nvme: simplify nvme_setup_prps calling convention
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
8de05535 15#include <linux/bitops.h>
b60503ba 16#include <linux/blkdev.h>
a4aea562 17#include <linux/blk-mq.h>
42f61420 18#include <linux/cpu.h>
fd63e9ce 19#include <linux/delay.h>
b60503ba
MW
20#include <linux/errno.h>
21#include <linux/fs.h>
22#include <linux/genhd.h>
4cc09e2d 23#include <linux/hdreg.h>
5aff9382 24#include <linux/idr.h>
b60503ba
MW
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba 30#include <linux/kernel.h>
a5768aa8 31#include <linux/list_sort.h>
b60503ba
MW
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
1d277a63 42#include <linux/pr.h>
5d0f6131 43#include <scsi/sg.h>
2f8e2c87 44#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 45#include <asm/unaligned.h>
797a796a 46
9d99a8dd 47#include <uapi/linux/nvme_ioctl.h>
f11bb3e2
CH
48#include "nvme.h"
49
b3fffdef 50#define NVME_MINORS (1U << MINORBITS)
9d43cf64 51#define NVME_Q_DEPTH 1024
d31af0a3 52#define NVME_AQ_DEPTH 256
b60503ba
MW
53#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
54#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
2484f407 55#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
9d43cf64 56
21d34711 57unsigned char admin_timeout = 60;
9d43cf64
KB
58module_param(admin_timeout, byte, 0644);
59MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 60
bd67608a
MW
61unsigned char nvme_io_timeout = 30;
62module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 63MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 64
2484f407
DM
65static unsigned char shutdown_timeout = 5;
66module_param(shutdown_timeout, byte, 0644);
67MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
68
b60503ba
MW
69static int nvme_major;
70module_param(nvme_major, int, 0);
71
b3fffdef
KB
72static int nvme_char_major;
73module_param(nvme_char_major, int, 0);
74
58ffacb5
MW
75static int use_threaded_interrupts;
76module_param(use_threaded_interrupts, int, 0);
77
8ffaadf7
JD
78static bool use_cmb_sqes = true;
79module_param(use_cmb_sqes, bool, 0644);
80MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
81
1fa6aead
MW
82static DEFINE_SPINLOCK(dev_list_lock);
83static LIST_HEAD(dev_list);
84static struct task_struct *nvme_thread;
9a6b9458 85static struct workqueue_struct *nvme_workq;
b9afca3e 86static wait_queue_head_t nvme_kthread_wait;
1fa6aead 87
b3fffdef
KB
88static struct class *nvme_class;
89
1c63dc66
CH
90struct nvme_dev;
91struct nvme_queue;
92
90667892 93static int __nvme_reset(struct nvme_dev *dev);
4cc06521 94static int nvme_reset(struct nvme_dev *dev);
a0fa9647 95static void nvme_process_cq(struct nvme_queue *nvmeq);
3cf519b5 96static void nvme_dead_ctrl(struct nvme_dev *dev);
d4b4ff8e 97
4d115420
KB
98struct async_cmd_info {
99 struct kthread_work work;
100 struct kthread_worker *worker;
a4aea562 101 struct request *req;
4d115420
KB
102 u32 result;
103 int status;
104 void *ctx;
105};
1fa6aead 106
1c63dc66
CH
107/*
108 * Represents an NVM Express device. Each nvme_dev is a PCI function.
109 */
110struct nvme_dev {
111 struct list_head node;
112 struct nvme_queue **queues;
113 struct blk_mq_tag_set tagset;
114 struct blk_mq_tag_set admin_tagset;
115 u32 __iomem *dbs;
116 struct device *dev;
117 struct dma_pool *prp_page_pool;
118 struct dma_pool *prp_small_pool;
119 unsigned queue_count;
120 unsigned online_queues;
121 unsigned max_qid;
122 int q_depth;
123 u32 db_stride;
124 u32 ctrl_config;
125 struct msix_entry *entry;
126 void __iomem *bar;
127 struct list_head namespaces;
128 struct kref kref;
129 struct device *device;
130 struct work_struct reset_work;
131 struct work_struct probe_work;
132 struct work_struct scan_work;
133 bool subsystem;
134 u32 max_hw_sectors;
135 u32 stripe_size;
136 u32 page_size;
137 void __iomem *cmb;
138 dma_addr_t cmb_dma_addr;
139 u64 cmb_size;
140 u32 cmbsz;
141
142 struct nvme_ctrl ctrl;
143};
144
145static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
146{
147 return container_of(ctrl, struct nvme_dev, ctrl);
148}
149
b60503ba
MW
150/*
151 * An NVM Express queue. Each device has at least two (one for admin
152 * commands and one for I/O commands).
153 */
154struct nvme_queue {
155 struct device *q_dmadev;
091b6092 156 struct nvme_dev *dev;
3193f07b 157 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
158 spinlock_t q_lock;
159 struct nvme_command *sq_cmds;
8ffaadf7 160 struct nvme_command __iomem *sq_cmds_io;
b60503ba 161 volatile struct nvme_completion *cqes;
42483228 162 struct blk_mq_tags **tags;
b60503ba
MW
163 dma_addr_t sq_dma_addr;
164 dma_addr_t cq_dma_addr;
b60503ba
MW
165 u32 __iomem *q_db;
166 u16 q_depth;
6222d172 167 s16 cq_vector;
b60503ba
MW
168 u16 sq_head;
169 u16 sq_tail;
170 u16 cq_head;
c30341dc 171 u16 qid;
e9539f47
MW
172 u8 cq_phase;
173 u8 cqe_seen;
4d115420 174 struct async_cmd_info cmdinfo;
b60503ba
MW
175};
176
71bd150c
CH
177/*
178 * The nvme_iod describes the data in an I/O, including the list of PRP
179 * entries. You can't see it in this data structure because C doesn't let
180 * me express that. Use nvme_alloc_iod to ensure there's enough space
181 * allocated to store the PRP list.
182 */
183struct nvme_iod {
184 unsigned long private; /* For the use of the submitter of the I/O */
185 int npages; /* In the PRP list. 0 means small pool in use */
186 int offset; /* Of PRP list */
187 int nents; /* Used in scatterlist */
188 int length; /* Of data, in bytes */
189 dma_addr_t first_dma;
190 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
191 struct scatterlist sg[0];
192};
193
b60503ba
MW
194/*
195 * Check we didin't inadvertently grow the command struct
196 */
197static inline void _nvme_check_size(void)
198{
199 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
200 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
201 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
202 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
203 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 204 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 205 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
206 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
207 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
208 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
209 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 210 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
211}
212
edd10d33 213typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
214 struct nvme_completion *);
215
e85248e5 216struct nvme_cmd_info {
c2f5b650
MW
217 nvme_completion_fn fn;
218 void *ctx;
c30341dc 219 int aborted;
a4aea562 220 struct nvme_queue *nvmeq;
ac3dd5bd 221 struct nvme_iod iod[0];
e85248e5
MW
222};
223
ac3dd5bd
JA
224/*
225 * Max size of iod being embedded in the request payload
226 */
227#define NVME_INT_PAGES 2
228#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
fda631ff 229#define NVME_INT_MASK 0x01
ac3dd5bd
JA
230
231/*
232 * Will slightly overestimate the number of pages needed. This is OK
233 * as it only leads to a small amount of wasted memory for the lifetime of
234 * the I/O.
235 */
236static int nvme_npages(unsigned size, struct nvme_dev *dev)
237{
238 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
239 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
240}
241
242static unsigned int nvme_cmd_size(struct nvme_dev *dev)
243{
244 unsigned int ret = sizeof(struct nvme_cmd_info);
245
246 ret += sizeof(struct nvme_iod);
247 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
248 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
249
250 return ret;
251}
252
a4aea562
MB
253static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
254 unsigned int hctx_idx)
e85248e5 255{
a4aea562
MB
256 struct nvme_dev *dev = data;
257 struct nvme_queue *nvmeq = dev->queues[0];
258
42483228
KB
259 WARN_ON(hctx_idx != 0);
260 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
261 WARN_ON(nvmeq->tags);
262
a4aea562 263 hctx->driver_data = nvmeq;
42483228 264 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 265 return 0;
e85248e5
MW
266}
267
4af0e21c
KB
268static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
269{
270 struct nvme_queue *nvmeq = hctx->driver_data;
271
272 nvmeq->tags = NULL;
273}
274
a4aea562
MB
275static int nvme_admin_init_request(void *data, struct request *req,
276 unsigned int hctx_idx, unsigned int rq_idx,
277 unsigned int numa_node)
22404274 278{
a4aea562
MB
279 struct nvme_dev *dev = data;
280 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
281 struct nvme_queue *nvmeq = dev->queues[0];
282
283 BUG_ON(!nvmeq);
284 cmd->nvmeq = nvmeq;
285 return 0;
22404274
KB
286}
287
a4aea562
MB
288static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
289 unsigned int hctx_idx)
b60503ba 290{
a4aea562 291 struct nvme_dev *dev = data;
42483228 292 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 293
42483228
KB
294 if (!nvmeq->tags)
295 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 296
42483228 297 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
298 hctx->driver_data = nvmeq;
299 return 0;
b60503ba
MW
300}
301
a4aea562
MB
302static int nvme_init_request(void *data, struct request *req,
303 unsigned int hctx_idx, unsigned int rq_idx,
304 unsigned int numa_node)
b60503ba 305{
a4aea562
MB
306 struct nvme_dev *dev = data;
307 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
308 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
309
310 BUG_ON(!nvmeq);
311 cmd->nvmeq = nvmeq;
312 return 0;
313}
314
315static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
316 nvme_completion_fn handler)
317{
318 cmd->fn = handler;
319 cmd->ctx = ctx;
320 cmd->aborted = 0;
c917dfe5 321 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
322}
323
ac3dd5bd
JA
324static void *iod_get_private(struct nvme_iod *iod)
325{
326 return (void *) (iod->private & ~0x1UL);
327}
328
329/*
330 * If bit 0 is set, the iod is embedded in the request payload.
331 */
332static bool iod_should_kfree(struct nvme_iod *iod)
333{
fda631ff 334 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
335}
336
c2f5b650
MW
337/* Special values must be less than 0x1000 */
338#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
339#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
340#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
341#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 342
edd10d33 343static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
344 struct nvme_completion *cqe)
345{
346 if (ctx == CMD_CTX_CANCELLED)
347 return;
c2f5b650 348 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 349 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
350 "completed id %d twice on queue %d\n",
351 cqe->command_id, le16_to_cpup(&cqe->sq_id));
352 return;
353 }
354 if (ctx == CMD_CTX_INVALID) {
edd10d33 355 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
356 "invalid id %d completed on queue %d\n",
357 cqe->command_id, le16_to_cpup(&cqe->sq_id));
358 return;
359 }
edd10d33 360 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
361}
362
a4aea562 363static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 364{
c2f5b650 365 void *ctx;
b60503ba 366
859361a2 367 if (fn)
a4aea562
MB
368 *fn = cmd->fn;
369 ctx = cmd->ctx;
370 cmd->fn = special_completion;
371 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 372 return ctx;
b60503ba
MW
373}
374
a4aea562
MB
375static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
376 struct nvme_completion *cqe)
3c0cf138 377{
a4aea562
MB
378 u32 result = le32_to_cpup(&cqe->result);
379 u16 status = le16_to_cpup(&cqe->status) >> 1;
380
381 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
1c63dc66 382 ++nvmeq->dev->ctrl.event_limit;
a5768aa8
KB
383 if (status != NVME_SC_SUCCESS)
384 return;
385
386 switch (result & 0xff07) {
387 case NVME_AER_NOTICE_NS_CHANGED:
388 dev_info(nvmeq->q_dmadev, "rescanning\n");
389 schedule_work(&nvmeq->dev->scan_work);
390 default:
391 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
392 }
b60503ba
MW
393}
394
a4aea562
MB
395static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
396 struct nvme_completion *cqe)
5a92e700 397{
a4aea562
MB
398 struct request *req = ctx;
399
400 u16 status = le16_to_cpup(&cqe->status) >> 1;
401 u32 result = le32_to_cpup(&cqe->result);
a51afb54 402
42483228 403 blk_mq_free_request(req);
a51afb54 404
a4aea562 405 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
1c63dc66 406 ++nvmeq->dev->ctrl.abort_limit;
5a92e700
KB
407}
408
a4aea562
MB
409static void async_completion(struct nvme_queue *nvmeq, void *ctx,
410 struct nvme_completion *cqe)
b60503ba 411{
a4aea562
MB
412 struct async_cmd_info *cmdinfo = ctx;
413 cmdinfo->result = le32_to_cpup(&cqe->result);
414 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
415 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
42483228 416 blk_mq_free_request(cmdinfo->req);
b60503ba
MW
417}
418
a4aea562
MB
419static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
420 unsigned int tag)
b60503ba 421{
42483228 422 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
a51afb54 423
a4aea562 424 return blk_mq_rq_to_pdu(req);
4f5099af
KB
425}
426
a4aea562
MB
427/*
428 * Called with local interrupts disabled and the q_lock held. May not sleep.
429 */
430static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
431 nvme_completion_fn *fn)
4f5099af 432{
a4aea562
MB
433 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
434 void *ctx;
435 if (tag >= nvmeq->q_depth) {
436 *fn = special_completion;
437 return CMD_CTX_INVALID;
438 }
439 if (fn)
440 *fn = cmd->fn;
441 ctx = cmd->ctx;
442 cmd->fn = special_completion;
443 cmd->ctx = CMD_CTX_COMPLETED;
444 return ctx;
b60503ba
MW
445}
446
447/**
714a7a22 448 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
449 * @nvmeq: The queue to use
450 * @cmd: The command to send
451 *
452 * Safe to use from interrupt context
453 */
e3f879bf
SB
454static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
455 struct nvme_command *cmd)
b60503ba 456{
a4aea562
MB
457 u16 tail = nvmeq->sq_tail;
458
8ffaadf7
JD
459 if (nvmeq->sq_cmds_io)
460 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
461 else
462 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
463
b60503ba
MW
464 if (++tail == nvmeq->q_depth)
465 tail = 0;
7547881d 466 writel(tail, nvmeq->q_db);
b60503ba 467 nvmeq->sq_tail = tail;
b60503ba
MW
468}
469
e3f879bf 470static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
a4aea562
MB
471{
472 unsigned long flags;
a4aea562 473 spin_lock_irqsave(&nvmeq->q_lock, flags);
e3f879bf 474 __nvme_submit_cmd(nvmeq, cmd);
a4aea562 475 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a4aea562
MB
476}
477
eca18b23 478static __le64 **iod_list(struct nvme_iod *iod)
e025344c 479{
eca18b23 480 return ((void *)iod) + iod->offset;
e025344c
SMM
481}
482
ac3dd5bd
JA
483static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
484 unsigned nseg, unsigned long private)
eca18b23 485{
ac3dd5bd
JA
486 iod->private = private;
487 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
488 iod->npages = -1;
489 iod->length = nbytes;
490 iod->nents = 0;
eca18b23 491}
b60503ba 492
eca18b23 493static struct nvme_iod *
ac3dd5bd
JA
494__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
495 unsigned long priv, gfp_t gfp)
b60503ba 496{
eca18b23 497 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 498 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
499 sizeof(struct scatterlist) * nseg, gfp);
500
ac3dd5bd
JA
501 if (iod)
502 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
503
504 return iod;
b60503ba
MW
505}
506
ac3dd5bd
JA
507static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
508 gfp_t gfp)
509{
510 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
511 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
512 struct nvme_iod *iod;
513
514 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
515 size <= NVME_INT_BYTES(dev)) {
516 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
517
518 iod = cmd->iod;
ac3dd5bd 519 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 520 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
521 return iod;
522 }
523
524 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
525 (unsigned long) rq, gfp);
526}
527
d29ec824 528static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 529{
1d090624 530 const int last_prp = dev->page_size / 8 - 1;
eca18b23
MW
531 int i;
532 __le64 **list = iod_list(iod);
533 dma_addr_t prp_dma = iod->first_dma;
534
535 if (iod->npages == 0)
536 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
537 for (i = 0; i < iod->npages; i++) {
538 __le64 *prp_list = list[i];
539 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
540 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
541 prp_dma = next_prp_dma;
542 }
ac3dd5bd
JA
543
544 if (iod_should_kfree(iod))
545 kfree(iod);
b60503ba
MW
546}
547
b4ff9c8d
KB
548static int nvme_error_status(u16 status)
549{
550 switch (status & 0x7ff) {
551 case NVME_SC_SUCCESS:
552 return 0;
553 case NVME_SC_CAP_EXCEEDED:
554 return -ENOSPC;
555 default:
556 return -EIO;
557 }
558}
559
52b68d7e 560#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
561static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
562{
563 if (be32_to_cpu(pi->ref_tag) == v)
564 pi->ref_tag = cpu_to_be32(p);
565}
566
567static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
568{
569 if (be32_to_cpu(pi->ref_tag) == p)
570 pi->ref_tag = cpu_to_be32(v);
571}
572
573/**
574 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
575 *
576 * The virtual start sector is the one that was originally submitted by the
577 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
578 * start sector may be different. Remap protection information to match the
579 * physical LBA on writes, and back to the original seed on reads.
580 *
581 * Type 0 and 3 do not have a ref tag, so no remapping required.
582 */
583static void nvme_dif_remap(struct request *req,
584 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
585{
586 struct nvme_ns *ns = req->rq_disk->private_data;
587 struct bio_integrity_payload *bip;
588 struct t10_pi_tuple *pi;
589 void *p, *pmap;
590 u32 i, nlb, ts, phys, virt;
591
592 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
593 return;
594
595 bip = bio_integrity(req->bio);
596 if (!bip)
597 return;
598
599 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
600
601 p = pmap;
602 virt = bip_get_seed(bip);
603 phys = nvme_block_nr(ns, blk_rq_pos(req));
604 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 605 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
606
607 for (i = 0; i < nlb; i++, virt++, phys++) {
608 pi = (struct t10_pi_tuple *)p;
609 dif_swap(phys, virt, pi);
610 p += ts;
611 }
612 kunmap_atomic(pmap);
613}
614
52b68d7e
KB
615static void nvme_init_integrity(struct nvme_ns *ns)
616{
617 struct blk_integrity integrity;
618
619 switch (ns->pi_type) {
620 case NVME_NS_DPS_PI_TYPE3:
0f8087ec 621 integrity.profile = &t10_pi_type3_crc;
52b68d7e
KB
622 break;
623 case NVME_NS_DPS_PI_TYPE1:
624 case NVME_NS_DPS_PI_TYPE2:
0f8087ec 625 integrity.profile = &t10_pi_type1_crc;
52b68d7e
KB
626 break;
627 default:
4125a09b 628 integrity.profile = NULL;
52b68d7e
KB
629 break;
630 }
631 integrity.tuple_size = ns->ms;
632 blk_integrity_register(ns->disk, &integrity);
633 blk_queue_max_integrity_segments(ns->queue, 1);
634}
635#else /* CONFIG_BLK_DEV_INTEGRITY */
636static void nvme_dif_remap(struct request *req,
637 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
638{
639}
640static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
641{
642}
643static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
644{
645}
646static void nvme_init_integrity(struct nvme_ns *ns)
647{
648}
649#endif
650
a4aea562 651static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
652 struct nvme_completion *cqe)
653{
eca18b23 654 struct nvme_iod *iod = ctx;
ac3dd5bd 655 struct request *req = iod_get_private(iod);
a4aea562 656 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
b60503ba 657 u16 status = le16_to_cpup(&cqe->status) >> 1;
0dfc70c3 658 bool requeue = false;
81c04b94 659 int error = 0;
b60503ba 660
edd10d33 661 if (unlikely(status)) {
a4aea562
MB
662 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
663 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
664 unsigned long flags;
665
0dfc70c3 666 requeue = true;
a4aea562 667 blk_mq_requeue_request(req);
c9d3bf88
KB
668 spin_lock_irqsave(req->q->queue_lock, flags);
669 if (!blk_queue_stopped(req->q))
670 blk_mq_kick_requeue_list(req->q);
671 spin_unlock_irqrestore(req->q->queue_lock, flags);
0dfc70c3 672 goto release_iod;
edd10d33 673 }
f4829a9b 674
d29ec824 675 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
17188bb4 676 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
81c04b94
CH
677 error = -EINTR;
678 else
679 error = status;
d29ec824 680 } else {
81c04b94 681 error = nvme_error_status(status);
d29ec824 682 }
f4829a9b
CH
683 }
684
a0a931d6
KB
685 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
686 u32 result = le32_to_cpup(&cqe->result);
687 req->special = (void *)(uintptr_t)result;
688 }
a4aea562
MB
689
690 if (cmd_rq->aborted)
e75ec752 691 dev_warn(nvmeq->dev->dev,
a4aea562 692 "completing aborted command with status:%04x\n",
81c04b94 693 error);
a4aea562 694
0dfc70c3 695release_iod:
e1e5e564 696 if (iod->nents) {
e75ec752 697 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
a4aea562 698 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
e1e5e564
KB
699 if (blk_integrity_rq(req)) {
700 if (!rq_data_dir(req))
701 nvme_dif_remap(req, nvme_dif_complete);
e75ec752 702 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
e1e5e564
KB
703 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
704 }
705 }
edd10d33 706 nvme_free_iod(nvmeq->dev, iod);
3291fa57 707
0dfc70c3
KB
708 if (likely(!requeue))
709 blk_mq_complete_request(req, error);
b60503ba
MW
710}
711
69d2b571
CH
712static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
713 int total_len)
ff22b54f 714{
99802a7a 715 struct dma_pool *pool;
eca18b23
MW
716 int length = total_len;
717 struct scatterlist *sg = iod->sg;
ff22b54f
MW
718 int dma_len = sg_dma_len(sg);
719 u64 dma_addr = sg_dma_address(sg);
f137e0f1
MI
720 u32 page_size = dev->page_size;
721 int offset = dma_addr & (page_size - 1);
e025344c 722 __le64 *prp_list;
eca18b23 723 __le64 **list = iod_list(iod);
e025344c 724 dma_addr_t prp_dma;
eca18b23 725 int nprps, i;
ff22b54f 726
1d090624 727 length -= (page_size - offset);
ff22b54f 728 if (length <= 0)
69d2b571 729 return true;
ff22b54f 730
1d090624 731 dma_len -= (page_size - offset);
ff22b54f 732 if (dma_len) {
1d090624 733 dma_addr += (page_size - offset);
ff22b54f
MW
734 } else {
735 sg = sg_next(sg);
736 dma_addr = sg_dma_address(sg);
737 dma_len = sg_dma_len(sg);
738 }
739
1d090624 740 if (length <= page_size) {
edd10d33 741 iod->first_dma = dma_addr;
69d2b571 742 return true;
e025344c
SMM
743 }
744
1d090624 745 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
746 if (nprps <= (256 / 8)) {
747 pool = dev->prp_small_pool;
eca18b23 748 iod->npages = 0;
99802a7a
MW
749 } else {
750 pool = dev->prp_page_pool;
eca18b23 751 iod->npages = 1;
99802a7a
MW
752 }
753
69d2b571 754 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 755 if (!prp_list) {
edd10d33 756 iod->first_dma = dma_addr;
eca18b23 757 iod->npages = -1;
69d2b571 758 return false;
b77954cb 759 }
eca18b23
MW
760 list[0] = prp_list;
761 iod->first_dma = prp_dma;
e025344c
SMM
762 i = 0;
763 for (;;) {
1d090624 764 if (i == page_size >> 3) {
e025344c 765 __le64 *old_prp_list = prp_list;
69d2b571 766 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 767 if (!prp_list)
69d2b571 768 return false;
eca18b23 769 list[iod->npages++] = prp_list;
7523d834
MW
770 prp_list[0] = old_prp_list[i - 1];
771 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
772 i = 1;
e025344c
SMM
773 }
774 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
775 dma_len -= page_size;
776 dma_addr += page_size;
777 length -= page_size;
e025344c
SMM
778 if (length <= 0)
779 break;
780 if (dma_len > 0)
781 continue;
782 BUG_ON(dma_len < 0);
783 sg = sg_next(sg);
784 dma_addr = sg_dma_address(sg);
785 dma_len = sg_dma_len(sg);
ff22b54f
MW
786 }
787
69d2b571 788 return true;
ff22b54f
MW
789}
790
d29ec824
CH
791static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
792 struct nvme_iod *iod)
793{
498c4394 794 struct nvme_command cmnd;
d29ec824 795
498c4394
JD
796 memcpy(&cmnd, req->cmd, sizeof(cmnd));
797 cmnd.rw.command_id = req->tag;
d29ec824 798 if (req->nr_phys_segments) {
498c4394
JD
799 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
800 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
d29ec824
CH
801 }
802
498c4394 803 __nvme_submit_cmd(nvmeq, &cmnd);
d29ec824
CH
804}
805
a4aea562
MB
806/*
807 * We reuse the small pool to allocate the 16-byte range here as it is not
808 * worth having a special pool for these or additional cases to handle freeing
809 * the iod.
810 */
811static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
812 struct request *req, struct nvme_iod *iod)
0e5e4f0e 813{
edd10d33
KB
814 struct nvme_dsm_range *range =
815 (struct nvme_dsm_range *)iod_list(iod)[0];
498c4394 816 struct nvme_command cmnd;
0e5e4f0e 817
0e5e4f0e 818 range->cattr = cpu_to_le32(0);
a4aea562
MB
819 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
820 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 821
498c4394
JD
822 memset(&cmnd, 0, sizeof(cmnd));
823 cmnd.dsm.opcode = nvme_cmd_dsm;
824 cmnd.dsm.command_id = req->tag;
825 cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
826 cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
827 cmnd.dsm.nr = 0;
828 cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
0e5e4f0e 829
498c4394 830 __nvme_submit_cmd(nvmeq, &cmnd);
0e5e4f0e
KB
831}
832
a4aea562 833static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
00df5cb4
MW
834 int cmdid)
835{
498c4394 836 struct nvme_command cmnd;
00df5cb4 837
498c4394
JD
838 memset(&cmnd, 0, sizeof(cmnd));
839 cmnd.common.opcode = nvme_cmd_flush;
840 cmnd.common.command_id = cmdid;
841 cmnd.common.nsid = cpu_to_le32(ns->ns_id);
00df5cb4 842
498c4394 843 __nvme_submit_cmd(nvmeq, &cmnd);
00df5cb4
MW
844}
845
a4aea562
MB
846static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
847 struct nvme_ns *ns)
b60503ba 848{
ac3dd5bd 849 struct request *req = iod_get_private(iod);
498c4394 850 struct nvme_command cmnd;
a4aea562
MB
851 u16 control = 0;
852 u32 dsmgmt = 0;
00df5cb4 853
a4aea562 854 if (req->cmd_flags & REQ_FUA)
b60503ba 855 control |= NVME_RW_FUA;
a4aea562 856 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
b60503ba
MW
857 control |= NVME_RW_LR;
858
a4aea562 859 if (req->cmd_flags & REQ_RAHEAD)
b60503ba
MW
860 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
861
498c4394
JD
862 memset(&cmnd, 0, sizeof(cmnd));
863 cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
864 cmnd.rw.command_id = req->tag;
865 cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
866 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
867 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
868 cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
869 cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
b60503ba 870
e19b127f 871 if (ns->ms) {
e1e5e564
KB
872 switch (ns->pi_type) {
873 case NVME_NS_DPS_PI_TYPE3:
874 control |= NVME_RW_PRINFO_PRCHK_GUARD;
875 break;
876 case NVME_NS_DPS_PI_TYPE1:
877 case NVME_NS_DPS_PI_TYPE2:
878 control |= NVME_RW_PRINFO_PRCHK_GUARD |
879 NVME_RW_PRINFO_PRCHK_REF;
498c4394 880 cmnd.rw.reftag = cpu_to_le32(
e1e5e564
KB
881 nvme_block_nr(ns, blk_rq_pos(req)));
882 break;
883 }
e19b127f
AP
884 if (blk_integrity_rq(req))
885 cmnd.rw.metadata =
886 cpu_to_le64(sg_dma_address(iod->meta_sg));
887 else
888 control |= NVME_RW_PRINFO_PRACT;
889 }
e1e5e564 890
498c4394
JD
891 cmnd.rw.control = cpu_to_le16(control);
892 cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 893
498c4394 894 __nvme_submit_cmd(nvmeq, &cmnd);
b60503ba 895
1974b1ae 896 return 0;
edd10d33
KB
897}
898
d29ec824
CH
899/*
900 * NOTE: ns is NULL when called on the admin queue.
901 */
a4aea562
MB
902static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
903 const struct blk_mq_queue_data *bd)
edd10d33 904{
a4aea562
MB
905 struct nvme_ns *ns = hctx->queue->queuedata;
906 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 907 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
908 struct request *req = bd->rq;
909 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 910 struct nvme_iod *iod;
a4aea562 911 enum dma_data_direction dma_dir;
edd10d33 912
e1e5e564
KB
913 /*
914 * If formated with metadata, require the block layer provide a buffer
915 * unless this namespace is formated such that the metadata can be
916 * stripped/generated by the controller with PRACT=1.
917 */
d29ec824 918 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
919 if (!(ns->pi_type && ns->ms == 8) &&
920 req->cmd_type != REQ_TYPE_DRV_PRIV) {
f4829a9b 921 blk_mq_complete_request(req, -EFAULT);
e1e5e564
KB
922 return BLK_MQ_RQ_QUEUE_OK;
923 }
924 }
925
d29ec824 926 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 927 if (!iod)
fe54303e 928 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 929
a4aea562 930 if (req->cmd_flags & REQ_DISCARD) {
edd10d33
KB
931 void *range;
932 /*
933 * We reuse the small pool to allocate the 16-byte range here
934 * as it is not worth having a special pool for these or
935 * additional cases to handle freeing the iod.
936 */
d29ec824 937 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
edd10d33 938 &iod->first_dma);
a4aea562 939 if (!range)
fe54303e 940 goto retry_cmd;
edd10d33
KB
941 iod_list(iod)[0] = (__le64 *)range;
942 iod->npages = 0;
ac3dd5bd 943 } else if (req->nr_phys_segments) {
a4aea562
MB
944 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
945
ac3dd5bd 946 sg_init_table(iod->sg, req->nr_phys_segments);
a4aea562 947 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
fe54303e
JA
948 if (!iod->nents)
949 goto error_cmd;
a4aea562
MB
950
951 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
fe54303e 952 goto retry_cmd;
a4aea562 953
69d2b571 954 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req))) {
d29ec824 955 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
fe54303e
JA
956 goto retry_cmd;
957 }
e1e5e564 958 if (blk_integrity_rq(req)) {
bf508e91
CH
959 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1) {
960 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
961 dma_dir);
e1e5e564 962 goto error_cmd;
bf508e91 963 }
e1e5e564
KB
964
965 sg_init_table(iod->meta_sg, 1);
966 if (blk_rq_map_integrity_sg(
bf508e91
CH
967 req->q, req->bio, iod->meta_sg) != 1) {
968 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
969 dma_dir);
e1e5e564 970 goto error_cmd;
bf508e91 971 }
e1e5e564
KB
972
973 if (rq_data_dir(req))
974 nvme_dif_remap(req, nvme_dif_prep);
975
bf508e91
CH
976 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir)) {
977 dma_unmap_sg(dev->dev, iod->sg, iod->nents,
978 dma_dir);
e1e5e564 979 goto error_cmd;
bf508e91 980 }
e1e5e564 981 }
edd10d33 982 }
1974b1ae 983
9af8785a 984 nvme_set_info(cmd, iod, req_completion);
a4aea562 985 spin_lock_irq(&nvmeq->q_lock);
d29ec824
CH
986 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
987 nvme_submit_priv(nvmeq, req, iod);
988 else if (req->cmd_flags & REQ_DISCARD)
a4aea562
MB
989 nvme_submit_discard(nvmeq, ns, req, iod);
990 else if (req->cmd_flags & REQ_FLUSH)
991 nvme_submit_flush(nvmeq, ns, req->tag);
992 else
993 nvme_submit_iod(nvmeq, iod, ns);
994
995 nvme_process_cq(nvmeq);
996 spin_unlock_irq(&nvmeq->q_lock);
997 return BLK_MQ_RQ_QUEUE_OK;
998
fe54303e 999 error_cmd:
d29ec824 1000 nvme_free_iod(dev, iod);
fe54303e
JA
1001 return BLK_MQ_RQ_QUEUE_ERROR;
1002 retry_cmd:
d29ec824 1003 nvme_free_iod(dev, iod);
fe54303e 1004 return BLK_MQ_RQ_QUEUE_BUSY;
b60503ba
MW
1005}
1006
a0fa9647 1007static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 1008{
82123460 1009 u16 head, phase;
b60503ba 1010
b60503ba 1011 head = nvmeq->cq_head;
82123460 1012 phase = nvmeq->cq_phase;
b60503ba
MW
1013
1014 for (;;) {
c2f5b650
MW
1015 void *ctx;
1016 nvme_completion_fn fn;
b60503ba 1017 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 1018 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
1019 break;
1020 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
1021 if (++head == nvmeq->q_depth) {
1022 head = 0;
82123460 1023 phase = !phase;
b60503ba 1024 }
a0fa9647
JA
1025 if (tag && *tag == cqe.command_id)
1026 *tag = -1;
a4aea562 1027 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 1028 fn(nvmeq, ctx, &cqe);
b60503ba
MW
1029 }
1030
1031 /* If the controller ignores the cq head doorbell and continuously
1032 * writes to the queue, it is theoretically possible to wrap around
1033 * the queue twice and mistakenly return IRQ_NONE. Linux only
1034 * requires that 0.1% of your interrupts are handled, so this isn't
1035 * a big problem.
1036 */
82123460 1037 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 1038 return;
b60503ba 1039
604e8c8d
KB
1040 if (likely(nvmeq->cq_vector >= 0))
1041 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 1042 nvmeq->cq_head = head;
82123460 1043 nvmeq->cq_phase = phase;
b60503ba 1044
e9539f47 1045 nvmeq->cqe_seen = 1;
a0fa9647
JA
1046}
1047
1048static void nvme_process_cq(struct nvme_queue *nvmeq)
1049{
1050 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
1051}
1052
1053static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
1054{
1055 irqreturn_t result;
1056 struct nvme_queue *nvmeq = data;
1057 spin_lock(&nvmeq->q_lock);
e9539f47
MW
1058 nvme_process_cq(nvmeq);
1059 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
1060 nvmeq->cqe_seen = 0;
58ffacb5
MW
1061 spin_unlock(&nvmeq->q_lock);
1062 return result;
1063}
1064
1065static irqreturn_t nvme_irq_check(int irq, void *data)
1066{
1067 struct nvme_queue *nvmeq = data;
1068 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
1069 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
1070 return IRQ_NONE;
1071 return IRQ_WAKE_THREAD;
1072}
1073
a0fa9647
JA
1074static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1075{
1076 struct nvme_queue *nvmeq = hctx->driver_data;
1077
1078 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
1079 nvmeq->cq_phase) {
1080 spin_lock_irq(&nvmeq->q_lock);
1081 __nvme_process_cq(nvmeq, &tag);
1082 spin_unlock_irq(&nvmeq->q_lock);
1083
1084 if (tag == -1)
1085 return 1;
1086 }
1087
1088 return 0;
1089}
1090
a4aea562
MB
1091static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1092{
1093 struct nvme_queue *nvmeq = dev->queues[0];
1094 struct nvme_command c;
1095 struct nvme_cmd_info *cmd_info;
1096 struct request *req;
1097
1c63dc66 1098 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 1099 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
9f173b33
DC
1100 if (IS_ERR(req))
1101 return PTR_ERR(req);
a4aea562 1102
c917dfe5 1103 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 1104 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 1105 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
1106
1107 memset(&c, 0, sizeof(c));
1108 c.common.opcode = nvme_admin_async_event;
1109 c.common.command_id = req->tag;
1110
42483228 1111 blk_mq_free_request(req);
e3f879bf
SB
1112 __nvme_submit_cmd(nvmeq, &c);
1113 return 0;
a4aea562
MB
1114}
1115
1116static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
1117 struct nvme_command *cmd,
1118 struct async_cmd_info *cmdinfo, unsigned timeout)
1119{
a4aea562
MB
1120 struct nvme_queue *nvmeq = dev->queues[0];
1121 struct request *req;
1122 struct nvme_cmd_info *cmd_rq;
4d115420 1123
1c63dc66 1124 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
9f173b33
DC
1125 if (IS_ERR(req))
1126 return PTR_ERR(req);
a4aea562
MB
1127
1128 req->timeout = timeout;
1129 cmd_rq = blk_mq_rq_to_pdu(req);
1130 cmdinfo->req = req;
1131 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1132 cmdinfo->status = -EINTR;
a4aea562
MB
1133
1134 cmd->common.command_id = req->tag;
1135
e3f879bf
SB
1136 nvme_submit_cmd(nvmeq, cmd);
1137 return 0;
4d115420
KB
1138}
1139
b60503ba
MW
1140static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1141{
b60503ba
MW
1142 struct nvme_command c;
1143
1144 memset(&c, 0, sizeof(c));
1145 c.delete_queue.opcode = opcode;
1146 c.delete_queue.qid = cpu_to_le16(id);
1147
1c63dc66 1148 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1149}
1150
1151static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1152 struct nvme_queue *nvmeq)
1153{
b60503ba
MW
1154 struct nvme_command c;
1155 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1156
d29ec824
CH
1157 /*
1158 * Note: we (ab)use the fact the the prp fields survive if no data
1159 * is attached to the request.
1160 */
b60503ba
MW
1161 memset(&c, 0, sizeof(c));
1162 c.create_cq.opcode = nvme_admin_create_cq;
1163 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1164 c.create_cq.cqid = cpu_to_le16(qid);
1165 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1166 c.create_cq.cq_flags = cpu_to_le16(flags);
1167 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1168
1c63dc66 1169 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1170}
1171
1172static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1173 struct nvme_queue *nvmeq)
1174{
b60503ba
MW
1175 struct nvme_command c;
1176 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1177
d29ec824
CH
1178 /*
1179 * Note: we (ab)use the fact the the prp fields survive if no data
1180 * is attached to the request.
1181 */
b60503ba
MW
1182 memset(&c, 0, sizeof(c));
1183 c.create_sq.opcode = nvme_admin_create_sq;
1184 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1185 c.create_sq.sqid = cpu_to_le16(qid);
1186 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1187 c.create_sq.sq_flags = cpu_to_le16(flags);
1188 c.create_sq.cqid = cpu_to_le16(qid);
1189
1c63dc66 1190 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1191}
1192
1193static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1194{
1195 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1196}
1197
1198static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1199{
1200 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1201}
1202
c30341dc 1203/**
a4aea562 1204 * nvme_abort_req - Attempt aborting a request
c30341dc
KB
1205 *
1206 * Schedule controller reset if the command was already aborted once before and
1207 * still hasn't been returned to the driver, or if this is the admin queue.
1208 */
a4aea562 1209static void nvme_abort_req(struct request *req)
c30341dc 1210{
a4aea562
MB
1211 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1212 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1213 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1214 struct request *abort_req;
1215 struct nvme_cmd_info *abort_cmd;
1216 struct nvme_command cmd;
c30341dc 1217
a4aea562 1218 if (!nvmeq->qid || cmd_rq->aborted) {
90667892
CH
1219 spin_lock(&dev_list_lock);
1220 if (!__nvme_reset(dev)) {
1221 dev_warn(dev->dev,
1222 "I/O %d QID %d timeout, reset controller\n",
1223 req->tag, nvmeq->qid);
1224 }
1225 spin_unlock(&dev_list_lock);
c30341dc
KB
1226 return;
1227 }
1228
1c63dc66 1229 if (!dev->ctrl.abort_limit)
c30341dc
KB
1230 return;
1231
1c63dc66 1232 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 1233 BLK_MQ_REQ_NOWAIT);
9f173b33 1234 if (IS_ERR(abort_req))
c30341dc
KB
1235 return;
1236
a4aea562
MB
1237 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1238 nvme_set_info(abort_cmd, abort_req, abort_completion);
1239
c30341dc
KB
1240 memset(&cmd, 0, sizeof(cmd));
1241 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1242 cmd.abort.cid = req->tag;
c30341dc 1243 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1244 cmd.abort.command_id = abort_req->tag;
c30341dc 1245
1c63dc66 1246 --dev->ctrl.abort_limit;
a4aea562 1247 cmd_rq->aborted = 1;
c30341dc 1248
a4aea562 1249 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
c30341dc 1250 nvmeq->qid);
e3f879bf 1251 nvme_submit_cmd(dev->queues[0], &cmd);
c30341dc
KB
1252}
1253
42483228 1254static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1255{
a4aea562
MB
1256 struct nvme_queue *nvmeq = data;
1257 void *ctx;
1258 nvme_completion_fn fn;
1259 struct nvme_cmd_info *cmd;
cef6a948
KB
1260 struct nvme_completion cqe;
1261
1262 if (!blk_mq_request_started(req))
1263 return;
a09115b2 1264
a4aea562 1265 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1266
a4aea562
MB
1267 if (cmd->ctx == CMD_CTX_CANCELLED)
1268 return;
1269
cef6a948
KB
1270 if (blk_queue_dying(req->q))
1271 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1272 else
1273 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1274
1275
a4aea562
MB
1276 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1277 req->tag, nvmeq->qid);
1278 ctx = cancel_cmd_info(cmd, &fn);
1279 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1280}
1281
a4aea562 1282static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
9e866774 1283{
a4aea562
MB
1284 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1285 struct nvme_queue *nvmeq = cmd->nvmeq;
1286
1287 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1288 nvmeq->qid);
7a509a6b 1289 spin_lock_irq(&nvmeq->q_lock);
07836e65 1290 nvme_abort_req(req);
7a509a6b 1291 spin_unlock_irq(&nvmeq->q_lock);
a4aea562 1292
07836e65
KB
1293 /*
1294 * The aborted req will be completed on receiving the abort req.
1295 * We enable the timer again. If hit twice, it'll cause a device reset,
1296 * as the device then is in a faulty state.
1297 */
1298 return BLK_EH_RESET_TIMER;
a4aea562 1299}
22404274 1300
a4aea562
MB
1301static void nvme_free_queue(struct nvme_queue *nvmeq)
1302{
9e866774
MW
1303 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1304 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1305 if (nvmeq->sq_cmds)
1306 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1307 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1308 kfree(nvmeq);
1309}
1310
a1a5ef99 1311static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1312{
1313 int i;
1314
a1a5ef99 1315 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1316 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1317 dev->queue_count--;
a4aea562 1318 dev->queues[i] = NULL;
f435c282 1319 nvme_free_queue(nvmeq);
121c7ad4 1320 }
22404274
KB
1321}
1322
4d115420
KB
1323/**
1324 * nvme_suspend_queue - put queue into suspended state
1325 * @nvmeq - queue to suspend
4d115420
KB
1326 */
1327static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1328{
2b25d981 1329 int vector;
b60503ba 1330
a09115b2 1331 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1332 if (nvmeq->cq_vector == -1) {
1333 spin_unlock_irq(&nvmeq->q_lock);
1334 return 1;
1335 }
1336 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1337 nvmeq->dev->online_queues--;
2b25d981 1338 nvmeq->cq_vector = -1;
a09115b2
MW
1339 spin_unlock_irq(&nvmeq->q_lock);
1340
1c63dc66
CH
1341 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1342 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1343
aba2080f
MW
1344 irq_set_affinity_hint(vector, NULL);
1345 free_irq(vector, nvmeq);
b60503ba 1346
4d115420
KB
1347 return 0;
1348}
b60503ba 1349
4d115420
KB
1350static void nvme_clear_queue(struct nvme_queue *nvmeq)
1351{
22404274 1352 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1353 if (nvmeq->tags && *nvmeq->tags)
1354 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1355 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1356}
1357
4d115420
KB
1358static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1359{
a4aea562 1360 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1361
1362 if (!nvmeq)
1363 return;
1364 if (nvme_suspend_queue(nvmeq))
1365 return;
1366
0e53d180
KB
1367 /* Don't tell the adapter to delete the admin queue.
1368 * Don't tell a removed adapter to delete IO queues. */
7a67cbea 1369 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
b60503ba
MW
1370 adapter_delete_sq(dev, qid);
1371 adapter_delete_cq(dev, qid);
1372 }
07836e65
KB
1373
1374 spin_lock_irq(&nvmeq->q_lock);
1375 nvme_process_cq(nvmeq);
1376 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1377}
1378
8ffaadf7
JD
1379static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1380 int entry_size)
1381{
1382 int q_depth = dev->q_depth;
1383 unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1384
1385 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99
JD
1386 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1387 mem_per_q = round_down(mem_per_q, dev->page_size);
1388 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1389
1390 /*
1391 * Ensure the reduced q_depth is above some threshold where it
1392 * would be better to map queues in system memory with the
1393 * original depth
1394 */
1395 if (q_depth < 64)
1396 return -ENOMEM;
1397 }
1398
1399 return q_depth;
1400}
1401
1402static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1403 int qid, int depth)
1404{
1405 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1406 unsigned offset = (qid - 1) *
1407 roundup(SQ_SIZE(depth), dev->page_size);
1408 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1409 nvmeq->sq_cmds_io = dev->cmb + offset;
1410 } else {
1411 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1412 &nvmeq->sq_dma_addr, GFP_KERNEL);
1413 if (!nvmeq->sq_cmds)
1414 return -ENOMEM;
1415 }
1416
1417 return 0;
1418}
1419
b60503ba 1420static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1421 int depth)
b60503ba 1422{
a4aea562 1423 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1424 if (!nvmeq)
1425 return NULL;
1426
e75ec752 1427 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1428 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1429 if (!nvmeq->cqes)
1430 goto free_nvmeq;
b60503ba 1431
8ffaadf7 1432 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1433 goto free_cqdma;
1434
e75ec752 1435 nvmeq->q_dmadev = dev->dev;
091b6092 1436 nvmeq->dev = dev;
3193f07b 1437 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1438 dev->ctrl.instance, qid);
b60503ba
MW
1439 spin_lock_init(&nvmeq->q_lock);
1440 nvmeq->cq_head = 0;
82123460 1441 nvmeq->cq_phase = 1;
b80d5ccc 1442 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1443 nvmeq->q_depth = depth;
c30341dc 1444 nvmeq->qid = qid;
758dd7fd 1445 nvmeq->cq_vector = -1;
a4aea562 1446 dev->queues[qid] = nvmeq;
b60503ba 1447
36a7e993
JD
1448 /* make sure queue descriptor is set before queue count, for kthread */
1449 mb();
1450 dev->queue_count++;
1451
b60503ba
MW
1452 return nvmeq;
1453
1454 free_cqdma:
e75ec752 1455 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1456 nvmeq->cq_dma_addr);
1457 free_nvmeq:
1458 kfree(nvmeq);
1459 return NULL;
1460}
1461
3001082c
MW
1462static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1463 const char *name)
1464{
58ffacb5
MW
1465 if (use_threaded_interrupts)
1466 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1467 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1468 name, nvmeq);
3001082c 1469 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1470 IRQF_SHARED, name, nvmeq);
3001082c
MW
1471}
1472
22404274 1473static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1474{
22404274 1475 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1476
7be50e93 1477 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1478 nvmeq->sq_tail = 0;
1479 nvmeq->cq_head = 0;
1480 nvmeq->cq_phase = 1;
b80d5ccc 1481 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1482 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1483 dev->online_queues++;
7be50e93 1484 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1485}
1486
1487static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1488{
1489 struct nvme_dev *dev = nvmeq->dev;
1490 int result;
3f85d50b 1491
2b25d981 1492 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1493 result = adapter_alloc_cq(dev, qid, nvmeq);
1494 if (result < 0)
22404274 1495 return result;
b60503ba
MW
1496
1497 result = adapter_alloc_sq(dev, qid, nvmeq);
1498 if (result < 0)
1499 goto release_cq;
1500
3193f07b 1501 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1502 if (result < 0)
1503 goto release_sq;
1504
22404274 1505 nvme_init_queue(nvmeq, qid);
22404274 1506 return result;
b60503ba
MW
1507
1508 release_sq:
1509 adapter_delete_sq(dev, qid);
1510 release_cq:
1511 adapter_delete_cq(dev, qid);
22404274 1512 return result;
b60503ba
MW
1513}
1514
ba47e386
MW
1515static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1516{
1517 unsigned long timeout;
1518 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1519
1520 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1521
7a67cbea 1522 while ((readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_RDY) != bit) {
ba47e386
MW
1523 msleep(100);
1524 if (fatal_signal_pending(current))
1525 return -EINTR;
1526 if (time_after(jiffies, timeout)) {
e75ec752 1527 dev_err(dev->dev,
27e8166c
MW
1528 "Device not ready; aborting %s\n", enabled ?
1529 "initialisation" : "reset");
ba47e386
MW
1530 return -ENODEV;
1531 }
1532 }
1533
1534 return 0;
1535}
1536
1537/*
1538 * If the device has been passed off to us in an enabled state, just clear
1539 * the enabled bit. The spec says we should set the 'shutdown notification
1540 * bits', but doing so may cause the device to complete commands to the
1541 * admin queue ... and we don't know what memory that might be pointing at!
1542 */
1543static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1544{
01079522
DM
1545 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1546 dev->ctrl_config &= ~NVME_CC_ENABLE;
7a67cbea 1547 writel(dev->ctrl_config, dev->bar + NVME_REG_CC);
44af146a 1548
ba47e386
MW
1549 return nvme_wait_ready(dev, cap, false);
1550}
1551
1552static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1553{
01079522
DM
1554 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1555 dev->ctrl_config |= NVME_CC_ENABLE;
7a67cbea 1556 writel(dev->ctrl_config, dev->bar + NVME_REG_CC);
01079522 1557
ba47e386
MW
1558 return nvme_wait_ready(dev, cap, true);
1559}
1560
1894d8f1
KB
1561static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1562{
1563 unsigned long timeout;
1894d8f1 1564
01079522
DM
1565 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1566 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1567
7a67cbea 1568 writel(dev->ctrl_config, dev->bar + NVME_REG_CC);
1894d8f1 1569
2484f407 1570 timeout = SHUTDOWN_TIMEOUT + jiffies;
7a67cbea 1571 while ((readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_SHST_MASK) !=
1894d8f1
KB
1572 NVME_CSTS_SHST_CMPLT) {
1573 msleep(100);
1574 if (fatal_signal_pending(current))
1575 return -EINTR;
1576 if (time_after(jiffies, timeout)) {
e75ec752 1577 dev_err(dev->dev,
1894d8f1
KB
1578 "Device shutdown incomplete; abort shutdown\n");
1579 return -ENODEV;
1580 }
1581 }
1582
1583 return 0;
1584}
1585
a4aea562 1586static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1587 .queue_rq = nvme_queue_rq,
a4aea562
MB
1588 .map_queue = blk_mq_map_queue,
1589 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1590 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1591 .init_request = nvme_admin_init_request,
1592 .timeout = nvme_timeout,
1593};
1594
1595static struct blk_mq_ops nvme_mq_ops = {
1596 .queue_rq = nvme_queue_rq,
1597 .map_queue = blk_mq_map_queue,
1598 .init_hctx = nvme_init_hctx,
1599 .init_request = nvme_init_request,
1600 .timeout = nvme_timeout,
a0fa9647 1601 .poll = nvme_poll,
a4aea562
MB
1602};
1603
ea191d2f
KB
1604static void nvme_dev_remove_admin(struct nvme_dev *dev)
1605{
1c63dc66
CH
1606 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1607 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1608 blk_mq_free_tag_set(&dev->admin_tagset);
1609 }
1610}
1611
a4aea562
MB
1612static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1613{
1c63dc66 1614 if (!dev->ctrl.admin_q) {
a4aea562
MB
1615 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1616 dev->admin_tagset.nr_hw_queues = 1;
1617 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1618 dev->admin_tagset.reserved_tags = 1;
a4aea562 1619 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1620 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1621 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1622 dev->admin_tagset.driver_data = dev;
1623
1624 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1625 return -ENOMEM;
1626
1c63dc66
CH
1627 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1628 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1629 blk_mq_free_tag_set(&dev->admin_tagset);
1630 return -ENOMEM;
1631 }
1c63dc66 1632 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1633 nvme_dev_remove_admin(dev);
1c63dc66 1634 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1635 return -ENODEV;
1636 }
0fb59cbc 1637 } else
1c63dc66 1638 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
a4aea562
MB
1639
1640 return 0;
1641}
1642
8d85fce7 1643static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1644{
ba47e386 1645 int result;
b60503ba 1646 u32 aqa;
7a67cbea 1647 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba 1648 struct nvme_queue *nvmeq;
c5c9f25b
NA
1649 /*
1650 * default to a 4K page size, with the intention to update this
1651 * path in the future to accomodate architectures with differing
1652 * kernel and IO page sizes.
1653 */
1654 unsigned page_shift = 12;
1d090624 1655 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1d090624
KB
1656
1657 if (page_shift < dev_page_min) {
e75ec752 1658 dev_err(dev->dev,
1d090624
KB
1659 "Minimum device page size (%u) too large for "
1660 "host (%u)\n", 1 << dev_page_min,
1661 1 << page_shift);
1662 return -ENODEV;
1663 }
b60503ba 1664
7a67cbea 1665 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1666 NVME_CAP_NSSRC(cap) : 0;
1667
7a67cbea
CH
1668 if (dev->subsystem &&
1669 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1670 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1671
ba47e386
MW
1672 result = nvme_disable_ctrl(dev, cap);
1673 if (result < 0)
1674 return result;
b60503ba 1675
a4aea562 1676 nvmeq = dev->queues[0];
cd638946 1677 if (!nvmeq) {
2b25d981 1678 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1679 if (!nvmeq)
1680 return -ENOMEM;
cd638946 1681 }
b60503ba
MW
1682
1683 aqa = nvmeq->q_depth - 1;
1684 aqa |= aqa << 16;
1685
1d090624
KB
1686 dev->page_size = 1 << page_shift;
1687
01079522 1688 dev->ctrl_config = NVME_CC_CSS_NVM;
1d090624 1689 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
b60503ba 1690 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1691 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba 1692
7a67cbea
CH
1693 writel(aqa, dev->bar + NVME_REG_AQA);
1694 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1695 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1696
ba47e386 1697 result = nvme_enable_ctrl(dev, cap);
025c557a 1698 if (result)
a4aea562
MB
1699 goto free_nvmeq;
1700
2b25d981 1701 nvmeq->cq_vector = 0;
3193f07b 1702 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1703 if (result) {
1704 nvmeq->cq_vector = -1;
0fb59cbc 1705 goto free_nvmeq;
758dd7fd 1706 }
025c557a 1707
b60503ba 1708 return result;
a4aea562 1709
a4aea562
MB
1710 free_nvmeq:
1711 nvme_free_queues(dev, 0);
1712 return result;
b60503ba
MW
1713}
1714
a53295b6
MW
1715static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1716{
1c63dc66 1717 struct nvme_dev *dev = to_nvme_dev(ns->ctrl);
a53295b6
MW
1718 struct nvme_user_io io;
1719 struct nvme_command c;
d29ec824 1720 unsigned length, meta_len;
a67a9513 1721 int status, write;
a67a9513
KB
1722 dma_addr_t meta_dma = 0;
1723 void *meta = NULL;
fec558b5 1724 void __user *metadata;
a53295b6
MW
1725
1726 if (copy_from_user(&io, uio, sizeof(io)))
1727 return -EFAULT;
6c7d4945
MW
1728
1729 switch (io.opcode) {
1730 case nvme_cmd_write:
1731 case nvme_cmd_read:
6bbf1acd 1732 case nvme_cmd_compare:
6413214c 1733 break;
6c7d4945 1734 default:
6bbf1acd 1735 return -EINVAL;
6c7d4945
MW
1736 }
1737
d29ec824
CH
1738 length = (io.nblocks + 1) << ns->lba_shift;
1739 meta_len = (io.nblocks + 1) * ns->ms;
835da3f9 1740 metadata = (void __user *)(uintptr_t)io.metadata;
d29ec824 1741 write = io.opcode & 1;
a53295b6 1742
71feb364
KB
1743 if (ns->ext) {
1744 length += meta_len;
1745 meta_len = 0;
a67a9513
KB
1746 }
1747 if (meta_len) {
d29ec824
CH
1748 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1749 return -EINVAL;
1750
e75ec752 1751 meta = dma_alloc_coherent(dev->dev, meta_len,
a67a9513 1752 &meta_dma, GFP_KERNEL);
fec558b5 1753
a67a9513
KB
1754 if (!meta) {
1755 status = -ENOMEM;
1756 goto unmap;
1757 }
1758 if (write) {
fec558b5 1759 if (copy_from_user(meta, metadata, meta_len)) {
a67a9513
KB
1760 status = -EFAULT;
1761 goto unmap;
1762 }
1763 }
1764 }
1765
a53295b6
MW
1766 memset(&c, 0, sizeof(c));
1767 c.rw.opcode = io.opcode;
1768 c.rw.flags = io.flags;
6c7d4945 1769 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1770 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1771 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1772 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1773 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1774 c.rw.reftag = cpu_to_le32(io.reftag);
1775 c.rw.apptag = cpu_to_le16(io.apptag);
1776 c.rw.appmask = cpu_to_le16(io.appmask);
a67a9513 1777 c.rw.metadata = cpu_to_le64(meta_dma);
d29ec824
CH
1778
1779 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
835da3f9 1780 (void __user *)(uintptr_t)io.addr, length, NULL, 0);
f410c680 1781 unmap:
a67a9513
KB
1782 if (meta) {
1783 if (status == NVME_SC_SUCCESS && !write) {
fec558b5 1784 if (copy_to_user(metadata, meta, meta_len))
a67a9513
KB
1785 status = -EFAULT;
1786 }
e75ec752 1787 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
f410c680 1788 }
a53295b6
MW
1789 return status;
1790}
1791
1c63dc66 1792static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
a4aea562 1793 struct nvme_passthru_cmd __user *ucmd)
6ee44cdc 1794{
7963e521 1795 struct nvme_passthru_cmd cmd;
6ee44cdc 1796 struct nvme_command c;
d29ec824
CH
1797 unsigned timeout = 0;
1798 int status;
6ee44cdc 1799
6bbf1acd
MW
1800 if (!capable(CAP_SYS_ADMIN))
1801 return -EACCES;
1802 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1803 return -EFAULT;
6ee44cdc
MW
1804
1805 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1806 c.common.opcode = cmd.opcode;
1807 c.common.flags = cmd.flags;
1808 c.common.nsid = cpu_to_le32(cmd.nsid);
1809 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1810 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1811 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1812 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1813 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1814 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1815 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1816 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1817
d29ec824
CH
1818 if (cmd.timeout_ms)
1819 timeout = msecs_to_jiffies(cmd.timeout_ms);
eca18b23 1820
1c63dc66 1821 status = __nvme_submit_sync_cmd(ns ? ns->queue : ctrl->admin_q, &c,
835da3f9 1822 NULL, (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
d29ec824
CH
1823 &cmd.result, timeout);
1824 if (status >= 0) {
1825 if (put_user(cmd.result, &ucmd->result))
1826 return -EFAULT;
6bbf1acd 1827 }
f4f117f6 1828
6ee44cdc
MW
1829 return status;
1830}
1831
81f03fed
JD
1832static int nvme_subsys_reset(struct nvme_dev *dev)
1833{
1834 if (!dev->subsystem)
1835 return -ENOTTY;
1836
7a67cbea 1837 writel(0x4E564D65, dev->bar + NVME_REG_NSSR); /* "NVMe" */
81f03fed
JD
1838 return 0;
1839}
1840
b60503ba
MW
1841static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1842 unsigned long arg)
1843{
1844 struct nvme_ns *ns = bdev->bd_disk->private_data;
1845
1846 switch (cmd) {
6bbf1acd 1847 case NVME_IOCTL_ID:
c3bfe717 1848 force_successful_syscall_return();
6bbf1acd
MW
1849 return ns->ns_id;
1850 case NVME_IOCTL_ADMIN_CMD:
1c63dc66 1851 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
7963e521 1852 case NVME_IOCTL_IO_CMD:
1c63dc66 1853 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
a53295b6
MW
1854 case NVME_IOCTL_SUBMIT_IO:
1855 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1856 case SG_GET_VERSION_NUM:
1857 return nvme_sg_get_version_num((void __user *)arg);
1858 case SG_IO:
1859 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1860 default:
1861 return -ENOTTY;
1862 }
1863}
1864
320a3827
KB
1865#ifdef CONFIG_COMPAT
1866static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1867 unsigned int cmd, unsigned long arg)
1868{
320a3827
KB
1869 switch (cmd) {
1870 case SG_IO:
e179729a 1871 return -ENOIOCTLCMD;
320a3827
KB
1872 }
1873 return nvme_ioctl(bdev, mode, cmd, arg);
1874}
1875#else
1876#define nvme_compat_ioctl NULL
1877#endif
1878
5105aa55 1879static void nvme_free_dev(struct kref *kref);
188c3568
KB
1880static void nvme_free_ns(struct kref *kref)
1881{
1882 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1c63dc66 1883 struct nvme_dev *dev = to_nvme_dev(ns->ctrl);
188c3568 1884
ca064085
MB
1885 if (ns->type == NVME_NS_LIGHTNVM)
1886 nvme_nvm_unregister(ns->queue, ns->disk->disk_name);
1887
188c3568
KB
1888 spin_lock(&dev_list_lock);
1889 ns->disk->private_data = NULL;
1890 spin_unlock(&dev_list_lock);
1891
1c63dc66 1892 kref_put(&dev->kref, nvme_free_dev);
188c3568
KB
1893 put_disk(ns->disk);
1894 kfree(ns);
1895}
1896
9ac27090
KB
1897static int nvme_open(struct block_device *bdev, fmode_t mode)
1898{
9e60352c
KB
1899 int ret = 0;
1900 struct nvme_ns *ns;
9ac27090 1901
9e60352c
KB
1902 spin_lock(&dev_list_lock);
1903 ns = bdev->bd_disk->private_data;
1904 if (!ns)
1905 ret = -ENXIO;
188c3568 1906 else if (!kref_get_unless_zero(&ns->kref))
9e60352c
KB
1907 ret = -ENXIO;
1908 spin_unlock(&dev_list_lock);
1909
1910 return ret;
9ac27090
KB
1911}
1912
9ac27090
KB
1913static void nvme_release(struct gendisk *disk, fmode_t mode)
1914{
1915 struct nvme_ns *ns = disk->private_data;
188c3568 1916 kref_put(&ns->kref, nvme_free_ns);
9ac27090
KB
1917}
1918
4cc09e2d
KB
1919static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1920{
1921 /* some standard values */
1922 geo->heads = 1 << 6;
1923 geo->sectors = 1 << 5;
1924 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1925 return 0;
1926}
1927
e1e5e564
KB
1928static void nvme_config_discard(struct nvme_ns *ns)
1929{
1930 u32 logical_block_size = queue_logical_block_size(ns->queue);
1931 ns->queue->limits.discard_zeroes_data = 0;
1932 ns->queue->limits.discard_alignment = logical_block_size;
1933 ns->queue->limits.discard_granularity = logical_block_size;
2bb4cd5c 1934 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
e1e5e564
KB
1935 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1936}
1937
1b9dbf7f
KB
1938static int nvme_revalidate_disk(struct gendisk *disk)
1939{
1940 struct nvme_ns *ns = disk->private_data;
1c63dc66 1941 struct nvme_dev *dev = to_nvme_dev(ns->ctrl);
1b9dbf7f 1942 struct nvme_id_ns *id;
a67a9513
KB
1943 u8 lbaf, pi_type;
1944 u16 old_ms;
e1e5e564 1945 unsigned short bs;
1b9dbf7f 1946
1c63dc66 1947 if (nvme_identify_ns(&dev->ctrl, ns->ns_id, &id)) {
a5768aa8 1948 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
1c63dc66 1949 dev->ctrl.instance, ns->ns_id);
a5768aa8 1950 return -ENODEV;
1b9dbf7f 1951 }
a5768aa8
KB
1952 if (id->ncap == 0) {
1953 kfree(id);
1954 return -ENODEV;
e1e5e564 1955 }
1b9dbf7f 1956
ca064085
MB
1957 if (nvme_nvm_ns_supported(ns, id) && ns->type != NVME_NS_LIGHTNVM) {
1958 if (nvme_nvm_register(ns->queue, disk->disk_name)) {
1959 dev_warn(dev->dev,
1960 "%s: LightNVM init failure\n", __func__);
1961 kfree(id);
1962 return -ENODEV;
1963 }
1964 ns->type = NVME_NS_LIGHTNVM;
1965 }
1966
e1e5e564
KB
1967 old_ms = ns->ms;
1968 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1b9dbf7f 1969 ns->lba_shift = id->lbaf[lbaf].ds;
e1e5e564 1970 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
a67a9513 1971 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
e1e5e564
KB
1972
1973 /*
1974 * If identify namespace failed, use default 512 byte block size so
1975 * block layer can use before failing read/write for 0 capacity.
1976 */
1977 if (ns->lba_shift == 0)
1978 ns->lba_shift = 9;
1979 bs = 1 << ns->lba_shift;
1980
1981 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1982 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1983 id->dps & NVME_NS_DPS_PI_MASK : 0;
1984
4cfc766e 1985 blk_mq_freeze_queue(disk->queue);
52b68d7e
KB
1986 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1987 ns->ms != old_ms ||
e1e5e564 1988 bs != queue_logical_block_size(disk->queue) ||
a67a9513 1989 (ns->ms && ns->ext)))
e1e5e564
KB
1990 blk_integrity_unregister(disk);
1991
1992 ns->pi_type = pi_type;
1993 blk_queue_logical_block_size(ns->queue, bs);
1994
25520d55 1995 if (ns->ms && !ns->ext)
e1e5e564
KB
1996 nvme_init_integrity(ns);
1997
ca064085
MB
1998 if ((ns->ms && !(ns->ms == 8 && ns->pi_type) &&
1999 !blk_get_integrity(disk)) ||
2000 ns->type == NVME_NS_LIGHTNVM)
e1e5e564
KB
2001 set_capacity(disk, 0);
2002 else
2003 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2004
1c63dc66 2005 if (dev->ctrl.oncs & NVME_CTRL_ONCS_DSM)
e1e5e564 2006 nvme_config_discard(ns);
4cfc766e 2007 blk_mq_unfreeze_queue(disk->queue);
1b9dbf7f 2008
d29ec824 2009 kfree(id);
1b9dbf7f
KB
2010 return 0;
2011}
2012
1d277a63
KB
2013static char nvme_pr_type(enum pr_type type)
2014{
2015 switch (type) {
2016 case PR_WRITE_EXCLUSIVE:
2017 return 1;
2018 case PR_EXCLUSIVE_ACCESS:
2019 return 2;
2020 case PR_WRITE_EXCLUSIVE_REG_ONLY:
2021 return 3;
2022 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2023 return 4;
2024 case PR_WRITE_EXCLUSIVE_ALL_REGS:
2025 return 5;
2026 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2027 return 6;
2028 default:
2029 return 0;
2030 }
2031};
2032
2033static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2034 u64 key, u64 sa_key, u8 op)
2035{
2036 struct nvme_ns *ns = bdev->bd_disk->private_data;
2037 struct nvme_command c;
2038 u8 data[16] = { 0, };
2039
2040 put_unaligned_le64(key, &data[0]);
2041 put_unaligned_le64(sa_key, &data[8]);
2042
2043 memset(&c, 0, sizeof(c));
2044 c.common.opcode = op;
a6dd1020
CH
2045 c.common.nsid = cpu_to_le32(ns->ns_id);
2046 c.common.cdw10[0] = cpu_to_le32(cdw10);
1d277a63
KB
2047
2048 return nvme_submit_sync_cmd(ns->queue, &c, data, 16);
2049}
2050
2051static int nvme_pr_register(struct block_device *bdev, u64 old,
2052 u64 new, unsigned flags)
2053{
2054 u32 cdw10;
2055
2056 if (flags & ~PR_FL_IGNORE_KEY)
2057 return -EOPNOTSUPP;
2058
2059 cdw10 = old ? 2 : 0;
2060 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2061 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2062 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2063}
2064
2065static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2066 enum pr_type type, unsigned flags)
2067{
2068 u32 cdw10;
2069
2070 if (flags & ~PR_FL_IGNORE_KEY)
2071 return -EOPNOTSUPP;
2072
2073 cdw10 = nvme_pr_type(type) << 8;
2074 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2075 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2076}
2077
2078static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2079 enum pr_type type, bool abort)
2080{
2081 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
2082 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2083}
2084
2085static int nvme_pr_clear(struct block_device *bdev, u64 key)
2086{
73fcf4e2 2087 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1d277a63
KB
2088 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
2089}
2090
2091static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2092{
2093 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
2094 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2095}
2096
2097static const struct pr_ops nvme_pr_ops = {
2098 .pr_register = nvme_pr_register,
2099 .pr_reserve = nvme_pr_reserve,
2100 .pr_release = nvme_pr_release,
2101 .pr_preempt = nvme_pr_preempt,
2102 .pr_clear = nvme_pr_clear,
2103};
2104
b60503ba
MW
2105static const struct block_device_operations nvme_fops = {
2106 .owner = THIS_MODULE,
2107 .ioctl = nvme_ioctl,
320a3827 2108 .compat_ioctl = nvme_compat_ioctl,
9ac27090
KB
2109 .open = nvme_open,
2110 .release = nvme_release,
4cc09e2d 2111 .getgeo = nvme_getgeo,
1b9dbf7f 2112 .revalidate_disk= nvme_revalidate_disk,
1d277a63 2113 .pr_ops = &nvme_pr_ops,
b60503ba
MW
2114};
2115
1fa6aead
MW
2116static int nvme_kthread(void *data)
2117{
d4b4ff8e 2118 struct nvme_dev *dev, *next;
1fa6aead
MW
2119
2120 while (!kthread_should_stop()) {
564a232c 2121 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 2122 spin_lock(&dev_list_lock);
d4b4ff8e 2123 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 2124 int i;
7a67cbea 2125 u32 csts = readl(dev->bar + NVME_REG_CSTS);
dfbac8c7
KB
2126
2127 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2128 csts & NVME_CSTS_CFS) {
90667892
CH
2129 if (!__nvme_reset(dev)) {
2130 dev_warn(dev->dev,
2131 "Failed status: %x, reset controller\n",
7a67cbea 2132 readl(dev->bar + NVME_REG_CSTS));
90667892 2133 }
d4b4ff8e
KB
2134 continue;
2135 }
1fa6aead 2136 for (i = 0; i < dev->queue_count; i++) {
a4aea562 2137 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
2138 if (!nvmeq)
2139 continue;
1fa6aead 2140 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 2141 nvme_process_cq(nvmeq);
6fccf938 2142
1c63dc66 2143 while (i == 0 && dev->ctrl.event_limit > 0) {
a4aea562 2144 if (nvme_submit_async_admin_req(dev))
6fccf938 2145 break;
1c63dc66 2146 dev->ctrl.event_limit--;
6fccf938 2147 }
1fa6aead
MW
2148 spin_unlock_irq(&nvmeq->q_lock);
2149 }
2150 }
2151 spin_unlock(&dev_list_lock);
acb7aa0d 2152 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
2153 }
2154 return 0;
2155}
2156
e1e5e564 2157static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
b60503ba
MW
2158{
2159 struct nvme_ns *ns;
2160 struct gendisk *disk;
e75ec752 2161 int node = dev_to_node(dev->dev);
b60503ba 2162
a4aea562 2163 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
b60503ba 2164 if (!ns)
e1e5e564
KB
2165 return;
2166
a4aea562 2167 ns->queue = blk_mq_init_queue(&dev->tagset);
9f173b33 2168 if (IS_ERR(ns->queue))
b60503ba 2169 goto out_free_ns;
4eeb9215
MW
2170 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2171 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1c63dc66 2172 ns->ctrl = &dev->ctrl;
b60503ba
MW
2173 ns->queue->queuedata = ns;
2174
a4aea562 2175 disk = alloc_disk_node(0, node);
b60503ba
MW
2176 if (!disk)
2177 goto out_free_queue;
a4aea562 2178
188c3568 2179 kref_init(&ns->kref);
5aff9382 2180 ns->ns_id = nsid;
b60503ba 2181 ns->disk = disk;
e1e5e564
KB
2182 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2183 list_add_tail(&ns->list, &dev->namespaces);
2184
e9ef4636 2185 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
e824410f 2186 if (dev->max_hw_sectors) {
8fc23e03 2187 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
e824410f 2188 blk_queue_max_segments(ns->queue,
6824c5ef 2189 (dev->max_hw_sectors / (dev->page_size >> 9)) + 1);
e824410f 2190 }
a4aea562
MB
2191 if (dev->stripe_size)
2192 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
1c63dc66 2193 if (dev->ctrl.vwc & NVME_CTRL_VWC_PRESENT)
a7d2ce28 2194 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
03100aad 2195 blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
b60503ba
MW
2196
2197 disk->major = nvme_major;
469071a3 2198 disk->first_minor = 0;
b60503ba
MW
2199 disk->fops = &nvme_fops;
2200 disk->private_data = ns;
2201 disk->queue = ns->queue;
b3fffdef 2202 disk->driverfs_dev = dev->device;
469071a3 2203 disk->flags = GENHD_FL_EXT_DEVT;
1c63dc66 2204 sprintf(disk->disk_name, "nvme%dn%d", dev->ctrl.instance, nsid);
b60503ba 2205
e1e5e564
KB
2206 /*
2207 * Initialize capacity to 0 until we establish the namespace format and
2208 * setup integrity extentions if necessary. The revalidate_disk after
2209 * add_disk allows the driver to register with integrity if the format
2210 * requires it.
2211 */
2212 set_capacity(disk, 0);
a5768aa8
KB
2213 if (nvme_revalidate_disk(ns->disk))
2214 goto out_free_disk;
2215
5105aa55 2216 kref_get(&dev->kref);
ca064085
MB
2217 if (ns->type != NVME_NS_LIGHTNVM) {
2218 add_disk(ns->disk);
2219 if (ns->ms) {
2220 struct block_device *bd = bdget_disk(ns->disk, 0);
2221 if (!bd)
2222 return;
2223 if (blkdev_get(bd, FMODE_READ, NULL)) {
2224 bdput(bd);
2225 return;
2226 }
2227 blkdev_reread_part(bd);
2228 blkdev_put(bd, FMODE_READ);
7bee6074 2229 }
7bee6074 2230 }
e1e5e564 2231 return;
a5768aa8
KB
2232 out_free_disk:
2233 kfree(disk);
2234 list_del(&ns->list);
b60503ba
MW
2235 out_free_queue:
2236 blk_cleanup_queue(ns->queue);
2237 out_free_ns:
2238 kfree(ns);
b60503ba
MW
2239}
2240
2659e57b
CH
2241/*
2242 * Create I/O queues. Failing to create an I/O queue is not an issue,
2243 * we can continue with less than the desired amount of queues, and
2244 * even a controller without I/O queues an still be used to issue
2245 * admin commands. This might be useful to upgrade a buggy firmware
2246 * for example.
2247 */
42f61420
KB
2248static void nvme_create_io_queues(struct nvme_dev *dev)
2249{
a4aea562 2250 unsigned i;
42f61420 2251
a4aea562 2252 for (i = dev->queue_count; i <= dev->max_qid; i++)
2b25d981 2253 if (!nvme_alloc_queue(dev, i, dev->q_depth))
42f61420
KB
2254 break;
2255
a4aea562 2256 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2659e57b
CH
2257 if (nvme_create_queue(dev->queues[i], i)) {
2258 nvme_free_queues(dev, i);
42f61420 2259 break;
2659e57b 2260 }
42f61420
KB
2261}
2262
b3b06812 2263static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
2264{
2265 int status;
2266 u32 result;
b3b06812 2267 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 2268
1c63dc66 2269 status = nvme_set_features(&dev->ctrl, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 2270 &result);
27e8166c
MW
2271 if (status < 0)
2272 return status;
2273 if (status > 0) {
e75ec752 2274 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
badc34d4 2275 return 0;
27e8166c 2276 }
b60503ba
MW
2277 return min(result & 0xffff, result >> 16) + 1;
2278}
2279
8ffaadf7
JD
2280static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2281{
2282 u64 szu, size, offset;
2283 u32 cmbloc;
2284 resource_size_t bar_size;
2285 struct pci_dev *pdev = to_pci_dev(dev->dev);
2286 void __iomem *cmb;
2287 dma_addr_t dma_addr;
2288
2289 if (!use_cmb_sqes)
2290 return NULL;
2291
7a67cbea 2292 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
2293 if (!(NVME_CMB_SZ(dev->cmbsz)))
2294 return NULL;
2295
7a67cbea 2296 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
2297
2298 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2299 size = szu * NVME_CMB_SZ(dev->cmbsz);
2300 offset = szu * NVME_CMB_OFST(cmbloc);
2301 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2302
2303 if (offset > bar_size)
2304 return NULL;
2305
2306 /*
2307 * Controllers may support a CMB size larger than their BAR,
2308 * for example, due to being behind a bridge. Reduce the CMB to
2309 * the reported size of the BAR
2310 */
2311 if (size > bar_size - offset)
2312 size = bar_size - offset;
2313
2314 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2315 cmb = ioremap_wc(dma_addr, size);
2316 if (!cmb)
2317 return NULL;
2318
2319 dev->cmb_dma_addr = dma_addr;
2320 dev->cmb_size = size;
2321 return cmb;
2322}
2323
2324static inline void nvme_release_cmb(struct nvme_dev *dev)
2325{
2326 if (dev->cmb) {
2327 iounmap(dev->cmb);
2328 dev->cmb = NULL;
2329 }
2330}
2331
9d713c2b
KB
2332static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2333{
b80d5ccc 2334 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
2335}
2336
8d85fce7 2337static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2338{
a4aea562 2339 struct nvme_queue *adminq = dev->queues[0];
e75ec752 2340 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 2341 int result, i, vecs, nr_io_queues, size;
b60503ba 2342
42f61420 2343 nr_io_queues = num_possible_cpus();
b348b7d5 2344 result = set_queue_count(dev, nr_io_queues);
badc34d4 2345 if (result <= 0)
1b23484b 2346 return result;
b348b7d5
MW
2347 if (result < nr_io_queues)
2348 nr_io_queues = result;
b60503ba 2349
8ffaadf7
JD
2350 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2351 result = nvme_cmb_qdepth(dev, nr_io_queues,
2352 sizeof(struct nvme_command));
2353 if (result > 0)
2354 dev->q_depth = result;
2355 else
2356 nvme_release_cmb(dev);
2357 }
2358
9d713c2b
KB
2359 size = db_bar_size(dev, nr_io_queues);
2360 if (size > 8192) {
f1938f6e 2361 iounmap(dev->bar);
9d713c2b
KB
2362 do {
2363 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2364 if (dev->bar)
2365 break;
2366 if (!--nr_io_queues)
2367 return -ENOMEM;
2368 size = db_bar_size(dev, nr_io_queues);
2369 } while (1);
7a67cbea 2370 dev->dbs = dev->bar + 4096;
5a92e700 2371 adminq->q_db = dev->dbs;
f1938f6e
MW
2372 }
2373
9d713c2b 2374 /* Deregister the admin queue's interrupt */
3193f07b 2375 free_irq(dev->entry[0].vector, adminq);
9d713c2b 2376
e32efbfc
JA
2377 /*
2378 * If we enable msix early due to not intx, disable it again before
2379 * setting up the full range we need.
2380 */
2381 if (!pdev->irq)
2382 pci_disable_msix(pdev);
2383
be577fab 2384 for (i = 0; i < nr_io_queues; i++)
1b23484b 2385 dev->entry[i].entry = i;
be577fab
AG
2386 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2387 if (vecs < 0) {
2388 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2389 if (vecs < 0) {
2390 vecs = 1;
2391 } else {
2392 for (i = 0; i < vecs; i++)
2393 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
2394 }
2395 }
2396
063a8096
MW
2397 /*
2398 * Should investigate if there's a performance win from allocating
2399 * more queues than interrupt vectors; it might allow the submission
2400 * path to scale better, even if the receive path is limited by the
2401 * number of interrupts.
2402 */
2403 nr_io_queues = vecs;
42f61420 2404 dev->max_qid = nr_io_queues;
063a8096 2405
3193f07b 2406 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
2407 if (result) {
2408 adminq->cq_vector = -1;
22404274 2409 goto free_queues;
758dd7fd 2410 }
1b23484b 2411
cd638946 2412 /* Free previously allocated queues that are no longer usable */
42f61420 2413 nvme_free_queues(dev, nr_io_queues + 1);
a4aea562 2414 nvme_create_io_queues(dev);
9ecdc946 2415
22404274 2416 return 0;
b60503ba 2417
22404274 2418 free_queues:
a1a5ef99 2419 nvme_free_queues(dev, 1);
22404274 2420 return result;
b60503ba
MW
2421}
2422
a5768aa8
KB
2423static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2424{
2425 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2426 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2427
2428 return nsa->ns_id - nsb->ns_id;
2429}
2430
2431static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2432{
2433 struct nvme_ns *ns;
2434
2435 list_for_each_entry(ns, &dev->namespaces, list) {
2436 if (ns->ns_id == nsid)
2437 return ns;
2438 if (ns->ns_id > nsid)
2439 break;
2440 }
2441 return NULL;
2442}
2443
2444static inline bool nvme_io_incapable(struct nvme_dev *dev)
2445{
7a67cbea
CH
2446 return (!dev->bar ||
2447 readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_CFS ||
2448 dev->online_queues < 2);
a5768aa8
KB
2449}
2450
2451static void nvme_ns_remove(struct nvme_ns *ns)
2452{
1c63dc66
CH
2453 bool kill = nvme_io_incapable(to_nvme_dev(ns->ctrl)) &&
2454 !blk_queue_dying(ns->queue);
a5768aa8
KB
2455
2456 if (kill)
2457 blk_set_queue_dying(ns->queue);
9609b994 2458 if (ns->disk->flags & GENHD_FL_UP)
a5768aa8 2459 del_gendisk(ns->disk);
a5768aa8
KB
2460 if (kill || !blk_queue_dying(ns->queue)) {
2461 blk_mq_abort_requeue_list(ns->queue);
2462 blk_cleanup_queue(ns->queue);
5105aa55
KB
2463 }
2464 list_del_init(&ns->list);
2465 kref_put(&ns->kref, nvme_free_ns);
a5768aa8
KB
2466}
2467
2468static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2469{
2470 struct nvme_ns *ns, *next;
2471 unsigned i;
2472
2473 for (i = 1; i <= nn; i++) {
2474 ns = nvme_find_ns(dev, i);
2475 if (ns) {
5105aa55 2476 if (revalidate_disk(ns->disk))
a5768aa8 2477 nvme_ns_remove(ns);
a5768aa8
KB
2478 } else
2479 nvme_alloc_ns(dev, i);
2480 }
2481 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
5105aa55 2482 if (ns->ns_id > nn)
a5768aa8 2483 nvme_ns_remove(ns);
a5768aa8
KB
2484 }
2485 list_sort(NULL, &dev->namespaces, ns_cmp);
2486}
2487
bda4e0fb
KB
2488static void nvme_set_irq_hints(struct nvme_dev *dev)
2489{
2490 struct nvme_queue *nvmeq;
2491 int i;
2492
2493 for (i = 0; i < dev->online_queues; i++) {
2494 nvmeq = dev->queues[i];
2495
2496 if (!nvmeq->tags || !(*nvmeq->tags))
2497 continue;
2498
2499 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2500 blk_mq_tags_cpumask(*nvmeq->tags));
2501 }
2502}
2503
a5768aa8
KB
2504static void nvme_dev_scan(struct work_struct *work)
2505{
2506 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2507 struct nvme_id_ctrl *ctrl;
2508
2509 if (!dev->tagset.tags)
2510 return;
1c63dc66 2511 if (nvme_identify_ctrl(&dev->ctrl, &ctrl))
a5768aa8
KB
2512 return;
2513 nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2514 kfree(ctrl);
bda4e0fb 2515 nvme_set_irq_hints(dev);
a5768aa8
KB
2516}
2517
422ef0c7
MW
2518/*
2519 * Return: error value if an error occurred setting up the queues or calling
2520 * Identify Device. 0 if these succeeded, even if adding some of the
2521 * namespaces failed. At the moment, these failures are silent. TBD which
2522 * failures should be reported.
2523 */
8d85fce7 2524static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2525{
e75ec752 2526 struct pci_dev *pdev = to_pci_dev(dev->dev);
c3bfe717 2527 int res;
51814232 2528 struct nvme_id_ctrl *ctrl;
7a67cbea 2529 int shift = NVME_CAP_MPSMIN(lo_hi_readq(dev->bar + NVME_REG_CAP)) + 12;
b60503ba 2530
1c63dc66 2531 res = nvme_identify_ctrl(&dev->ctrl, &ctrl);
b60503ba 2532 if (res) {
e75ec752 2533 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
e1e5e564 2534 return -EIO;
b60503ba
MW
2535 }
2536
1c63dc66
CH
2537 dev->ctrl.oncs = le16_to_cpup(&ctrl->oncs);
2538 dev->ctrl.abort_limit = ctrl->acl + 1;
2539 dev->ctrl.vwc = ctrl->vwc;
2540 memcpy(dev->ctrl.serial, ctrl->sn, sizeof(ctrl->sn));
2541 memcpy(dev->ctrl.model, ctrl->mn, sizeof(ctrl->mn));
2542 memcpy(dev->ctrl.firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 2543 if (ctrl->mdts)
8fc23e03 2544 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
b12363d0
S
2545 else
2546 dev->max_hw_sectors = UINT_MAX;
68608c26 2547 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
a4aea562
MB
2548 (pdev->device == 0x0953) && ctrl->vs[3]) {
2549 unsigned int max_hw_sectors;
2550
159b67d7 2551 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
a4aea562
MB
2552 max_hw_sectors = dev->stripe_size >> (shift - 9);
2553 if (dev->max_hw_sectors) {
2554 dev->max_hw_sectors = min(max_hw_sectors,
2555 dev->max_hw_sectors);
2556 } else
2557 dev->max_hw_sectors = max_hw_sectors;
2558 }
d29ec824 2559 kfree(ctrl);
a4aea562 2560
ffe7704d
KB
2561 if (!dev->tagset.tags) {
2562 dev->tagset.ops = &nvme_mq_ops;
2563 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2564 dev->tagset.timeout = NVME_IO_TIMEOUT;
2565 dev->tagset.numa_node = dev_to_node(dev->dev);
2566 dev->tagset.queue_depth =
a4aea562 2567 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
2568 dev->tagset.cmd_size = nvme_cmd_size(dev);
2569 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2570 dev->tagset.driver_data = dev;
b60503ba 2571
ffe7704d
KB
2572 if (blk_mq_alloc_tag_set(&dev->tagset))
2573 return 0;
2574 }
a5768aa8 2575 schedule_work(&dev->scan_work);
e1e5e564 2576 return 0;
b60503ba
MW
2577}
2578
0877cb0d
KB
2579static int nvme_dev_map(struct nvme_dev *dev)
2580{
42f61420 2581 u64 cap;
0877cb0d 2582 int bars, result = -ENOMEM;
e75ec752 2583 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2584
2585 if (pci_enable_device_mem(pdev))
2586 return result;
2587
2588 dev->entry[0].vector = pdev->irq;
2589 pci_set_master(pdev);
2590 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
2591 if (!bars)
2592 goto disable_pci;
2593
0877cb0d
KB
2594 if (pci_request_selected_regions(pdev, bars, "nvme"))
2595 goto disable_pci;
2596
e75ec752
CH
2597 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2598 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2599 goto disable;
0877cb0d 2600
0877cb0d
KB
2601 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2602 if (!dev->bar)
2603 goto disable;
e32efbfc 2604
7a67cbea 2605 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180
KB
2606 result = -ENODEV;
2607 goto unmap;
2608 }
e32efbfc
JA
2609
2610 /*
2611 * Some devices don't advertse INTx interrupts, pre-enable a single
2612 * MSIX vec for setup. We'll adjust this later.
2613 */
2614 if (!pdev->irq) {
2615 result = pci_enable_msix(pdev, dev->entry, 1);
2616 if (result < 0)
2617 goto unmap;
2618 }
2619
7a67cbea
CH
2620 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
2621
42f61420
KB
2622 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2623 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea
CH
2624 dev->dbs = dev->bar + 4096;
2625 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 2626 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
2627
2628 return 0;
2629
0e53d180
KB
2630 unmap:
2631 iounmap(dev->bar);
2632 dev->bar = NULL;
0877cb0d
KB
2633 disable:
2634 pci_release_regions(pdev);
2635 disable_pci:
2636 pci_disable_device(pdev);
2637 return result;
2638}
2639
2640static void nvme_dev_unmap(struct nvme_dev *dev)
2641{
e75ec752
CH
2642 struct pci_dev *pdev = to_pci_dev(dev->dev);
2643
2644 if (pdev->msi_enabled)
2645 pci_disable_msi(pdev);
2646 else if (pdev->msix_enabled)
2647 pci_disable_msix(pdev);
0877cb0d
KB
2648
2649 if (dev->bar) {
2650 iounmap(dev->bar);
2651 dev->bar = NULL;
e75ec752 2652 pci_release_regions(pdev);
0877cb0d
KB
2653 }
2654
e75ec752
CH
2655 if (pci_is_enabled(pdev))
2656 pci_disable_device(pdev);
0877cb0d
KB
2657}
2658
4d115420
KB
2659struct nvme_delq_ctx {
2660 struct task_struct *waiter;
2661 struct kthread_worker *worker;
2662 atomic_t refcount;
2663};
2664
2665static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2666{
2667 dq->waiter = current;
2668 mb();
2669
2670 for (;;) {
2671 set_current_state(TASK_KILLABLE);
2672 if (!atomic_read(&dq->refcount))
2673 break;
2674 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2675 fatal_signal_pending(current)) {
0fb59cbc
KB
2676 /*
2677 * Disable the controller first since we can't trust it
2678 * at this point, but leave the admin queue enabled
2679 * until all queue deletion requests are flushed.
2680 * FIXME: This may take a while if there are more h/w
2681 * queues than admin tags.
2682 */
4d115420 2683 set_current_state(TASK_RUNNING);
7a67cbea
CH
2684 nvme_disable_ctrl(dev,
2685 lo_hi_readq(dev->bar + NVME_REG_CAP));
0fb59cbc 2686 nvme_clear_queue(dev->queues[0]);
4d115420 2687 flush_kthread_worker(dq->worker);
0fb59cbc 2688 nvme_disable_queue(dev, 0);
4d115420
KB
2689 return;
2690 }
2691 }
2692 set_current_state(TASK_RUNNING);
2693}
2694
2695static void nvme_put_dq(struct nvme_delq_ctx *dq)
2696{
2697 atomic_dec(&dq->refcount);
2698 if (dq->waiter)
2699 wake_up_process(dq->waiter);
2700}
2701
2702static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2703{
2704 atomic_inc(&dq->refcount);
2705 return dq;
2706}
2707
2708static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2709{
2710 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420 2711 nvme_put_dq(dq);
604e8c8d
KB
2712
2713 spin_lock_irq(&nvmeq->q_lock);
2714 nvme_process_cq(nvmeq);
2715 spin_unlock_irq(&nvmeq->q_lock);
4d115420
KB
2716}
2717
2718static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2719 kthread_work_func_t fn)
2720{
2721 struct nvme_command c;
2722
2723 memset(&c, 0, sizeof(c));
2724 c.delete_queue.opcode = opcode;
2725 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2726
2727 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
2728 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2729 ADMIN_TIMEOUT);
4d115420
KB
2730}
2731
2732static void nvme_del_cq_work_handler(struct kthread_work *work)
2733{
2734 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2735 cmdinfo.work);
2736 nvme_del_queue_end(nvmeq);
2737}
2738
2739static int nvme_delete_cq(struct nvme_queue *nvmeq)
2740{
2741 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2742 nvme_del_cq_work_handler);
2743}
2744
2745static void nvme_del_sq_work_handler(struct kthread_work *work)
2746{
2747 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2748 cmdinfo.work);
2749 int status = nvmeq->cmdinfo.status;
2750
2751 if (!status)
2752 status = nvme_delete_cq(nvmeq);
2753 if (status)
2754 nvme_del_queue_end(nvmeq);
2755}
2756
2757static int nvme_delete_sq(struct nvme_queue *nvmeq)
2758{
2759 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2760 nvme_del_sq_work_handler);
2761}
2762
2763static void nvme_del_queue_start(struct kthread_work *work)
2764{
2765 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2766 cmdinfo.work);
4d115420
KB
2767 if (nvme_delete_sq(nvmeq))
2768 nvme_del_queue_end(nvmeq);
2769}
2770
2771static void nvme_disable_io_queues(struct nvme_dev *dev)
2772{
2773 int i;
2774 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2775 struct nvme_delq_ctx dq;
2776 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1c63dc66 2777 &worker, "nvme%d", dev->ctrl.instance);
4d115420
KB
2778
2779 if (IS_ERR(kworker_task)) {
e75ec752 2780 dev_err(dev->dev,
4d115420
KB
2781 "Failed to create queue del task\n");
2782 for (i = dev->queue_count - 1; i > 0; i--)
2783 nvme_disable_queue(dev, i);
2784 return;
2785 }
2786
2787 dq.waiter = NULL;
2788 atomic_set(&dq.refcount, 0);
2789 dq.worker = &worker;
2790 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2791 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2792
2793 if (nvme_suspend_queue(nvmeq))
2794 continue;
2795 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2796 nvmeq->cmdinfo.worker = dq.worker;
2797 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2798 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2799 }
2800 nvme_wait_dq(&dq, dev);
2801 kthread_stop(kworker_task);
2802}
2803
b9afca3e
DM
2804/*
2805* Remove the node from the device list and check
2806* for whether or not we need to stop the nvme_thread.
2807*/
2808static void nvme_dev_list_remove(struct nvme_dev *dev)
2809{
2810 struct task_struct *tmp = NULL;
2811
2812 spin_lock(&dev_list_lock);
2813 list_del_init(&dev->node);
2814 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2815 tmp = nvme_thread;
2816 nvme_thread = NULL;
2817 }
2818 spin_unlock(&dev_list_lock);
2819
2820 if (tmp)
2821 kthread_stop(tmp);
2822}
2823
c9d3bf88
KB
2824static void nvme_freeze_queues(struct nvme_dev *dev)
2825{
2826 struct nvme_ns *ns;
2827
2828 list_for_each_entry(ns, &dev->namespaces, list) {
2829 blk_mq_freeze_queue_start(ns->queue);
2830
cddcd72b 2831 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2832 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2833 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2834
2835 blk_mq_cancel_requeue_work(ns->queue);
2836 blk_mq_stop_hw_queues(ns->queue);
2837 }
2838}
2839
2840static void nvme_unfreeze_queues(struct nvme_dev *dev)
2841{
2842 struct nvme_ns *ns;
2843
2844 list_for_each_entry(ns, &dev->namespaces, list) {
2845 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2846 blk_mq_unfreeze_queue(ns->queue);
2847 blk_mq_start_stopped_hw_queues(ns->queue, true);
2848 blk_mq_kick_requeue_list(ns->queue);
2849 }
2850}
2851
f0b50732 2852static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2853{
22404274 2854 int i;
7c1b2450 2855 u32 csts = -1;
22404274 2856
b9afca3e 2857 nvme_dev_list_remove(dev);
1fa6aead 2858
c9d3bf88
KB
2859 if (dev->bar) {
2860 nvme_freeze_queues(dev);
7a67cbea 2861 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 2862 }
7c1b2450 2863 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2864 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2865 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2866 nvme_suspend_queue(nvmeq);
4d115420
KB
2867 }
2868 } else {
2869 nvme_disable_io_queues(dev);
1894d8f1 2870 nvme_shutdown_ctrl(dev);
4d115420
KB
2871 nvme_disable_queue(dev, 0);
2872 }
f0b50732 2873 nvme_dev_unmap(dev);
07836e65
KB
2874
2875 for (i = dev->queue_count - 1; i >= 0; i--)
2876 nvme_clear_queue(dev->queues[i]);
f0b50732
KB
2877}
2878
2879static void nvme_dev_remove(struct nvme_dev *dev)
2880{
5105aa55 2881 struct nvme_ns *ns, *next;
f0b50732 2882
5105aa55 2883 list_for_each_entry_safe(ns, next, &dev->namespaces, list)
a5768aa8 2884 nvme_ns_remove(ns);
b60503ba
MW
2885}
2886
091b6092
MW
2887static int nvme_setup_prp_pools(struct nvme_dev *dev)
2888{
e75ec752 2889 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2890 PAGE_SIZE, PAGE_SIZE, 0);
2891 if (!dev->prp_page_pool)
2892 return -ENOMEM;
2893
99802a7a 2894 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2895 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2896 256, 256, 0);
2897 if (!dev->prp_small_pool) {
2898 dma_pool_destroy(dev->prp_page_pool);
2899 return -ENOMEM;
2900 }
091b6092
MW
2901 return 0;
2902}
2903
2904static void nvme_release_prp_pools(struct nvme_dev *dev)
2905{
2906 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2907 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2908}
2909
cd58ad7d
QSA
2910static DEFINE_IDA(nvme_instance_ida);
2911
2912static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 2913{
cd58ad7d
QSA
2914 int instance, error;
2915
2916 do {
2917 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2918 return -ENODEV;
2919
2920 spin_lock(&dev_list_lock);
2921 error = ida_get_new(&nvme_instance_ida, &instance);
2922 spin_unlock(&dev_list_lock);
2923 } while (error == -EAGAIN);
2924
2925 if (error)
2926 return -ENODEV;
2927
1c63dc66 2928 dev->ctrl.instance = instance;
cd58ad7d 2929 return 0;
b60503ba
MW
2930}
2931
2932static void nvme_release_instance(struct nvme_dev *dev)
2933{
cd58ad7d 2934 spin_lock(&dev_list_lock);
1c63dc66 2935 ida_remove(&nvme_instance_ida, dev->ctrl.instance);
cd58ad7d 2936 spin_unlock(&dev_list_lock);
b60503ba
MW
2937}
2938
5e82e952
KB
2939static void nvme_free_dev(struct kref *kref)
2940{
2941 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
9ac27090 2942
e75ec752 2943 put_device(dev->dev);
b3fffdef 2944 put_device(dev->device);
285dffc9 2945 nvme_release_instance(dev);
4af0e21c
KB
2946 if (dev->tagset.tags)
2947 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2948 if (dev->ctrl.admin_q)
2949 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
2950 kfree(dev->queues);
2951 kfree(dev->entry);
2952 kfree(dev);
2953}
2954
2955static int nvme_dev_open(struct inode *inode, struct file *f)
2956{
b3fffdef
KB
2957 struct nvme_dev *dev;
2958 int instance = iminor(inode);
2959 int ret = -ENODEV;
2960
2961 spin_lock(&dev_list_lock);
2962 list_for_each_entry(dev, &dev_list, node) {
1c63dc66
CH
2963 if (dev->ctrl.instance == instance) {
2964 if (!dev->ctrl.admin_q) {
2e1d8448
KB
2965 ret = -EWOULDBLOCK;
2966 break;
2967 }
b3fffdef
KB
2968 if (!kref_get_unless_zero(&dev->kref))
2969 break;
2970 f->private_data = dev;
2971 ret = 0;
2972 break;
2973 }
2974 }
2975 spin_unlock(&dev_list_lock);
2976
2977 return ret;
5e82e952
KB
2978}
2979
2980static int nvme_dev_release(struct inode *inode, struct file *f)
2981{
2982 struct nvme_dev *dev = f->private_data;
2983 kref_put(&dev->kref, nvme_free_dev);
2984 return 0;
2985}
2986
2987static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2988{
2989 struct nvme_dev *dev = f->private_data;
a4aea562
MB
2990 struct nvme_ns *ns;
2991
5e82e952
KB
2992 switch (cmd) {
2993 case NVME_IOCTL_ADMIN_CMD:
1c63dc66 2994 return nvme_user_cmd(&dev->ctrl, NULL, (void __user *)arg);
7963e521 2995 case NVME_IOCTL_IO_CMD:
a4aea562
MB
2996 if (list_empty(&dev->namespaces))
2997 return -ENOTTY;
2998 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
1c63dc66 2999 return nvme_user_cmd(&dev->ctrl, ns, (void __user *)arg);
4cc06521
KB
3000 case NVME_IOCTL_RESET:
3001 dev_warn(dev->dev, "resetting controller\n");
3002 return nvme_reset(dev);
81f03fed
JD
3003 case NVME_IOCTL_SUBSYS_RESET:
3004 return nvme_subsys_reset(dev);
5e82e952
KB
3005 default:
3006 return -ENOTTY;
3007 }
3008}
3009
3010static const struct file_operations nvme_dev_fops = {
3011 .owner = THIS_MODULE,
3012 .open = nvme_dev_open,
3013 .release = nvme_dev_release,
3014 .unlocked_ioctl = nvme_dev_ioctl,
3015 .compat_ioctl = nvme_dev_ioctl,
3016};
3017
3cf519b5 3018static void nvme_probe_work(struct work_struct *work)
f0b50732 3019{
3cf519b5 3020 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
b9afca3e 3021 bool start_thread = false;
3cf519b5 3022 int result;
f0b50732
KB
3023
3024 result = nvme_dev_map(dev);
3025 if (result)
3cf519b5 3026 goto out;
f0b50732
KB
3027
3028 result = nvme_configure_admin_queue(dev);
3029 if (result)
3030 goto unmap;
3031
3032 spin_lock(&dev_list_lock);
b9afca3e
DM
3033 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
3034 start_thread = true;
3035 nvme_thread = NULL;
3036 }
f0b50732
KB
3037 list_add(&dev->node, &dev_list);
3038 spin_unlock(&dev_list_lock);
3039
b9afca3e
DM
3040 if (start_thread) {
3041 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
387caa5a 3042 wake_up_all(&nvme_kthread_wait);
b9afca3e
DM
3043 } else
3044 wait_event_killable(nvme_kthread_wait, nvme_thread);
3045
3046 if (IS_ERR_OR_NULL(nvme_thread)) {
3047 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
3048 goto disable;
3049 }
a4aea562
MB
3050
3051 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
3052 result = nvme_alloc_admin_tags(dev);
3053 if (result)
3054 goto disable;
b9afca3e 3055
f0b50732 3056 result = nvme_setup_io_queues(dev);
badc34d4 3057 if (result)
0fb59cbc 3058 goto free_tags;
f0b50732 3059
1c63dc66 3060 dev->ctrl.event_limit = 1;
3cf519b5 3061
2659e57b
CH
3062 /*
3063 * Keep the controller around but remove all namespaces if we don't have
3064 * any working I/O queue.
3065 */
3cf519b5
CH
3066 if (dev->online_queues < 2) {
3067 dev_warn(dev->dev, "IO queues not created\n");
3cf519b5
CH
3068 nvme_dev_remove(dev);
3069 } else {
3070 nvme_unfreeze_queues(dev);
3071 nvme_dev_add(dev);
3072 }
3073
3074 return;
f0b50732 3075
0fb59cbc
KB
3076 free_tags:
3077 nvme_dev_remove_admin(dev);
1c63dc66
CH
3078 blk_put_queue(dev->ctrl.admin_q);
3079 dev->ctrl.admin_q = NULL;
4af0e21c 3080 dev->queues[0]->tags = NULL;
f0b50732 3081 disable:
a1a5ef99 3082 nvme_disable_queue(dev, 0);
b9afca3e 3083 nvme_dev_list_remove(dev);
f0b50732
KB
3084 unmap:
3085 nvme_dev_unmap(dev);
3cf519b5
CH
3086 out:
3087 if (!work_busy(&dev->reset_work))
3088 nvme_dead_ctrl(dev);
f0b50732
KB
3089}
3090
9a6b9458
KB
3091static int nvme_remove_dead_ctrl(void *arg)
3092{
3093 struct nvme_dev *dev = (struct nvme_dev *)arg;
e75ec752 3094 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
3095
3096 if (pci_get_drvdata(pdev))
c81f4975 3097 pci_stop_and_remove_bus_device_locked(pdev);
9a6b9458
KB
3098 kref_put(&dev->kref, nvme_free_dev);
3099 return 0;
3100}
3101
de3eff2b
KB
3102static void nvme_dead_ctrl(struct nvme_dev *dev)
3103{
3104 dev_warn(dev->dev, "Device failed to resume\n");
3105 kref_get(&dev->kref);
3106 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
1c63dc66 3107 dev->ctrl.instance))) {
de3eff2b
KB
3108 dev_err(dev->dev,
3109 "Failed to start controller remove task\n");
3110 kref_put(&dev->kref, nvme_free_dev);
3111 }
3112}
3113
77b50d9e 3114static void nvme_reset_work(struct work_struct *ws)
9a6b9458 3115{
77b50d9e 3116 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
ffe7704d
KB
3117 bool in_probe = work_busy(&dev->probe_work);
3118
9a6b9458 3119 nvme_dev_shutdown(dev);
ffe7704d
KB
3120
3121 /* Synchronize with device probe so that work will see failure status
3122 * and exit gracefully without trying to schedule another reset */
3123 flush_work(&dev->probe_work);
3124
3125 /* Fail this device if reset occured during probe to avoid
3126 * infinite initialization loops. */
3127 if (in_probe) {
de3eff2b 3128 nvme_dead_ctrl(dev);
ffe7704d 3129 return;
9a6b9458 3130 }
ffe7704d
KB
3131 /* Schedule device resume asynchronously so the reset work is available
3132 * to cleanup errors that may occur during reinitialization */
3133 schedule_work(&dev->probe_work);
9a6b9458
KB
3134}
3135
90667892 3136static int __nvme_reset(struct nvme_dev *dev)
9ca97374 3137{
90667892
CH
3138 if (work_pending(&dev->reset_work))
3139 return -EBUSY;
3140 list_del_init(&dev->node);
3141 queue_work(nvme_workq, &dev->reset_work);
3142 return 0;
9ca97374
TH
3143}
3144
4cc06521
KB
3145static int nvme_reset(struct nvme_dev *dev)
3146{
90667892 3147 int ret;
4cc06521 3148
1c63dc66 3149 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521
KB
3150 return -ENODEV;
3151
3152 spin_lock(&dev_list_lock);
90667892 3153 ret = __nvme_reset(dev);
4cc06521
KB
3154 spin_unlock(&dev_list_lock);
3155
3156 if (!ret) {
3157 flush_work(&dev->reset_work);
ffe7704d 3158 flush_work(&dev->probe_work);
4cc06521
KB
3159 return 0;
3160 }
3161
3162 return ret;
3163}
3164
3165static ssize_t nvme_sysfs_reset(struct device *dev,
3166 struct device_attribute *attr, const char *buf,
3167 size_t count)
3168{
3169 struct nvme_dev *ndev = dev_get_drvdata(dev);
3170 int ret;
3171
3172 ret = nvme_reset(ndev);
3173 if (ret < 0)
3174 return ret;
3175
3176 return count;
3177}
3178static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3179
1c63dc66
CH
3180static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
3181{
3182 *val = readl(to_nvme_dev(ctrl)->bar + off);
3183 return 0;
3184}
3185
3186static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
3187 .reg_read32 = nvme_pci_reg_read32,
3188};
3189
8d85fce7 3190static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 3191{
a4aea562 3192 int node, result = -ENOMEM;
b60503ba
MW
3193 struct nvme_dev *dev;
3194
a4aea562
MB
3195 node = dev_to_node(&pdev->dev);
3196 if (node == NUMA_NO_NODE)
3197 set_dev_node(&pdev->dev, 0);
3198
3199 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
3200 if (!dev)
3201 return -ENOMEM;
a4aea562
MB
3202 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3203 GFP_KERNEL, node);
b60503ba
MW
3204 if (!dev->entry)
3205 goto free;
a4aea562
MB
3206 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3207 GFP_KERNEL, node);
b60503ba
MW
3208 if (!dev->queues)
3209 goto free;
3210
3211 INIT_LIST_HEAD(&dev->namespaces);
77b50d9e 3212 INIT_WORK(&dev->reset_work, nvme_reset_work);
e75ec752 3213 dev->dev = get_device(&pdev->dev);
9a6b9458 3214 pci_set_drvdata(pdev, dev);
1c63dc66
CH
3215
3216 dev->ctrl.ops = &nvme_pci_ctrl_ops;
3217 dev->ctrl.dev = dev->dev;
3218
cd58ad7d
QSA
3219 result = nvme_set_instance(dev);
3220 if (result)
a96d4f5c 3221 goto put_pci;
b60503ba 3222
091b6092
MW
3223 result = nvme_setup_prp_pools(dev);
3224 if (result)
0877cb0d 3225 goto release;
091b6092 3226
fb35e914 3227 kref_init(&dev->kref);
b3fffdef 3228 dev->device = device_create(nvme_class, &pdev->dev,
1c63dc66
CH
3229 MKDEV(nvme_char_major, dev->ctrl.instance),
3230 dev, "nvme%d", dev->ctrl.instance);
b3fffdef
KB
3231 if (IS_ERR(dev->device)) {
3232 result = PTR_ERR(dev->device);
2e1d8448 3233 goto release_pools;
b3fffdef
KB
3234 }
3235 get_device(dev->device);
4cc06521
KB
3236 dev_set_drvdata(dev->device, dev);
3237
3238 result = device_create_file(dev->device, &dev_attr_reset_controller);
3239 if (result)
3240 goto put_dev;
740216fc 3241
e6e96d73 3242 INIT_LIST_HEAD(&dev->node);
a5768aa8 3243 INIT_WORK(&dev->scan_work, nvme_dev_scan);
3cf519b5 3244 INIT_WORK(&dev->probe_work, nvme_probe_work);
2e1d8448 3245 schedule_work(&dev->probe_work);
b60503ba
MW
3246 return 0;
3247
4cc06521 3248 put_dev:
1c63dc66 3249 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
4cc06521 3250 put_device(dev->device);
0877cb0d 3251 release_pools:
091b6092 3252 nvme_release_prp_pools(dev);
0877cb0d
KB
3253 release:
3254 nvme_release_instance(dev);
a96d4f5c 3255 put_pci:
e75ec752 3256 put_device(dev->dev);
b60503ba
MW
3257 free:
3258 kfree(dev->queues);
3259 kfree(dev->entry);
3260 kfree(dev);
3261 return result;
3262}
3263
f0d54a54
KB
3264static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3265{
a6739479 3266 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 3267
a6739479
KB
3268 if (prepare)
3269 nvme_dev_shutdown(dev);
3270 else
0a7385ad 3271 schedule_work(&dev->probe_work);
f0d54a54
KB
3272}
3273
09ece142
KB
3274static void nvme_shutdown(struct pci_dev *pdev)
3275{
3276 struct nvme_dev *dev = pci_get_drvdata(pdev);
3277 nvme_dev_shutdown(dev);
3278}
3279
8d85fce7 3280static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3281{
3282 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
3283
3284 spin_lock(&dev_list_lock);
3285 list_del_init(&dev->node);
3286 spin_unlock(&dev_list_lock);
3287
3288 pci_set_drvdata(pdev, NULL);
2e1d8448 3289 flush_work(&dev->probe_work);
9a6b9458 3290 flush_work(&dev->reset_work);
a5768aa8 3291 flush_work(&dev->scan_work);
4cc06521 3292 device_remove_file(dev->device, &dev_attr_reset_controller);
c9d3bf88 3293 nvme_dev_remove(dev);
3399a3f7 3294 nvme_dev_shutdown(dev);
a4aea562 3295 nvme_dev_remove_admin(dev);
1c63dc66 3296 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->ctrl.instance));
a1a5ef99 3297 nvme_free_queues(dev, 0);
8ffaadf7 3298 nvme_release_cmb(dev);
9a6b9458 3299 nvme_release_prp_pools(dev);
5e82e952 3300 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
3301}
3302
3303/* These functions are yet to be implemented */
3304#define nvme_error_detected NULL
3305#define nvme_dump_registers NULL
3306#define nvme_link_reset NULL
3307#define nvme_slot_reset NULL
3308#define nvme_error_resume NULL
cd638946 3309
671a6018 3310#ifdef CONFIG_PM_SLEEP
cd638946
KB
3311static int nvme_suspend(struct device *dev)
3312{
3313 struct pci_dev *pdev = to_pci_dev(dev);
3314 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3315
3316 nvme_dev_shutdown(ndev);
3317 return 0;
3318}
3319
3320static int nvme_resume(struct device *dev)
3321{
3322 struct pci_dev *pdev = to_pci_dev(dev);
3323 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3324
0a7385ad 3325 schedule_work(&ndev->probe_work);
9a6b9458 3326 return 0;
cd638946 3327}
671a6018 3328#endif
cd638946
KB
3329
3330static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 3331
1d352035 3332static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
3333 .error_detected = nvme_error_detected,
3334 .mmio_enabled = nvme_dump_registers,
3335 .link_reset = nvme_link_reset,
3336 .slot_reset = nvme_slot_reset,
3337 .resume = nvme_error_resume,
f0d54a54 3338 .reset_notify = nvme_reset_notify,
b60503ba
MW
3339};
3340
3341/* Move to pci_ids.h later */
3342#define PCI_CLASS_STORAGE_EXPRESS 0x010802
3343
6eb0d698 3344static const struct pci_device_id nvme_id_table[] = {
b60503ba 3345 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 3346 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
3347 { 0, }
3348};
3349MODULE_DEVICE_TABLE(pci, nvme_id_table);
3350
3351static struct pci_driver nvme_driver = {
3352 .name = "nvme",
3353 .id_table = nvme_id_table,
3354 .probe = nvme_probe,
8d85fce7 3355 .remove = nvme_remove,
09ece142 3356 .shutdown = nvme_shutdown,
cd638946
KB
3357 .driver = {
3358 .pm = &nvme_dev_pm_ops,
3359 },
b60503ba
MW
3360 .err_handler = &nvme_err_handler,
3361};
3362
3363static int __init nvme_init(void)
3364{
0ac13140 3365 int result;
1fa6aead 3366
b9afca3e 3367 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 3368
9a6b9458
KB
3369 nvme_workq = create_singlethread_workqueue("nvme");
3370 if (!nvme_workq)
b9afca3e 3371 return -ENOMEM;
9a6b9458 3372
5c42ea16
KB
3373 result = register_blkdev(nvme_major, "nvme");
3374 if (result < 0)
9a6b9458 3375 goto kill_workq;
5c42ea16 3376 else if (result > 0)
0ac13140 3377 nvme_major = result;
b60503ba 3378
b3fffdef
KB
3379 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3380 &nvme_dev_fops);
3381 if (result < 0)
3382 goto unregister_blkdev;
3383 else if (result > 0)
3384 nvme_char_major = result;
3385
3386 nvme_class = class_create(THIS_MODULE, "nvme");
c727040b
AK
3387 if (IS_ERR(nvme_class)) {
3388 result = PTR_ERR(nvme_class);
b3fffdef 3389 goto unregister_chrdev;
c727040b 3390 }
b3fffdef 3391
f3db22fe
KB
3392 result = pci_register_driver(&nvme_driver);
3393 if (result)
b3fffdef 3394 goto destroy_class;
1fa6aead 3395 return 0;
b60503ba 3396
b3fffdef
KB
3397 destroy_class:
3398 class_destroy(nvme_class);
3399 unregister_chrdev:
3400 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1fa6aead 3401 unregister_blkdev:
b60503ba 3402 unregister_blkdev(nvme_major, "nvme");
9a6b9458
KB
3403 kill_workq:
3404 destroy_workqueue(nvme_workq);
b60503ba
MW
3405 return result;
3406}
3407
3408static void __exit nvme_exit(void)
3409{
3410 pci_unregister_driver(&nvme_driver);
3411 unregister_blkdev(nvme_major, "nvme");
9a6b9458 3412 destroy_workqueue(nvme_workq);
b3fffdef
KB
3413 class_destroy(nvme_class);
3414 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
b9afca3e 3415 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 3416 _nvme_check_size();
b60503ba
MW
3417}
3418
3419MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3420MODULE_LICENSE("GPL");
c78b4713 3421MODULE_VERSION("1.0");
b60503ba
MW
3422module_init(nvme_init);
3423module_exit(nvme_exit);