nvme: don't take the I/O queue q_lock in nvme_timeout
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
8de05535 15#include <linux/bitops.h>
b60503ba 16#include <linux/blkdev.h>
a4aea562 17#include <linux/blk-mq.h>
42f61420 18#include <linux/cpu.h>
fd63e9ce 19#include <linux/delay.h>
b60503ba
MW
20#include <linux/errno.h>
21#include <linux/fs.h>
22#include <linux/genhd.h>
4cc09e2d 23#include <linux/hdreg.h>
5aff9382 24#include <linux/idr.h>
b60503ba
MW
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba
MW
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
77bf25ea 34#include <linux/mutex.h>
b60503ba 35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
2f8e2c87 42#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 43#include <asm/unaligned.h>
797a796a 44
f11bb3e2
CH
45#include "nvme.h"
46
9d43cf64 47#define NVME_Q_DEPTH 1024
d31af0a3 48#define NVME_AQ_DEPTH 256
b60503ba
MW
49#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 51
21d34711 52unsigned char admin_timeout = 60;
9d43cf64
KB
53module_param(admin_timeout, byte, 0644);
54MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 55
bd67608a
MW
56unsigned char nvme_io_timeout = 30;
57module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 58MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 59
5fd4ce1b 60unsigned char shutdown_timeout = 5;
2484f407
DM
61module_param(shutdown_timeout, byte, 0644);
62MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
63
58ffacb5
MW
64static int use_threaded_interrupts;
65module_param(use_threaded_interrupts, int, 0);
66
8ffaadf7
JD
67static bool use_cmb_sqes = true;
68module_param(use_cmb_sqes, bool, 0644);
69MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
70
1fa6aead
MW
71static LIST_HEAD(dev_list);
72static struct task_struct *nvme_thread;
9a6b9458 73static struct workqueue_struct *nvme_workq;
b9afca3e 74static wait_queue_head_t nvme_kthread_wait;
1fa6aead 75
1c63dc66
CH
76struct nvme_dev;
77struct nvme_queue;
d4f6c3ab 78struct nvme_iod;
1c63dc66 79
90667892 80static int __nvme_reset(struct nvme_dev *dev);
4cc06521 81static int nvme_reset(struct nvme_dev *dev);
a0fa9647 82static void nvme_process_cq(struct nvme_queue *nvmeq);
d4f6c3ab 83static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod);
3cf519b5 84static void nvme_dead_ctrl(struct nvme_dev *dev);
d4b4ff8e 85
4d115420
KB
86struct async_cmd_info {
87 struct kthread_work work;
88 struct kthread_worker *worker;
a4aea562 89 struct request *req;
4d115420
KB
90 u32 result;
91 int status;
92 void *ctx;
93};
1fa6aead 94
1c63dc66
CH
95/*
96 * Represents an NVM Express device. Each nvme_dev is a PCI function.
97 */
98struct nvme_dev {
99 struct list_head node;
100 struct nvme_queue **queues;
101 struct blk_mq_tag_set tagset;
102 struct blk_mq_tag_set admin_tagset;
103 u32 __iomem *dbs;
104 struct device *dev;
105 struct dma_pool *prp_page_pool;
106 struct dma_pool *prp_small_pool;
107 unsigned queue_count;
108 unsigned online_queues;
109 unsigned max_qid;
110 int q_depth;
111 u32 db_stride;
1c63dc66
CH
112 struct msix_entry *entry;
113 void __iomem *bar;
1c63dc66
CH
114 struct work_struct reset_work;
115 struct work_struct probe_work;
116 struct work_struct scan_work;
77bf25ea 117 struct mutex shutdown_lock;
1c63dc66 118 bool subsystem;
1c63dc66
CH
119 void __iomem *cmb;
120 dma_addr_t cmb_dma_addr;
121 u64 cmb_size;
122 u32 cmbsz;
123
124 struct nvme_ctrl ctrl;
125};
126
127static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
128{
129 return container_of(ctrl, struct nvme_dev, ctrl);
130}
131
b60503ba
MW
132/*
133 * An NVM Express queue. Each device has at least two (one for admin
134 * commands and one for I/O commands).
135 */
136struct nvme_queue {
137 struct device *q_dmadev;
091b6092 138 struct nvme_dev *dev;
3193f07b 139 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
140 spinlock_t q_lock;
141 struct nvme_command *sq_cmds;
8ffaadf7 142 struct nvme_command __iomem *sq_cmds_io;
b60503ba 143 volatile struct nvme_completion *cqes;
42483228 144 struct blk_mq_tags **tags;
b60503ba
MW
145 dma_addr_t sq_dma_addr;
146 dma_addr_t cq_dma_addr;
b60503ba
MW
147 u32 __iomem *q_db;
148 u16 q_depth;
6222d172 149 s16 cq_vector;
b60503ba
MW
150 u16 sq_head;
151 u16 sq_tail;
152 u16 cq_head;
c30341dc 153 u16 qid;
e9539f47
MW
154 u8 cq_phase;
155 u8 cqe_seen;
4d115420 156 struct async_cmd_info cmdinfo;
b60503ba
MW
157};
158
71bd150c
CH
159/*
160 * The nvme_iod describes the data in an I/O, including the list of PRP
161 * entries. You can't see it in this data structure because C doesn't let
162 * me express that. Use nvme_alloc_iod to ensure there's enough space
163 * allocated to store the PRP list.
164 */
165struct nvme_iod {
166 unsigned long private; /* For the use of the submitter of the I/O */
167 int npages; /* In the PRP list. 0 means small pool in use */
168 int offset; /* Of PRP list */
169 int nents; /* Used in scatterlist */
170 int length; /* Of data, in bytes */
171 dma_addr_t first_dma;
172 struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
173 struct scatterlist sg[0];
174};
175
b60503ba
MW
176/*
177 * Check we didin't inadvertently grow the command struct
178 */
179static inline void _nvme_check_size(void)
180{
181 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
182 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 186 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 187 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
188 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
189 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
190 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
191 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 192 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
193}
194
edd10d33 195typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
196 struct nvme_completion *);
197
e85248e5 198struct nvme_cmd_info {
c2f5b650
MW
199 nvme_completion_fn fn;
200 void *ctx;
c30341dc 201 int aborted;
a4aea562 202 struct nvme_queue *nvmeq;
ac3dd5bd 203 struct nvme_iod iod[0];
e85248e5
MW
204};
205
ac3dd5bd
JA
206/*
207 * Max size of iod being embedded in the request payload
208 */
209#define NVME_INT_PAGES 2
5fd4ce1b 210#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
fda631ff 211#define NVME_INT_MASK 0x01
ac3dd5bd
JA
212
213/*
214 * Will slightly overestimate the number of pages needed. This is OK
215 * as it only leads to a small amount of wasted memory for the lifetime of
216 * the I/O.
217 */
218static int nvme_npages(unsigned size, struct nvme_dev *dev)
219{
5fd4ce1b
CH
220 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
221 dev->ctrl.page_size);
ac3dd5bd
JA
222 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
223}
224
225static unsigned int nvme_cmd_size(struct nvme_dev *dev)
226{
227 unsigned int ret = sizeof(struct nvme_cmd_info);
228
229 ret += sizeof(struct nvme_iod);
230 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
231 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
232
233 return ret;
234}
235
a4aea562
MB
236static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
237 unsigned int hctx_idx)
e85248e5 238{
a4aea562
MB
239 struct nvme_dev *dev = data;
240 struct nvme_queue *nvmeq = dev->queues[0];
241
42483228
KB
242 WARN_ON(hctx_idx != 0);
243 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
244 WARN_ON(nvmeq->tags);
245
a4aea562 246 hctx->driver_data = nvmeq;
42483228 247 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 248 return 0;
e85248e5
MW
249}
250
4af0e21c
KB
251static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
252{
253 struct nvme_queue *nvmeq = hctx->driver_data;
254
255 nvmeq->tags = NULL;
256}
257
a4aea562
MB
258static int nvme_admin_init_request(void *data, struct request *req,
259 unsigned int hctx_idx, unsigned int rq_idx,
260 unsigned int numa_node)
22404274 261{
a4aea562
MB
262 struct nvme_dev *dev = data;
263 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
264 struct nvme_queue *nvmeq = dev->queues[0];
265
266 BUG_ON(!nvmeq);
267 cmd->nvmeq = nvmeq;
268 return 0;
22404274
KB
269}
270
a4aea562
MB
271static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
272 unsigned int hctx_idx)
b60503ba 273{
a4aea562 274 struct nvme_dev *dev = data;
42483228 275 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 276
42483228
KB
277 if (!nvmeq->tags)
278 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 279
42483228 280 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
281 hctx->driver_data = nvmeq;
282 return 0;
b60503ba
MW
283}
284
a4aea562
MB
285static int nvme_init_request(void *data, struct request *req,
286 unsigned int hctx_idx, unsigned int rq_idx,
287 unsigned int numa_node)
b60503ba 288{
a4aea562
MB
289 struct nvme_dev *dev = data;
290 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
291 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
292
293 BUG_ON(!nvmeq);
294 cmd->nvmeq = nvmeq;
295 return 0;
296}
297
298static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
299 nvme_completion_fn handler)
300{
301 cmd->fn = handler;
302 cmd->ctx = ctx;
303 cmd->aborted = 0;
c917dfe5 304 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
305}
306
ac3dd5bd
JA
307static void *iod_get_private(struct nvme_iod *iod)
308{
309 return (void *) (iod->private & ~0x1UL);
310}
311
312/*
313 * If bit 0 is set, the iod is embedded in the request payload.
314 */
315static bool iod_should_kfree(struct nvme_iod *iod)
316{
fda631ff 317 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
318}
319
c2f5b650
MW
320/* Special values must be less than 0x1000 */
321#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
322#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
323#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
324#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 325
edd10d33 326static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
327 struct nvme_completion *cqe)
328{
329 if (ctx == CMD_CTX_CANCELLED)
330 return;
c2f5b650 331 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 332 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
333 "completed id %d twice on queue %d\n",
334 cqe->command_id, le16_to_cpup(&cqe->sq_id));
335 return;
336 }
337 if (ctx == CMD_CTX_INVALID) {
edd10d33 338 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
339 "invalid id %d completed on queue %d\n",
340 cqe->command_id, le16_to_cpup(&cqe->sq_id));
341 return;
342 }
edd10d33 343 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
344}
345
a4aea562 346static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 347{
c2f5b650 348 void *ctx;
b60503ba 349
859361a2 350 if (fn)
a4aea562
MB
351 *fn = cmd->fn;
352 ctx = cmd->ctx;
353 cmd->fn = special_completion;
354 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 355 return ctx;
b60503ba
MW
356}
357
a4aea562
MB
358static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
359 struct nvme_completion *cqe)
3c0cf138 360{
a4aea562
MB
361 u32 result = le32_to_cpup(&cqe->result);
362 u16 status = le16_to_cpup(&cqe->status) >> 1;
363
364 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
1c63dc66 365 ++nvmeq->dev->ctrl.event_limit;
a5768aa8
KB
366 if (status != NVME_SC_SUCCESS)
367 return;
368
369 switch (result & 0xff07) {
370 case NVME_AER_NOTICE_NS_CHANGED:
371 dev_info(nvmeq->q_dmadev, "rescanning\n");
372 schedule_work(&nvmeq->dev->scan_work);
373 default:
374 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
375 }
b60503ba
MW
376}
377
a4aea562
MB
378static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
379 struct nvme_completion *cqe)
5a92e700 380{
a4aea562
MB
381 struct request *req = ctx;
382
383 u16 status = le16_to_cpup(&cqe->status) >> 1;
384 u32 result = le32_to_cpup(&cqe->result);
a51afb54 385
42483228 386 blk_mq_free_request(req);
a51afb54 387
a4aea562 388 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
1c63dc66 389 ++nvmeq->dev->ctrl.abort_limit;
5a92e700
KB
390}
391
a4aea562
MB
392static void async_completion(struct nvme_queue *nvmeq, void *ctx,
393 struct nvme_completion *cqe)
b60503ba 394{
a4aea562
MB
395 struct async_cmd_info *cmdinfo = ctx;
396 cmdinfo->result = le32_to_cpup(&cqe->result);
397 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
398 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
42483228 399 blk_mq_free_request(cmdinfo->req);
b60503ba
MW
400}
401
a4aea562
MB
402static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
403 unsigned int tag)
b60503ba 404{
42483228 405 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
a51afb54 406
a4aea562 407 return blk_mq_rq_to_pdu(req);
4f5099af
KB
408}
409
a4aea562
MB
410/*
411 * Called with local interrupts disabled and the q_lock held. May not sleep.
412 */
413static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
414 nvme_completion_fn *fn)
4f5099af 415{
a4aea562
MB
416 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
417 void *ctx;
418 if (tag >= nvmeq->q_depth) {
419 *fn = special_completion;
420 return CMD_CTX_INVALID;
421 }
422 if (fn)
423 *fn = cmd->fn;
424 ctx = cmd->ctx;
425 cmd->fn = special_completion;
426 cmd->ctx = CMD_CTX_COMPLETED;
427 return ctx;
b60503ba
MW
428}
429
430/**
714a7a22 431 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
432 * @nvmeq: The queue to use
433 * @cmd: The command to send
434 *
435 * Safe to use from interrupt context
436 */
e3f879bf
SB
437static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
438 struct nvme_command *cmd)
b60503ba 439{
a4aea562
MB
440 u16 tail = nvmeq->sq_tail;
441
8ffaadf7
JD
442 if (nvmeq->sq_cmds_io)
443 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
444 else
445 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
446
b60503ba
MW
447 if (++tail == nvmeq->q_depth)
448 tail = 0;
7547881d 449 writel(tail, nvmeq->q_db);
b60503ba 450 nvmeq->sq_tail = tail;
b60503ba
MW
451}
452
e3f879bf 453static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
a4aea562
MB
454{
455 unsigned long flags;
a4aea562 456 spin_lock_irqsave(&nvmeq->q_lock, flags);
e3f879bf 457 __nvme_submit_cmd(nvmeq, cmd);
a4aea562 458 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a4aea562
MB
459}
460
eca18b23 461static __le64 **iod_list(struct nvme_iod *iod)
e025344c 462{
eca18b23 463 return ((void *)iod) + iod->offset;
e025344c
SMM
464}
465
ac3dd5bd
JA
466static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
467 unsigned nseg, unsigned long private)
eca18b23 468{
ac3dd5bd
JA
469 iod->private = private;
470 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
471 iod->npages = -1;
472 iod->length = nbytes;
473 iod->nents = 0;
eca18b23 474}
b60503ba 475
eca18b23 476static struct nvme_iod *
ac3dd5bd
JA
477__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
478 unsigned long priv, gfp_t gfp)
b60503ba 479{
eca18b23 480 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 481 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
482 sizeof(struct scatterlist) * nseg, gfp);
483
ac3dd5bd
JA
484 if (iod)
485 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
486
487 return iod;
b60503ba
MW
488}
489
ac3dd5bd
JA
490static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
491 gfp_t gfp)
492{
493 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
494 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
495 struct nvme_iod *iod;
496
497 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
498 size <= NVME_INT_BYTES(dev)) {
499 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
500
501 iod = cmd->iod;
ac3dd5bd 502 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 503 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
504 return iod;
505 }
506
507 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
508 (unsigned long) rq, gfp);
509}
510
d29ec824 511static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 512{
5fd4ce1b 513 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23
MW
514 int i;
515 __le64 **list = iod_list(iod);
516 dma_addr_t prp_dma = iod->first_dma;
517
518 if (iod->npages == 0)
519 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
520 for (i = 0; i < iod->npages; i++) {
521 __le64 *prp_list = list[i];
522 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
523 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
524 prp_dma = next_prp_dma;
525 }
ac3dd5bd
JA
526
527 if (iod_should_kfree(iod))
528 kfree(iod);
b60503ba
MW
529}
530
52b68d7e 531#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
532static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
533{
534 if (be32_to_cpu(pi->ref_tag) == v)
535 pi->ref_tag = cpu_to_be32(p);
536}
537
538static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
539{
540 if (be32_to_cpu(pi->ref_tag) == p)
541 pi->ref_tag = cpu_to_be32(v);
542}
543
544/**
545 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
546 *
547 * The virtual start sector is the one that was originally submitted by the
548 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
549 * start sector may be different. Remap protection information to match the
550 * physical LBA on writes, and back to the original seed on reads.
551 *
552 * Type 0 and 3 do not have a ref tag, so no remapping required.
553 */
554static void nvme_dif_remap(struct request *req,
555 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
556{
557 struct nvme_ns *ns = req->rq_disk->private_data;
558 struct bio_integrity_payload *bip;
559 struct t10_pi_tuple *pi;
560 void *p, *pmap;
561 u32 i, nlb, ts, phys, virt;
562
563 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
564 return;
565
566 bip = bio_integrity(req->bio);
567 if (!bip)
568 return;
569
570 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
571
572 p = pmap;
573 virt = bip_get_seed(bip);
574 phys = nvme_block_nr(ns, blk_rq_pos(req));
575 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 576 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
577
578 for (i = 0; i < nlb; i++, virt++, phys++) {
579 pi = (struct t10_pi_tuple *)p;
580 dif_swap(phys, virt, pi);
581 p += ts;
582 }
583 kunmap_atomic(pmap);
584}
52b68d7e
KB
585#else /* CONFIG_BLK_DEV_INTEGRITY */
586static void nvme_dif_remap(struct request *req,
587 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
588{
589}
590static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
591{
592}
593static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
594{
595}
52b68d7e
KB
596#endif
597
a4aea562 598static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
599 struct nvme_completion *cqe)
600{
eca18b23 601 struct nvme_iod *iod = ctx;
ac3dd5bd 602 struct request *req = iod_get_private(iod);
a4aea562 603 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
b60503ba 604 u16 status = le16_to_cpup(&cqe->status) >> 1;
81c04b94 605 int error = 0;
b60503ba 606
edd10d33 607 if (unlikely(status)) {
a4aea562
MB
608 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
609 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
610 unsigned long flags;
611
d4f6c3ab
CH
612 nvme_unmap_data(nvmeq->dev, iod);
613
a4aea562 614 blk_mq_requeue_request(req);
c9d3bf88
KB
615 spin_lock_irqsave(req->q->queue_lock, flags);
616 if (!blk_queue_stopped(req->q))
617 blk_mq_kick_requeue_list(req->q);
618 spin_unlock_irqrestore(req->q->queue_lock, flags);
d4f6c3ab 619 return;
edd10d33 620 }
f4829a9b 621
d29ec824 622 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
17188bb4 623 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
81c04b94
CH
624 error = -EINTR;
625 else
626 error = status;
d29ec824 627 } else {
81c04b94 628 error = nvme_error_status(status);
d29ec824 629 }
f4829a9b
CH
630 }
631
a0a931d6
KB
632 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
633 u32 result = le32_to_cpup(&cqe->result);
634 req->special = (void *)(uintptr_t)result;
635 }
a4aea562
MB
636
637 if (cmd_rq->aborted)
e75ec752 638 dev_warn(nvmeq->dev->dev,
a4aea562 639 "completing aborted command with status:%04x\n",
81c04b94 640 error);
a4aea562 641
d4f6c3ab
CH
642 nvme_unmap_data(nvmeq->dev, iod);
643 blk_mq_complete_request(req, error);
b60503ba
MW
644}
645
69d2b571
CH
646static bool nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
647 int total_len)
ff22b54f 648{
99802a7a 649 struct dma_pool *pool;
eca18b23
MW
650 int length = total_len;
651 struct scatterlist *sg = iod->sg;
ff22b54f
MW
652 int dma_len = sg_dma_len(sg);
653 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 654 u32 page_size = dev->ctrl.page_size;
f137e0f1 655 int offset = dma_addr & (page_size - 1);
e025344c 656 __le64 *prp_list;
eca18b23 657 __le64 **list = iod_list(iod);
e025344c 658 dma_addr_t prp_dma;
eca18b23 659 int nprps, i;
ff22b54f 660
1d090624 661 length -= (page_size - offset);
ff22b54f 662 if (length <= 0)
69d2b571 663 return true;
ff22b54f 664
1d090624 665 dma_len -= (page_size - offset);
ff22b54f 666 if (dma_len) {
1d090624 667 dma_addr += (page_size - offset);
ff22b54f
MW
668 } else {
669 sg = sg_next(sg);
670 dma_addr = sg_dma_address(sg);
671 dma_len = sg_dma_len(sg);
672 }
673
1d090624 674 if (length <= page_size) {
edd10d33 675 iod->first_dma = dma_addr;
69d2b571 676 return true;
e025344c
SMM
677 }
678
1d090624 679 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
680 if (nprps <= (256 / 8)) {
681 pool = dev->prp_small_pool;
eca18b23 682 iod->npages = 0;
99802a7a
MW
683 } else {
684 pool = dev->prp_page_pool;
eca18b23 685 iod->npages = 1;
99802a7a
MW
686 }
687
69d2b571 688 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 689 if (!prp_list) {
edd10d33 690 iod->first_dma = dma_addr;
eca18b23 691 iod->npages = -1;
69d2b571 692 return false;
b77954cb 693 }
eca18b23
MW
694 list[0] = prp_list;
695 iod->first_dma = prp_dma;
e025344c
SMM
696 i = 0;
697 for (;;) {
1d090624 698 if (i == page_size >> 3) {
e025344c 699 __le64 *old_prp_list = prp_list;
69d2b571 700 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 701 if (!prp_list)
69d2b571 702 return false;
eca18b23 703 list[iod->npages++] = prp_list;
7523d834
MW
704 prp_list[0] = old_prp_list[i - 1];
705 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
706 i = 1;
e025344c
SMM
707 }
708 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
709 dma_len -= page_size;
710 dma_addr += page_size;
711 length -= page_size;
e025344c
SMM
712 if (length <= 0)
713 break;
714 if (dma_len > 0)
715 continue;
716 BUG_ON(dma_len < 0);
717 sg = sg_next(sg);
718 dma_addr = sg_dma_address(sg);
719 dma_len = sg_dma_len(sg);
ff22b54f
MW
720 }
721
69d2b571 722 return true;
ff22b54f
MW
723}
724
ba1ca37e
CH
725static int nvme_map_data(struct nvme_dev *dev, struct nvme_iod *iod,
726 struct nvme_command *cmnd)
d29ec824 727{
ba1ca37e
CH
728 struct request *req = iod_get_private(iod);
729 struct request_queue *q = req->q;
730 enum dma_data_direction dma_dir = rq_data_dir(req) ?
731 DMA_TO_DEVICE : DMA_FROM_DEVICE;
732 int ret = BLK_MQ_RQ_QUEUE_ERROR;
733
734 sg_init_table(iod->sg, req->nr_phys_segments);
735 iod->nents = blk_rq_map_sg(q, req, iod->sg);
736 if (!iod->nents)
737 goto out;
738
739 ret = BLK_MQ_RQ_QUEUE_BUSY;
740 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
741 goto out;
742
743 if (!nvme_setup_prps(dev, iod, blk_rq_bytes(req)))
744 goto out_unmap;
745
746 ret = BLK_MQ_RQ_QUEUE_ERROR;
747 if (blk_integrity_rq(req)) {
748 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
749 goto out_unmap;
750
751 sg_init_table(iod->meta_sg, 1);
752 if (blk_rq_map_integrity_sg(q, req->bio, iod->meta_sg) != 1)
753 goto out_unmap;
d29ec824 754
ba1ca37e
CH
755 if (rq_data_dir(req))
756 nvme_dif_remap(req, nvme_dif_prep);
757
758 if (!dma_map_sg(dev->dev, iod->meta_sg, 1, dma_dir))
759 goto out_unmap;
d29ec824
CH
760 }
761
ba1ca37e
CH
762 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
763 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
764 if (blk_integrity_rq(req))
765 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
766 return BLK_MQ_RQ_QUEUE_OK;
767
768out_unmap:
769 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
770out:
771 return ret;
d29ec824
CH
772}
773
d4f6c3ab
CH
774static void nvme_unmap_data(struct nvme_dev *dev, struct nvme_iod *iod)
775{
776 struct request *req = iod_get_private(iod);
777 enum dma_data_direction dma_dir = rq_data_dir(req) ?
778 DMA_TO_DEVICE : DMA_FROM_DEVICE;
779
780 if (iod->nents) {
781 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
782 if (blk_integrity_rq(req)) {
783 if (!rq_data_dir(req))
784 nvme_dif_remap(req, nvme_dif_complete);
785 dma_unmap_sg(dev->dev, iod->meta_sg, 1, dma_dir);
786 }
787 }
788
789 nvme_free_iod(dev, iod);
790}
791
a4aea562
MB
792/*
793 * We reuse the small pool to allocate the 16-byte range here as it is not
794 * worth having a special pool for these or additional cases to handle freeing
795 * the iod.
796 */
ba1ca37e
CH
797static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
798 struct nvme_iod *iod, struct nvme_command *cmnd)
0e5e4f0e 799{
ba1ca37e
CH
800 struct request *req = iod_get_private(iod);
801 struct nvme_dsm_range *range;
802
803 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
804 &iod->first_dma);
805 if (!range)
806 return BLK_MQ_RQ_QUEUE_BUSY;
807 iod_list(iod)[0] = (__le64 *)range;
808 iod->npages = 0;
0e5e4f0e 809
0e5e4f0e 810 range->cattr = cpu_to_le32(0);
a4aea562
MB
811 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
812 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 813
ba1ca37e
CH
814 memset(cmnd, 0, sizeof(*cmnd));
815 cmnd->dsm.opcode = nvme_cmd_dsm;
816 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
817 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
818 cmnd->dsm.nr = 0;
819 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
820 return BLK_MQ_RQ_QUEUE_OK;
0e5e4f0e
KB
821}
822
d29ec824
CH
823/*
824 * NOTE: ns is NULL when called on the admin queue.
825 */
a4aea562
MB
826static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
827 const struct blk_mq_queue_data *bd)
edd10d33 828{
a4aea562
MB
829 struct nvme_ns *ns = hctx->queue->queuedata;
830 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 831 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
832 struct request *req = bd->rq;
833 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 834 struct nvme_iod *iod;
ba1ca37e
CH
835 struct nvme_command cmnd;
836 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 837
e1e5e564
KB
838 /*
839 * If formated with metadata, require the block layer provide a buffer
840 * unless this namespace is formated such that the metadata can be
841 * stripped/generated by the controller with PRACT=1.
842 */
d29ec824 843 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
844 if (!(ns->pi_type && ns->ms == 8) &&
845 req->cmd_type != REQ_TYPE_DRV_PRIV) {
f4829a9b 846 blk_mq_complete_request(req, -EFAULT);
e1e5e564
KB
847 return BLK_MQ_RQ_QUEUE_OK;
848 }
849 }
850
d29ec824 851 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 852 if (!iod)
fe54303e 853 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 854
a4aea562 855 if (req->cmd_flags & REQ_DISCARD) {
ba1ca37e
CH
856 ret = nvme_setup_discard(nvmeq, ns, iod, &cmnd);
857 } else {
858 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
859 memcpy(&cmnd, req->cmd, sizeof(cmnd));
860 else if (req->cmd_flags & REQ_FLUSH)
861 nvme_setup_flush(ns, &cmnd);
862 else
863 nvme_setup_rw(ns, req, &cmnd);
a4aea562 864
ba1ca37e
CH
865 if (req->nr_phys_segments)
866 ret = nvme_map_data(dev, iod, &cmnd);
edd10d33 867 }
1974b1ae 868
ba1ca37e
CH
869 if (ret)
870 goto out;
871
872 cmnd.common.command_id = req->tag;
9af8785a 873 nvme_set_info(cmd, iod, req_completion);
a4aea562 874
ba1ca37e
CH
875 spin_lock_irq(&nvmeq->q_lock);
876 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
877 nvme_process_cq(nvmeq);
878 spin_unlock_irq(&nvmeq->q_lock);
879 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 880out:
d29ec824 881 nvme_free_iod(dev, iod);
ba1ca37e 882 return ret;
b60503ba
MW
883}
884
a0fa9647 885static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 886{
82123460 887 u16 head, phase;
b60503ba 888
b60503ba 889 head = nvmeq->cq_head;
82123460 890 phase = nvmeq->cq_phase;
b60503ba
MW
891
892 for (;;) {
c2f5b650
MW
893 void *ctx;
894 nvme_completion_fn fn;
b60503ba 895 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 896 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
897 break;
898 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
899 if (++head == nvmeq->q_depth) {
900 head = 0;
82123460 901 phase = !phase;
b60503ba 902 }
a0fa9647
JA
903 if (tag && *tag == cqe.command_id)
904 *tag = -1;
a4aea562 905 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 906 fn(nvmeq, ctx, &cqe);
b60503ba
MW
907 }
908
909 /* If the controller ignores the cq head doorbell and continuously
910 * writes to the queue, it is theoretically possible to wrap around
911 * the queue twice and mistakenly return IRQ_NONE. Linux only
912 * requires that 0.1% of your interrupts are handled, so this isn't
913 * a big problem.
914 */
82123460 915 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 916 return;
b60503ba 917
604e8c8d
KB
918 if (likely(nvmeq->cq_vector >= 0))
919 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 920 nvmeq->cq_head = head;
82123460 921 nvmeq->cq_phase = phase;
b60503ba 922
e9539f47 923 nvmeq->cqe_seen = 1;
a0fa9647
JA
924}
925
926static void nvme_process_cq(struct nvme_queue *nvmeq)
927{
928 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
929}
930
931static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
932{
933 irqreturn_t result;
934 struct nvme_queue *nvmeq = data;
935 spin_lock(&nvmeq->q_lock);
e9539f47
MW
936 nvme_process_cq(nvmeq);
937 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
938 nvmeq->cqe_seen = 0;
58ffacb5
MW
939 spin_unlock(&nvmeq->q_lock);
940 return result;
941}
942
943static irqreturn_t nvme_irq_check(int irq, void *data)
944{
945 struct nvme_queue *nvmeq = data;
946 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
947 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
948 return IRQ_NONE;
949 return IRQ_WAKE_THREAD;
950}
951
a0fa9647
JA
952static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
953{
954 struct nvme_queue *nvmeq = hctx->driver_data;
955
956 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
957 nvmeq->cq_phase) {
958 spin_lock_irq(&nvmeq->q_lock);
959 __nvme_process_cq(nvmeq, &tag);
960 spin_unlock_irq(&nvmeq->q_lock);
961
962 if (tag == -1)
963 return 1;
964 }
965
966 return 0;
967}
968
a4aea562
MB
969static int nvme_submit_async_admin_req(struct nvme_dev *dev)
970{
971 struct nvme_queue *nvmeq = dev->queues[0];
972 struct nvme_command c;
973 struct nvme_cmd_info *cmd_info;
974 struct request *req;
975
1c63dc66 976 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 977 BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED);
9f173b33
DC
978 if (IS_ERR(req))
979 return PTR_ERR(req);
a4aea562 980
c917dfe5 981 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 982 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 983 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
984
985 memset(&c, 0, sizeof(c));
986 c.common.opcode = nvme_admin_async_event;
987 c.common.command_id = req->tag;
988
42483228 989 blk_mq_free_request(req);
e3f879bf
SB
990 __nvme_submit_cmd(nvmeq, &c);
991 return 0;
a4aea562
MB
992}
993
994static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
995 struct nvme_command *cmd,
996 struct async_cmd_info *cmdinfo, unsigned timeout)
997{
a4aea562
MB
998 struct nvme_queue *nvmeq = dev->queues[0];
999 struct request *req;
1000 struct nvme_cmd_info *cmd_rq;
4d115420 1001
1c63dc66 1002 req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE, 0);
9f173b33
DC
1003 if (IS_ERR(req))
1004 return PTR_ERR(req);
a4aea562
MB
1005
1006 req->timeout = timeout;
1007 cmd_rq = blk_mq_rq_to_pdu(req);
1008 cmdinfo->req = req;
1009 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1010 cmdinfo->status = -EINTR;
a4aea562
MB
1011
1012 cmd->common.command_id = req->tag;
1013
e3f879bf
SB
1014 nvme_submit_cmd(nvmeq, cmd);
1015 return 0;
4d115420
KB
1016}
1017
b60503ba
MW
1018static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1019{
b60503ba
MW
1020 struct nvme_command c;
1021
1022 memset(&c, 0, sizeof(c));
1023 c.delete_queue.opcode = opcode;
1024 c.delete_queue.qid = cpu_to_le16(id);
1025
1c63dc66 1026 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1027}
1028
1029static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1030 struct nvme_queue *nvmeq)
1031{
b60503ba
MW
1032 struct nvme_command c;
1033 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1034
d29ec824
CH
1035 /*
1036 * Note: we (ab)use the fact the the prp fields survive if no data
1037 * is attached to the request.
1038 */
b60503ba
MW
1039 memset(&c, 0, sizeof(c));
1040 c.create_cq.opcode = nvme_admin_create_cq;
1041 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1042 c.create_cq.cqid = cpu_to_le16(qid);
1043 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1044 c.create_cq.cq_flags = cpu_to_le16(flags);
1045 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1046
1c63dc66 1047 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1048}
1049
1050static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1051 struct nvme_queue *nvmeq)
1052{
b60503ba
MW
1053 struct nvme_command c;
1054 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1055
d29ec824
CH
1056 /*
1057 * Note: we (ab)use the fact the the prp fields survive if no data
1058 * is attached to the request.
1059 */
b60503ba
MW
1060 memset(&c, 0, sizeof(c));
1061 c.create_sq.opcode = nvme_admin_create_sq;
1062 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1063 c.create_sq.sqid = cpu_to_le16(qid);
1064 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1065 c.create_sq.sq_flags = cpu_to_le16(flags);
1066 c.create_sq.cqid = cpu_to_le16(qid);
1067
1c63dc66 1068 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
1069}
1070
1071static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1072{
1073 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1074}
1075
1076static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1077{
1078 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1079}
1080
c30341dc 1081/**
a4aea562 1082 * nvme_abort_req - Attempt aborting a request
c30341dc
KB
1083 *
1084 * Schedule controller reset if the command was already aborted once before and
1085 * still hasn't been returned to the driver, or if this is the admin queue.
1086 */
a4aea562 1087static void nvme_abort_req(struct request *req)
c30341dc 1088{
a4aea562
MB
1089 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1090 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1091 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1092 struct request *abort_req;
1093 struct nvme_cmd_info *abort_cmd;
1094 struct nvme_command cmd;
c30341dc 1095
a4aea562 1096 if (!nvmeq->qid || cmd_rq->aborted) {
4c9f748f 1097 spin_lock_irq(&dev_list_lock);
90667892
CH
1098 if (!__nvme_reset(dev)) {
1099 dev_warn(dev->dev,
1100 "I/O %d QID %d timeout, reset controller\n",
1101 req->tag, nvmeq->qid);
1102 }
4c9f748f 1103 spin_unlock_irq(&dev_list_lock);
c30341dc
KB
1104 return;
1105 }
1106
1c63dc66 1107 if (!dev->ctrl.abort_limit)
c30341dc
KB
1108 return;
1109
1c63dc66 1110 abort_req = blk_mq_alloc_request(dev->ctrl.admin_q, WRITE,
6f3b0e8b 1111 BLK_MQ_REQ_NOWAIT);
9f173b33 1112 if (IS_ERR(abort_req))
c30341dc
KB
1113 return;
1114
a4aea562
MB
1115 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1116 nvme_set_info(abort_cmd, abort_req, abort_completion);
1117
c30341dc
KB
1118 memset(&cmd, 0, sizeof(cmd));
1119 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1120 cmd.abort.cid = req->tag;
c30341dc 1121 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1122 cmd.abort.command_id = abort_req->tag;
c30341dc 1123
1c63dc66 1124 --dev->ctrl.abort_limit;
a4aea562 1125 cmd_rq->aborted = 1;
c30341dc 1126
a4aea562 1127 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
c30341dc 1128 nvmeq->qid);
e3f879bf 1129 nvme_submit_cmd(dev->queues[0], &cmd);
c30341dc
KB
1130}
1131
42483228 1132static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1133{
a4aea562
MB
1134 struct nvme_queue *nvmeq = data;
1135 void *ctx;
1136 nvme_completion_fn fn;
1137 struct nvme_cmd_info *cmd;
cef6a948
KB
1138 struct nvme_completion cqe;
1139
1140 if (!blk_mq_request_started(req))
1141 return;
a09115b2 1142
a4aea562 1143 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1144
a4aea562
MB
1145 if (cmd->ctx == CMD_CTX_CANCELLED)
1146 return;
1147
cef6a948
KB
1148 if (blk_queue_dying(req->q))
1149 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1150 else
1151 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1152
1153
a4aea562
MB
1154 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1155 req->tag, nvmeq->qid);
1156 ctx = cancel_cmd_info(cmd, &fn);
1157 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1158}
1159
a4aea562 1160static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
9e866774 1161{
a4aea562
MB
1162 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1163 struct nvme_queue *nvmeq = cmd->nvmeq;
1164
1165 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1166 nvmeq->qid);
07836e65 1167 nvme_abort_req(req);
a4aea562 1168
07836e65
KB
1169 /*
1170 * The aborted req will be completed on receiving the abort req.
1171 * We enable the timer again. If hit twice, it'll cause a device reset,
1172 * as the device then is in a faulty state.
1173 */
1174 return BLK_EH_RESET_TIMER;
a4aea562 1175}
22404274 1176
a4aea562
MB
1177static void nvme_free_queue(struct nvme_queue *nvmeq)
1178{
9e866774
MW
1179 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1180 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1181 if (nvmeq->sq_cmds)
1182 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1183 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1184 kfree(nvmeq);
1185}
1186
a1a5ef99 1187static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1188{
1189 int i;
1190
a1a5ef99 1191 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1192 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1193 dev->queue_count--;
a4aea562 1194 dev->queues[i] = NULL;
f435c282 1195 nvme_free_queue(nvmeq);
121c7ad4 1196 }
22404274
KB
1197}
1198
4d115420
KB
1199/**
1200 * nvme_suspend_queue - put queue into suspended state
1201 * @nvmeq - queue to suspend
4d115420
KB
1202 */
1203static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1204{
2b25d981 1205 int vector;
b60503ba 1206
a09115b2 1207 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1208 if (nvmeq->cq_vector == -1) {
1209 spin_unlock_irq(&nvmeq->q_lock);
1210 return 1;
1211 }
1212 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1213 nvmeq->dev->online_queues--;
2b25d981 1214 nvmeq->cq_vector = -1;
a09115b2
MW
1215 spin_unlock_irq(&nvmeq->q_lock);
1216
1c63dc66
CH
1217 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
1218 blk_mq_freeze_queue_start(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1219
aba2080f
MW
1220 irq_set_affinity_hint(vector, NULL);
1221 free_irq(vector, nvmeq);
b60503ba 1222
4d115420
KB
1223 return 0;
1224}
b60503ba 1225
4d115420
KB
1226static void nvme_clear_queue(struct nvme_queue *nvmeq)
1227{
22404274 1228 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1229 if (nvmeq->tags && *nvmeq->tags)
1230 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1231 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1232}
1233
4d115420
KB
1234static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1235{
a4aea562 1236 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1237
1238 if (!nvmeq)
1239 return;
1240 if (nvme_suspend_queue(nvmeq))
1241 return;
1242
0e53d180
KB
1243 /* Don't tell the adapter to delete the admin queue.
1244 * Don't tell a removed adapter to delete IO queues. */
7a67cbea 1245 if (qid && readl(dev->bar + NVME_REG_CSTS) != -1) {
b60503ba
MW
1246 adapter_delete_sq(dev, qid);
1247 adapter_delete_cq(dev, qid);
1248 }
07836e65
KB
1249
1250 spin_lock_irq(&nvmeq->q_lock);
1251 nvme_process_cq(nvmeq);
1252 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1253}
1254
8ffaadf7
JD
1255static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1256 int entry_size)
1257{
1258 int q_depth = dev->q_depth;
5fd4ce1b
CH
1259 unsigned q_size_aligned = roundup(q_depth * entry_size,
1260 dev->ctrl.page_size);
8ffaadf7
JD
1261
1262 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1263 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1264 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1265 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1266
1267 /*
1268 * Ensure the reduced q_depth is above some threshold where it
1269 * would be better to map queues in system memory with the
1270 * original depth
1271 */
1272 if (q_depth < 64)
1273 return -ENOMEM;
1274 }
1275
1276 return q_depth;
1277}
1278
1279static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1280 int qid, int depth)
1281{
1282 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1283 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1284 dev->ctrl.page_size);
8ffaadf7
JD
1285 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1286 nvmeq->sq_cmds_io = dev->cmb + offset;
1287 } else {
1288 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1289 &nvmeq->sq_dma_addr, GFP_KERNEL);
1290 if (!nvmeq->sq_cmds)
1291 return -ENOMEM;
1292 }
1293
1294 return 0;
1295}
1296
b60503ba 1297static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1298 int depth)
b60503ba 1299{
a4aea562 1300 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1301 if (!nvmeq)
1302 return NULL;
1303
e75ec752 1304 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1305 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1306 if (!nvmeq->cqes)
1307 goto free_nvmeq;
b60503ba 1308
8ffaadf7 1309 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1310 goto free_cqdma;
1311
e75ec752 1312 nvmeq->q_dmadev = dev->dev;
091b6092 1313 nvmeq->dev = dev;
3193f07b 1314 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1315 dev->ctrl.instance, qid);
b60503ba
MW
1316 spin_lock_init(&nvmeq->q_lock);
1317 nvmeq->cq_head = 0;
82123460 1318 nvmeq->cq_phase = 1;
b80d5ccc 1319 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1320 nvmeq->q_depth = depth;
c30341dc 1321 nvmeq->qid = qid;
758dd7fd 1322 nvmeq->cq_vector = -1;
a4aea562 1323 dev->queues[qid] = nvmeq;
b60503ba 1324
36a7e993
JD
1325 /* make sure queue descriptor is set before queue count, for kthread */
1326 mb();
1327 dev->queue_count++;
1328
b60503ba
MW
1329 return nvmeq;
1330
1331 free_cqdma:
e75ec752 1332 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1333 nvmeq->cq_dma_addr);
1334 free_nvmeq:
1335 kfree(nvmeq);
1336 return NULL;
1337}
1338
3001082c
MW
1339static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1340 const char *name)
1341{
58ffacb5
MW
1342 if (use_threaded_interrupts)
1343 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1344 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1345 name, nvmeq);
3001082c 1346 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1347 IRQF_SHARED, name, nvmeq);
3001082c
MW
1348}
1349
22404274 1350static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1351{
22404274 1352 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1353
7be50e93 1354 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1355 nvmeq->sq_tail = 0;
1356 nvmeq->cq_head = 0;
1357 nvmeq->cq_phase = 1;
b80d5ccc 1358 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1359 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1360 dev->online_queues++;
7be50e93 1361 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1362}
1363
1364static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1365{
1366 struct nvme_dev *dev = nvmeq->dev;
1367 int result;
3f85d50b 1368
2b25d981 1369 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1370 result = adapter_alloc_cq(dev, qid, nvmeq);
1371 if (result < 0)
22404274 1372 return result;
b60503ba
MW
1373
1374 result = adapter_alloc_sq(dev, qid, nvmeq);
1375 if (result < 0)
1376 goto release_cq;
1377
3193f07b 1378 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1379 if (result < 0)
1380 goto release_sq;
1381
22404274 1382 nvme_init_queue(nvmeq, qid);
22404274 1383 return result;
b60503ba
MW
1384
1385 release_sq:
1386 adapter_delete_sq(dev, qid);
1387 release_cq:
1388 adapter_delete_cq(dev, qid);
22404274 1389 return result;
b60503ba
MW
1390}
1391
a4aea562 1392static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1393 .queue_rq = nvme_queue_rq,
a4aea562
MB
1394 .map_queue = blk_mq_map_queue,
1395 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1396 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1397 .init_request = nvme_admin_init_request,
1398 .timeout = nvme_timeout,
1399};
1400
1401static struct blk_mq_ops nvme_mq_ops = {
1402 .queue_rq = nvme_queue_rq,
1403 .map_queue = blk_mq_map_queue,
1404 .init_hctx = nvme_init_hctx,
1405 .init_request = nvme_init_request,
1406 .timeout = nvme_timeout,
a0fa9647 1407 .poll = nvme_poll,
a4aea562
MB
1408};
1409
ea191d2f
KB
1410static void nvme_dev_remove_admin(struct nvme_dev *dev)
1411{
1c63dc66
CH
1412 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
1413 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1414 blk_mq_free_tag_set(&dev->admin_tagset);
1415 }
1416}
1417
a4aea562
MB
1418static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1419{
1c63dc66 1420 if (!dev->ctrl.admin_q) {
a4aea562
MB
1421 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1422 dev->admin_tagset.nr_hw_queues = 1;
1423 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1424 dev->admin_tagset.reserved_tags = 1;
a4aea562 1425 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1426 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1427 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1428 dev->admin_tagset.driver_data = dev;
1429
1430 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1431 return -ENOMEM;
1432
1c63dc66
CH
1433 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1434 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1435 blk_mq_free_tag_set(&dev->admin_tagset);
1436 return -ENOMEM;
1437 }
1c63dc66 1438 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1439 nvme_dev_remove_admin(dev);
1c63dc66 1440 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1441 return -ENODEV;
1442 }
0fb59cbc 1443 } else
1c63dc66 1444 blk_mq_unfreeze_queue(dev->ctrl.admin_q);
a4aea562
MB
1445
1446 return 0;
1447}
1448
8d85fce7 1449static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1450{
ba47e386 1451 int result;
b60503ba 1452 u32 aqa;
7a67cbea 1453 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1454 struct nvme_queue *nvmeq;
1455
7a67cbea 1456 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1457 NVME_CAP_NSSRC(cap) : 0;
1458
7a67cbea
CH
1459 if (dev->subsystem &&
1460 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1461 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1462
5fd4ce1b 1463 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1464 if (result < 0)
1465 return result;
b60503ba 1466
a4aea562 1467 nvmeq = dev->queues[0];
cd638946 1468 if (!nvmeq) {
2b25d981 1469 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1470 if (!nvmeq)
1471 return -ENOMEM;
cd638946 1472 }
b60503ba
MW
1473
1474 aqa = nvmeq->q_depth - 1;
1475 aqa |= aqa << 16;
1476
7a67cbea
CH
1477 writel(aqa, dev->bar + NVME_REG_AQA);
1478 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1479 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1480
5fd4ce1b 1481 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1482 if (result)
a4aea562
MB
1483 goto free_nvmeq;
1484
2b25d981 1485 nvmeq->cq_vector = 0;
3193f07b 1486 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1487 if (result) {
1488 nvmeq->cq_vector = -1;
0fb59cbc 1489 goto free_nvmeq;
758dd7fd 1490 }
025c557a 1491
b60503ba 1492 return result;
a4aea562 1493
a4aea562
MB
1494 free_nvmeq:
1495 nvme_free_queues(dev, 0);
1496 return result;
b60503ba
MW
1497}
1498
1fa6aead
MW
1499static int nvme_kthread(void *data)
1500{
d4b4ff8e 1501 struct nvme_dev *dev, *next;
1fa6aead
MW
1502
1503 while (!kthread_should_stop()) {
564a232c 1504 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 1505 spin_lock(&dev_list_lock);
d4b4ff8e 1506 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 1507 int i;
7a67cbea 1508 u32 csts = readl(dev->bar + NVME_REG_CSTS);
dfbac8c7
KB
1509
1510 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1511 csts & NVME_CSTS_CFS) {
90667892
CH
1512 if (!__nvme_reset(dev)) {
1513 dev_warn(dev->dev,
1514 "Failed status: %x, reset controller\n",
7a67cbea 1515 readl(dev->bar + NVME_REG_CSTS));
90667892 1516 }
d4b4ff8e
KB
1517 continue;
1518 }
1fa6aead 1519 for (i = 0; i < dev->queue_count; i++) {
a4aea562 1520 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1521 if (!nvmeq)
1522 continue;
1fa6aead 1523 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 1524 nvme_process_cq(nvmeq);
6fccf938 1525
1c63dc66 1526 while (i == 0 && dev->ctrl.event_limit > 0) {
a4aea562 1527 if (nvme_submit_async_admin_req(dev))
6fccf938 1528 break;
1c63dc66 1529 dev->ctrl.event_limit--;
6fccf938 1530 }
1fa6aead
MW
1531 spin_unlock_irq(&nvmeq->q_lock);
1532 }
1533 }
1534 spin_unlock(&dev_list_lock);
acb7aa0d 1535 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1536 }
1537 return 0;
1538}
1539
749941f2 1540static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1541{
a4aea562 1542 unsigned i;
749941f2 1543 int ret = 0;
42f61420 1544
749941f2
CH
1545 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1546 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1547 ret = -ENOMEM;
42f61420 1548 break;
749941f2
CH
1549 }
1550 }
42f61420 1551
749941f2
CH
1552 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1553 ret = nvme_create_queue(dev->queues[i], i);
1554 if (ret) {
2659e57b 1555 nvme_free_queues(dev, i);
42f61420 1556 break;
2659e57b 1557 }
749941f2
CH
1558 }
1559
1560 /*
1561 * Ignore failing Create SQ/CQ commands, we can continue with less
1562 * than the desired aount of queues, and even a controller without
1563 * I/O queues an still be used to issue admin commands. This might
1564 * be useful to upgrade a buggy firmware for example.
1565 */
1566 return ret >= 0 ? 0 : ret;
42f61420
KB
1567}
1568
8ffaadf7
JD
1569static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1570{
1571 u64 szu, size, offset;
1572 u32 cmbloc;
1573 resource_size_t bar_size;
1574 struct pci_dev *pdev = to_pci_dev(dev->dev);
1575 void __iomem *cmb;
1576 dma_addr_t dma_addr;
1577
1578 if (!use_cmb_sqes)
1579 return NULL;
1580
7a67cbea 1581 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1582 if (!(NVME_CMB_SZ(dev->cmbsz)))
1583 return NULL;
1584
7a67cbea 1585 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1586
1587 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1588 size = szu * NVME_CMB_SZ(dev->cmbsz);
1589 offset = szu * NVME_CMB_OFST(cmbloc);
1590 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1591
1592 if (offset > bar_size)
1593 return NULL;
1594
1595 /*
1596 * Controllers may support a CMB size larger than their BAR,
1597 * for example, due to being behind a bridge. Reduce the CMB to
1598 * the reported size of the BAR
1599 */
1600 if (size > bar_size - offset)
1601 size = bar_size - offset;
1602
1603 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1604 cmb = ioremap_wc(dma_addr, size);
1605 if (!cmb)
1606 return NULL;
1607
1608 dev->cmb_dma_addr = dma_addr;
1609 dev->cmb_size = size;
1610 return cmb;
1611}
1612
1613static inline void nvme_release_cmb(struct nvme_dev *dev)
1614{
1615 if (dev->cmb) {
1616 iounmap(dev->cmb);
1617 dev->cmb = NULL;
1618 }
1619}
1620
9d713c2b
KB
1621static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1622{
b80d5ccc 1623 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1624}
1625
8d85fce7 1626static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1627{
a4aea562 1628 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1629 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1630 int result, i, vecs, nr_io_queues, size;
b60503ba 1631
42f61420 1632 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1633 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1634 if (result < 0)
1b23484b 1635 return result;
9a0be7ab
CH
1636
1637 /*
1638 * Degraded controllers might return an error when setting the queue
1639 * count. We still want to be able to bring them online and offer
1640 * access to the admin queue, as that might be only way to fix them up.
1641 */
1642 if (result > 0) {
1643 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1644 nr_io_queues = 0;
1645 result = 0;
1646 }
b60503ba 1647
8ffaadf7
JD
1648 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1649 result = nvme_cmb_qdepth(dev, nr_io_queues,
1650 sizeof(struct nvme_command));
1651 if (result > 0)
1652 dev->q_depth = result;
1653 else
1654 nvme_release_cmb(dev);
1655 }
1656
9d713c2b
KB
1657 size = db_bar_size(dev, nr_io_queues);
1658 if (size > 8192) {
f1938f6e 1659 iounmap(dev->bar);
9d713c2b
KB
1660 do {
1661 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1662 if (dev->bar)
1663 break;
1664 if (!--nr_io_queues)
1665 return -ENOMEM;
1666 size = db_bar_size(dev, nr_io_queues);
1667 } while (1);
7a67cbea 1668 dev->dbs = dev->bar + 4096;
5a92e700 1669 adminq->q_db = dev->dbs;
f1938f6e
MW
1670 }
1671
9d713c2b 1672 /* Deregister the admin queue's interrupt */
3193f07b 1673 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1674
e32efbfc
JA
1675 /*
1676 * If we enable msix early due to not intx, disable it again before
1677 * setting up the full range we need.
1678 */
1679 if (!pdev->irq)
1680 pci_disable_msix(pdev);
1681
be577fab 1682 for (i = 0; i < nr_io_queues; i++)
1b23484b 1683 dev->entry[i].entry = i;
be577fab
AG
1684 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1685 if (vecs < 0) {
1686 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1687 if (vecs < 0) {
1688 vecs = 1;
1689 } else {
1690 for (i = 0; i < vecs; i++)
1691 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1692 }
1693 }
1694
063a8096
MW
1695 /*
1696 * Should investigate if there's a performance win from allocating
1697 * more queues than interrupt vectors; it might allow the submission
1698 * path to scale better, even if the receive path is limited by the
1699 * number of interrupts.
1700 */
1701 nr_io_queues = vecs;
42f61420 1702 dev->max_qid = nr_io_queues;
063a8096 1703
3193f07b 1704 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1705 if (result) {
1706 adminq->cq_vector = -1;
22404274 1707 goto free_queues;
758dd7fd 1708 }
1b23484b 1709
cd638946 1710 /* Free previously allocated queues that are no longer usable */
42f61420 1711 nvme_free_queues(dev, nr_io_queues + 1);
749941f2 1712 return nvme_create_io_queues(dev);
b60503ba 1713
22404274 1714 free_queues:
a1a5ef99 1715 nvme_free_queues(dev, 1);
22404274 1716 return result;
b60503ba
MW
1717}
1718
bda4e0fb
KB
1719static void nvme_set_irq_hints(struct nvme_dev *dev)
1720{
1721 struct nvme_queue *nvmeq;
1722 int i;
1723
1724 for (i = 0; i < dev->online_queues; i++) {
1725 nvmeq = dev->queues[i];
1726
1727 if (!nvmeq->tags || !(*nvmeq->tags))
1728 continue;
1729
1730 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1731 blk_mq_tags_cpumask(*nvmeq->tags));
1732 }
1733}
1734
a5768aa8
KB
1735static void nvme_dev_scan(struct work_struct *work)
1736{
1737 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1738
1739 if (!dev->tagset.tags)
1740 return;
5bae7f73 1741 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1742 nvme_set_irq_hints(dev);
a5768aa8
KB
1743}
1744
422ef0c7
MW
1745/*
1746 * Return: error value if an error occurred setting up the queues or calling
1747 * Identify Device. 0 if these succeeded, even if adding some of the
1748 * namespaces failed. At the moment, these failures are silent. TBD which
1749 * failures should be reported.
1750 */
8d85fce7 1751static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1752{
5bae7f73 1753 if (!dev->ctrl.tagset) {
ffe7704d
KB
1754 dev->tagset.ops = &nvme_mq_ops;
1755 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1756 dev->tagset.timeout = NVME_IO_TIMEOUT;
1757 dev->tagset.numa_node = dev_to_node(dev->dev);
1758 dev->tagset.queue_depth =
a4aea562 1759 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1760 dev->tagset.cmd_size = nvme_cmd_size(dev);
1761 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1762 dev->tagset.driver_data = dev;
b60503ba 1763
ffe7704d
KB
1764 if (blk_mq_alloc_tag_set(&dev->tagset))
1765 return 0;
5bae7f73 1766 dev->ctrl.tagset = &dev->tagset;
ffe7704d 1767 }
a5768aa8 1768 schedule_work(&dev->scan_work);
e1e5e564 1769 return 0;
b60503ba
MW
1770}
1771
0877cb0d
KB
1772static int nvme_dev_map(struct nvme_dev *dev)
1773{
42f61420 1774 u64 cap;
0877cb0d 1775 int bars, result = -ENOMEM;
e75ec752 1776 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1777
1778 if (pci_enable_device_mem(pdev))
1779 return result;
1780
1781 dev->entry[0].vector = pdev->irq;
1782 pci_set_master(pdev);
1783 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
1784 if (!bars)
1785 goto disable_pci;
1786
0877cb0d
KB
1787 if (pci_request_selected_regions(pdev, bars, "nvme"))
1788 goto disable_pci;
1789
e75ec752
CH
1790 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1791 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1792 goto disable;
0877cb0d 1793
0877cb0d
KB
1794 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1795 if (!dev->bar)
1796 goto disable;
e32efbfc 1797
7a67cbea 1798 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180
KB
1799 result = -ENODEV;
1800 goto unmap;
1801 }
e32efbfc
JA
1802
1803 /*
1804 * Some devices don't advertse INTx interrupts, pre-enable a single
1805 * MSIX vec for setup. We'll adjust this later.
1806 */
1807 if (!pdev->irq) {
1808 result = pci_enable_msix(pdev, dev->entry, 1);
1809 if (result < 0)
1810 goto unmap;
1811 }
1812
7a67cbea
CH
1813 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1814
42f61420
KB
1815 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1816 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea
CH
1817 dev->dbs = dev->bar + 4096;
1818 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1819 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
1820
1821 return 0;
1822
0e53d180
KB
1823 unmap:
1824 iounmap(dev->bar);
1825 dev->bar = NULL;
0877cb0d
KB
1826 disable:
1827 pci_release_regions(pdev);
1828 disable_pci:
1829 pci_disable_device(pdev);
1830 return result;
1831}
1832
1833static void nvme_dev_unmap(struct nvme_dev *dev)
1834{
e75ec752
CH
1835 struct pci_dev *pdev = to_pci_dev(dev->dev);
1836
1837 if (pdev->msi_enabled)
1838 pci_disable_msi(pdev);
1839 else if (pdev->msix_enabled)
1840 pci_disable_msix(pdev);
0877cb0d
KB
1841
1842 if (dev->bar) {
1843 iounmap(dev->bar);
1844 dev->bar = NULL;
e75ec752 1845 pci_release_regions(pdev);
0877cb0d
KB
1846 }
1847
e75ec752
CH
1848 if (pci_is_enabled(pdev))
1849 pci_disable_device(pdev);
0877cb0d
KB
1850}
1851
4d115420
KB
1852struct nvme_delq_ctx {
1853 struct task_struct *waiter;
1854 struct kthread_worker *worker;
1855 atomic_t refcount;
1856};
1857
1858static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
1859{
1860 dq->waiter = current;
1861 mb();
1862
1863 for (;;) {
1864 set_current_state(TASK_KILLABLE);
1865 if (!atomic_read(&dq->refcount))
1866 break;
1867 if (!schedule_timeout(ADMIN_TIMEOUT) ||
1868 fatal_signal_pending(current)) {
0fb59cbc
KB
1869 /*
1870 * Disable the controller first since we can't trust it
1871 * at this point, but leave the admin queue enabled
1872 * until all queue deletion requests are flushed.
1873 * FIXME: This may take a while if there are more h/w
1874 * queues than admin tags.
1875 */
4d115420 1876 set_current_state(TASK_RUNNING);
5fd4ce1b 1877 nvme_disable_ctrl(&dev->ctrl,
7a67cbea 1878 lo_hi_readq(dev->bar + NVME_REG_CAP));
0fb59cbc 1879 nvme_clear_queue(dev->queues[0]);
4d115420 1880 flush_kthread_worker(dq->worker);
0fb59cbc 1881 nvme_disable_queue(dev, 0);
4d115420
KB
1882 return;
1883 }
1884 }
1885 set_current_state(TASK_RUNNING);
1886}
1887
1888static void nvme_put_dq(struct nvme_delq_ctx *dq)
1889{
1890 atomic_dec(&dq->refcount);
1891 if (dq->waiter)
1892 wake_up_process(dq->waiter);
1893}
1894
1895static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
1896{
1897 atomic_inc(&dq->refcount);
1898 return dq;
1899}
1900
1901static void nvme_del_queue_end(struct nvme_queue *nvmeq)
1902{
1903 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420 1904 nvme_put_dq(dq);
604e8c8d
KB
1905
1906 spin_lock_irq(&nvmeq->q_lock);
1907 nvme_process_cq(nvmeq);
1908 spin_unlock_irq(&nvmeq->q_lock);
4d115420
KB
1909}
1910
1911static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
1912 kthread_work_func_t fn)
1913{
1914 struct nvme_command c;
1915
1916 memset(&c, 0, sizeof(c));
1917 c.delete_queue.opcode = opcode;
1918 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
1919
1920 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
1921 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
1922 ADMIN_TIMEOUT);
4d115420
KB
1923}
1924
1925static void nvme_del_cq_work_handler(struct kthread_work *work)
1926{
1927 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1928 cmdinfo.work);
1929 nvme_del_queue_end(nvmeq);
1930}
1931
1932static int nvme_delete_cq(struct nvme_queue *nvmeq)
1933{
1934 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
1935 nvme_del_cq_work_handler);
1936}
1937
1938static void nvme_del_sq_work_handler(struct kthread_work *work)
1939{
1940 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1941 cmdinfo.work);
1942 int status = nvmeq->cmdinfo.status;
1943
1944 if (!status)
1945 status = nvme_delete_cq(nvmeq);
1946 if (status)
1947 nvme_del_queue_end(nvmeq);
1948}
1949
1950static int nvme_delete_sq(struct nvme_queue *nvmeq)
1951{
1952 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
1953 nvme_del_sq_work_handler);
1954}
1955
1956static void nvme_del_queue_start(struct kthread_work *work)
1957{
1958 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
1959 cmdinfo.work);
4d115420
KB
1960 if (nvme_delete_sq(nvmeq))
1961 nvme_del_queue_end(nvmeq);
1962}
1963
1964static void nvme_disable_io_queues(struct nvme_dev *dev)
1965{
1966 int i;
1967 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
1968 struct nvme_delq_ctx dq;
1969 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
1c63dc66 1970 &worker, "nvme%d", dev->ctrl.instance);
4d115420
KB
1971
1972 if (IS_ERR(kworker_task)) {
e75ec752 1973 dev_err(dev->dev,
4d115420
KB
1974 "Failed to create queue del task\n");
1975 for (i = dev->queue_count - 1; i > 0; i--)
1976 nvme_disable_queue(dev, i);
1977 return;
1978 }
1979
1980 dq.waiter = NULL;
1981 atomic_set(&dq.refcount, 0);
1982 dq.worker = &worker;
1983 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 1984 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
1985
1986 if (nvme_suspend_queue(nvmeq))
1987 continue;
1988 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
1989 nvmeq->cmdinfo.worker = dq.worker;
1990 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
1991 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
1992 }
1993 nvme_wait_dq(&dq, dev);
1994 kthread_stop(kworker_task);
1995}
1996
7385014c
CH
1997static int nvme_dev_list_add(struct nvme_dev *dev)
1998{
1999 bool start_thread = false;
2000
2001 spin_lock(&dev_list_lock);
2002 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2003 start_thread = true;
2004 nvme_thread = NULL;
2005 }
2006 list_add(&dev->node, &dev_list);
2007 spin_unlock(&dev_list_lock);
2008
2009 if (start_thread) {
2010 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2011 wake_up_all(&nvme_kthread_wait);
2012 } else
2013 wait_event_killable(nvme_kthread_wait, nvme_thread);
2014
2015 if (IS_ERR_OR_NULL(nvme_thread))
2016 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2017
2018 return 0;
2019}
2020
b9afca3e
DM
2021/*
2022* Remove the node from the device list and check
2023* for whether or not we need to stop the nvme_thread.
2024*/
2025static void nvme_dev_list_remove(struct nvme_dev *dev)
2026{
2027 struct task_struct *tmp = NULL;
2028
2029 spin_lock(&dev_list_lock);
2030 list_del_init(&dev->node);
2031 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2032 tmp = nvme_thread;
2033 nvme_thread = NULL;
2034 }
2035 spin_unlock(&dev_list_lock);
2036
2037 if (tmp)
2038 kthread_stop(tmp);
2039}
2040
c9d3bf88
KB
2041static void nvme_freeze_queues(struct nvme_dev *dev)
2042{
2043 struct nvme_ns *ns;
2044
5bae7f73 2045 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
2046 blk_mq_freeze_queue_start(ns->queue);
2047
cddcd72b 2048 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2049 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2050 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2051
2052 blk_mq_cancel_requeue_work(ns->queue);
2053 blk_mq_stop_hw_queues(ns->queue);
2054 }
2055}
2056
2057static void nvme_unfreeze_queues(struct nvme_dev *dev)
2058{
2059 struct nvme_ns *ns;
2060
5bae7f73 2061 list_for_each_entry(ns, &dev->ctrl.namespaces, list) {
c9d3bf88
KB
2062 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2063 blk_mq_unfreeze_queue(ns->queue);
2064 blk_mq_start_stopped_hw_queues(ns->queue, true);
2065 blk_mq_kick_requeue_list(ns->queue);
2066 }
2067}
2068
f0b50732 2069static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2070{
22404274 2071 int i;
7c1b2450 2072 u32 csts = -1;
22404274 2073
b9afca3e 2074 nvme_dev_list_remove(dev);
1fa6aead 2075
77bf25ea 2076 mutex_lock(&dev->shutdown_lock);
c9d3bf88
KB
2077 if (dev->bar) {
2078 nvme_freeze_queues(dev);
7a67cbea 2079 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 2080 }
7c1b2450 2081 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2082 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2083 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2084 nvme_suspend_queue(nvmeq);
4d115420
KB
2085 }
2086 } else {
2087 nvme_disable_io_queues(dev);
5fd4ce1b 2088 nvme_shutdown_ctrl(&dev->ctrl);
4d115420
KB
2089 nvme_disable_queue(dev, 0);
2090 }
f0b50732 2091 nvme_dev_unmap(dev);
07836e65
KB
2092
2093 for (i = dev->queue_count - 1; i >= 0; i--)
2094 nvme_clear_queue(dev->queues[i]);
77bf25ea 2095 mutex_unlock(&dev->shutdown_lock);
f0b50732
KB
2096}
2097
091b6092
MW
2098static int nvme_setup_prp_pools(struct nvme_dev *dev)
2099{
e75ec752 2100 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2101 PAGE_SIZE, PAGE_SIZE, 0);
2102 if (!dev->prp_page_pool)
2103 return -ENOMEM;
2104
99802a7a 2105 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2106 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2107 256, 256, 0);
2108 if (!dev->prp_small_pool) {
2109 dma_pool_destroy(dev->prp_page_pool);
2110 return -ENOMEM;
2111 }
091b6092
MW
2112 return 0;
2113}
2114
2115static void nvme_release_prp_pools(struct nvme_dev *dev)
2116{
2117 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2118 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2119}
2120
1673f1f0 2121static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 2122{
1673f1f0 2123 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 2124
e75ec752 2125 put_device(dev->dev);
4af0e21c
KB
2126 if (dev->tagset.tags)
2127 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
2128 if (dev->ctrl.admin_q)
2129 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
2130 kfree(dev->queues);
2131 kfree(dev->entry);
2132 kfree(dev);
2133}
2134
3cf519b5 2135static void nvme_probe_work(struct work_struct *work)
f0b50732 2136{
3cf519b5 2137 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
3cf519b5 2138 int result;
f0b50732
KB
2139
2140 result = nvme_dev_map(dev);
2141 if (result)
3cf519b5 2142 goto out;
f0b50732
KB
2143
2144 result = nvme_configure_admin_queue(dev);
2145 if (result)
2146 goto unmap;
2147
a4aea562 2148 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2149 result = nvme_alloc_admin_tags(dev);
2150 if (result)
2151 goto disable;
b9afca3e 2152
ce4541f4
CH
2153 result = nvme_init_identify(&dev->ctrl);
2154 if (result)
2155 goto free_tags;
2156
f0b50732 2157 result = nvme_setup_io_queues(dev);
badc34d4 2158 if (result)
0fb59cbc 2159 goto free_tags;
f0b50732 2160
1c63dc66 2161 dev->ctrl.event_limit = 1;
3cf519b5 2162
7385014c
CH
2163 result = nvme_dev_list_add(dev);
2164 if (result)
2165 goto remove;
2166
2659e57b
CH
2167 /*
2168 * Keep the controller around but remove all namespaces if we don't have
2169 * any working I/O queue.
2170 */
3cf519b5
CH
2171 if (dev->online_queues < 2) {
2172 dev_warn(dev->dev, "IO queues not created\n");
5bae7f73 2173 nvme_remove_namespaces(&dev->ctrl);
3cf519b5
CH
2174 } else {
2175 nvme_unfreeze_queues(dev);
2176 nvme_dev_add(dev);
2177 }
2178
2179 return;
f0b50732 2180
7385014c
CH
2181 remove:
2182 nvme_dev_list_remove(dev);
0fb59cbc
KB
2183 free_tags:
2184 nvme_dev_remove_admin(dev);
1c63dc66
CH
2185 blk_put_queue(dev->ctrl.admin_q);
2186 dev->ctrl.admin_q = NULL;
4af0e21c 2187 dev->queues[0]->tags = NULL;
f0b50732 2188 disable:
a1a5ef99 2189 nvme_disable_queue(dev, 0);
f0b50732
KB
2190 unmap:
2191 nvme_dev_unmap(dev);
3cf519b5
CH
2192 out:
2193 if (!work_busy(&dev->reset_work))
2194 nvme_dead_ctrl(dev);
f0b50732
KB
2195}
2196
9a6b9458
KB
2197static int nvme_remove_dead_ctrl(void *arg)
2198{
2199 struct nvme_dev *dev = (struct nvme_dev *)arg;
e75ec752 2200 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2201
2202 if (pci_get_drvdata(pdev))
c81f4975 2203 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 2204 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
2205 return 0;
2206}
2207
de3eff2b
KB
2208static void nvme_dead_ctrl(struct nvme_dev *dev)
2209{
2210 dev_warn(dev->dev, "Device failed to resume\n");
1673f1f0 2211 kref_get(&dev->ctrl.kref);
de3eff2b 2212 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
1c63dc66 2213 dev->ctrl.instance))) {
de3eff2b
KB
2214 dev_err(dev->dev,
2215 "Failed to start controller remove task\n");
1673f1f0 2216 nvme_put_ctrl(&dev->ctrl);
de3eff2b
KB
2217 }
2218}
2219
77b50d9e 2220static void nvme_reset_work(struct work_struct *ws)
9a6b9458 2221{
77b50d9e 2222 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
ffe7704d
KB
2223 bool in_probe = work_busy(&dev->probe_work);
2224
9a6b9458 2225 nvme_dev_shutdown(dev);
ffe7704d
KB
2226
2227 /* Synchronize with device probe so that work will see failure status
2228 * and exit gracefully without trying to schedule another reset */
2229 flush_work(&dev->probe_work);
2230
2231 /* Fail this device if reset occured during probe to avoid
2232 * infinite initialization loops. */
2233 if (in_probe) {
de3eff2b 2234 nvme_dead_ctrl(dev);
ffe7704d 2235 return;
9a6b9458 2236 }
ffe7704d
KB
2237 /* Schedule device resume asynchronously so the reset work is available
2238 * to cleanup errors that may occur during reinitialization */
2239 schedule_work(&dev->probe_work);
9a6b9458
KB
2240}
2241
90667892 2242static int __nvme_reset(struct nvme_dev *dev)
9ca97374 2243{
90667892
CH
2244 if (work_pending(&dev->reset_work))
2245 return -EBUSY;
2246 list_del_init(&dev->node);
2247 queue_work(nvme_workq, &dev->reset_work);
2248 return 0;
9ca97374
TH
2249}
2250
4cc06521
KB
2251static int nvme_reset(struct nvme_dev *dev)
2252{
90667892 2253 int ret;
4cc06521 2254
1c63dc66 2255 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521
KB
2256 return -ENODEV;
2257
2258 spin_lock(&dev_list_lock);
90667892 2259 ret = __nvme_reset(dev);
4cc06521
KB
2260 spin_unlock(&dev_list_lock);
2261
2262 if (!ret) {
2263 flush_work(&dev->reset_work);
ffe7704d 2264 flush_work(&dev->probe_work);
4cc06521
KB
2265 return 0;
2266 }
2267
2268 return ret;
2269}
2270
1c63dc66
CH
2271static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
2272{
2273 *val = readl(to_nvme_dev(ctrl)->bar + off);
2274 return 0;
2275}
2276
5fd4ce1b
CH
2277static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
2278{
2279 writel(val, to_nvme_dev(ctrl)->bar + off);
2280 return 0;
2281}
2282
7fd8930f
CH
2283static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2284{
2285 *val = readq(to_nvme_dev(ctrl)->bar + off);
2286 return 0;
2287}
2288
5bae7f73
CH
2289static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
2290{
2291 struct nvme_dev *dev = to_nvme_dev(ctrl);
2292
2293 return !dev->bar || dev->online_queues < 2;
2294}
2295
f3ca80fc
CH
2296static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2297{
2298 return nvme_reset(to_nvme_dev(ctrl));
2299}
2300
1c63dc66
CH
2301static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2302 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2303 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2304 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 2305 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 2306 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 2307 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66
CH
2308};
2309
8d85fce7 2310static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2311{
a4aea562 2312 int node, result = -ENOMEM;
b60503ba
MW
2313 struct nvme_dev *dev;
2314
a4aea562
MB
2315 node = dev_to_node(&pdev->dev);
2316 if (node == NUMA_NO_NODE)
2317 set_dev_node(&pdev->dev, 0);
2318
2319 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2320 if (!dev)
2321 return -ENOMEM;
a4aea562
MB
2322 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2323 GFP_KERNEL, node);
b60503ba
MW
2324 if (!dev->entry)
2325 goto free;
a4aea562
MB
2326 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2327 GFP_KERNEL, node);
b60503ba
MW
2328 if (!dev->queues)
2329 goto free;
2330
e75ec752 2331 dev->dev = get_device(&pdev->dev);
9a6b9458 2332 pci_set_drvdata(pdev, dev);
1c63dc66 2333
f3ca80fc
CH
2334 INIT_LIST_HEAD(&dev->node);
2335 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2336 INIT_WORK(&dev->probe_work, nvme_probe_work);
2337 INIT_WORK(&dev->reset_work, nvme_reset_work);
77bf25ea 2338 mutex_init(&dev->shutdown_lock);
1c63dc66 2339
f3ca80fc 2340 result = nvme_setup_prp_pools(dev);
cd58ad7d 2341 if (result)
a96d4f5c 2342 goto put_pci;
b60503ba 2343
f3ca80fc
CH
2344 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2345 id->driver_data);
091b6092 2346 if (result)
2e1d8448 2347 goto release_pools;
740216fc 2348
2e1d8448 2349 schedule_work(&dev->probe_work);
b60503ba
MW
2350 return 0;
2351
0877cb0d 2352 release_pools:
091b6092 2353 nvme_release_prp_pools(dev);
a96d4f5c 2354 put_pci:
e75ec752 2355 put_device(dev->dev);
b60503ba
MW
2356 free:
2357 kfree(dev->queues);
2358 kfree(dev->entry);
2359 kfree(dev);
2360 return result;
2361}
2362
f0d54a54
KB
2363static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2364{
a6739479 2365 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2366
a6739479
KB
2367 if (prepare)
2368 nvme_dev_shutdown(dev);
2369 else
0a7385ad 2370 schedule_work(&dev->probe_work);
f0d54a54
KB
2371}
2372
09ece142
KB
2373static void nvme_shutdown(struct pci_dev *pdev)
2374{
2375 struct nvme_dev *dev = pci_get_drvdata(pdev);
2376 nvme_dev_shutdown(dev);
2377}
2378
8d85fce7 2379static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2380{
2381 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
2382
2383 spin_lock(&dev_list_lock);
2384 list_del_init(&dev->node);
2385 spin_unlock(&dev_list_lock);
2386
2387 pci_set_drvdata(pdev, NULL);
2e1d8448 2388 flush_work(&dev->probe_work);
9a6b9458 2389 flush_work(&dev->reset_work);
a5768aa8 2390 flush_work(&dev->scan_work);
5bae7f73 2391 nvme_remove_namespaces(&dev->ctrl);
3399a3f7 2392 nvme_dev_shutdown(dev);
a4aea562 2393 nvme_dev_remove_admin(dev);
a1a5ef99 2394 nvme_free_queues(dev, 0);
8ffaadf7 2395 nvme_release_cmb(dev);
9a6b9458 2396 nvme_release_prp_pools(dev);
1673f1f0 2397 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2398}
2399
2400/* These functions are yet to be implemented */
2401#define nvme_error_detected NULL
2402#define nvme_dump_registers NULL
2403#define nvme_link_reset NULL
2404#define nvme_slot_reset NULL
2405#define nvme_error_resume NULL
cd638946 2406
671a6018 2407#ifdef CONFIG_PM_SLEEP
cd638946
KB
2408static int nvme_suspend(struct device *dev)
2409{
2410 struct pci_dev *pdev = to_pci_dev(dev);
2411 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2412
2413 nvme_dev_shutdown(ndev);
2414 return 0;
2415}
2416
2417static int nvme_resume(struct device *dev)
2418{
2419 struct pci_dev *pdev = to_pci_dev(dev);
2420 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2421
0a7385ad 2422 schedule_work(&ndev->probe_work);
9a6b9458 2423 return 0;
cd638946 2424}
671a6018 2425#endif
cd638946
KB
2426
2427static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2428
1d352035 2429static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
2430 .error_detected = nvme_error_detected,
2431 .mmio_enabled = nvme_dump_registers,
2432 .link_reset = nvme_link_reset,
2433 .slot_reset = nvme_slot_reset,
2434 .resume = nvme_error_resume,
f0d54a54 2435 .reset_notify = nvme_reset_notify,
b60503ba
MW
2436};
2437
2438/* Move to pci_ids.h later */
2439#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2440
6eb0d698 2441static const struct pci_device_id nvme_id_table[] = {
106198ed
CH
2442 { PCI_VDEVICE(INTEL, 0x0953),
2443 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
b60503ba 2444 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2445 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2446 { 0, }
2447};
2448MODULE_DEVICE_TABLE(pci, nvme_id_table);
2449
2450static struct pci_driver nvme_driver = {
2451 .name = "nvme",
2452 .id_table = nvme_id_table,
2453 .probe = nvme_probe,
8d85fce7 2454 .remove = nvme_remove,
09ece142 2455 .shutdown = nvme_shutdown,
cd638946
KB
2456 .driver = {
2457 .pm = &nvme_dev_pm_ops,
2458 },
b60503ba
MW
2459 .err_handler = &nvme_err_handler,
2460};
2461
2462static int __init nvme_init(void)
2463{
0ac13140 2464 int result;
1fa6aead 2465
b9afca3e 2466 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 2467
9a6b9458
KB
2468 nvme_workq = create_singlethread_workqueue("nvme");
2469 if (!nvme_workq)
b9afca3e 2470 return -ENOMEM;
9a6b9458 2471
5bae7f73 2472 result = nvme_core_init();
5c42ea16 2473 if (result < 0)
9a6b9458 2474 goto kill_workq;
b60503ba 2475
f3db22fe
KB
2476 result = pci_register_driver(&nvme_driver);
2477 if (result)
f3ca80fc 2478 goto core_exit;
1fa6aead 2479 return 0;
b60503ba 2480
f3ca80fc 2481 core_exit:
5bae7f73 2482 nvme_core_exit();
9a6b9458
KB
2483 kill_workq:
2484 destroy_workqueue(nvme_workq);
b60503ba
MW
2485 return result;
2486}
2487
2488static void __exit nvme_exit(void)
2489{
2490 pci_unregister_driver(&nvme_driver);
5bae7f73 2491 nvme_core_exit();
9a6b9458 2492 destroy_workqueue(nvme_workq);
b9afca3e 2493 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 2494 _nvme_check_size();
b60503ba
MW
2495}
2496
2497MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2498MODULE_LICENSE("GPL");
c78b4713 2499MODULE_VERSION("1.0");
b60503ba
MW
2500module_init(nvme_init);
2501module_exit(nvme_exit);