nvme: remove dead controllers from a work item
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
8de05535 15#include <linux/bitops.h>
b60503ba 16#include <linux/blkdev.h>
a4aea562 17#include <linux/blk-mq.h>
42f61420 18#include <linux/cpu.h>
fd63e9ce 19#include <linux/delay.h>
b60503ba
MW
20#include <linux/errno.h>
21#include <linux/fs.h>
22#include <linux/genhd.h>
4cc09e2d 23#include <linux/hdreg.h>
5aff9382 24#include <linux/idr.h>
b60503ba
MW
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba
MW
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
2f8e2c87 42#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 43#include <asm/unaligned.h>
797a796a 44
f11bb3e2
CH
45#include "nvme.h"
46
9d43cf64 47#define NVME_Q_DEPTH 1024
d31af0a3 48#define NVME_AQ_DEPTH 256
b60503ba
MW
49#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 51
21d34711 52unsigned char admin_timeout = 60;
9d43cf64
KB
53module_param(admin_timeout, byte, 0644);
54MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 55
bd67608a
MW
56unsigned char nvme_io_timeout = 30;
57module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 58MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 59
5fd4ce1b 60unsigned char shutdown_timeout = 5;
2484f407
DM
61module_param(shutdown_timeout, byte, 0644);
62MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63
58ffacb5
MW
64static int use_threaded_interrupts;
65module_param(use_threaded_interrupts, int, 0);
66
8ffaadf7
JD
67static bool use_cmb_sqes = true;
68module_param(use_cmb_sqes, bool, 0644);
69MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70
1fa6aead
MW
71static LIST_HEAD(dev_list);
72static struct task_struct *nvme_thread;
9a6b9458 73static struct workqueue_struct *nvme_workq;
b9afca3e 74static wait_queue_head_t nvme_kthread_wait;
1fa6aead 75
1c63dc66
CH
76struct nvme_dev;
77struct nvme_queue;
d4f6c3ab 78struct nvme_iod;
1c63dc66 79
4cc06521 80static int nvme_reset(struct nvme_dev *dev);
a0fa9647 81static void nvme_process_cq(struct nvme_queue *nvmeq);
d4f6c3ab 82static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
5c8809e6 83static void nvme_remove_dead_ctrl(struct nvme_dev *dev);
e1569a16 84static void nvme_dev_shutdown(struct nvme_dev *dev);
d4b4ff8e 85
4d115420
KB
86struct async_cmd_info {
87 struct kthread_work work;
88 struct kthread_worker *worker;
a4aea562 89 struct request *req;
4d115420
KB
90 u32 result;
91 int status;
92 void *ctx;
93};
1fa6aead 94
1c63dc66
CH
95/*
96 * Represents an NVM Express device. Each nvme_dev is a PCI function.
97 */
98struct nvme_dev {
99 struct list_head node;
100 struct nvme_queue **queues;
101 struct blk_mq_tag_set tagset;
102 struct blk_mq_tag_set admin_tagset;
103 u32 __iomem *dbs;
104 struct device *dev;
105 struct dma_pool *prp_page_pool;
106 struct dma_pool *prp_small_pool;
107 unsigned queue_count;
108 unsigned online_queues;
109 unsigned max_qid;
110 int q_depth;
111 u32 db_stride;
1c63dc66
CH
112 struct msix_entry *entry;
113 void __iomem *bar;
1c63dc66 114 struct work_struct reset_work;
1c63dc66 115 struct work_struct scan_work;
5c8809e6 116 struct work_struct remove_work;
77bf25ea 117 struct mutex shutdown_lock;
1c63dc66 118 bool subsystem;
1c63dc66
CH
119 void __iomem *cmb;
120 dma_addr_t cmb_dma_addr;
121 u64 cmb_size;
122 u32 cmbsz;
fd634f41
CH
123 unsigned long flags;
124#define NVME_CTRL_RESETTING 0
1c63dc66
CH
125
126 struct nvme_ctrl ctrl;
127};
128
129static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
130{
131 return container_of(ctrl, struct nvme_dev, ctrl);
132}
133
b60503ba
MW
134/*
135 * An NVM Express queue. Each device has at least two (one for admin
136 * commands and one for I/O commands).
137 */
138struct nvme_queue {
139 struct device *q_dmadev;
091b6092 140 struct nvme_dev *dev;
3193f07b 141 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
142 spinlock_t q_lock;
143 struct nvme_command *sq_cmds;
8ffaadf7 144 struct nvme_command __iomem *sq_cmds_io;
b60503ba 145 volatile struct nvme_completion *cqes;
42483228 146 struct blk_mq_tags **tags;
b60503ba
MW
147 dma_addr_t sq_dma_addr;
148 dma_addr_t cq_dma_addr;
b60503ba
MW
149 u32 __iomem *q_db;
150 u16 q_depth;
6222d172 151 s16 cq_vector;
b60503ba
MW
152 u16 sq_head;
153 u16 sq_tail;
154 u16 cq_head;
c30341dc 155 u16 qid;
e9539f47
MW
156 u8 cq_phase;
157 u8 cqe_seen;
4d115420 158 struct async_cmd_info cmdinfo;
b60503ba
MW
159};
160
71bd150c
CH
161/*
162 * The nvme_iod describes the data in an I/O, including the list of PRP
163 * entries. You can't see it in this data structure because C doesn't let
164 * me express that. Use nvme_alloc_iod to ensure there's enough space
165 * allocated to store the PRP list.
166 */
167struct nvme_iod {
168 unsigned long private; /* For the use of the submitter of the I/O */
169 int npages; /* In the PRP list. 0 means small pool in use */
170 int offset; /* Of PRP list */
171 int nents; /* Used in scatterlist */
172 int length; /* Of data, in bytes */
173 dma_addr_t first_dma;
174 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
175 struct scatterlist sg[0];
176};
177
b60503ba
MW
178/*
179 * Check we didin't inadvertently grow the command struct
180 */
181static inline void _nvme_check_size(void)
182{
183 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
187 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 188 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 189 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
190 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
191 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
192 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
193 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 194 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
195}
196
edd10d33 197typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
198 struct nvme_completion *);
199
e85248e5 200struct nvme_cmd_info {
c2f5b650
MW
201 nvme_completion_fn fn;
202 void *ctx;
c30341dc 203 int aborted;
a4aea562 204 struct nvme_queue *nvmeq;
ac3dd5bd 205 struct nvme_iod iod[0];
e85248e5
MW
206};
207
ac3dd5bd
JA
208/*
209 * Max size of iod being embedded in the request payload
210 */
211#define NVME_INT_PAGES 2
5fd4ce1b 212#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
fda631ff 213#define NVME_INT_MASK 0x01
ac3dd5bd
JA
214
215/*
216 * Will slightly overestimate the number of pages needed. This is OK
217 * as it only leads to a small amount of wasted memory for the lifetime of
218 * the I/O.
219 */
220static int nvme_npages(unsigned size, struct nvme_dev *dev)
221{
5fd4ce1b
CH
222 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
223 dev->ctrl.page_size);
ac3dd5bd
JA
224 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
225}
226
227static unsigned int nvme_cmd_size(struct nvme_dev *dev)
228{
229 unsigned int ret = sizeof(struct nvme_cmd_info);
230
231 ret += sizeof(struct nvme_iod);
232 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
233 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
234
235 return ret;
236}
237
a4aea562
MB
238static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
239 unsigned int hctx_idx)
e85248e5 240{
a4aea562
MB
241 struct nvme_dev *dev = data;
242 struct nvme_queue *nvmeq = dev->queues[0];
243
42483228
KB
244 WARN_ON(hctx_idx != 0);
245 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
246 WARN_ON(nvmeq->tags);
247
a4aea562 248 hctx->driver_data = nvmeq;
42483228 249 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 250 return 0;
e85248e5
MW
251}
252
4af0e21c
KB
253static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
254{
255 struct nvme_queue *nvmeq = hctx->driver_data;
256
257 nvmeq->tags = NULL;
258}
259
a4aea562
MB
260static int nvme_admin_init_request(void *data, struct request *req,
261 unsigned int hctx_idx, unsigned int rq_idx,
262 unsigned int numa_node)
22404274 263{
a4aea562
MB
264 struct nvme_dev *dev = data;
265 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
266 struct nvme_queue *nvmeq = dev->queues[0];
267
268 BUG_ON(!nvmeq);
269 cmd->nvmeq = nvmeq;
270 return 0;
22404274
KB
271}
272
a4aea562
MB
273static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
274 unsigned int hctx_idx)
b60503ba 275{
a4aea562 276 struct nvme_dev *dev = data;
42483228 277 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 278
42483228
KB
279 if (!nvmeq->tags)
280 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 281
42483228 282 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
283 hctx->driver_data = nvmeq;
284 return 0;
b60503ba
MW
285}
286
a4aea562
MB
287static int nvme_init_request(void *data, struct request *req,
288 unsigned int hctx_idx, unsigned int rq_idx,
289 unsigned int numa_node)
b60503ba 290{
a4aea562
MB
291 struct nvme_dev *dev = data;
292 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
293 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
294
295 BUG_ON(!nvmeq);
296 cmd->nvmeq = nvmeq;
297 return 0;
298}
299
300static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
301 nvme_completion_fn handler)
302{
303 cmd->fn = handler;
304 cmd->ctx = ctx;
305 cmd->aborted = 0;
c917dfe5 306 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
307}
308
ac3dd5bd
JA
309static void *iod_get_private(struct nvme_iod *iod)
310{
311 return (void *) (iod->private & ~0x1UL);
312}
313
314/*
315 * If bit 0 is set, the iod is embedded in the request payload.
316 */
317static bool iod_should_kfree(struct nvme_iod *iod)
318{
fda631ff 319 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
320}
321
c2f5b650
MW
322/* Special values must be less than 0x1000 */
323#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
324#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
325#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
326#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 327
edd10d33 328static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
329 struct nvme_completion *cqe)
330{
331 if (ctx == CMD_CTX_CANCELLED)
332 return;
c2f5b650 333 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 334 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
335 "completed id %d twice on queue %d\n",
336 cqe->command_id, le16_to_cpup(&cqe->sq_id));
337 return;
338 }
339 if (ctx == CMD_CTX_INVALID) {
edd10d33 340 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
341 "invalid id %d completed on queue %d\n",
342 cqe->command_id, le16_to_cpup(&cqe->sq_id));
343 return;
344 }
edd10d33 345 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
346}
347
a4aea562 348static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 349{
c2f5b650 350 void *ctx;
b60503ba 351
859361a2 352 if (fn)
a4aea562
MB
353 *fn = cmd->fn;
354 ctx = cmd->ctx;
355 cmd->fn = special_completion;
356 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 357 return ctx;
b60503ba
MW
358}
359
a4aea562
MB
360static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
361 struct nvme_completion *cqe)
3c0cf138 362{
a4aea562
MB
363 u32 result = le32_to_cpup(&cqe->result);
364 u16 status = le16_to_cpup(&cqe->status) >> 1;
365
366 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
1c63dc66 367 ++nvmeq->dev->ctrl.event_limit;
a5768aa8
KB
368 if (status != NVME_SC_SUCCESS)
369 return;
370
371 switch (result & 0xff07) {
372 case NVME_AER_NOTICE_NS_CHANGED:
373 dev_info(nvmeq->q_dmadev, "rescanning\n");
374 schedule_work(&nvmeq->dev->scan_work);
375 default:
376 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
377 }
b60503ba
MW
378}
379
a4aea562
MB
380static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
381 struct nvme_completion *cqe)
5a92e700 382{
a4aea562
MB
383 struct request *req = ctx;
384
385 u16 status = le16_to_cpup(&cqe->status) >> 1;
386 u32 result = le32_to_cpup(&cqe->result);
a51afb54 387
42483228 388 blk_mq_free_request(req);
a51afb54 389
a4aea562 390 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
1c63dc66 391 ++nvmeq->dev->ctrl.abort_limit;
5a92e700
KB
392}
393
a4aea562
MB
394static void async_completion(struct nvme_queue *nvmeq, void *ctx,
395 struct nvme_completion *cqe)
b60503ba 396{
a4aea562
MB
397 struct async_cmd_info *cmdinfo = ctx;
398 cmdinfo->result = le32_to_cpup(&cqe->result);
399 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
400 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
42483228 401 blk_mq_free_request(cmdinfo->req);
b60503ba
MW
402}
403
a4aea562
MB
404static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
405 unsigned int tag)
b60503ba 406{
42483228 407 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
a51afb54 408
a4aea562 409 return blk_mq_rq_to_pdu(req);
4f5099af
KB
410}
411
a4aea562
MB
412/*
413 * Called with local interrupts disabled and the q_lock held. May not sleep.
414 */
415static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
416 nvme_completion_fn *fn)
4f5099af 417{
a4aea562
MB
418 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
419 void *ctx;
420 if (tag >= nvmeq->q_depth) {
421 *fn = special_completion;
422 return CMD_CTX_INVALID;
423 }
424 if (fn)
425 *fn = cmd->fn;
426 ctx = cmd->ctx;
427 cmd->fn = special_completion;
428 cmd->ctx = CMD_CTX_COMPLETED;
429 return ctx;
b60503ba
MW
430}
431
432/**
714a7a22 433 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
434 * @nvmeq: The queue to use
435 * @cmd: The command to send
436 *
437 * Safe to use from interrupt context
438 */
e3f879bf
SB
439static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
440 struct nvme_command *cmd)
b60503ba 441{
a4aea562
MB
442 u16 tail = nvmeq->sq_tail;
443
8ffaadf7
JD
444 if (nvmeq->sq_cmds_io)
445 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
446 else
447 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
448
b60503ba
MW
449 if (++tail == nvmeq->q_depth)
450 tail = 0;
7547881d 451 writel(tail, nvmeq->q_db);
b60503ba 452 nvmeq->sq_tail = tail;
b60503ba
MW
453}
454
e3f879bf 455static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
a4aea562
MB
456{
457 unsigned long flags;
a4aea562 458 spin_lock_irqsave(&nvmeq->q_lock, flags);
e3f879bf 459 __nvme_submit_cmd(nvmeq, cmd);
a4aea562 460 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a4aea562
MB
461}
462
eca18b23 463static __le64 **iod_list(struct nvme_iod *iod)
e025344c 464{
eca18b23 465 return ((void *)iod) + iod->offset;
e025344c
SMM
466}
467
ac3dd5bd
JA
468static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
469 unsigned nseg, unsigned long private)
eca18b23 470{
ac3dd5bd
JA
471 iod->private = private;
472 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
473 iod->npages = -1;
474 iod->length = nbytes;
475 iod->nents = 0;
eca18b23 476}
b60503ba 477
eca18b23 478static struct nvme_iod *
ac3dd5bd
JA
479__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
480 unsigned long priv, gfp_t gfp)
b60503ba 481{
eca18b23 482 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 483 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
484 sizeof(struct scatterlist) * nseg, gfp);
485
ac3dd5bd
JA
486 if (iod)
487 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
488
489 return iod;
b60503ba
MW
490}
491
ac3dd5bd
JA
492static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
493 gfp_t gfp)
494{
495 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
496 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
497 struct nvme_iod *iod;
498
499 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
500 size <= NVME_INT_BYTES(dev)) {
501 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
502
503 iod = cmd->iod;
ac3dd5bd 504 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 505 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
506 return iod;
507 }
508
509 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
510 (unsigned long) rq, gfp);
511}
512
d29ec824 513static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 514{
5fd4ce1b 515 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23
MW
516 int i;
517 __le64 **list = iod_list(iod);
518 dma_addr_t prp_dma = iod->first_dma;
519
520 if (iod->npages == 0)
521 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
522 for (i = 0; i < iod->npages; i++) {
523 __le64 *prp_list = list[i];
524 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
525 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
526 prp_dma = next_prp_dma;
527 }
ac3dd5bd
JA
528
529 if (iod_should_kfree(iod))
530 kfree(iod);
b60503ba
MW
531}
532
52b68d7e 533#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
534static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
535{
536 if (be32_to_cpu(pi->ref_tag) == v)
537 pi->ref_tag = cpu_to_be32(p);
538}
539
540static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
541{
542 if (be32_to_cpu(pi->ref_tag) == p)
543 pi->ref_tag = cpu_to_be32(v);
544}
545
546/**
547 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
548 *
549 * The virtual start sector is the one that was originally submitted by the
550 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
551 * start sector may be different. Remap protection information to match the
552 * physical LBA on writes, and back to the original seed on reads.
553 *
554 * Type 0 and 3 do not have a ref tag, so no remapping required.
555 */
556static void nvme_dif_remap(struct request *req,
557 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
558{
559 struct nvme_ns *ns = req->rq_disk->private_data;
560 struct bio_integrity_payload *bip;
561 struct t10_pi_tuple *pi;
562 void *p, *pmap;
563 u32 i, nlb, ts, phys, virt;
564
565 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
566 return;
567
568 bip = bio_integrity(req->bio);
569 if (!bip)
570 return;
571
572 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
573
574 p = pmap;
575 virt = bip_get_seed(bip);
576 phys = nvme_block_nr(ns, blk_rq_pos(req));
577 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 578 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
579
580 for (i = 0; i < nlb; i++, virt++, phys++) {
581 pi = (struct t10_pi_tuple *)p;
582 dif_swap(phys, virt, pi);
583 p += ts;
584 }
585 kunmap_atomic(pmap);
586}
52b68d7e
KB
587#else /* CONFIG_BLK_DEV_INTEGRITY */
588static void nvme_dif_remap(struct request *req,
589 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
590{
591}
592static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
593{
594}
595static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
596{
597}
52b68d7e
KB
598#endif
599
a4aea562 600static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
601 struct nvme_completion *cqe)
602{
eca18b23 603 struct nvme_iod *iod = ctx;
ac3dd5bd 604 struct request *req = iod_get_private(iod);
a4aea562 605 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
b60503ba 606 u16 status = le16_to_cpup(&cqe->status) >> 1;
81c04b94 607 int error = 0;
b60503ba 608
edd10d33 609 if (unlikely(status)) {
a4aea562
MB
610 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
611 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
612 unsigned long flags;
613
d4f6c3ab
CH
614 nvme_unmap_data(nvmeq->dev, iod);
615
a4aea562 616 blk_mq_requeue_request(req);
c9d3bf88
KB
617 spin_lock_irqsave(req->q->queue_lock, flags);
618 if (!blk_queue_stopped(req->q))
619 blk_mq_kick_requeue_list(req->q);
620 spin_unlock_irqrestore(req->q->queue_lock, flags);
d4f6c3ab 621 return;
edd10d33 622 }
f4829a9b 623
d29ec824 624 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
17188bb4 625 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
297465c8 626 error = NVME_SC_CANCELLED;
81c04b94
CH
627 else
628 error = status;
d29ec824 629 } else {
81c04b94 630 error = nvme_error_status(status);
d29ec824 631 }
f4829a9b
CH
632 }
633
a0a931d6
KB
634 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
635 u32 result = le32_to_cpup(&cqe->result);
636 req->special = (void *)(uintptr_t)result;
637 }
a4aea562
MB
638
639 if (cmd_rq->aborted)
e75ec752 640 dev_warn(nvmeq->dev->dev,
a4aea562 641 "completing aborted command with status:%04x\n",
81c04b94 642 error);
a4aea562 643
d4f6c3ab
CH
644 nvme_unmap_data(nvmeq->dev, iod);
645 blk_mq_complete_request(req, error);
b60503ba
MW
646}
647
69d2b571
CH
648static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
649 int total_len)
ff22b54f 650{
99802a7a 651 struct dma_pool *pool;
eca18b23
MW
652 int length = total_len;
653 struct scatterlist *sg = iod->sg;
ff22b54f
MW
654 int dma_len = sg_dma_len(sg);
655 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 656 u32 page_size = dev->ctrl.page_size;
f137e0f1 657 int offset = dma_addr & (page_size - 1);
e025344c 658 __le64 *prp_list;
eca18b23 659 __le64 **list = iod_list(iod);
e025344c 660 dma_addr_t prp_dma;
eca18b23 661 int nprps, i;
ff22b54f 662
1d090624 663 length -= (page_size - offset);
ff22b54f 664 if (length <= 0)
69d2b571 665 return true;
ff22b54f 666
1d090624 667 dma_len -= (page_size - offset);
ff22b54f 668 if (dma_len) {
1d090624 669 dma_addr += (page_size - offset);
ff22b54f
MW
670 } else {
671 sg = sg_next(sg);
672 dma_addr = sg_dma_address(sg);
673 dma_len = sg_dma_len(sg);
674 }
675
1d090624 676 if (length <= page_size) {
edd10d33 677 iod->first_dma = dma_addr;
69d2b571 678 return true;
e025344c
SMM
679 }
680
1d090624 681 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
682 if (nprps <= (256 / 8)) {
683 pool = dev->prp_small_pool;
eca18b23 684 iod->npages = 0;
99802a7a
MW
685 } else {
686 pool = dev->prp_page_pool;
eca18b23 687 iod->npages = 1;
99802a7a
MW
688 }
689
69d2b571 690 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 691 if (!prp_list) {
edd10d33 692 iod->first_dma = dma_addr;
eca18b23 693 iod->npages = -1;
69d2b571 694 return false;
b77954cb 695 }
eca18b23
MW
696 list[0] = prp_list;
697 iod->first_dma = prp_dma;
e025344c
SMM
698 i = 0;
699 for (;;) {
1d090624 700 if (i == page_size >> 3) {
e025344c 701 __le64 *old_prp_list = prp_list;
69d2b571 702 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 703 if (!prp_list)
69d2b571 704 return false;
eca18b23 705 list[iod->npages++] = prp_list;
7523d834
MW
706 prp_list[0] = old_prp_list[i - 1];
707 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
708 i = 1;
e025344c
SMM
709 }
710 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
711 dma_len -= page_size;
712 dma_addr += page_size;
713 length -= page_size;
e025344c
SMM
714 if (length <= 0)
715 break;
716 if (dma_len > 0)
717 continue;
718 BUG_ON(dma_len < 0);
719 sg = sg_next(sg);
720 dma_addr = sg_dma_address(sg);
721 dma_len = sg_dma_len(sg);
ff22b54f
MW
722 }
723
69d2b571 724 return true;
ff22b54f
MW
725}
726
ba1ca37e
CH
727static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
728 struct nvme_command *cmnd)
d29ec824 729{
ba1ca37e
CH
730 struct request *req = iod_get_private(iod);
731 struct request_queue *q = req->q;
732 enum dma_data_direction dma_dir = rq_data_dir(req) ?
733 DMA_TO_DEVICE : DMA_FROM_DEVICE;
734 int ret = BLK_MQ_RQ_QUEUE_ERROR;
735
736 sg_init_table(iod->sg, req->nr_phys_segments);
737 iod->nents = blk_rq_map_sg(q, req, iod->sg);
738 if (!iod->nents)
739 goto out;
740
741 ret = BLK_MQ_RQ_QUEUE_BUSY;
742 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
743 goto out;
744
745 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
746 goto out_unmap;
747
748 ret = BLK_MQ_RQ_QUEUE_ERROR;
749 if (blk_integrity_rq(req)) {
750 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
751 goto out_unmap;
752
753 sg_init_table(iod->meta_sg, 1);
754 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
755 goto out_unmap;
d29ec824 756
ba1ca37e
CH
757 if (rq_data_dir(req))
758 nvme_dif_remap(req, nvme_dif_prep);
759
760 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
761 goto out_unmap;
d29ec824
CH
762 }
763
ba1ca37e
CH
764 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
765 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
766 if (blk_integrity_rq(req))
767 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
768 return BLK_MQ_RQ_QUEUE_OK;
769
770out_unmap:
771 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
772out:
773 return ret;
d29ec824
CH
774}
775
d4f6c3ab
CH
776static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
777{
778 struct request *req = iod_get_private(iod);
779 enum dma_data_direction dma_dir = rq_data_dir(req) ?
780 DMA_TO_DEVICE : DMA_FROM_DEVICE;
781
782 if (iod->nents) {
783 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
784 if (blk_integrity_rq(req)) {
785 if (!rq_data_dir(req))
786 nvme_dif_remap(req, nvme_dif_complete);
787 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
788 }
789 }
790
791 nvme_free_iod(dev, iod);
792}
793
a4aea562
MB
794/*
795 * We reuse the small pool to allocate the 16-byte range here as it is not
796 * worth having a special pool for these or additional cases to handle freeing
797 * the iod.
798 */
ba1ca37e
CH
799static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
800 struct nvme_iod *iod, struct nvme_command *cmnd)
0e5e4f0e 801{
ba1ca37e
CH
802 struct request *req = iod_get_private(iod);
803 struct nvme_dsm_range *range;
804
805 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
806 &iod->first_dma);
807 if (!range)
808 return BLK_MQ_RQ_QUEUE_BUSY;
809 iod_list(iod)[0] = (__le64 *)range;
810 iod->npages = 0;
0e5e4f0e 811
0e5e4f0e 812 range->cattr = cpu_to_le32(0);
a4aea562
MB
813 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
814 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 815
ba1ca37e
CH
816 memset(cmnd, 0, sizeof(*cmnd));
817 cmnd->dsm.opcode = nvme_cmd_dsm;
818 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
819 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
820 cmnd->dsm.nr = 0;
821 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
822 return BLK_MQ_RQ_QUEUE_OK;
0e5e4f0e
KB
823}
824
d29ec824
CH
825/*
826 * NOTE: ns is NULL when called on the admin queue.
827 */
a4aea562
MB
828static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
829 const struct blk_mq_queue_data *bd)
edd10d33 830{
a4aea562
MB
831 struct nvme_ns *ns = hctx->queue->queuedata;
832 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 833 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
834 struct request *req = bd->rq;
835 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 836 struct nvme_iod *iod;
ba1ca37e
CH
837 struct nvme_command cmnd;
838 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 839
e1e5e564
KB
840 /*
841 * If formated with metadata, require the block layer provide a buffer
842 * unless this namespace is formated such that the metadata can be
843 * stripped/generated by the controller with PRACT=1.
844 */
d29ec824 845 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
846 if (!(ns->pi_type && ns->ms == 8) &&
847 req->cmd_type != REQ_TYPE_DRV_PRIV) {
f4829a9b 848 blk_mq_complete_request(req, -EFAULT);
e1e5e564
KB
849 return BLK_MQ_RQ_QUEUE_OK;
850 }
851 }
852
d29ec824 853 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 854 if (!iod)
fe54303e 855 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 856
a4aea562 857 if (req->cmd_flags & REQ_DISCARD) {
ba1ca37e
CH
858 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
859 } else {
860 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
861 memcpy(&cmnd, req->cmd, sizeof(cmnd));
862 else if (req->cmd_flags & REQ_FLUSH)
863 nvme_setup_flush(ns, &cmnd);
864 else
865 nvme_setup_rw(ns, req, &cmnd);
a4aea562 866
ba1ca37e
CH
867 if (req->nr_phys_segments)
868 ret = nvme_map_data(dev, iod, &cmnd);
edd10d33 869 }
1974b1ae 870
ba1ca37e
CH
871 if (ret)
872 goto out;
873
874 cmnd.common.command_id = req->tag;
9af8785a 875 nvme_set_info(cmd, iod, req_completion);
a4aea562 876
ba1ca37e
CH
877 spin_lock_irq(&nvmeq->q_lock);
878 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
879 nvme_process_cq(nvmeq);
880 spin_unlock_irq(&nvmeq->q_lock);
881 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 882out:
d29ec824 883 nvme_free_iod(dev, iod);
ba1ca37e 884 return ret;
b60503ba
MW
885}
886
a0fa9647 887static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 888{
82123460 889 u16 head, phase;
b60503ba 890
b60503ba 891 head = nvmeq->cq_head;
82123460 892 phase = nvmeq->cq_phase;
b60503ba
MW
893
894 for (;;) {
c2f5b650
MW
895 void *ctx;
896 nvme_completion_fn fn;
b60503ba 897 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 898 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
899 break;
900 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
901 if (++head == nvmeq->q_depth) {
902 head = 0;
82123460 903 phase = !phase;
b60503ba 904 }
a0fa9647
JA
905 if (tag && *tag == cqe.command_id)
906 *tag = -1;
a4aea562 907 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 908 fn(nvmeq, ctx, &cqe);
b60503ba
MW
909 }
910
911 /* If the controller ignores the cq head doorbell and continuously
912 * writes to the queue, it is theoretically possible to wrap around
913 * the queue twice and mistakenly return IRQ_NONE. Linux only
914 * requires that 0.1% of your interrupts are handled, so this isn't
915 * a big problem.
916 */
82123460 917 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 918 return;
b60503ba 919
604e8c8d
KB
920 if (likely(nvmeq->cq_vector >= 0))
921 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 922 nvmeq->cq_head = head;
82123460 923 nvmeq->cq_phase = phase;
b60503ba 924
e9539f47 925 nvmeq->cqe_seen = 1;
a0fa9647
JA
926}
927
928static void nvme_process_cq(struct nvme_queue *nvmeq)
929{
930 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
931}
932
933static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
934{
935 irqreturn_t result;
936 struct nvme_queue *nvmeq = data;
937 spin_lock(&nvmeq->q_lock);
e9539f47
MW
938 nvme_process_cq(nvmeq);
939 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
940 nvmeq->cqe_seen = 0;
58ffacb5
MW
941 spin_unlock(&nvmeq->q_lock);
942 return result;
943}
944
945static irqreturn_t nvme_irq_check(int irq, void *data)
946{
947 struct nvme_queue *nvmeq = data;
948 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
949 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
950 return IRQ_NONE;
951 return IRQ_WAKE_THREAD;
952}
953
a0fa9647
JA
954static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
955{
956 struct nvme_queue *nvmeq = hctx->driver_data;
957
958 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
959 nvmeq->cq_phase) {
960 spin_lock_irq(&nvmeq->q_lock);
961 __nvme_process_cq(nvmeq, &tag);
962 spin_unlock_irq(&nvmeq->q_lock);
963
964 if (tag == -1)
965 return 1;
966 }
967
968 return 0;
969}
970
a4aea562
MB
971static int nvme_submit_async_admin_req(struct nvme_dev *dev)
972{
973 struct nvme_queue *nvmeq = dev->queues[0];
974 struct nvme_command c;
975 struct nvme_cmd_info *cmd_info;
976 struct request *req;
977
1c63dc66 978 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 979 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
9f173b33
DC
980 if (IS_ERR(req))
981 return PTR_ERR(req);
a4aea562 982
c917dfe5 983 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 984 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 985 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
986
987 memset(&c, 0, sizeof(c));
988 c.common.opcode = nvme_admin_async_event;
989 c.common.command_id = req->tag;
990
42483228 991 blk_mq_free_request(req);
e3f879bf
SB
992 __nvme_submit_cmd(nvmeq, &c);
993 return 0;
a4aea562
MB
994}
995
996static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
997 struct nvme_command *cmd,
998 struct async_cmd_info *cmdinfo, unsigned timeout)
999{
a4aea562
MB
1000 struct nvme_queue *nvmeq = dev->queues[0];
1001 struct request *req;
1002 struct nvme_cmd_info *cmd_rq;
4d115420 1003
1c63dc66 1004 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
9f173b33
DC
1005 if (IS_ERR(req))
1006 return PTR_ERR(req);
a4aea562
MB
1007
1008 req->timeout = timeout;
1009 cmd_rq = blk_mq_rq_to_pdu(req);
1010 cmdinfo->req = req;
1011 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1012 cmdinfo->status = -EINTR;
a4aea562
MB
1013
1014 cmd->common.command_id = req->tag;
1015
e3f879bf
SB
1016 nvme_submit_cmd(nvmeq, cmd);
1017 return 0;
4d115420
KB
1018}
1019
b60503ba
MW
1020static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1021{
b60503ba
MW
1022 struct nvme_command c;
1023
1024 memset(&c, 0, sizeof(c));
1025 c.delete_queue.opcode = opcode;
1026 c.delete_queue.qid = cpu_to_le16(id);
1027
1c63dc66 1028 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1029}
1030
1031static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1032 struct nvme_queue *nvmeq)
1033{
b60503ba
MW
1034 struct nvme_command c;
1035 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1036
d29ec824
CH
1037 /*
1038 * Note: we (ab)use the fact the the prp fields survive if no data
1039 * is attached to the request.
1040 */
b60503ba
MW
1041 memset(&c, 0, sizeof(c));
1042 c.create_cq.opcode = nvme_admin_create_cq;
1043 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1044 c.create_cq.cqid = cpu_to_le16(qid);
1045 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1046 c.create_cq.cq_flags = cpu_to_le16(flags);
1047 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1048
1c63dc66 1049 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1050}
1051
1052static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1053 struct nvme_queue *nvmeq)
1054{
b60503ba
MW
1055 struct nvme_command c;
1056 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1057
d29ec824
CH
1058 /*
1059 * Note: we (ab)use the fact the the prp fields survive if no data
1060 * is attached to the request.
1061 */
b60503ba
MW
1062 memset(&c, 0, sizeof(c));
1063 c.create_sq.opcode = nvme_admin_create_sq;
1064 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1065 c.create_sq.sqid = cpu_to_le16(qid);
1066 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1067 c.create_sq.sq_flags = cpu_to_le16(flags);
1068 c.create_sq.cqid = cpu_to_le16(qid);
1069
1c63dc66 1070 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1071}
1072
1073static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1074{
1075 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1076}
1077
1078static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1079{
1080 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1081}
1082
31c7c7d2 1083static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 1084{
a4aea562
MB
1085 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1086 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1087 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1088 struct request *abort_req;
1089 struct nvme_cmd_info *abort_cmd;
1090 struct nvme_command cmd;
c30341dc 1091
31c7c7d2 1092 /*
fd634f41
CH
1093 * Shutdown immediately if controller times out while starting. The
1094 * reset work will see the pci device disabled when it gets the forced
1095 * cancellation error. All outstanding requests are completed on
1096 * shutdown, so we return BLK_EH_HANDLED.
1097 */
1098 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
1099 dev_warn(dev->dev,
1100 "I/O %d QID %d timeout, disable controller\n",
1101 req->tag, nvmeq->qid);
1102 nvme_dev_shutdown(dev);
1103 req->errors = NVME_SC_CANCELLED;
1104 return BLK_EH_HANDLED;
1105 }
1106
1107 /*
1108 * Shutdown the controller immediately and schedule a reset if the
1109 * command was already aborted once before and still hasn't been
1110 * returned to the driver, or if this is the admin queue.
31c7c7d2 1111 */
a4aea562 1112 if (!nvmeq->qid || cmd_rq->aborted) {
e1569a16
KB
1113 dev_warn(dev->dev,
1114 "I/O %d QID %d timeout, reset controller\n",
1115 req->tag, nvmeq->qid);
1116 nvme_dev_shutdown(dev);
1117 queue_work(nvme_workq, &dev->reset_work);
1118
1119 /*
1120 * Mark the request as handled, since the inline shutdown
1121 * forces all outstanding requests to complete.
1122 */
1123 req->errors = NVME_SC_CANCELLED;
1124 return BLK_EH_HANDLED;
c30341dc
KB
1125 }
1126
1c63dc66 1127 if (!dev->ctrl.abort_limit)
31c7c7d2 1128 return BLK_EH_RESET_TIMER;
c30341dc 1129
1c63dc66 1130 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 1131 BLK_MQ_REQ_NOWAIT);
9f173b33 1132 if (IS_ERR(abort_req))
31c7c7d2 1133 return BLK_EH_RESET_TIMER;
c30341dc 1134
a4aea562
MB
1135 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1136 nvme_set_info(abort_cmd, abort_req, abort_completion);
1137
c30341dc
KB
1138 memset(&cmd, 0, sizeof(cmd));
1139 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1140 cmd.abort.cid = req->tag;
c30341dc 1141 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1142 cmd.abort.command_id = abort_req->tag;
c30341dc 1143
1c63dc66 1144 --dev->ctrl.abort_limit;
a4aea562 1145 cmd_rq->aborted = 1;
c30341dc 1146
31c7c7d2
CH
1147 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
1148 req->tag, nvmeq->qid);
e3f879bf 1149 nvme_submit_cmd(dev->queues[0], &cmd);
31c7c7d2
CH
1150
1151 /*
1152 * The aborted req will be completed on receiving the abort req.
1153 * We enable the timer again. If hit twice, it'll cause a device reset,
1154 * as the device then is in a faulty state.
1155 */
1156 return BLK_EH_RESET_TIMER;
c30341dc
KB
1157}
1158
42483228 1159static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1160{
a4aea562
MB
1161 struct nvme_queue *nvmeq = data;
1162 void *ctx;
1163 nvme_completion_fn fn;
1164 struct nvme_cmd_info *cmd;
cef6a948
KB
1165 struct nvme_completion cqe;
1166
1167 if (!blk_mq_request_started(req))
1168 return;
a09115b2 1169
a4aea562 1170 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1171
a4aea562
MB
1172 if (cmd->ctx == CMD_CTX_CANCELLED)
1173 return;
1174
cef6a948
KB
1175 if (blk_queue_dying(req->q))
1176 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1177 else
1178 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1179
1180
a4aea562
MB
1181 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1182 req->tag, nvmeq->qid);
1183 ctx = cancel_cmd_info(cmd, &fn);
1184 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1185}
1186
a4aea562
MB
1187static void nvme_free_queue(struct nvme_queue *nvmeq)
1188{
9e866774
MW
1189 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1190 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1191 if (nvmeq->sq_cmds)
1192 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1193 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1194 kfree(nvmeq);
1195}
1196
a1a5ef99 1197static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1198{
1199 int i;
1200
a1a5ef99 1201 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1202 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1203 dev->queue_count--;
a4aea562 1204 dev->queues[i] = NULL;
f435c282 1205 nvme_free_queue(nvmeq);
121c7ad4 1206 }
22404274
KB
1207}
1208
4d115420
KB
1209/**
1210 * nvme_suspend_queue - put queue into suspended state
1211 * @nvmeq - queue to suspend
4d115420
KB
1212 */
1213static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1214{
2b25d981 1215 int vector;
b60503ba 1216
a09115b2 1217 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1218 if (nvmeq->cq_vector == -1) {
1219 spin_unlock_irq(&nvmeq->q_lock);
1220 return 1;
1221 }
1222 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1223 nvmeq->dev->online_queues--;
2b25d981 1224 nvmeq->cq_vector = -1;
a09115b2
MW
1225 spin_unlock_irq(&nvmeq->q_lock);
1226
1c63dc66
CH
1227 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1228 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1229
aba2080f
MW
1230 irq_set_affinity_hint(vector, NULL);
1231 free_irq(vector, nvmeq);
b60503ba 1232
4d115420
KB
1233 return 0;
1234}
b60503ba 1235
4d115420
KB
1236static void nvme_clear_queue(struct nvme_queue *nvmeq)
1237{
22404274 1238 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1239 if (nvmeq->tags && *nvmeq->tags)
1240 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1241 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1242}
1243
4d115420
KB
1244static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1245{
a4aea562 1246 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1247
1248 if (!nvmeq)
1249 return;
1250 if (nvme_suspend_queue(nvmeq))
1251 return;
1252
0e53d180
KB
1253 /* Don't tell the adapter to delete the admin queue.
1254 * Don't tell a removed adapter to delete IO queues. */
7a67cbea 1255 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
b60503ba
MW
1256 adapter_delete_sq(dev, qid);
1257 adapter_delete_cq(dev, qid);
1258 }
07836e65
KB
1259
1260 spin_lock_irq(&nvmeq->q_lock);
1261 nvme_process_cq(nvmeq);
1262 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1263}
1264
8ffaadf7
JD
1265static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1266 int entry_size)
1267{
1268 int q_depth = dev->q_depth;
5fd4ce1b
CH
1269 unsigned q_size_aligned = roundup(q_depth * entry_size,
1270 dev->ctrl.page_size);
8ffaadf7
JD
1271
1272 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1273 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1274 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1275 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1276
1277 /*
1278 * Ensure the reduced q_depth is above some threshold where it
1279 * would be better to map queues in system memory with the
1280 * original depth
1281 */
1282 if (q_depth < 64)
1283 return -ENOMEM;
1284 }
1285
1286 return q_depth;
1287}
1288
1289static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1290 int qid, int depth)
1291{
1292 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1293 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1294 dev->ctrl.page_size);
8ffaadf7
JD
1295 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1296 nvmeq->sq_cmds_io = dev->cmb + offset;
1297 } else {
1298 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1299 &nvmeq->sq_dma_addr, GFP_KERNEL);
1300 if (!nvmeq->sq_cmds)
1301 return -ENOMEM;
1302 }
1303
1304 return 0;
1305}
1306
b60503ba 1307static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1308 int depth)
b60503ba 1309{
a4aea562 1310 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1311 if (!nvmeq)
1312 return NULL;
1313
e75ec752 1314 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1315 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1316 if (!nvmeq->cqes)
1317 goto free_nvmeq;
b60503ba 1318
8ffaadf7 1319 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1320 goto free_cqdma;
1321
e75ec752 1322 nvmeq->q_dmadev = dev->dev;
091b6092 1323 nvmeq->dev = dev;
3193f07b 1324 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1325 dev->ctrl.instance, qid);
b60503ba
MW
1326 spin_lock_init(&nvmeq->q_lock);
1327 nvmeq->cq_head = 0;
82123460 1328 nvmeq->cq_phase = 1;
b80d5ccc 1329 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1330 nvmeq->q_depth = depth;
c30341dc 1331 nvmeq->qid = qid;
758dd7fd 1332 nvmeq->cq_vector = -1;
a4aea562 1333 dev->queues[qid] = nvmeq;
b60503ba 1334
36a7e993
JD
1335 /* make sure queue descriptor is set before queue count, for kthread */
1336 mb();
1337 dev->queue_count++;
1338
b60503ba
MW
1339 return nvmeq;
1340
1341 free_cqdma:
e75ec752 1342 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1343 nvmeq->cq_dma_addr);
1344 free_nvmeq:
1345 kfree(nvmeq);
1346 return NULL;
1347}
1348
3001082c
MW
1349static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1350 const char *name)
1351{
58ffacb5
MW
1352 if (use_threaded_interrupts)
1353 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1354 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1355 name, nvmeq);
3001082c 1356 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1357 IRQF_SHARED, name, nvmeq);
3001082c
MW
1358}
1359
22404274 1360static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1361{
22404274 1362 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1363
7be50e93 1364 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1365 nvmeq->sq_tail = 0;
1366 nvmeq->cq_head = 0;
1367 nvmeq->cq_phase = 1;
b80d5ccc 1368 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1369 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1370 dev->online_queues++;
7be50e93 1371 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1372}
1373
1374static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1375{
1376 struct nvme_dev *dev = nvmeq->dev;
1377 int result;
3f85d50b 1378
2b25d981 1379 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1380 result = adapter_alloc_cq(dev, qid, nvmeq);
1381 if (result < 0)
22404274 1382 return result;
b60503ba
MW
1383
1384 result = adapter_alloc_sq(dev, qid, nvmeq);
1385 if (result < 0)
1386 goto release_cq;
1387
3193f07b 1388 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1389 if (result < 0)
1390 goto release_sq;
1391
22404274 1392 nvme_init_queue(nvmeq, qid);
22404274 1393 return result;
b60503ba
MW
1394
1395 release_sq:
1396 adapter_delete_sq(dev, qid);
1397 release_cq:
1398 adapter_delete_cq(dev, qid);
22404274 1399 return result;
b60503ba
MW
1400}
1401
a4aea562 1402static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1403 .queue_rq = nvme_queue_rq,
a4aea562
MB
1404 .map_queue = blk_mq_map_queue,
1405 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1406 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1407 .init_request = nvme_admin_init_request,
1408 .timeout = nvme_timeout,
1409};
1410
1411static struct blk_mq_ops nvme_mq_ops = {
1412 .queue_rq = nvme_queue_rq,
1413 .map_queue = blk_mq_map_queue,
1414 .init_hctx = nvme_init_hctx,
1415 .init_request = nvme_init_request,
1416 .timeout = nvme_timeout,
a0fa9647 1417 .poll = nvme_poll,
a4aea562
MB
1418};
1419
ea191d2f
KB
1420static void nvme_dev_remove_admin(struct nvme_dev *dev)
1421{
1c63dc66
CH
1422 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1423 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1424 blk_mq_free_tag_set(&dev->admin_tagset);
1425 }
1426}
1427
a4aea562
MB
1428static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1429{
1c63dc66 1430 if (!dev->ctrl.admin_q) {
a4aea562
MB
1431 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1432 dev->admin_tagset.nr_hw_queues = 1;
1433 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1434 dev->admin_tagset.reserved_tags = 1;
a4aea562 1435 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1436 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1437 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1438 dev->admin_tagset.driver_data = dev;
1439
1440 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1441 return -ENOMEM;
1442
1c63dc66
CH
1443 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1444 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1445 blk_mq_free_tag_set(&dev->admin_tagset);
1446 return -ENOMEM;
1447 }
1c63dc66 1448 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1449 nvme_dev_remove_admin(dev);
1c63dc66 1450 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1451 return -ENODEV;
1452 }
0fb59cbc 1453 } else
1c63dc66 1454 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
a4aea562
MB
1455
1456 return 0;
1457}
1458
8d85fce7 1459static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1460{
ba47e386 1461 int result;
b60503ba 1462 u32 aqa;
7a67cbea 1463 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1464 struct nvme_queue *nvmeq;
1465
7a67cbea 1466 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1467 NVME_CAP_NSSRC(cap) : 0;
1468
7a67cbea
CH
1469 if (dev->subsystem &&
1470 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1471 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1472
5fd4ce1b 1473 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1474 if (result < 0)
1475 return result;
b60503ba 1476
a4aea562 1477 nvmeq = dev->queues[0];
cd638946 1478 if (!nvmeq) {
2b25d981 1479 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1480 if (!nvmeq)
1481 return -ENOMEM;
cd638946 1482 }
b60503ba
MW
1483
1484 aqa = nvmeq->q_depth - 1;
1485 aqa |= aqa << 16;
1486
7a67cbea
CH
1487 writel(aqa, dev->bar + NVME_REG_AQA);
1488 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1489 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1490
5fd4ce1b 1491 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1492 if (result)
a4aea562
MB
1493 goto free_nvmeq;
1494
2b25d981 1495 nvmeq->cq_vector = 0;
3193f07b 1496 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1497 if (result) {
1498 nvmeq->cq_vector = -1;
0fb59cbc 1499 goto free_nvmeq;
758dd7fd 1500 }
025c557a 1501
b60503ba 1502 return result;
a4aea562 1503
a4aea562
MB
1504 free_nvmeq:
1505 nvme_free_queues(dev, 0);
1506 return result;
b60503ba
MW
1507}
1508
1fa6aead
MW
1509static int nvme_kthread(void *data)
1510{
d4b4ff8e 1511 struct nvme_dev *dev, *next;
1fa6aead
MW
1512
1513 while (!kthread_should_stop()) {
564a232c 1514 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 1515 spin_lock(&dev_list_lock);
d4b4ff8e 1516 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 1517 int i;
7a67cbea 1518 u32 csts = readl(dev->bar + NVME_REG_CSTS);
dfbac8c7 1519
846cc05f
CH
1520 /*
1521 * Skip controllers currently under reset.
1522 */
1523 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1524 continue;
1525
dfbac8c7
KB
1526 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1527 csts & NVME_CSTS_CFS) {
846cc05f 1528 if (queue_work(nvme_workq, &dev->reset_work)) {
90667892
CH
1529 dev_warn(dev->dev,
1530 "Failed status: %x, reset controller\n",
7a67cbea 1531 readl(dev->bar + NVME_REG_CSTS));
90667892 1532 }
d4b4ff8e
KB
1533 continue;
1534 }
1fa6aead 1535 for (i = 0; i < dev->queue_count; i++) {
a4aea562 1536 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1537 if (!nvmeq)
1538 continue;
1fa6aead 1539 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 1540 nvme_process_cq(nvmeq);
6fccf938 1541
1c63dc66 1542 while (i == 0 && dev->ctrl.event_limit > 0) {
a4aea562 1543 if (nvme_submit_async_admin_req(dev))
6fccf938 1544 break;
1c63dc66 1545 dev->ctrl.event_limit--;
6fccf938 1546 }
1fa6aead
MW
1547 spin_unlock_irq(&nvmeq->q_lock);
1548 }
1549 }
1550 spin_unlock(&dev_list_lock);
acb7aa0d 1551 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1552 }
1553 return 0;
1554}
1555
749941f2 1556static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1557{
a4aea562 1558 unsigned i;
749941f2 1559 int ret = 0;
42f61420 1560
749941f2
CH
1561 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1562 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1563 ret = -ENOMEM;
42f61420 1564 break;
749941f2
CH
1565 }
1566 }
42f61420 1567
749941f2
CH
1568 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1569 ret = nvme_create_queue(dev->queues[i], i);
1570 if (ret) {
2659e57b 1571 nvme_free_queues(dev, i);
42f61420 1572 break;
2659e57b 1573 }
749941f2
CH
1574 }
1575
1576 /*
1577 * Ignore failing Create SQ/CQ commands, we can continue with less
1578 * than the desired aount of queues, and even a controller without
1579 * I/O queues an still be used to issue admin commands. This might
1580 * be useful to upgrade a buggy firmware for example.
1581 */
1582 return ret >= 0 ? 0 : ret;
42f61420
KB
1583}
1584
8ffaadf7
JD
1585static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1586{
1587 u64 szu, size, offset;
1588 u32 cmbloc;
1589 resource_size_t bar_size;
1590 struct pci_dev *pdev = to_pci_dev(dev->dev);
1591 void __iomem *cmb;
1592 dma_addr_t dma_addr;
1593
1594 if (!use_cmb_sqes)
1595 return NULL;
1596
7a67cbea 1597 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1598 if (!(NVME_CMB_SZ(dev->cmbsz)))
1599 return NULL;
1600
7a67cbea 1601 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1602
1603 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1604 size = szu * NVME_CMB_SZ(dev->cmbsz);
1605 offset = szu * NVME_CMB_OFST(cmbloc);
1606 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1607
1608 if (offset > bar_size)
1609 return NULL;
1610
1611 /*
1612 * Controllers may support a CMB size larger than their BAR,
1613 * for example, due to being behind a bridge. Reduce the CMB to
1614 * the reported size of the BAR
1615 */
1616 if (size > bar_size - offset)
1617 size = bar_size - offset;
1618
1619 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1620 cmb = ioremap_wc(dma_addr, size);
1621 if (!cmb)
1622 return NULL;
1623
1624 dev->cmb_dma_addr = dma_addr;
1625 dev->cmb_size = size;
1626 return cmb;
1627}
1628
1629static inline void nvme_release_cmb(struct nvme_dev *dev)
1630{
1631 if (dev->cmb) {
1632 iounmap(dev->cmb);
1633 dev->cmb = NULL;
1634 }
1635}
1636
9d713c2b
KB
1637static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1638{
b80d5ccc 1639 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1640}
1641
8d85fce7 1642static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1643{
a4aea562 1644 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1645 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1646 int result, i, vecs, nr_io_queues, size;
b60503ba 1647
42f61420 1648 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1649 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1650 if (result < 0)
1b23484b 1651 return result;
9a0be7ab
CH
1652
1653 /*
1654 * Degraded controllers might return an error when setting the queue
1655 * count. We still want to be able to bring them online and offer
1656 * access to the admin queue, as that might be only way to fix them up.
1657 */
1658 if (result > 0) {
1659 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1660 nr_io_queues = 0;
1661 result = 0;
1662 }
b60503ba 1663
8ffaadf7
JD
1664 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1665 result = nvme_cmb_qdepth(dev, nr_io_queues,
1666 sizeof(struct nvme_command));
1667 if (result > 0)
1668 dev->q_depth = result;
1669 else
1670 nvme_release_cmb(dev);
1671 }
1672
9d713c2b
KB
1673 size = db_bar_size(dev, nr_io_queues);
1674 if (size > 8192) {
f1938f6e 1675 iounmap(dev->bar);
9d713c2b
KB
1676 do {
1677 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1678 if (dev->bar)
1679 break;
1680 if (!--nr_io_queues)
1681 return -ENOMEM;
1682 size = db_bar_size(dev, nr_io_queues);
1683 } while (1);
7a67cbea 1684 dev->dbs = dev->bar + 4096;
5a92e700 1685 adminq->q_db = dev->dbs;
f1938f6e
MW
1686 }
1687
9d713c2b 1688 /* Deregister the admin queue's interrupt */
3193f07b 1689 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1690
e32efbfc
JA
1691 /*
1692 * If we enable msix early due to not intx, disable it again before
1693 * setting up the full range we need.
1694 */
1695 if (!pdev->irq)
1696 pci_disable_msix(pdev);
1697
be577fab 1698 for (i = 0; i < nr_io_queues; i++)
1b23484b 1699 dev->entry[i].entry = i;
be577fab
AG
1700 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1701 if (vecs < 0) {
1702 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1703 if (vecs < 0) {
1704 vecs = 1;
1705 } else {
1706 for (i = 0; i < vecs; i++)
1707 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1708 }
1709 }
1710
063a8096
MW
1711 /*
1712 * Should investigate if there's a performance win from allocating
1713 * more queues than interrupt vectors; it might allow the submission
1714 * path to scale better, even if the receive path is limited by the
1715 * number of interrupts.
1716 */
1717 nr_io_queues = vecs;
42f61420 1718 dev->max_qid = nr_io_queues;
063a8096 1719
3193f07b 1720 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1721 if (result) {
1722 adminq->cq_vector = -1;
22404274 1723 goto free_queues;
758dd7fd 1724 }
1b23484b 1725
cd638946 1726 /* Free previously allocated queues that are no longer usable */
42f61420 1727 nvme_free_queues(dev, nr_io_queues + 1);
749941f2 1728 return nvme_create_io_queues(dev);
b60503ba 1729
22404274 1730 free_queues:
a1a5ef99 1731 nvme_free_queues(dev, 1);
22404274 1732 return result;
b60503ba
MW
1733}
1734
bda4e0fb
KB
1735static void nvme_set_irq_hints(struct nvme_dev *dev)
1736{
1737 struct nvme_queue *nvmeq;
1738 int i;
1739
1740 for (i = 0; i < dev->online_queues; i++) {
1741 nvmeq = dev->queues[i];
1742
1743 if (!nvmeq->tags || !(*nvmeq->tags))
1744 continue;
1745
1746 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1747 blk_mq_tags_cpumask(*nvmeq->tags));
1748 }
1749}
1750
a5768aa8
KB
1751static void nvme_dev_scan(struct work_struct *work)
1752{
1753 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1754
1755 if (!dev->tagset.tags)
1756 return;
5bae7f73 1757 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1758 nvme_set_irq_hints(dev);
a5768aa8
KB
1759}
1760
422ef0c7
MW
1761/*
1762 * Return: error value if an error occurred setting up the queues or calling
1763 * Identify Device. 0 if these succeeded, even if adding some of the
1764 * namespaces failed. At the moment, these failures are silent. TBD which
1765 * failures should be reported.
1766 */
8d85fce7 1767static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1768{
5bae7f73 1769 if (!dev->ctrl.tagset) {
ffe7704d
KB
1770 dev->tagset.ops = &nvme_mq_ops;
1771 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1772 dev->tagset.timeout = NVME_IO_TIMEOUT;
1773 dev->tagset.numa_node = dev_to_node(dev->dev);
1774 dev->tagset.queue_depth =
a4aea562 1775 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1776 dev->tagset.cmd_size = nvme_cmd_size(dev);
1777 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1778 dev->tagset.driver_data = dev;
b60503ba 1779
ffe7704d
KB
1780 if (blk_mq_alloc_tag_set(&dev->tagset))
1781 return 0;
5bae7f73 1782 dev->ctrl.tagset = &dev->tagset;
ffe7704d 1783 }
a5768aa8 1784 schedule_work(&dev->scan_work);
e1e5e564 1785 return 0;
b60503ba
MW
1786}
1787
0877cb0d
KB
1788static int nvme_dev_map(struct nvme_dev *dev)
1789{
42f61420 1790 u64 cap;
0877cb0d 1791 int bars, result = -ENOMEM;
e75ec752 1792 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1793
1794 if (pci_enable_device_mem(pdev))
1795 return result;
1796
1797 dev->entry[0].vector = pdev->irq;
1798 pci_set_master(pdev);
1799 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
1800 if (!bars)
1801 goto disable_pci;
1802
0877cb0d
KB
1803 if (pci_request_selected_regions(pdev, bars, "nvme"))
1804 goto disable_pci;
1805
e75ec752
CH
1806 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1807 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1808 goto disable;
0877cb0d 1809
0877cb0d
KB
1810 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1811 if (!dev->bar)
1812 goto disable;
e32efbfc 1813
7a67cbea 1814 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180
KB
1815 result = -ENODEV;
1816 goto unmap;
1817 }
e32efbfc
JA
1818
1819 /*
1820 * Some devices don't advertse INTx interrupts, pre-enable a single
1821 * MSIX vec for setup. We'll adjust this later.
1822 */
1823 if (!pdev->irq) {
1824 result = pci_enable_msix(pdev, dev->entry, 1);
1825 if (result < 0)
1826 goto unmap;
1827 }
1828
7a67cbea
CH
1829 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1830
42f61420
KB
1831 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1832 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea
CH
1833 dev->dbs = dev->bar + 4096;
1834 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1835 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
1836
1837 return 0;
1838
0e53d180
KB
1839 unmap:
1840 iounmap(dev->bar);
1841 dev->bar = NULL;
0877cb0d
KB
1842 disable:
1843 pci_release_regions(pdev);
1844 disable_pci:
1845 pci_disable_device(pdev);
1846 return result;
1847}
1848
1849static void nvme_dev_unmap(struct nvme_dev *dev)
1850{
e75ec752
CH
1851 struct pci_dev *pdev = to_pci_dev(dev->dev);
1852
1853 if (pdev->msi_enabled)
1854 pci_disable_msi(pdev);
1855 else if (pdev->msix_enabled)
1856 pci_disable_msix(pdev);
0877cb0d
KB
1857
1858 if (dev->bar) {
1859 iounmap(dev->bar);
1860 dev->bar = NULL;
e75ec752 1861 pci_release_regions(pdev);
0877cb0d
KB
1862 }
1863
e75ec752
CH
1864 if (pci_is_enabled(pdev))
1865 pci_disable_device(pdev);
0877cb0d
KB
1866}
1867
4d115420
KB
1868struct nvme_delq_ctx {
1869 struct task_struct *waiter;
1870 struct kthread_worker *worker;
1871 atomic_t refcount;
1872};
1873
1874static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1875{
1876 dq->waiter = current;
1877 mb();
1878
1879 for (;;) {
1880 set_current_state(TASK_KILLABLE);
1881 if (!atomic_read(&dq->refcount))
1882 break;
1883 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1884 fatal_signal_pending(current)) {
0fb59cbc
KB
1885 /*
1886 * Disable the controller first since we can't trust it
1887 * at this point, but leave the admin queue enabled
1888 * until all queue deletion requests are flushed.
1889 * FIXME: This may take a while if there are more h/w
1890 * queues than admin tags.
1891 */
4d115420 1892 set_current_state(TASK_RUNNING);
5fd4ce1b 1893 nvme_disable_ctrl(&dev->ctrl,
7a67cbea 1894 lo_hi_readq(dev->bar + NVME_REG_CAP));
0fb59cbc 1895 nvme_clear_queue(dev->queues[0]);
4d115420 1896 flush_kthread_worker(dq->worker);
0fb59cbc 1897 nvme_disable_queue(dev, 0);
4d115420
KB
1898 return;
1899 }
1900 }
1901 set_current_state(TASK_RUNNING);
1902}
1903
1904static void nvme_put_dq(struct nvme_delq_ctx *dq)
1905{
1906 atomic_dec(&dq->refcount);
1907 if (dq->waiter)
1908 wake_up_process(dq->waiter);
1909}
1910
1911static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1912{
1913 atomic_inc(&dq->refcount);
1914 return dq;
1915}
1916
1917static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1918{
1919 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420 1920 nvme_put_dq(dq);
604e8c8d
KB
1921
1922 spin_lock_irq(&nvmeq->q_lock);
1923 nvme_process_cq(nvmeq);
1924 spin_unlock_irq(&nvmeq->q_lock);
4d115420
KB
1925}
1926
1927static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1928 kthread_work_func_t fn)
1929{
1930 struct nvme_command c;
1931
1932 memset(&c, 0, sizeof(c));
1933 c.delete_queue.opcode = opcode;
1934 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1935
1936 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
1937 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1938 ADMIN_TIMEOUT);
4d115420
KB
1939}
1940
1941static void nvme_del_cq_work_handler(struct kthread_work *work)
1942{
1943 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1944 cmdinfo.work);
1945 nvme_del_queue_end(nvmeq);
1946}
1947
1948static int nvme_delete_cq(struct nvme_queue *nvmeq)
1949{
1950 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1951 nvme_del_cq_work_handler);
1952}
1953
1954static void nvme_del_sq_work_handler(struct kthread_work *work)
1955{
1956 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1957 cmdinfo.work);
1958 int status = nvmeq->cmdinfo.status;
1959
1960 if (!status)
1961 status = nvme_delete_cq(nvmeq);
1962 if (status)
1963 nvme_del_queue_end(nvmeq);
1964}
1965
1966static int nvme_delete_sq(struct nvme_queue *nvmeq)
1967{
1968 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1969 nvme_del_sq_work_handler);
1970}
1971
1972static void nvme_del_queue_start(struct kthread_work *work)
1973{
1974 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1975 cmdinfo.work);
4d115420
KB
1976 if (nvme_delete_sq(nvmeq))
1977 nvme_del_queue_end(nvmeq);
1978}
1979
1980static void nvme_disable_io_queues(struct nvme_dev *dev)
1981{
1982 int i;
1983 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1984 struct nvme_delq_ctx dq;
1985 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1c63dc66 1986 &worker, "nvme%d", dev->ctrl.instance);
4d115420
KB
1987
1988 if (IS_ERR(kworker_task)) {
e75ec752 1989 dev_err(dev->dev,
4d115420
KB
1990 "Failed to create queue del task\n");
1991 for (i = dev->queue_count - 1; i > 0; i--)
1992 nvme_disable_queue(dev, i);
1993 return;
1994 }
1995
1996 dq.waiter = NULL;
1997 atomic_set(&dq.refcount, 0);
1998 dq.worker = &worker;
1999 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2000 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2001
2002 if (nvme_suspend_queue(nvmeq))
2003 continue;
2004 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2005 nvmeq->cmdinfo.worker = dq.worker;
2006 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2007 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2008 }
2009 nvme_wait_dq(&dq, dev);
2010 kthread_stop(kworker_task);
2011}
2012
7385014c
CH
2013static int nvme_dev_list_add(struct nvme_dev *dev)
2014{
2015 bool start_thread = false;
2016
2017 spin_lock(&dev_list_lock);
2018 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2019 start_thread = true;
2020 nvme_thread = NULL;
2021 }
2022 list_add(&dev->node, &dev_list);
2023 spin_unlock(&dev_list_lock);
2024
2025 if (start_thread) {
2026 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2027 wake_up_all(&nvme_kthread_wait);
2028 } else
2029 wait_event_killable(nvme_kthread_wait, nvme_thread);
2030
2031 if (IS_ERR_OR_NULL(nvme_thread))
2032 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2033
2034 return 0;
2035}
2036
b9afca3e
DM
2037/*
2038* Remove the node from the device list and check
2039* for whether or not we need to stop the nvme_thread.
2040*/
2041static void nvme_dev_list_remove(struct nvme_dev *dev)
2042{
2043 struct task_struct *tmp = NULL;
2044
2045 spin_lock(&dev_list_lock);
2046 list_del_init(&dev->node);
2047 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2048 tmp = nvme_thread;
2049 nvme_thread = NULL;
2050 }
2051 spin_unlock(&dev_list_lock);
2052
2053 if (tmp)
2054 kthread_stop(tmp);
2055}
2056
c9d3bf88
KB
2057static void nvme_freeze_queues(struct nvme_dev *dev)
2058{
2059 struct nvme_ns *ns;
2060
5bae7f73 2061 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
2062 blk_mq_freeze_queue_start(ns->queue);
2063
cddcd72b 2064 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2065 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2066 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2067
2068 blk_mq_cancel_requeue_work(ns->queue);
2069 blk_mq_stop_hw_queues(ns->queue);
2070 }
2071}
2072
2073static void nvme_unfreeze_queues(struct nvme_dev *dev)
2074{
2075 struct nvme_ns *ns;
2076
5bae7f73 2077 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
2078 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2079 blk_mq_unfreeze_queue(ns->queue);
2080 blk_mq_start_stopped_hw_queues(ns->queue, true);
2081 blk_mq_kick_requeue_list(ns->queue);
2082 }
2083}
2084
f0b50732 2085static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2086{
22404274 2087 int i;
7c1b2450 2088 u32 csts = -1;
22404274 2089
b9afca3e 2090 nvme_dev_list_remove(dev);
1fa6aead 2091
77bf25ea 2092 mutex_lock(&dev->shutdown_lock);
c9d3bf88
KB
2093 if (dev->bar) {
2094 nvme_freeze_queues(dev);
7a67cbea 2095 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 2096 }
7c1b2450 2097 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2098 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2099 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2100 nvme_suspend_queue(nvmeq);
4d115420
KB
2101 }
2102 } else {
2103 nvme_disable_io_queues(dev);
5fd4ce1b 2104 nvme_shutdown_ctrl(&dev->ctrl);
4d115420
KB
2105 nvme_disable_queue(dev, 0);
2106 }
f0b50732 2107 nvme_dev_unmap(dev);
07836e65
KB
2108
2109 for (i = dev->queue_count - 1; i >= 0; i--)
2110 nvme_clear_queue(dev->queues[i]);
77bf25ea 2111 mutex_unlock(&dev->shutdown_lock);
f0b50732
KB
2112}
2113
091b6092
MW
2114static int nvme_setup_prp_pools(struct nvme_dev *dev)
2115{
e75ec752 2116 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2117 PAGE_SIZE, PAGE_SIZE, 0);
2118 if (!dev->prp_page_pool)
2119 return -ENOMEM;
2120
99802a7a 2121 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2122 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2123 256, 256, 0);
2124 if (!dev->prp_small_pool) {
2125 dma_pool_destroy(dev->prp_page_pool);
2126 return -ENOMEM;
2127 }
091b6092
MW
2128 return 0;
2129}
2130
2131static void nvme_release_prp_pools(struct nvme_dev *dev)
2132{
2133 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2134 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2135}
2136
1673f1f0 2137static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2138{
1673f1f0 2139 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2140
e75ec752 2141 put_device(dev->dev);
4af0e21c
KB
2142 if (dev->tagset.tags)
2143 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2144 if (dev->ctrl.admin_q)
2145 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
2146 kfree(dev->queues);
2147 kfree(dev->entry);
2148 kfree(dev);
2149}
2150
fd634f41 2151static void nvme_reset_work(struct work_struct *work)
f0b50732 2152{
fd634f41 2153 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
3cf519b5 2154 int result;
f0b50732 2155
fd634f41
CH
2156 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
2157 goto out;
2158
2159 /*
2160 * If we're called to reset a live controller first shut it down before
2161 * moving on.
2162 */
2163 if (dev->bar)
2164 nvme_dev_shutdown(dev);
2165
2166 set_bit(NVME_CTRL_RESETTING, &dev->flags);
2167
f0b50732
KB
2168 result = nvme_dev_map(dev);
2169 if (result)
3cf519b5 2170 goto out;
f0b50732
KB
2171
2172 result = nvme_configure_admin_queue(dev);
2173 if (result)
2174 goto unmap;
2175
a4aea562 2176 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2177 result = nvme_alloc_admin_tags(dev);
2178 if (result)
2179 goto disable;
b9afca3e 2180
ce4541f4
CH
2181 result = nvme_init_identify(&dev->ctrl);
2182 if (result)
2183 goto free_tags;
2184
f0b50732 2185 result = nvme_setup_io_queues(dev);
badc34d4 2186 if (result)
0fb59cbc 2187 goto free_tags;
f0b50732 2188
1c63dc66 2189 dev->ctrl.event_limit = 1;
3cf519b5 2190
7385014c
CH
2191 result = nvme_dev_list_add(dev);
2192 if (result)
2193 goto remove;
2194
2659e57b
CH
2195 /*
2196 * Keep the controller around but remove all namespaces if we don't have
2197 * any working I/O queue.
2198 */
3cf519b5
CH
2199 if (dev->online_queues < 2) {
2200 dev_warn(dev->dev, "IO queues not created\n");
5bae7f73 2201 nvme_remove_namespaces(&dev->ctrl);
3cf519b5
CH
2202 } else {
2203 nvme_unfreeze_queues(dev);
2204 nvme_dev_add(dev);
2205 }
2206
fd634f41 2207 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
3cf519b5 2208 return;
f0b50732 2209
7385014c
CH
2210 remove:
2211 nvme_dev_list_remove(dev);
0fb59cbc
KB
2212 free_tags:
2213 nvme_dev_remove_admin(dev);
1c63dc66
CH
2214 blk_put_queue(dev->ctrl.admin_q);
2215 dev->ctrl.admin_q = NULL;
4af0e21c 2216 dev->queues[0]->tags = NULL;
f0b50732 2217 disable:
a1a5ef99 2218 nvme_disable_queue(dev, 0);
f0b50732
KB
2219 unmap:
2220 nvme_dev_unmap(dev);
3cf519b5 2221 out:
5c8809e6 2222 nvme_remove_dead_ctrl(dev);
f0b50732
KB
2223}
2224
5c8809e6 2225static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 2226{
5c8809e6 2227 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 2228 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2229
2230 if (pci_get_drvdata(pdev))
c81f4975 2231 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 2232 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2233}
2234
5c8809e6 2235static void nvme_remove_dead_ctrl(struct nvme_dev *dev)
de3eff2b 2236{
5c8809e6 2237 dev_warn(dev->dev, "Removing after probe failure\n");
1673f1f0 2238 kref_get(&dev->ctrl.kref);
5c8809e6 2239 if (!schedule_work(&dev->remove_work))
1673f1f0 2240 nvme_put_ctrl(&dev->ctrl);
de3eff2b
KB
2241}
2242
4cc06521
KB
2243static int nvme_reset(struct nvme_dev *dev)
2244{
1c63dc66 2245 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521
KB
2246 return -ENODEV;
2247
846cc05f
CH
2248 if (!queue_work(nvme_workq, &dev->reset_work))
2249 return -EBUSY;
4cc06521 2250
846cc05f 2251 flush_work(&dev->reset_work);
846cc05f 2252 return 0;
4cc06521
KB
2253}
2254
1c63dc66
CH
2255static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2256{
2257 *val = readl(to_nvme_dev(ctrl)->bar + off);
2258 return 0;
2259}
2260
5fd4ce1b
CH
2261static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2262{
2263 writel(val, to_nvme_dev(ctrl)->bar + off);
2264 return 0;
2265}
2266
7fd8930f
CH
2267static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2268{
2269 *val = readq(to_nvme_dev(ctrl)->bar + off);
2270 return 0;
2271}
2272
5bae7f73
CH
2273static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2274{
2275 struct nvme_dev *dev = to_nvme_dev(ctrl);
2276
2277 return !dev->bar || dev->online_queues < 2;
2278}
2279
f3ca80fc
CH
2280static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2281{
2282 return nvme_reset(to_nvme_dev(ctrl));
2283}
2284
1c63dc66
CH
2285static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2286 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2287 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2288 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 2289 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 2290 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 2291 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66
CH
2292};
2293
8d85fce7 2294static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2295{
a4aea562 2296 int node, result = -ENOMEM;
b60503ba
MW
2297 struct nvme_dev *dev;
2298
a4aea562
MB
2299 node = dev_to_node(&pdev->dev);
2300 if (node == NUMA_NO_NODE)
2301 set_dev_node(&pdev->dev, 0);
2302
2303 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2304 if (!dev)
2305 return -ENOMEM;
a4aea562
MB
2306 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2307 GFP_KERNEL, node);
b60503ba
MW
2308 if (!dev->entry)
2309 goto free;
a4aea562
MB
2310 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2311 GFP_KERNEL, node);
b60503ba
MW
2312 if (!dev->queues)
2313 goto free;
2314
e75ec752 2315 dev->dev = get_device(&pdev->dev);
9a6b9458 2316 pci_set_drvdata(pdev, dev);
1c63dc66 2317
f3ca80fc
CH
2318 INIT_LIST_HEAD(&dev->node);
2319 INIT_WORK(&dev->scan_work, nvme_dev_scan);
f3ca80fc 2320 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2321 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2322 mutex_init(&dev->shutdown_lock);
1c63dc66 2323
f3ca80fc 2324 result = nvme_setup_prp_pools(dev);
cd58ad7d 2325 if (result)
a96d4f5c 2326 goto put_pci;
b60503ba 2327
f3ca80fc
CH
2328 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2329 id->driver_data);
091b6092 2330 if (result)
2e1d8448 2331 goto release_pools;
740216fc 2332
fd634f41 2333 schedule_work(&dev->reset_work);
b60503ba
MW
2334 return 0;
2335
0877cb0d 2336 release_pools:
091b6092 2337 nvme_release_prp_pools(dev);
a96d4f5c 2338 put_pci:
e75ec752 2339 put_device(dev->dev);
b60503ba
MW
2340 free:
2341 kfree(dev->queues);
2342 kfree(dev->entry);
2343 kfree(dev);
2344 return result;
2345}
2346
f0d54a54
KB
2347static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2348{
a6739479 2349 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2350
a6739479
KB
2351 if (prepare)
2352 nvme_dev_shutdown(dev);
2353 else
fd634f41 2354 schedule_work(&dev->reset_work);
f0d54a54
KB
2355}
2356
09ece142
KB
2357static void nvme_shutdown(struct pci_dev *pdev)
2358{
2359 struct nvme_dev *dev = pci_get_drvdata(pdev);
2360 nvme_dev_shutdown(dev);
2361}
2362
8d85fce7 2363static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2364{
2365 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
2366
2367 spin_lock(&dev_list_lock);
2368 list_del_init(&dev->node);
2369 spin_unlock(&dev_list_lock);
2370
2371 pci_set_drvdata(pdev, NULL);
2372 flush_work(&dev->reset_work);
a5768aa8 2373 flush_work(&dev->scan_work);
5bae7f73 2374 nvme_remove_namespaces(&dev->ctrl);
3399a3f7 2375 nvme_dev_shutdown(dev);
a4aea562 2376 nvme_dev_remove_admin(dev);
a1a5ef99 2377 nvme_free_queues(dev, 0);
8ffaadf7 2378 nvme_release_cmb(dev);
9a6b9458 2379 nvme_release_prp_pools(dev);
1673f1f0 2380 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2381}
2382
2383/* These functions are yet to be implemented */
2384#define nvme_error_detected NULL
2385#define nvme_dump_registers NULL
2386#define nvme_link_reset NULL
2387#define nvme_slot_reset NULL
2388#define nvme_error_resume NULL
cd638946 2389
671a6018 2390#ifdef CONFIG_PM_SLEEP
cd638946
KB
2391static int nvme_suspend(struct device *dev)
2392{
2393 struct pci_dev *pdev = to_pci_dev(dev);
2394 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2395
2396 nvme_dev_shutdown(ndev);
2397 return 0;
2398}
2399
2400static int nvme_resume(struct device *dev)
2401{
2402 struct pci_dev *pdev = to_pci_dev(dev);
2403 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2404
fd634f41 2405 schedule_work(&ndev->reset_work);
9a6b9458 2406 return 0;
cd638946 2407}
671a6018 2408#endif
cd638946
KB
2409
2410static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2411
1d352035 2412static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
2413 .error_detected = nvme_error_detected,
2414 .mmio_enabled = nvme_dump_registers,
2415 .link_reset = nvme_link_reset,
2416 .slot_reset = nvme_slot_reset,
2417 .resume = nvme_error_resume,
f0d54a54 2418 .reset_notify = nvme_reset_notify,
b60503ba
MW
2419};
2420
2421/* Move to pci_ids.h later */
2422#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2423
6eb0d698 2424static const struct pci_device_id nvme_id_table[] = {
106198ed
CH
2425 { PCI_VDEVICE(INTEL, 0x0953),
2426 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
b60503ba 2427 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2428 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2429 { 0, }
2430};
2431MODULE_DEVICE_TABLE(pci, nvme_id_table);
2432
2433static struct pci_driver nvme_driver = {
2434 .name = "nvme",
2435 .id_table = nvme_id_table,
2436 .probe = nvme_probe,
8d85fce7 2437 .remove = nvme_remove,
09ece142 2438 .shutdown = nvme_shutdown,
cd638946
KB
2439 .driver = {
2440 .pm = &nvme_dev_pm_ops,
2441 },
b60503ba
MW
2442 .err_handler = &nvme_err_handler,
2443};
2444
2445static int __init nvme_init(void)
2446{
0ac13140 2447 int result;
1fa6aead 2448
b9afca3e 2449 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 2450
9a6b9458
KB
2451 nvme_workq = create_singlethread_workqueue("nvme");
2452 if (!nvme_workq)
b9afca3e 2453 return -ENOMEM;
9a6b9458 2454
5bae7f73 2455 result = nvme_core_init();
5c42ea16 2456 if (result < 0)
9a6b9458 2457 goto kill_workq;
b60503ba 2458
f3db22fe
KB
2459 result = pci_register_driver(&nvme_driver);
2460 if (result)
f3ca80fc 2461 goto core_exit;
1fa6aead 2462 return 0;
b60503ba 2463
f3ca80fc 2464 core_exit:
5bae7f73 2465 nvme_core_exit();
9a6b9458
KB
2466 kill_workq:
2467 destroy_workqueue(nvme_workq);
b60503ba
MW
2468 return result;
2469}
2470
2471static void __exit nvme_exit(void)
2472{
2473 pci_unregister_driver(&nvme_driver);
5bae7f73 2474 nvme_core_exit();
9a6b9458 2475 destroy_workqueue(nvme_workq);
b9afca3e 2476 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 2477 _nvme_check_size();
b60503ba
MW
2478}
2479
2480MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2481MODULE_LICENSE("GPL");
c78b4713 2482MODULE_VERSION("1.0");
b60503ba
MW
2483module_init(nvme_init);
2484module_exit(nvme_exit);