writeback, cgroup: fix use of the wrong bdi_writeback which mismatches the inode
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
2d55cd5f 41#include <linux/timer.h>
b60503ba 42#include <linux/types.h>
2f8e2c87 43#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 44#include <asm/unaligned.h>
797a796a 45
f11bb3e2
CH
46#include "nvme.h"
47
9d43cf64 48#define NVME_Q_DEPTH 1024
d31af0a3 49#define NVME_AQ_DEPTH 256
b60503ba
MW
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
adf68f21
CH
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57#define NVME_NR_AEN_COMMANDS 1
58#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
9d43cf64 59
58ffacb5
MW
60static int use_threaded_interrupts;
61module_param(use_threaded_interrupts, int, 0);
62
8ffaadf7
JD
63static bool use_cmb_sqes = true;
64module_param(use_cmb_sqes, bool, 0644);
65MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
66
9a6b9458 67static struct workqueue_struct *nvme_workq;
1fa6aead 68
1c63dc66
CH
69struct nvme_dev;
70struct nvme_queue;
b3fffdef 71
4cc06521 72static int nvme_reset(struct nvme_dev *dev);
a0fa9647 73static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 74static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 75
1c63dc66
CH
76/*
77 * Represents an NVM Express device. Each nvme_dev is a PCI function.
78 */
79struct nvme_dev {
1c63dc66
CH
80 struct nvme_queue **queues;
81 struct blk_mq_tag_set tagset;
82 struct blk_mq_tag_set admin_tagset;
83 u32 __iomem *dbs;
84 struct device *dev;
85 struct dma_pool *prp_page_pool;
86 struct dma_pool *prp_small_pool;
87 unsigned queue_count;
88 unsigned online_queues;
89 unsigned max_qid;
90 int q_depth;
91 u32 db_stride;
1c63dc66
CH
92 struct msix_entry *entry;
93 void __iomem *bar;
1c63dc66 94 struct work_struct reset_work;
1c63dc66 95 struct work_struct scan_work;
5c8809e6 96 struct work_struct remove_work;
9396dec9 97 struct work_struct async_work;
2d55cd5f 98 struct timer_list watchdog_timer;
77bf25ea 99 struct mutex shutdown_lock;
1c63dc66 100 bool subsystem;
1c63dc66
CH
101 void __iomem *cmb;
102 dma_addr_t cmb_dma_addr;
103 u64 cmb_size;
104 u32 cmbsz;
fd634f41 105 unsigned long flags;
db3cbfff 106
fd634f41 107#define NVME_CTRL_RESETTING 0
646017a6 108#define NVME_CTRL_REMOVING 1
1c63dc66
CH
109
110 struct nvme_ctrl ctrl;
db3cbfff 111 struct completion ioq_wait;
4d115420 112};
1fa6aead 113
1c63dc66
CH
114static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
115{
116 return container_of(ctrl, struct nvme_dev, ctrl);
117}
118
b60503ba
MW
119/*
120 * An NVM Express queue. Each device has at least two (one for admin
121 * commands and one for I/O commands).
122 */
123struct nvme_queue {
124 struct device *q_dmadev;
091b6092 125 struct nvme_dev *dev;
3193f07b 126 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
127 spinlock_t q_lock;
128 struct nvme_command *sq_cmds;
8ffaadf7 129 struct nvme_command __iomem *sq_cmds_io;
b60503ba 130 volatile struct nvme_completion *cqes;
42483228 131 struct blk_mq_tags **tags;
b60503ba
MW
132 dma_addr_t sq_dma_addr;
133 dma_addr_t cq_dma_addr;
b60503ba
MW
134 u32 __iomem *q_db;
135 u16 q_depth;
6222d172 136 s16 cq_vector;
b60503ba
MW
137 u16 sq_tail;
138 u16 cq_head;
c30341dc 139 u16 qid;
e9539f47
MW
140 u8 cq_phase;
141 u8 cqe_seen;
b60503ba
MW
142};
143
71bd150c
CH
144/*
145 * The nvme_iod describes the data in an I/O, including the list of PRP
146 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 147 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
148 * allocated to store the PRP list.
149 */
150struct nvme_iod {
f4800d6d
CH
151 struct nvme_queue *nvmeq;
152 int aborted;
71bd150c 153 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
154 int nents; /* Used in scatterlist */
155 int length; /* Of data, in bytes */
156 dma_addr_t first_dma;
bf684057 157 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
158 struct scatterlist *sg;
159 struct scatterlist inline_sg[0];
b60503ba
MW
160};
161
162/*
163 * Check we didin't inadvertently grow the command struct
164 */
165static inline void _nvme_check_size(void)
166{
167 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
168 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
169 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
170 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
171 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 172 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 173 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
174 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
175 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
176 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
177 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 178 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
179}
180
ac3dd5bd
JA
181/*
182 * Max size of iod being embedded in the request payload
183 */
184#define NVME_INT_PAGES 2
5fd4ce1b 185#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
186
187/*
188 * Will slightly overestimate the number of pages needed. This is OK
189 * as it only leads to a small amount of wasted memory for the lifetime of
190 * the I/O.
191 */
192static int nvme_npages(unsigned size, struct nvme_dev *dev)
193{
5fd4ce1b
CH
194 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
195 dev->ctrl.page_size);
ac3dd5bd
JA
196 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
197}
198
f4800d6d
CH
199static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
200 unsigned int size, unsigned int nseg)
ac3dd5bd 201{
f4800d6d
CH
202 return sizeof(__le64 *) * nvme_npages(size, dev) +
203 sizeof(struct scatterlist) * nseg;
204}
ac3dd5bd 205
f4800d6d
CH
206static unsigned int nvme_cmd_size(struct nvme_dev *dev)
207{
208 return sizeof(struct nvme_iod) +
209 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
210}
211
a4aea562
MB
212static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
213 unsigned int hctx_idx)
e85248e5 214{
a4aea562
MB
215 struct nvme_dev *dev = data;
216 struct nvme_queue *nvmeq = dev->queues[0];
217
42483228
KB
218 WARN_ON(hctx_idx != 0);
219 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
220 WARN_ON(nvmeq->tags);
221
a4aea562 222 hctx->driver_data = nvmeq;
42483228 223 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 224 return 0;
e85248e5
MW
225}
226
4af0e21c
KB
227static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
228{
229 struct nvme_queue *nvmeq = hctx->driver_data;
230
231 nvmeq->tags = NULL;
232}
233
a4aea562
MB
234static int nvme_admin_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
22404274 237{
a4aea562 238 struct nvme_dev *dev = data;
f4800d6d 239 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
240 struct nvme_queue *nvmeq = dev->queues[0];
241
242 BUG_ON(!nvmeq);
f4800d6d 243 iod->nvmeq = nvmeq;
a4aea562 244 return 0;
22404274
KB
245}
246
a4aea562
MB
247static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
248 unsigned int hctx_idx)
b60503ba 249{
a4aea562 250 struct nvme_dev *dev = data;
42483228 251 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 252
42483228
KB
253 if (!nvmeq->tags)
254 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 255
42483228 256 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
257 hctx->driver_data = nvmeq;
258 return 0;
b60503ba
MW
259}
260
a4aea562
MB
261static int nvme_init_request(void *data, struct request *req,
262 unsigned int hctx_idx, unsigned int rq_idx,
263 unsigned int numa_node)
b60503ba 264{
a4aea562 265 struct nvme_dev *dev = data;
f4800d6d 266 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
267 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
268
269 BUG_ON(!nvmeq);
f4800d6d 270 iod->nvmeq = nvmeq;
a4aea562
MB
271 return 0;
272}
273
646017a6
KB
274static void nvme_queue_scan(struct nvme_dev *dev)
275{
276 /*
277 * Do not queue new scan work when a controller is reset during
278 * removal.
279 */
280 if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
281 return;
282 queue_work(nvme_workq, &dev->scan_work);
283}
284
adf68f21
CH
285static void nvme_complete_async_event(struct nvme_dev *dev,
286 struct nvme_completion *cqe)
a4aea562 287{
adf68f21
CH
288 u16 status = le16_to_cpu(cqe->status) >> 1;
289 u32 result = le32_to_cpu(cqe->result);
a4aea562 290
9396dec9 291 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ) {
adf68f21 292 ++dev->ctrl.event_limit;
9396dec9
CH
293 queue_work(nvme_workq, &dev->async_work);
294 }
295
a5768aa8
KB
296 if (status != NVME_SC_SUCCESS)
297 return;
298
299 switch (result & 0xff07) {
300 case NVME_AER_NOTICE_NS_CHANGED:
1b3c47c1 301 dev_info(dev->ctrl.device, "rescanning\n");
646017a6 302 nvme_queue_scan(dev);
a5768aa8 303 default:
1b3c47c1 304 dev_warn(dev->ctrl.device, "async event result %08x\n", result);
a4aea562 305 }
b60503ba
MW
306}
307
308/**
adf68f21 309 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
310 * @nvmeq: The queue to use
311 * @cmd: The command to send
312 *
313 * Safe to use from interrupt context
314 */
e3f879bf
SB
315static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
316 struct nvme_command *cmd)
b60503ba 317{
a4aea562
MB
318 u16 tail = nvmeq->sq_tail;
319
8ffaadf7
JD
320 if (nvmeq->sq_cmds_io)
321 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
322 else
323 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
324
b60503ba
MW
325 if (++tail == nvmeq->q_depth)
326 tail = 0;
7547881d 327 writel(tail, nvmeq->q_db);
b60503ba 328 nvmeq->sq_tail = tail;
b60503ba
MW
329}
330
f4800d6d 331static __le64 **iod_list(struct request *req)
b60503ba 332{
f4800d6d
CH
333 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
334 return (__le64 **)(iod->sg + req->nr_phys_segments);
b60503ba
MW
335}
336
f4800d6d 337static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 338{
f4800d6d
CH
339 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
340 int nseg = rq->nr_phys_segments;
341 unsigned size;
ac3dd5bd 342
f4800d6d
CH
343 if (rq->cmd_flags & REQ_DISCARD)
344 size = sizeof(struct nvme_dsm_range);
345 else
346 size = blk_rq_bytes(rq);
ac3dd5bd 347
f4800d6d
CH
348 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
349 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
350 if (!iod->sg)
351 return BLK_MQ_RQ_QUEUE_BUSY;
352 } else {
353 iod->sg = iod->inline_sg;
ac3dd5bd
JA
354 }
355
f4800d6d
CH
356 iod->aborted = 0;
357 iod->npages = -1;
358 iod->nents = 0;
359 iod->length = size;
360 return 0;
ac3dd5bd
JA
361}
362
f4800d6d 363static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 364{
f4800d6d 365 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 366 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 367 int i;
f4800d6d 368 __le64 **list = iod_list(req);
eca18b23
MW
369 dma_addr_t prp_dma = iod->first_dma;
370
371 if (iod->npages == 0)
372 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
373 for (i = 0; i < iod->npages; i++) {
374 __le64 *prp_list = list[i];
375 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
376 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
377 prp_dma = next_prp_dma;
378 }
ac3dd5bd 379
f4800d6d
CH
380 if (iod->sg != iod->inline_sg)
381 kfree(iod->sg);
b4ff9c8d
KB
382}
383
52b68d7e 384#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
385static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
386{
387 if (be32_to_cpu(pi->ref_tag) == v)
388 pi->ref_tag = cpu_to_be32(p);
389}
390
391static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
392{
393 if (be32_to_cpu(pi->ref_tag) == p)
394 pi->ref_tag = cpu_to_be32(v);
395}
396
397/**
398 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
399 *
400 * The virtual start sector is the one that was originally submitted by the
401 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
402 * start sector may be different. Remap protection information to match the
403 * physical LBA on writes, and back to the original seed on reads.
404 *
405 * Type 0 and 3 do not have a ref tag, so no remapping required.
406 */
407static void nvme_dif_remap(struct request *req,
408 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
409{
410 struct nvme_ns *ns = req->rq_disk->private_data;
411 struct bio_integrity_payload *bip;
412 struct t10_pi_tuple *pi;
413 void *p, *pmap;
414 u32 i, nlb, ts, phys, virt;
415
416 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
417 return;
418
419 bip = bio_integrity(req->bio);
420 if (!bip)
421 return;
422
423 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
424
425 p = pmap;
426 virt = bip_get_seed(bip);
427 phys = nvme_block_nr(ns, blk_rq_pos(req));
428 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 429 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
430
431 for (i = 0; i < nlb; i++, virt++, phys++) {
432 pi = (struct t10_pi_tuple *)p;
433 dif_swap(phys, virt, pi);
434 p += ts;
435 }
436 kunmap_atomic(pmap);
437}
52b68d7e
KB
438#else /* CONFIG_BLK_DEV_INTEGRITY */
439static void nvme_dif_remap(struct request *req,
440 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
441{
442}
443static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
444{
445}
446static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
447{
448}
52b68d7e
KB
449#endif
450
f4800d6d 451static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 452 int total_len)
ff22b54f 453{
f4800d6d 454 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 455 struct dma_pool *pool;
eca18b23
MW
456 int length = total_len;
457 struct scatterlist *sg = iod->sg;
ff22b54f
MW
458 int dma_len = sg_dma_len(sg);
459 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 460 u32 page_size = dev->ctrl.page_size;
f137e0f1 461 int offset = dma_addr & (page_size - 1);
e025344c 462 __le64 *prp_list;
f4800d6d 463 __le64 **list = iod_list(req);
e025344c 464 dma_addr_t prp_dma;
eca18b23 465 int nprps, i;
ff22b54f 466
1d090624 467 length -= (page_size - offset);
ff22b54f 468 if (length <= 0)
69d2b571 469 return true;
ff22b54f 470
1d090624 471 dma_len -= (page_size - offset);
ff22b54f 472 if (dma_len) {
1d090624 473 dma_addr += (page_size - offset);
ff22b54f
MW
474 } else {
475 sg = sg_next(sg);
476 dma_addr = sg_dma_address(sg);
477 dma_len = sg_dma_len(sg);
478 }
479
1d090624 480 if (length <= page_size) {
edd10d33 481 iod->first_dma = dma_addr;
69d2b571 482 return true;
e025344c
SMM
483 }
484
1d090624 485 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
486 if (nprps <= (256 / 8)) {
487 pool = dev->prp_small_pool;
eca18b23 488 iod->npages = 0;
99802a7a
MW
489 } else {
490 pool = dev->prp_page_pool;
eca18b23 491 iod->npages = 1;
99802a7a
MW
492 }
493
69d2b571 494 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 495 if (!prp_list) {
edd10d33 496 iod->first_dma = dma_addr;
eca18b23 497 iod->npages = -1;
69d2b571 498 return false;
b77954cb 499 }
eca18b23
MW
500 list[0] = prp_list;
501 iod->first_dma = prp_dma;
e025344c
SMM
502 i = 0;
503 for (;;) {
1d090624 504 if (i == page_size >> 3) {
e025344c 505 __le64 *old_prp_list = prp_list;
69d2b571 506 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 507 if (!prp_list)
69d2b571 508 return false;
eca18b23 509 list[iod->npages++] = prp_list;
7523d834
MW
510 prp_list[0] = old_prp_list[i - 1];
511 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
512 i = 1;
e025344c
SMM
513 }
514 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
515 dma_len -= page_size;
516 dma_addr += page_size;
517 length -= page_size;
e025344c
SMM
518 if (length <= 0)
519 break;
520 if (dma_len > 0)
521 continue;
522 BUG_ON(dma_len < 0);
523 sg = sg_next(sg);
524 dma_addr = sg_dma_address(sg);
525 dma_len = sg_dma_len(sg);
ff22b54f
MW
526 }
527
69d2b571 528 return true;
ff22b54f
MW
529}
530
f4800d6d 531static int nvme_map_data(struct nvme_dev *dev, struct request *req,
ba1ca37e 532 struct nvme_command *cmnd)
d29ec824 533{
f4800d6d 534 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
535 struct request_queue *q = req->q;
536 enum dma_data_direction dma_dir = rq_data_dir(req) ?
537 DMA_TO_DEVICE : DMA_FROM_DEVICE;
538 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 539
ba1ca37e
CH
540 sg_init_table(iod->sg, req->nr_phys_segments);
541 iod->nents = blk_rq_map_sg(q, req, iod->sg);
542 if (!iod->nents)
543 goto out;
d29ec824 544
ba1ca37e
CH
545 ret = BLK_MQ_RQ_QUEUE_BUSY;
546 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
547 goto out;
d29ec824 548
f4800d6d 549 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
ba1ca37e 550 goto out_unmap;
0e5e4f0e 551
ba1ca37e
CH
552 ret = BLK_MQ_RQ_QUEUE_ERROR;
553 if (blk_integrity_rq(req)) {
554 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
555 goto out_unmap;
0e5e4f0e 556
bf684057
CH
557 sg_init_table(&iod->meta_sg, 1);
558 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 559 goto out_unmap;
0e5e4f0e 560
ba1ca37e
CH
561 if (rq_data_dir(req))
562 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 563
bf684057 564 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 565 goto out_unmap;
d29ec824 566 }
00df5cb4 567
ba1ca37e
CH
568 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
569 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
570 if (blk_integrity_rq(req))
bf684057 571 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 572 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 573
ba1ca37e
CH
574out_unmap:
575 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
576out:
577 return ret;
00df5cb4
MW
578}
579
f4800d6d 580static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 581{
f4800d6d 582 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
583 enum dma_data_direction dma_dir = rq_data_dir(req) ?
584 DMA_TO_DEVICE : DMA_FROM_DEVICE;
585
586 if (iod->nents) {
587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
588 if (blk_integrity_rq(req)) {
589 if (!rq_data_dir(req))
590 nvme_dif_remap(req, nvme_dif_complete);
bf684057 591 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 592 }
e19b127f 593 }
e1e5e564 594
f4800d6d 595 nvme_free_iod(dev, req);
d4f6c3ab 596}
b60503ba 597
a4aea562
MB
598/*
599 * We reuse the small pool to allocate the 16-byte range here as it is not
600 * worth having a special pool for these or additional cases to handle freeing
601 * the iod.
602 */
ba1ca37e 603static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
f4800d6d 604 struct request *req, struct nvme_command *cmnd)
0e5e4f0e 605{
f4800d6d 606 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e 607 struct nvme_dsm_range *range;
b60503ba 608
ba1ca37e
CH
609 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
610 &iod->first_dma);
611 if (!range)
612 return BLK_MQ_RQ_QUEUE_BUSY;
f4800d6d 613 iod_list(req)[0] = (__le64 *)range;
ba1ca37e 614 iod->npages = 0;
0e5e4f0e 615
0e5e4f0e 616 range->cattr = cpu_to_le32(0);
a4aea562
MB
617 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
618 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 619
ba1ca37e
CH
620 memset(cmnd, 0, sizeof(*cmnd));
621 cmnd->dsm.opcode = nvme_cmd_dsm;
622 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
623 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
624 cmnd->dsm.nr = 0;
625 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
626 return BLK_MQ_RQ_QUEUE_OK;
edd10d33
KB
627}
628
d29ec824
CH
629/*
630 * NOTE: ns is NULL when called on the admin queue.
631 */
a4aea562
MB
632static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
633 const struct blk_mq_queue_data *bd)
edd10d33 634{
a4aea562
MB
635 struct nvme_ns *ns = hctx->queue->queuedata;
636 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 637 struct nvme_dev *dev = nvmeq->dev;
a4aea562 638 struct request *req = bd->rq;
ba1ca37e
CH
639 struct nvme_command cmnd;
640 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 641
e1e5e564
KB
642 /*
643 * If formated with metadata, require the block layer provide a buffer
644 * unless this namespace is formated such that the metadata can be
645 * stripped/generated by the controller with PRACT=1.
646 */
d29ec824 647 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
648 if (!(ns->pi_type && ns->ms == 8) &&
649 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 650 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
651 return BLK_MQ_RQ_QUEUE_OK;
652 }
653 }
654
f4800d6d
CH
655 ret = nvme_init_iod(req, dev);
656 if (ret)
657 return ret;
a4aea562 658
a4aea562 659 if (req->cmd_flags & REQ_DISCARD) {
f4800d6d 660 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
ba1ca37e
CH
661 } else {
662 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
663 memcpy(&cmnd, req->cmd, sizeof(cmnd));
664 else if (req->cmd_flags & REQ_FLUSH)
665 nvme_setup_flush(ns, &cmnd);
666 else
667 nvme_setup_rw(ns, req, &cmnd);
a4aea562 668
ba1ca37e 669 if (req->nr_phys_segments)
f4800d6d 670 ret = nvme_map_data(dev, req, &cmnd);
edd10d33 671 }
a4aea562 672
ba1ca37e
CH
673 if (ret)
674 goto out;
a4aea562 675
ba1ca37e 676 cmnd.common.command_id = req->tag;
aae239e1 677 blk_mq_start_request(req);
a4aea562 678
ba1ca37e 679 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 680 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
681 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
682 ret = BLK_MQ_RQ_QUEUE_BUSY;
683 else
684 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20
KB
685 spin_unlock_irq(&nvmeq->q_lock);
686 goto out;
687 }
ba1ca37e 688 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
689 nvme_process_cq(nvmeq);
690 spin_unlock_irq(&nvmeq->q_lock);
691 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 692out:
f4800d6d 693 nvme_free_iod(dev, req);
ba1ca37e 694 return ret;
b60503ba 695}
e1e5e564 696
eee417b0
CH
697static void nvme_complete_rq(struct request *req)
698{
f4800d6d
CH
699 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
700 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 701 int error = 0;
e1e5e564 702
f4800d6d 703 nvme_unmap_data(dev, req);
e1e5e564 704
eee417b0
CH
705 if (unlikely(req->errors)) {
706 if (nvme_req_needs_retry(req, req->errors)) {
707 nvme_requeue_req(req);
708 return;
e1e5e564 709 }
1974b1ae 710
eee417b0
CH
711 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
712 error = req->errors;
713 else
714 error = nvme_error_status(req->errors);
715 }
a4aea562 716
f4800d6d 717 if (unlikely(iod->aborted)) {
1b3c47c1 718 dev_warn(dev->ctrl.device,
eee417b0
CH
719 "completing aborted command with status: %04x\n",
720 req->errors);
721 }
a4aea562 722
eee417b0 723 blk_mq_end_request(req, error);
b60503ba
MW
724}
725
a0fa9647 726static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 727{
82123460 728 u16 head, phase;
b60503ba 729
b60503ba 730 head = nvmeq->cq_head;
82123460 731 phase = nvmeq->cq_phase;
b60503ba
MW
732
733 for (;;) {
b60503ba 734 struct nvme_completion cqe = nvmeq->cqes[head];
adf68f21 735 u16 status = le16_to_cpu(cqe.status);
eee417b0 736 struct request *req;
adf68f21
CH
737
738 if ((status & 1) != phase)
b60503ba 739 break;
b60503ba
MW
740 if (++head == nvmeq->q_depth) {
741 head = 0;
82123460 742 phase = !phase;
b60503ba 743 }
adf68f21 744
a0fa9647
JA
745 if (tag && *tag == cqe.command_id)
746 *tag = -1;
adf68f21 747
aae239e1 748 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
1b3c47c1 749 dev_warn(nvmeq->dev->ctrl.device,
aae239e1
CH
750 "invalid id %d completed on queue %d\n",
751 cqe.command_id, le16_to_cpu(cqe.sq_id));
752 continue;
753 }
754
adf68f21
CH
755 /*
756 * AEN requests are special as they don't time out and can
757 * survive any kind of queue freeze and often don't respond to
758 * aborts. We don't even bother to allocate a struct request
759 * for them but rather special case them here.
760 */
761 if (unlikely(nvmeq->qid == 0 &&
762 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
763 nvme_complete_async_event(nvmeq->dev, &cqe);
764 continue;
765 }
766
eee417b0 767 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
1cb3cce5
CH
768 if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special)
769 memcpy(req->special, &cqe, sizeof(cqe));
eee417b0
CH
770 blk_mq_complete_request(req, status >> 1);
771
b60503ba
MW
772 }
773
774 /* If the controller ignores the cq head doorbell and continuously
775 * writes to the queue, it is theoretically possible to wrap around
776 * the queue twice and mistakenly return IRQ_NONE. Linux only
777 * requires that 0.1% of your interrupts are handled, so this isn't
778 * a big problem.
779 */
82123460 780 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 781 return;
b60503ba 782
604e8c8d
KB
783 if (likely(nvmeq->cq_vector >= 0))
784 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 785 nvmeq->cq_head = head;
82123460 786 nvmeq->cq_phase = phase;
b60503ba 787
e9539f47 788 nvmeq->cqe_seen = 1;
a0fa9647
JA
789}
790
791static void nvme_process_cq(struct nvme_queue *nvmeq)
792{
793 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
794}
795
796static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
797{
798 irqreturn_t result;
799 struct nvme_queue *nvmeq = data;
800 spin_lock(&nvmeq->q_lock);
e9539f47
MW
801 nvme_process_cq(nvmeq);
802 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
803 nvmeq->cqe_seen = 0;
58ffacb5
MW
804 spin_unlock(&nvmeq->q_lock);
805 return result;
806}
807
808static irqreturn_t nvme_irq_check(int irq, void *data)
809{
810 struct nvme_queue *nvmeq = data;
811 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
812 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
813 return IRQ_NONE;
814 return IRQ_WAKE_THREAD;
815}
816
a0fa9647
JA
817static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
818{
819 struct nvme_queue *nvmeq = hctx->driver_data;
820
821 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
822 nvmeq->cq_phase) {
823 spin_lock_irq(&nvmeq->q_lock);
824 __nvme_process_cq(nvmeq, &tag);
825 spin_unlock_irq(&nvmeq->q_lock);
826
827 if (tag == -1)
828 return 1;
829 }
830
831 return 0;
832}
833
9396dec9 834static void nvme_async_event_work(struct work_struct *work)
b60503ba 835{
9396dec9
CH
836 struct nvme_dev *dev = container_of(work, struct nvme_dev, async_work);
837 struct nvme_queue *nvmeq = dev->queues[0];
a4aea562 838 struct nvme_command c;
b60503ba 839
a4aea562
MB
840 memset(&c, 0, sizeof(c));
841 c.common.opcode = nvme_admin_async_event;
3c0cf138 842
9396dec9
CH
843 spin_lock_irq(&nvmeq->q_lock);
844 while (dev->ctrl.event_limit > 0) {
845 c.common.command_id = NVME_AQ_BLKMQ_DEPTH +
846 --dev->ctrl.event_limit;
847 __nvme_submit_cmd(nvmeq, &c);
848 }
849 spin_unlock_irq(&nvmeq->q_lock);
f705f837
CH
850}
851
b60503ba 852static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 853{
b60503ba
MW
854 struct nvme_command c;
855
856 memset(&c, 0, sizeof(c));
857 c.delete_queue.opcode = opcode;
858 c.delete_queue.qid = cpu_to_le16(id);
859
1c63dc66 860 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
861}
862
b60503ba
MW
863static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
864 struct nvme_queue *nvmeq)
865{
b60503ba
MW
866 struct nvme_command c;
867 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
868
d29ec824
CH
869 /*
870 * Note: we (ab)use the fact the the prp fields survive if no data
871 * is attached to the request.
872 */
b60503ba
MW
873 memset(&c, 0, sizeof(c));
874 c.create_cq.opcode = nvme_admin_create_cq;
875 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
876 c.create_cq.cqid = cpu_to_le16(qid);
877 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
878 c.create_cq.cq_flags = cpu_to_le16(flags);
879 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
880
1c63dc66 881 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
882}
883
884static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
885 struct nvme_queue *nvmeq)
886{
b60503ba
MW
887 struct nvme_command c;
888 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
889
d29ec824
CH
890 /*
891 * Note: we (ab)use the fact the the prp fields survive if no data
892 * is attached to the request.
893 */
b60503ba
MW
894 memset(&c, 0, sizeof(c));
895 c.create_sq.opcode = nvme_admin_create_sq;
896 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
897 c.create_sq.sqid = cpu_to_le16(qid);
898 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
899 c.create_sq.sq_flags = cpu_to_le16(flags);
900 c.create_sq.cqid = cpu_to_le16(qid);
901
1c63dc66 902 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
903}
904
905static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
906{
907 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
908}
909
910static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
911{
912 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
913}
914
e7a2a87d 915static void abort_endio(struct request *req, int error)
bc5fc7e4 916{
f4800d6d
CH
917 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
918 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d 919 u16 status = req->errors;
e44ac588 920
1cb3cce5 921 dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status);
e7a2a87d 922 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
e7a2a87d 923 blk_mq_free_request(req);
bc5fc7e4
MW
924}
925
31c7c7d2 926static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 927{
f4800d6d
CH
928 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
929 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 930 struct nvme_dev *dev = nvmeq->dev;
a4aea562 931 struct request *abort_req;
a4aea562 932 struct nvme_command cmd;
c30341dc 933
31c7c7d2 934 /*
fd634f41
CH
935 * Shutdown immediately if controller times out while starting. The
936 * reset work will see the pci device disabled when it gets the forced
937 * cancellation error. All outstanding requests are completed on
938 * shutdown, so we return BLK_EH_HANDLED.
939 */
940 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1b3c47c1 941 dev_warn(dev->ctrl.device,
fd634f41
CH
942 "I/O %d QID %d timeout, disable controller\n",
943 req->tag, nvmeq->qid);
a5cdb68c 944 nvme_dev_disable(dev, false);
fd634f41
CH
945 req->errors = NVME_SC_CANCELLED;
946 return BLK_EH_HANDLED;
c30341dc
KB
947 }
948
fd634f41
CH
949 /*
950 * Shutdown the controller immediately and schedule a reset if the
951 * command was already aborted once before and still hasn't been
952 * returned to the driver, or if this is the admin queue.
31c7c7d2 953 */
f4800d6d 954 if (!nvmeq->qid || iod->aborted) {
1b3c47c1 955 dev_warn(dev->ctrl.device,
e1569a16
KB
956 "I/O %d QID %d timeout, reset controller\n",
957 req->tag, nvmeq->qid);
a5cdb68c 958 nvme_dev_disable(dev, false);
e1569a16 959 queue_work(nvme_workq, &dev->reset_work);
c30341dc 960
e1569a16
KB
961 /*
962 * Mark the request as handled, since the inline shutdown
963 * forces all outstanding requests to complete.
964 */
965 req->errors = NVME_SC_CANCELLED;
966 return BLK_EH_HANDLED;
c30341dc 967 }
c30341dc 968
f4800d6d 969 iod->aborted = 1;
c30341dc 970
e7a2a87d 971 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 972 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 973 return BLK_EH_RESET_TIMER;
6bf25d16 974 }
a4aea562 975
c30341dc
KB
976 memset(&cmd, 0, sizeof(cmd));
977 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 978 cmd.abort.cid = req->tag;
c30341dc 979 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 980
1b3c47c1
SG
981 dev_warn(nvmeq->dev->ctrl.device,
982 "I/O %d QID %d timeout, aborting\n",
983 req->tag, nvmeq->qid);
e7a2a87d
CH
984
985 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
986 BLK_MQ_REQ_NOWAIT);
987 if (IS_ERR(abort_req)) {
988 atomic_inc(&dev->ctrl.abort_limit);
989 return BLK_EH_RESET_TIMER;
990 }
991
992 abort_req->timeout = ADMIN_TIMEOUT;
993 abort_req->end_io_data = NULL;
994 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 995
31c7c7d2
CH
996 /*
997 * The aborted req will be completed on receiving the abort req.
998 * We enable the timer again. If hit twice, it'll cause a device reset,
999 * as the device then is in a faulty state.
1000 */
1001 return BLK_EH_RESET_TIMER;
c30341dc
KB
1002}
1003
42483228 1004static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1005{
a4aea562 1006 struct nvme_queue *nvmeq = data;
aae239e1 1007 int status;
cef6a948
KB
1008
1009 if (!blk_mq_request_started(req))
1010 return;
a09115b2 1011
237045fc 1012 dev_dbg_ratelimited(nvmeq->dev->ctrl.device,
aae239e1 1013 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
a4aea562 1014
1d49c38c 1015 status = NVME_SC_ABORT_REQ;
cef6a948 1016 if (blk_queue_dying(req->q))
aae239e1
CH
1017 status |= NVME_SC_DNR;
1018 blk_mq_complete_request(req, status);
a4aea562 1019}
22404274 1020
a4aea562
MB
1021static void nvme_free_queue(struct nvme_queue *nvmeq)
1022{
9e866774
MW
1023 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1024 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1025 if (nvmeq->sq_cmds)
1026 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1027 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1028 kfree(nvmeq);
1029}
1030
a1a5ef99 1031static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1032{
1033 int i;
1034
a1a5ef99 1035 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1036 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1037 dev->queue_count--;
a4aea562 1038 dev->queues[i] = NULL;
f435c282 1039 nvme_free_queue(nvmeq);
121c7ad4 1040 }
22404274
KB
1041}
1042
4d115420
KB
1043/**
1044 * nvme_suspend_queue - put queue into suspended state
1045 * @nvmeq - queue to suspend
4d115420
KB
1046 */
1047static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1048{
2b25d981 1049 int vector;
b60503ba 1050
a09115b2 1051 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1052 if (nvmeq->cq_vector == -1) {
1053 spin_unlock_irq(&nvmeq->q_lock);
1054 return 1;
1055 }
1056 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1057 nvmeq->dev->online_queues--;
2b25d981 1058 nvmeq->cq_vector = -1;
a09115b2
MW
1059 spin_unlock_irq(&nvmeq->q_lock);
1060
1c63dc66 1061 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1062 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1063
aba2080f
MW
1064 irq_set_affinity_hint(vector, NULL);
1065 free_irq(vector, nvmeq);
b60503ba 1066
4d115420
KB
1067 return 0;
1068}
b60503ba 1069
4d115420
KB
1070static void nvme_clear_queue(struct nvme_queue *nvmeq)
1071{
22404274 1072 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1073 if (nvmeq->tags && *nvmeq->tags)
1074 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1075 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1076}
1077
a5cdb68c 1078static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1079{
a5cdb68c 1080 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1081
1082 if (!nvmeq)
1083 return;
1084 if (nvme_suspend_queue(nvmeq))
1085 return;
1086
a5cdb68c
KB
1087 if (shutdown)
1088 nvme_shutdown_ctrl(&dev->ctrl);
1089 else
1090 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1091 dev->bar + NVME_REG_CAP));
07836e65
KB
1092
1093 spin_lock_irq(&nvmeq->q_lock);
1094 nvme_process_cq(nvmeq);
1095 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1096}
1097
8ffaadf7
JD
1098static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1099 int entry_size)
1100{
1101 int q_depth = dev->q_depth;
5fd4ce1b
CH
1102 unsigned q_size_aligned = roundup(q_depth * entry_size,
1103 dev->ctrl.page_size);
8ffaadf7
JD
1104
1105 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1106 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1107 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1108 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1109
1110 /*
1111 * Ensure the reduced q_depth is above some threshold where it
1112 * would be better to map queues in system memory with the
1113 * original depth
1114 */
1115 if (q_depth < 64)
1116 return -ENOMEM;
1117 }
1118
1119 return q_depth;
1120}
1121
1122static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1123 int qid, int depth)
1124{
1125 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1126 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1127 dev->ctrl.page_size);
8ffaadf7
JD
1128 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1129 nvmeq->sq_cmds_io = dev->cmb + offset;
1130 } else {
1131 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1132 &nvmeq->sq_dma_addr, GFP_KERNEL);
1133 if (!nvmeq->sq_cmds)
1134 return -ENOMEM;
1135 }
1136
1137 return 0;
1138}
1139
b60503ba 1140static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1141 int depth)
b60503ba 1142{
a4aea562 1143 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1144 if (!nvmeq)
1145 return NULL;
1146
e75ec752 1147 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1148 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1149 if (!nvmeq->cqes)
1150 goto free_nvmeq;
b60503ba 1151
8ffaadf7 1152 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1153 goto free_cqdma;
1154
e75ec752 1155 nvmeq->q_dmadev = dev->dev;
091b6092 1156 nvmeq->dev = dev;
3193f07b 1157 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1158 dev->ctrl.instance, qid);
b60503ba
MW
1159 spin_lock_init(&nvmeq->q_lock);
1160 nvmeq->cq_head = 0;
82123460 1161 nvmeq->cq_phase = 1;
b80d5ccc 1162 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1163 nvmeq->q_depth = depth;
c30341dc 1164 nvmeq->qid = qid;
758dd7fd 1165 nvmeq->cq_vector = -1;
a4aea562 1166 dev->queues[qid] = nvmeq;
36a7e993
JD
1167 dev->queue_count++;
1168
b60503ba
MW
1169 return nvmeq;
1170
1171 free_cqdma:
e75ec752 1172 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1173 nvmeq->cq_dma_addr);
1174 free_nvmeq:
1175 kfree(nvmeq);
1176 return NULL;
1177}
1178
3001082c
MW
1179static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1180 const char *name)
1181{
58ffacb5
MW
1182 if (use_threaded_interrupts)
1183 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1184 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1185 name, nvmeq);
3001082c 1186 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1187 IRQF_SHARED, name, nvmeq);
3001082c
MW
1188}
1189
22404274 1190static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1191{
22404274 1192 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1193
7be50e93 1194 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1195 nvmeq->sq_tail = 0;
1196 nvmeq->cq_head = 0;
1197 nvmeq->cq_phase = 1;
b80d5ccc 1198 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1199 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1200 dev->online_queues++;
7be50e93 1201 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1202}
1203
1204static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1205{
1206 struct nvme_dev *dev = nvmeq->dev;
1207 int result;
3f85d50b 1208
2b25d981 1209 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1210 result = adapter_alloc_cq(dev, qid, nvmeq);
1211 if (result < 0)
22404274 1212 return result;
b60503ba
MW
1213
1214 result = adapter_alloc_sq(dev, qid, nvmeq);
1215 if (result < 0)
1216 goto release_cq;
1217
3193f07b 1218 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1219 if (result < 0)
1220 goto release_sq;
1221
22404274 1222 nvme_init_queue(nvmeq, qid);
22404274 1223 return result;
b60503ba
MW
1224
1225 release_sq:
1226 adapter_delete_sq(dev, qid);
1227 release_cq:
1228 adapter_delete_cq(dev, qid);
22404274 1229 return result;
b60503ba
MW
1230}
1231
a4aea562 1232static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1233 .queue_rq = nvme_queue_rq,
eee417b0 1234 .complete = nvme_complete_rq,
a4aea562
MB
1235 .map_queue = blk_mq_map_queue,
1236 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1237 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1238 .init_request = nvme_admin_init_request,
1239 .timeout = nvme_timeout,
1240};
1241
1242static struct blk_mq_ops nvme_mq_ops = {
1243 .queue_rq = nvme_queue_rq,
eee417b0 1244 .complete = nvme_complete_rq,
a4aea562
MB
1245 .map_queue = blk_mq_map_queue,
1246 .init_hctx = nvme_init_hctx,
1247 .init_request = nvme_init_request,
1248 .timeout = nvme_timeout,
a0fa9647 1249 .poll = nvme_poll,
a4aea562
MB
1250};
1251
ea191d2f
KB
1252static void nvme_dev_remove_admin(struct nvme_dev *dev)
1253{
1c63dc66 1254 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1255 /*
1256 * If the controller was reset during removal, it's possible
1257 * user requests may be waiting on a stopped queue. Start the
1258 * queue to flush these to completion.
1259 */
1260 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1261 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1262 blk_mq_free_tag_set(&dev->admin_tagset);
1263 }
1264}
1265
a4aea562
MB
1266static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1267{
1c63dc66 1268 if (!dev->ctrl.admin_q) {
a4aea562
MB
1269 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1270 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1271
1272 /*
1273 * Subtract one to leave an empty queue entry for 'Full Queue'
1274 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1275 */
1276 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1277 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1278 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1279 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1280 dev->admin_tagset.driver_data = dev;
1281
1282 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1283 return -ENOMEM;
1284
1c63dc66
CH
1285 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1286 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1287 blk_mq_free_tag_set(&dev->admin_tagset);
1288 return -ENOMEM;
1289 }
1c63dc66 1290 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1291 nvme_dev_remove_admin(dev);
1c63dc66 1292 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1293 return -ENODEV;
1294 }
0fb59cbc 1295 } else
25646264 1296 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1297
1298 return 0;
1299}
1300
8d85fce7 1301static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1302{
ba47e386 1303 int result;
b60503ba 1304 u32 aqa;
7a67cbea 1305 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1306 struct nvme_queue *nvmeq;
1307
7a67cbea 1308 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1309 NVME_CAP_NSSRC(cap) : 0;
1310
7a67cbea
CH
1311 if (dev->subsystem &&
1312 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1313 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1314
5fd4ce1b 1315 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1316 if (result < 0)
1317 return result;
b60503ba 1318
a4aea562 1319 nvmeq = dev->queues[0];
cd638946 1320 if (!nvmeq) {
2b25d981 1321 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1322 if (!nvmeq)
1323 return -ENOMEM;
cd638946 1324 }
b60503ba
MW
1325
1326 aqa = nvmeq->q_depth - 1;
1327 aqa |= aqa << 16;
1328
7a67cbea
CH
1329 writel(aqa, dev->bar + NVME_REG_AQA);
1330 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1331 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1332
5fd4ce1b 1333 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1334 if (result)
a4aea562
MB
1335 goto free_nvmeq;
1336
2b25d981 1337 nvmeq->cq_vector = 0;
3193f07b 1338 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1339 if (result) {
1340 nvmeq->cq_vector = -1;
0fb59cbc 1341 goto free_nvmeq;
758dd7fd 1342 }
025c557a 1343
b60503ba 1344 return result;
a4aea562 1345
a4aea562
MB
1346 free_nvmeq:
1347 nvme_free_queues(dev, 0);
1348 return result;
b60503ba
MW
1349}
1350
2d55cd5f 1351static void nvme_watchdog_timer(unsigned long data)
1fa6aead 1352{
2d55cd5f
CH
1353 struct nvme_dev *dev = (struct nvme_dev *)data;
1354 u32 csts = readl(dev->bar + NVME_REG_CSTS);
1fa6aead 1355
2d55cd5f
CH
1356 /*
1357 * Skip controllers currently under reset.
1358 */
1359 if (!work_pending(&dev->reset_work) && !work_busy(&dev->reset_work) &&
1360 ((csts & NVME_CSTS_CFS) ||
1361 (dev->subsystem && (csts & NVME_CSTS_NSSRO)))) {
1362 if (queue_work(nvme_workq, &dev->reset_work)) {
1363 dev_warn(dev->dev,
1364 "Failed status: 0x%x, reset controller.\n",
1365 csts);
1fa6aead 1366 }
2d55cd5f 1367 return;
1fa6aead 1368 }
2d55cd5f
CH
1369
1370 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
1fa6aead
MW
1371}
1372
749941f2 1373static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1374{
949928c1 1375 unsigned i, max;
749941f2 1376 int ret = 0;
42f61420 1377
749941f2
CH
1378 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1379 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1380 ret = -ENOMEM;
42f61420 1381 break;
749941f2
CH
1382 }
1383 }
42f61420 1384
949928c1
KB
1385 max = min(dev->max_qid, dev->queue_count - 1);
1386 for (i = dev->online_queues; i <= max; i++) {
749941f2
CH
1387 ret = nvme_create_queue(dev->queues[i], i);
1388 if (ret) {
2659e57b 1389 nvme_free_queues(dev, i);
42f61420 1390 break;
2659e57b 1391 }
27e8166c 1392 }
749941f2
CH
1393
1394 /*
1395 * Ignore failing Create SQ/CQ commands, we can continue with less
1396 * than the desired aount of queues, and even a controller without
1397 * I/O queues an still be used to issue admin commands. This might
1398 * be useful to upgrade a buggy firmware for example.
1399 */
1400 return ret >= 0 ? 0 : ret;
b60503ba
MW
1401}
1402
8ffaadf7
JD
1403static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1404{
1405 u64 szu, size, offset;
1406 u32 cmbloc;
1407 resource_size_t bar_size;
1408 struct pci_dev *pdev = to_pci_dev(dev->dev);
1409 void __iomem *cmb;
1410 dma_addr_t dma_addr;
1411
1412 if (!use_cmb_sqes)
1413 return NULL;
1414
7a67cbea 1415 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1416 if (!(NVME_CMB_SZ(dev->cmbsz)))
1417 return NULL;
1418
7a67cbea 1419 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1420
1421 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1422 size = szu * NVME_CMB_SZ(dev->cmbsz);
1423 offset = szu * NVME_CMB_OFST(cmbloc);
1424 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1425
1426 if (offset > bar_size)
1427 return NULL;
1428
1429 /*
1430 * Controllers may support a CMB size larger than their BAR,
1431 * for example, due to being behind a bridge. Reduce the CMB to
1432 * the reported size of the BAR
1433 */
1434 if (size > bar_size - offset)
1435 size = bar_size - offset;
1436
1437 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1438 cmb = ioremap_wc(dma_addr, size);
1439 if (!cmb)
1440 return NULL;
1441
1442 dev->cmb_dma_addr = dma_addr;
1443 dev->cmb_size = size;
1444 return cmb;
1445}
1446
1447static inline void nvme_release_cmb(struct nvme_dev *dev)
1448{
1449 if (dev->cmb) {
1450 iounmap(dev->cmb);
1451 dev->cmb = NULL;
1452 }
1453}
1454
9d713c2b
KB
1455static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1456{
b80d5ccc 1457 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1458}
1459
8d85fce7 1460static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1461{
a4aea562 1462 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1463 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1464 int result, i, vecs, nr_io_queues, size;
b60503ba 1465
42f61420 1466 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1467 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1468 if (result < 0)
1b23484b 1469 return result;
9a0be7ab
CH
1470
1471 /*
1472 * Degraded controllers might return an error when setting the queue
1473 * count. We still want to be able to bring them online and offer
1474 * access to the admin queue, as that might be only way to fix them up.
1475 */
1476 if (result > 0) {
1b3c47c1
SG
1477 dev_err(dev->ctrl.device,
1478 "Could not set queue count (%d)\n", result);
9a0be7ab
CH
1479 nr_io_queues = 0;
1480 result = 0;
1481 }
b60503ba 1482
8ffaadf7
JD
1483 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1484 result = nvme_cmb_qdepth(dev, nr_io_queues,
1485 sizeof(struct nvme_command));
1486 if (result > 0)
1487 dev->q_depth = result;
1488 else
1489 nvme_release_cmb(dev);
1490 }
1491
9d713c2b
KB
1492 size = db_bar_size(dev, nr_io_queues);
1493 if (size > 8192) {
f1938f6e 1494 iounmap(dev->bar);
9d713c2b
KB
1495 do {
1496 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1497 if (dev->bar)
1498 break;
1499 if (!--nr_io_queues)
1500 return -ENOMEM;
1501 size = db_bar_size(dev, nr_io_queues);
1502 } while (1);
7a67cbea 1503 dev->dbs = dev->bar + 4096;
5a92e700 1504 adminq->q_db = dev->dbs;
f1938f6e
MW
1505 }
1506
9d713c2b 1507 /* Deregister the admin queue's interrupt */
3193f07b 1508 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1509
e32efbfc
JA
1510 /*
1511 * If we enable msix early due to not intx, disable it again before
1512 * setting up the full range we need.
1513 */
1514 if (!pdev->irq)
1515 pci_disable_msix(pdev);
1516
be577fab 1517 for (i = 0; i < nr_io_queues; i++)
1b23484b 1518 dev->entry[i].entry = i;
be577fab
AG
1519 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1520 if (vecs < 0) {
1521 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1522 if (vecs < 0) {
1523 vecs = 1;
1524 } else {
1525 for (i = 0; i < vecs; i++)
1526 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1527 }
1528 }
1529
063a8096
MW
1530 /*
1531 * Should investigate if there's a performance win from allocating
1532 * more queues than interrupt vectors; it might allow the submission
1533 * path to scale better, even if the receive path is limited by the
1534 * number of interrupts.
1535 */
1536 nr_io_queues = vecs;
42f61420 1537 dev->max_qid = nr_io_queues;
063a8096 1538
3193f07b 1539 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1540 if (result) {
1541 adminq->cq_vector = -1;
22404274 1542 goto free_queues;
758dd7fd 1543 }
749941f2 1544 return nvme_create_io_queues(dev);
b60503ba 1545
22404274 1546 free_queues:
a1a5ef99 1547 nvme_free_queues(dev, 1);
22404274 1548 return result;
b60503ba
MW
1549}
1550
bda4e0fb 1551static void nvme_set_irq_hints(struct nvme_dev *dev)
a5768aa8 1552{
bda4e0fb
KB
1553 struct nvme_queue *nvmeq;
1554 int i;
a5768aa8 1555
bda4e0fb
KB
1556 for (i = 0; i < dev->online_queues; i++) {
1557 nvmeq = dev->queues[i];
a5768aa8 1558
bda4e0fb
KB
1559 if (!nvmeq->tags || !(*nvmeq->tags))
1560 continue;
a5768aa8 1561
bda4e0fb
KB
1562 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1563 blk_mq_tags_cpumask(*nvmeq->tags));
a5768aa8 1564 }
a5768aa8
KB
1565}
1566
a5768aa8 1567static void nvme_dev_scan(struct work_struct *work)
a5768aa8 1568{
a5768aa8 1569 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1570
1571 if (!dev->tagset.tags)
1572 return;
5bae7f73 1573 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1574 nvme_set_irq_hints(dev);
a5768aa8
KB
1575}
1576
db3cbfff 1577static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1578{
db3cbfff 1579 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1580
db3cbfff
KB
1581 blk_mq_free_request(req);
1582 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1583}
1584
db3cbfff 1585static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1586{
db3cbfff 1587 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1588
db3cbfff
KB
1589 if (!error) {
1590 unsigned long flags;
1591
1592 spin_lock_irqsave(&nvmeq->q_lock, flags);
1593 nvme_process_cq(nvmeq);
1594 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1595 }
db3cbfff
KB
1596
1597 nvme_del_queue_end(req, error);
a5768aa8
KB
1598}
1599
db3cbfff 1600static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1601{
db3cbfff
KB
1602 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1603 struct request *req;
1604 struct nvme_command cmd;
bda4e0fb 1605
db3cbfff
KB
1606 memset(&cmd, 0, sizeof(cmd));
1607 cmd.delete_queue.opcode = opcode;
1608 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1609
db3cbfff
KB
1610 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1611 if (IS_ERR(req))
1612 return PTR_ERR(req);
bda4e0fb 1613
db3cbfff
KB
1614 req->timeout = ADMIN_TIMEOUT;
1615 req->end_io_data = nvmeq;
1616
1617 blk_execute_rq_nowait(q, NULL, req, false,
1618 opcode == nvme_admin_delete_cq ?
1619 nvme_del_cq_end : nvme_del_queue_end);
1620 return 0;
bda4e0fb
KB
1621}
1622
db3cbfff 1623static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 1624{
db3cbfff
KB
1625 int pass;
1626 unsigned long timeout;
1627 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1628
db3cbfff
KB
1629 for (pass = 0; pass < 2; pass++) {
1630 int sent = 0, i = dev->queue_count - 1;
1631
1632 reinit_completion(&dev->ioq_wait);
1633 retry:
1634 timeout = ADMIN_TIMEOUT;
1635 for (; i > 0; i--) {
1636 struct nvme_queue *nvmeq = dev->queues[i];
1637
1638 if (!pass)
1639 nvme_suspend_queue(nvmeq);
1640 if (nvme_delete_queue(nvmeq, opcode))
1641 break;
1642 ++sent;
1643 }
1644 while (sent--) {
1645 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1646 if (timeout == 0)
1647 return;
1648 if (i)
1649 goto retry;
1650 }
1651 opcode = nvme_admin_delete_cq;
1652 }
a5768aa8
KB
1653}
1654
422ef0c7
MW
1655/*
1656 * Return: error value if an error occurred setting up the queues or calling
1657 * Identify Device. 0 if these succeeded, even if adding some of the
1658 * namespaces failed. At the moment, these failures are silent. TBD which
1659 * failures should be reported.
1660 */
8d85fce7 1661static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1662{
5bae7f73 1663 if (!dev->ctrl.tagset) {
ffe7704d
KB
1664 dev->tagset.ops = &nvme_mq_ops;
1665 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1666 dev->tagset.timeout = NVME_IO_TIMEOUT;
1667 dev->tagset.numa_node = dev_to_node(dev->dev);
1668 dev->tagset.queue_depth =
a4aea562 1669 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1670 dev->tagset.cmd_size = nvme_cmd_size(dev);
1671 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1672 dev->tagset.driver_data = dev;
b60503ba 1673
ffe7704d
KB
1674 if (blk_mq_alloc_tag_set(&dev->tagset))
1675 return 0;
5bae7f73 1676 dev->ctrl.tagset = &dev->tagset;
949928c1
KB
1677 } else {
1678 blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1);
1679
1680 /* Free previously allocated queues that are no longer usable */
1681 nvme_free_queues(dev, dev->online_queues);
ffe7704d 1682 }
949928c1 1683
646017a6 1684 nvme_queue_scan(dev);
e1e5e564 1685 return 0;
b60503ba
MW
1686}
1687
b00a726a 1688static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1689{
42f61420 1690 u64 cap;
b00a726a 1691 int result = -ENOMEM;
e75ec752 1692 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1693
1694 if (pci_enable_device_mem(pdev))
1695 return result;
1696
1697 dev->entry[0].vector = pdev->irq;
1698 pci_set_master(pdev);
0877cb0d 1699
e75ec752
CH
1700 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1701 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1702 goto disable;
0877cb0d 1703
7a67cbea 1704 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1705 result = -ENODEV;
b00a726a 1706 goto disable;
0e53d180 1707 }
e32efbfc
JA
1708
1709 /*
1710 * Some devices don't advertse INTx interrupts, pre-enable a single
1711 * MSIX vec for setup. We'll adjust this later.
1712 */
1713 if (!pdev->irq) {
1714 result = pci_enable_msix(pdev, dev->entry, 1);
1715 if (result < 0)
b00a726a 1716 goto disable;
e32efbfc
JA
1717 }
1718
7a67cbea
CH
1719 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1720
42f61420
KB
1721 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1722 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1723 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1724
1725 /*
1726 * Temporary fix for the Apple controller found in the MacBook8,1 and
1727 * some MacBook7,1 to avoid controller resets and data loss.
1728 */
1729 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1730 dev->q_depth = 2;
1731 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1732 "queue depth=%u to work around controller resets\n",
1733 dev->q_depth);
1734 }
1735
7a67cbea 1736 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1737 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1738
a0a3408e
KB
1739 pci_enable_pcie_error_reporting(pdev);
1740 pci_save_state(pdev);
0877cb0d
KB
1741 return 0;
1742
1743 disable:
0877cb0d
KB
1744 pci_disable_device(pdev);
1745 return result;
1746}
1747
1748static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1749{
1750 if (dev->bar)
1751 iounmap(dev->bar);
1752 pci_release_regions(to_pci_dev(dev->dev));
1753}
1754
1755static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1756{
e75ec752
CH
1757 struct pci_dev *pdev = to_pci_dev(dev->dev);
1758
1759 if (pdev->msi_enabled)
1760 pci_disable_msi(pdev);
1761 else if (pdev->msix_enabled)
1762 pci_disable_msix(pdev);
0877cb0d 1763
a0a3408e
KB
1764 if (pci_is_enabled(pdev)) {
1765 pci_disable_pcie_error_reporting(pdev);
e75ec752 1766 pci_disable_device(pdev);
4d115420 1767 }
4d115420
KB
1768}
1769
a5cdb68c 1770static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1771{
22404274 1772 int i;
7c1b2450 1773 u32 csts = -1;
22404274 1774
2d55cd5f 1775 del_timer_sync(&dev->watchdog_timer);
1fa6aead 1776
77bf25ea 1777 mutex_lock(&dev->shutdown_lock);
b00a726a 1778 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1779 nvme_stop_queues(&dev->ctrl);
7a67cbea 1780 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1781 }
7c1b2450 1782 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 1783 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 1784 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 1785 nvme_suspend_queue(nvmeq);
4d115420
KB
1786 }
1787 } else {
1788 nvme_disable_io_queues(dev);
a5cdb68c 1789 nvme_disable_admin_queue(dev, shutdown);
4d115420 1790 }
b00a726a 1791 nvme_pci_disable(dev);
07836e65
KB
1792
1793 for (i = dev->queue_count - 1; i >= 0; i--)
1794 nvme_clear_queue(dev->queues[i]);
77bf25ea 1795 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1796}
1797
091b6092
MW
1798static int nvme_setup_prp_pools(struct nvme_dev *dev)
1799{
e75ec752 1800 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1801 PAGE_SIZE, PAGE_SIZE, 0);
1802 if (!dev->prp_page_pool)
1803 return -ENOMEM;
1804
99802a7a 1805 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1806 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1807 256, 256, 0);
1808 if (!dev->prp_small_pool) {
1809 dma_pool_destroy(dev->prp_page_pool);
1810 return -ENOMEM;
1811 }
091b6092
MW
1812 return 0;
1813}
1814
1815static void nvme_release_prp_pools(struct nvme_dev *dev)
1816{
1817 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1818 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1819}
1820
1673f1f0 1821static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1822{
1673f1f0 1823 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1824
e75ec752 1825 put_device(dev->dev);
4af0e21c
KB
1826 if (dev->tagset.tags)
1827 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1828 if (dev->ctrl.admin_q)
1829 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
1830 kfree(dev->queues);
1831 kfree(dev->entry);
1832 kfree(dev);
1833}
1834
f58944e2
KB
1835static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1836{
237045fc 1837 dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status);
f58944e2
KB
1838
1839 kref_get(&dev->ctrl.kref);
69d9a99c 1840 nvme_dev_disable(dev, false);
f58944e2
KB
1841 if (!schedule_work(&dev->remove_work))
1842 nvme_put_ctrl(&dev->ctrl);
1843}
1844
fd634f41 1845static void nvme_reset_work(struct work_struct *work)
5e82e952 1846{
fd634f41 1847 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
f58944e2 1848 int result = -ENODEV;
5e82e952 1849
fd634f41
CH
1850 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1851 goto out;
5e82e952 1852
fd634f41
CH
1853 /*
1854 * If we're called to reset a live controller first shut it down before
1855 * moving on.
1856 */
b00a726a 1857 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1858 nvme_dev_disable(dev, false);
5e82e952 1859
fd634f41 1860 set_bit(NVME_CTRL_RESETTING, &dev->flags);
f0b50732 1861
b00a726a 1862 result = nvme_pci_enable(dev);
f0b50732 1863 if (result)
3cf519b5 1864 goto out;
f0b50732
KB
1865
1866 result = nvme_configure_admin_queue(dev);
1867 if (result)
f58944e2 1868 goto out;
f0b50732 1869
a4aea562 1870 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1871 result = nvme_alloc_admin_tags(dev);
1872 if (result)
f58944e2 1873 goto out;
b9afca3e 1874
ce4541f4
CH
1875 result = nvme_init_identify(&dev->ctrl);
1876 if (result)
f58944e2 1877 goto out;
ce4541f4 1878
f0b50732 1879 result = nvme_setup_io_queues(dev);
badc34d4 1880 if (result)
f58944e2 1881 goto out;
f0b50732 1882
adf68f21 1883 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
9396dec9 1884 queue_work(nvme_workq, &dev->async_work);
3cf519b5 1885
2d55cd5f 1886 mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ));
3cf519b5 1887
2659e57b
CH
1888 /*
1889 * Keep the controller around but remove all namespaces if we don't have
1890 * any working I/O queue.
1891 */
3cf519b5 1892 if (dev->online_queues < 2) {
1b3c47c1 1893 dev_warn(dev->ctrl.device, "IO queues not created\n");
5bae7f73 1894 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1895 } else {
25646264 1896 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1897 nvme_dev_add(dev);
1898 }
1899
fd634f41 1900 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
3cf519b5 1901 return;
f0b50732 1902
3cf519b5 1903 out:
f58944e2 1904 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1905}
1906
5c8809e6 1907static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1908{
5c8809e6 1909 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1910 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1911
69d9a99c 1912 nvme_kill_queues(&dev->ctrl);
9a6b9458 1913 if (pci_get_drvdata(pdev))
c81f4975 1914 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 1915 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1916}
1917
4cc06521 1918static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1919{
1c63dc66 1920 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1921 return -ENODEV;
ffe7704d 1922
846cc05f
CH
1923 if (!queue_work(nvme_workq, &dev->reset_work))
1924 return -EBUSY;
ffe7704d 1925
846cc05f 1926 flush_work(&dev->reset_work);
846cc05f 1927 return 0;
9a6b9458
KB
1928}
1929
1c63dc66 1930static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 1931{
1c63dc66 1932 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 1933 return 0;
9ca97374
TH
1934}
1935
5fd4ce1b 1936static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 1937{
5fd4ce1b
CH
1938 writel(val, to_nvme_dev(ctrl)->bar + off);
1939 return 0;
1940}
4cc06521 1941
7fd8930f
CH
1942static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
1943{
1944 *val = readq(to_nvme_dev(ctrl)->bar + off);
1945 return 0;
4cc06521
KB
1946}
1947
5bae7f73 1948static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
4cc06521 1949{
5bae7f73 1950 struct nvme_dev *dev = to_nvme_dev(ctrl);
4cc06521 1951
5bae7f73
CH
1952 return !dev->bar || dev->online_queues < 2;
1953}
4cc06521 1954
f3ca80fc
CH
1955static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
1956{
1957 return nvme_reset(to_nvme_dev(ctrl));
4cc06521 1958}
f3ca80fc 1959
1c63dc66 1960static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
e439bb12 1961 .module = THIS_MODULE,
1c63dc66 1962 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 1963 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 1964 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 1965 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 1966 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 1967 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66 1968};
4cc06521 1969
b00a726a
KB
1970static int nvme_dev_map(struct nvme_dev *dev)
1971{
1972 int bars;
1973 struct pci_dev *pdev = to_pci_dev(dev->dev);
1974
1975 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1976 if (!bars)
1977 return -ENODEV;
1978 if (pci_request_selected_regions(pdev, bars, "nvme"))
1979 return -ENODEV;
1980
1981 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1982 if (!dev->bar)
1983 goto release;
1984
1985 return 0;
1986 release:
1987 pci_release_regions(pdev);
1988 return -ENODEV;
1989}
1990
8d85fce7 1991static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 1992{
a4aea562 1993 int node, result = -ENOMEM;
b60503ba
MW
1994 struct nvme_dev *dev;
1995
a4aea562
MB
1996 node = dev_to_node(&pdev->dev);
1997 if (node == NUMA_NO_NODE)
1998 set_dev_node(&pdev->dev, 0);
1999
2000 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2001 if (!dev)
2002 return -ENOMEM;
a4aea562
MB
2003 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2004 GFP_KERNEL, node);
b60503ba
MW
2005 if (!dev->entry)
2006 goto free;
a4aea562
MB
2007 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2008 GFP_KERNEL, node);
b60503ba
MW
2009 if (!dev->queues)
2010 goto free;
2011
e75ec752 2012 dev->dev = get_device(&pdev->dev);
9a6b9458 2013 pci_set_drvdata(pdev, dev);
1c63dc66 2014
b00a726a
KB
2015 result = nvme_dev_map(dev);
2016 if (result)
2017 goto free;
2018
f3ca80fc 2019 INIT_WORK(&dev->scan_work, nvme_dev_scan);
f3ca80fc 2020 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2021 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
9396dec9 2022 INIT_WORK(&dev->async_work, nvme_async_event_work);
2d55cd5f
CH
2023 setup_timer(&dev->watchdog_timer, nvme_watchdog_timer,
2024 (unsigned long)dev);
77bf25ea 2025 mutex_init(&dev->shutdown_lock);
db3cbfff 2026 init_completion(&dev->ioq_wait);
b60503ba 2027
091b6092
MW
2028 result = nvme_setup_prp_pools(dev);
2029 if (result)
a96d4f5c 2030 goto put_pci;
4cc06521 2031
f3ca80fc
CH
2032 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2033 id->driver_data);
4cc06521 2034 if (result)
2e1d8448 2035 goto release_pools;
740216fc 2036
1b3c47c1
SG
2037 dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev));
2038
92f7a162 2039 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
2040 return 0;
2041
0877cb0d 2042 release_pools:
091b6092 2043 nvme_release_prp_pools(dev);
a96d4f5c 2044 put_pci:
e75ec752 2045 put_device(dev->dev);
b00a726a 2046 nvme_dev_unmap(dev);
b60503ba
MW
2047 free:
2048 kfree(dev->queues);
2049 kfree(dev->entry);
2050 kfree(dev);
2051 return result;
2052}
2053
f0d54a54
KB
2054static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2055{
a6739479 2056 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2057
a6739479 2058 if (prepare)
a5cdb68c 2059 nvme_dev_disable(dev, false);
a6739479 2060 else
92f7a162 2061 queue_work(nvme_workq, &dev->reset_work);
f0d54a54
KB
2062}
2063
09ece142
KB
2064static void nvme_shutdown(struct pci_dev *pdev)
2065{
2066 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2067 nvme_dev_disable(dev, true);
09ece142
KB
2068}
2069
f58944e2
KB
2070/*
2071 * The driver's remove may be called on a device in a partially initialized
2072 * state. This function must not have any dependencies on the device state in
2073 * order to proceed.
2074 */
8d85fce7 2075static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2076{
2077 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2078
2d55cd5f 2079 del_timer_sync(&dev->watchdog_timer);
9a6b9458 2080
646017a6 2081 set_bit(NVME_CTRL_REMOVING, &dev->flags);
9a6b9458 2082 pci_set_drvdata(pdev, NULL);
9396dec9 2083 flush_work(&dev->async_work);
a5768aa8 2084 flush_work(&dev->scan_work);
5bae7f73 2085 nvme_remove_namespaces(&dev->ctrl);
53029b04 2086 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2087 nvme_dev_disable(dev, true);
ff23a2a1 2088 flush_work(&dev->reset_work);
a4aea562 2089 nvme_dev_remove_admin(dev);
a1a5ef99 2090 nvme_free_queues(dev, 0);
8ffaadf7 2091 nvme_release_cmb(dev);
9a6b9458 2092 nvme_release_prp_pools(dev);
b00a726a 2093 nvme_dev_unmap(dev);
1673f1f0 2094 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2095}
2096
671a6018 2097#ifdef CONFIG_PM_SLEEP
cd638946
KB
2098static int nvme_suspend(struct device *dev)
2099{
2100 struct pci_dev *pdev = to_pci_dev(dev);
2101 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2102
a5cdb68c 2103 nvme_dev_disable(ndev, true);
cd638946
KB
2104 return 0;
2105}
2106
2107static int nvme_resume(struct device *dev)
2108{
2109 struct pci_dev *pdev = to_pci_dev(dev);
2110 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2111
92f7a162 2112 queue_work(nvme_workq, &ndev->reset_work);
9a6b9458 2113 return 0;
cd638946 2114}
671a6018 2115#endif
cd638946
KB
2116
2117static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2118
a0a3408e
KB
2119static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2120 pci_channel_state_t state)
2121{
2122 struct nvme_dev *dev = pci_get_drvdata(pdev);
2123
2124 /*
2125 * A frozen channel requires a reset. When detected, this method will
2126 * shutdown the controller to quiesce. The controller will be restarted
2127 * after the slot reset through driver's slot_reset callback.
2128 */
1b3c47c1 2129 dev_warn(dev->ctrl.device, "error detected: state:%d\n", state);
a0a3408e
KB
2130 switch (state) {
2131 case pci_channel_io_normal:
2132 return PCI_ERS_RESULT_CAN_RECOVER;
2133 case pci_channel_io_frozen:
a5cdb68c 2134 nvme_dev_disable(dev, false);
a0a3408e
KB
2135 return PCI_ERS_RESULT_NEED_RESET;
2136 case pci_channel_io_perm_failure:
2137 return PCI_ERS_RESULT_DISCONNECT;
2138 }
2139 return PCI_ERS_RESULT_NEED_RESET;
2140}
2141
2142static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2143{
2144 struct nvme_dev *dev = pci_get_drvdata(pdev);
2145
1b3c47c1 2146 dev_info(dev->ctrl.device, "restart after slot reset\n");
a0a3408e
KB
2147 pci_restore_state(pdev);
2148 queue_work(nvme_workq, &dev->reset_work);
2149 return PCI_ERS_RESULT_RECOVERED;
2150}
2151
2152static void nvme_error_resume(struct pci_dev *pdev)
2153{
2154 pci_cleanup_aer_uncorrect_error_status(pdev);
2155}
2156
1d352035 2157static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2158 .error_detected = nvme_error_detected,
b60503ba
MW
2159 .slot_reset = nvme_slot_reset,
2160 .resume = nvme_error_resume,
f0d54a54 2161 .reset_notify = nvme_reset_notify,
b60503ba
MW
2162};
2163
2164/* Move to pci_ids.h later */
2165#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2166
6eb0d698 2167static const struct pci_device_id nvme_id_table[] = {
106198ed 2168 { PCI_VDEVICE(INTEL, 0x0953),
08095e70
KB
2169 .driver_data = NVME_QUIRK_STRIPE_SIZE |
2170 NVME_QUIRK_DISCARD_ZEROES, },
540c801c
KB
2171 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2172 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
b60503ba 2173 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2174 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2175 { 0, }
2176};
2177MODULE_DEVICE_TABLE(pci, nvme_id_table);
2178
2179static struct pci_driver nvme_driver = {
2180 .name = "nvme",
2181 .id_table = nvme_id_table,
2182 .probe = nvme_probe,
8d85fce7 2183 .remove = nvme_remove,
09ece142 2184 .shutdown = nvme_shutdown,
cd638946
KB
2185 .driver = {
2186 .pm = &nvme_dev_pm_ops,
2187 },
b60503ba
MW
2188 .err_handler = &nvme_err_handler,
2189};
2190
2191static int __init nvme_init(void)
2192{
0ac13140 2193 int result;
1fa6aead 2194
92f7a162 2195 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2196 if (!nvme_workq)
b9afca3e 2197 return -ENOMEM;
9a6b9458 2198
f3db22fe
KB
2199 result = pci_register_driver(&nvme_driver);
2200 if (result)
576d55d6 2201 destroy_workqueue(nvme_workq);
b60503ba
MW
2202 return result;
2203}
2204
2205static void __exit nvme_exit(void)
2206{
2207 pci_unregister_driver(&nvme_driver);
9a6b9458 2208 destroy_workqueue(nvme_workq);
21bd78bc 2209 _nvme_check_size();
b60503ba
MW
2210}
2211
2212MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2213MODULE_LICENSE("GPL");
c78b4713 2214MODULE_VERSION("1.0");
b60503ba
MW
2215module_init(nvme_init);
2216module_exit(nvme_exit);