nvme: switch abort_limit to an atomic_t
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
8de05535 15#include <linux/bitops.h>
b60503ba 16#include <linux/blkdev.h>
a4aea562 17#include <linux/blk-mq.h>
42f61420 18#include <linux/cpu.h>
fd63e9ce 19#include <linux/delay.h>
b60503ba
MW
20#include <linux/errno.h>
21#include <linux/fs.h>
22#include <linux/genhd.h>
4cc09e2d 23#include <linux/hdreg.h>
5aff9382 24#include <linux/idr.h>
b60503ba
MW
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba
MW
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
2f8e2c87 42#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 43#include <asm/unaligned.h>
797a796a 44
f11bb3e2
CH
45#include "nvme.h"
46
9d43cf64 47#define NVME_Q_DEPTH 1024
d31af0a3 48#define NVME_AQ_DEPTH 256
b60503ba
MW
49#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 51
21d34711 52unsigned char admin_timeout = 60;
9d43cf64
KB
53module_param(admin_timeout, byte, 0644);
54MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 55
bd67608a
MW
56unsigned char nvme_io_timeout = 30;
57module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 58MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 59
5fd4ce1b 60unsigned char shutdown_timeout = 5;
2484f407
DM
61module_param(shutdown_timeout, byte, 0644);
62MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63
58ffacb5
MW
64static int use_threaded_interrupts;
65module_param(use_threaded_interrupts, int, 0);
66
8ffaadf7
JD
67static bool use_cmb_sqes = true;
68module_param(use_cmb_sqes, bool, 0644);
69MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70
1fa6aead
MW
71static LIST_HEAD(dev_list);
72static struct task_struct *nvme_thread;
9a6b9458 73static struct workqueue_struct *nvme_workq;
b9afca3e 74static wait_queue_head_t nvme_kthread_wait;
1fa6aead 75
1c63dc66
CH
76struct nvme_dev;
77struct nvme_queue;
d4f6c3ab 78struct nvme_iod;
1c63dc66 79
4cc06521 80static int nvme_reset(struct nvme_dev *dev);
a0fa9647 81static void nvme_process_cq(struct nvme_queue *nvmeq);
d4f6c3ab 82static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
5c8809e6 83static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
e1569a16 84static void nvme_dev_shutdown(struct nvme_dev *dev);
d4b4ff8e 85
4d115420
KB
86struct async_cmd_info {
87 struct kthread_work work;
88 struct kthread_worker *worker;
a4aea562 89 struct request *req;
4d115420
KB
90 u32 result;
91 int status;
92 void *ctx;
93};
1fa6aead 94
1c63dc66
CH
95/*
96 * Represents an NVM Express device. Each nvme_dev is a PCI function.
97 */
98struct nvme_dev {
99 struct list_head node;
100 struct nvme_queue **queues;
101 struct blk_mq_tag_set tagset;
102 struct blk_mq_tag_set admin_tagset;
103 u32 __iomem *dbs;
104 struct device *dev;
105 struct dma_pool *prp_page_pool;
106 struct dma_pool *prp_small_pool;
107 unsigned queue_count;
108 unsigned online_queues;
109 unsigned max_qid;
110 int q_depth;
111 u32 db_stride;
1c63dc66
CH
112 struct msix_entry *entry;
113 void __iomem *bar;
1c63dc66 114 struct work_struct reset_work;
1c63dc66 115 struct work_struct scan_work;
5c8809e6 116 struct work_struct remove_work;
77bf25ea 117 struct mutex shutdown_lock;
1c63dc66 118 bool subsystem;
1c63dc66
CH
119 void __iomem *cmb;
120 dma_addr_t cmb_dma_addr;
121 u64 cmb_size;
122 u32 cmbsz;
fd634f41
CH
123 unsigned long flags;
124#define NVME_CTRL_RESETTING 0
1c63dc66
CH
125
126 struct nvme_ctrl ctrl;
127};
128
129static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
130{
131 return container_of(ctrl, struct nvme_dev, ctrl);
132}
133
b60503ba
MW
134/*
135 * An NVM Express queue. Each device has at least two (one for admin
136 * commands and one for I/O commands).
137 */
138struct nvme_queue {
139 struct device *q_dmadev;
091b6092 140 struct nvme_dev *dev;
3193f07b 141 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
142 spinlock_t q_lock;
143 struct nvme_command *sq_cmds;
8ffaadf7 144 struct nvme_command __iomem *sq_cmds_io;
b60503ba 145 volatile struct nvme_completion *cqes;
42483228 146 struct blk_mq_tags **tags;
b60503ba
MW
147 dma_addr_t sq_dma_addr;
148 dma_addr_t cq_dma_addr;
b60503ba
MW
149 u32 __iomem *q_db;
150 u16 q_depth;
6222d172 151 s16 cq_vector;
b60503ba
MW
152 u16 sq_head;
153 u16 sq_tail;
154 u16 cq_head;
c30341dc 155 u16 qid;
e9539f47
MW
156 u8 cq_phase;
157 u8 cqe_seen;
4d115420 158 struct async_cmd_info cmdinfo;
b60503ba
MW
159};
160
71bd150c
CH
161/*
162 * The nvme_iod describes the data in an I/O, including the list of PRP
163 * entries. You can't see it in this data structure because C doesn't let
164 * me express that. Use nvme_alloc_iod to ensure there's enough space
165 * allocated to store the PRP list.
166 */
167struct nvme_iod {
168 unsigned long private; /* For the use of the submitter of the I/O */
169 int npages; /* In the PRP list. 0 means small pool in use */
170 int offset; /* Of PRP list */
171 int nents; /* Used in scatterlist */
172 int length; /* Of data, in bytes */
173 dma_addr_t first_dma;
174 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
175 struct scatterlist sg[0];
176};
177
b60503ba
MW
178/*
179 * Check we didin't inadvertently grow the command struct
180 */
181static inline void _nvme_check_size(void)
182{
183 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 188 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 189 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
190 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
191 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
192 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
193 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 194 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
195}
196
edd10d33 197typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
198 struct nvme_completion *);
199
e85248e5 200struct nvme_cmd_info {
c2f5b650
MW
201 nvme_completion_fn fn;
202 void *ctx;
c30341dc 203 int aborted;
a4aea562 204 struct nvme_queue *nvmeq;
ac3dd5bd 205 struct nvme_iod iod[0];
e85248e5
MW
206};
207
ac3dd5bd
JA
208/*
209 * Max size of iod being embedded in the request payload
210 */
211#define NVME_INT_PAGES 2
5fd4ce1b 212#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
fda631ff 213#define NVME_INT_MASK 0x01
ac3dd5bd
JA
214
215/*
216 * Will slightly overestimate the number of pages needed. This is OK
217 * as it only leads to a small amount of wasted memory for the lifetime of
218 * the I/O.
219 */
220static int nvme_npages(unsigned size, struct nvme_dev *dev)
221{
5fd4ce1b
CH
222 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
223 dev->ctrl.page_size);
ac3dd5bd
JA
224 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
225}
226
227static unsigned int nvme_cmd_size(struct nvme_dev *dev)
228{
229 unsigned int ret = sizeof(struct nvme_cmd_info);
230
231 ret += sizeof(struct nvme_iod);
232 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
233 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
234
235 return ret;
236}
237
a4aea562
MB
238static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
239 unsigned int hctx_idx)
e85248e5 240{
a4aea562
MB
241 struct nvme_dev *dev = data;
242 struct nvme_queue *nvmeq = dev->queues[0];
243
42483228
KB
244 WARN_ON(hctx_idx != 0);
245 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
246 WARN_ON(nvmeq->tags);
247
a4aea562 248 hctx->driver_data = nvmeq;
42483228 249 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 250 return 0;
e85248e5
MW
251}
252
4af0e21c
KB
253static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
254{
255 struct nvme_queue *nvmeq = hctx->driver_data;
256
257 nvmeq->tags = NULL;
258}
259
a4aea562
MB
260static int nvme_admin_init_request(void *data, struct request *req,
261 unsigned int hctx_idx, unsigned int rq_idx,
262 unsigned int numa_node)
22404274 263{
a4aea562
MB
264 struct nvme_dev *dev = data;
265 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
266 struct nvme_queue *nvmeq = dev->queues[0];
267
268 BUG_ON(!nvmeq);
269 cmd->nvmeq = nvmeq;
270 return 0;
22404274
KB
271}
272
a4aea562
MB
273static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
274 unsigned int hctx_idx)
b60503ba 275{
a4aea562 276 struct nvme_dev *dev = data;
42483228 277 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 278
42483228
KB
279 if (!nvmeq->tags)
280 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 281
42483228 282 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
283 hctx->driver_data = nvmeq;
284 return 0;
b60503ba
MW
285}
286
a4aea562
MB
287static int nvme_init_request(void *data, struct request *req,
288 unsigned int hctx_idx, unsigned int rq_idx,
289 unsigned int numa_node)
b60503ba 290{
a4aea562
MB
291 struct nvme_dev *dev = data;
292 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
293 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
294
295 BUG_ON(!nvmeq);
296 cmd->nvmeq = nvmeq;
297 return 0;
298}
299
300static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
301 nvme_completion_fn handler)
302{
303 cmd->fn = handler;
304 cmd->ctx = ctx;
305 cmd->aborted = 0;
c917dfe5 306 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
307}
308
ac3dd5bd
JA
309static void *iod_get_private(struct nvme_iod *iod)
310{
311 return (void *) (iod->private & ~0x1UL);
312}
313
314/*
315 * If bit 0 is set, the iod is embedded in the request payload.
316 */
317static bool iod_should_kfree(struct nvme_iod *iod)
318{
fda631ff 319 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
320}
321
c2f5b650
MW
322/* Special values must be less than 0x1000 */
323#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
324#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
325#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
326#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 327
edd10d33 328static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
329 struct nvme_completion *cqe)
330{
331 if (ctx == CMD_CTX_CANCELLED)
332 return;
c2f5b650 333 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 334 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
335 "completed id %d twice on queue %d\n",
336 cqe->command_id, le16_to_cpup(&cqe->sq_id));
337 return;
338 }
339 if (ctx == CMD_CTX_INVALID) {
edd10d33 340 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
341 "invalid id %d completed on queue %d\n",
342 cqe->command_id, le16_to_cpup(&cqe->sq_id));
343 return;
344 }
edd10d33 345 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
346}
347
a4aea562 348static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 349{
c2f5b650 350 void *ctx;
b60503ba 351
859361a2 352 if (fn)
a4aea562
MB
353 *fn = cmd->fn;
354 ctx = cmd->ctx;
355 cmd->fn = special_completion;
356 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 357 return ctx;
b60503ba
MW
358}
359
a4aea562
MB
360static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
361 struct nvme_completion *cqe)
3c0cf138 362{
a4aea562
MB
363 u32 result = le32_to_cpup(&cqe->result);
364 u16 status = le16_to_cpup(&cqe->status) >> 1;
365
366 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
1c63dc66 367 ++nvmeq->dev->ctrl.event_limit;
a5768aa8
KB
368 if (status != NVME_SC_SUCCESS)
369 return;
370
371 switch (result & 0xff07) {
372 case NVME_AER_NOTICE_NS_CHANGED:
373 dev_info(nvmeq->q_dmadev, "rescanning\n");
374 schedule_work(&nvmeq->dev->scan_work);
375 default:
376 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
377 }
b60503ba
MW
378}
379
a4aea562
MB
380static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
381 struct nvme_completion *cqe)
5a92e700 382{
a4aea562
MB
383 struct request *req = ctx;
384
385 u16 status = le16_to_cpup(&cqe->status) >> 1;
386 u32 result = le32_to_cpup(&cqe->result);
a51afb54 387
42483228 388 blk_mq_free_request(req);
a51afb54 389
a4aea562 390 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
6bf25d16 391 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
5a92e700
KB
392}
393
a4aea562
MB
394static void async_completion(struct nvme_queue *nvmeq, void *ctx,
395 struct nvme_completion *cqe)
b60503ba 396{
a4aea562
MB
397 struct async_cmd_info *cmdinfo = ctx;
398 cmdinfo->result = le32_to_cpup(&cqe->result);
399 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
400 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
42483228 401 blk_mq_free_request(cmdinfo->req);
b60503ba
MW
402}
403
a4aea562
MB
404static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
405 unsigned int tag)
b60503ba 406{
42483228 407 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
a51afb54 408
a4aea562 409 return blk_mq_rq_to_pdu(req);
4f5099af
KB
410}
411
a4aea562
MB
412/*
413 * Called with local interrupts disabled and the q_lock held. May not sleep.
414 */
415static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
416 nvme_completion_fn *fn)
4f5099af 417{
a4aea562
MB
418 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
419 void *ctx;
420 if (tag >= nvmeq->q_depth) {
421 *fn = special_completion;
422 return CMD_CTX_INVALID;
423 }
424 if (fn)
425 *fn = cmd->fn;
426 ctx = cmd->ctx;
427 cmd->fn = special_completion;
428 cmd->ctx = CMD_CTX_COMPLETED;
429 return ctx;
b60503ba
MW
430}
431
432/**
714a7a22 433 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
434 * @nvmeq: The queue to use
435 * @cmd: The command to send
436 *
437 * Safe to use from interrupt context
438 */
e3f879bf
SB
439static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
440 struct nvme_command *cmd)
b60503ba 441{
a4aea562
MB
442 u16 tail = nvmeq->sq_tail;
443
8ffaadf7
JD
444 if (nvmeq->sq_cmds_io)
445 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
446 else
447 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
448
b60503ba
MW
449 if (++tail == nvmeq->q_depth)
450 tail = 0;
7547881d 451 writel(tail, nvmeq->q_db);
b60503ba 452 nvmeq->sq_tail = tail;
b60503ba
MW
453}
454
e3f879bf 455static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
a4aea562
MB
456{
457 unsigned long flags;
a4aea562 458 spin_lock_irqsave(&nvmeq->q_lock, flags);
e3f879bf 459 __nvme_submit_cmd(nvmeq, cmd);
a4aea562 460 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a4aea562
MB
461}
462
eca18b23 463static __le64 **iod_list(struct nvme_iod *iod)
e025344c 464{
eca18b23 465 return ((void *)iod) + iod->offset;
e025344c
SMM
466}
467
ac3dd5bd
JA
468static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
469 unsigned nseg, unsigned long private)
eca18b23 470{
ac3dd5bd
JA
471 iod->private = private;
472 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
473 iod->npages = -1;
474 iod->length = nbytes;
475 iod->nents = 0;
eca18b23 476}
b60503ba 477
eca18b23 478static struct nvme_iod *
ac3dd5bd
JA
479__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
480 unsigned long priv, gfp_t gfp)
b60503ba 481{
eca18b23 482 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 483 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
484 sizeof(struct scatterlist) * nseg, gfp);
485
ac3dd5bd
JA
486 if (iod)
487 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
488
489 return iod;
b60503ba
MW
490}
491
ac3dd5bd
JA
492static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
493 gfp_t gfp)
494{
495 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
496 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
497 struct nvme_iod *iod;
498
499 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
500 size <= NVME_INT_BYTES(dev)) {
501 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
502
503 iod = cmd->iod;
ac3dd5bd 504 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 505 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
506 return iod;
507 }
508
509 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
510 (unsigned long) rq, gfp);
511}
512
d29ec824 513static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 514{
5fd4ce1b 515 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23
MW
516 int i;
517 __le64 **list = iod_list(iod);
518 dma_addr_t prp_dma = iod->first_dma;
519
520 if (iod->npages == 0)
521 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
522 for (i = 0; i < iod->npages; i++) {
523 __le64 *prp_list = list[i];
524 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
525 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
526 prp_dma = next_prp_dma;
527 }
ac3dd5bd
JA
528
529 if (iod_should_kfree(iod))
530 kfree(iod);
b60503ba
MW
531}
532
52b68d7e 533#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
534static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535{
536 if (be32_to_cpu(pi->ref_tag) == v)
537 pi->ref_tag = cpu_to_be32(p);
538}
539
540static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
541{
542 if (be32_to_cpu(pi->ref_tag) == p)
543 pi->ref_tag = cpu_to_be32(v);
544}
545
546/**
547 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
548 *
549 * The virtual start sector is the one that was originally submitted by the
550 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
551 * start sector may be different. Remap protection information to match the
552 * physical LBA on writes, and back to the original seed on reads.
553 *
554 * Type 0 and 3 do not have a ref tag, so no remapping required.
555 */
556static void nvme_dif_remap(struct request *req,
557 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
558{
559 struct nvme_ns *ns = req->rq_disk->private_data;
560 struct bio_integrity_payload *bip;
561 struct t10_pi_tuple *pi;
562 void *p, *pmap;
563 u32 i, nlb, ts, phys, virt;
564
565 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
566 return;
567
568 bip = bio_integrity(req->bio);
569 if (!bip)
570 return;
571
572 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
573
574 p = pmap;
575 virt = bip_get_seed(bip);
576 phys = nvme_block_nr(ns, blk_rq_pos(req));
577 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 578 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
579
580 for (i = 0; i < nlb; i++, virt++, phys++) {
581 pi = (struct t10_pi_tuple *)p;
582 dif_swap(phys, virt, pi);
583 p += ts;
584 }
585 kunmap_atomic(pmap);
586}
52b68d7e
KB
587#else /* CONFIG_BLK_DEV_INTEGRITY */
588static void nvme_dif_remap(struct request *req,
589 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
590{
591}
592static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
593{
594}
595static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
596{
597}
52b68d7e
KB
598#endif
599
a4aea562 600static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
601 struct nvme_completion *cqe)
602{
eca18b23 603 struct nvme_iod *iod = ctx;
ac3dd5bd 604 struct request *req = iod_get_private(iod);
a4aea562 605 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
b60503ba 606 u16 status = le16_to_cpup(&cqe->status) >> 1;
81c04b94 607 int error = 0;
b60503ba 608
edd10d33 609 if (unlikely(status)) {
a4aea562
MB
610 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
611 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
612 unsigned long flags;
613
d4f6c3ab
CH
614 nvme_unmap_data(nvmeq->dev, iod);
615
a4aea562 616 blk_mq_requeue_request(req);
c9d3bf88
KB
617 spin_lock_irqsave(req->q->queue_lock, flags);
618 if (!blk_queue_stopped(req->q))
619 blk_mq_kick_requeue_list(req->q);
620 spin_unlock_irqrestore(req->q->queue_lock, flags);
d4f6c3ab 621 return;
edd10d33 622 }
f4829a9b 623
d29ec824 624 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
17188bb4 625 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
297465c8 626 error = NVME_SC_CANCELLED;
81c04b94
CH
627 else
628 error = status;
d29ec824 629 } else {
81c04b94 630 error = nvme_error_status(status);
d29ec824 631 }
f4829a9b
CH
632 }
633
a0a931d6
KB
634 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
635 u32 result = le32_to_cpup(&cqe->result);
636 req->special = (void *)(uintptr_t)result;
637 }
a4aea562
MB
638
639 if (cmd_rq->aborted)
e75ec752 640 dev_warn(nvmeq->dev->dev,
a4aea562 641 "completing aborted command with status:%04x\n",
81c04b94 642 error);
a4aea562 643
d4f6c3ab
CH
644 nvme_unmap_data(nvmeq->dev, iod);
645 blk_mq_complete_request(req, error);
b60503ba
MW
646}
647
69d2b571
CH
648static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
649 int total_len)
ff22b54f 650{
99802a7a 651 struct dma_pool *pool;
eca18b23
MW
652 int length = total_len;
653 struct scatterlist *sg = iod->sg;
ff22b54f
MW
654 int dma_len = sg_dma_len(sg);
655 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 656 u32 page_size = dev->ctrl.page_size;
f137e0f1 657 int offset = dma_addr & (page_size - 1);
e025344c 658 __le64 *prp_list;
eca18b23 659 __le64 **list = iod_list(iod);
e025344c 660 dma_addr_t prp_dma;
eca18b23 661 int nprps, i;
ff22b54f 662
1d090624 663 length -= (page_size - offset);
ff22b54f 664 if (length <= 0)
69d2b571 665 return true;
ff22b54f 666
1d090624 667 dma_len -= (page_size - offset);
ff22b54f 668 if (dma_len) {
1d090624 669 dma_addr += (page_size - offset);
ff22b54f
MW
670 } else {
671 sg = sg_next(sg);
672 dma_addr = sg_dma_address(sg);
673 dma_len = sg_dma_len(sg);
674 }
675
1d090624 676 if (length <= page_size) {
edd10d33 677 iod->first_dma = dma_addr;
69d2b571 678 return true;
e025344c
SMM
679 }
680
1d090624 681 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
682 if (nprps <= (256 / 8)) {
683 pool = dev->prp_small_pool;
eca18b23 684 iod->npages = 0;
99802a7a
MW
685 } else {
686 pool = dev->prp_page_pool;
eca18b23 687 iod->npages = 1;
99802a7a
MW
688 }
689
69d2b571 690 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 691 if (!prp_list) {
edd10d33 692 iod->first_dma = dma_addr;
eca18b23 693 iod->npages = -1;
69d2b571 694 return false;
b77954cb 695 }
eca18b23
MW
696 list[0] = prp_list;
697 iod->first_dma = prp_dma;
e025344c
SMM
698 i = 0;
699 for (;;) {
1d090624 700 if (i == page_size >> 3) {
e025344c 701 __le64 *old_prp_list = prp_list;
69d2b571 702 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 703 if (!prp_list)
69d2b571 704 return false;
eca18b23 705 list[iod->npages++] = prp_list;
7523d834
MW
706 prp_list[0] = old_prp_list[i - 1];
707 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
708 i = 1;
e025344c
SMM
709 }
710 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
711 dma_len -= page_size;
712 dma_addr += page_size;
713 length -= page_size;
e025344c
SMM
714 if (length <= 0)
715 break;
716 if (dma_len > 0)
717 continue;
718 BUG_ON(dma_len < 0);
719 sg = sg_next(sg);
720 dma_addr = sg_dma_address(sg);
721 dma_len = sg_dma_len(sg);
ff22b54f
MW
722 }
723
69d2b571 724 return true;
ff22b54f
MW
725}
726
ba1ca37e
CH
727static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
728 struct nvme_command *cmnd)
d29ec824 729{
ba1ca37e
CH
730 struct request *req = iod_get_private(iod);
731 struct request_queue *q = req->q;
732 enum dma_data_direction dma_dir = rq_data_dir(req) ?
733 DMA_TO_DEVICE : DMA_FROM_DEVICE;
734 int ret = BLK_MQ_RQ_QUEUE_ERROR;
735
736 sg_init_table(iod->sg, req->nr_phys_segments);
737 iod->nents = blk_rq_map_sg(q, req, iod->sg);
738 if (!iod->nents)
739 goto out;
740
741 ret = BLK_MQ_RQ_QUEUE_BUSY;
742 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
743 goto out;
744
745 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
746 goto out_unmap;
747
748 ret = BLK_MQ_RQ_QUEUE_ERROR;
749 if (blk_integrity_rq(req)) {
750 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
751 goto out_unmap;
752
753 sg_init_table(iod->meta_sg, 1);
754 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
755 goto out_unmap;
d29ec824 756
ba1ca37e
CH
757 if (rq_data_dir(req))
758 nvme_dif_remap(req, nvme_dif_prep);
759
760 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
761 goto out_unmap;
d29ec824
CH
762 }
763
ba1ca37e
CH
764 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
765 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
766 if (blk_integrity_rq(req))
767 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
768 return BLK_MQ_RQ_QUEUE_OK;
769
770out_unmap:
771 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
772out:
773 return ret;
d29ec824
CH
774}
775
d4f6c3ab
CH
776static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
777{
778 struct request *req = iod_get_private(iod);
779 enum dma_data_direction dma_dir = rq_data_dir(req) ?
780 DMA_TO_DEVICE : DMA_FROM_DEVICE;
781
782 if (iod->nents) {
783 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
784 if (blk_integrity_rq(req)) {
785 if (!rq_data_dir(req))
786 nvme_dif_remap(req, nvme_dif_complete);
787 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
788 }
789 }
790
791 nvme_free_iod(dev, iod);
792}
793
a4aea562
MB
794/*
795 * We reuse the small pool to allocate the 16-byte range here as it is not
796 * worth having a special pool for these or additional cases to handle freeing
797 * the iod.
798 */
ba1ca37e
CH
799static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
800 struct nvme_iod *iod, struct nvme_command *cmnd)
0e5e4f0e 801{
ba1ca37e
CH
802 struct request *req = iod_get_private(iod);
803 struct nvme_dsm_range *range;
804
805 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
806 &iod->first_dma);
807 if (!range)
808 return BLK_MQ_RQ_QUEUE_BUSY;
809 iod_list(iod)[0] = (__le64 *)range;
810 iod->npages = 0;
0e5e4f0e 811
0e5e4f0e 812 range->cattr = cpu_to_le32(0);
a4aea562
MB
813 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
814 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 815
ba1ca37e
CH
816 memset(cmnd, 0, sizeof(*cmnd));
817 cmnd->dsm.opcode = nvme_cmd_dsm;
818 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
819 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
820 cmnd->dsm.nr = 0;
821 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
822 return BLK_MQ_RQ_QUEUE_OK;
0e5e4f0e
KB
823}
824
d29ec824
CH
825/*
826 * NOTE: ns is NULL when called on the admin queue.
827 */
a4aea562
MB
828static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
829 const struct blk_mq_queue_data *bd)
edd10d33 830{
a4aea562
MB
831 struct nvme_ns *ns = hctx->queue->queuedata;
832 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 833 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
834 struct request *req = bd->rq;
835 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 836 struct nvme_iod *iod;
ba1ca37e
CH
837 struct nvme_command cmnd;
838 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 839
e1e5e564
KB
840 /*
841 * If formated with metadata, require the block layer provide a buffer
842 * unless this namespace is formated such that the metadata can be
843 * stripped/generated by the controller with PRACT=1.
844 */
d29ec824 845 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
846 if (!(ns->pi_type && ns->ms == 8) &&
847 req->cmd_type != REQ_TYPE_DRV_PRIV) {
f4829a9b 848 blk_mq_complete_request(req, -EFAULT);
e1e5e564
KB
849 return BLK_MQ_RQ_QUEUE_OK;
850 }
851 }
852
d29ec824 853 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 854 if (!iod)
fe54303e 855 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 856
a4aea562 857 if (req->cmd_flags & REQ_DISCARD) {
ba1ca37e
CH
858 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
859 } else {
860 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
861 memcpy(&cmnd, req->cmd, sizeof(cmnd));
862 else if (req->cmd_flags & REQ_FLUSH)
863 nvme_setup_flush(ns, &cmnd);
864 else
865 nvme_setup_rw(ns, req, &cmnd);
a4aea562 866
ba1ca37e
CH
867 if (req->nr_phys_segments)
868 ret = nvme_map_data(dev, iod, &cmnd);
edd10d33 869 }
1974b1ae 870
ba1ca37e
CH
871 if (ret)
872 goto out;
873
874 cmnd.common.command_id = req->tag;
9af8785a 875 nvme_set_info(cmd, iod, req_completion);
a4aea562 876
ba1ca37e
CH
877 spin_lock_irq(&nvmeq->q_lock);
878 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
879 nvme_process_cq(nvmeq);
880 spin_unlock_irq(&nvmeq->q_lock);
881 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 882out:
d29ec824 883 nvme_free_iod(dev, iod);
ba1ca37e 884 return ret;
b60503ba
MW
885}
886
a0fa9647 887static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 888{
82123460 889 u16 head, phase;
b60503ba 890
b60503ba 891 head = nvmeq->cq_head;
82123460 892 phase = nvmeq->cq_phase;
b60503ba
MW
893
894 for (;;) {
c2f5b650
MW
895 void *ctx;
896 nvme_completion_fn fn;
b60503ba 897 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 898 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
899 break;
900 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
901 if (++head == nvmeq->q_depth) {
902 head = 0;
82123460 903 phase = !phase;
b60503ba 904 }
a0fa9647
JA
905 if (tag && *tag == cqe.command_id)
906 *tag = -1;
a4aea562 907 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 908 fn(nvmeq, ctx, &cqe);
b60503ba
MW
909 }
910
911 /* If the controller ignores the cq head doorbell and continuously
912 * writes to the queue, it is theoretically possible to wrap around
913 * the queue twice and mistakenly return IRQ_NONE. Linux only
914 * requires that 0.1% of your interrupts are handled, so this isn't
915 * a big problem.
916 */
82123460 917 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 918 return;
b60503ba 919
604e8c8d
KB
920 if (likely(nvmeq->cq_vector >= 0))
921 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 922 nvmeq->cq_head = head;
82123460 923 nvmeq->cq_phase = phase;
b60503ba 924
e9539f47 925 nvmeq->cqe_seen = 1;
a0fa9647
JA
926}
927
928static void nvme_process_cq(struct nvme_queue *nvmeq)
929{
930 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
931}
932
933static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
934{
935 irqreturn_t result;
936 struct nvme_queue *nvmeq = data;
937 spin_lock(&nvmeq->q_lock);
e9539f47
MW
938 nvme_process_cq(nvmeq);
939 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
940 nvmeq->cqe_seen = 0;
58ffacb5
MW
941 spin_unlock(&nvmeq->q_lock);
942 return result;
943}
944
945static irqreturn_t nvme_irq_check(int irq, void *data)
946{
947 struct nvme_queue *nvmeq = data;
948 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
949 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
950 return IRQ_NONE;
951 return IRQ_WAKE_THREAD;
952}
953
a0fa9647
JA
954static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
955{
956 struct nvme_queue *nvmeq = hctx->driver_data;
957
958 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
959 nvmeq->cq_phase) {
960 spin_lock_irq(&nvmeq->q_lock);
961 __nvme_process_cq(nvmeq, &tag);
962 spin_unlock_irq(&nvmeq->q_lock);
963
964 if (tag == -1)
965 return 1;
966 }
967
968 return 0;
969}
970
a4aea562
MB
971static int nvme_submit_async_admin_req(struct nvme_dev *dev)
972{
973 struct nvme_queue *nvmeq = dev->queues[0];
974 struct nvme_command c;
975 struct nvme_cmd_info *cmd_info;
976 struct request *req;
977
1c63dc66 978 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 979 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
9f173b33
DC
980 if (IS_ERR(req))
981 return PTR_ERR(req);
a4aea562 982
c917dfe5 983 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 984 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 985 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
986
987 memset(&c, 0, sizeof(c));
988 c.common.opcode = nvme_admin_async_event;
989 c.common.command_id = req->tag;
990
42483228 991 blk_mq_free_request(req);
e3f879bf
SB
992 __nvme_submit_cmd(nvmeq, &c);
993 return 0;
a4aea562
MB
994}
995
996static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
997 struct nvme_command *cmd,
998 struct async_cmd_info *cmdinfo, unsigned timeout)
999{
a4aea562
MB
1000 struct nvme_queue *nvmeq = dev->queues[0];
1001 struct request *req;
1002 struct nvme_cmd_info *cmd_rq;
4d115420 1003
1c63dc66 1004 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
9f173b33
DC
1005 if (IS_ERR(req))
1006 return PTR_ERR(req);
a4aea562
MB
1007
1008 req->timeout = timeout;
1009 cmd_rq = blk_mq_rq_to_pdu(req);
1010 cmdinfo->req = req;
1011 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1012 cmdinfo->status = -EINTR;
a4aea562
MB
1013
1014 cmd->common.command_id = req->tag;
1015
e3f879bf
SB
1016 nvme_submit_cmd(nvmeq, cmd);
1017 return 0;
4d115420
KB
1018}
1019
b60503ba
MW
1020static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1021{
b60503ba
MW
1022 struct nvme_command c;
1023
1024 memset(&c, 0, sizeof(c));
1025 c.delete_queue.opcode = opcode;
1026 c.delete_queue.qid = cpu_to_le16(id);
1027
1c63dc66 1028 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1029}
1030
1031static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1032 struct nvme_queue *nvmeq)
1033{
b60503ba
MW
1034 struct nvme_command c;
1035 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1036
d29ec824
CH
1037 /*
1038 * Note: we (ab)use the fact the the prp fields survive if no data
1039 * is attached to the request.
1040 */
b60503ba
MW
1041 memset(&c, 0, sizeof(c));
1042 c.create_cq.opcode = nvme_admin_create_cq;
1043 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1044 c.create_cq.cqid = cpu_to_le16(qid);
1045 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1046 c.create_cq.cq_flags = cpu_to_le16(flags);
1047 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1048
1c63dc66 1049 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1050}
1051
1052static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1053 struct nvme_queue *nvmeq)
1054{
b60503ba
MW
1055 struct nvme_command c;
1056 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1057
d29ec824
CH
1058 /*
1059 * Note: we (ab)use the fact the the prp fields survive if no data
1060 * is attached to the request.
1061 */
b60503ba
MW
1062 memset(&c, 0, sizeof(c));
1063 c.create_sq.opcode = nvme_admin_create_sq;
1064 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1065 c.create_sq.sqid = cpu_to_le16(qid);
1066 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1067 c.create_sq.sq_flags = cpu_to_le16(flags);
1068 c.create_sq.cqid = cpu_to_le16(qid);
1069
1c63dc66 1070 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1071}
1072
1073static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1074{
1075 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1076}
1077
1078static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1079{
1080 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1081}
1082
31c7c7d2 1083static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1084{
a4aea562
MB
1085 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1086 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1087 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1088 struct request *abort_req;
1089 struct nvme_cmd_info *abort_cmd;
1090 struct nvme_command cmd;
c30341dc 1091
31c7c7d2 1092 /*
fd634f41
CH
1093 * Shutdown immediately if controller times out while starting. The
1094 * reset work will see the pci device disabled when it gets the forced
1095 * cancellation error. All outstanding requests are completed on
1096 * shutdown, so we return BLK_EH_HANDLED.
1097 */
1098 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1099 dev_warn(dev->dev,
1100 "I/O %d QID %d timeout, disable controller\n",
1101 req->tag, nvmeq->qid);
1102 nvme_dev_shutdown(dev);
1103 req->errors = NVME_SC_CANCELLED;
1104 return BLK_EH_HANDLED;
1105 }
1106
1107 /*
1108 * Shutdown the controller immediately and schedule a reset if the
1109 * command was already aborted once before and still hasn't been
1110 * returned to the driver, or if this is the admin queue.
31c7c7d2 1111 */
a4aea562 1112 if (!nvmeq->qid || cmd_rq->aborted) {
e1569a16
KB
1113 dev_warn(dev->dev,
1114 "I/O %d QID %d timeout, reset controller\n",
1115 req->tag, nvmeq->qid);
1116 nvme_dev_shutdown(dev);
1117 queue_work(nvme_workq, &dev->reset_work);
1118
1119 /*
1120 * Mark the request as handled, since the inline shutdown
1121 * forces all outstanding requests to complete.
1122 */
1123 req->errors = NVME_SC_CANCELLED;
1124 return BLK_EH_HANDLED;
c30341dc
KB
1125 }
1126
6bf25d16 1127 if (atomic_dec_and_test(&dev->ctrl.abort_limit))
31c7c7d2 1128 return BLK_EH_RESET_TIMER;
c30341dc 1129
1c63dc66 1130 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 1131 BLK_MQ_REQ_NOWAIT);
6bf25d16
CH
1132 if (IS_ERR(abort_req)) {
1133 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 1134 return BLK_EH_RESET_TIMER;
6bf25d16 1135 }
c30341dc 1136
a4aea562
MB
1137 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1138 nvme_set_info(abort_cmd, abort_req, abort_completion);
1139
c30341dc
KB
1140 memset(&cmd, 0, sizeof(cmd));
1141 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1142 cmd.abort.cid = req->tag;
c30341dc 1143 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1144 cmd.abort.command_id = abort_req->tag;
c30341dc 1145
a4aea562 1146 cmd_rq->aborted = 1;
c30341dc 1147
31c7c7d2
CH
1148 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
1149 req->tag, nvmeq->qid);
e3f879bf 1150 nvme_submit_cmd(dev->queues[0], &cmd);
31c7c7d2
CH
1151
1152 /*
1153 * The aborted req will be completed on receiving the abort req.
1154 * We enable the timer again. If hit twice, it'll cause a device reset,
1155 * as the device then is in a faulty state.
1156 */
1157 return BLK_EH_RESET_TIMER;
c30341dc
KB
1158}
1159
42483228 1160static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1161{
a4aea562
MB
1162 struct nvme_queue *nvmeq = data;
1163 void *ctx;
1164 nvme_completion_fn fn;
1165 struct nvme_cmd_info *cmd;
cef6a948
KB
1166 struct nvme_completion cqe;
1167
1168 if (!blk_mq_request_started(req))
1169 return;
a09115b2 1170
a4aea562 1171 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1172
a4aea562
MB
1173 if (cmd->ctx == CMD_CTX_CANCELLED)
1174 return;
1175
cef6a948
KB
1176 if (blk_queue_dying(req->q))
1177 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1178 else
1179 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1180
1181
a4aea562
MB
1182 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1183 req->tag, nvmeq->qid);
1184 ctx = cancel_cmd_info(cmd, &fn);
1185 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1186}
1187
a4aea562
MB
1188static void nvme_free_queue(struct nvme_queue *nvmeq)
1189{
9e866774
MW
1190 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1191 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1192 if (nvmeq->sq_cmds)
1193 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1194 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1195 kfree(nvmeq);
1196}
1197
a1a5ef99 1198static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1199{
1200 int i;
1201
a1a5ef99 1202 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1203 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1204 dev->queue_count--;
a4aea562 1205 dev->queues[i] = NULL;
f435c282 1206 nvme_free_queue(nvmeq);
121c7ad4 1207 }
22404274
KB
1208}
1209
4d115420
KB
1210/**
1211 * nvme_suspend_queue - put queue into suspended state
1212 * @nvmeq - queue to suspend
4d115420
KB
1213 */
1214static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1215{
2b25d981 1216 int vector;
b60503ba 1217
a09115b2 1218 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1219 if (nvmeq->cq_vector == -1) {
1220 spin_unlock_irq(&nvmeq->q_lock);
1221 return 1;
1222 }
1223 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1224 nvmeq->dev->online_queues--;
2b25d981 1225 nvmeq->cq_vector = -1;
a09115b2
MW
1226 spin_unlock_irq(&nvmeq->q_lock);
1227
1c63dc66
CH
1228 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1229 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1230
aba2080f
MW
1231 irq_set_affinity_hint(vector, NULL);
1232 free_irq(vector, nvmeq);
b60503ba 1233
4d115420
KB
1234 return 0;
1235}
b60503ba 1236
4d115420
KB
1237static void nvme_clear_queue(struct nvme_queue *nvmeq)
1238{
22404274 1239 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1240 if (nvmeq->tags && *nvmeq->tags)
1241 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1242 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1243}
1244
4d115420
KB
1245static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1246{
a4aea562 1247 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1248
1249 if (!nvmeq)
1250 return;
1251 if (nvme_suspend_queue(nvmeq))
1252 return;
1253
0e53d180
KB
1254 /* Don't tell the adapter to delete the admin queue.
1255 * Don't tell a removed adapter to delete IO queues. */
7a67cbea 1256 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
b60503ba
MW
1257 adapter_delete_sq(dev, qid);
1258 adapter_delete_cq(dev, qid);
1259 }
07836e65
KB
1260
1261 spin_lock_irq(&nvmeq->q_lock);
1262 nvme_process_cq(nvmeq);
1263 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1264}
1265
8ffaadf7
JD
1266static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1267 int entry_size)
1268{
1269 int q_depth = dev->q_depth;
5fd4ce1b
CH
1270 unsigned q_size_aligned = roundup(q_depth * entry_size,
1271 dev->ctrl.page_size);
8ffaadf7
JD
1272
1273 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1274 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1275 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1276 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1277
1278 /*
1279 * Ensure the reduced q_depth is above some threshold where it
1280 * would be better to map queues in system memory with the
1281 * original depth
1282 */
1283 if (q_depth < 64)
1284 return -ENOMEM;
1285 }
1286
1287 return q_depth;
1288}
1289
1290static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1291 int qid, int depth)
1292{
1293 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1294 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1295 dev->ctrl.page_size);
8ffaadf7
JD
1296 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1297 nvmeq->sq_cmds_io = dev->cmb + offset;
1298 } else {
1299 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1300 &nvmeq->sq_dma_addr, GFP_KERNEL);
1301 if (!nvmeq->sq_cmds)
1302 return -ENOMEM;
1303 }
1304
1305 return 0;
1306}
1307
b60503ba 1308static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1309 int depth)
b60503ba 1310{
a4aea562 1311 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1312 if (!nvmeq)
1313 return NULL;
1314
e75ec752 1315 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1316 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1317 if (!nvmeq->cqes)
1318 goto free_nvmeq;
b60503ba 1319
8ffaadf7 1320 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1321 goto free_cqdma;
1322
e75ec752 1323 nvmeq->q_dmadev = dev->dev;
091b6092 1324 nvmeq->dev = dev;
3193f07b 1325 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1326 dev->ctrl.instance, qid);
b60503ba
MW
1327 spin_lock_init(&nvmeq->q_lock);
1328 nvmeq->cq_head = 0;
82123460 1329 nvmeq->cq_phase = 1;
b80d5ccc 1330 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1331 nvmeq->q_depth = depth;
c30341dc 1332 nvmeq->qid = qid;
758dd7fd 1333 nvmeq->cq_vector = -1;
a4aea562 1334 dev->queues[qid] = nvmeq;
b60503ba 1335
36a7e993
JD
1336 /* make sure queue descriptor is set before queue count, for kthread */
1337 mb();
1338 dev->queue_count++;
1339
b60503ba
MW
1340 return nvmeq;
1341
1342 free_cqdma:
e75ec752 1343 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1344 nvmeq->cq_dma_addr);
1345 free_nvmeq:
1346 kfree(nvmeq);
1347 return NULL;
1348}
1349
3001082c
MW
1350static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1351 const char *name)
1352{
58ffacb5
MW
1353 if (use_threaded_interrupts)
1354 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1355 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1356 name, nvmeq);
3001082c 1357 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1358 IRQF_SHARED, name, nvmeq);
3001082c
MW
1359}
1360
22404274 1361static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1362{
22404274 1363 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1364
7be50e93 1365 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1366 nvmeq->sq_tail = 0;
1367 nvmeq->cq_head = 0;
1368 nvmeq->cq_phase = 1;
b80d5ccc 1369 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1370 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1371 dev->online_queues++;
7be50e93 1372 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1373}
1374
1375static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1376{
1377 struct nvme_dev *dev = nvmeq->dev;
1378 int result;
3f85d50b 1379
2b25d981 1380 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1381 result = adapter_alloc_cq(dev, qid, nvmeq);
1382 if (result < 0)
22404274 1383 return result;
b60503ba
MW
1384
1385 result = adapter_alloc_sq(dev, qid, nvmeq);
1386 if (result < 0)
1387 goto release_cq;
1388
3193f07b 1389 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1390 if (result < 0)
1391 goto release_sq;
1392
22404274 1393 nvme_init_queue(nvmeq, qid);
22404274 1394 return result;
b60503ba
MW
1395
1396 release_sq:
1397 adapter_delete_sq(dev, qid);
1398 release_cq:
1399 adapter_delete_cq(dev, qid);
22404274 1400 return result;
b60503ba
MW
1401}
1402
a4aea562 1403static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1404 .queue_rq = nvme_queue_rq,
a4aea562
MB
1405 .map_queue = blk_mq_map_queue,
1406 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1407 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1408 .init_request = nvme_admin_init_request,
1409 .timeout = nvme_timeout,
1410};
1411
1412static struct blk_mq_ops nvme_mq_ops = {
1413 .queue_rq = nvme_queue_rq,
1414 .map_queue = blk_mq_map_queue,
1415 .init_hctx = nvme_init_hctx,
1416 .init_request = nvme_init_request,
1417 .timeout = nvme_timeout,
a0fa9647 1418 .poll = nvme_poll,
a4aea562
MB
1419};
1420
ea191d2f
KB
1421static void nvme_dev_remove_admin(struct nvme_dev *dev)
1422{
1c63dc66
CH
1423 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1424 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1425 blk_mq_free_tag_set(&dev->admin_tagset);
1426 }
1427}
1428
a4aea562
MB
1429static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1430{
1c63dc66 1431 if (!dev->ctrl.admin_q) {
a4aea562
MB
1432 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1433 dev->admin_tagset.nr_hw_queues = 1;
1434 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1435 dev->admin_tagset.reserved_tags = 1;
a4aea562 1436 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1437 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1438 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1439 dev->admin_tagset.driver_data = dev;
1440
1441 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1442 return -ENOMEM;
1443
1c63dc66
CH
1444 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1445 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1446 blk_mq_free_tag_set(&dev->admin_tagset);
1447 return -ENOMEM;
1448 }
1c63dc66 1449 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1450 nvme_dev_remove_admin(dev);
1c63dc66 1451 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1452 return -ENODEV;
1453 }
0fb59cbc 1454 } else
1c63dc66 1455 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
a4aea562
MB
1456
1457 return 0;
1458}
1459
8d85fce7 1460static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1461{
ba47e386 1462 int result;
b60503ba 1463 u32 aqa;
7a67cbea 1464 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1465 struct nvme_queue *nvmeq;
1466
7a67cbea 1467 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1468 NVME_CAP_NSSRC(cap) : 0;
1469
7a67cbea
CH
1470 if (dev->subsystem &&
1471 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1472 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1473
5fd4ce1b 1474 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1475 if (result < 0)
1476 return result;
b60503ba 1477
a4aea562 1478 nvmeq = dev->queues[0];
cd638946 1479 if (!nvmeq) {
2b25d981 1480 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1481 if (!nvmeq)
1482 return -ENOMEM;
cd638946 1483 }
b60503ba
MW
1484
1485 aqa = nvmeq->q_depth - 1;
1486 aqa |= aqa << 16;
1487
7a67cbea
CH
1488 writel(aqa, dev->bar + NVME_REG_AQA);
1489 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1490 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1491
5fd4ce1b 1492 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1493 if (result)
a4aea562
MB
1494 goto free_nvmeq;
1495
2b25d981 1496 nvmeq->cq_vector = 0;
3193f07b 1497 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1498 if (result) {
1499 nvmeq->cq_vector = -1;
0fb59cbc 1500 goto free_nvmeq;
758dd7fd 1501 }
025c557a 1502
b60503ba 1503 return result;
a4aea562 1504
a4aea562
MB
1505 free_nvmeq:
1506 nvme_free_queues(dev, 0);
1507 return result;
b60503ba
MW
1508}
1509
1fa6aead
MW
1510static int nvme_kthread(void *data)
1511{
d4b4ff8e 1512 struct nvme_dev *dev, *next;
1fa6aead
MW
1513
1514 while (!kthread_should_stop()) {
564a232c 1515 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 1516 spin_lock(&dev_list_lock);
d4b4ff8e 1517 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 1518 int i;
7a67cbea 1519 u32 csts = readl(dev->bar + NVME_REG_CSTS);
dfbac8c7 1520
846cc05f
CH
1521 /*
1522 * Skip controllers currently under reset.
1523 */
1524 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1525 continue;
1526
dfbac8c7
KB
1527 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1528 csts & NVME_CSTS_CFS) {
846cc05f 1529 if (queue_work(nvme_workq, &dev->reset_work)) {
90667892
CH
1530 dev_warn(dev->dev,
1531 "Failed status: %x, reset controller\n",
7a67cbea 1532 readl(dev->bar + NVME_REG_CSTS));
90667892 1533 }
d4b4ff8e
KB
1534 continue;
1535 }
1fa6aead 1536 for (i = 0; i < dev->queue_count; i++) {
a4aea562 1537 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1538 if (!nvmeq)
1539 continue;
1fa6aead 1540 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 1541 nvme_process_cq(nvmeq);
6fccf938 1542
1c63dc66 1543 while (i == 0 && dev->ctrl.event_limit > 0) {
a4aea562 1544 if (nvme_submit_async_admin_req(dev))
6fccf938 1545 break;
1c63dc66 1546 dev->ctrl.event_limit--;
6fccf938 1547 }
1fa6aead
MW
1548 spin_unlock_irq(&nvmeq->q_lock);
1549 }
1550 }
1551 spin_unlock(&dev_list_lock);
acb7aa0d 1552 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1553 }
1554 return 0;
1555}
1556
749941f2 1557static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1558{
a4aea562 1559 unsigned i;
749941f2 1560 int ret = 0;
42f61420 1561
749941f2
CH
1562 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1563 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1564 ret = -ENOMEM;
42f61420 1565 break;
749941f2
CH
1566 }
1567 }
42f61420 1568
749941f2
CH
1569 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1570 ret = nvme_create_queue(dev->queues[i], i);
1571 if (ret) {
2659e57b 1572 nvme_free_queues(dev, i);
42f61420 1573 break;
2659e57b 1574 }
749941f2
CH
1575 }
1576
1577 /*
1578 * Ignore failing Create SQ/CQ commands, we can continue with less
1579 * than the desired aount of queues, and even a controller without
1580 * I/O queues an still be used to issue admin commands. This might
1581 * be useful to upgrade a buggy firmware for example.
1582 */
1583 return ret >= 0 ? 0 : ret;
42f61420
KB
1584}
1585
8ffaadf7
JD
1586static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1587{
1588 u64 szu, size, offset;
1589 u32 cmbloc;
1590 resource_size_t bar_size;
1591 struct pci_dev *pdev = to_pci_dev(dev->dev);
1592 void __iomem *cmb;
1593 dma_addr_t dma_addr;
1594
1595 if (!use_cmb_sqes)
1596 return NULL;
1597
7a67cbea 1598 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1599 if (!(NVME_CMB_SZ(dev->cmbsz)))
1600 return NULL;
1601
7a67cbea 1602 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1603
1604 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1605 size = szu * NVME_CMB_SZ(dev->cmbsz);
1606 offset = szu * NVME_CMB_OFST(cmbloc);
1607 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1608
1609 if (offset > bar_size)
1610 return NULL;
1611
1612 /*
1613 * Controllers may support a CMB size larger than their BAR,
1614 * for example, due to being behind a bridge. Reduce the CMB to
1615 * the reported size of the BAR
1616 */
1617 if (size > bar_size - offset)
1618 size = bar_size - offset;
1619
1620 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1621 cmb = ioremap_wc(dma_addr, size);
1622 if (!cmb)
1623 return NULL;
1624
1625 dev->cmb_dma_addr = dma_addr;
1626 dev->cmb_size = size;
1627 return cmb;
1628}
1629
1630static inline void nvme_release_cmb(struct nvme_dev *dev)
1631{
1632 if (dev->cmb) {
1633 iounmap(dev->cmb);
1634 dev->cmb = NULL;
1635 }
1636}
1637
9d713c2b
KB
1638static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1639{
b80d5ccc 1640 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1641}
1642
8d85fce7 1643static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1644{
a4aea562 1645 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1646 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1647 int result, i, vecs, nr_io_queues, size;
b60503ba 1648
42f61420 1649 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1650 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1651 if (result < 0)
1b23484b 1652 return result;
9a0be7ab
CH
1653
1654 /*
1655 * Degraded controllers might return an error when setting the queue
1656 * count. We still want to be able to bring them online and offer
1657 * access to the admin queue, as that might be only way to fix them up.
1658 */
1659 if (result > 0) {
1660 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1661 nr_io_queues = 0;
1662 result = 0;
1663 }
b60503ba 1664
8ffaadf7
JD
1665 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1666 result = nvme_cmb_qdepth(dev, nr_io_queues,
1667 sizeof(struct nvme_command));
1668 if (result > 0)
1669 dev->q_depth = result;
1670 else
1671 nvme_release_cmb(dev);
1672 }
1673
9d713c2b
KB
1674 size = db_bar_size(dev, nr_io_queues);
1675 if (size > 8192) {
f1938f6e 1676 iounmap(dev->bar);
9d713c2b
KB
1677 do {
1678 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1679 if (dev->bar)
1680 break;
1681 if (!--nr_io_queues)
1682 return -ENOMEM;
1683 size = db_bar_size(dev, nr_io_queues);
1684 } while (1);
7a67cbea 1685 dev->dbs = dev->bar + 4096;
5a92e700 1686 adminq->q_db = dev->dbs;
f1938f6e
MW
1687 }
1688
9d713c2b 1689 /* Deregister the admin queue's interrupt */
3193f07b 1690 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1691
e32efbfc
JA
1692 /*
1693 * If we enable msix early due to not intx, disable it again before
1694 * setting up the full range we need.
1695 */
1696 if (!pdev->irq)
1697 pci_disable_msix(pdev);
1698
be577fab 1699 for (i = 0; i < nr_io_queues; i++)
1b23484b 1700 dev->entry[i].entry = i;
be577fab
AG
1701 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1702 if (vecs < 0) {
1703 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1704 if (vecs < 0) {
1705 vecs = 1;
1706 } else {
1707 for (i = 0; i < vecs; i++)
1708 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1709 }
1710 }
1711
063a8096
MW
1712 /*
1713 * Should investigate if there's a performance win from allocating
1714 * more queues than interrupt vectors; it might allow the submission
1715 * path to scale better, even if the receive path is limited by the
1716 * number of interrupts.
1717 */
1718 nr_io_queues = vecs;
42f61420 1719 dev->max_qid = nr_io_queues;
063a8096 1720
3193f07b 1721 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1722 if (result) {
1723 adminq->cq_vector = -1;
22404274 1724 goto free_queues;
758dd7fd 1725 }
1b23484b 1726
cd638946 1727 /* Free previously allocated queues that are no longer usable */
42f61420 1728 nvme_free_queues(dev, nr_io_queues + 1);
749941f2 1729 return nvme_create_io_queues(dev);
b60503ba 1730
22404274 1731 free_queues:
a1a5ef99 1732 nvme_free_queues(dev, 1);
22404274 1733 return result;
b60503ba
MW
1734}
1735
bda4e0fb
KB
1736static void nvme_set_irq_hints(struct nvme_dev *dev)
1737{
1738 struct nvme_queue *nvmeq;
1739 int i;
1740
1741 for (i = 0; i < dev->online_queues; i++) {
1742 nvmeq = dev->queues[i];
1743
1744 if (!nvmeq->tags || !(*nvmeq->tags))
1745 continue;
1746
1747 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1748 blk_mq_tags_cpumask(*nvmeq->tags));
1749 }
1750}
1751
a5768aa8
KB
1752static void nvme_dev_scan(struct work_struct *work)
1753{
1754 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1755
1756 if (!dev->tagset.tags)
1757 return;
5bae7f73 1758 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1759 nvme_set_irq_hints(dev);
a5768aa8
KB
1760}
1761
422ef0c7
MW
1762/*
1763 * Return: error value if an error occurred setting up the queues or calling
1764 * Identify Device. 0 if these succeeded, even if adding some of the
1765 * namespaces failed. At the moment, these failures are silent. TBD which
1766 * failures should be reported.
1767 */
8d85fce7 1768static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1769{
5bae7f73 1770 if (!dev->ctrl.tagset) {
ffe7704d
KB
1771 dev->tagset.ops = &nvme_mq_ops;
1772 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1773 dev->tagset.timeout = NVME_IO_TIMEOUT;
1774 dev->tagset.numa_node = dev_to_node(dev->dev);
1775 dev->tagset.queue_depth =
a4aea562 1776 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1777 dev->tagset.cmd_size = nvme_cmd_size(dev);
1778 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1779 dev->tagset.driver_data = dev;
b60503ba 1780
ffe7704d
KB
1781 if (blk_mq_alloc_tag_set(&dev->tagset))
1782 return 0;
5bae7f73 1783 dev->ctrl.tagset = &dev->tagset;
ffe7704d 1784 }
a5768aa8 1785 schedule_work(&dev->scan_work);
e1e5e564 1786 return 0;
b60503ba
MW
1787}
1788
0877cb0d
KB
1789static int nvme_dev_map(struct nvme_dev *dev)
1790{
42f61420 1791 u64 cap;
0877cb0d 1792 int bars, result = -ENOMEM;
e75ec752 1793 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1794
1795 if (pci_enable_device_mem(pdev))
1796 return result;
1797
1798 dev->entry[0].vector = pdev->irq;
1799 pci_set_master(pdev);
1800 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
1801 if (!bars)
1802 goto disable_pci;
1803
0877cb0d
KB
1804 if (pci_request_selected_regions(pdev, bars, "nvme"))
1805 goto disable_pci;
1806
e75ec752
CH
1807 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1808 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1809 goto disable;
0877cb0d 1810
0877cb0d
KB
1811 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1812 if (!dev->bar)
1813 goto disable;
e32efbfc 1814
7a67cbea 1815 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180
KB
1816 result = -ENODEV;
1817 goto unmap;
1818 }
e32efbfc
JA
1819
1820 /*
1821 * Some devices don't advertse INTx interrupts, pre-enable a single
1822 * MSIX vec for setup. We'll adjust this later.
1823 */
1824 if (!pdev->irq) {
1825 result = pci_enable_msix(pdev, dev->entry, 1);
1826 if (result < 0)
1827 goto unmap;
1828 }
1829
7a67cbea
CH
1830 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1831
42f61420
KB
1832 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1833 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea
CH
1834 dev->dbs = dev->bar + 4096;
1835 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1836 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
1837
1838 return 0;
1839
0e53d180
KB
1840 unmap:
1841 iounmap(dev->bar);
1842 dev->bar = NULL;
0877cb0d
KB
1843 disable:
1844 pci_release_regions(pdev);
1845 disable_pci:
1846 pci_disable_device(pdev);
1847 return result;
1848}
1849
1850static void nvme_dev_unmap(struct nvme_dev *dev)
1851{
e75ec752
CH
1852 struct pci_dev *pdev = to_pci_dev(dev->dev);
1853
1854 if (pdev->msi_enabled)
1855 pci_disable_msi(pdev);
1856 else if (pdev->msix_enabled)
1857 pci_disable_msix(pdev);
0877cb0d
KB
1858
1859 if (dev->bar) {
1860 iounmap(dev->bar);
1861 dev->bar = NULL;
e75ec752 1862 pci_release_regions(pdev);
0877cb0d
KB
1863 }
1864
e75ec752
CH
1865 if (pci_is_enabled(pdev))
1866 pci_disable_device(pdev);
0877cb0d
KB
1867}
1868
4d115420
KB
1869struct nvme_delq_ctx {
1870 struct task_struct *waiter;
1871 struct kthread_worker *worker;
1872 atomic_t refcount;
1873};
1874
1875static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1876{
1877 dq->waiter = current;
1878 mb();
1879
1880 for (;;) {
1881 set_current_state(TASK_KILLABLE);
1882 if (!atomic_read(&dq->refcount))
1883 break;
1884 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1885 fatal_signal_pending(current)) {
0fb59cbc
KB
1886 /*
1887 * Disable the controller first since we can't trust it
1888 * at this point, but leave the admin queue enabled
1889 * until all queue deletion requests are flushed.
1890 * FIXME: This may take a while if there are more h/w
1891 * queues than admin tags.
1892 */
4d115420 1893 set_current_state(TASK_RUNNING);
5fd4ce1b 1894 nvme_disable_ctrl(&dev->ctrl,
7a67cbea 1895 lo_hi_readq(dev->bar + NVME_REG_CAP));
0fb59cbc 1896 nvme_clear_queue(dev->queues[0]);
4d115420 1897 flush_kthread_worker(dq->worker);
0fb59cbc 1898 nvme_disable_queue(dev, 0);
4d115420
KB
1899 return;
1900 }
1901 }
1902 set_current_state(TASK_RUNNING);
1903}
1904
1905static void nvme_put_dq(struct nvme_delq_ctx *dq)
1906{
1907 atomic_dec(&dq->refcount);
1908 if (dq->waiter)
1909 wake_up_process(dq->waiter);
1910}
1911
1912static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1913{
1914 atomic_inc(&dq->refcount);
1915 return dq;
1916}
1917
1918static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1919{
1920 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420 1921 nvme_put_dq(dq);
604e8c8d
KB
1922
1923 spin_lock_irq(&nvmeq->q_lock);
1924 nvme_process_cq(nvmeq);
1925 spin_unlock_irq(&nvmeq->q_lock);
4d115420
KB
1926}
1927
1928static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1929 kthread_work_func_t fn)
1930{
1931 struct nvme_command c;
1932
1933 memset(&c, 0, sizeof(c));
1934 c.delete_queue.opcode = opcode;
1935 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1936
1937 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
1938 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1939 ADMIN_TIMEOUT);
4d115420
KB
1940}
1941
1942static void nvme_del_cq_work_handler(struct kthread_work *work)
1943{
1944 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1945 cmdinfo.work);
1946 nvme_del_queue_end(nvmeq);
1947}
1948
1949static int nvme_delete_cq(struct nvme_queue *nvmeq)
1950{
1951 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1952 nvme_del_cq_work_handler);
1953}
1954
1955static void nvme_del_sq_work_handler(struct kthread_work *work)
1956{
1957 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1958 cmdinfo.work);
1959 int status = nvmeq->cmdinfo.status;
1960
1961 if (!status)
1962 status = nvme_delete_cq(nvmeq);
1963 if (status)
1964 nvme_del_queue_end(nvmeq);
1965}
1966
1967static int nvme_delete_sq(struct nvme_queue *nvmeq)
1968{
1969 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1970 nvme_del_sq_work_handler);
1971}
1972
1973static void nvme_del_queue_start(struct kthread_work *work)
1974{
1975 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1976 cmdinfo.work);
4d115420
KB
1977 if (nvme_delete_sq(nvmeq))
1978 nvme_del_queue_end(nvmeq);
1979}
1980
1981static void nvme_disable_io_queues(struct nvme_dev *dev)
1982{
1983 int i;
1984 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1985 struct nvme_delq_ctx dq;
1986 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1c63dc66 1987 &worker, "nvme%d", dev->ctrl.instance);
4d115420
KB
1988
1989 if (IS_ERR(kworker_task)) {
e75ec752 1990 dev_err(dev->dev,
4d115420
KB
1991 "Failed to create queue del task\n");
1992 for (i = dev->queue_count - 1; i > 0; i--)
1993 nvme_disable_queue(dev, i);
1994 return;
1995 }
1996
1997 dq.waiter = NULL;
1998 atomic_set(&dq.refcount, 0);
1999 dq.worker = &worker;
2000 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2001 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2002
2003 if (nvme_suspend_queue(nvmeq))
2004 continue;
2005 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2006 nvmeq->cmdinfo.worker = dq.worker;
2007 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2008 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2009 }
2010 nvme_wait_dq(&dq, dev);
2011 kthread_stop(kworker_task);
2012}
2013
7385014c
CH
2014static int nvme_dev_list_add(struct nvme_dev *dev)
2015{
2016 bool start_thread = false;
2017
2018 spin_lock(&dev_list_lock);
2019 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2020 start_thread = true;
2021 nvme_thread = NULL;
2022 }
2023 list_add(&dev->node, &dev_list);
2024 spin_unlock(&dev_list_lock);
2025
2026 if (start_thread) {
2027 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2028 wake_up_all(&nvme_kthread_wait);
2029 } else
2030 wait_event_killable(nvme_kthread_wait, nvme_thread);
2031
2032 if (IS_ERR_OR_NULL(nvme_thread))
2033 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2034
2035 return 0;
2036}
2037
b9afca3e
DM
2038/*
2039* Remove the node from the device list and check
2040* for whether or not we need to stop the nvme_thread.
2041*/
2042static void nvme_dev_list_remove(struct nvme_dev *dev)
2043{
2044 struct task_struct *tmp = NULL;
2045
2046 spin_lock(&dev_list_lock);
2047 list_del_init(&dev->node);
2048 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2049 tmp = nvme_thread;
2050 nvme_thread = NULL;
2051 }
2052 spin_unlock(&dev_list_lock);
2053
2054 if (tmp)
2055 kthread_stop(tmp);
2056}
2057
c9d3bf88
KB
2058static void nvme_freeze_queues(struct nvme_dev *dev)
2059{
2060 struct nvme_ns *ns;
2061
5bae7f73 2062 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
2063 blk_mq_freeze_queue_start(ns->queue);
2064
cddcd72b 2065 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2066 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2067 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2068
2069 blk_mq_cancel_requeue_work(ns->queue);
2070 blk_mq_stop_hw_queues(ns->queue);
2071 }
2072}
2073
2074static void nvme_unfreeze_queues(struct nvme_dev *dev)
2075{
2076 struct nvme_ns *ns;
2077
5bae7f73 2078 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
2079 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2080 blk_mq_unfreeze_queue(ns->queue);
2081 blk_mq_start_stopped_hw_queues(ns->queue, true);
2082 blk_mq_kick_requeue_list(ns->queue);
2083 }
2084}
2085
f0b50732 2086static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2087{
22404274 2088 int i;
7c1b2450 2089 u32 csts = -1;
22404274 2090
b9afca3e 2091 nvme_dev_list_remove(dev);
1fa6aead 2092
77bf25ea 2093 mutex_lock(&dev->shutdown_lock);
c9d3bf88
KB
2094 if (dev->bar) {
2095 nvme_freeze_queues(dev);
7a67cbea 2096 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 2097 }
7c1b2450 2098 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2099 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2100 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2101 nvme_suspend_queue(nvmeq);
4d115420
KB
2102 }
2103 } else {
2104 nvme_disable_io_queues(dev);
5fd4ce1b 2105 nvme_shutdown_ctrl(&dev->ctrl);
4d115420
KB
2106 nvme_disable_queue(dev, 0);
2107 }
f0b50732 2108 nvme_dev_unmap(dev);
07836e65
KB
2109
2110 for (i = dev->queue_count - 1; i >= 0; i--)
2111 nvme_clear_queue(dev->queues[i]);
77bf25ea 2112 mutex_unlock(&dev->shutdown_lock);
f0b50732
KB
2113}
2114
091b6092
MW
2115static int nvme_setup_prp_pools(struct nvme_dev *dev)
2116{
e75ec752 2117 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2118 PAGE_SIZE, PAGE_SIZE, 0);
2119 if (!dev->prp_page_pool)
2120 return -ENOMEM;
2121
99802a7a 2122 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2123 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2124 256, 256, 0);
2125 if (!dev->prp_small_pool) {
2126 dma_pool_destroy(dev->prp_page_pool);
2127 return -ENOMEM;
2128 }
091b6092
MW
2129 return 0;
2130}
2131
2132static void nvme_release_prp_pools(struct nvme_dev *dev)
2133{
2134 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2135 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2136}
2137
1673f1f0 2138static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2139{
1673f1f0 2140 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2141
e75ec752 2142 put_device(dev->dev);
4af0e21c
KB
2143 if (dev->tagset.tags)
2144 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2145 if (dev->ctrl.admin_q)
2146 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
2147 kfree(dev->queues);
2148 kfree(dev->entry);
2149 kfree(dev);
2150}
2151
fd634f41 2152static void nvme_reset_work(struct work_struct *work)
f0b50732 2153{
fd634f41 2154 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
3cf519b5 2155 int result;
f0b50732 2156
fd634f41
CH
2157 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
2158 goto out;
2159
2160 /*
2161 * If we're called to reset a live controller first shut it down before
2162 * moving on.
2163 */
2164 if (dev->bar)
2165 nvme_dev_shutdown(dev);
2166
2167 set_bit(NVME_CTRL_RESETTING, &dev->flags);
2168
f0b50732
KB
2169 result = nvme_dev_map(dev);
2170 if (result)
3cf519b5 2171 goto out;
f0b50732
KB
2172
2173 result = nvme_configure_admin_queue(dev);
2174 if (result)
2175 goto unmap;
2176
a4aea562 2177 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2178 result = nvme_alloc_admin_tags(dev);
2179 if (result)
2180 goto disable;
b9afca3e 2181
ce4541f4
CH
2182 result = nvme_init_identify(&dev->ctrl);
2183 if (result)
2184 goto free_tags;
2185
f0b50732 2186 result = nvme_setup_io_queues(dev);
badc34d4 2187 if (result)
0fb59cbc 2188 goto free_tags;
f0b50732 2189
1c63dc66 2190 dev->ctrl.event_limit = 1;
3cf519b5 2191
7385014c
CH
2192 result = nvme_dev_list_add(dev);
2193 if (result)
2194 goto remove;
2195
2659e57b
CH
2196 /*
2197 * Keep the controller around but remove all namespaces if we don't have
2198 * any working I/O queue.
2199 */
3cf519b5
CH
2200 if (dev->online_queues < 2) {
2201 dev_warn(dev->dev, "IO queues not created\n");
5bae7f73 2202 nvme_remove_namespaces(&dev->ctrl);
3cf519b5
CH
2203 } else {
2204 nvme_unfreeze_queues(dev);
2205 nvme_dev_add(dev);
2206 }
2207
fd634f41 2208 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
3cf519b5 2209 return;
f0b50732 2210
7385014c
CH
2211 remove:
2212 nvme_dev_list_remove(dev);
0fb59cbc
KB
2213 free_tags:
2214 nvme_dev_remove_admin(dev);
1c63dc66
CH
2215 blk_put_queue(dev->ctrl.admin_q);
2216 dev->ctrl.admin_q = NULL;
4af0e21c 2217 dev->queues[0]->tags = NULL;
f0b50732 2218 disable:
a1a5ef99 2219 nvme_disable_queue(dev, 0);
f0b50732
KB
2220 unmap:
2221 nvme_dev_unmap(dev);
3cf519b5 2222 out:
5c8809e6 2223 nvme_remove_dead_ctrl(dev);
f0b50732
KB
2224}
2225
5c8809e6 2226static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2227{
5c8809e6 2228 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2229 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2230
2231 if (pci_get_drvdata(pdev))
c81f4975 2232 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 2233 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2234}
2235
5c8809e6 2236static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
de3eff2b 2237{
5c8809e6 2238 dev_warn(dev->dev, "Removing after probe failure\n");
1673f1f0 2239 kref_get(&dev->ctrl.kref);
5c8809e6 2240 if (!schedule_work(&dev->remove_work))
1673f1f0 2241 nvme_put_ctrl(&dev->ctrl);
de3eff2b
KB
2242}
2243
4cc06521
KB
2244static int nvme_reset(struct nvme_dev *dev)
2245{
1c63dc66 2246 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521
KB
2247 return -ENODEV;
2248
846cc05f
CH
2249 if (!queue_work(nvme_workq, &dev->reset_work))
2250 return -EBUSY;
4cc06521 2251
846cc05f 2252 flush_work(&dev->reset_work);
846cc05f 2253 return 0;
4cc06521
KB
2254}
2255
1c63dc66
CH
2256static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2257{
2258 *val = readl(to_nvme_dev(ctrl)->bar + off);
2259 return 0;
2260}
2261
5fd4ce1b
CH
2262static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2263{
2264 writel(val, to_nvme_dev(ctrl)->bar + off);
2265 return 0;
2266}
2267
7fd8930f
CH
2268static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2269{
2270 *val = readq(to_nvme_dev(ctrl)->bar + off);
2271 return 0;
2272}
2273
5bae7f73
CH
2274static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2275{
2276 struct nvme_dev *dev = to_nvme_dev(ctrl);
2277
2278 return !dev->bar || dev->online_queues < 2;
2279}
2280
f3ca80fc
CH
2281static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2282{
2283 return nvme_reset(to_nvme_dev(ctrl));
2284}
2285
1c63dc66
CH
2286static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2287 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2288 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2289 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 2290 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 2291 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 2292 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66
CH
2293};
2294
8d85fce7 2295static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2296{
a4aea562 2297 int node, result = -ENOMEM;
b60503ba
MW
2298 struct nvme_dev *dev;
2299
a4aea562
MB
2300 node = dev_to_node(&pdev->dev);
2301 if (node == NUMA_NO_NODE)
2302 set_dev_node(&pdev->dev, 0);
2303
2304 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2305 if (!dev)
2306 return -ENOMEM;
a4aea562
MB
2307 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2308 GFP_KERNEL, node);
b60503ba
MW
2309 if (!dev->entry)
2310 goto free;
a4aea562
MB
2311 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2312 GFP_KERNEL, node);
b60503ba
MW
2313 if (!dev->queues)
2314 goto free;
2315
e75ec752 2316 dev->dev = get_device(&pdev->dev);
9a6b9458 2317 pci_set_drvdata(pdev, dev);
1c63dc66 2318
f3ca80fc
CH
2319 INIT_LIST_HEAD(&dev->node);
2320 INIT_WORK(&dev->scan_work, nvme_dev_scan);
f3ca80fc 2321 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2322 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2323 mutex_init(&dev->shutdown_lock);
1c63dc66 2324
f3ca80fc 2325 result = nvme_setup_prp_pools(dev);
cd58ad7d 2326 if (result)
a96d4f5c 2327 goto put_pci;
b60503ba 2328
f3ca80fc
CH
2329 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2330 id->driver_data);
091b6092 2331 if (result)
2e1d8448 2332 goto release_pools;
740216fc 2333
fd634f41 2334 schedule_work(&dev->reset_work);
b60503ba
MW
2335 return 0;
2336
0877cb0d 2337 release_pools:
091b6092 2338 nvme_release_prp_pools(dev);
a96d4f5c 2339 put_pci:
e75ec752 2340 put_device(dev->dev);
b60503ba
MW
2341 free:
2342 kfree(dev->queues);
2343 kfree(dev->entry);
2344 kfree(dev);
2345 return result;
2346}
2347
f0d54a54
KB
2348static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2349{
a6739479 2350 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2351
a6739479
KB
2352 if (prepare)
2353 nvme_dev_shutdown(dev);
2354 else
fd634f41 2355 schedule_work(&dev->reset_work);
f0d54a54
KB
2356}
2357
09ece142
KB
2358static void nvme_shutdown(struct pci_dev *pdev)
2359{
2360 struct nvme_dev *dev = pci_get_drvdata(pdev);
2361 nvme_dev_shutdown(dev);
2362}
2363
8d85fce7 2364static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2365{
2366 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
2367
2368 spin_lock(&dev_list_lock);
2369 list_del_init(&dev->node);
2370 spin_unlock(&dev_list_lock);
2371
2372 pci_set_drvdata(pdev, NULL);
2373 flush_work(&dev->reset_work);
a5768aa8 2374 flush_work(&dev->scan_work);
5bae7f73 2375 nvme_remove_namespaces(&dev->ctrl);
3399a3f7 2376 nvme_dev_shutdown(dev);
a4aea562 2377 nvme_dev_remove_admin(dev);
a1a5ef99 2378 nvme_free_queues(dev, 0);
8ffaadf7 2379 nvme_release_cmb(dev);
9a6b9458 2380 nvme_release_prp_pools(dev);
1673f1f0 2381 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2382}
2383
2384/* These functions are yet to be implemented */
2385#define nvme_error_detected NULL
2386#define nvme_dump_registers NULL
2387#define nvme_link_reset NULL
2388#define nvme_slot_reset NULL
2389#define nvme_error_resume NULL
cd638946 2390
671a6018 2391#ifdef CONFIG_PM_SLEEP
cd638946
KB
2392static int nvme_suspend(struct device *dev)
2393{
2394 struct pci_dev *pdev = to_pci_dev(dev);
2395 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2396
2397 nvme_dev_shutdown(ndev);
2398 return 0;
2399}
2400
2401static int nvme_resume(struct device *dev)
2402{
2403 struct pci_dev *pdev = to_pci_dev(dev);
2404 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2405
fd634f41 2406 schedule_work(&ndev->reset_work);
9a6b9458 2407 return 0;
cd638946 2408}
671a6018 2409#endif
cd638946
KB
2410
2411static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2412
1d352035 2413static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
2414 .error_detected = nvme_error_detected,
2415 .mmio_enabled = nvme_dump_registers,
2416 .link_reset = nvme_link_reset,
2417 .slot_reset = nvme_slot_reset,
2418 .resume = nvme_error_resume,
f0d54a54 2419 .reset_notify = nvme_reset_notify,
b60503ba
MW
2420};
2421
2422/* Move to pci_ids.h later */
2423#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2424
6eb0d698 2425static const struct pci_device_id nvme_id_table[] = {
106198ed
CH
2426 { PCI_VDEVICE(INTEL, 0x0953),
2427 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
b60503ba 2428 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2429 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2430 { 0, }
2431};
2432MODULE_DEVICE_TABLE(pci, nvme_id_table);
2433
2434static struct pci_driver nvme_driver = {
2435 .name = "nvme",
2436 .id_table = nvme_id_table,
2437 .probe = nvme_probe,
8d85fce7 2438 .remove = nvme_remove,
09ece142 2439 .shutdown = nvme_shutdown,
cd638946
KB
2440 .driver = {
2441 .pm = &nvme_dev_pm_ops,
2442 },
b60503ba
MW
2443 .err_handler = &nvme_err_handler,
2444};
2445
2446static int __init nvme_init(void)
2447{
0ac13140 2448 int result;
1fa6aead 2449
b9afca3e 2450 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 2451
9a6b9458
KB
2452 nvme_workq = create_singlethread_workqueue("nvme");
2453 if (!nvme_workq)
b9afca3e 2454 return -ENOMEM;
9a6b9458 2455
5bae7f73 2456 result = nvme_core_init();
5c42ea16 2457 if (result < 0)
9a6b9458 2458 goto kill_workq;
b60503ba 2459
f3db22fe
KB
2460 result = pci_register_driver(&nvme_driver);
2461 if (result)
f3ca80fc 2462 goto core_exit;
1fa6aead 2463 return 0;
b60503ba 2464
f3ca80fc 2465 core_exit:
5bae7f73 2466 nvme_core_exit();
9a6b9458
KB
2467 kill_workq:
2468 destroy_workqueue(nvme_workq);
b60503ba
MW
2469 return result;
2470}
2471
2472static void __exit nvme_exit(void)
2473{
2474 pci_unregister_driver(&nvme_driver);
5bae7f73 2475 nvme_core_exit();
9a6b9458 2476 destroy_workqueue(nvme_workq);
b9afca3e 2477 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 2478 _nvme_check_size();
b60503ba
MW
2479}
2480
2481MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2482MODULE_LICENSE("GPL");
c78b4713 2483MODULE_VERSION("1.0");
b60503ba
MW
2484module_init(nvme_init);
2485module_exit(nvme_exit);