758 spin_lock_irq(&nvmeq->q_lock);
1759 nvme_process_cq(nvmeq);
1760 spin_unlock_irq(&nvmeq->q_lock);
4d115420
KB
1761}
1762
1763static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1764 kthread_work_func_t fn)
1765{
d8f32166 1766 struct request *req;
4d115420
KB
1767 struct nvme_command c;
1768
1769 memset(&c, 0, sizeof(c));
1770 c.delete_queue.opcode = opcode;
1771 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1772
1773 init_kthread_work(&nvmeq->cmdinfo.work, fn);
d8f32166
CH
1774
1775 req = nvme_alloc_request(nvmeq->dev->ctrl.admin_q, &c, 0);
1776 if (IS_ERR(req))
1777 return PTR_ERR(req);
1778
1779 req->timeout = ADMIN_TIMEOUT;
1780 req->end_io_data = &nvmeq->cmdinfo;
1781 blk_execute_rq_nowait(req->q, NULL, req, 0, async_cmd_info_endio);
1782 return 0;
4d115420
KB
1783}
1784
1785static void nvme_del_cq_work_handler(struct kthread_work *work)
1786{
1787 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1788 cmdinfo.work);
1789 nvme_del_queue_end(nvmeq);
1790}
1791
1792static int nvme_delete_cq(struct nvme_queue *nvmeq)
1793{
1794 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1795 nvme_del_cq_work_handler);
1796}
1797
1798static void nvme_del_sq_work_handler(struct kthread_work *work)
1799{
1800 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1801 cmdinfo.work);
1802 int status = nvmeq->cmdinfo.status;
1803
1804 if (!status)
1805 status = nvme_delete_cq(nvmeq);
1806 if (status)
1807 nvme_del_queue_end(nvmeq);
1808}
1809
1810static int nvme_delete_sq(struct nvme_queue *nvmeq)
1811{
1812 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1813 nvme_del_sq_work_handler);
1814}
1815
1816static void nvme_del_queue_start(struct kthread_work *work)
1817{
1818 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1819 cmdinfo.work);
4d115420
KB
1820 if (nvme_delete_sq(nvmeq))
1821 nvme_del_queue_end(nvmeq);
1822}
1823
1824static void nvme_disable_io_queues(struct nvme_dev *dev)
1825{
1826 int i;
1827 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1828 struct nvme_delq_ctx dq;
1829 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1c63dc66 1830 &worker, "nvme%d", dev->ctrl.instance);
4d115420
KB
1831
1832 if (IS_ERR(kworker_task)) {
e75ec752 1833 dev_err(dev->dev,
4d115420
KB
1834 "Failed to create queue del task\n");
1835 for (i = dev->queue_count - 1; i > 0; i--)
1836 nvme_disable_queue(dev, i);
1837 return;
1838 }
1839
1840 dq.waiter = NULL;
1841 atomic_set(&dq.refcount, 0);
1842 dq.worker = &worker;
1843 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 1844 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
1845
1846 if (nvme_suspend_queue(nvmeq))
1847 continue;
1848 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1849 nvmeq->cmdinfo.worker = dq.worker;
1850 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1851 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1852 }
1853 nvme_wait_dq(&dq, dev);
1854 kthread_stop(kworker_task);
1855}
1856
7385014c
CH
1857static int nvme_dev_list_add(struct nvme_dev *dev)
1858{
1859 bool start_thread = false;
1860
1861 spin_lock(&dev_list_lock);
1862 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1863 start_thread = true;
1864 nvme_thread = NULL;
1865 }
1866 list_add(&dev->node, &dev_list);
1867 spin_unlock(&dev_list_lock);
1868
1869 if (start_thread) {
1870 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1871 wake_up_all(&nvme_kthread_wait);
1872 } else
1873 wait_event_killable(nvme_kthread_wait, nvme_thread);
1874
1875 if (IS_ERR_OR_NULL(nvme_thread))
1876 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1877
1878 return 0;
1879}
1880
b9afca3e
DM
1881/*
1882* Remove the node from the device list and check
1883* for whether or not we need to stop the nvme_thread.
1884*/
1885static void nvme_dev_list_remove(struct nvme_dev *dev)
1886{
1887 struct task_struct *tmp = NULL;
1888
1889 spin_lock(&dev_list_lock);
1890 list_del_init(&dev->node);
1891 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1892 tmp = nvme_thread;
1893 nvme_thread = NULL;
1894 }
1895 spin_unlock(&dev_list_lock);
1896
1897 if (tmp)
1898 kthread_stop(tmp);
1899}
1900
c9d3bf88
KB
1901static void nvme_freeze_queues(struct nvme_dev *dev)
1902{
1903 struct nvme_ns *ns;
1904
5bae7f73 1905 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
1906 blk_mq_freeze_queue_start(ns->queue);
1907
cddcd72b 1908 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 1909 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 1910 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
1911
1912 blk_mq_cancel_requeue_work(ns->queue);
1913 blk_mq_stop_hw_queues(ns->queue);
1914 }
1915}
1916
1917static void nvme_unfreeze_queues(struct nvme_dev *dev)
1918{
1919 struct nvme_ns *ns;
1920
5bae7f73 1921 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
1922 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
1923 blk_mq_unfreeze_queue(ns->queue);
1924 blk_mq_start_stopped_hw_queues(ns->queue, true);
1925 blk_mq_kick_requeue_list(ns->queue);
1926 }
1927}
1928
f0b50732 1929static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 1930{
22404274 1931 int i;
7c1b2450 1932 u32 csts = -1;
22404274 1933
b9afca3e 1934 nvme_dev_list_remove(dev);
1fa6aead 1935
77bf25ea 1936 mutex_lock(&dev->shutdown_lock);
c9d3bf88
KB
1937 if (dev->bar) {
1938 nvme_freeze_queues(dev);
7a67cbea 1939 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1940 }
7c1b2450 1941 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 1942 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 1943 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 1944 nvme_suspend_queue(nvmeq);
4d115420
KB
1945 }
1946 } else {
1947 nvme_disable_io_queues(dev);
5fd4ce1b 1948 nvme_shutdown_ctrl(&dev->ctrl);
4d115420
KB
1949 nvme_disable_queue(dev, 0);
1950 }
f0b50732 1951 nvme_dev_unmap(dev);
07836e65
KB
1952
1953 for (i = dev->queue_count - 1; i >= 0; i--)
1954 nvme_clear_queue(dev->queues[i]);
77bf25ea 1955 mutex_unlock(&dev->shutdown_lock);
f0b50732
KB
1956}
1957
091b6092
MW
1958static int nvme_setup_prp_pools(struct nvme_dev *dev)
1959{
e75ec752 1960 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1961 PAGE_SIZE, PAGE_SIZE, 0);
1962 if (!dev->prp_page_pool)
1963 return -ENOMEM;
1964
99802a7a 1965 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1966 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1967 256, 256, 0);
1968 if (!dev->prp_small_pool) {
1969 dma_pool_destroy(dev->prp_page_pool);
1970 return -ENOMEM;
1971 }
091b6092
MW
1972 return 0;
1973}
1974
1975static void nvme_release_prp_pools(struct nvme_dev *dev)
1976{
1977 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1978 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1979}
1980
1673f1f0 1981static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1982{
1673f1f0 1983 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1984
e75ec752 1985 put_device(dev->dev);
4af0e21c
KB
1986 if (dev->tagset.tags)
1987 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1988 if (dev->ctrl.admin_q)
1989 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
1990 kfree(dev->queues);
1991 kfree(dev->entry);
1992 kfree(dev);
1993}
1994
fd634f41 1995static void nvme_reset_work(struct work_struct *work)
f0b50732 1996{
fd634f41 1997 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
3cf519b5 1998 int result;
f0b50732 1999
fd634f41
CH
2000 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
2001 goto out;
2002
2003 /*
2004 * If we're called to reset a live controller first shut it down before
2005 * moving on.
2006 */
2007 if (dev->bar)
2008 nvme_dev_shutdown(dev);
2009
2010 set_bit(NVME_CTRL_RESETTING, &dev->flags);
2011
f0b50732
KB
2012 result = nvme_dev_map(dev);
2013 if (result)
3cf519b5 2014 goto out;
f0b50732
KB
2015
2016 result = nvme_configure_admin_queue(dev);
2017 if (result)
2018 goto unmap;
2019
a4aea562 2020 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2021 result = nvme_alloc_admin_tags(dev);
2022 if (result)
2023 goto disable;
b9afca3e 2024
ce4541f4
CH
2025 result = nvme_init_identify(&dev->ctrl);
2026 if (result)
2027 goto free_tags;
2028
f0b50732 2029 result = nvme_setup_io_queues(dev);
badc34d4 2030 if (result)
0fb59cbc 2031 goto free_tags;
f0b50732 2032
adf68f21 2033 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
3cf519b5 2034
7385014c
CH
2035 result = nvme_dev_list_add(dev);
2036 if (result)
2037 goto remove;
2038
2659e57b
CH
2039 /*
2040 * Keep the controller around but remove all namespaces if we don't have
2041 * any working I/O queue.
2042 */
3cf519b5
CH
2043 if (dev->online_queues < 2) {
2044 dev_warn(dev->dev, "IO queues not created\n");
5bae7f73 2045 nvme_remove_namespaces(&dev->ctrl);
3cf519b5
CH
2046 } else {
2047 nvme_unfreeze_queues(dev);
2048 nvme_dev_add(dev);
2049 }
2050
fd634f41 2051 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
3cf519b5 2052 return;
f0b50732 2053
7385014c
CH
2054 remove:
2055 nvme_dev_list_remove(dev);
0fb59cbc
KB
2056 free_tags:
2057 nvme_dev_remove_admin(dev);
1c63dc66
CH
2058 blk_put_queue(dev->ctrl.admin_q);
2059 dev->ctrl.admin_q = NULL;
4af0e21c 2060 dev->queues[0]->tags = NULL;
f0b50732 2061 disable:
a1a5ef99 2062 nvme_disable_queue(dev, 0);
f0b50732
KB
2063 unmap:
2064 nvme_dev_unmap(dev);
3cf519b5 2065 out:
5c8809e6 2066 nvme_remove_dead_ctrl(dev);
f0b50732
KB
2067}
2068
5c8809e6 2069static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2070{
5c8809e6 2071 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2072 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2073
2074 if (pci_get_drvdata(pdev))
c81f4975 2075 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 2076 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2077}
2078
5c8809e6 2079static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
de3eff2b 2080{
5c8809e6 2081 dev_warn(dev->dev, "Removing after probe failure\n");
1673f1f0 2082 kref_get(&dev->ctrl.kref);
5c8809e6 2083 if (!schedule_work(&dev->remove_work))
1673f1f0 2084 nvme_put_ctrl(&dev->ctrl);
de3eff2b
KB
2085}
2086
4cc06521
KB
2087static int nvme_reset(struct nvme_dev *dev)
2088{
1c63dc66 2089 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521
KB
2090 return -ENODEV;
2091
846cc05f
CH
2092 if (!queue_work(nvme_workq, &dev->reset_work))
2093 return -EBUSY;
4cc06521 2094
846cc05f 2095 flush_work(&dev->reset_work);
846cc05f 2096 return 0;
4cc06521
KB
2097}
2098
1c63dc66
CH
2099static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2100{
2101 *val = readl(to_nvme_dev(ctrl)->bar + off);
2102 return 0;
2103}
2104
5fd4ce1b
CH
2105static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2106{
2107 writel(val, to_nvme_dev(ctrl)->bar + off);
2108 return 0;
2109}
2110
7fd8930f
CH
2111static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2112{
2113 *val = readq(to_nvme_dev(ctrl)->bar + off);
2114 return 0;
2115}
2116
5bae7f73
CH
2117static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2118{
2119 struct nvme_dev *dev = to_nvme_dev(ctrl);
2120
2121 return !dev->bar || dev->online_queues < 2;
2122}
2123
f3ca80fc
CH
2124static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2125{
2126 return nvme_reset(to_nvme_dev(ctrl));
2127}
2128
1c63dc66
CH
2129static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2130 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2131 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2132 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 2133 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 2134 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 2135 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66
CH
2136};
2137
8d85fce7 2138static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2139{
a4aea562 2140 int node, result = -ENOMEM;
b60503ba
MW
2141 struct nvme_dev *dev;
2142
a4aea562
MB
2143 node = dev_to_node(&pdev->dev);
2144 if (node == NUMA_NO_NODE)
2145 set_dev_node(&pdev->dev, 0);
2146
2147 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2148 if (!dev)
2149 return -ENOMEM;
a4aea562
MB
2150 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2151 GFP_KERNEL, node);
b60503ba
MW
2152 if (!dev->entry)
2153 goto free;
a4aea562
MB
2154 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2155 GFP_KERNEL, node);
b60503ba
MW
2156 if (!dev->queues)
2157 goto free;
2158
e75ec752 2159 dev->dev = get_device(&pdev->dev);
9a6b9458 2160 pci_set_drvdata(pdev, dev);
1c63dc66 2161
f3ca80fc
CH
2162 INIT_LIST_HEAD(&dev->node);
2163 INIT_WORK(&dev->scan_work, nvme_dev_scan);
f3ca80fc 2164 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2165 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2166 mutex_init(&dev->shutdown_lock);
1c63dc66 2167
f3ca80fc 2168 result = nvme_setup_prp_pools(dev);
cd58ad7d 2169 if (result)
a96d4f5c 2170 goto put_pci;
b60503ba 2171
f3ca80fc
CH
2172 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2173 id->driver_data);
091b6092 2174 if (result)
2e1d8448 2175 goto release_pools;
740216fc 2176
92f7a162 2177 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
2178 return 0;
2179
0877cb0d 2180 release_pools:
091b6092 2181 nvme_release_prp_pools(dev);
a96d4f5c 2182 put_pci:
e75ec752 2183 put_device(dev->dev);
b60503ba
MW
2184 free:
2185 kfree(dev->queues);
2186 kfree(dev->entry);
2187 kfree(dev);
2188 return result;
2189}
2190
f0d54a54
KB
2191static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2192{
a6739479 2193 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2194
a6739479
KB
2195 if (prepare)
2196 nvme_dev_shutdown(dev);
2197 else
92f7a162 2198 queue_work(nvme_workq, &dev->reset_work);
f0d54a54
KB
2199}
2200
09ece142
KB
2201static void nvme_shutdown(struct pci_dev *pdev)
2202{
2203 struct nvme_dev *dev = pci_get_drvdata(pdev);
2204 nvme_dev_shutdown(dev);
2205}
2206
8d85fce7 2207static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2208{
2209 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
2210
2211 spin_lock(&dev_list_lock);
2212 list_del_init(&dev->node);
2213 spin_unlock(&dev_list_lock);
2214
2215 pci_set_drvdata(pdev, NULL);
2216 flush_work(&dev->reset_work);
a5768aa8 2217 flush_work(&dev->scan_work);
5bae7f73 2218 nvme_remove_namespaces(&dev->ctrl);
53029b04 2219 nvme_uninit_ctrl(&dev->ctrl);
3399a3f7 2220 nvme_dev_shutdown(dev);
a4aea562 2221 nvme_dev_remove_admin(dev);
a1a5ef99 2222 nvme_free_queues(dev, 0);
8ffaadf7 2223 nvme_release_cmb(dev);
9a6b9458 2224 nvme_release_prp_pools(dev);
1673f1f0 2225 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2226}
2227
2228/* These functions are yet to be implemented */
2229#define nvme_error_detected NULL
2230#define nvme_dump_registers NULL
2231#define nvme_link_reset NULL
2232#define nvme_slot_reset NULL
2233#define nvme_error_resume NULL
cd638946 2234
671a6018 2235#ifdef CONFIG_PM_SLEEP
cd638946
KB
2236static int nvme_suspend(struct device *dev)
2237{
2238 struct pci_dev *pdev = to_pci_dev(dev);
2239 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2240
2241 nvme_dev_shutdown(ndev);
2242 return 0;
2243}
2244
2245static int nvme_resume(struct device *dev)
2246{
2247 struct pci_dev *pdev = to_pci_dev(dev);
2248 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2249
92f7a162 2250 queue_work(nvme_workq, &ndev->reset_work);
9a6b9458 2251 return 0;
cd638946 2252}
671a6018 2253#endif
cd638946
KB
2254
2255static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2256
1d352035 2257static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
2258 .error_detected = nvme_error_detected,
2259 .mmio_enabled = nvme_dump_registers,
2260 .link_reset = nvme_link_reset,
2261 .slot_reset = nvme_slot_reset,
2262 .resume = nvme_error_resume,
f0d54a54 2263 .reset_notify = nvme_reset_notify,
b60503ba
MW
2264};
2265
2266/* Move to pci_ids.h later */
2267#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2268
6eb0d698 2269static const struct pci_device_id nvme_id_table[] = {
106198ed
CH
2270 { PCI_VDEVICE(INTEL, 0x0953),
2271 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
540c801c
KB
2272 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2273 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
b60503ba 2274 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2275 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2276 { 0, }
2277};
2278MODULE_DEVICE_TABLE(pci, nvme_id_table);
2279
2280static struct pci_driver nvme_driver = {
2281 .name = "nvme",
2282 .id_table = nvme_id_table,
2283 .probe = nvme_probe,
8d85fce7 2284 .remove = nvme_remove,
09ece142 2285 .shutdown = nvme_shutdown,
cd638946
KB
2286 .driver = {
2287 .pm = &nvme_dev_pm_ops,
2288 },
b60503ba
MW
2289 .err_handler = &nvme_err_handler,
2290};
2291
2292static int __init nvme_init(void)
2293{
0ac13140 2294 int result;
1fa6aead 2295
b9afca3e 2296 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 2297
92f7a162 2298 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2299 if (!nvme_workq)
b9afca3e 2300 return -ENOMEM;
9a6b9458 2301
5bae7f73 2302 result = nvme_core_init();
5c42ea16 2303 if (result < 0)
9a6b9458 2304 goto kill_workq;
b60503ba 2305
f3db22fe
KB
2306 result = pci_register_driver(&nvme_driver);
2307 if (result)
f3ca80fc 2308 goto core_exit;
1fa6aead 2309 return 0;
b60503ba 2310
f3ca80fc 2311 core_exit:
5bae7f73 2312 nvme_core_exit();
9a6b9458
KB
2313 kill_workq:
2314 destroy_workqueue(nvme_workq);
b60503ba
MW
2315 return result;
2316}
2317
2318static void __exit nvme_exit(void)
2319{
2320 pci_unregister_driver(&nvme_driver);
5bae7f73 2321 nvme_core_exit();
9a6b9458 2322 destroy_workqueue(nvme_workq);
b9afca3e 2323 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 2324 _nvme_check_size();
b60503ba
MW
2325}
2326
2327MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2328MODULE_LICENSE("GPL");
c78b4713 2329MODULE_VERSION("1.0");
b60503ba
MW
2330module_init(nvme_init);
2331module_exit(nvme_exit);