nvme: refactor nvme_queue_rq
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
8de05535 15#include <linux/bitops.h>
b60503ba 16#include <linux/blkdev.h>
a4aea562 17#include <linux/blk-mq.h>
42f61420 18#include <linux/cpu.h>
fd63e9ce 19#include <linux/delay.h>
b60503ba
MW
20#include <linux/errno.h>
21#include <linux/fs.h>
22#include <linux/genhd.h>
4cc09e2d 23#include <linux/hdreg.h>
5aff9382 24#include <linux/idr.h>
b60503ba
MW
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba 30#include <linux/kernel.h>
a5768aa8 31#include <linux/list_sort.h>
b60503ba
MW
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
1d277a63 42#include <linux/pr.h>
5d0f6131 43#include <scsi/sg.h>
2f8e2c87 44#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 45#include <asm/unaligned.h>
797a796a 46
9d99a8dd 47#include <uapi/linux/nvme_ioctl.h>
f11bb3e2
CH
48#include "nvme.h"
49
b3fffdef 50#define NVME_MINORS (1U << MINORBITS)
9d43cf64 51#define NVME_Q_DEPTH 1024
d31af0a3 52#define NVME_AQ_DEPTH 256
b60503ba
MW
53#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
2484f407 55#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
9d43cf64 56
21d34711 57unsigned char admin_timeout = 60;
9d43cf64
KB
58module_param(admin_timeout, byte, 0644);
59MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 60
bd67608a
MW
61unsigned char nvme_io_timeout = 30;
62module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 63MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 64
2484f407
DM
65static unsigned char shutdown_timeout = 5;
66module_param(shutdown_timeout, byte, 0644);
67MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
68
b60503ba
MW
69static int nvme_major;
70module_param(nvme_major, int, 0);
71
b3fffdef
KB
72static int nvme_char_major;
73module_param(nvme_char_major, int, 0);
74
58ffacb5
MW
75static int use_threaded_interrupts;
76module_param(use_threaded_interrupts, int, 0);
77
8ffaadf7
JD
78static bool use_cmb_sqes = true;
79module_param(use_cmb_sqes, bool, 0644);
80MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81
1fa6aead
MW
82static DEFINE_SPINLOCK(dev_list_lock);
83static LIST_HEAD(dev_list);
84static struct task_struct *nvme_thread;
9a6b9458 85static struct workqueue_struct *nvme_workq;
b9afca3e 86static wait_queue_head_t nvme_kthread_wait;
1fa6aead 87
b3fffdef
KB
88static struct class *nvme_class;
89
1c63dc66
CH
90struct nvme_dev;
91struct nvme_queue;
92
90667892 93static int __nvme_reset(struct nvme_dev *dev);
4cc06521 94static int nvme_reset(struct nvme_dev *dev);
a0fa9647 95static void nvme_process_cq(struct nvme_queue *nvmeq);
3cf519b5 96static void nvme_dead_ctrl(struct nvme_dev *dev);
d4b4ff8e 97
4d115420
KB
98struct async_cmd_info {
99 struct kthread_work work;
100 struct kthread_worker *worker;
a4aea562 101 struct request *req;
4d115420
KB
102 u32 result;
103 int status;
104 void *ctx;
105};
1fa6aead 106
1c63dc66
CH
107/*
108 * Represents an NVM Express device. Each nvme_dev is a PCI function.
109 */
110struct nvme_dev {
111 struct list_head node;
112 struct nvme_queue **queues;
113 struct blk_mq_tag_set tagset;
114 struct blk_mq_tag_set admin_tagset;
115 u32 __iomem *dbs;
116 struct device *dev;
117 struct dma_pool *prp_page_pool;
118 struct dma_pool *prp_small_pool;
119 unsigned queue_count;
120 unsigned online_queues;
121 unsigned max_qid;
122 int q_depth;
123 u32 db_stride;
124 u32 ctrl_config;
125 struct msix_entry *entry;
126 void __iomem *bar;
127 struct list_head namespaces;
128 struct kref kref;
129 struct device *device;
130 struct work_struct reset_work;
131 struct work_struct probe_work;
132 struct work_struct scan_work;
133 bool subsystem;
134 u32 max_hw_sectors;
135 u32 stripe_size;
136 u32 page_size;
137 void __iomem *cmb;
138 dma_addr_t cmb_dma_addr;
139 u64 cmb_size;
140 u32 cmbsz;
141
142 struct nvme_ctrl ctrl;
143};
144
145static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
146{
147 return container_of(ctrl, struct nvme_dev, ctrl);
148}
149
b60503ba
MW
150/*
151 * An NVM Express queue. Each device has at least two (one for admin
152 * commands and one for I/O commands).
153 */
154struct nvme_queue {
155 struct device *q_dmadev;
091b6092 156 struct nvme_dev *dev;
3193f07b 157 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
158 spinlock_t q_lock;
159 struct nvme_command *sq_cmds;
8ffaadf7 160 struct nvme_command __iomem *sq_cmds_io;
b60503ba 161 volatile struct nvme_completion *cqes;
42483228 162 struct blk_mq_tags **tags;
b60503ba
MW
163 dma_addr_t sq_dma_addr;
164 dma_addr_t cq_dma_addr;
b60503ba
MW
165 u32 __iomem *q_db;
166 u16 q_depth;
6222d172 167 s16 cq_vector;
b60503ba
MW
168 u16 sq_head;
169 u16 sq_tail;
170 u16 cq_head;
c30341dc 171 u16 qid;
e9539f47
MW
172 u8 cq_phase;
173 u8 cqe_seen;
4d115420 174 struct async_cmd_info cmdinfo;
b60503ba
MW
175};
176
71bd150c
CH
177/*
178 * The nvme_iod describes the data in an I/O, including the list of PRP
179 * entries. You can't see it in this data structure because C doesn't let
180 * me express that. Use nvme_alloc_iod to ensure there's enough space
181 * allocated to store the PRP list.
182 */
183struct nvme_iod {
184 unsigned long private; /* For the use of the submitter of the I/O */
185 int npages; /* In the PRP list. 0 means small pool in use */
186 int offset; /* Of PRP list */
187 int nents; /* Used in scatterlist */
188 int length; /* Of data, in bytes */
189 dma_addr_t first_dma;
190 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
191 struct scatterlist sg[0];
192};
193
b60503ba
MW
194/*
195 * Check we didin't inadvertently grow the command struct
196 */
197static inline void _nvme_check_size(void)
198{
199 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 204 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 205 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
206 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
208 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
209 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 210 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
211}
212
edd10d33 213typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
214 struct nvme_completion *);
215
e85248e5 216struct nvme_cmd_info {
c2f5b650
MW
217 nvme_completion_fn fn;
218 void *ctx;
c30341dc 219 int aborted;
a4aea562 220 struct nvme_queue *nvmeq;
ac3dd5bd 221 struct nvme_iod iod[0];
e85248e5
MW
222};
223
ac3dd5bd
JA
224/*
225 * Max size of iod being embedded in the request payload
226 */
227#define NVME_INT_PAGES 2
228#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
fda631ff 229#define NVME_INT_MASK 0x01
ac3dd5bd
JA
230
231/*
232 * Will slightly overestimate the number of pages needed. This is OK
233 * as it only leads to a small amount of wasted memory for the lifetime of
234 * the I/O.
235 */
236static int nvme_npages(unsigned size, struct nvme_dev *dev)
237{
238 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
239 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
240}
241
242static unsigned int nvme_cmd_size(struct nvme_dev *dev)
243{
244 unsigned int ret = sizeof(struct nvme_cmd_info);
245
246 ret += sizeof(struct nvme_iod);
247 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
248 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
249
250 return ret;
251}
252
a4aea562
MB
253static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
254 unsigned int hctx_idx)
e85248e5 255{
a4aea562
MB
256 struct nvme_dev *dev = data;
257 struct nvme_queue *nvmeq = dev->queues[0];
258
42483228
KB
259 WARN_ON(hctx_idx != 0);
260 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
261 WARN_ON(nvmeq->tags);
262
a4aea562 263 hctx->driver_data = nvmeq;
42483228 264 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 265 return 0;
e85248e5
MW
266}
267
4af0e21c
KB
268static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
269{
270 struct nvme_queue *nvmeq = hctx->driver_data;
271
272 nvmeq->tags = NULL;
273}
274
a4aea562
MB
275static int nvme_admin_init_request(void *data, struct request *req,
276 unsigned int hctx_idx, unsigned int rq_idx,
277 unsigned int numa_node)
22404274 278{
a4aea562
MB
279 struct nvme_dev *dev = data;
280 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
281 struct nvme_queue *nvmeq = dev->queues[0];
282
283 BUG_ON(!nvmeq);
284 cmd->nvmeq = nvmeq;
285 return 0;
22404274
KB
286}
287
a4aea562
MB
288static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
289 unsigned int hctx_idx)
b60503ba 290{
a4aea562 291 struct nvme_dev *dev = data;
42483228 292 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 293
42483228
KB
294 if (!nvmeq->tags)
295 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 296
42483228 297 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
298 hctx->driver_data = nvmeq;
299 return 0;
b60503ba
MW
300}
301
a4aea562
MB
302static int nvme_init_request(void *data, struct request *req,
303 unsigned int hctx_idx, unsigned int rq_idx,
304 unsigned int numa_node)
b60503ba 305{
a4aea562
MB
306 struct nvme_dev *dev = data;
307 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
308 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
309
310 BUG_ON(!nvmeq);
311 cmd->nvmeq = nvmeq;
312 return 0;
313}
314
315static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
316 nvme_completion_fn handler)
317{
318 cmd->fn = handler;
319 cmd->ctx = ctx;
320 cmd->aborted = 0;
c917dfe5 321 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
322}
323
ac3dd5bd
JA
324static void *iod_get_private(struct nvme_iod *iod)
325{
326 return (void *) (iod->private & ~0x1UL);
327}
328
329/*
330 * If bit 0 is set, the iod is embedded in the request payload.
331 */
332static bool iod_should_kfree(struct nvme_iod *iod)
333{
fda631ff 334 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
335}
336
c2f5b650
MW
337/* Special values must be less than 0x1000 */
338#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
339#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
340#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
341#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 342
edd10d33 343static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
344 struct nvme_completion *cqe)
345{
346 if (ctx == CMD_CTX_CANCELLED)
347 return;
c2f5b650 348 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 349 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
350 "completed id %d twice on queue %d\n",
351 cqe->command_id, le16_to_cpup(&cqe->sq_id));
352 return;
353 }
354 if (ctx == CMD_CTX_INVALID) {
edd10d33 355 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
356 "invalid id %d completed on queue %d\n",
357 cqe->command_id, le16_to_cpup(&cqe->sq_id));
358 return;
359 }
edd10d33 360 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
361}
362
a4aea562 363static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 364{
c2f5b650 365 void *ctx;
b60503ba 366
859361a2 367 if (fn)
a4aea562
MB
368 *fn = cmd->fn;
369 ctx = cmd->ctx;
370 cmd->fn = special_completion;
371 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 372 return ctx;
b60503ba
MW
373}
374
a4aea562
MB
375static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
376 struct nvme_completion *cqe)
3c0cf138 377{
a4aea562
MB
378 u32 result = le32_to_cpup(&cqe->result);
379 u16 status = le16_to_cpup(&cqe->status) >> 1;
380
381 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
1c63dc66 382 ++nvmeq->dev->ctrl.event_limit;
a5768aa8
KB
383 if (status != NVME_SC_SUCCESS)
384 return;
385
386 switch (result & 0xff07) {
387 case NVME_AER_NOTICE_NS_CHANGED:
388 dev_info(nvmeq->q_dmadev, "rescanning\n");
389 schedule_work(&nvmeq->dev->scan_work);
390 default:
391 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
392 }
b60503ba
MW
393}
394
a4aea562
MB
395static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
396 struct nvme_completion *cqe)
5a92e700 397{
a4aea562
MB
398 struct request *req = ctx;
399
400 u16 status = le16_to_cpup(&cqe->status) >> 1;
401 u32 result = le32_to_cpup(&cqe->result);
a51afb54 402
42483228 403 blk_mq_free_request(req);
a51afb54 404
a4aea562 405 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
1c63dc66 406 ++nvmeq->dev->ctrl.abort_limit;
5a92e700
KB
407}
408
a4aea562
MB
409static void async_completion(struct nvme_queue *nvmeq, void *ctx,
410 struct nvme_completion *cqe)
b60503ba 411{
a4aea562
MB
412 struct async_cmd_info *cmdinfo = ctx;
413 cmdinfo->result = le32_to_cpup(&cqe->result);
414 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
415 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
42483228 416 blk_mq_free_request(cmdinfo->req);
b60503ba
MW
417}
418
a4aea562
MB
419static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
420 unsigned int tag)
b60503ba 421{
42483228 422 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
a51afb54 423
a4aea562 424 return blk_mq_rq_to_pdu(req);
4f5099af
KB
425}
426
a4aea562
MB
427/*
428 * Called with local interrupts disabled and the q_lock held. May not sleep.
429 */
430static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
431 nvme_completion_fn *fn)
4f5099af 432{
a4aea562
MB
433 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
434 void *ctx;
435 if (tag >= nvmeq->q_depth) {
436 *fn = special_completion;
437 return CMD_CTX_INVALID;
438 }
439 if (fn)
440 *fn = cmd->fn;
441 ctx = cmd->ctx;
442 cmd->fn = special_completion;
443 cmd->ctx = CMD_CTX_COMPLETED;
444 return ctx;
b60503ba
MW
445}
446
447/**
714a7a22 448 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
449 * @nvmeq: The queue to use
450 * @cmd: The command to send
451 *
452 * Safe to use from interrupt context
453 */
e3f879bf
SB
454static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
455 struct nvme_command *cmd)
b60503ba 456{
a4aea562
MB
457 u16 tail = nvmeq->sq_tail;
458
8ffaadf7
JD
459 if (nvmeq->sq_cmds_io)
460 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
461 else
462 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
463
b60503ba
MW
464 if (++tail == nvmeq->q_depth)
465 tail = 0;
7547881d 466 writel(tail, nvmeq->q_db);
b60503ba 467 nvmeq->sq_tail = tail;
b60503ba
MW
468}
469
e3f879bf 470static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
a4aea562
MB
471{
472 unsigned long flags;
a4aea562 473 spin_lock_irqsave(&nvmeq->q_lock, flags);
e3f879bf 474 __nvme_submit_cmd(nvmeq, cmd);
a4aea562 475 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a4aea562
MB
476}
477
eca18b23 478static __le64 **iod_list(struct nvme_iod *iod)
e025344c 479{
eca18b23 480 return ((void *)iod) + iod->offset;
e025344c
SMM
481}
482
ac3dd5bd
JA
483static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
484 unsigned nseg, unsigned long private)
eca18b23 485{
ac3dd5bd
JA
486 iod->private = private;
487 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
488 iod->npages = -1;
489 iod->length = nbytes;
490 iod->nents = 0;
eca18b23 491}
b60503ba 492
eca18b23 493static struct nvme_iod *
ac3dd5bd
JA
494__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
495 unsigned long priv, gfp_t gfp)
b60503ba 496{
eca18b23 497 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 498 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
499 sizeof(struct scatterlist) * nseg, gfp);
500
ac3dd5bd
JA
501 if (iod)
502 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
503
504 return iod;
b60503ba
MW
505}
506
ac3dd5bd
JA
507static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
508 gfp_t gfp)
509{
510 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
511 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
512 struct nvme_iod *iod;
513
514 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
515 size <= NVME_INT_BYTES(dev)) {
516 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
517
518 iod = cmd->iod;
ac3dd5bd 519 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 520 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
521 return iod;
522 }
523
524 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
525 (unsigned long) rq, gfp);
526}
527
d29ec824 528static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 529{
1d090624 530 const int last_prp = dev->page_size / 8 - 1;
eca18b23
MW
531 int i;
532 __le64 **list = iod_list(iod);
533 dma_addr_t prp_dma = iod->first_dma;
534
535 if (iod->npages == 0)
536 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
537 for (i = 0; i < iod->npages; i++) {
538 __le64 *prp_list = list[i];
539 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
540 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
541 prp_dma = next_prp_dma;
542 }
ac3dd5bd
JA
543
544 if (iod_should_kfree(iod))
545 kfree(iod);
b60503ba
MW
546}
547
b4ff9c8d
KB
548static int nvme_error_status(u16 status)
549{
550 switch (status & 0x7ff) {
551 case NVME_SC_SUCCESS:
552 return 0;
553 case NVME_SC_CAP_EXCEEDED:
554 return -ENOSPC;
555 default:
556 return -EIO;
557 }
558}
559
52b68d7e 560#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
561static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
562{
563 if (be32_to_cpu(pi->ref_tag) == v)
564 pi->ref_tag = cpu_to_be32(p);
565}
566
567static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
568{
569 if (be32_to_cpu(pi->ref_tag) == p)
570 pi->ref_tag = cpu_to_be32(v);
571}
572
573/**
574 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
575 *
576 * The virtual start sector is the one that was originally submitted by the
577 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
578 * start sector may be different. Remap protection information to match the
579 * physical LBA on writes, and back to the original seed on reads.
580 *
581 * Type 0 and 3 do not have a ref tag, so no remapping required.
582 */
583static void nvme_dif_remap(struct request *req,
584 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
585{
586 struct nvme_ns *ns = req->rq_disk->private_data;
587 struct bio_integrity_payload *bip;
588 struct t10_pi_tuple *pi;
589 void *p, *pmap;
590 u32 i, nlb, ts, phys, virt;
591
592 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
593 return;
594
595 bip = bio_integrity(req->bio);
596 if (!bip)
597 return;
598
599 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
600
601 p = pmap;
602 virt = bip_get_seed(bip);
603 phys = nvme_block_nr(ns, blk_rq_pos(req));
604 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 605 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
606
607 for (i = 0; i < nlb; i++, virt++, phys++) {
608 pi = (struct t10_pi_tuple *)p;
609 dif_swap(phys, virt, pi);
610 p += ts;
611 }
612 kunmap_atomic(pmap);
613}
614
52b68d7e
KB
615static void nvme_init_integrity(struct nvme_ns *ns)
616{
617 struct blk_integrity integrity;
618
619 switch (ns->pi_type) {
620 case NVME_NS_DPS_PI_TYPE3:
0f8087ec 621 integrity.profile = &t10_pi_type3_crc;
52b68d7e
KB
622 break;
623 case NVME_NS_DPS_PI_TYPE1:
624 case NVME_NS_DPS_PI_TYPE2:
0f8087ec 625 integrity.profile = &t10_pi_type1_crc;
52b68d7e
KB
626 break;
627 default:
4125a09b 628 integrity.profile = NULL;
52b68d7e
KB
629 break;
630 }
631 integrity.tuple_size = ns->ms;
632 blk_integrity_register(ns->disk, &integrity);
633 blk_queue_max_integrity_segments(ns->queue, 1);
634}
635#else /* CONFIG_BLK_DEV_INTEGRITY */
636static void nvme_dif_remap(struct request *req,
637 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
638{
639}
640static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
641{
642}
643static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
644{
645}
646static void nvme_init_integrity(struct nvme_ns *ns)
647{
648}
649#endif
650
a4aea562 651static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
652 struct nvme_completion *cqe)
653{
eca18b23 654 struct nvme_iod *iod = ctx;
ac3dd5bd 655 struct request *req = iod_get_private(iod);
a4aea562 656 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
b60503ba 657 u16 status = le16_to_cpup(&cqe->status) >> 1;
0dfc70c3 658 bool requeue = false;
81c04b94 659 int error = 0;
b60503ba 660
edd10d33 661 if (unlikely(status)) {
a4aea562
MB
662 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
663 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
664 unsigned long flags;
665
0dfc70c3 666 requeue = true;
a4aea562 667 blk_mq_requeue_request(req);
c9d3bf88
KB
668 spin_lock_irqsave(req->q->queue_lock, flags);
669 if (!blk_queue_stopped(req->q))
670 blk_mq_kick_requeue_list(req->q);
671 spin_unlock_irqrestore(req->q->queue_lock, flags);
0dfc70c3 672 goto release_iod;
edd10d33 673 }
f4829a9b 674
d29ec824 675 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
17188bb4 676 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
81c04b94
CH
677 error = -EINTR;
678 else
679 error = status;
d29ec824 680 } else {
81c04b94 681 error = nvme_error_status(status);
d29ec824 682 }
f4829a9b
CH
683 }
684
a0a931d6
KB
685 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
686 u32 result = le32_to_cpup(&cqe->result);
687 req->special = (void *)(uintptr_t)result;
688 }
a4aea562
MB
689
690 if (cmd_rq->aborted)
e75ec752 691 dev_warn(nvmeq->dev->dev,
a4aea562 692 "completing aborted command with status:%04x\n",
81c04b94 693 error);
a4aea562 694
0dfc70c3 695release_iod:
e1e5e564 696 if (iod->nents) {
e75ec752 697 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
a4aea562 698 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
e1e5e564
KB
699 if (blk_integrity_rq(req)) {
700 if (!rq_data_dir(req))
701 nvme_dif_remap(req, nvme_dif_complete);
e75ec752 702 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
e1e5e564
KB
703 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
704 }
705 }
edd10d33 706 nvme_free_iod(nvmeq->dev, iod);
3291fa57 707
0dfc70c3
KB
708 if (likely(!requeue))
709 blk_mq_complete_request(req, error);
b60503ba
MW
710}
711
69d2b571
CH
712static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
713 int total_len)
ff22b54f 714{
99802a7a 715 struct dma_pool *pool;
eca18b23
MW
716 int length = total_len;
717 struct scatterlist *sg = iod->sg;
ff22b54f
MW
718 int dma_len = sg_dma_len(sg);
719 u64 dma_addr = sg_dma_address(sg);
f137e0f1
MI
720 u32 page_size = dev->page_size;
721 int offset = dma_addr & (page_size - 1);
e025344c 722 __le64 *prp_list;
eca18b23 723 __le64 **list = iod_list(iod);
e025344c 724 dma_addr_t prp_dma;
eca18b23 725 int nprps, i;
ff22b54f 726
1d090624 727 length -= (page_size - offset);
ff22b54f 728 if (length <= 0)
69d2b571 729 return true;
ff22b54f 730
1d090624 731 dma_len -= (page_size - offset);
ff22b54f 732 if (dma_len) {
1d090624 733 dma_addr += (page_size - offset);
ff22b54f
MW
734 } else {
735 sg = sg_next(sg);
736 dma_addr = sg_dma_address(sg);
737 dma_len = sg_dma_len(sg);
738 }
739
1d090624 740 if (length <= page_size) {
edd10d33 741 iod->first_dma = dma_addr;
69d2b571 742 return true;
e025344c
SMM
743 }
744
1d090624 745 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
746 if (nprps <= (256 / 8)) {
747 pool = dev->prp_small_pool;
eca18b23 748 iod->npages = 0;
99802a7a
MW
749 } else {
750 pool = dev->prp_page_pool;
eca18b23 751 iod->npages = 1;
99802a7a
MW
752 }
753
69d2b571 754 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 755 if (!prp_list) {
edd10d33 756 iod->first_dma = dma_addr;
eca18b23 757 iod->npages = -1;
69d2b571 758 return false;
b77954cb 759 }
eca18b23
MW
760 list[0] = prp_list;
761 iod->first_dma = prp_dma;
e025344c
SMM
762 i = 0;
763 for (;;) {
1d090624 764 if (i == page_size >> 3) {
e025344c 765 __le64 *old_prp_list = prp_list;
69d2b571 766 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 767 if (!prp_list)
69d2b571 768 return false;
eca18b23 769 list[iod->npages++] = prp_list;
7523d834
MW
770 prp_list[0] = old_prp_list[i - 1];
771 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
772 i = 1;
e025344c
SMM
773 }
774 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
775 dma_len -= page_size;
776 dma_addr += page_size;
777 length -= page_size;
e025344c
SMM
778 if (length <= 0)
779 break;
780 if (dma_len > 0)
781 continue;
782 BUG_ON(dma_len < 0);
783 sg = sg_next(sg);
784 dma_addr = sg_dma_address(sg);
785 dma_len = sg_dma_len(sg);
ff22b54f
MW
786 }
787
69d2b571 788 return true;
ff22b54f
MW
789}
790
ba1ca37e
CH
791static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
792 struct nvme_command *cmnd)
d29ec824 793{
ba1ca37e
CH
794 struct request *req = iod_get_private(iod);
795 struct request_queue *q = req->q;
796 enum dma_data_direction dma_dir = rq_data_dir(req) ?
797 DMA_TO_DEVICE : DMA_FROM_DEVICE;
798 int ret = BLK_MQ_RQ_QUEUE_ERROR;
799
800 sg_init_table(iod->sg, req->nr_phys_segments);
801 iod->nents = blk_rq_map_sg(q, req, iod->sg);
802 if (!iod->nents)
803 goto out;
804
805 ret = BLK_MQ_RQ_QUEUE_BUSY;
806 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
807 goto out;
808
809 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
810 goto out_unmap;
811
812 ret = BLK_MQ_RQ_QUEUE_ERROR;
813 if (blk_integrity_rq(req)) {
814 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
815 goto out_unmap;
816
817 sg_init_table(iod->meta_sg, 1);
818 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
819 goto out_unmap;
d29ec824 820
ba1ca37e
CH
821 if (rq_data_dir(req))
822 nvme_dif_remap(req, nvme_dif_prep);
823
824 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
825 goto out_unmap;
d29ec824
CH
826 }
827
ba1ca37e
CH
828 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
829 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
830 if (blk_integrity_rq(req))
831 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
832 return BLK_MQ_RQ_QUEUE_OK;
833
834out_unmap:
835 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
836out:
837 return ret;
d29ec824
CH
838}
839
a4aea562
MB
840/*
841 * We reuse the small pool to allocate the 16-byte range here as it is not
842 * worth having a special pool for these or additional cases to handle freeing
843 * the iod.
844 */
ba1ca37e
CH
845static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
846 struct nvme_iod *iod, struct nvme_command *cmnd)
0e5e4f0e 847{
ba1ca37e
CH
848 struct request *req = iod_get_private(iod);
849 struct nvme_dsm_range *range;
850
851 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
852 &iod->first_dma);
853 if (!range)
854 return BLK_MQ_RQ_QUEUE_BUSY;
855 iod_list(iod)[0] = (__le64 *)range;
856 iod->npages = 0;
0e5e4f0e 857
0e5e4f0e 858 range->cattr = cpu_to_le32(0);
a4aea562
MB
859 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
860 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 861
ba1ca37e
CH
862 memset(cmnd, 0, sizeof(*cmnd));
863 cmnd->dsm.opcode = nvme_cmd_dsm;
864 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
865 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
866 cmnd->dsm.nr = 0;
867 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
868 return BLK_MQ_RQ_QUEUE_OK;
0e5e4f0e
KB
869}
870
ba1ca37e 871static void nvme_setup_flush(struct nvme_ns *ns, struct nvme_command *cmnd)
00df5cb4 872{
ba1ca37e
CH
873 memset(cmnd, 0, sizeof(*cmnd));
874 cmnd->common.opcode = nvme_cmd_flush;
875 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
00df5cb4
MW
876}
877
ba1ca37e
CH
878static void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
879 struct nvme_command *cmnd)
b60503ba 880{
a4aea562
MB
881 u16 control = 0;
882 u32 dsmgmt = 0;
00df5cb4 883
a4aea562 884 if (req->cmd_flags & REQ_FUA)
b60503ba 885 control |= NVME_RW_FUA;
a4aea562 886 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
b60503ba
MW
887 control |= NVME_RW_LR;
888
a4aea562 889 if (req->cmd_flags & REQ_RAHEAD)
b60503ba
MW
890 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
891
ba1ca37e
CH
892 memset(cmnd, 0, sizeof(*cmnd));
893 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
894 cmnd->rw.command_id = req->tag;
895 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
896 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
897 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
b60503ba 898
e19b127f 899 if (ns->ms) {
e1e5e564
KB
900 switch (ns->pi_type) {
901 case NVME_NS_DPS_PI_TYPE3:
902 control |= NVME_RW_PRINFO_PRCHK_GUARD;
903 break;
904 case NVME_NS_DPS_PI_TYPE1:
905 case NVME_NS_DPS_PI_TYPE2:
906 control |= NVME_RW_PRINFO_PRCHK_GUARD |
907 NVME_RW_PRINFO_PRCHK_REF;
ba1ca37e 908 cmnd->rw.reftag = cpu_to_le32(
e1e5e564
KB
909 nvme_block_nr(ns, blk_rq_pos(req)));
910 break;
911 }
ba1ca37e 912 if (!blk_integrity_rq(req))
e19b127f
AP
913 control |= NVME_RW_PRINFO_PRACT;
914 }
e1e5e564 915
ba1ca37e
CH
916 cmnd->rw.control = cpu_to_le16(control);
917 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
edd10d33
KB
918}
919
d29ec824
CH
920/*
921 * NOTE: ns is NULL when called on the admin queue.
922 */
a4aea562
MB
923static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
924 const struct blk_mq_queue_data *bd)
edd10d33 925{
a4aea562
MB
926 struct nvme_ns *ns = hctx->queue->queuedata;
927 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 928 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
929 struct request *req = bd->rq;
930 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 931 struct nvme_iod *iod;
ba1ca37e
CH
932 struct nvme_command cmnd;
933 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 934
e1e5e564
KB
935 /*
936 * If formated with metadata, require the block layer provide a buffer
937 * unless this namespace is formated such that the metadata can be
938 * stripped/generated by the controller with PRACT=1.
939 */
d29ec824 940 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
941 if (!(ns->pi_type && ns->ms == 8) &&
942 req->cmd_type != REQ_TYPE_DRV_PRIV) {
f4829a9b 943 blk_mq_complete_request(req, -EFAULT);
e1e5e564
KB
944 return BLK_MQ_RQ_QUEUE_OK;
945 }
946 }
947
d29ec824 948 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 949 if (!iod)
fe54303e 950 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 951
a4aea562 952 if (req->cmd_flags & REQ_DISCARD) {
ba1ca37e
CH
953 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
954 } else {
955 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
956 memcpy(&cmnd, req->cmd, sizeof(cmnd));
957 else if (req->cmd_flags & REQ_FLUSH)
958 nvme_setup_flush(ns, &cmnd);
959 else
960 nvme_setup_rw(ns, req, &cmnd);
a4aea562 961
ba1ca37e
CH
962 if (req->nr_phys_segments)
963 ret = nvme_map_data(dev, iod, &cmnd);
edd10d33 964 }
1974b1ae 965
ba1ca37e
CH
966 if (ret)
967 goto out;
968
969 cmnd.common.command_id = req->tag;
9af8785a 970 nvme_set_info(cmd, iod, req_completion);
a4aea562 971
ba1ca37e
CH
972 spin_lock_irq(&nvmeq->q_lock);
973 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
974 nvme_process_cq(nvmeq);
975 spin_unlock_irq(&nvmeq->q_lock);
976 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 977out:
d29ec824 978 nvme_free_iod(dev, iod);
ba1ca37e 979 return ret;
b60503ba
MW
980}
981
a0fa9647 982static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 983{
82123460 984 u16 head, phase;
b60503ba 985
b60503ba 986 head = nvmeq->cq_head;
82123460 987 phase = nvmeq->cq_phase;
b60503ba
MW
988
989 for (;;) {
c2f5b650
MW
990 void *ctx;
991 nvme_completion_fn fn;
b60503ba 992 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 993 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
994 break;
995 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
996 if (++head == nvmeq->q_depth) {
997 head = 0;
82123460 998 phase = !phase;
b60503ba 999 }
a0fa9647
JA
1000 if (tag && *tag == cqe.command_id)
1001 *tag = -1;
a4aea562 1002 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 1003 fn(nvmeq, ctx, &cqe);
b60503ba
MW
1004 }
1005
1006 /* If the controller ignores the cq head doorbell and continuously
1007 * writes to the queue, it is theoretically possible to wrap around
1008 * the queue twice and mistakenly return IRQ_NONE. Linux only
1009 * requires that 0.1% of your interrupts are handled, so this isn't
1010 * a big problem.
1011 */
82123460 1012 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 1013 return;
b60503ba 1014
604e8c8d
KB
1015 if (likely(nvmeq->cq_vector >= 0))
1016 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 1017 nvmeq->cq_head = head;
82123460 1018 nvmeq->cq_phase = phase;
b60503ba 1019
e9539f47 1020 nvmeq->cqe_seen = 1;
a0fa9647
JA
1021}
1022
1023static void nvme_process_cq(struct nvme_queue *nvmeq)
1024{
1025 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
1026}
1027
1028static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
1029{
1030 irqreturn_t result;
1031 struct nvme_queue *nvmeq = data;
1032 spin_lock(&nvmeq->q_lock);
e9539f47
MW
1033 nvme_process_cq(nvmeq);
1034 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1035 nvmeq->cqe_seen = 0;
58ffacb5
MW
1036 spin_unlock(&nvmeq->q_lock);
1037 return result;
1038}
1039
1040static irqreturn_t nvme_irq_check(int irq, void *data)
1041{
1042 struct nvme_queue *nvmeq = data;
1043 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1044 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1045 return IRQ_NONE;
1046 return IRQ_WAKE_THREAD;
1047}
1048
a0fa9647
JA
1049static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1050{
1051 struct nvme_queue *nvmeq = hctx->driver_data;
1052
1053 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
1054 nvmeq->cq_phase) {
1055 spin_lock_irq(&nvmeq->q_lock);
1056 __nvme_process_cq(nvmeq, &tag);
1057 spin_unlock_irq(&nvmeq->q_lock);
1058
1059 if (tag == -1)
1060 return 1;
1061 }
1062
1063 return 0;
1064}
1065
a4aea562
MB
1066static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1067{
1068 struct nvme_queue *nvmeq = dev->queues[0];
1069 struct nvme_command c;
1070 struct nvme_cmd_info *cmd_info;
1071 struct request *req;
1072
1c63dc66 1073 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 1074 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
9f173b33
DC
1075 if (IS_ERR(req))
1076 return PTR_ERR(req);
a4aea562 1077
c917dfe5 1078 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 1079 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 1080 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
1081
1082 memset(&c, 0, sizeof(c));
1083 c.common.opcode = nvme_admin_async_event;
1084 c.common.command_id = req->tag;
1085
42483228 1086 blk_mq_free_request(req);
e3f879bf
SB
1087 __nvme_submit_cmd(nvmeq, &c);
1088 return 0;
a4aea562
MB
1089}
1090
1091static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
1092 struct nvme_command *cmd,
1093 struct async_cmd_info *cmdinfo, unsigned timeout)
1094{
a4aea562
MB
1095 struct nvme_queue *nvmeq = dev->queues[0];
1096 struct request *req;
1097 struct nvme_cmd_info *cmd_rq;
4d115420 1098
1c63dc66 1099 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
9f173b33
DC
1100 if (IS_ERR(req))
1101 return PTR_ERR(req);
a4aea562
MB
1102
1103 req->timeout = timeout;
1104 cmd_rq = blk_mq_rq_to_pdu(req);
1105 cmdinfo->req = req;
1106 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1107 cmdinfo->status = -EINTR;
a4aea562
MB
1108
1109 cmd->common.command_id = req->tag;
1110
e3f879bf
SB
1111 nvme_submit_cmd(nvmeq, cmd);
1112 return 0;
4d115420
KB
1113}
1114
b60503ba
MW
1115static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1116{
b60503ba
MW
1117 struct nvme_command c;
1118
1119 memset(&c, 0, sizeof(c));
1120 c.delete_queue.opcode = opcode;
1121 c.delete_queue.qid = cpu_to_le16(id);
1122
1c63dc66 1123 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1124}
1125
1126static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1127 struct nvme_queue *nvmeq)
1128{
b60503ba
MW
1129 struct nvme_command c;
1130 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1131
d29ec824
CH
1132 /*
1133 * Note: we (ab)use the fact the the prp fields survive if no data
1134 * is attached to the request.
1135 */
b60503ba
MW
1136 memset(&c, 0, sizeof(c));
1137 c.create_cq.opcode = nvme_admin_create_cq;
1138 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1139 c.create_cq.cqid = cpu_to_le16(qid);
1140 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1141 c.create_cq.cq_flags = cpu_to_le16(flags);
1142 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1143
1c63dc66 1144 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1145}
1146
1147static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1148 struct nvme_queue *nvmeq)
1149{
b60503ba
MW
1150 struct nvme_command c;
1151 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1152
d29ec824
CH
1153 /*
1154 * Note: we (ab)use the fact the the prp fields survive if no data
1155 * is attached to the request.
1156 */
b60503ba
MW
1157 memset(&c, 0, sizeof(c));
1158 c.create_sq.opcode = nvme_admin_create_sq;
1159 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1160 c.create_sq.sqid = cpu_to_le16(qid);
1161 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1162 c.create_sq.sq_flags = cpu_to_le16(flags);
1163 c.create_sq.cqid = cpu_to_le16(qid);
1164
1c63dc66 1165 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1166}
1167
1168static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1169{
1170 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1171}
1172
1173static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1174{
1175 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1176}
1177
c30341dc 1178/**
a4aea562 1179 * nvme_abort_req - Attempt aborting a request
c30341dc
KB
1180 *
1181 * Schedule controller reset if the command was already aborted once before and
1182 * still hasn't been returned to the driver, or if this is the admin queue.
1183 */
a4aea562 1184static void nvme_abort_req(struct request *req)
c30341dc 1185{
a4aea562
MB
1186 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1187 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1188 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1189 struct request *abort_req;
1190 struct nvme_cmd_info *abort_cmd;
1191 struct nvme_command cmd;
c30341dc 1192
a4aea562 1193 if (!nvmeq->qid || cmd_rq->aborted) {
90667892
CH
1194 spin_lock(&dev_list_lock);
1195 if (!__nvme_reset(dev)) {
1196 dev_warn(dev->dev,
1197 "I/O %d QID %d timeout, reset controller\n",
1198 req->tag, nvmeq->qid);
1199 }
1200 spin_unlock(&dev_list_lock);
c30341dc
KB
1201 return;
1202 }
1203
1c63dc66 1204 if (!dev->ctrl.abort_limit)
c30341dc
KB
1205 return;
1206
1c63dc66 1207 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 1208 BLK_MQ_REQ_NOWAIT);
9f173b33 1209 if (IS_ERR(abort_req))
c30341dc
KB
1210 return;
1211
a4aea562
MB
1212 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1213 nvme_set_info(abort_cmd, abort_req, abort_completion);
1214
c30341dc
KB
1215 memset(&cmd, 0, sizeof(cmd));
1216 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1217 cmd.abort.cid = req->tag;
c30341dc 1218 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1219 cmd.abort.command_id = abort_req->tag;
c30341dc 1220
1c63dc66 1221 --dev->ctrl.abort_limit;
a4aea562 1222 cmd_rq->aborted = 1;
c30341dc 1223
a4aea562 1224 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
c30341dc 1225 nvmeq->qid);
e3f879bf 1226 nvme_submit_cmd(dev->queues[0], &cmd);
c30341dc
KB
1227}
1228
42483228 1229static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1230{
a4aea562
MB
1231 struct nvme_queue *nvmeq = data;
1232 void *ctx;
1233 nvme_completion_fn fn;
1234 struct nvme_cmd_info *cmd;
cef6a948
KB
1235 struct nvme_completion cqe;
1236
1237 if (!blk_mq_request_started(req))
1238 return;
a09115b2 1239
a4aea562 1240 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1241
a4aea562
MB
1242 if (cmd->ctx == CMD_CTX_CANCELLED)
1243 return;
1244
cef6a948
KB
1245 if (blk_queue_dying(req->q))
1246 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1247 else
1248 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1249
1250
a4aea562
MB
1251 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1252 req->tag, nvmeq->qid);
1253 ctx = cancel_cmd_info(cmd, &fn);
1254 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1255}
1256
a4aea562 1257static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
9e866774 1258{
a4aea562
MB
1259 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1260 struct nvme_queue *nvmeq = cmd->nvmeq;
1261
1262 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1263 nvmeq->qid);
7a509a6b 1264 spin_lock_irq(&nvmeq->q_lock);
07836e65 1265 nvme_abort_req(req);
7a509a6b 1266 spin_unlock_irq(&nvmeq->q_lock);
a4aea562 1267
07836e65
KB
1268 /*
1269 * The aborted req will be completed on receiving the abort req.
1270 * We enable the timer again. If hit twice, it'll cause a device reset,
1271 * as the device then is in a faulty state.
1272 */
1273 return BLK_EH_RESET_TIMER;
a4aea562 1274}
22404274 1275
a4aea562
MB
1276static void nvme_free_queue(struct nvme_queue *nvmeq)
1277{
9e866774
MW
1278 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1279 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1280 if (nvmeq->sq_cmds)
1281 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1282 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1283 kfree(nvmeq);
1284}
1285
a1a5ef99 1286static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1287{
1288 int i;
1289
a1a5ef99 1290 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1291 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1292 dev->queue_count--;
a4aea562 1293 dev->queues[i] = NULL;
f435c282 1294 nvme_free_queue(nvmeq);
121c7ad4 1295 }
22404274
KB
1296}
1297
4d115420
KB
1298/**
1299 * nvme_suspend_queue - put queue into suspended state
1300 * @nvmeq - queue to suspend
4d115420
KB
1301 */
1302static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1303{
2b25d981 1304 int vector;
b60503ba 1305
a09115b2 1306 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1307 if (nvmeq->cq_vector == -1) {
1308 spin_unlock_irq(&nvmeq->q_lock);
1309 return 1;
1310 }
1311 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1312 nvmeq->dev->online_queues--;
2b25d981 1313 nvmeq->cq_vector = -1;
a09115b2
MW
1314 spin_unlock_irq(&nvmeq->q_lock);
1315
1c63dc66
CH
1316 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1317 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1318
aba2080f
MW
1319 irq_set_affinity_hint(vector, NULL);
1320 free_irq(vector, nvmeq);
b60503ba 1321
4d115420
KB
1322 return 0;
1323}
b60503ba 1324
4d115420
KB
1325static void nvme_clear_queue(struct nvme_queue *nvmeq)
1326{
22404274 1327 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1328 if (nvmeq->tags && *nvmeq->tags)
1329 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1330 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1331}
1332
4d115420
KB
1333static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1334{
a4aea562 1335 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1336
1337 if (!nvmeq)
1338 return;
1339 if (nvme_suspend_queue(nvmeq))
1340 return;
1341
0e53d180
KB
1342 /* Don't tell the adapter to delete the admin queue.
1343 * Don't tell a removed adapter to delete IO queues. */
7a67cbea 1344 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
b60503ba
MW
1345 adapter_delete_sq(dev, qid);
1346 adapter_delete_cq(dev, qid);
1347 }
07836e65
KB
1348
1349 spin_lock_irq(&nvmeq->q_lock);
1350 nvme_process_cq(nvmeq);
1351 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1352}
1353
8ffaadf7
JD
1354static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1355 int entry_size)
1356{
1357 int q_depth = dev->q_depth;
1358 unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1359
1360 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99
JD
1361 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1362 mem_per_q = round_down(mem_per_q, dev->page_size);
1363 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1364
1365 /*
1366 * Ensure the reduced q_depth is above some threshold where it
1367 * would be better to map queues in system memory with the
1368 * original depth
1369 */
1370 if (q_depth < 64)
1371 return -ENOMEM;
1372 }
1373
1374 return q_depth;
1375}
1376
1377static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1378 int qid, int depth)
1379{
1380 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1381 unsigned offset = (qid - 1) *
1382 roundup(SQ_SIZE(depth), dev->page_size);
1383 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1384 nvmeq->sq_cmds_io = dev->cmb + offset;
1385 } else {
1386 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1387 &nvmeq->sq_dma_addr, GFP_KERNEL);
1388 if (!nvmeq->sq_cmds)
1389 return -ENOMEM;
1390 }
1391
1392 return 0;
1393}
1394
b60503ba 1395static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1396 int depth)
b60503ba 1397{
a4aea562 1398 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1399 if (!nvmeq)
1400 return NULL;
1401
e75ec752 1402 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1403 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1404 if (!nvmeq->cqes)
1405 goto free_nvmeq;
b60503ba 1406
8ffaadf7 1407 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1408 goto free_cqdma;
1409
e75ec752 1410 nvmeq->q_dmadev = dev->dev;
091b6092 1411 nvmeq->dev = dev;
3193f07b 1412 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1413 dev->ctrl.instance, qid);
b60503ba
MW
1414 spin_lock_init(&nvmeq->q_lock);
1415 nvmeq->cq_head = 0;
82123460 1416 nvmeq->cq_phase = 1;
b80d5ccc 1417 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1418 nvmeq->q_depth = depth;
c30341dc 1419 nvmeq->qid = qid;
758dd7fd 1420 nvmeq->cq_vector = -1;
a4aea562 1421 dev->queues[qid] = nvmeq;
b60503ba 1422
36a7e993
JD
1423 /* make sure queue descriptor is set before queue count, for kthread */
1424 mb();
1425 dev->queue_count++;
1426
b60503ba
MW
1427 return nvmeq;
1428
1429 free_cqdma:
e75ec752 1430 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1431 nvmeq->cq_dma_addr);
1432 free_nvmeq:
1433 kfree(nvmeq);
1434 return NULL;
1435}
1436
3001082c
MW
1437static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1438 const char *name)
1439{
58ffacb5
MW
1440 if (use_threaded_interrupts)
1441 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1442 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1443 name, nvmeq);
3001082c 1444 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1445 IRQF_SHARED, name, nvmeq);
3001082c
MW
1446}
1447
22404274 1448static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1449{
22404274 1450 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1451
7be50e93 1452 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1453 nvmeq->sq_tail = 0;
1454 nvmeq->cq_head = 0;
1455 nvmeq->cq_phase = 1;
b80d5ccc 1456 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1457 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1458 dev->online_queues++;
7be50e93 1459 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1460}
1461
1462static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1463{
1464 struct nvme_dev *dev = nvmeq->dev;
1465 int result;
3f85d50b 1466
2b25d981 1467 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1468 result = adapter_alloc_cq(dev, qid, nvmeq);
1469 if (result < 0)
22404274 1470 return result;
b60503ba
MW
1471
1472 result = adapter_alloc_sq(dev, qid, nvmeq);
1473 if (result < 0)
1474 goto release_cq;
1475
3193f07b 1476 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1477 if (result < 0)
1478 goto release_sq;
1479
22404274 1480 nvme_init_queue(nvmeq, qid);
22404274 1481 return result;
b60503ba
MW
1482
1483 release_sq:
1484 adapter_delete_sq(dev, qid);
1485 release_cq:
1486 adapter_delete_cq(dev, qid);
22404274 1487 return result;
b60503ba
MW
1488}
1489
ba47e386
MW
1490static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1491{
1492 unsigned long timeout;
1493 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1494
1495 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1496
7a67cbea 1497 while ((readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_RDY) != bit) {
ba47e386
MW
1498 msleep(100);
1499 if (fatal_signal_pending(current))
1500 return -EINTR;
1501 if (time_after(jiffies, timeout)) {
e75ec752 1502 dev_err(dev->dev,
27e8166c
MW
1503 "Device not ready; aborting %s\n", enabled ?
1504 "initialisation" : "reset");
ba47e386
MW
1505 return -ENODEV;
1506 }
1507 }
1508
1509 return 0;
1510}
1511
1512/*
1513 * If the device has been passed off to us in an enabled state, just clear
1514 * the enabled bit. The spec says we should set the 'shutdown notification
1515 * bits', but doing so may cause the device to complete commands to the
1516 * admin queue ... and we don't know what memory that might be pointing at!
1517 */
1518static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1519{
01079522
DM
1520 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1521 dev->ctrl_config &= ~NVME_CC_ENABLE;
7a67cbea 1522 writel(dev->ctrl_config, dev->bar + NVME_REG_CC);
44af146a 1523
ba47e386
MW
1524 return nvme_wait_ready(dev, cap, false);
1525}
1526
1527static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1528{
01079522
DM
1529 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1530 dev->ctrl_config |= NVME_CC_ENABLE;
7a67cbea 1531 writel(dev->ctrl_config, dev->bar + NVME_REG_CC);
01079522 1532
ba47e386
MW
1533 return nvme_wait_ready(dev, cap, true);
1534}
1535
1894d8f1
KB
1536static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1537{
1538 unsigned long timeout;
1894d8f1 1539
01079522
DM
1540 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1541 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1542
7a67cbea 1543 writel(dev->ctrl_config, dev->bar + NVME_REG_CC);
1894d8f1 1544
2484f407 1545 timeout = SHUTDOWN_TIMEOUT + jiffies;
7a67cbea 1546 while ((readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_SHST_MASK) !=
1894d8f1
KB
1547 NVME_CSTS_SHST_CMPLT) {
1548 msleep(100);
1549 if (fatal_signal_pending(current))
1550 return -EINTR;
1551 if (time_after(jiffies, timeout)) {
e75ec752 1552 dev_err(dev->dev,
1894d8f1
KB
1553 "Device shutdown incomplete; abort shutdown\n");
1554 return -ENODEV;
1555 }
1556 }
1557
1558 return 0;
1559}
1560
a4aea562 1561static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1562 .queue_rq = nvme_queue_rq,
a4aea562
MB
1563 .map_queue = blk_mq_map_queue,
1564 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1565 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1566 .init_request = nvme_admin_init_request,
1567 .timeout = nvme_timeout,
1568};
1569
1570static struct blk_mq_ops nvme_mq_ops = {
1571 .queue_rq = nvme_queue_rq,
1572 .map_queue = blk_mq_map_queue,
1573 .init_hctx = nvme_init_hctx,
1574 .init_request = nvme_init_request,
1575 .timeout = nvme_timeout,
a0fa9647 1576 .poll = nvme_poll,
a4aea562
MB
1577};
1578
ea191d2f
KB
1579static void nvme_dev_remove_admin(struct nvme_dev *dev)
1580{
1c63dc66
CH
1581 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1582 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1583 blk_mq_free_tag_set(&dev->admin_tagset);
1584 }
1585}
1586
a4aea562
MB
1587static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1588{
1c63dc66 1589 if (!dev->ctrl.admin_q) {
a4aea562
MB
1590 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1591 dev->admin_tagset.nr_hw_queues = 1;
1592 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1593 dev->admin_tagset.reserved_tags = 1;
a4aea562 1594 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1595 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1596 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1597 dev->admin_tagset.driver_data = dev;
1598
1599 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1600 return -ENOMEM;
1601
1c63dc66
CH
1602 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1603 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1604 blk_mq_free_tag_set(&dev->admin_tagset);
1605 return -ENOMEM;
1606 }
1c63dc66 1607 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1608 nvme_dev_remove_admin(dev);
1c63dc66 1609 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1610 return -ENODEV;
1611 }
0fb59cbc 1612 } else
1c63dc66 1613 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
a4aea562
MB
1614
1615 return 0;
1616}
1617
8d85fce7 1618static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1619{
ba47e386 1620 int result;
b60503ba 1621 u32 aqa;
7a67cbea 1622 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba 1623 struct nvme_queue *nvmeq;
c5c9f25b
NA
1624 /*
1625 * default to a 4K page size, with the intention to update this
1626 * path in the future to accomodate architectures with differing
1627 * kernel and IO page sizes.
1628 */
1629 unsigned page_shift = 12;
1d090624 1630 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1d090624
KB
1631
1632 if (page_shift < dev_page_min) {
e75ec752 1633 dev_err(dev->dev,
1d090624
KB
1634 "Minimum device page size (%u) too large for "
1635 "host (%u)\n", 1 << dev_page_min,
1636 1 << page_shift);
1637 return -ENODEV;
1638 }
b60503ba 1639
7a67cbea 1640 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1641 NVME_CAP_NSSRC(cap) : 0;
1642
7a67cbea
CH
1643 if (dev->subsystem &&
1644 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1645 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1646
ba47e386
MW
1647 result = nvme_disable_ctrl(dev, cap);
1648 if (result < 0)
1649 return result;
b60503ba 1650
a4aea562 1651 nvmeq = dev->queues[0];
cd638946 1652 if (!nvmeq) {
2b25d981 1653 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1654 if (!nvmeq)
1655 return -ENOMEM;
cd638946 1656 }
b60503ba
MW
1657
1658 aqa = nvmeq->q_depth - 1;
1659 aqa |= aqa << 16;
1660
1d090624
KB
1661 dev->page_size = 1 << page_shift;
1662
01079522 1663 dev->ctrl_config = NVME_CC_CSS_NVM;
1d090624 1664 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
b60503ba 1665 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1666 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba 1667
7a67cbea
CH
1668 writel(aqa, dev->bar + NVME_REG_AQA);
1669 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1670 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1671
ba47e386 1672 result = nvme_enable_ctrl(dev, cap);
025c557a 1673 if (result)
a4aea562
MB
1674 goto free_nvmeq;
1675
2b25d981 1676 nvmeq->cq_vector = 0;
3193f07b 1677 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1678 if (result) {
1679 nvmeq->cq_vector = -1;
0fb59cbc 1680 goto free_nvmeq;
758dd7fd 1681 }
025c557a 1682
b60503ba 1683 return result;
a4aea562 1684
a4aea562
MB
1685 free_nvmeq:
1686 nvme_free_queues(dev, 0);
1687 return result;
b60503ba
MW
1688}
1689
a53295b6
MW
1690static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1691{
1c63dc66 1692 struct nvme_dev *dev = to_nvme_dev(ns->ctrl);
a53295b6
MW
1693 struct nvme_user_io io;
1694 struct nvme_command c;
d29ec824 1695 unsigned length, meta_len;
a67a9513 1696 int status, write;
a67a9513
KB
1697 dma_addr_t meta_dma = 0;
1698 void *meta = NULL;
fec558b5 1699 void __user *metadata;
a53295b6
MW
1700
1701 if (copy_from_user(&io, uio, sizeof(io)))
1702 return -EFAULT;
6c7d4945
MW
1703
1704 switch (io.opcode) {
1705 case nvme_cmd_write:
1706 case nvme_cmd_read:
6bbf1acd 1707 case nvme_cmd_compare:
6413214c 1708 break;
6c7d4945 1709 default:
6bbf1acd 1710 return -EINVAL;
6c7d4945
MW
1711 }
1712
d29ec824
CH
1713 length = (io.nblocks + 1) << ns->lba_shift;
1714 meta_len = (io.nblocks + 1) * ns->ms;
835da3f9 1715 metadata = (void __user *)(uintptr_t)io.metadata;
d29ec824 1716 write = io.opcode & 1;
a53295b6 1717
71feb364
KB
1718 if (ns->ext) {
1719 length += meta_len;
1720 meta_len = 0;
a67a9513
KB
1721 }
1722 if (meta_len) {
d29ec824
CH
1723 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1724 return -EINVAL;
1725
e75ec752 1726 meta = dma_alloc_coherent(dev->dev, meta_len,
a67a9513 1727 &meta_dma, GFP_KERNEL);
fec558b5 1728
a67a9513
KB
1729 if (!meta) {
1730 status = -ENOMEM;
1731 goto unmap;
1732 }
1733 if (write) {
fec558b5 1734 if (copy_from_user(meta, metadata, meta_len)) {
a67a9513
KB
1735 status = -EFAULT;
1736 goto unmap;
1737 }
1738 }
1739 }
1740
a53295b6
MW
1741 memset(&c, 0, sizeof(c));
1742 c.rw.opcode = io.opcode;
1743 c.rw.flags = io.flags;
6c7d4945 1744 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1745 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1746 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1747 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1748 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1749 c.rw.reftag = cpu_to_le32(io.reftag);
1750 c.rw.apptag = cpu_to_le16(io.apptag);
1751 c.rw.appmask = cpu_to_le16(io.appmask);
a67a9513 1752 c.rw.metadata = cpu_to_le64(meta_dma);
d29ec824
CH
1753
1754 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
835da3f9 1755 (void __user *)(uintptr_t)io.addr, length, NULL, 0);
f410c680 1756 unmap:
a67a9513
KB
1757 if (meta) {
1758 if (status == NVME_SC_SUCCESS && !write) {
fec558b5 1759 if (copy_to_user(metadata, meta, meta_len))
a67a9513
KB
1760 status = -EFAULT;
1761 }
e75ec752 1762 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
f410c680 1763 }
a53295b6
MW
1764 return status;
1765}
1766
1c63dc66 1767static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
a4aea562 1768 struct nvme_passthru_cmd __user *ucmd)
6ee44cdc 1769{
7963e521 1770 struct nvme_passthru_cmd cmd;
6ee44cdc 1771 struct nvme_command c;
d29ec824
CH
1772 unsigned timeout = 0;
1773 int status;
6ee44cdc 1774
6bbf1acd
MW
1775 if (!capable(CAP_SYS_ADMIN))
1776 return -EACCES;
1777 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1778 return -EFAULT;
6ee44cdc
MW
1779
1780 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1781 c.common.opcode = cmd.opcode;
1782 c.common.flags = cmd.flags;
1783 c.common.nsid = cpu_to_le32(cmd.nsid);
1784 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1785 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1786 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1787 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1788 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1789 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1790 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1791 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1792
d29ec824
CH
1793 if (cmd.timeout_ms)
1794 timeout = msecs_to_jiffies(cmd.timeout_ms);
eca18b23 1795
1c63dc66 1796 status = __nvme_submit_sync_cmd(ns ? ns->queue : ctrl->admin_q, &c,
835da3f9 1797 NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
d29ec824
CH
1798 &cmd.result, timeout);
1799 if (status >= 0) {
1800 if (put_user(cmd.result, &ucmd->result))
1801 return -EFAULT;
6bbf1acd 1802 }
f4f117f6 1803
6ee44cdc
MW
1804 return status;
1805}
1806
81f03fed
JD
1807static int nvme_subsys_reset(struct nvme_dev *dev)
1808{
1809 if (!dev->subsystem)
1810 return -ENOTTY;
1811
7a67cbea 1812 writel(0x4E564D65, dev->bar + NVME_REG_NSSR); /* "NVMe" */
81f03fed
JD
1813 return 0;
1814}
1815
b60503ba
MW
1816static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1817 unsigned long arg)
1818{
1819 struct nvme_ns *ns = bdev->bd_disk->private_data;
1820
1821 switch (cmd) {
6bbf1acd 1822 case NVME_IOCTL_ID:
c3bfe717 1823 force_successful_syscall_return();
6bbf1acd
MW
1824 return ns->ns_id;
1825 case NVME_IOCTL_ADMIN_CMD:
1c63dc66 1826 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
7963e521 1827 case NVME_IOCTL_IO_CMD:
1c63dc66 1828 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
a53295b6
MW
1829 case NVME_IOCTL_SUBMIT_IO:
1830 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1831 case SG_GET_VERSION_NUM:
1832 return nvme_sg_get_version_num((void __user *)arg);
1833 case SG_IO:
1834 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1835 default:
1836 return -ENOTTY;
1837 }
1838}
1839
320a3827
KB
1840#ifdef CONFIG_COMPAT
1841static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1842 unsigned int cmd, unsigned long arg)
1843{
320a3827
KB
1844 switch (cmd) {
1845 case SG_IO:
e179729a 1846 return -ENOIOCTLCMD;
320a3827
KB
1847 }
1848 return nvme_ioctl(bdev, mode, cmd, arg);
1849}
1850#else
1851#define nvme_compat_ioctl NULL
1852#endif
1853
5105aa55 1854static void nvme_free_dev(struct kref *kref);
188c3568
KB
1855static void nvme_free_ns(struct kref *kref)
1856{
1857 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1c63dc66 1858 struct nvme_dev *dev = to_nvme_dev(ns->ctrl);
188c3568 1859
ca064085
MB
1860 if (ns->type == NVME_NS_LIGHTNVM)
1861 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
1862
188c3568
KB
1863 spin_lock(&dev_list_lock);
1864 ns->disk->private_data = NULL;
1865 spin_unlock(&dev_list_lock);
1866
1c63dc66 1867 kref_put(&dev->kref, nvme_free_dev);
188c3568
KB
1868 put_disk(ns->disk);
1869 kfree(ns);
1870}
1871
9ac27090
KB
1872static int nvme_open(struct block_device *bdev, fmode_t mode)
1873{
9e60352c
KB
1874 int ret = 0;
1875 struct nvme_ns *ns;
9ac27090 1876
9e60352c
KB
1877 spin_lock(&dev_list_lock);
1878 ns = bdev->bd_disk->private_data;
1879 if (!ns)
1880 ret = -ENXIO;
188c3568 1881 else if (!kref_get_unless_zero(&ns->kref))
9e60352c
KB
1882 ret = -ENXIO;
1883 spin_unlock(&dev_list_lock);
1884
1885 return ret;
9ac27090
KB
1886}
1887
9ac27090
KB
1888static void nvme_release(struct gendisk *disk, fmode_t mode)
1889{
1890 struct nvme_ns *ns = disk->private_data;
188c3568 1891 kref_put(&ns->kref, nvme_free_ns);
9ac27090
KB
1892}
1893
4cc09e2d
KB
1894static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1895{
1896 /* some standard values */
1897 geo->heads = 1 << 6;
1898 geo->sectors = 1 << 5;
1899 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1900 return 0;
1901}
1902
e1e5e564
KB
1903static void nvme_config_discard(struct nvme_ns *ns)
1904{
1905 u32 logical_block_size = queue_logical_block_size(ns->queue);
1906 ns->queue->limits.discard_zeroes_data = 0;
1907 ns->queue->limits.discard_alignment = logical_block_size;
1908 ns->queue->limits.discard_granularity = logical_block_size;
2bb4cd5c 1909 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
e1e5e564
KB
1910 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1911}
1912
1b9dbf7f
KB
1913static int nvme_revalidate_disk(struct gendisk *disk)
1914{
1915 struct nvme_ns *ns = disk->private_data;
1c63dc66 1916 struct nvme_dev *dev = to_nvme_dev(ns->ctrl);
1b9dbf7f 1917 struct nvme_id_ns *id;
a67a9513
KB
1918 u8 lbaf, pi_type;
1919 u16 old_ms;
e1e5e564 1920 unsigned short bs;
1b9dbf7f 1921
1c63dc66 1922 if (nvme_identify_ns(&dev->ctrl, ns->ns_id, &id)) {
a5768aa8 1923 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
1c63dc66 1924 dev->ctrl.instance, ns->ns_id);
a5768aa8 1925 return -ENODEV;
1b9dbf7f 1926 }
a5768aa8
KB
1927 if (id->ncap == 0) {
1928 kfree(id);
1929 return -ENODEV;
e1e5e564 1930 }
1b9dbf7f 1931
ca064085
MB
1932 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
1933 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
1934 dev_warn(dev->dev,
1935 "%s: LightNVM init failure\n", __func__);
1936 kfree(id);
1937 return -ENODEV;
1938 }
1939 ns->type = NVME_NS_LIGHTNVM;
1940 }
1941
e1e5e564
KB
1942 old_ms = ns->ms;
1943 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1b9dbf7f 1944 ns->lba_shift = id->lbaf[lbaf].ds;
e1e5e564 1945 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
a67a9513 1946 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
e1e5e564
KB
1947
1948 /*
1949 * If identify namespace failed, use default 512 byte block size so
1950 * block layer can use before failing read/write for 0 capacity.
1951 */
1952 if (ns->lba_shift == 0)
1953 ns->lba_shift = 9;
1954 bs = 1 << ns->lba_shift;
1955
1956 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1957 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1958 id->dps & NVME_NS_DPS_PI_MASK : 0;
1959
4cfc766e 1960 blk_mq_freeze_queue(disk->queue);
52b68d7e
KB
1961 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1962 ns->ms != old_ms ||
e1e5e564 1963 bs != queue_logical_block_size(disk->queue) ||
a67a9513 1964 (ns->ms && ns->ext)))
e1e5e564
KB
1965 blk_integrity_unregister(disk);
1966
1967 ns->pi_type = pi_type;
1968 blk_queue_logical_block_size(ns->queue, bs);
1969
25520d55 1970 if (ns->ms && !ns->ext)
e1e5e564
KB
1971 nvme_init_integrity(ns);
1972
ca064085
MB
1973 if ((ns->ms && !(ns->ms == 8 && ns->pi_type) &&
1974 !blk_get_integrity(disk)) ||
1975 ns->type == NVME_NS_LIGHTNVM)
e1e5e564
KB
1976 set_capacity(disk, 0);
1977 else
1978 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1979
1c63dc66 1980 if (dev->ctrl.oncs & NVME_CTRL_ONCS_DSM)
e1e5e564 1981 nvme_config_discard(ns);
4cfc766e 1982 blk_mq_unfreeze_queue(disk->queue);
1b9dbf7f 1983
d29ec824 1984 kfree(id);
1b9dbf7f
KB
1985 return 0;
1986}
1987
1d277a63
KB
1988static char nvme_pr_type(enum pr_type type)
1989{
1990 switch (type) {
1991 case PR_WRITE_EXCLUSIVE:
1992 return 1;
1993 case PR_EXCLUSIVE_ACCESS:
1994 return 2;
1995 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1996 return 3;
1997 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1998 return 4;
1999 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2000 return 5;
2001 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2002 return 6;
2003 default:
2004 return 0;
2005 }
2006};
2007
2008static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2009 u64 key, u64 sa_key, u8 op)
2010{
2011 struct nvme_ns *ns = bdev->bd_disk->private_data;
2012 struct nvme_command c;
2013 u8 data[16] = { 0, };
2014
2015 put_unaligned_le64(key, &data[0]);
2016 put_unaligned_le64(sa_key, &data[8]);
2017
2018 memset(&c, 0, sizeof(c));
2019 c.common.opcode = op;
a6dd1020
CH
2020 c.common.nsid = cpu_to_le32(ns->ns_id);
2021 c.common.cdw10[0] = cpu_to_le32(cdw10);
1d277a63
KB
2022
2023 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2024}
2025
2026static int nvme_pr_register(struct block_device *bdev, u64 old,
2027 u64 new, unsigned flags)
2028{
2029 u32 cdw10;
2030
2031 if (flags & ~PR_FL_IGNORE_KEY)
2032 return -EOPNOTSUPP;
2033
2034 cdw10 = old ? 2 : 0;
2035 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2036 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2037 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2038}
2039
2040static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2041 enum pr_type type, unsigned flags)
2042{
2043 u32 cdw10;
2044
2045 if (flags & ~PR_FL_IGNORE_KEY)
2046 return -EOPNOTSUPP;
2047
2048 cdw10 = nvme_pr_type(type) << 8;
2049 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2050 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2051}
2052
2053static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2054 enum pr_type type, bool abort)
2055{
2056 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
2057 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2058}
2059
2060static int nvme_pr_clear(struct block_device *bdev, u64 key)
2061{
73fcf4e2 2062 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1d277a63
KB
2063 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2064}
2065
2066static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2067{
2068 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
2069 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2070}
2071
2072static const struct pr_ops nvme_pr_ops = {
2073 .pr_register = nvme_pr_register,
2074 .pr_reserve = nvme_pr_reserve,
2075 .pr_release = nvme_pr_release,
2076 .pr_preempt = nvme_pr_preempt,
2077 .pr_clear = nvme_pr_clear,
2078};
2079
b60503ba
MW
2080static const struct block_device_operations nvme_fops = {
2081 .owner = THIS_MODULE,
2082 .ioctl = nvme_ioctl,
320a3827 2083 .compat_ioctl = nvme_compat_ioctl,
9ac27090
KB
2084 .open = nvme_open,
2085 .release = nvme_release,
4cc09e2d 2086 .getgeo = nvme_getgeo,
1b9dbf7f 2087 .revalidate_disk= nvme_revalidate_disk,
1d277a63 2088 .pr_ops = &nvme_pr_ops,
b60503ba
MW
2089};
2090
1fa6aead
MW
2091static int nvme_kthread(void *data)
2092{
d4b4ff8e 2093 struct nvme_dev *dev, *next;
1fa6aead
MW
2094
2095 while (!kthread_should_stop()) {
564a232c 2096 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 2097 spin_lock(&dev_list_lock);
d4b4ff8e 2098 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 2099 int i;
7a67cbea 2100 u32 csts = readl(dev->bar + NVME_REG_CSTS);
dfbac8c7
KB
2101
2102 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2103 csts & NVME_CSTS_CFS) {
90667892
CH
2104 if (!__nvme_reset(dev)) {
2105 dev_warn(dev->dev,
2106 "Failed status: %x, reset controller\n",
7a67cbea 2107 readl(dev->bar + NVME_REG_CSTS));
90667892 2108 }
d4b4ff8e
KB
2109 continue;
2110 }
1fa6aead 2111 for (i = 0; i < dev->queue_count; i++) {
a4aea562 2112 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
2113 if (!nvmeq)
2114 continue;
1fa6aead 2115 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 2116 nvme_process_cq(nvmeq);
6fccf938 2117
1c63dc66 2118 while (i == 0 && dev->ctrl.event_limit > 0) {
a4aea562 2119 if (nvme_submit_async_admin_req(dev))
6fccf938 2120 break;
1c63dc66 2121 dev->ctrl.event_limit--;
6fccf938 2122 }
1fa6aead
MW
2123 spin_unlock_irq(&nvmeq->q_lock);
2124 }
2125 }
2126 spin_unlock(&dev_list_lock);
acb7aa0d 2127 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
2128 }
2129 return 0;
2130}
2131
e1e5e564 2132static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
b60503ba
MW
2133{
2134 struct nvme_ns *ns;
2135 struct gendisk *disk;
e75ec752 2136 int node = dev_to_node(dev->dev);
b60503ba 2137
a4aea562 2138 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
b60503ba 2139 if (!ns)
e1e5e564
KB
2140 return;
2141
a4aea562 2142 ns->queue = blk_mq_init_queue(&dev->tagset);
9f173b33 2143 if (IS_ERR(ns->queue))
b60503ba 2144 goto out_free_ns;
4eeb9215
MW
2145 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2146 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1c63dc66 2147 ns->ctrl = &dev->ctrl;
b60503ba
MW
2148 ns->queue->queuedata = ns;
2149
a4aea562 2150 disk = alloc_disk_node(0, node);
b60503ba
MW
2151 if (!disk)
2152 goto out_free_queue;
a4aea562 2153
188c3568 2154 kref_init(&ns->kref);
5aff9382 2155 ns->ns_id = nsid;
b60503ba 2156 ns->disk = disk;
e1e5e564
KB
2157 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2158 list_add_tail(&ns->list, &dev->namespaces);
2159
e9ef4636 2160 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
e824410f 2161 if (dev->max_hw_sectors) {
8fc23e03 2162 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
e824410f 2163 blk_queue_max_segments(ns->queue,
6824c5ef 2164 (dev->max_hw_sectors / (dev->page_size >> 9)) + 1);
e824410f 2165 }
a4aea562
MB
2166 if (dev->stripe_size)
2167 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
1c63dc66 2168 if (dev->ctrl.vwc & NVME_CTRL_VWC_PRESENT)
a7d2ce28 2169 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
03100aad 2170 blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
b60503ba
MW
2171
2172 disk->major = nvme_major;
469071a3 2173 disk->first_minor = 0;
b60503ba
MW
2174 disk->fops = &nvme_fops;
2175 disk->private_data = ns;
2176 disk->queue = ns->queue;
b3fffdef 2177 disk->driverfs_dev = dev->device;
469071a3 2178 disk->flags = GENHD_FL_EXT_DEVT;
1c63dc66 2179 sprintf(disk->disk_name, "nvme%dn%d", dev->ctrl.instance, nsid);
b60503ba 2180
e1e5e564
KB
2181 /*
2182 * Initialize capacity to 0 until we establish the namespace format and
2183 * setup integrity extentions if necessary. The revalidate_disk after
2184 * add_disk allows the driver to register with integrity if the format
2185 * requires it.
2186 */
2187 set_capacity(disk, 0);
a5768aa8
KB
2188 if (nvme_revalidate_disk(ns->disk))
2189 goto out_free_disk;
2190
5105aa55 2191 kref_get(&dev->kref);
ca064085
MB
2192 if (ns->type != NVME_NS_LIGHTNVM) {
2193 add_disk(ns->disk);
2194 if (ns->ms) {
2195 struct block_device *bd = bdget_disk(ns->disk, 0);
2196 if (!bd)
2197 return;
2198 if (blkdev_get(bd, FMODE_READ, NULL)) {
2199 bdput(bd);
2200 return;
2201 }
2202 blkdev_reread_part(bd);
2203 blkdev_put(bd, FMODE_READ);
7bee6074 2204 }
7bee6074 2205 }
e1e5e564 2206 return;
a5768aa8
KB
2207 out_free_disk:
2208 kfree(disk);
2209 list_del(&ns->list);
b60503ba
MW
2210 out_free_queue:
2211 blk_cleanup_queue(ns->queue);
2212 out_free_ns:
2213 kfree(ns);
b60503ba
MW
2214}
2215
2659e57b
CH
2216/*
2217 * Create I/O queues. Failing to create an I/O queue is not an issue,
2218 * we can continue with less than the desired amount of queues, and
2219 * even a controller without I/O queues an still be used to issue
2220 * admin commands. This might be useful to upgrade a buggy firmware
2221 * for example.
2222 */
42f61420
KB
2223static void nvme_create_io_queues(struct nvme_dev *dev)
2224{
a4aea562 2225 unsigned i;
42f61420 2226
a4aea562 2227 for (i = dev->queue_count; i <= dev->max_qid; i++)
2b25d981 2228 if (!nvme_alloc_queue(dev, i, dev->q_depth))
42f61420
KB
2229 break;
2230
a4aea562 2231 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2659e57b
CH
2232 if (nvme_create_queue(dev->queues[i], i)) {
2233 nvme_free_queues(dev, i);
42f61420 2234 break;
2659e57b 2235 }
42f61420
KB
2236}
2237
b3b06812 2238static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
2239{
2240 int status;
2241 u32 result;
b3b06812 2242 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 2243
1c63dc66 2244 status = nvme_set_features(&dev->ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 2245 &result);
27e8166c
MW
2246 if (status < 0)
2247 return status;
2248 if (status > 0) {
e75ec752 2249 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
badc34d4 2250 return 0;
27e8166c 2251 }
b60503ba
MW
2252 return min(result & 0xffff, result >> 16) + 1;
2253}
2254
8ffaadf7
JD
2255static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2256{
2257 u64 szu, size, offset;
2258 u32 cmbloc;
2259 resource_size_t bar_size;
2260 struct pci_dev *pdev = to_pci_dev(dev->dev);
2261 void __iomem *cmb;
2262 dma_addr_t dma_addr;
2263
2264 if (!use_cmb_sqes)
2265 return NULL;
2266
7a67cbea 2267 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
2268 if (!(NVME_CMB_SZ(dev->cmbsz)))
2269 return NULL;
2270
7a67cbea 2271 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
2272
2273 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2274 size = szu * NVME_CMB_SZ(dev->cmbsz);
2275 offset = szu * NVME_CMB_OFST(cmbloc);
2276 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2277
2278 if (offset > bar_size)
2279 return NULL;
2280
2281 /*
2282 * Controllers may support a CMB size larger than their BAR,
2283 * for example, due to being behind a bridge. Reduce the CMB to
2284 * the reported size of the BAR
2285 */
2286 if (size > bar_size - offset)
2287 size = bar_size - offset;
2288
2289 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2290 cmb = ioremap_wc(dma_addr, size);
2291 if (!cmb)
2292 return NULL;
2293
2294 dev->cmb_dma_addr = dma_addr;
2295 dev->cmb_size = size;
2296 return cmb;
2297}
2298
2299static inline void nvme_release_cmb(struct nvme_dev *dev)
2300{
2301 if (dev->cmb) {
2302 iounmap(dev->cmb);
2303 dev->cmb = NULL;
2304 }
2305}
2306
9d713c2b
KB
2307static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2308{
b80d5ccc 2309 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
2310}
2311
8d85fce7 2312static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2313{
a4aea562 2314 struct nvme_queue *adminq = dev->queues[0];
e75ec752 2315 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 2316 int result, i, vecs, nr_io_queues, size;
b60503ba 2317
42f61420 2318 nr_io_queues = num_possible_cpus();
b348b7d5 2319 result = set_queue_count(dev, nr_io_queues);
badc34d4 2320 if (result <= 0)
1b23484b 2321 return result;
b348b7d5
MW
2322 if (result < nr_io_queues)
2323 nr_io_queues = result;
b60503ba 2324
8ffaadf7
JD
2325 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2326 result = nvme_cmb_qdepth(dev, nr_io_queues,
2327 sizeof(struct nvme_command));
2328 if (result > 0)
2329 dev->q_depth = result;
2330 else
2331 nvme_release_cmb(dev);
2332 }
2333
9d713c2b
KB
2334 size = db_bar_size(dev, nr_io_queues);
2335 if (size > 8192) {
f1938f6e 2336 iounmap(dev->bar);
9d713c2b
KB
2337 do {
2338 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2339 if (dev->bar)
2340 break;
2341 if (!--nr_io_queues)
2342 return -ENOMEM;
2343 size = db_bar_size(dev, nr_io_queues);
2344 } while (1);
7a67cbea 2345 dev->dbs = dev->bar + 4096;
5a92e700 2346 adminq->q_db = dev->dbs;
f1938f6e
MW
2347 }
2348
9d713c2b 2349 /* Deregister the admin queue's interrupt */
3193f07b 2350 free_irq(dev->entry[0].vector, adminq);
9d713c2b 2351
e32efbfc
JA
2352 /*
2353 * If we enable msix early due to not intx, disable it again before
2354 * setting up the full range we need.
2355 */
2356 if (!pdev->irq)
2357 pci_disable_msix(pdev);
2358
be577fab 2359 for (i = 0; i < nr_io_queues; i++)
1b23484b 2360 dev->entry[i].entry = i;
be577fab
AG
2361 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2362 if (vecs < 0) {
2363 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2364 if (vecs < 0) {
2365 vecs = 1;
2366 } else {
2367 for (i = 0; i < vecs; i++)
2368 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
2369 }
2370 }
2371
063a8096
MW
2372 /*
2373 * Should investigate if there's a performance win from allocating
2374 * more queues than interrupt vectors; it might allow the submission
2375 * path to scale better, even if the receive path is limited by the
2376 * number of interrupts.
2377 */
2378 nr_io_queues = vecs;
42f61420 2379 dev->max_qid = nr_io_queues;
063a8096 2380
3193f07b 2381 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
2382 if (result) {
2383 adminq->cq_vector = -1;
22404274 2384 goto free_queues;
758dd7fd 2385 }
1b23484b 2386
cd638946 2387 /* Free previously allocated queues that are no longer usable */
42f61420 2388 nvme_free_queues(dev, nr_io_queues + 1);
a4aea562 2389 nvme_create_io_queues(dev);
9ecdc946 2390
22404274 2391 return 0;
b60503ba 2392
22404274 2393 free_queues:
a1a5ef99 2394 nvme_free_queues(dev, 1);
22404274 2395 return result;
b60503ba
MW
2396}
2397
a5768aa8
KB
2398static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2399{
2400 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2401 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2402
2403 return nsa->ns_id - nsb->ns_id;
2404}
2405
2406static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2407{
2408 struct nvme_ns *ns;
2409
2410 list_for_each_entry(ns, &dev->namespaces, list) {
2411 if (ns->ns_id == nsid)
2412 return ns;
2413 if (ns->ns_id > nsid)
2414 break;
2415 }
2416 return NULL;
2417}
2418
2419static inline bool nvme_io_incapable(struct nvme_dev *dev)
2420{
7a67cbea
CH
2421 return (!dev->bar ||
2422 readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_CFS ||
2423 dev->online_queues < 2);
a5768aa8
KB
2424}
2425
2426static void nvme_ns_remove(struct nvme_ns *ns)
2427{
1c63dc66
CH
2428 bool kill = nvme_io_incapable(to_nvme_dev(ns->ctrl)) &&
2429 !blk_queue_dying(ns->queue);
a5768aa8
KB
2430
2431 if (kill)
2432 blk_set_queue_dying(ns->queue);
9609b994 2433 if (ns->disk->flags & GENHD_FL_UP)
a5768aa8 2434 del_gendisk(ns->disk);
a5768aa8
KB
2435 if (kill || !blk_queue_dying(ns->queue)) {
2436 blk_mq_abort_requeue_list(ns->queue);
2437 blk_cleanup_queue(ns->queue);
5105aa55
KB
2438 }
2439 list_del_init(&ns->list);
2440 kref_put(&ns->kref, nvme_free_ns);
a5768aa8
KB
2441}
2442
2443static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2444{
2445 struct nvme_ns *ns, *next;
2446 unsigned i;
2447
2448 for (i = 1; i <= nn; i++) {
2449 ns = nvme_find_ns(dev, i);
2450 if (ns) {
5105aa55 2451 if (revalidate_disk(ns->disk))
a5768aa8 2452 nvme_ns_remove(ns);
a5768aa8
KB
2453 } else
2454 nvme_alloc_ns(dev, i);
2455 }
2456 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
5105aa55 2457 if (ns->ns_id > nn)
a5768aa8 2458 nvme_ns_remove(ns);
a5768aa8
KB
2459 }
2460 list_sort(NULL, &dev->namespaces, ns_cmp);
2461}
2462
bda4e0fb
KB
2463static void nvme_set_irq_hints(struct nvme_dev *dev)
2464{
2465 struct nvme_queue *nvmeq;
2466 int i;
2467
2468 for (i = 0; i < dev->online_queues; i++) {
2469 nvmeq = dev->queues[i];
2470
2471 if (!nvmeq->tags || !(*nvmeq->tags))
2472 continue;
2473
2474 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2475 blk_mq_tags_cpumask(*nvmeq->tags));
2476 }
2477}
2478
a5768aa8
KB
2479static void nvme_dev_scan(struct work_struct *work)
2480{
2481 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2482 struct nvme_id_ctrl *ctrl;
2483
2484 if (!dev->tagset.tags)
2485 return;
1c63dc66 2486 if (nvme_identify_ctrl(&dev->ctrl, &ctrl))
a5768aa8
KB
2487 return;
2488 nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2489 kfree(ctrl);
bda4e0fb 2490 nvme_set_irq_hints(dev);
a5768aa8
KB
2491}
2492
422ef0c7
MW
2493/*
2494 * Return: error value if an error occurred setting up the queues or calling
2495 * Identify Device. 0 if these succeeded, even if adding some of the
2496 * namespaces failed. At the moment, these failures are silent. TBD which
2497 * failures should be reported.
2498 */
8d85fce7 2499static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2500{
e75ec752 2501 struct pci_dev *pdev = to_pci_dev(dev->dev);
c3bfe717 2502 int res;
51814232 2503 struct nvme_id_ctrl *ctrl;
7a67cbea 2504 int shift = NVME_CAP_MPSMIN(lo_hi_readq(dev->bar + NVME_REG_CAP)) + 12;
b60503ba 2505
1c63dc66 2506 res = nvme_identify_ctrl(&dev->ctrl, &ctrl);
b60503ba 2507 if (res) {
e75ec752 2508 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
e1e5e564 2509 return -EIO;
b60503ba
MW
2510 }
2511
1c63dc66
CH
2512 dev->ctrl.oncs = le16_to_cpup(&ctrl->oncs);
2513 dev->ctrl.abort_limit = ctrl->acl + 1;
2514 dev->ctrl.vwc = ctrl->vwc;
2515 memcpy(dev->ctrl.serial, ctrl->sn, sizeof(ctrl->sn));
2516 memcpy(dev->ctrl.model, ctrl->mn, sizeof(ctrl->mn));
2517 memcpy(dev->ctrl.firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 2518 if (ctrl->mdts)
8fc23e03 2519 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
b12363d0
S
2520 else
2521 dev->max_hw_sectors = UINT_MAX;
68608c26 2522 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
a4aea562
MB
2523 (pdev->device == 0x0953) && ctrl->vs[3]) {
2524 unsigned int max_hw_sectors;
2525
159b67d7 2526 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
a4aea562
MB
2527 max_hw_sectors = dev->stripe_size >> (shift - 9);
2528 if (dev->max_hw_sectors) {
2529 dev->max_hw_sectors = min(max_hw_sectors,
2530 dev->max_hw_sectors);
2531 } else
2532 dev->max_hw_sectors = max_hw_sectors;
2533 }
d29ec824 2534 kfree(ctrl);
a4aea562 2535
ffe7704d
KB
2536 if (!dev->tagset.tags) {
2537 dev->tagset.ops = &nvme_mq_ops;
2538 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2539 dev->tagset.timeout = NVME_IO_TIMEOUT;
2540 dev->tagset.numa_node = dev_to_node(dev->dev);
2541 dev->tagset.queue_depth =
a4aea562 2542 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
2543 dev->tagset.cmd_size = nvme_cmd_size(dev);
2544 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2545 dev->tagset.driver_data = dev;
b60503ba 2546
ffe7704d
KB
2547 if (blk_mq_alloc_tag_set(&dev->tagset))
2548 return 0;
2549 }
a5768aa8 2550 schedule_work(&dev->scan_work);
e1e5e564 2551 return 0;
b60503ba
MW
2552}
2553
0877cb0d
KB
2554static int nvme_dev_map(struct nvme_dev *dev)
2555{
42f61420 2556 u64 cap;
0877cb0d 2557 int bars, result = -ENOMEM;
e75ec752 2558 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2559
2560 if (pci_enable_device_mem(pdev))
2561 return result;
2562
2563 dev->entry[0].vector = pdev->irq;
2564 pci_set_master(pdev);
2565 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
2566 if (!bars)
2567 goto disable_pci;
2568
0877cb0d
KB
2569 if (pci_request_selected_regions(pdev, bars, "nvme"))
2570 goto disable_pci;
2571
e75ec752
CH
2572 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2573 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2574 goto disable;
0877cb0d 2575
0877cb0d
KB
2576 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2577 if (!dev->bar)
2578 goto disable;
e32efbfc 2579
7a67cbea 2580 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180
KB
2581 result = -ENODEV;
2582 goto unmap;
2583 }
e32efbfc
JA
2584
2585 /*
2586 * Some devices don't advertse INTx interrupts, pre-enable a single
2587 * MSIX vec for setup. We'll adjust this later.
2588 */
2589 if (!pdev->irq) {
2590 result = pci_enable_msix(pdev, dev->entry, 1);
2591 if (result < 0)
2592 goto unmap;
2593 }
2594
7a67cbea
CH
2595 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2596
42f61420
KB
2597 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2598 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea
CH
2599 dev->dbs = dev->bar + 4096;
2600 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 2601 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
2602
2603 return 0;
2604
0e53d180
KB
2605 unmap:
2606 iounmap(dev->bar);
2607 dev->bar = NULL;
0877cb0d
KB
2608 disable:
2609 pci_release_regions(pdev);
2610 disable_pci:
2611 pci_disable_device(pdev);
2612 return result;
2613}
2614
2615static void nvme_dev_unmap(struct nvme_dev *dev)
2616{
e75ec752
CH
2617 struct pci_dev *pdev = to_pci_dev(dev->dev);
2618
2619 if (pdev->msi_enabled)
2620 pci_disable_msi(pdev);
2621 else if (pdev->msix_enabled)
2622 pci_disable_msix(pdev);
0877cb0d
KB
2623
2624 if (dev->bar) {
2625 iounmap(dev->bar);
2626 dev->bar = NULL;
e75ec752 2627 pci_release_regions(pdev);
0877cb0d
KB
2628 }
2629
e75ec752
CH
2630 if (pci_is_enabled(pdev))
2631 pci_disable_device(pdev);
0877cb0d
KB
2632}
2633
4d115420
KB
2634struct nvme_delq_ctx {
2635 struct task_struct *waiter;
2636 struct kthread_worker *worker;
2637 atomic_t refcount;
2638};
2639
2640static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2641{
2642 dq->waiter = current;
2643 mb();
2644
2645 for (;;) {
2646 set_current_state(TASK_KILLABLE);
2647 if (!atomic_read(&dq->refcount))
2648 break;
2649 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2650 fatal_signal_pending(current)) {
0fb59cbc
KB
2651 /*
2652 * Disable the controller first since we can't trust it
2653 * at this point, but leave the admin queue enabled
2654 * until all queue deletion requests are flushed.
2655 * FIXME: This may take a while if there are more h/w
2656 * queues than admin tags.
2657 */
4d115420 2658 set_current_state(TASK_RUNNING);
7a67cbea
CH
2659 nvme_disable_ctrl(dev,
2660 lo_hi_readq(dev->bar + NVME_REG_CAP));
0fb59cbc 2661 nvme_clear_queue(dev->queues[0]);
4d115420 2662 flush_kthread_worker(dq->worker);
0fb59cbc 2663 nvme_disable_queue(dev, 0);
4d115420
KB
2664 return;
2665 }
2666 }
2667 set_current_state(TASK_RUNNING);
2668}
2669
2670static void nvme_put_dq(struct nvme_delq_ctx *dq)
2671{
2672 atomic_dec(&dq->refcount);
2673 if (dq->waiter)
2674 wake_up_process(dq->waiter);
2675}
2676
2677static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2678{
2679 atomic_inc(&dq->refcount);
2680 return dq;
2681}
2682
2683static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2684{
2685 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420 2686 nvme_put_dq(dq);
604e8c8d
KB
2687
2688 spin_lock_irq(&nvmeq->q_lock);
2689 nvme_process_cq(nvmeq);
2690 spin_unlock_irq(&nvmeq->q_lock);
4d115420
KB
2691}
2692
2693static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2694 kthread_work_func_t fn)
2695{
2696 struct nvme_command c;
2697
2698 memset(&c, 0, sizeof(c));
2699 c.delete_queue.opcode = opcode;
2700 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2701
2702 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
2703 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2704 ADMIN_TIMEOUT);
4d115420
KB
2705}
2706
2707static void nvme_del_cq_work_handler(struct kthread_work *work)
2708{
2709 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2710 cmdinfo.work);
2711 nvme_del_queue_end(nvmeq);
2712}
2713
2714static int nvme_delete_cq(struct nvme_queue *nvmeq)
2715{
2716 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2717 nvme_del_cq_work_handler);
2718}
2719
2720static void nvme_del_sq_work_handler(struct kthread_work *work)
2721{
2722 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2723 cmdinfo.work);
2724 int status = nvmeq->cmdinfo.status;
2725
2726 if (!status)
2727 status = nvme_delete_cq(nvmeq);
2728 if (status)
2729 nvme_del_queue_end(nvmeq);
2730}
2731
2732static int nvme_delete_sq(struct nvme_queue *nvmeq)
2733{
2734 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2735 nvme_del_sq_work_handler);
2736}
2737
2738static void nvme_del_queue_start(struct kthread_work *work)
2739{
2740 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2741 cmdinfo.work);
4d115420
KB
2742 if (nvme_delete_sq(nvmeq))
2743 nvme_del_queue_end(nvmeq);
2744}
2745
2746static void nvme_disable_io_queues(struct nvme_dev *dev)
2747{
2748 int i;
2749 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2750 struct nvme_delq_ctx dq;
2751 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1c63dc66 2752 &worker, "nvme%d", dev->ctrl.instance);
4d115420
KB
2753
2754 if (IS_ERR(kworker_task)) {
e75ec752 2755 dev_err(dev->dev,
4d115420
KB
2756 "Failed to create queue del task\n");
2757 for (i = dev->queue_count - 1; i > 0; i--)
2758 nvme_disable_queue(dev, i);
2759 return;
2760 }
2761
2762 dq.waiter = NULL;
2763 atomic_set(&dq.refcount, 0);
2764 dq.worker = &worker;
2765 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2766 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2767
2768 if (nvme_suspend_queue(nvmeq))
2769 continue;
2770 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2771 nvmeq->cmdinfo.worker = dq.worker;
2772 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2773 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2774 }
2775 nvme_wait_dq(&dq, dev);
2776 kthread_stop(kworker_task);
2777}
2778
b9afca3e
DM
2779/*
2780* Remove the node from the device list and check
2781* for whether or not we need to stop the nvme_thread.
2782*/
2783static void nvme_dev_list_remove(struct nvme_dev *dev)
2784{
2785 struct task_struct *tmp = NULL;
2786
2787 spin_lock(&dev_list_lock);
2788 list_del_init(&dev->node);
2789 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2790 tmp = nvme_thread;
2791 nvme_thread = NULL;
2792 }
2793 spin_unlock(&dev_list_lock);
2794
2795 if (tmp)
2796 kthread_stop(tmp);
2797}
2798
c9d3bf88
KB
2799static void nvme_freeze_queues(struct nvme_dev *dev)
2800{
2801 struct nvme_ns *ns;
2802
2803 list_for_each_entry(ns, &dev->namespaces, list) {
2804 blk_mq_freeze_queue_start(ns->queue);
2805
cddcd72b 2806 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2807 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2808 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2809
2810 blk_mq_cancel_requeue_work(ns->queue);
2811 blk_mq_stop_hw_queues(ns->queue);
2812 }
2813}
2814
2815static void nvme_unfreeze_queues(struct nvme_dev *dev)
2816{
2817 struct nvme_ns *ns;
2818
2819 list_for_each_entry(ns, &dev->namespaces, list) {
2820 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2821 blk_mq_unfreeze_queue(ns->queue);
2822 blk_mq_start_stopped_hw_queues(ns->queue, true);
2823 blk_mq_kick_requeue_list(ns->queue);
2824 }
2825}
2826
f0b50732 2827static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2828{
22404274 2829 int i;
7c1b2450 2830 u32 csts = -1;
22404274 2831
b9afca3e 2832 nvme_dev_list_remove(dev);
1fa6aead 2833
c9d3bf88
KB
2834 if (dev->bar) {
2835 nvme_freeze_queues(dev);
7a67cbea 2836 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 2837 }
7c1b2450 2838 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2839 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2840 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2841 nvme_suspend_queue(nvmeq);
4d115420
KB
2842 }
2843 } else {
2844 nvme_disable_io_queues(dev);
1894d8f1 2845 nvme_shutdown_ctrl(dev);
4d115420
KB
2846 nvme_disable_queue(dev, 0);
2847 }
f0b50732 2848 nvme_dev_unmap(dev);
07836e65
KB
2849
2850 for (i = dev->queue_count - 1; i >= 0; i--)
2851 nvme_clear_queue(dev->queues[i]);
f0b50732
KB
2852}
2853
2854static void nvme_dev_remove(struct nvme_dev *dev)
2855{
5105aa55 2856 struct nvme_ns *ns, *next;
f0b50732 2857
5105aa55 2858 list_for_each_entry_safe(ns, next, &dev->namespaces, list)
a5768aa8 2859 nvme_ns_remove(ns);
b60503ba
MW
2860}
2861
091b6092
MW
2862static int nvme_setup_prp_pools(struct nvme_dev *dev)
2863{
e75ec752 2864 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2865 PAGE_SIZE, PAGE_SIZE, 0);
2866 if (!dev->prp_page_pool)
2867 return -ENOMEM;
2868
99802a7a 2869 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2870 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2871 256, 256, 0);
2872 if (!dev->prp_small_pool) {
2873 dma_pool_destroy(dev->prp_page_pool);
2874 return -ENOMEM;
2875 }
091b6092
MW
2876 return 0;
2877}
2878
2879static void nvme_release_prp_pools(struct nvme_dev *dev)
2880{
2881 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2882 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2883}
2884
cd58ad7d
QSA
2885static DEFINE_IDA(nvme_instance_ida);
2886
2887static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 2888{
cd58ad7d
QSA
2889 int instance, error;
2890
2891 do {
2892 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2893 return -ENODEV;
2894
2895 spin_lock(&dev_list_lock);
2896 error = ida_get_new(&nvme_instance_ida, &instance);
2897 spin_unlock(&dev_list_lock);
2898 } while (error == -EAGAIN);
2899
2900 if (error)
2901 return -ENODEV;
2902
1c63dc66 2903 dev->ctrl.instance = instance;
cd58ad7d 2904 return 0;
b60503ba
MW
2905}
2906
2907static void nvme_release_instance(struct nvme_dev *dev)
2908{
cd58ad7d 2909 spin_lock(&dev_list_lock);
1c63dc66 2910 ida_remove(&nvme_instance_ida, dev->ctrl.instance);
cd58ad7d 2911 spin_unlock(&dev_list_lock);
b60503ba
MW
2912}
2913
5e82e952
KB
2914static void nvme_free_dev(struct kref *kref)
2915{
2916 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
9ac27090 2917
e75ec752 2918 put_device(dev->dev);
b3fffdef 2919 put_device(dev->device);
285dffc9 2920 nvme_release_instance(dev);
4af0e21c
KB
2921 if (dev->tagset.tags)
2922 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2923 if (dev->ctrl.admin_q)
2924 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
2925 kfree(dev->queues);
2926 kfree(dev->entry);
2927 kfree(dev);
2928}
2929
2930static int nvme_dev_open(struct inode *inode, struct file *f)
2931{
b3fffdef
KB
2932 struct nvme_dev *dev;
2933 int instance = iminor(inode);
2934 int ret = -ENODEV;
2935
2936 spin_lock(&dev_list_lock);
2937 list_for_each_entry(dev, &dev_list, node) {
1c63dc66
CH
2938 if (dev->ctrl.instance == instance) {
2939 if (!dev->ctrl.admin_q) {
2e1d8448
KB
2940 ret = -EWOULDBLOCK;
2941 break;
2942 }
b3fffdef
KB
2943 if (!kref_get_unless_zero(&dev->kref))
2944 break;
2945 f->private_data = dev;
2946 ret = 0;
2947 break;
2948 }
2949 }
2950 spin_unlock(&dev_list_lock);
2951
2952 return ret;
5e82e952
KB
2953}
2954
2955static int nvme_dev_release(struct inode *inode, struct file *f)
2956{
2957 struct nvme_dev *dev = f->private_data;
2958 kref_put(&dev->kref, nvme_free_dev);
2959 return 0;
2960}
2961
2962static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2963{
2964 struct nvme_dev *dev = f->private_data;
a4aea562
MB
2965 struct nvme_ns *ns;
2966
5e82e952
KB
2967 switch (cmd) {
2968 case NVME_IOCTL_ADMIN_CMD:
1c63dc66 2969 return nvme_user_cmd(&dev->ctrl, NULL, (void __user *)arg);
7963e521 2970 case NVME_IOCTL_IO_CMD:
a4aea562
MB
2971 if (list_empty(&dev->namespaces))
2972 return -ENOTTY;
2973 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
1c63dc66 2974 return nvme_user_cmd(&dev->ctrl, ns, (void __user *)arg);
4cc06521
KB
2975 case NVME_IOCTL_RESET:
2976 dev_warn(dev->dev, "resetting controller\n");
2977 return nvme_reset(dev);
81f03fed
JD
2978 case NVME_IOCTL_SUBSYS_RESET:
2979 return nvme_subsys_reset(dev);
5e82e952
KB
2980 default:
2981 return -ENOTTY;
2982 }
2983}
2984
2985static const struct file_operations nvme_dev_fops = {
2986 .owner = THIS_MODULE,
2987 .open = nvme_dev_open,
2988 .release = nvme_dev_release,
2989 .unlocked_ioctl = nvme_dev_ioctl,
2990 .compat_ioctl = nvme_dev_ioctl,
2991};
2992
3cf519b5 2993static void nvme_probe_work(struct work_struct *work)
f0b50732 2994{
3cf519b5 2995 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
b9afca3e 2996 bool start_thread = false;
3cf519b5 2997 int result;
f0b50732
KB
2998
2999 result = nvme_dev_map(dev);
3000 if (result)
3cf519b5 3001 goto out;
f0b50732
KB
3002
3003 result = nvme_configure_admin_queue(dev);
3004 if (result)
3005 goto unmap;
3006
3007 spin_lock(&dev_list_lock);
b9afca3e
DM
3008 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
3009 start_thread = true;
3010 nvme_thread = NULL;
3011 }
f0b50732
KB
3012 list_add(&dev->node, &dev_list);
3013 spin_unlock(&dev_list_lock);
3014
b9afca3e
DM
3015 if (start_thread) {
3016 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
387caa5a 3017 wake_up_all(&nvme_kthread_wait);
b9afca3e
DM
3018 } else
3019 wait_event_killable(nvme_kthread_wait, nvme_thread);
3020
3021 if (IS_ERR_OR_NULL(nvme_thread)) {
3022 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
3023 goto disable;
3024 }
a4aea562
MB
3025
3026 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
3027 result = nvme_alloc_admin_tags(dev);
3028 if (result)
3029 goto disable;
b9afca3e 3030
f0b50732 3031 result = nvme_setup_io_queues(dev);
badc34d4 3032 if (result)
0fb59cbc 3033 goto free_tags;
f0b50732 3034
1c63dc66 3035 dev->ctrl.event_limit = 1;
3cf519b5 3036
2659e57b
CH
3037 /*
3038 * Keep the controller around but remove all namespaces if we don't have
3039 * any working I/O queue.
3040 */
3cf519b5
CH
3041 if (dev->online_queues < 2) {
3042 dev_warn(dev->dev, "IO queues not created\n");
3cf519b5
CH
3043 nvme_dev_remove(dev);
3044 } else {
3045 nvme_unfreeze_queues(dev);
3046 nvme_dev_add(dev);
3047 }
3048
3049 return;
f0b50732 3050
0fb59cbc
KB
3051 free_tags:
3052 nvme_dev_remove_admin(dev);
1c63dc66
CH
3053 blk_put_queue(dev->ctrl.admin_q);
3054 dev->ctrl.admin_q = NULL;
4af0e21c 3055 dev->queues[0]->tags = NULL;
f0b50732 3056 disable:
a1a5ef99 3057 nvme_disable_queue(dev, 0);
b9afca3e 3058 nvme_dev_list_remove(dev);
f0b50732
KB
3059 unmap:
3060 nvme_dev_unmap(dev);
3cf519b5
CH
3061 out:
3062 if (!work_busy(&dev->reset_work))
3063 nvme_dead_ctrl(dev);
f0b50732
KB
3064}
3065
9a6b9458
KB
3066static int nvme_remove_dead_ctrl(void *arg)
3067{
3068 struct nvme_dev *dev = (struct nvme_dev *)arg;
e75ec752 3069 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
3070
3071 if (pci_get_drvdata(pdev))
c81f4975 3072 pci_stop_and_remove_bus_device_locked(pdev);
9a6b9458
KB
3073 kref_put(&dev->kref, nvme_free_dev);
3074 return 0;
3075}
3076
de3eff2b
KB
3077static void nvme_dead_ctrl(struct nvme_dev *dev)
3078{
3079 dev_warn(dev->dev, "Device failed to resume\n");
3080 kref_get(&dev->kref);
3081 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
1c63dc66 3082 dev->ctrl.instance))) {
de3eff2b
KB
3083 dev_err(dev->dev,
3084 "Failed to start controller remove task\n");
3085 kref_put(&dev->kref, nvme_free_dev);
3086 }
3087}
3088
77b50d9e 3089static void nvme_reset_work(struct work_struct *ws)
9a6b9458 3090{
77b50d9e 3091 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
ffe7704d
KB
3092 bool in_probe = work_busy(&dev->probe_work);
3093
9a6b9458 3094 nvme_dev_shutdown(dev);
ffe7704d
KB
3095
3096 /* Synchronize with device probe so that work will see failure status
3097 * and exit gracefully without trying to schedule another reset */
3098 flush_work(&dev->probe_work);
3099
3100 /* Fail this device if reset occured during probe to avoid
3101 * infinite initialization loops. */
3102 if (in_probe) {
de3eff2b 3103 nvme_dead_ctrl(dev);
ffe7704d 3104 return;
9a6b9458 3105 }
ffe7704d
KB
3106 /* Schedule device resume asynchronously so the reset work is available
3107 * to cleanup errors that may occur during reinitialization */
3108 schedule_work(&dev->probe_work);
9a6b9458
KB
3109}
3110
90667892 3111static int __nvme_reset(struct nvme_dev *dev)
9ca97374 3112{
90667892
CH
3113 if (work_pending(&dev->reset_work))
3114 return -EBUSY;
3115 list_del_init(&dev->node);
3116 queue_work(nvme_workq, &dev->reset_work);
3117 return 0;
9ca97374
TH
3118}
3119
4cc06521
KB
3120static int nvme_reset(struct nvme_dev *dev)
3121{
90667892 3122 int ret;
4cc06521 3123
1c63dc66 3124 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521
KB
3125 return -ENODEV;
3126
3127 spin_lock(&dev_list_lock);
90667892 3128 ret = __nvme_reset(dev);
4cc06521
KB
3129 spin_unlock(&dev_list_lock);
3130
3131 if (!ret) {
3132 flush_work(&dev->reset_work);
ffe7704d 3133 flush_work(&dev->probe_work);
4cc06521
KB
3134 return 0;
3135 }
3136
3137 return ret;
3138}
3139
3140static ssize_t nvme_sysfs_reset(struct device *dev,
3141 struct device_attribute *attr, const char *buf,
3142 size_t count)
3143{
3144 struct nvme_dev *ndev = dev_get_drvdata(dev);
3145 int ret;
3146
3147 ret = nvme_reset(ndev);
3148 if (ret < 0)
3149 return ret;
3150
3151 return count;
3152}
3153static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3154
1c63dc66
CH
3155static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3156{
3157 *val = readl(to_nvme_dev(ctrl)->bar + off);
3158 return 0;
3159}
3160
3161static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3162 .reg_read32 = nvme_pci_reg_read32,
3163};
3164
8d85fce7 3165static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 3166{
a4aea562 3167 int node, result = -ENOMEM;
b60503ba
MW
3168 struct nvme_dev *dev;
3169
a4aea562
MB
3170 node = dev_to_node(&pdev->dev);
3171 if (node == NUMA_NO_NODE)
3172 set_dev_node(&pdev->dev, 0);
3173
3174 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
3175 if (!dev)
3176 return -ENOMEM;
a4aea562
MB
3177 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3178 GFP_KERNEL, node);
b60503ba
MW
3179 if (!dev->entry)
3180 goto free;
a4aea562
MB
3181 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3182 GFP_KERNEL, node);
b60503ba
MW
3183 if (!dev->queues)
3184 goto free;
3185
3186 INIT_LIST_HEAD(&dev->namespaces);
77b50d9e 3187 INIT_WORK(&dev->reset_work, nvme_reset_work);
e75ec752 3188 dev->dev = get_device(&pdev->dev);
9a6b9458 3189 pci_set_drvdata(pdev, dev);
1c63dc66
CH
3190
3191 dev->ctrl.ops = &nvme_pci_ctrl_ops;
3192 dev->ctrl.dev = dev->dev;
3193
cd58ad7d
QSA
3194 result = nvme_set_instance(dev);
3195 if (result)
a96d4f5c 3196 goto put_pci;
b60503ba 3197
091b6092
MW
3198 result = nvme_setup_prp_pools(dev);
3199 if (result)
0877cb0d 3200 goto release;
091b6092 3201
fb35e914 3202 kref_init(&dev->kref);
b3fffdef 3203 dev->device = device_create(nvme_class, &pdev->dev,
1c63dc66
CH
3204 MKDEV(nvme_char_major, dev->ctrl.instance),
3205 dev, "nvme%d", dev->ctrl.instance);
b3fffdef
KB
3206 if (IS_ERR(dev->device)) {
3207 result = PTR_ERR(dev->device);
2e1d8448 3208 goto release_pools;
b3fffdef
KB
3209 }
3210 get_device(dev->device);
4cc06521
KB
3211 dev_set_drvdata(dev->device, dev);
3212
3213 result = device_create_file(dev->device, &dev_attr_reset_controller);
3214 if (result)
3215 goto put_dev;
740216fc 3216
e6e96d73 3217 INIT_LIST_HEAD(&dev->node);
a5768aa8 3218 INIT_WORK(&dev->scan_work, nvme_dev_scan);
3cf519b5 3219 INIT_WORK(&dev->probe_work, nvme_probe_work);
2e1d8448 3220 schedule_work(&dev->probe_work);
b60503ba
MW
3221 return 0;
3222
4cc06521 3223 put_dev:
1c63dc66 3224 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
4cc06521 3225 put_device(dev->device);
0877cb0d 3226 release_pools:
091b6092 3227 nvme_release_prp_pools(dev);
0877cb0d
KB
3228 release:
3229 nvme_release_instance(dev);
a96d4f5c 3230 put_pci:
e75ec752 3231 put_device(dev->dev);
b60503ba
MW
3232 free:
3233 kfree(dev->queues);
3234 kfree(dev->entry);
3235 kfree(dev);
3236 return result;
3237}
3238
f0d54a54
KB
3239static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3240{
a6739479 3241 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 3242
a6739479
KB
3243 if (prepare)
3244 nvme_dev_shutdown(dev);
3245 else
0a7385ad 3246 schedule_work(&dev->probe_work);
f0d54a54
KB
3247}
3248
09ece142
KB
3249static void nvme_shutdown(struct pci_dev *pdev)
3250{
3251 struct nvme_dev *dev = pci_get_drvdata(pdev);
3252 nvme_dev_shutdown(dev);
3253}
3254
8d85fce7 3255static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3256{
3257 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
3258
3259 spin_lock(&dev_list_lock);
3260 list_del_init(&dev->node);
3261 spin_unlock(&dev_list_lock);
3262
3263 pci_set_drvdata(pdev, NULL);
2e1d8448 3264 flush_work(&dev->probe_work);
9a6b9458 3265 flush_work(&dev->reset_work);
a5768aa8 3266 flush_work(&dev->scan_work);
4cc06521 3267 device_remove_file(dev->device, &dev_attr_reset_controller);
c9d3bf88 3268 nvme_dev_remove(dev);
3399a3f7 3269 nvme_dev_shutdown(dev);
a4aea562 3270 nvme_dev_remove_admin(dev);
1c63dc66 3271 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
a1a5ef99 3272 nvme_free_queues(dev, 0);
8ffaadf7 3273 nvme_release_cmb(dev);
9a6b9458 3274 nvme_release_prp_pools(dev);
5e82e952 3275 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
3276}
3277
3278/* These functions are yet to be implemented */
3279#define nvme_error_detected NULL
3280#define nvme_dump_registers NULL
3281#define nvme_link_reset NULL
3282#define nvme_slot_reset NULL
3283#define nvme_error_resume NULL
cd638946 3284
671a6018 3285#ifdef CONFIG_PM_SLEEP
cd638946
KB
3286static int nvme_suspend(struct device *dev)
3287{
3288 struct pci_dev *pdev = to_pci_dev(dev);
3289 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3290
3291 nvme_dev_shutdown(ndev);
3292 return 0;
3293}
3294
3295static int nvme_resume(struct device *dev)
3296{
3297 struct pci_dev *pdev = to_pci_dev(dev);
3298 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3299
0a7385ad 3300 schedule_work(&ndev->probe_work);
9a6b9458 3301 return 0;
cd638946 3302}
671a6018 3303#endif
cd638946
KB
3304
3305static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 3306
1d352035 3307static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
3308 .error_detected = nvme_error_detected,
3309 .mmio_enabled = nvme_dump_registers,
3310 .link_reset = nvme_link_reset,
3311 .slot_reset = nvme_slot_reset,
3312 .resume = nvme_error_resume,
f0d54a54 3313 .reset_notify = nvme_reset_notify,
b60503ba
MW
3314};
3315
3316/* Move to pci_ids.h later */
3317#define PCI_CLASS_STORAGE_EXPRESS 0x010802
3318
6eb0d698 3319static const struct pci_device_id nvme_id_table[] = {
b60503ba 3320 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 3321 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
3322 { 0, }
3323};
3324MODULE_DEVICE_TABLE(pci, nvme_id_table);
3325
3326static struct pci_driver nvme_driver = {
3327 .name = "nvme",
3328 .id_table = nvme_id_table,
3329 .probe = nvme_probe,
8d85fce7 3330 .remove = nvme_remove,
09ece142 3331 .shutdown = nvme_shutdown,
cd638946
KB
3332 .driver = {
3333 .pm = &nvme_dev_pm_ops,
3334 },
b60503ba
MW
3335 .err_handler = &nvme_err_handler,
3336};
3337
3338static int __init nvme_init(void)
3339{
0ac13140 3340 int result;
1fa6aead 3341
b9afca3e 3342 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 3343
9a6b9458
KB
3344 nvme_workq = create_singlethread_workqueue("nvme");
3345 if (!nvme_workq)
b9afca3e 3346 return -ENOMEM;
9a6b9458 3347
5c42ea16
KB
3348 result = register_blkdev(nvme_major, "nvme");
3349 if (result < 0)
9a6b9458 3350 goto kill_workq;
5c42ea16 3351 else if (result > 0)
0ac13140 3352 nvme_major = result;
b60503ba 3353
b3fffdef
KB
3354 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3355 &nvme_dev_fops);
3356 if (result < 0)
3357 goto unregister_blkdev;
3358 else if (result > 0)
3359 nvme_char_major = result;
3360
3361 nvme_class = class_create(THIS_MODULE, "nvme");
c727040b
AK
3362 if (IS_ERR(nvme_class)) {
3363 result = PTR_ERR(nvme_class);
b3fffdef 3364 goto unregister_chrdev;
c727040b 3365 }
b3fffdef 3366
f3db22fe
KB
3367 result = pci_register_driver(&nvme_driver);
3368 if (result)
b3fffdef 3369 goto destroy_class;
1fa6aead 3370 return 0;
b60503ba 3371
b3fffdef
KB
3372 destroy_class:
3373 class_destroy(nvme_class);
3374 unregister_chrdev:
3375 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1fa6aead 3376 unregister_blkdev:
b60503ba 3377 unregister_blkdev(nvme_major, "nvme");
9a6b9458
KB
3378 kill_workq:
3379 destroy_workqueue(nvme_workq);
b60503ba
MW
3380 return result;
3381}
3382
3383static void __exit nvme_exit(void)
3384{
3385 pci_unregister_driver(&nvme_driver);
3386 unregister_blkdev(nvme_major, "nvme");
9a6b9458 3387 destroy_workqueue(nvme_workq);
b3fffdef
KB
3388 class_destroy(nvme_class);
3389 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
b9afca3e 3390 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 3391 _nvme_check_size();
b60503ba
MW
3392}
3393
3394MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3395MODULE_LICENSE("GPL");
c78b4713 3396MODULE_VERSION("1.0");
b60503ba
MW
3397module_init(nvme_init);
3398module_exit(nvme_exit);