Merge branch 'for-4.6/core' of git://git.kernel.dk/linux-block
[linux-2.6-block.git] / drivers / nvme / host / pci.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
a0a3408e 15#include <linux/aer.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
1fa6aead 30#include <linux/kthread.h>
b60503ba
MW
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
77bf25ea 35#include <linux/mutex.h>
b60503ba 36#include <linux/pci.h>
be7b6275 37#include <linux/poison.h>
c3bfe717 38#include <linux/ptrace.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
e1e5e564 41#include <linux/t10-pi.h>
b60503ba 42#include <linux/types.h>
2f8e2c87 43#include <linux/io-64-nonatomic-lo-hi.h>
1d277a63 44#include <asm/unaligned.h>
797a796a 45
f11bb3e2
CH
46#include "nvme.h"
47
9d43cf64 48#define NVME_Q_DEPTH 1024
d31af0a3 49#define NVME_AQ_DEPTH 256
b60503ba
MW
50#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
51#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
adf68f21
CH
52
53/*
54 * We handle AEN commands ourselves and don't even let the
55 * block layer know about them.
56 */
57#define NVME_NR_AEN_COMMANDS 1
58#define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AEN_COMMANDS)
9d43cf64 59
21d34711 60unsigned char admin_timeout = 60;
9d43cf64
KB
61module_param(admin_timeout, byte, 0644);
62MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 63
bd67608a
MW
64unsigned char nvme_io_timeout = 30;
65module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 66MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 67
5fd4ce1b 68unsigned char shutdown_timeout = 5;
2484f407
DM
69module_param(shutdown_timeout, byte, 0644);
70MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
71
58ffacb5
MW
72static int use_threaded_interrupts;
73module_param(use_threaded_interrupts, int, 0);
74
8ffaadf7
JD
75static bool use_cmb_sqes = true;
76module_param(use_cmb_sqes, bool, 0644);
77MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
1fa6aead
MW
79static LIST_HEAD(dev_list);
80static struct task_struct *nvme_thread;
9a6b9458 81static struct workqueue_struct *nvme_workq;
b9afca3e 82static wait_queue_head_t nvme_kthread_wait;
1fa6aead 83
1c63dc66
CH
84struct nvme_dev;
85struct nvme_queue;
b3fffdef 86
4cc06521 87static int nvme_reset(struct nvme_dev *dev);
a0fa9647 88static void nvme_process_cq(struct nvme_queue *nvmeq);
a5cdb68c 89static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown);
d4b4ff8e 90
1c63dc66
CH
91/*
92 * Represents an NVM Express device. Each nvme_dev is a PCI function.
93 */
94struct nvme_dev {
95 struct list_head node;
96 struct nvme_queue **queues;
97 struct blk_mq_tag_set tagset;
98 struct blk_mq_tag_set admin_tagset;
99 u32 __iomem *dbs;
100 struct device *dev;
101 struct dma_pool *prp_page_pool;
102 struct dma_pool *prp_small_pool;
103 unsigned queue_count;
104 unsigned online_queues;
105 unsigned max_qid;
106 int q_depth;
107 u32 db_stride;
1c63dc66
CH
108 struct msix_entry *entry;
109 void __iomem *bar;
1c63dc66 110 struct work_struct reset_work;
1c63dc66 111 struct work_struct scan_work;
5c8809e6 112 struct work_struct remove_work;
77bf25ea 113 struct mutex shutdown_lock;
1c63dc66 114 bool subsystem;
1c63dc66
CH
115 void __iomem *cmb;
116 dma_addr_t cmb_dma_addr;
117 u64 cmb_size;
118 u32 cmbsz;
fd634f41 119 unsigned long flags;
db3cbfff 120
fd634f41 121#define NVME_CTRL_RESETTING 0
646017a6 122#define NVME_CTRL_REMOVING 1
1c63dc66
CH
123
124 struct nvme_ctrl ctrl;
db3cbfff 125 struct completion ioq_wait;
4d115420 126};
1fa6aead 127
1c63dc66
CH
128static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl)
129{
130 return container_of(ctrl, struct nvme_dev, ctrl);
131}
132
b60503ba
MW
133/*
134 * An NVM Express queue. Each device has at least two (one for admin
135 * commands and one for I/O commands).
136 */
137struct nvme_queue {
138 struct device *q_dmadev;
091b6092 139 struct nvme_dev *dev;
3193f07b 140 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
141 spinlock_t q_lock;
142 struct nvme_command *sq_cmds;
8ffaadf7 143 struct nvme_command __iomem *sq_cmds_io;
b60503ba 144 volatile struct nvme_completion *cqes;
42483228 145 struct blk_mq_tags **tags;
b60503ba
MW
146 dma_addr_t sq_dma_addr;
147 dma_addr_t cq_dma_addr;
b60503ba
MW
148 u32 __iomem *q_db;
149 u16 q_depth;
6222d172 150 s16 cq_vector;
b60503ba
MW
151 u16 sq_head;
152 u16 sq_tail;
153 u16 cq_head;
c30341dc 154 u16 qid;
e9539f47
MW
155 u8 cq_phase;
156 u8 cqe_seen;
b60503ba
MW
157};
158
71bd150c
CH
159/*
160 * The nvme_iod describes the data in an I/O, including the list of PRP
161 * entries. You can't see it in this data structure because C doesn't let
f4800d6d 162 * me express that. Use nvme_init_iod to ensure there's enough space
71bd150c
CH
163 * allocated to store the PRP list.
164 */
165struct nvme_iod {
f4800d6d
CH
166 struct nvme_queue *nvmeq;
167 int aborted;
71bd150c 168 int npages; /* In the PRP list. 0 means small pool in use */
71bd150c
CH
169 int nents; /* Used in scatterlist */
170 int length; /* Of data, in bytes */
171 dma_addr_t first_dma;
bf684057 172 struct scatterlist meta_sg; /* metadata requires single contiguous buffer */
f4800d6d
CH
173 struct scatterlist *sg;
174 struct scatterlist inline_sg[0];
b60503ba
MW
175};
176
177/*
178 * Check we didin't inadvertently grow the command struct
179 */
180static inline void _nvme_check_size(void)
181{
182 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
183 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
184 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
185 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
186 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 187 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 188 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
189 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
190 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
191 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
192 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 193 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
194}
195
ac3dd5bd
JA
196/*
197 * Max size of iod being embedded in the request payload
198 */
199#define NVME_INT_PAGES 2
5fd4ce1b 200#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size)
ac3dd5bd
JA
201
202/*
203 * Will slightly overestimate the number of pages needed. This is OK
204 * as it only leads to a small amount of wasted memory for the lifetime of
205 * the I/O.
206 */
207static int nvme_npages(unsigned size, struct nvme_dev *dev)
208{
5fd4ce1b
CH
209 unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size,
210 dev->ctrl.page_size);
ac3dd5bd
JA
211 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
212}
213
f4800d6d
CH
214static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev,
215 unsigned int size, unsigned int nseg)
ac3dd5bd 216{
f4800d6d
CH
217 return sizeof(__le64 *) * nvme_npages(size, dev) +
218 sizeof(struct scatterlist) * nseg;
219}
ac3dd5bd 220
f4800d6d
CH
221static unsigned int nvme_cmd_size(struct nvme_dev *dev)
222{
223 return sizeof(struct nvme_iod) +
224 nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES);
ac3dd5bd
JA
225}
226
a4aea562
MB
227static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
228 unsigned int hctx_idx)
e85248e5 229{
a4aea562
MB
230 struct nvme_dev *dev = data;
231 struct nvme_queue *nvmeq = dev->queues[0];
232
42483228
KB
233 WARN_ON(hctx_idx != 0);
234 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
235 WARN_ON(nvmeq->tags);
236
a4aea562 237 hctx->driver_data = nvmeq;
42483228 238 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 239 return 0;
e85248e5
MW
240}
241
4af0e21c
KB
242static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
243{
244 struct nvme_queue *nvmeq = hctx->driver_data;
245
246 nvmeq->tags = NULL;
247}
248
a4aea562
MB
249static int nvme_admin_init_request(void *data, struct request *req,
250 unsigned int hctx_idx, unsigned int rq_idx,
251 unsigned int numa_node)
22404274 252{
a4aea562 253 struct nvme_dev *dev = data;
f4800d6d 254 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
255 struct nvme_queue *nvmeq = dev->queues[0];
256
257 BUG_ON(!nvmeq);
f4800d6d 258 iod->nvmeq = nvmeq;
a4aea562 259 return 0;
22404274
KB
260}
261
a4aea562
MB
262static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
263 unsigned int hctx_idx)
b60503ba 264{
a4aea562 265 struct nvme_dev *dev = data;
42483228 266 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 267
42483228
KB
268 if (!nvmeq->tags)
269 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 270
42483228 271 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
272 hctx->driver_data = nvmeq;
273 return 0;
b60503ba
MW
274}
275
a4aea562
MB
276static int nvme_init_request(void *data, struct request *req,
277 unsigned int hctx_idx, unsigned int rq_idx,
278 unsigned int numa_node)
b60503ba 279{
a4aea562 280 struct nvme_dev *dev = data;
f4800d6d 281 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
a4aea562
MB
282 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
283
284 BUG_ON(!nvmeq);
f4800d6d 285 iod->nvmeq = nvmeq;
a4aea562
MB
286 return 0;
287}
288
646017a6
KB
289static void nvme_queue_scan(struct nvme_dev *dev)
290{
291 /*
292 * Do not queue new scan work when a controller is reset during
293 * removal.
294 */
295 if (test_bit(NVME_CTRL_REMOVING, &dev->flags))
296 return;
297 queue_work(nvme_workq, &dev->scan_work);
298}
299
adf68f21
CH
300static void nvme_complete_async_event(struct nvme_dev *dev,
301 struct nvme_completion *cqe)
a4aea562 302{
adf68f21
CH
303 u16 status = le16_to_cpu(cqe->status) >> 1;
304 u32 result = le32_to_cpu(cqe->result);
a4aea562
MB
305
306 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
adf68f21 307 ++dev->ctrl.event_limit;
a5768aa8
KB
308 if (status != NVME_SC_SUCCESS)
309 return;
310
311 switch (result & 0xff07) {
312 case NVME_AER_NOTICE_NS_CHANGED:
adf68f21 313 dev_info(dev->dev, "rescanning\n");
646017a6 314 nvme_queue_scan(dev);
a5768aa8 315 default:
adf68f21 316 dev_warn(dev->dev, "async event result %08x\n", result);
a4aea562 317 }
b60503ba
MW
318}
319
320/**
adf68f21 321 * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
322 * @nvmeq: The queue to use
323 * @cmd: The command to send
324 *
325 * Safe to use from interrupt context
326 */
e3f879bf
SB
327static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
328 struct nvme_command *cmd)
b60503ba 329{
a4aea562
MB
330 u16 tail = nvmeq->sq_tail;
331
8ffaadf7
JD
332 if (nvmeq->sq_cmds_io)
333 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
334 else
335 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
336
b60503ba
MW
337 if (++tail == nvmeq->q_depth)
338 tail = 0;
7547881d 339 writel(tail, nvmeq->q_db);
b60503ba 340 nvmeq->sq_tail = tail;
b60503ba
MW
341}
342
f4800d6d 343static __le64 **iod_list(struct request *req)
b60503ba 344{
f4800d6d
CH
345 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
346 return (__le64 **)(iod->sg + req->nr_phys_segments);
b60503ba
MW
347}
348
f4800d6d 349static int nvme_init_iod(struct request *rq, struct nvme_dev *dev)
ac3dd5bd 350{
f4800d6d
CH
351 struct nvme_iod *iod = blk_mq_rq_to_pdu(rq);
352 int nseg = rq->nr_phys_segments;
353 unsigned size;
ac3dd5bd 354
f4800d6d
CH
355 if (rq->cmd_flags & REQ_DISCARD)
356 size = sizeof(struct nvme_dsm_range);
357 else
358 size = blk_rq_bytes(rq);
ac3dd5bd 359
f4800d6d
CH
360 if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) {
361 iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC);
362 if (!iod->sg)
363 return BLK_MQ_RQ_QUEUE_BUSY;
364 } else {
365 iod->sg = iod->inline_sg;
ac3dd5bd
JA
366 }
367
f4800d6d
CH
368 iod->aborted = 0;
369 iod->npages = -1;
370 iod->nents = 0;
371 iod->length = size;
372 return 0;
ac3dd5bd
JA
373}
374
f4800d6d 375static void nvme_free_iod(struct nvme_dev *dev, struct request *req)
b60503ba 376{
f4800d6d 377 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
5fd4ce1b 378 const int last_prp = dev->ctrl.page_size / 8 - 1;
eca18b23 379 int i;
f4800d6d 380 __le64 **list = iod_list(req);
eca18b23
MW
381 dma_addr_t prp_dma = iod->first_dma;
382
383 if (iod->npages == 0)
384 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
385 for (i = 0; i < iod->npages; i++) {
386 __le64 *prp_list = list[i];
387 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
388 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
389 prp_dma = next_prp_dma;
390 }
ac3dd5bd 391
f4800d6d
CH
392 if (iod->sg != iod->inline_sg)
393 kfree(iod->sg);
b4ff9c8d
KB
394}
395
52b68d7e 396#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
397static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
398{
399 if (be32_to_cpu(pi->ref_tag) == v)
400 pi->ref_tag = cpu_to_be32(p);
401}
402
403static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
404{
405 if (be32_to_cpu(pi->ref_tag) == p)
406 pi->ref_tag = cpu_to_be32(v);
407}
408
409/**
410 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
411 *
412 * The virtual start sector is the one that was originally submitted by the
413 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
414 * start sector may be different. Remap protection information to match the
415 * physical LBA on writes, and back to the original seed on reads.
416 *
417 * Type 0 and 3 do not have a ref tag, so no remapping required.
418 */
419static void nvme_dif_remap(struct request *req,
420 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
421{
422 struct nvme_ns *ns = req->rq_disk->private_data;
423 struct bio_integrity_payload *bip;
424 struct t10_pi_tuple *pi;
425 void *p, *pmap;
426 u32 i, nlb, ts, phys, virt;
427
428 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
429 return;
430
431 bip = bio_integrity(req->bio);
432 if (!bip)
433 return;
434
435 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
436
437 p = pmap;
438 virt = bip_get_seed(bip);
439 phys = nvme_block_nr(ns, blk_rq_pos(req));
440 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
ac6fc48c 441 ts = ns->disk->queue->integrity.tuple_size;
e1e5e564
KB
442
443 for (i = 0; i < nlb; i++, virt++, phys++) {
444 pi = (struct t10_pi_tuple *)p;
445 dif_swap(phys, virt, pi);
446 p += ts;
447 }
448 kunmap_atomic(pmap);
449}
52b68d7e
KB
450#else /* CONFIG_BLK_DEV_INTEGRITY */
451static void nvme_dif_remap(struct request *req,
452 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
453{
454}
455static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
456{
457}
458static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
459{
460}
52b68d7e
KB
461#endif
462
f4800d6d 463static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req,
69d2b571 464 int total_len)
ff22b54f 465{
f4800d6d 466 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
99802a7a 467 struct dma_pool *pool;
eca18b23
MW
468 int length = total_len;
469 struct scatterlist *sg = iod->sg;
ff22b54f
MW
470 int dma_len = sg_dma_len(sg);
471 u64 dma_addr = sg_dma_address(sg);
5fd4ce1b 472 u32 page_size = dev->ctrl.page_size;
f137e0f1 473 int offset = dma_addr & (page_size - 1);
e025344c 474 __le64 *prp_list;
f4800d6d 475 __le64 **list = iod_list(req);
e025344c 476 dma_addr_t prp_dma;
eca18b23 477 int nprps, i;
ff22b54f 478
1d090624 479 length -= (page_size - offset);
ff22b54f 480 if (length <= 0)
69d2b571 481 return true;
ff22b54f 482
1d090624 483 dma_len -= (page_size - offset);
ff22b54f 484 if (dma_len) {
1d090624 485 dma_addr += (page_size - offset);
ff22b54f
MW
486 } else {
487 sg = sg_next(sg);
488 dma_addr = sg_dma_address(sg);
489 dma_len = sg_dma_len(sg);
490 }
491
1d090624 492 if (length <= page_size) {
edd10d33 493 iod->first_dma = dma_addr;
69d2b571 494 return true;
e025344c
SMM
495 }
496
1d090624 497 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
498 if (nprps <= (256 / 8)) {
499 pool = dev->prp_small_pool;
eca18b23 500 iod->npages = 0;
99802a7a
MW
501 } else {
502 pool = dev->prp_page_pool;
eca18b23 503 iod->npages = 1;
99802a7a
MW
504 }
505
69d2b571 506 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
b77954cb 507 if (!prp_list) {
edd10d33 508 iod->first_dma = dma_addr;
eca18b23 509 iod->npages = -1;
69d2b571 510 return false;
b77954cb 511 }
eca18b23
MW
512 list[0] = prp_list;
513 iod->first_dma = prp_dma;
e025344c
SMM
514 i = 0;
515 for (;;) {
1d090624 516 if (i == page_size >> 3) {
e025344c 517 __le64 *old_prp_list = prp_list;
69d2b571 518 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
eca18b23 519 if (!prp_list)
69d2b571 520 return false;
eca18b23 521 list[iod->npages++] = prp_list;
7523d834
MW
522 prp_list[0] = old_prp_list[i - 1];
523 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
524 i = 1;
e025344c
SMM
525 }
526 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
527 dma_len -= page_size;
528 dma_addr += page_size;
529 length -= page_size;
e025344c
SMM
530 if (length <= 0)
531 break;
532 if (dma_len > 0)
533 continue;
534 BUG_ON(dma_len < 0);
535 sg = sg_next(sg);
536 dma_addr = sg_dma_address(sg);
537 dma_len = sg_dma_len(sg);
ff22b54f
MW
538 }
539
69d2b571 540 return true;
ff22b54f
MW
541}
542
f4800d6d 543static int nvme_map_data(struct nvme_dev *dev, struct request *req,
ba1ca37e 544 struct nvme_command *cmnd)
d29ec824 545{
f4800d6d 546 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e
CH
547 struct request_queue *q = req->q;
548 enum dma_data_direction dma_dir = rq_data_dir(req) ?
549 DMA_TO_DEVICE : DMA_FROM_DEVICE;
550 int ret = BLK_MQ_RQ_QUEUE_ERROR;
d29ec824 551
ba1ca37e
CH
552 sg_init_table(iod->sg, req->nr_phys_segments);
553 iod->nents = blk_rq_map_sg(q, req, iod->sg);
554 if (!iod->nents)
555 goto out;
d29ec824 556
ba1ca37e
CH
557 ret = BLK_MQ_RQ_QUEUE_BUSY;
558 if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir))
559 goto out;
d29ec824 560
f4800d6d 561 if (!nvme_setup_prps(dev, req, blk_rq_bytes(req)))
ba1ca37e 562 goto out_unmap;
0e5e4f0e 563
ba1ca37e
CH
564 ret = BLK_MQ_RQ_QUEUE_ERROR;
565 if (blk_integrity_rq(req)) {
566 if (blk_rq_count_integrity_sg(q, req->bio) != 1)
567 goto out_unmap;
0e5e4f0e 568
bf684057
CH
569 sg_init_table(&iod->meta_sg, 1);
570 if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1)
ba1ca37e 571 goto out_unmap;
0e5e4f0e 572
ba1ca37e
CH
573 if (rq_data_dir(req))
574 nvme_dif_remap(req, nvme_dif_prep);
0e5e4f0e 575
bf684057 576 if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir))
ba1ca37e 577 goto out_unmap;
d29ec824 578 }
00df5cb4 579
ba1ca37e
CH
580 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
581 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
582 if (blk_integrity_rq(req))
bf684057 583 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg));
ba1ca37e 584 return BLK_MQ_RQ_QUEUE_OK;
00df5cb4 585
ba1ca37e
CH
586out_unmap:
587 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
588out:
589 return ret;
00df5cb4
MW
590}
591
f4800d6d 592static void nvme_unmap_data(struct nvme_dev *dev, struct request *req)
b60503ba 593{
f4800d6d 594 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
d4f6c3ab
CH
595 enum dma_data_direction dma_dir = rq_data_dir(req) ?
596 DMA_TO_DEVICE : DMA_FROM_DEVICE;
597
598 if (iod->nents) {
599 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
600 if (blk_integrity_rq(req)) {
601 if (!rq_data_dir(req))
602 nvme_dif_remap(req, nvme_dif_complete);
bf684057 603 dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir);
e1e5e564 604 }
e19b127f 605 }
e1e5e564 606
f4800d6d 607 nvme_free_iod(dev, req);
d4f6c3ab 608}
b60503ba 609
a4aea562
MB
610/*
611 * We reuse the small pool to allocate the 16-byte range here as it is not
612 * worth having a special pool for these or additional cases to handle freeing
613 * the iod.
614 */
ba1ca37e 615static int nvme_setup_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
f4800d6d 616 struct request *req, struct nvme_command *cmnd)
0e5e4f0e 617{
f4800d6d 618 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
ba1ca37e 619 struct nvme_dsm_range *range;
b60503ba 620
ba1ca37e
CH
621 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
622 &iod->first_dma);
623 if (!range)
624 return BLK_MQ_RQ_QUEUE_BUSY;
f4800d6d 625 iod_list(req)[0] = (__le64 *)range;
ba1ca37e 626 iod->npages = 0;
0e5e4f0e 627
0e5e4f0e 628 range->cattr = cpu_to_le32(0);
a4aea562
MB
629 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
630 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 631
ba1ca37e
CH
632 memset(cmnd, 0, sizeof(*cmnd));
633 cmnd->dsm.opcode = nvme_cmd_dsm;
634 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
635 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
636 cmnd->dsm.nr = 0;
637 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
638 return BLK_MQ_RQ_QUEUE_OK;
edd10d33
KB
639}
640
d29ec824
CH
641/*
642 * NOTE: ns is NULL when called on the admin queue.
643 */
a4aea562
MB
644static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
645 const struct blk_mq_queue_data *bd)
edd10d33 646{
a4aea562
MB
647 struct nvme_ns *ns = hctx->queue->queuedata;
648 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 649 struct nvme_dev *dev = nvmeq->dev;
a4aea562 650 struct request *req = bd->rq;
ba1ca37e
CH
651 struct nvme_command cmnd;
652 int ret = BLK_MQ_RQ_QUEUE_OK;
edd10d33 653
e1e5e564
KB
654 /*
655 * If formated with metadata, require the block layer provide a buffer
656 * unless this namespace is formated such that the metadata can be
657 * stripped/generated by the controller with PRACT=1.
658 */
d29ec824 659 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
660 if (!(ns->pi_type && ns->ms == 8) &&
661 req->cmd_type != REQ_TYPE_DRV_PRIV) {
eee417b0 662 blk_mq_end_request(req, -EFAULT);
e1e5e564
KB
663 return BLK_MQ_RQ_QUEUE_OK;
664 }
665 }
666
f4800d6d
CH
667 ret = nvme_init_iod(req, dev);
668 if (ret)
669 return ret;
a4aea562 670
a4aea562 671 if (req->cmd_flags & REQ_DISCARD) {
f4800d6d 672 ret = nvme_setup_discard(nvmeq, ns, req, &cmnd);
ba1ca37e
CH
673 } else {
674 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
675 memcpy(&cmnd, req->cmd, sizeof(cmnd));
676 else if (req->cmd_flags & REQ_FLUSH)
677 nvme_setup_flush(ns, &cmnd);
678 else
679 nvme_setup_rw(ns, req, &cmnd);
a4aea562 680
ba1ca37e 681 if (req->nr_phys_segments)
f4800d6d 682 ret = nvme_map_data(dev, req, &cmnd);
edd10d33 683 }
a4aea562 684
ba1ca37e
CH
685 if (ret)
686 goto out;
a4aea562 687
ba1ca37e 688 cmnd.common.command_id = req->tag;
aae239e1 689 blk_mq_start_request(req);
a4aea562 690
ba1ca37e 691 spin_lock_irq(&nvmeq->q_lock);
ae1fba20 692 if (unlikely(nvmeq->cq_vector < 0)) {
69d9a99c
KB
693 if (ns && !test_bit(NVME_NS_DEAD, &ns->flags))
694 ret = BLK_MQ_RQ_QUEUE_BUSY;
695 else
696 ret = BLK_MQ_RQ_QUEUE_ERROR;
ae1fba20
KB
697 spin_unlock_irq(&nvmeq->q_lock);
698 goto out;
699 }
ba1ca37e 700 __nvme_submit_cmd(nvmeq, &cmnd);
a4aea562
MB
701 nvme_process_cq(nvmeq);
702 spin_unlock_irq(&nvmeq->q_lock);
703 return BLK_MQ_RQ_QUEUE_OK;
ba1ca37e 704out:
f4800d6d 705 nvme_free_iod(dev, req);
ba1ca37e 706 return ret;
b60503ba 707}
e1e5e564 708
eee417b0
CH
709static void nvme_complete_rq(struct request *req)
710{
f4800d6d
CH
711 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
712 struct nvme_dev *dev = iod->nvmeq->dev;
eee417b0 713 int error = 0;
e1e5e564 714
f4800d6d 715 nvme_unmap_data(dev, req);
e1e5e564 716
eee417b0
CH
717 if (unlikely(req->errors)) {
718 if (nvme_req_needs_retry(req, req->errors)) {
719 nvme_requeue_req(req);
720 return;
e1e5e564 721 }
1974b1ae 722
eee417b0
CH
723 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
724 error = req->errors;
725 else
726 error = nvme_error_status(req->errors);
727 }
a4aea562 728
f4800d6d 729 if (unlikely(iod->aborted)) {
eee417b0
CH
730 dev_warn(dev->dev,
731 "completing aborted command with status: %04x\n",
732 req->errors);
733 }
a4aea562 734
eee417b0 735 blk_mq_end_request(req, error);
b60503ba
MW
736}
737
a0fa9647 738static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag)
b60503ba 739{
82123460 740 u16 head, phase;
b60503ba 741
b60503ba 742 head = nvmeq->cq_head;
82123460 743 phase = nvmeq->cq_phase;
b60503ba
MW
744
745 for (;;) {
b60503ba 746 struct nvme_completion cqe = nvmeq->cqes[head];
adf68f21 747 u16 status = le16_to_cpu(cqe.status);
eee417b0 748 struct request *req;
adf68f21
CH
749
750 if ((status & 1) != phase)
b60503ba
MW
751 break;
752 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
753 if (++head == nvmeq->q_depth) {
754 head = 0;
82123460 755 phase = !phase;
b60503ba 756 }
adf68f21 757
a0fa9647
JA
758 if (tag && *tag == cqe.command_id)
759 *tag = -1;
adf68f21 760
aae239e1
CH
761 if (unlikely(cqe.command_id >= nvmeq->q_depth)) {
762 dev_warn(nvmeq->q_dmadev,
763 "invalid id %d completed on queue %d\n",
764 cqe.command_id, le16_to_cpu(cqe.sq_id));
765 continue;
766 }
767
adf68f21
CH
768 /*
769 * AEN requests are special as they don't time out and can
770 * survive any kind of queue freeze and often don't respond to
771 * aborts. We don't even bother to allocate a struct request
772 * for them but rather special case them here.
773 */
774 if (unlikely(nvmeq->qid == 0 &&
775 cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) {
776 nvme_complete_async_event(nvmeq->dev, &cqe);
777 continue;
778 }
779
eee417b0
CH
780 req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id);
781 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
782 u32 result = le32_to_cpu(cqe.result);
783 req->special = (void *)(uintptr_t)result;
784 }
785 blk_mq_complete_request(req, status >> 1);
786
b60503ba
MW
787 }
788
789 /* If the controller ignores the cq head doorbell and continuously
790 * writes to the queue, it is theoretically possible to wrap around
791 * the queue twice and mistakenly return IRQ_NONE. Linux only
792 * requires that 0.1% of your interrupts are handled, so this isn't
793 * a big problem.
794 */
82123460 795 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
a0fa9647 796 return;
b60503ba 797
604e8c8d
KB
798 if (likely(nvmeq->cq_vector >= 0))
799 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 800 nvmeq->cq_head = head;
82123460 801 nvmeq->cq_phase = phase;
b60503ba 802
e9539f47 803 nvmeq->cqe_seen = 1;
a0fa9647
JA
804}
805
806static void nvme_process_cq(struct nvme_queue *nvmeq)
807{
808 __nvme_process_cq(nvmeq, NULL);
b60503ba
MW
809}
810
811static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
812{
813 irqreturn_t result;
814 struct nvme_queue *nvmeq = data;
815 spin_lock(&nvmeq->q_lock);
e9539f47
MW
816 nvme_process_cq(nvmeq);
817 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
818 nvmeq->cqe_seen = 0;
58ffacb5
MW
819 spin_unlock(&nvmeq->q_lock);
820 return result;
821}
822
823static irqreturn_t nvme_irq_check(int irq, void *data)
824{
825 struct nvme_queue *nvmeq = data;
826 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
827 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
828 return IRQ_NONE;
829 return IRQ_WAKE_THREAD;
830}
831
a0fa9647
JA
832static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
833{
834 struct nvme_queue *nvmeq = hctx->driver_data;
835
836 if ((le16_to_cpu(nvmeq->cqes[nvmeq->cq_head].status) & 1) ==
837 nvmeq->cq_phase) {
838 spin_lock_irq(&nvmeq->q_lock);
839 __nvme_process_cq(nvmeq, &tag);
840 spin_unlock_irq(&nvmeq->q_lock);
841
842 if (tag == -1)
843 return 1;
844 }
845
846 return 0;
847}
848
adf68f21 849static void nvme_submit_async_event(struct nvme_dev *dev)
b60503ba 850{
a4aea562 851 struct nvme_command c;
b60503ba 852
a4aea562
MB
853 memset(&c, 0, sizeof(c));
854 c.common.opcode = nvme_admin_async_event;
adf68f21 855 c.common.command_id = NVME_AQ_BLKMQ_DEPTH + --dev->ctrl.event_limit;
3c0cf138 856
adf68f21 857 __nvme_submit_cmd(dev->queues[0], &c);
f705f837
CH
858}
859
b60503ba 860static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
f705f837 861{
b60503ba
MW
862 struct nvme_command c;
863
864 memset(&c, 0, sizeof(c));
865 c.delete_queue.opcode = opcode;
866 c.delete_queue.qid = cpu_to_le16(id);
867
1c63dc66 868 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
869}
870
b60503ba
MW
871static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
872 struct nvme_queue *nvmeq)
873{
b60503ba
MW
874 struct nvme_command c;
875 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
876
d29ec824
CH
877 /*
878 * Note: we (ab)use the fact the the prp fields survive if no data
879 * is attached to the request.
880 */
b60503ba
MW
881 memset(&c, 0, sizeof(c));
882 c.create_cq.opcode = nvme_admin_create_cq;
883 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
884 c.create_cq.cqid = cpu_to_le16(qid);
885 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
886 c.create_cq.cq_flags = cpu_to_le16(flags);
887 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
888
1c63dc66 889 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
890}
891
892static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
893 struct nvme_queue *nvmeq)
894{
b60503ba
MW
895 struct nvme_command c;
896 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
897
d29ec824
CH
898 /*
899 * Note: we (ab)use the fact the the prp fields survive if no data
900 * is attached to the request.
901 */
b60503ba
MW
902 memset(&c, 0, sizeof(c));
903 c.create_sq.opcode = nvme_admin_create_sq;
904 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
905 c.create_sq.sqid = cpu_to_le16(qid);
906 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
907 c.create_sq.sq_flags = cpu_to_le16(flags);
908 c.create_sq.cqid = cpu_to_le16(qid);
909
1c63dc66 910 return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0);
b60503ba
MW
911}
912
913static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
914{
915 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
916}
917
918static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
919{
920 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
921}
922
e7a2a87d 923static void abort_endio(struct request *req, int error)
bc5fc7e4 924{
f4800d6d
CH
925 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
926 struct nvme_queue *nvmeq = iod->nvmeq;
e7a2a87d
CH
927 u32 result = (u32)(uintptr_t)req->special;
928 u16 status = req->errors;
e44ac588 929
e7a2a87d
CH
930 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
931 atomic_inc(&nvmeq->dev->ctrl.abort_limit);
d29ec824 932
e7a2a87d 933 blk_mq_free_request(req);
bc5fc7e4
MW
934}
935
31c7c7d2 936static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
c30341dc 937{
f4800d6d
CH
938 struct nvme_iod *iod = blk_mq_rq_to_pdu(req);
939 struct nvme_queue *nvmeq = iod->nvmeq;
c30341dc 940 struct nvme_dev *dev = nvmeq->dev;
a4aea562 941 struct request *abort_req;
a4aea562 942 struct nvme_command cmd;
c30341dc 943
31c7c7d2 944 /*
fd634f41
CH
945 * Shutdown immediately if controller times out while starting. The
946 * reset work will see the pci device disabled when it gets the forced
947 * cancellation error. All outstanding requests are completed on
948 * shutdown, so we return BLK_EH_HANDLED.
949 */
950 if (test_bit(NVME_CTRL_RESETTING, &dev->flags)) {
951 dev_warn(dev->dev,
952 "I/O %d QID %d timeout, disable controller\n",
953 req->tag, nvmeq->qid);
a5cdb68c 954 nvme_dev_disable(dev, false);
fd634f41
CH
955 req->errors = NVME_SC_CANCELLED;
956 return BLK_EH_HANDLED;
c30341dc
KB
957 }
958
fd634f41
CH
959 /*
960 * Shutdown the controller immediately and schedule a reset if the
961 * command was already aborted once before and still hasn't been
962 * returned to the driver, or if this is the admin queue.
31c7c7d2 963 */
f4800d6d 964 if (!nvmeq->qid || iod->aborted) {
e1569a16
KB
965 dev_warn(dev->dev,
966 "I/O %d QID %d timeout, reset controller\n",
967 req->tag, nvmeq->qid);
a5cdb68c 968 nvme_dev_disable(dev, false);
e1569a16 969 queue_work(nvme_workq, &dev->reset_work);
c30341dc 970
e1569a16
KB
971 /*
972 * Mark the request as handled, since the inline shutdown
973 * forces all outstanding requests to complete.
974 */
975 req->errors = NVME_SC_CANCELLED;
976 return BLK_EH_HANDLED;
c30341dc 977 }
c30341dc 978
f4800d6d 979 iod->aborted = 1;
c30341dc 980
e7a2a87d 981 if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) {
6bf25d16 982 atomic_inc(&dev->ctrl.abort_limit);
31c7c7d2 983 return BLK_EH_RESET_TIMER;
6bf25d16 984 }
a4aea562 985
c30341dc
KB
986 memset(&cmd, 0, sizeof(cmd));
987 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 988 cmd.abort.cid = req->tag;
c30341dc 989 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
c30341dc 990
31c7c7d2
CH
991 dev_warn(nvmeq->q_dmadev, "I/O %d QID %d timeout, aborting\n",
992 req->tag, nvmeq->qid);
e7a2a87d
CH
993
994 abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd,
995 BLK_MQ_REQ_NOWAIT);
996 if (IS_ERR(abort_req)) {
997 atomic_inc(&dev->ctrl.abort_limit);
998 return BLK_EH_RESET_TIMER;
999 }
1000
1001 abort_req->timeout = ADMIN_TIMEOUT;
1002 abort_req->end_io_data = NULL;
1003 blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio);
c30341dc 1004
31c7c7d2
CH
1005 /*
1006 * The aborted req will be completed on receiving the abort req.
1007 * We enable the timer again. If hit twice, it'll cause a device reset,
1008 * as the device then is in a faulty state.
1009 */
1010 return BLK_EH_RESET_TIMER;
c30341dc
KB
1011}
1012
42483228 1013static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1014{
a4aea562 1015 struct nvme_queue *nvmeq = data;
aae239e1 1016 int status;
cef6a948
KB
1017
1018 if (!blk_mq_request_started(req))
1019 return;
a09115b2 1020
f8e68a7c 1021 dev_dbg_ratelimited(nvmeq->q_dmadev,
aae239e1 1022 "Cancelling I/O %d QID %d\n", req->tag, nvmeq->qid);
a4aea562 1023
1d49c38c 1024 status = NVME_SC_ABORT_REQ;
cef6a948 1025 if (blk_queue_dying(req->q))
aae239e1
CH
1026 status |= NVME_SC_DNR;
1027 blk_mq_complete_request(req, status);
a4aea562 1028}
22404274 1029
a4aea562
MB
1030static void nvme_free_queue(struct nvme_queue *nvmeq)
1031{
9e866774
MW
1032 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1033 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1034 if (nvmeq->sq_cmds)
1035 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1036 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1037 kfree(nvmeq);
1038}
1039
a1a5ef99 1040static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1041{
1042 int i;
1043
a1a5ef99 1044 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1045 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1046 dev->queue_count--;
a4aea562 1047 dev->queues[i] = NULL;
f435c282 1048 nvme_free_queue(nvmeq);
121c7ad4 1049 }
22404274
KB
1050}
1051
4d115420
KB
1052/**
1053 * nvme_suspend_queue - put queue into suspended state
1054 * @nvmeq - queue to suspend
4d115420
KB
1055 */
1056static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1057{
2b25d981 1058 int vector;
b60503ba 1059
a09115b2 1060 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1061 if (nvmeq->cq_vector == -1) {
1062 spin_unlock_irq(&nvmeq->q_lock);
1063 return 1;
1064 }
1065 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1066 nvmeq->dev->online_queues--;
2b25d981 1067 nvmeq->cq_vector = -1;
a09115b2
MW
1068 spin_unlock_irq(&nvmeq->q_lock);
1069
1c63dc66 1070 if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q)
25646264 1071 blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q);
6df3dbc8 1072
aba2080f
MW
1073 irq_set_affinity_hint(vector, NULL);
1074 free_irq(vector, nvmeq);
b60503ba 1075
4d115420
KB
1076 return 0;
1077}
b60503ba 1078
4d115420
KB
1079static void nvme_clear_queue(struct nvme_queue *nvmeq)
1080{
22404274 1081 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1082 if (nvmeq->tags && *nvmeq->tags)
1083 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1084 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1085}
1086
a5cdb68c 1087static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown)
4d115420 1088{
a5cdb68c 1089 struct nvme_queue *nvmeq = dev->queues[0];
4d115420
KB
1090
1091 if (!nvmeq)
1092 return;
1093 if (nvme_suspend_queue(nvmeq))
1094 return;
1095
a5cdb68c
KB
1096 if (shutdown)
1097 nvme_shutdown_ctrl(&dev->ctrl);
1098 else
1099 nvme_disable_ctrl(&dev->ctrl, lo_hi_readq(
1100 dev->bar + NVME_REG_CAP));
07836e65
KB
1101
1102 spin_lock_irq(&nvmeq->q_lock);
1103 nvme_process_cq(nvmeq);
1104 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1105}
1106
8ffaadf7
JD
1107static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1108 int entry_size)
1109{
1110 int q_depth = dev->q_depth;
5fd4ce1b
CH
1111 unsigned q_size_aligned = roundup(q_depth * entry_size,
1112 dev->ctrl.page_size);
8ffaadf7
JD
1113
1114 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99 1115 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
5fd4ce1b 1116 mem_per_q = round_down(mem_per_q, dev->ctrl.page_size);
c45f5c99 1117 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1118
1119 /*
1120 * Ensure the reduced q_depth is above some threshold where it
1121 * would be better to map queues in system memory with the
1122 * original depth
1123 */
1124 if (q_depth < 64)
1125 return -ENOMEM;
1126 }
1127
1128 return q_depth;
1129}
1130
1131static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1132 int qid, int depth)
1133{
1134 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
5fd4ce1b
CH
1135 unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth),
1136 dev->ctrl.page_size);
8ffaadf7
JD
1137 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1138 nvmeq->sq_cmds_io = dev->cmb + offset;
1139 } else {
1140 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1141 &nvmeq->sq_dma_addr, GFP_KERNEL);
1142 if (!nvmeq->sq_cmds)
1143 return -ENOMEM;
1144 }
1145
1146 return 0;
1147}
1148
b60503ba 1149static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1150 int depth)
b60503ba 1151{
a4aea562 1152 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1153 if (!nvmeq)
1154 return NULL;
1155
e75ec752 1156 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1157 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1158 if (!nvmeq->cqes)
1159 goto free_nvmeq;
b60503ba 1160
8ffaadf7 1161 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1162 goto free_cqdma;
1163
e75ec752 1164 nvmeq->q_dmadev = dev->dev;
091b6092 1165 nvmeq->dev = dev;
3193f07b 1166 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1c63dc66 1167 dev->ctrl.instance, qid);
b60503ba
MW
1168 spin_lock_init(&nvmeq->q_lock);
1169 nvmeq->cq_head = 0;
82123460 1170 nvmeq->cq_phase = 1;
b80d5ccc 1171 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1172 nvmeq->q_depth = depth;
c30341dc 1173 nvmeq->qid = qid;
758dd7fd 1174 nvmeq->cq_vector = -1;
a4aea562 1175 dev->queues[qid] = nvmeq;
b60503ba 1176
36a7e993
JD
1177 /* make sure queue descriptor is set before queue count, for kthread */
1178 mb();
1179 dev->queue_count++;
1180
b60503ba
MW
1181 return nvmeq;
1182
1183 free_cqdma:
e75ec752 1184 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1185 nvmeq->cq_dma_addr);
1186 free_nvmeq:
1187 kfree(nvmeq);
1188 return NULL;
1189}
1190
3001082c
MW
1191static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1192 const char *name)
1193{
58ffacb5
MW
1194 if (use_threaded_interrupts)
1195 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1196 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1197 name, nvmeq);
3001082c 1198 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1199 IRQF_SHARED, name, nvmeq);
3001082c
MW
1200}
1201
22404274 1202static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1203{
22404274 1204 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1205
7be50e93 1206 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1207 nvmeq->sq_tail = 0;
1208 nvmeq->cq_head = 0;
1209 nvmeq->cq_phase = 1;
b80d5ccc 1210 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1211 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1212 dev->online_queues++;
7be50e93 1213 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1214}
1215
1216static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1217{
1218 struct nvme_dev *dev = nvmeq->dev;
1219 int result;
3f85d50b 1220
2b25d981 1221 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1222 result = adapter_alloc_cq(dev, qid, nvmeq);
1223 if (result < 0)
22404274 1224 return result;
b60503ba
MW
1225
1226 result = adapter_alloc_sq(dev, qid, nvmeq);
1227 if (result < 0)
1228 goto release_cq;
1229
3193f07b 1230 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1231 if (result < 0)
1232 goto release_sq;
1233
22404274 1234 nvme_init_queue(nvmeq, qid);
22404274 1235 return result;
b60503ba
MW
1236
1237 release_sq:
1238 adapter_delete_sq(dev, qid);
1239 release_cq:
1240 adapter_delete_cq(dev, qid);
22404274 1241 return result;
b60503ba
MW
1242}
1243
a4aea562 1244static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1245 .queue_rq = nvme_queue_rq,
eee417b0 1246 .complete = nvme_complete_rq,
a4aea562
MB
1247 .map_queue = blk_mq_map_queue,
1248 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1249 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1250 .init_request = nvme_admin_init_request,
1251 .timeout = nvme_timeout,
1252};
1253
1254static struct blk_mq_ops nvme_mq_ops = {
1255 .queue_rq = nvme_queue_rq,
eee417b0 1256 .complete = nvme_complete_rq,
a4aea562
MB
1257 .map_queue = blk_mq_map_queue,
1258 .init_hctx = nvme_init_hctx,
1259 .init_request = nvme_init_request,
1260 .timeout = nvme_timeout,
a0fa9647 1261 .poll = nvme_poll,
a4aea562
MB
1262};
1263
ea191d2f
KB
1264static void nvme_dev_remove_admin(struct nvme_dev *dev)
1265{
1c63dc66 1266 if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) {
69d9a99c
KB
1267 /*
1268 * If the controller was reset during removal, it's possible
1269 * user requests may be waiting on a stopped queue. Start the
1270 * queue to flush these to completion.
1271 */
1272 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
1c63dc66 1273 blk_cleanup_queue(dev->ctrl.admin_q);
ea191d2f
KB
1274 blk_mq_free_tag_set(&dev->admin_tagset);
1275 }
1276}
1277
a4aea562
MB
1278static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1279{
1c63dc66 1280 if (!dev->ctrl.admin_q) {
a4aea562
MB
1281 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1282 dev->admin_tagset.nr_hw_queues = 1;
e3e9d50c
KB
1283
1284 /*
1285 * Subtract one to leave an empty queue entry for 'Full Queue'
1286 * condition. See NVM-Express 1.2 specification, section 4.1.2.
1287 */
1288 dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1;
a4aea562 1289 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1290 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1291 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1292 dev->admin_tagset.driver_data = dev;
1293
1294 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1295 return -ENOMEM;
1296
1c63dc66
CH
1297 dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset);
1298 if (IS_ERR(dev->ctrl.admin_q)) {
a4aea562
MB
1299 blk_mq_free_tag_set(&dev->admin_tagset);
1300 return -ENOMEM;
1301 }
1c63dc66 1302 if (!blk_get_queue(dev->ctrl.admin_q)) {
ea191d2f 1303 nvme_dev_remove_admin(dev);
1c63dc66 1304 dev->ctrl.admin_q = NULL;
ea191d2f
KB
1305 return -ENODEV;
1306 }
0fb59cbc 1307 } else
25646264 1308 blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true);
a4aea562
MB
1309
1310 return 0;
1311}
1312
8d85fce7 1313static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1314{
ba47e386 1315 int result;
b60503ba 1316 u32 aqa;
7a67cbea 1317 u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
b60503ba
MW
1318 struct nvme_queue *nvmeq;
1319
7a67cbea 1320 dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ?
dfbac8c7
KB
1321 NVME_CAP_NSSRC(cap) : 0;
1322
7a67cbea
CH
1323 if (dev->subsystem &&
1324 (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO))
1325 writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS);
dfbac8c7 1326
5fd4ce1b 1327 result = nvme_disable_ctrl(&dev->ctrl, cap);
ba47e386
MW
1328 if (result < 0)
1329 return result;
b60503ba 1330
a4aea562 1331 nvmeq = dev->queues[0];
cd638946 1332 if (!nvmeq) {
2b25d981 1333 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1334 if (!nvmeq)
1335 return -ENOMEM;
cd638946 1336 }
b60503ba
MW
1337
1338 aqa = nvmeq->q_depth - 1;
1339 aqa |= aqa << 16;
1340
7a67cbea
CH
1341 writel(aqa, dev->bar + NVME_REG_AQA);
1342 lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ);
1343 lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ);
b60503ba 1344
5fd4ce1b 1345 result = nvme_enable_ctrl(&dev->ctrl, cap);
025c557a 1346 if (result)
a4aea562
MB
1347 goto free_nvmeq;
1348
2b25d981 1349 nvmeq->cq_vector = 0;
3193f07b 1350 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1351 if (result) {
1352 nvmeq->cq_vector = -1;
0fb59cbc 1353 goto free_nvmeq;
758dd7fd 1354 }
025c557a 1355
b60503ba 1356 return result;
a4aea562 1357
a4aea562
MB
1358 free_nvmeq:
1359 nvme_free_queues(dev, 0);
1360 return result;
b60503ba
MW
1361}
1362
1fa6aead
MW
1363static int nvme_kthread(void *data)
1364{
d4b4ff8e 1365 struct nvme_dev *dev, *next;
1fa6aead
MW
1366
1367 while (!kthread_should_stop()) {
564a232c 1368 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 1369 spin_lock(&dev_list_lock);
d4b4ff8e 1370 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 1371 int i;
7a67cbea 1372 u32 csts = readl(dev->bar + NVME_REG_CSTS);
dfbac8c7 1373
846cc05f
CH
1374 /*
1375 * Skip controllers currently under reset.
1376 */
1377 if (work_pending(&dev->reset_work) || work_busy(&dev->reset_work))
1378 continue;
dfbac8c7
KB
1379
1380 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
1381 csts & NVME_CSTS_CFS) {
846cc05f 1382 if (queue_work(nvme_workq, &dev->reset_work)) {
90667892
CH
1383 dev_warn(dev->dev,
1384 "Failed status: %x, reset controller\n",
7a67cbea 1385 readl(dev->bar + NVME_REG_CSTS));
90667892 1386 }
d4b4ff8e
KB
1387 continue;
1388 }
1fa6aead 1389 for (i = 0; i < dev->queue_count; i++) {
a4aea562 1390 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1391 if (!nvmeq)
1392 continue;
1fa6aead 1393 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 1394 nvme_process_cq(nvmeq);
6fccf938 1395
adf68f21
CH
1396 while (i == 0 && dev->ctrl.event_limit > 0)
1397 nvme_submit_async_event(dev);
1fa6aead
MW
1398 spin_unlock_irq(&nvmeq->q_lock);
1399 }
1400 }
1401 spin_unlock(&dev_list_lock);
acb7aa0d 1402 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1403 }
1404 return 0;
1405}
1406
749941f2 1407static int nvme_create_io_queues(struct nvme_dev *dev)
42f61420 1408{
a4aea562 1409 unsigned i;
749941f2 1410 int ret = 0;
42f61420 1411
749941f2
CH
1412 for (i = dev->queue_count; i <= dev->max_qid; i++) {
1413 if (!nvme_alloc_queue(dev, i, dev->q_depth)) {
1414 ret = -ENOMEM;
42f61420 1415 break;
749941f2
CH
1416 }
1417 }
42f61420 1418
749941f2
CH
1419 for (i = dev->online_queues; i <= dev->queue_count - 1; i++) {
1420 ret = nvme_create_queue(dev->queues[i], i);
1421 if (ret) {
2659e57b 1422 nvme_free_queues(dev, i);
42f61420 1423 break;
2659e57b 1424 }
27e8166c 1425 }
749941f2
CH
1426
1427 /*
1428 * Ignore failing Create SQ/CQ commands, we can continue with less
1429 * than the desired aount of queues, and even a controller without
1430 * I/O queues an still be used to issue admin commands. This might
1431 * be useful to upgrade a buggy firmware for example.
1432 */
1433 return ret >= 0 ? 0 : ret;
b60503ba
MW
1434}
1435
8ffaadf7
JD
1436static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
1437{
1438 u64 szu, size, offset;
1439 u32 cmbloc;
1440 resource_size_t bar_size;
1441 struct pci_dev *pdev = to_pci_dev(dev->dev);
1442 void __iomem *cmb;
1443 dma_addr_t dma_addr;
1444
1445 if (!use_cmb_sqes)
1446 return NULL;
1447
7a67cbea 1448 dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ);
8ffaadf7
JD
1449 if (!(NVME_CMB_SZ(dev->cmbsz)))
1450 return NULL;
1451
7a67cbea 1452 cmbloc = readl(dev->bar + NVME_REG_CMBLOC);
8ffaadf7
JD
1453
1454 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
1455 size = szu * NVME_CMB_SZ(dev->cmbsz);
1456 offset = szu * NVME_CMB_OFST(cmbloc);
1457 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
1458
1459 if (offset > bar_size)
1460 return NULL;
1461
1462 /*
1463 * Controllers may support a CMB size larger than their BAR,
1464 * for example, due to being behind a bridge. Reduce the CMB to
1465 * the reported size of the BAR
1466 */
1467 if (size > bar_size - offset)
1468 size = bar_size - offset;
1469
1470 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
1471 cmb = ioremap_wc(dma_addr, size);
1472 if (!cmb)
1473 return NULL;
1474
1475 dev->cmb_dma_addr = dma_addr;
1476 dev->cmb_size = size;
1477 return cmb;
1478}
1479
1480static inline void nvme_release_cmb(struct nvme_dev *dev)
1481{
1482 if (dev->cmb) {
1483 iounmap(dev->cmb);
1484 dev->cmb = NULL;
1485 }
1486}
1487
9d713c2b
KB
1488static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
1489{
b80d5ccc 1490 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
1491}
1492
8d85fce7 1493static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1494{
a4aea562 1495 struct nvme_queue *adminq = dev->queues[0];
e75ec752 1496 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 1497 int result, i, vecs, nr_io_queues, size;
b60503ba 1498
42f61420 1499 nr_io_queues = num_possible_cpus();
9a0be7ab
CH
1500 result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues);
1501 if (result < 0)
1b23484b 1502 return result;
9a0be7ab
CH
1503
1504 /*
1505 * Degraded controllers might return an error when setting the queue
1506 * count. We still want to be able to bring them online and offer
1507 * access to the admin queue, as that might be only way to fix them up.
1508 */
1509 if (result > 0) {
1510 dev_err(dev->dev, "Could not set queue count (%d)\n", result);
1511 nr_io_queues = 0;
1512 result = 0;
1513 }
b60503ba 1514
8ffaadf7
JD
1515 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
1516 result = nvme_cmb_qdepth(dev, nr_io_queues,
1517 sizeof(struct nvme_command));
1518 if (result > 0)
1519 dev->q_depth = result;
1520 else
1521 nvme_release_cmb(dev);
1522 }
1523
9d713c2b
KB
1524 size = db_bar_size(dev, nr_io_queues);
1525 if (size > 8192) {
f1938f6e 1526 iounmap(dev->bar);
9d713c2b
KB
1527 do {
1528 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
1529 if (dev->bar)
1530 break;
1531 if (!--nr_io_queues)
1532 return -ENOMEM;
1533 size = db_bar_size(dev, nr_io_queues);
1534 } while (1);
7a67cbea 1535 dev->dbs = dev->bar + 4096;
5a92e700 1536 adminq->q_db = dev->dbs;
f1938f6e
MW
1537 }
1538
9d713c2b 1539 /* Deregister the admin queue's interrupt */
3193f07b 1540 free_irq(dev->entry[0].vector, adminq);
9d713c2b 1541
e32efbfc
JA
1542 /*
1543 * If we enable msix early due to not intx, disable it again before
1544 * setting up the full range we need.
1545 */
1546 if (!pdev->irq)
1547 pci_disable_msix(pdev);
1548
be577fab 1549 for (i = 0; i < nr_io_queues; i++)
1b23484b 1550 dev->entry[i].entry = i;
be577fab
AG
1551 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
1552 if (vecs < 0) {
1553 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
1554 if (vecs < 0) {
1555 vecs = 1;
1556 } else {
1557 for (i = 0; i < vecs; i++)
1558 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
1559 }
1560 }
1561
063a8096
MW
1562 /*
1563 * Should investigate if there's a performance win from allocating
1564 * more queues than interrupt vectors; it might allow the submission
1565 * path to scale better, even if the receive path is limited by the
1566 * number of interrupts.
1567 */
1568 nr_io_queues = vecs;
42f61420 1569 dev->max_qid = nr_io_queues;
063a8096 1570
3193f07b 1571 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
1572 if (result) {
1573 adminq->cq_vector = -1;
22404274 1574 goto free_queues;
758dd7fd 1575 }
1b23484b 1576
cd638946 1577 /* Free previously allocated queues that are no longer usable */
42f61420 1578 nvme_free_queues(dev, nr_io_queues + 1);
749941f2 1579 return nvme_create_io_queues(dev);
b60503ba 1580
22404274 1581 free_queues:
a1a5ef99 1582 nvme_free_queues(dev, 1);
22404274 1583 return result;
b60503ba
MW
1584}
1585
bda4e0fb 1586static void nvme_set_irq_hints(struct nvme_dev *dev)
a5768aa8 1587{
bda4e0fb
KB
1588 struct nvme_queue *nvmeq;
1589 int i;
a5768aa8 1590
bda4e0fb
KB
1591 for (i = 0; i < dev->online_queues; i++) {
1592 nvmeq = dev->queues[i];
a5768aa8 1593
bda4e0fb
KB
1594 if (!nvmeq->tags || !(*nvmeq->tags))
1595 continue;
a5768aa8 1596
bda4e0fb
KB
1597 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
1598 blk_mq_tags_cpumask(*nvmeq->tags));
a5768aa8 1599 }
a5768aa8
KB
1600}
1601
a5768aa8 1602static void nvme_dev_scan(struct work_struct *work)
a5768aa8 1603{
a5768aa8 1604 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
a5768aa8
KB
1605
1606 if (!dev->tagset.tags)
1607 return;
5bae7f73 1608 nvme_scan_namespaces(&dev->ctrl);
bda4e0fb 1609 nvme_set_irq_hints(dev);
a5768aa8
KB
1610}
1611
db3cbfff 1612static void nvme_del_queue_end(struct request *req, int error)
a5768aa8 1613{
db3cbfff 1614 struct nvme_queue *nvmeq = req->end_io_data;
b5875222 1615
db3cbfff
KB
1616 blk_mq_free_request(req);
1617 complete(&nvmeq->dev->ioq_wait);
a5768aa8
KB
1618}
1619
db3cbfff 1620static void nvme_del_cq_end(struct request *req, int error)
a5768aa8 1621{
db3cbfff 1622 struct nvme_queue *nvmeq = req->end_io_data;
a5768aa8 1623
db3cbfff
KB
1624 if (!error) {
1625 unsigned long flags;
1626
1627 spin_lock_irqsave(&nvmeq->q_lock, flags);
1628 nvme_process_cq(nvmeq);
1629 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a5768aa8 1630 }
db3cbfff
KB
1631
1632 nvme_del_queue_end(req, error);
a5768aa8
KB
1633}
1634
db3cbfff 1635static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode)
bda4e0fb 1636{
db3cbfff
KB
1637 struct request_queue *q = nvmeq->dev->ctrl.admin_q;
1638 struct request *req;
1639 struct nvme_command cmd;
bda4e0fb 1640
db3cbfff
KB
1641 memset(&cmd, 0, sizeof(cmd));
1642 cmd.delete_queue.opcode = opcode;
1643 cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid);
bda4e0fb 1644
db3cbfff
KB
1645 req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT);
1646 if (IS_ERR(req))
1647 return PTR_ERR(req);
bda4e0fb 1648
db3cbfff
KB
1649 req->timeout = ADMIN_TIMEOUT;
1650 req->end_io_data = nvmeq;
1651
1652 blk_execute_rq_nowait(q, NULL, req, false,
1653 opcode == nvme_admin_delete_cq ?
1654 nvme_del_cq_end : nvme_del_queue_end);
1655 return 0;
bda4e0fb
KB
1656}
1657
db3cbfff 1658static void nvme_disable_io_queues(struct nvme_dev *dev)
a5768aa8 1659{
db3cbfff
KB
1660 int pass;
1661 unsigned long timeout;
1662 u8 opcode = nvme_admin_delete_sq;
a5768aa8 1663
db3cbfff
KB
1664 for (pass = 0; pass < 2; pass++) {
1665 int sent = 0, i = dev->queue_count - 1;
1666
1667 reinit_completion(&dev->ioq_wait);
1668 retry:
1669 timeout = ADMIN_TIMEOUT;
1670 for (; i > 0; i--) {
1671 struct nvme_queue *nvmeq = dev->queues[i];
1672
1673 if (!pass)
1674 nvme_suspend_queue(nvmeq);
1675 if (nvme_delete_queue(nvmeq, opcode))
1676 break;
1677 ++sent;
1678 }
1679 while (sent--) {
1680 timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout);
1681 if (timeout == 0)
1682 return;
1683 if (i)
1684 goto retry;
1685 }
1686 opcode = nvme_admin_delete_cq;
1687 }
a5768aa8
KB
1688}
1689
422ef0c7
MW
1690/*
1691 * Return: error value if an error occurred setting up the queues or calling
1692 * Identify Device. 0 if these succeeded, even if adding some of the
1693 * namespaces failed. At the moment, these failures are silent. TBD which
1694 * failures should be reported.
1695 */
8d85fce7 1696static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1697{
5bae7f73 1698 if (!dev->ctrl.tagset) {
ffe7704d
KB
1699 dev->tagset.ops = &nvme_mq_ops;
1700 dev->tagset.nr_hw_queues = dev->online_queues - 1;
1701 dev->tagset.timeout = NVME_IO_TIMEOUT;
1702 dev->tagset.numa_node = dev_to_node(dev->dev);
1703 dev->tagset.queue_depth =
a4aea562 1704 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
1705 dev->tagset.cmd_size = nvme_cmd_size(dev);
1706 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
1707 dev->tagset.driver_data = dev;
b60503ba 1708
ffe7704d
KB
1709 if (blk_mq_alloc_tag_set(&dev->tagset))
1710 return 0;
5bae7f73 1711 dev->ctrl.tagset = &dev->tagset;
ffe7704d 1712 }
646017a6 1713 nvme_queue_scan(dev);
e1e5e564 1714 return 0;
b60503ba
MW
1715}
1716
b00a726a 1717static int nvme_pci_enable(struct nvme_dev *dev)
0877cb0d 1718{
42f61420 1719 u64 cap;
b00a726a 1720 int result = -ENOMEM;
e75ec752 1721 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
1722
1723 if (pci_enable_device_mem(pdev))
1724 return result;
1725
1726 dev->entry[0].vector = pdev->irq;
1727 pci_set_master(pdev);
0877cb0d 1728
e75ec752
CH
1729 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
1730 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 1731 goto disable;
0877cb0d 1732
7a67cbea 1733 if (readl(dev->bar + NVME_REG_CSTS) == -1) {
0e53d180 1734 result = -ENODEV;
b00a726a 1735 goto disable;
0e53d180 1736 }
e32efbfc
JA
1737
1738 /*
1739 * Some devices don't advertse INTx interrupts, pre-enable a single
1740 * MSIX vec for setup. We'll adjust this later.
1741 */
1742 if (!pdev->irq) {
1743 result = pci_enable_msix(pdev, dev->entry, 1);
1744 if (result < 0)
b00a726a 1745 goto disable;
e32efbfc
JA
1746 }
1747
7a67cbea
CH
1748 cap = lo_hi_readq(dev->bar + NVME_REG_CAP);
1749
42f61420
KB
1750 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
1751 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
7a67cbea 1752 dev->dbs = dev->bar + 4096;
1f390c1f
SG
1753
1754 /*
1755 * Temporary fix for the Apple controller found in the MacBook8,1 and
1756 * some MacBook7,1 to avoid controller resets and data loss.
1757 */
1758 if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) {
1759 dev->q_depth = 2;
1760 dev_warn(dev->dev, "detected Apple NVMe controller, set "
1761 "queue depth=%u to work around controller resets\n",
1762 dev->q_depth);
1763 }
1764
7a67cbea 1765 if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2))
8ffaadf7 1766 dev->cmb = nvme_map_cmb(dev);
0877cb0d 1767
a0a3408e
KB
1768 pci_enable_pcie_error_reporting(pdev);
1769 pci_save_state(pdev);
0877cb0d
KB
1770 return 0;
1771
1772 disable:
0877cb0d
KB
1773 pci_disable_device(pdev);
1774 return result;
1775}
1776
1777static void nvme_dev_unmap(struct nvme_dev *dev)
b00a726a
KB
1778{
1779 if (dev->bar)
1780 iounmap(dev->bar);
1781 pci_release_regions(to_pci_dev(dev->dev));
1782}
1783
1784static void nvme_pci_disable(struct nvme_dev *dev)
0877cb0d 1785{
e75ec752
CH
1786 struct pci_dev *pdev = to_pci_dev(dev->dev);
1787
1788 if (pdev->msi_enabled)
1789 pci_disable_msi(pdev);
1790 else if (pdev->msix_enabled)
1791 pci_disable_msix(pdev);
0877cb0d 1792
a0a3408e
KB
1793 if (pci_is_enabled(pdev)) {
1794 pci_disable_pcie_error_reporting(pdev);
e75ec752 1795 pci_disable_device(pdev);
4d115420 1796 }
4d115420
KB
1797}
1798
7385014c 1799static int nvme_dev_list_add(struct nvme_dev *dev)
4d115420 1800{
7385014c 1801 bool start_thread = false;
4d115420 1802
7385014c
CH
1803 spin_lock(&dev_list_lock);
1804 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
1805 start_thread = true;
1806 nvme_thread = NULL;
4d115420 1807 }
7385014c
CH
1808 list_add(&dev->node, &dev_list);
1809 spin_unlock(&dev_list_lock);
4d115420 1810
7385014c
CH
1811 if (start_thread) {
1812 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1813 wake_up_all(&nvme_kthread_wait);
1814 } else
1815 wait_event_killable(nvme_kthread_wait, nvme_thread);
4d115420 1816
7385014c
CH
1817 if (IS_ERR_OR_NULL(nvme_thread))
1818 return nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
1819
1820 return 0;
4d115420
KB
1821}
1822
b9afca3e
DM
1823/*
1824* Remove the node from the device list and check
1825* for whether or not we need to stop the nvme_thread.
1826*/
1827static void nvme_dev_list_remove(struct nvme_dev *dev)
1828{
1829 struct task_struct *tmp = NULL;
1830
1831 spin_lock(&dev_list_lock);
1832 list_del_init(&dev->node);
1833 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
1834 tmp = nvme_thread;
1835 nvme_thread = NULL;
1836 }
1837 spin_unlock(&dev_list_lock);
1838
1839 if (tmp)
1840 kthread_stop(tmp);
1841}
1842
a5cdb68c 1843static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown)
b60503ba 1844{
22404274 1845 int i;
7c1b2450 1846 u32 csts = -1;
22404274 1847
b9afca3e 1848 nvme_dev_list_remove(dev);
1fa6aead 1849
77bf25ea 1850 mutex_lock(&dev->shutdown_lock);
b00a726a 1851 if (pci_is_enabled(to_pci_dev(dev->dev))) {
25646264 1852 nvme_stop_queues(&dev->ctrl);
7a67cbea 1853 csts = readl(dev->bar + NVME_REG_CSTS);
c9d3bf88 1854 }
7c1b2450 1855 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 1856 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 1857 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 1858 nvme_suspend_queue(nvmeq);
4d115420
KB
1859 }
1860 } else {
1861 nvme_disable_io_queues(dev);
a5cdb68c 1862 nvme_disable_admin_queue(dev, shutdown);
4d115420 1863 }
b00a726a 1864 nvme_pci_disable(dev);
07836e65
KB
1865
1866 for (i = dev->queue_count - 1; i >= 0; i--)
1867 nvme_clear_queue(dev->queues[i]);
77bf25ea 1868 mutex_unlock(&dev->shutdown_lock);
b60503ba
MW
1869}
1870
091b6092
MW
1871static int nvme_setup_prp_pools(struct nvme_dev *dev)
1872{
e75ec752 1873 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
1874 PAGE_SIZE, PAGE_SIZE, 0);
1875 if (!dev->prp_page_pool)
1876 return -ENOMEM;
1877
99802a7a 1878 /* Optimisation for I/Os between 4k and 128k */
e75ec752 1879 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
1880 256, 256, 0);
1881 if (!dev->prp_small_pool) {
1882 dma_pool_destroy(dev->prp_page_pool);
1883 return -ENOMEM;
1884 }
091b6092
MW
1885 return 0;
1886}
1887
1888static void nvme_release_prp_pools(struct nvme_dev *dev)
1889{
1890 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1891 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1892}
1893
1673f1f0 1894static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl)
5e82e952 1895{
1673f1f0 1896 struct nvme_dev *dev = to_nvme_dev(ctrl);
9ac27090 1897
e75ec752 1898 put_device(dev->dev);
4af0e21c
KB
1899 if (dev->tagset.tags)
1900 blk_mq_free_tag_set(&dev->tagset);
1c63dc66
CH
1901 if (dev->ctrl.admin_q)
1902 blk_put_queue(dev->ctrl.admin_q);
5e82e952
KB
1903 kfree(dev->queues);
1904 kfree(dev->entry);
1905 kfree(dev);
1906}
1907
f58944e2
KB
1908static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status)
1909{
1910 dev_warn(dev->dev, "Removing after probe failure status: %d\n", status);
1911
1912 kref_get(&dev->ctrl.kref);
69d9a99c 1913 nvme_dev_disable(dev, false);
f58944e2
KB
1914 if (!schedule_work(&dev->remove_work))
1915 nvme_put_ctrl(&dev->ctrl);
1916}
1917
fd634f41 1918static void nvme_reset_work(struct work_struct *work)
5e82e952 1919{
fd634f41 1920 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
f58944e2 1921 int result = -ENODEV;
5e82e952 1922
fd634f41
CH
1923 if (WARN_ON(test_bit(NVME_CTRL_RESETTING, &dev->flags)))
1924 goto out;
5e82e952 1925
fd634f41
CH
1926 /*
1927 * If we're called to reset a live controller first shut it down before
1928 * moving on.
1929 */
b00a726a 1930 if (dev->ctrl.ctrl_config & NVME_CC_ENABLE)
a5cdb68c 1931 nvme_dev_disable(dev, false);
5e82e952 1932
fd634f41 1933 set_bit(NVME_CTRL_RESETTING, &dev->flags);
f0b50732 1934
b00a726a 1935 result = nvme_pci_enable(dev);
f0b50732 1936 if (result)
3cf519b5 1937 goto out;
f0b50732
KB
1938
1939 result = nvme_configure_admin_queue(dev);
1940 if (result)
f58944e2 1941 goto out;
f0b50732 1942
a4aea562 1943 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
1944 result = nvme_alloc_admin_tags(dev);
1945 if (result)
f58944e2 1946 goto out;
b9afca3e 1947
ce4541f4
CH
1948 result = nvme_init_identify(&dev->ctrl);
1949 if (result)
f58944e2 1950 goto out;
ce4541f4 1951
f0b50732 1952 result = nvme_setup_io_queues(dev);
badc34d4 1953 if (result)
f58944e2 1954 goto out;
f0b50732 1955
adf68f21 1956 dev->ctrl.event_limit = NVME_NR_AEN_COMMANDS;
3cf519b5 1957
7385014c
CH
1958 result = nvme_dev_list_add(dev);
1959 if (result)
f58944e2 1960 goto out;
3cf519b5 1961
2659e57b
CH
1962 /*
1963 * Keep the controller around but remove all namespaces if we don't have
1964 * any working I/O queue.
1965 */
3cf519b5
CH
1966 if (dev->online_queues < 2) {
1967 dev_warn(dev->dev, "IO queues not created\n");
5bae7f73 1968 nvme_remove_namespaces(&dev->ctrl);
3cf519b5 1969 } else {
25646264 1970 nvme_start_queues(&dev->ctrl);
3cf519b5
CH
1971 nvme_dev_add(dev);
1972 }
1973
fd634f41 1974 clear_bit(NVME_CTRL_RESETTING, &dev->flags);
3cf519b5 1975 return;
f0b50732 1976
3cf519b5 1977 out:
f58944e2 1978 nvme_remove_dead_ctrl(dev, result);
f0b50732
KB
1979}
1980
5c8809e6 1981static void nvme_remove_dead_ctrl_work(struct work_struct *work)
9a6b9458 1982{
5c8809e6 1983 struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work);
e75ec752 1984 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458 1985
69d9a99c 1986 nvme_kill_queues(&dev->ctrl);
9a6b9458 1987 if (pci_get_drvdata(pdev))
c81f4975 1988 pci_stop_and_remove_bus_device_locked(pdev);
1673f1f0 1989 nvme_put_ctrl(&dev->ctrl);
9a6b9458
KB
1990}
1991
4cc06521 1992static int nvme_reset(struct nvme_dev *dev)
9a6b9458 1993{
1c63dc66 1994 if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q))
4cc06521 1995 return -ENODEV;
ffe7704d 1996
846cc05f
CH
1997 if (!queue_work(nvme_workq, &dev->reset_work))
1998 return -EBUSY;
ffe7704d 1999
846cc05f 2000 flush_work(&dev->reset_work);
846cc05f 2001 return 0;
9a6b9458
KB
2002}
2003
1c63dc66 2004static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val)
9ca97374 2005{
1c63dc66 2006 *val = readl(to_nvme_dev(ctrl)->bar + off);
90667892 2007 return 0;
9ca97374
TH
2008}
2009
5fd4ce1b 2010static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val)
4cc06521 2011{
5fd4ce1b
CH
2012 writel(val, to_nvme_dev(ctrl)->bar + off);
2013 return 0;
2014}
4cc06521 2015
7fd8930f
CH
2016static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val)
2017{
2018 *val = readq(to_nvme_dev(ctrl)->bar + off);
2019 return 0;
4cc06521
KB
2020}
2021
5bae7f73 2022static bool nvme_pci_io_incapable(struct nvme_ctrl *ctrl)
4cc06521 2023{
5bae7f73 2024 struct nvme_dev *dev = to_nvme_dev(ctrl);
4cc06521 2025
5bae7f73
CH
2026 return !dev->bar || dev->online_queues < 2;
2027}
4cc06521 2028
f3ca80fc
CH
2029static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl)
2030{
2031 return nvme_reset(to_nvme_dev(ctrl));
4cc06521 2032}
f3ca80fc 2033
1c63dc66
CH
2034static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = {
2035 .reg_read32 = nvme_pci_reg_read32,
5fd4ce1b 2036 .reg_write32 = nvme_pci_reg_write32,
7fd8930f 2037 .reg_read64 = nvme_pci_reg_read64,
5bae7f73 2038 .io_incapable = nvme_pci_io_incapable,
f3ca80fc 2039 .reset_ctrl = nvme_pci_reset_ctrl,
1673f1f0 2040 .free_ctrl = nvme_pci_free_ctrl,
1c63dc66 2041};
4cc06521 2042
b00a726a
KB
2043static int nvme_dev_map(struct nvme_dev *dev)
2044{
2045 int bars;
2046 struct pci_dev *pdev = to_pci_dev(dev->dev);
2047
2048 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2049 if (!bars)
2050 return -ENODEV;
2051 if (pci_request_selected_regions(pdev, bars, "nvme"))
2052 return -ENODEV;
2053
2054 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2055 if (!dev->bar)
2056 goto release;
2057
2058 return 0;
2059 release:
2060 pci_release_regions(pdev);
2061 return -ENODEV;
2062}
2063
8d85fce7 2064static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2065{
a4aea562 2066 int node, result = -ENOMEM;
b60503ba
MW
2067 struct nvme_dev *dev;
2068
a4aea562
MB
2069 node = dev_to_node(&pdev->dev);
2070 if (node == NUMA_NO_NODE)
2071 set_dev_node(&pdev->dev, 0);
2072
2073 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2074 if (!dev)
2075 return -ENOMEM;
a4aea562
MB
2076 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2077 GFP_KERNEL, node);
b60503ba
MW
2078 if (!dev->entry)
2079 goto free;
a4aea562
MB
2080 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2081 GFP_KERNEL, node);
b60503ba
MW
2082 if (!dev->queues)
2083 goto free;
2084
e75ec752 2085 dev->dev = get_device(&pdev->dev);
9a6b9458 2086 pci_set_drvdata(pdev, dev);
1c63dc66 2087
b00a726a
KB
2088 result = nvme_dev_map(dev);
2089 if (result)
2090 goto free;
2091
f3ca80fc
CH
2092 INIT_LIST_HEAD(&dev->node);
2093 INIT_WORK(&dev->scan_work, nvme_dev_scan);
f3ca80fc 2094 INIT_WORK(&dev->reset_work, nvme_reset_work);
5c8809e6 2095 INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work);
77bf25ea 2096 mutex_init(&dev->shutdown_lock);
db3cbfff 2097 init_completion(&dev->ioq_wait);
b60503ba 2098
091b6092
MW
2099 result = nvme_setup_prp_pools(dev);
2100 if (result)
a96d4f5c 2101 goto put_pci;
4cc06521 2102
f3ca80fc
CH
2103 result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops,
2104 id->driver_data);
4cc06521 2105 if (result)
2e1d8448 2106 goto release_pools;
740216fc 2107
92f7a162 2108 queue_work(nvme_workq, &dev->reset_work);
b60503ba
MW
2109 return 0;
2110
0877cb0d 2111 release_pools:
091b6092 2112 nvme_release_prp_pools(dev);
a96d4f5c 2113 put_pci:
e75ec752 2114 put_device(dev->dev);
b00a726a 2115 nvme_dev_unmap(dev);
b60503ba
MW
2116 free:
2117 kfree(dev->queues);
2118 kfree(dev->entry);
2119 kfree(dev);
2120 return result;
2121}
2122
f0d54a54
KB
2123static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2124{
a6739479 2125 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2126
a6739479 2127 if (prepare)
a5cdb68c 2128 nvme_dev_disable(dev, false);
a6739479 2129 else
92f7a162 2130 queue_work(nvme_workq, &dev->reset_work);
f0d54a54
KB
2131}
2132
09ece142
KB
2133static void nvme_shutdown(struct pci_dev *pdev)
2134{
2135 struct nvme_dev *dev = pci_get_drvdata(pdev);
a5cdb68c 2136 nvme_dev_disable(dev, true);
09ece142
KB
2137}
2138
f58944e2
KB
2139/*
2140 * The driver's remove may be called on a device in a partially initialized
2141 * state. This function must not have any dependencies on the device state in
2142 * order to proceed.
2143 */
8d85fce7 2144static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2145{
2146 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458 2147
646017a6 2148 set_bit(NVME_CTRL_REMOVING, &dev->flags);
9a6b9458 2149 pci_set_drvdata(pdev, NULL);
a5768aa8 2150 flush_work(&dev->scan_work);
5bae7f73 2151 nvme_remove_namespaces(&dev->ctrl);
53029b04 2152 nvme_uninit_ctrl(&dev->ctrl);
a5cdb68c 2153 nvme_dev_disable(dev, true);
ff23a2a1 2154 flush_work(&dev->reset_work);
a4aea562 2155 nvme_dev_remove_admin(dev);
a1a5ef99 2156 nvme_free_queues(dev, 0);
8ffaadf7 2157 nvme_release_cmb(dev);
9a6b9458 2158 nvme_release_prp_pools(dev);
b00a726a 2159 nvme_dev_unmap(dev);
1673f1f0 2160 nvme_put_ctrl(&dev->ctrl);
b60503ba
MW
2161}
2162
671a6018 2163#ifdef CONFIG_PM_SLEEP
cd638946
KB
2164static int nvme_suspend(struct device *dev)
2165{
2166 struct pci_dev *pdev = to_pci_dev(dev);
2167 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2168
a5cdb68c 2169 nvme_dev_disable(ndev, true);
cd638946
KB
2170 return 0;
2171}
2172
2173static int nvme_resume(struct device *dev)
2174{
2175 struct pci_dev *pdev = to_pci_dev(dev);
2176 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2177
92f7a162 2178 queue_work(nvme_workq, &ndev->reset_work);
9a6b9458 2179 return 0;
cd638946 2180}
671a6018 2181#endif
cd638946
KB
2182
2183static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 2184
a0a3408e
KB
2185static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev,
2186 pci_channel_state_t state)
2187{
2188 struct nvme_dev *dev = pci_get_drvdata(pdev);
2189
2190 /*
2191 * A frozen channel requires a reset. When detected, this method will
2192 * shutdown the controller to quiesce. The controller will be restarted
2193 * after the slot reset through driver's slot_reset callback.
2194 */
2195 dev_warn(&pdev->dev, "error detected: state:%d\n", state);
2196 switch (state) {
2197 case pci_channel_io_normal:
2198 return PCI_ERS_RESULT_CAN_RECOVER;
2199 case pci_channel_io_frozen:
a5cdb68c 2200 nvme_dev_disable(dev, false);
a0a3408e
KB
2201 return PCI_ERS_RESULT_NEED_RESET;
2202 case pci_channel_io_perm_failure:
2203 return PCI_ERS_RESULT_DISCONNECT;
2204 }
2205 return PCI_ERS_RESULT_NEED_RESET;
2206}
2207
2208static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev)
2209{
2210 struct nvme_dev *dev = pci_get_drvdata(pdev);
2211
2212 dev_info(&pdev->dev, "restart after slot reset\n");
2213 pci_restore_state(pdev);
2214 queue_work(nvme_workq, &dev->reset_work);
2215 return PCI_ERS_RESULT_RECOVERED;
2216}
2217
2218static void nvme_error_resume(struct pci_dev *pdev)
2219{
2220 pci_cleanup_aer_uncorrect_error_status(pdev);
2221}
2222
1d352035 2223static const struct pci_error_handlers nvme_err_handler = {
b60503ba 2224 .error_detected = nvme_error_detected,
b60503ba
MW
2225 .slot_reset = nvme_slot_reset,
2226 .resume = nvme_error_resume,
f0d54a54 2227 .reset_notify = nvme_reset_notify,
b60503ba
MW
2228};
2229
2230/* Move to pci_ids.h later */
2231#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2232
6eb0d698 2233static const struct pci_device_id nvme_id_table[] = {
106198ed
CH
2234 { PCI_VDEVICE(INTEL, 0x0953),
2235 .driver_data = NVME_QUIRK_STRIPE_SIZE, },
540c801c
KB
2236 { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */
2237 .driver_data = NVME_QUIRK_IDENTIFY_CNS, },
b60503ba 2238 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
c74dc780 2239 { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) },
b60503ba
MW
2240 { 0, }
2241};
2242MODULE_DEVICE_TABLE(pci, nvme_id_table);
2243
2244static struct pci_driver nvme_driver = {
2245 .name = "nvme",
2246 .id_table = nvme_id_table,
2247 .probe = nvme_probe,
8d85fce7 2248 .remove = nvme_remove,
09ece142 2249 .shutdown = nvme_shutdown,
cd638946
KB
2250 .driver = {
2251 .pm = &nvme_dev_pm_ops,
2252 },
b60503ba
MW
2253 .err_handler = &nvme_err_handler,
2254};
2255
2256static int __init nvme_init(void)
2257{
0ac13140 2258 int result;
1fa6aead 2259
b9afca3e 2260 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 2261
92f7a162 2262 nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0);
9a6b9458 2263 if (!nvme_workq)
b9afca3e 2264 return -ENOMEM;
9a6b9458 2265
5bae7f73 2266 result = nvme_core_init();
5c42ea16 2267 if (result < 0)
9a6b9458 2268 goto kill_workq;
b3fffdef 2269
f3db22fe
KB
2270 result = pci_register_driver(&nvme_driver);
2271 if (result)
f3ca80fc 2272 goto core_exit;
1fa6aead 2273 return 0;
b60503ba 2274
f3ca80fc 2275 core_exit:
5bae7f73 2276 nvme_core_exit();
9a6b9458
KB
2277 kill_workq:
2278 destroy_workqueue(nvme_workq);
b60503ba
MW
2279 return result;
2280}
2281
2282static void __exit nvme_exit(void)
2283{
2284 pci_unregister_driver(&nvme_driver);
5bae7f73 2285 nvme_core_exit();
9a6b9458 2286 destroy_workqueue(nvme_workq);
b9afca3e 2287 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 2288 _nvme_check_size();
b60503ba
MW
2289}
2290
2291MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2292MODULE_LICENSE("GPL");
c78b4713 2293MODULE_VERSION("1.0");
b60503ba
MW
2294module_init(nvme_init);
2295module_exit(nvme_exit);