NVMe: Mark CMD_CTX_CANCELLED as being unlikely
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
22#include <linux/errno.h>
23#include <linux/fs.h>
24#include <linux/genhd.h>
25#include <linux/init.h>
26#include <linux/interrupt.h>
27#include <linux/io.h>
28#include <linux/kdev_t.h>
1fa6aead 29#include <linux/kthread.h>
b60503ba
MW
30#include <linux/kernel.h>
31#include <linux/mm.h>
32#include <linux/module.h>
33#include <linux/moduleparam.h>
34#include <linux/pci.h>
be7b6275 35#include <linux/poison.h>
b60503ba
MW
36#include <linux/sched.h>
37#include <linux/slab.h>
38#include <linux/types.h>
39#include <linux/version.h>
40
41#define NVME_Q_DEPTH 1024
42#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
43#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
44#define NVME_MINORS 64
e85248e5
MW
45#define IO_TIMEOUT (5 * HZ)
46#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
47
48static int nvme_major;
49module_param(nvme_major, int, 0);
50
58ffacb5
MW
51static int use_threaded_interrupts;
52module_param(use_threaded_interrupts, int, 0);
53
1fa6aead
MW
54static DEFINE_SPINLOCK(dev_list_lock);
55static LIST_HEAD(dev_list);
56static struct task_struct *nvme_thread;
57
b60503ba
MW
58/*
59 * Represents an NVM Express device. Each nvme_dev is a PCI function.
60 */
61struct nvme_dev {
1fa6aead 62 struct list_head node;
b60503ba
MW
63 struct nvme_queue **queues;
64 u32 __iomem *dbs;
65 struct pci_dev *pci_dev;
091b6092 66 struct dma_pool *prp_page_pool;
99802a7a 67 struct dma_pool *prp_small_pool;
b60503ba
MW
68 int instance;
69 int queue_count;
70 u32 ctrl_config;
71 struct msix_entry *entry;
72 struct nvme_bar __iomem *bar;
73 struct list_head namespaces;
51814232
MW
74 char serial[20];
75 char model[40];
76 char firmware_rev[8];
b60503ba
MW
77};
78
79/*
80 * An NVM Express namespace is equivalent to a SCSI LUN
81 */
82struct nvme_ns {
83 struct list_head list;
84
85 struct nvme_dev *dev;
86 struct request_queue *queue;
87 struct gendisk *disk;
88
89 int ns_id;
90 int lba_shift;
91};
92
93/*
94 * An NVM Express queue. Each device has at least two (one for admin
95 * commands and one for I/O commands).
96 */
97struct nvme_queue {
98 struct device *q_dmadev;
091b6092 99 struct nvme_dev *dev;
b60503ba
MW
100 spinlock_t q_lock;
101 struct nvme_command *sq_cmds;
102 volatile struct nvme_completion *cqes;
103 dma_addr_t sq_dma_addr;
104 dma_addr_t cq_dma_addr;
105 wait_queue_head_t sq_full;
1fa6aead 106 wait_queue_t sq_cong_wait;
b60503ba
MW
107 struct bio_list sq_cong;
108 u32 __iomem *q_db;
109 u16 q_depth;
110 u16 cq_vector;
111 u16 sq_head;
112 u16 sq_tail;
113 u16 cq_head;
82123460 114 u16 cq_phase;
b60503ba
MW
115 unsigned long cmdid_data[];
116};
117
118/*
119 * Check we didin't inadvertently grow the command struct
120 */
121static inline void _nvme_check_size(void)
122{
123 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
124 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
125 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
130 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
131 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
132}
133
e85248e5
MW
134struct nvme_cmd_info {
135 unsigned long ctx;
136 unsigned long timeout;
137};
138
139static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
140{
141 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
142}
143
b60503ba
MW
144/**
145 * alloc_cmdid - Allocate a Command ID
146 * @param nvmeq The queue that will be used for this command
147 * @param ctx A pointer that will be passed to the handler
148 * @param handler The ID of the handler to call
149 *
150 * Allocate a Command ID for a queue. The data passed in will
151 * be passed to the completion handler. This is implemented by using
152 * the bottom two bits of the ctx pointer to store the handler ID.
153 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
154 * We can change this if it becomes a problem.
155 */
e85248e5
MW
156static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx, int handler,
157 unsigned timeout)
b60503ba
MW
158{
159 int depth = nvmeq->q_depth;
e85248e5 160 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
161 int cmdid;
162
163 BUG_ON((unsigned long)ctx & 3);
164
165 do {
166 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
167 if (cmdid >= depth)
168 return -EBUSY;
169 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
170
e85248e5
MW
171 info[cmdid].ctx = (unsigned long)ctx | handler;
172 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
173 return cmdid;
174}
175
176static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
e85248e5 177 int handler, unsigned timeout)
b60503ba
MW
178{
179 int cmdid;
180 wait_event_killable(nvmeq->sq_full,
e85248e5 181 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
182 return (cmdid < 0) ? -EINTR : cmdid;
183}
184
185/* If you need more than four handlers, you'll need to change how
be7b6275
MW
186 * alloc_cmdid and nvme_process_cq work. Consider using a special
187 * CMD_CTX value instead, if that works for your situation.
b60503ba
MW
188 */
189enum {
190 sync_completion_id = 0,
191 bio_completion_id,
192};
193
be7b6275 194#define CMD_CTX_BASE (POISON_POINTER_DELTA + sync_completion_id)
d2d87034
MW
195#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
196#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
197#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 198
b60503ba
MW
199static unsigned long free_cmdid(struct nvme_queue *nvmeq, int cmdid)
200{
201 unsigned long data;
e85248e5 202 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 203
e85248e5 204 if (cmdid >= nvmeq->q_depth)
48e3d398 205 return CMD_CTX_INVALID;
e85248e5
MW
206 data = info[cmdid].ctx;
207 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
208 clear_bit(cmdid, nvmeq->cmdid_data);
209 wake_up(&nvmeq->sq_full);
210 return data;
211}
212
be7b6275 213static void cancel_cmdid_data(struct nvme_queue *nvmeq, int cmdid)
3c0cf138 214{
e85248e5
MW
215 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
216 info[cmdid].ctx = CMD_CTX_CANCELLED;
3c0cf138
MW
217}
218
b60503ba
MW
219static struct nvme_queue *get_nvmeq(struct nvme_ns *ns)
220{
1b23484b
MW
221 int qid, cpu = get_cpu();
222 if (cpu < ns->dev->queue_count)
223 qid = cpu + 1;
224 else
225 qid = (cpu % rounddown_pow_of_two(ns->dev->queue_count)) + 1;
226 return ns->dev->queues[qid];
b60503ba
MW
227}
228
229static void put_nvmeq(struct nvme_queue *nvmeq)
230{
1b23484b 231 put_cpu();
b60503ba
MW
232}
233
234/**
235 * nvme_submit_cmd: Copy a command into a queue and ring the doorbell
236 * @nvmeq: The queue to use
237 * @cmd: The command to send
238 *
239 * Safe to use from interrupt context
240 */
241static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
242{
243 unsigned long flags;
244 u16 tail;
245 /* XXX: Need to check tail isn't going to overrun head */
246 spin_lock_irqsave(&nvmeq->q_lock, flags);
247 tail = nvmeq->sq_tail;
248 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
249 if (++tail == nvmeq->q_depth)
250 tail = 0;
7547881d 251 writel(tail, nvmeq->q_db);
b60503ba
MW
252 nvmeq->sq_tail = tail;
253 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
254
255 return 0;
256}
257
e025344c
SMM
258struct nvme_prps {
259 int npages;
260 dma_addr_t first_dma;
261 __le64 *list[0];
262};
263
d567760c 264static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
e025344c
SMM
265{
266 const int last_prp = PAGE_SIZE / 8 - 1;
267 int i;
268 dma_addr_t prp_dma;
269
270 if (!prps)
271 return;
272
273 prp_dma = prps->first_dma;
99802a7a
MW
274
275 if (prps->npages == 0)
276 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
e025344c
SMM
277 for (i = 0; i < prps->npages; i++) {
278 __le64 *prp_list = prps->list[i];
279 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
091b6092 280 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
e025344c
SMM
281 prp_dma = next_prp_dma;
282 }
283 kfree(prps);
284}
285
d534df3c 286struct nvme_bio {
b60503ba
MW
287 struct bio *bio;
288 int nents;
e025344c 289 struct nvme_prps *prps;
b60503ba
MW
290 struct scatterlist sg[0];
291};
292
293/* XXX: use a mempool */
d534df3c 294static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
b60503ba 295{
d534df3c 296 return kzalloc(sizeof(struct nvme_bio) +
b60503ba
MW
297 sizeof(struct scatterlist) * nseg, gfp);
298}
299
d534df3c 300static void free_nbio(struct nvme_queue *nvmeq, struct nvme_bio *nbio)
b60503ba 301{
d567760c 302 nvme_free_prps(nvmeq->dev, nbio->prps);
d534df3c 303 kfree(nbio);
b60503ba
MW
304}
305
306static void bio_completion(struct nvme_queue *nvmeq, void *ctx,
307 struct nvme_completion *cqe)
308{
d534df3c
MW
309 struct nvme_bio *nbio = ctx;
310 struct bio *bio = nbio->bio;
b60503ba
MW
311 u16 status = le16_to_cpup(&cqe->status) >> 1;
312
d534df3c 313 dma_unmap_sg(nvmeq->q_dmadev, nbio->sg, nbio->nents,
b60503ba 314 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
d534df3c 315 free_nbio(nvmeq, nbio);
b60503ba
MW
316 bio_endio(bio, status ? -EIO : 0);
317}
318
ff22b54f 319/* length is in bytes */
d567760c 320static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
e025344c 321 struct nvme_common_command *cmd,
ff22b54f
MW
322 struct scatterlist *sg, int length)
323{
99802a7a 324 struct dma_pool *pool;
ff22b54f
MW
325 int dma_len = sg_dma_len(sg);
326 u64 dma_addr = sg_dma_address(sg);
327 int offset = offset_in_page(dma_addr);
e025344c
SMM
328 __le64 *prp_list;
329 dma_addr_t prp_dma;
330 int nprps, npages, i, prp_page;
331 struct nvme_prps *prps = NULL;
ff22b54f
MW
332
333 cmd->prp1 = cpu_to_le64(dma_addr);
334 length -= (PAGE_SIZE - offset);
335 if (length <= 0)
e025344c 336 return prps;
ff22b54f
MW
337
338 dma_len -= (PAGE_SIZE - offset);
339 if (dma_len) {
340 dma_addr += (PAGE_SIZE - offset);
341 } else {
342 sg = sg_next(sg);
343 dma_addr = sg_dma_address(sg);
344 dma_len = sg_dma_len(sg);
345 }
346
347 if (length <= PAGE_SIZE) {
348 cmd->prp2 = cpu_to_le64(dma_addr);
e025344c
SMM
349 return prps;
350 }
351
352 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
353 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE);
354 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, GFP_ATOMIC);
e025344c 355 prp_page = 0;
99802a7a
MW
356 if (nprps <= (256 / 8)) {
357 pool = dev->prp_small_pool;
358 prps->npages = 0;
359 } else {
360 pool = dev->prp_page_pool;
361 prps->npages = npages;
362 }
363
364 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
e025344c
SMM
365 prps->list[prp_page++] = prp_list;
366 prps->first_dma = prp_dma;
367 cmd->prp2 = cpu_to_le64(prp_dma);
368 i = 0;
369 for (;;) {
370 if (i == PAGE_SIZE / 8 - 1) {
371 __le64 *old_prp_list = prp_list;
99802a7a 372 prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma);
e025344c
SMM
373 prps->list[prp_page++] = prp_list;
374 old_prp_list[i] = cpu_to_le64(prp_dma);
375 i = 0;
376 }
377 prp_list[i++] = cpu_to_le64(dma_addr);
378 dma_len -= PAGE_SIZE;
379 dma_addr += PAGE_SIZE;
380 length -= PAGE_SIZE;
381 if (length <= 0)
382 break;
383 if (dma_len > 0)
384 continue;
385 BUG_ON(dma_len < 0);
386 sg = sg_next(sg);
387 dma_addr = sg_dma_address(sg);
388 dma_len = sg_dma_len(sg);
ff22b54f
MW
389 }
390
e025344c 391 return prps;
ff22b54f
MW
392}
393
d534df3c 394static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
b60503ba
MW
395 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
396{
76830840
MW
397 struct bio_vec *bvec, *bvprv = NULL;
398 struct scatterlist *sg = NULL;
399 int i, nsegs = 0;
b60503ba 400
76830840 401 sg_init_table(nbio->sg, psegs);
b60503ba 402 bio_for_each_segment(bvec, bio, i) {
76830840
MW
403 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
404 sg->length += bvec->bv_len;
405 } else {
406 /* Check bvprv && offset == 0 */
407 sg = sg ? sg + 1 : nbio->sg;
408 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
409 bvec->bv_offset);
410 nsegs++;
411 }
412 bvprv = bvec;
b60503ba 413 }
d534df3c 414 nbio->nents = nsegs;
76830840 415 sg_mark_end(sg);
d534df3c 416 return dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir);
b60503ba
MW
417}
418
419static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
420 struct bio *bio)
421{
ff22b54f 422 struct nvme_command *cmnd;
d534df3c 423 struct nvme_bio *nbio;
b60503ba 424 enum dma_data_direction dma_dir;
eeee3226 425 int cmdid, result = -ENOMEM;
b60503ba
MW
426 u16 control;
427 u32 dsmgmt;
b60503ba
MW
428 int psegs = bio_phys_segments(ns->queue, bio);
429
eeee3226 430 nbio = alloc_nbio(psegs, GFP_ATOMIC);
d534df3c 431 if (!nbio)
eeee3226 432 goto nomem;
d534df3c 433 nbio->bio = bio;
b60503ba 434
eeee3226 435 result = -EBUSY;
d534df3c 436 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion_id, IO_TIMEOUT);
b60503ba 437 if (unlikely(cmdid < 0))
d534df3c 438 goto free_nbio;
b60503ba
MW
439
440 control = 0;
441 if (bio->bi_rw & REQ_FUA)
442 control |= NVME_RW_FUA;
443 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
444 control |= NVME_RW_LR;
445
446 dsmgmt = 0;
447 if (bio->bi_rw & REQ_RAHEAD)
448 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
449
ff22b54f 450 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 451
b8deb62c 452 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 453 if (bio_data_dir(bio)) {
ff22b54f 454 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
455 dma_dir = DMA_TO_DEVICE;
456 } else {
ff22b54f 457 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
458 dma_dir = DMA_FROM_DEVICE;
459 }
460
eeee3226 461 result = -ENOMEM;
1974b1ae 462 if (nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs) == 0)
eeee3226 463 goto free_nbio;
b60503ba 464
ff22b54f
MW
465 cmnd->rw.command_id = cmdid;
466 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
d567760c 467 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
e025344c 468 bio->bi_size);
ff22b54f
MW
469 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
470 cmnd->rw.length = cpu_to_le16((bio->bi_size >> ns->lba_shift) - 1);
471 cmnd->rw.control = cpu_to_le16(control);
472 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 473
b60503ba
MW
474 if (++nvmeq->sq_tail == nvmeq->q_depth)
475 nvmeq->sq_tail = 0;
7547881d 476 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 477
1974b1ae
MW
478 return 0;
479
d534df3c
MW
480 free_nbio:
481 free_nbio(nvmeq, nbio);
eeee3226
MW
482 nomem:
483 return result;
b60503ba
MW
484}
485
486/*
487 * NB: return value of non-zero would mean that we were a stacking driver.
488 * make_request must always succeed.
489 */
490static int nvme_make_request(struct request_queue *q, struct bio *bio)
491{
492 struct nvme_ns *ns = q->queuedata;
493 struct nvme_queue *nvmeq = get_nvmeq(ns);
eeee3226
MW
494 int result = -EBUSY;
495
496 spin_lock_irq(&nvmeq->q_lock);
497 if (bio_list_empty(&nvmeq->sq_cong))
498 result = nvme_submit_bio_queue(nvmeq, ns, bio);
499 if (unlikely(result)) {
500 if (bio_list_empty(&nvmeq->sq_cong))
501 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
502 bio_list_add(&nvmeq->sq_cong, bio);
503 }
eeee3226
MW
504
505 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
506 put_nvmeq(nvmeq);
507
508 return 0;
509}
510
511struct sync_cmd_info {
512 struct task_struct *task;
513 u32 result;
514 int status;
515};
516
517static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
518 struct nvme_completion *cqe)
519{
520 struct sync_cmd_info *cmdinfo = ctx;
c4270559 521 if (unlikely((unsigned long)cmdinfo == CMD_CTX_CANCELLED))
be7b6275 522 return;
b36235df
MW
523 if (unlikely((unsigned long)cmdinfo == CMD_CTX_COMPLETED)) {
524 dev_warn(nvmeq->q_dmadev,
525 "completed id %d twice on queue %d\n",
526 cqe->command_id, le16_to_cpup(&cqe->sq_id));
527 return;
528 }
48e3d398
MW
529 if (unlikely((unsigned long)cmdinfo == CMD_CTX_INVALID)) {
530 dev_warn(nvmeq->q_dmadev,
531 "invalid id %d completed on queue %d\n",
532 cqe->command_id, le16_to_cpup(&cqe->sq_id));
533 return;
534 }
b60503ba
MW
535 cmdinfo->result = le32_to_cpup(&cqe->result);
536 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
537 wake_up_process(cmdinfo->task);
538}
539
540typedef void (*completion_fn)(struct nvme_queue *, void *,
541 struct nvme_completion *);
542
543static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
544{
82123460 545 u16 head, phase;
b60503ba
MW
546
547 static const completion_fn completions[4] = {
548 [sync_completion_id] = sync_completion,
549 [bio_completion_id] = bio_completion,
550 };
551
552 head = nvmeq->cq_head;
82123460 553 phase = nvmeq->cq_phase;
b60503ba
MW
554
555 for (;;) {
556 unsigned long data;
557 void *ptr;
558 unsigned char handler;
559 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 560 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
561 break;
562 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
563 if (++head == nvmeq->q_depth) {
564 head = 0;
82123460 565 phase = !phase;
b60503ba
MW
566 }
567
568 data = free_cmdid(nvmeq, cqe.command_id);
569 handler = data & 3;
570 ptr = (void *)(data & ~3UL);
571 completions[handler](nvmeq, ptr, &cqe);
572 }
573
574 /* If the controller ignores the cq head doorbell and continuously
575 * writes to the queue, it is theoretically possible to wrap around
576 * the queue twice and mistakenly return IRQ_NONE. Linux only
577 * requires that 0.1% of your interrupts are handled, so this isn't
578 * a big problem.
579 */
82123460 580 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
581 return IRQ_NONE;
582
583 writel(head, nvmeq->q_db + 1);
584 nvmeq->cq_head = head;
82123460 585 nvmeq->cq_phase = phase;
b60503ba
MW
586
587 return IRQ_HANDLED;
588}
589
590static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
591{
592 irqreturn_t result;
593 struct nvme_queue *nvmeq = data;
594 spin_lock(&nvmeq->q_lock);
595 result = nvme_process_cq(nvmeq);
596 spin_unlock(&nvmeq->q_lock);
597 return result;
598}
599
600static irqreturn_t nvme_irq_check(int irq, void *data)
601{
602 struct nvme_queue *nvmeq = data;
603 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
604 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
605 return IRQ_NONE;
606 return IRQ_WAKE_THREAD;
607}
608
3c0cf138
MW
609static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
610{
611 spin_lock_irq(&nvmeq->q_lock);
be7b6275 612 cancel_cmdid_data(nvmeq, cmdid);
3c0cf138
MW
613 spin_unlock_irq(&nvmeq->q_lock);
614}
615
b60503ba
MW
616/*
617 * Returns 0 on success. If the result is negative, it's a Linux error code;
618 * if the result is positive, it's an NVM Express status code
619 */
3c0cf138 620static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 621 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
622{
623 int cmdid;
624 struct sync_cmd_info cmdinfo;
625
626 cmdinfo.task = current;
627 cmdinfo.status = -EINTR;
628
e85248e5
MW
629 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion_id,
630 timeout);
b60503ba
MW
631 if (cmdid < 0)
632 return cmdid;
633 cmd->common.command_id = cmdid;
634
3c0cf138
MW
635 set_current_state(TASK_KILLABLE);
636 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
637 schedule();
638
3c0cf138
MW
639 if (cmdinfo.status == -EINTR) {
640 nvme_abort_command(nvmeq, cmdid);
641 return -EINTR;
642 }
643
b60503ba
MW
644 if (result)
645 *result = cmdinfo.result;
646
647 return cmdinfo.status;
648}
649
650static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
651 u32 *result)
652{
e85248e5 653 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
654}
655
656static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
657{
658 int status;
659 struct nvme_command c;
660
661 memset(&c, 0, sizeof(c));
662 c.delete_queue.opcode = opcode;
663 c.delete_queue.qid = cpu_to_le16(id);
664
665 status = nvme_submit_admin_cmd(dev, &c, NULL);
666 if (status)
667 return -EIO;
668 return 0;
669}
670
671static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
672 struct nvme_queue *nvmeq)
673{
674 int status;
675 struct nvme_command c;
676 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
677
678 memset(&c, 0, sizeof(c));
679 c.create_cq.opcode = nvme_admin_create_cq;
680 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
681 c.create_cq.cqid = cpu_to_le16(qid);
682 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
683 c.create_cq.cq_flags = cpu_to_le16(flags);
684 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
685
686 status = nvme_submit_admin_cmd(dev, &c, NULL);
687 if (status)
688 return -EIO;
689 return 0;
690}
691
692static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
693 struct nvme_queue *nvmeq)
694{
695 int status;
696 struct nvme_command c;
697 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
698
699 memset(&c, 0, sizeof(c));
700 c.create_sq.opcode = nvme_admin_create_sq;
701 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
702 c.create_sq.sqid = cpu_to_le16(qid);
703 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
704 c.create_sq.sq_flags = cpu_to_le16(flags);
705 c.create_sq.cqid = cpu_to_le16(qid);
706
707 status = nvme_submit_admin_cmd(dev, &c, NULL);
708 if (status)
709 return -EIO;
710 return 0;
711}
712
713static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
714{
715 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
716}
717
718static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
719{
720 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
721}
722
723static void nvme_free_queue(struct nvme_dev *dev, int qid)
724{
725 struct nvme_queue *nvmeq = dev->queues[qid];
726
727 free_irq(dev->entry[nvmeq->cq_vector].vector, nvmeq);
728
729 /* Don't tell the adapter to delete the admin queue */
730 if (qid) {
731 adapter_delete_sq(dev, qid);
732 adapter_delete_cq(dev, qid);
733 }
734
735 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
736 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
737 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
738 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
739 kfree(nvmeq);
740}
741
742static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
743 int depth, int vector)
744{
745 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 746 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
747 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
748 if (!nvmeq)
749 return NULL;
750
751 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
752 &nvmeq->cq_dma_addr, GFP_KERNEL);
753 if (!nvmeq->cqes)
754 goto free_nvmeq;
755 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
756
757 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
758 &nvmeq->sq_dma_addr, GFP_KERNEL);
759 if (!nvmeq->sq_cmds)
760 goto free_cqdma;
761
762 nvmeq->q_dmadev = dmadev;
091b6092 763 nvmeq->dev = dev;
b60503ba
MW
764 spin_lock_init(&nvmeq->q_lock);
765 nvmeq->cq_head = 0;
82123460 766 nvmeq->cq_phase = 1;
b60503ba 767 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 768 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba
MW
769 bio_list_init(&nvmeq->sq_cong);
770 nvmeq->q_db = &dev->dbs[qid * 2];
771 nvmeq->q_depth = depth;
772 nvmeq->cq_vector = vector;
773
774 return nvmeq;
775
776 free_cqdma:
777 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
778 nvmeq->cq_dma_addr);
779 free_nvmeq:
780 kfree(nvmeq);
781 return NULL;
782}
783
3001082c
MW
784static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
785 const char *name)
786{
58ffacb5
MW
787 if (use_threaded_interrupts)
788 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 789 nvme_irq_check, nvme_irq,
58ffacb5
MW
790 IRQF_DISABLED | IRQF_SHARED,
791 name, nvmeq);
3001082c
MW
792 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
793 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
794}
795
b60503ba
MW
796static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
797 int qid, int cq_size, int vector)
798{
799 int result;
800 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
801
3f85d50b
MW
802 if (!nvmeq)
803 return NULL;
804
b60503ba
MW
805 result = adapter_alloc_cq(dev, qid, nvmeq);
806 if (result < 0)
807 goto free_nvmeq;
808
809 result = adapter_alloc_sq(dev, qid, nvmeq);
810 if (result < 0)
811 goto release_cq;
812
3001082c 813 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
814 if (result < 0)
815 goto release_sq;
816
817 return nvmeq;
818
819 release_sq:
820 adapter_delete_sq(dev, qid);
821 release_cq:
822 adapter_delete_cq(dev, qid);
823 free_nvmeq:
824 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
825 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
826 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
827 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
828 kfree(nvmeq);
829 return NULL;
830}
831
832static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
833{
834 int result;
835 u32 aqa;
836 struct nvme_queue *nvmeq;
837
838 dev->dbs = ((void __iomem *)dev->bar) + 4096;
839
840 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
841 if (!nvmeq)
842 return -ENOMEM;
b60503ba
MW
843
844 aqa = nvmeq->q_depth - 1;
845 aqa |= aqa << 16;
846
847 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
848 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
849 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
850
5911f200 851 writel(0, &dev->bar->cc);
b60503ba
MW
852 writel(aqa, &dev->bar->aqa);
853 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
854 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
855 writel(dev->ctrl_config, &dev->bar->cc);
856
857 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
858 msleep(100);
859 if (fatal_signal_pending(current))
860 return -EINTR;
861 }
862
3001082c 863 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
864 dev->queues[0] = nvmeq;
865 return result;
866}
867
7fc3cdab
MW
868static int nvme_map_user_pages(struct nvme_dev *dev, int write,
869 unsigned long addr, unsigned length,
870 struct scatterlist **sgp)
b60503ba 871{
36c14ed9 872 int i, err, count, nents, offset;
7fc3cdab
MW
873 struct scatterlist *sg;
874 struct page **pages;
36c14ed9
MW
875
876 if (addr & 3)
877 return -EINVAL;
7fc3cdab
MW
878 if (!length)
879 return -EINVAL;
880
36c14ed9 881 offset = offset_in_page(addr);
7fc3cdab
MW
882 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
883 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
884
885 err = get_user_pages_fast(addr, count, 1, pages);
886 if (err < count) {
887 count = err;
888 err = -EFAULT;
889 goto put_pages;
890 }
7fc3cdab
MW
891
892 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 893 sg_init_table(sg, count);
ff22b54f 894 sg_set_page(&sg[0], pages[0], PAGE_SIZE - offset, offset);
7fc3cdab
MW
895 length -= (PAGE_SIZE - offset);
896 for (i = 1; i < count; i++) {
897 sg_set_page(&sg[i], pages[i], min_t(int, length, PAGE_SIZE), 0);
898 length -= PAGE_SIZE;
899 }
900
901 err = -ENOMEM;
902 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
903 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
904 if (!nents)
905 goto put_pages;
b60503ba 906
7fc3cdab
MW
907 kfree(pages);
908 *sgp = sg;
909 return nents;
b60503ba 910
7fc3cdab
MW
911 put_pages:
912 for (i = 0; i < count; i++)
913 put_page(pages[i]);
914 kfree(pages);
915 return err;
916}
b60503ba 917
7fc3cdab
MW
918static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
919 unsigned long addr, int length,
920 struct scatterlist *sg, int nents)
921{
922 int i, count;
b60503ba 923
7fc3cdab 924 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
36c14ed9 925 dma_unmap_sg(&dev->pci_dev->dev, sg, nents, DMA_FROM_DEVICE);
7fc3cdab 926
36c14ed9 927 for (i = 0; i < count; i++)
7fc3cdab
MW
928 put_page(sg_page(&sg[i]));
929}
b60503ba 930
7fc3cdab
MW
931static int nvme_submit_user_admin_command(struct nvme_dev *dev,
932 unsigned long addr, unsigned length,
933 struct nvme_command *cmd)
934{
935 int err, nents;
936 struct scatterlist *sg;
e025344c 937 struct nvme_prps *prps;
7fc3cdab
MW
938
939 nents = nvme_map_user_pages(dev, 0, addr, length, &sg);
940 if (nents < 0)
941 return nents;
d567760c 942 prps = nvme_setup_prps(dev, &cmd->common, sg, length);
7fc3cdab
MW
943 err = nvme_submit_admin_cmd(dev, cmd, NULL);
944 nvme_unmap_user_pages(dev, 0, addr, length, sg, nents);
d567760c 945 nvme_free_prps(dev, prps);
7fc3cdab 946 return err ? -EIO : 0;
b60503ba
MW
947}
948
bd38c555 949static int nvme_identify(struct nvme_ns *ns, unsigned long addr, int cns)
b60503ba 950{
b60503ba 951 struct nvme_command c;
b60503ba 952
bd38c555
MW
953 memset(&c, 0, sizeof(c));
954 c.identify.opcode = nvme_admin_identify;
955 c.identify.nsid = cns ? 0 : cpu_to_le32(ns->ns_id);
956 c.identify.cns = cpu_to_le32(cns);
957
958 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
959}
960
961static int nvme_get_range_type(struct nvme_ns *ns, unsigned long addr)
962{
963 struct nvme_command c;
b60503ba
MW
964
965 memset(&c, 0, sizeof(c));
966 c.features.opcode = nvme_admin_get_features;
967 c.features.nsid = cpu_to_le32(ns->ns_id);
b60503ba
MW
968 c.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
969
bd38c555 970 return nvme_submit_user_admin_command(ns->dev, addr, 4096, &c);
b60503ba
MW
971}
972
a53295b6
MW
973static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
974{
975 struct nvme_dev *dev = ns->dev;
976 struct nvme_queue *nvmeq;
977 struct nvme_user_io io;
978 struct nvme_command c;
979 unsigned length;
980 u32 result;
981 int nents, status;
982 struct scatterlist *sg;
e025344c 983 struct nvme_prps *prps;
a53295b6
MW
984
985 if (copy_from_user(&io, uio, sizeof(io)))
986 return -EFAULT;
987 length = io.nblocks << io.block_shift;
988 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length, &sg);
989 if (nents < 0)
990 return nents;
991
992 memset(&c, 0, sizeof(c));
993 c.rw.opcode = io.opcode;
994 c.rw.flags = io.flags;
995 c.rw.nsid = cpu_to_le32(io.nsid);
996 c.rw.slba = cpu_to_le64(io.slba);
997 c.rw.length = cpu_to_le16(io.nblocks - 1);
998 c.rw.control = cpu_to_le16(io.control);
999 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1000 c.rw.reftag = cpu_to_le32(io.reftag); /* XXX: endian? */
1001 c.rw.apptag = cpu_to_le16(io.apptag);
1002 c.rw.appmask = cpu_to_le16(io.appmask);
1003 /* XXX: metadata */
d567760c 1004 prps = nvme_setup_prps(dev, &c.common, sg, length);
a53295b6 1005
d567760c 1006 nvmeq = get_nvmeq(ns);
b1ad37ef
MW
1007 /* Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1008 * disabled. We may be preempted at any point, and be rescheduled
1009 * to a different CPU. That will cause cacheline bouncing, but no
1010 * additional races since q_lock already protects against other CPUs.
1011 */
a53295b6 1012 put_nvmeq(nvmeq);
e85248e5 1013 status = nvme_submit_sync_cmd(nvmeq, &c, &result, IO_TIMEOUT);
a53295b6
MW
1014
1015 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg, nents);
d567760c 1016 nvme_free_prps(dev, prps);
a53295b6
MW
1017 put_user(result, &uio->result);
1018 return status;
1019}
1020
6ee44cdc
MW
1021static int nvme_download_firmware(struct nvme_ns *ns,
1022 struct nvme_dlfw __user *udlfw)
1023{
1024 struct nvme_dev *dev = ns->dev;
1025 struct nvme_dlfw dlfw;
1026 struct nvme_command c;
1027 int nents, status;
1028 struct scatterlist *sg;
e025344c 1029 struct nvme_prps *prps;
6ee44cdc
MW
1030
1031 if (copy_from_user(&dlfw, udlfw, sizeof(dlfw)))
1032 return -EFAULT;
1033 if (dlfw.length >= (1 << 30))
1034 return -EINVAL;
1035
1036 nents = nvme_map_user_pages(dev, 1, dlfw.addr, dlfw.length * 4, &sg);
1037 if (nents < 0)
1038 return nents;
1039
1040 memset(&c, 0, sizeof(c));
1041 c.dlfw.opcode = nvme_admin_download_fw;
1042 c.dlfw.numd = cpu_to_le32(dlfw.length);
1043 c.dlfw.offset = cpu_to_le32(dlfw.offset);
d567760c 1044 prps = nvme_setup_prps(dev, &c.common, sg, dlfw.length * 4);
6ee44cdc
MW
1045
1046 status = nvme_submit_admin_cmd(dev, &c, NULL);
1047 nvme_unmap_user_pages(dev, 0, dlfw.addr, dlfw.length * 4, sg, nents);
d567760c 1048 nvme_free_prps(dev, prps);
6ee44cdc
MW
1049 return status;
1050}
1051
1052static int nvme_activate_firmware(struct nvme_ns *ns, unsigned long arg)
1053{
1054 struct nvme_dev *dev = ns->dev;
1055 struct nvme_command c;
1056
1057 memset(&c, 0, sizeof(c));
1058 c.common.opcode = nvme_admin_activate_fw;
1059 c.common.rsvd10[0] = cpu_to_le32(arg);
1060
1061 return nvme_submit_admin_cmd(dev, &c, NULL);
1062}
1063
b60503ba
MW
1064static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1065 unsigned long arg)
1066{
1067 struct nvme_ns *ns = bdev->bd_disk->private_data;
1068
1069 switch (cmd) {
1070 case NVME_IOCTL_IDENTIFY_NS:
36c14ed9 1071 return nvme_identify(ns, arg, 0);
b60503ba 1072 case NVME_IOCTL_IDENTIFY_CTRL:
36c14ed9 1073 return nvme_identify(ns, arg, 1);
b60503ba 1074 case NVME_IOCTL_GET_RANGE_TYPE:
bd38c555 1075 return nvme_get_range_type(ns, arg);
a53295b6
MW
1076 case NVME_IOCTL_SUBMIT_IO:
1077 return nvme_submit_io(ns, (void __user *)arg);
6ee44cdc
MW
1078 case NVME_IOCTL_DOWNLOAD_FW:
1079 return nvme_download_firmware(ns, (void __user *)arg);
1080 case NVME_IOCTL_ACTIVATE_FW:
1081 return nvme_activate_firmware(ns, arg);
b60503ba
MW
1082 default:
1083 return -ENOTTY;
1084 }
1085}
1086
1087static const struct block_device_operations nvme_fops = {
1088 .owner = THIS_MODULE,
1089 .ioctl = nvme_ioctl,
1090};
1091
1fa6aead
MW
1092static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1093{
1094 while (bio_list_peek(&nvmeq->sq_cong)) {
1095 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1096 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1097 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1098 bio_list_add_head(&nvmeq->sq_cong, bio);
1099 break;
1100 }
1101 }
1102}
1103
1104static int nvme_kthread(void *data)
1105{
1106 struct nvme_dev *dev;
1107
1108 while (!kthread_should_stop()) {
1109 __set_current_state(TASK_RUNNING);
1110 spin_lock(&dev_list_lock);
1111 list_for_each_entry(dev, &dev_list, node) {
1112 int i;
1113 for (i = 0; i < dev->queue_count; i++) {
1114 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1115 if (!nvmeq)
1116 continue;
1fa6aead
MW
1117 spin_lock_irq(&nvmeq->q_lock);
1118 if (nvme_process_cq(nvmeq))
1119 printk("process_cq did something\n");
1120 nvme_resubmit_bios(nvmeq);
1121 spin_unlock_irq(&nvmeq->q_lock);
1122 }
1123 }
1124 spin_unlock(&dev_list_lock);
1125 set_current_state(TASK_INTERRUPTIBLE);
1126 schedule_timeout(HZ);
1127 }
1128 return 0;
1129}
1130
b60503ba
MW
1131static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int index,
1132 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1133{
1134 struct nvme_ns *ns;
1135 struct gendisk *disk;
1136 int lbaf;
1137
1138 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1139 return NULL;
1140
1141 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1142 if (!ns)
1143 return NULL;
1144 ns->queue = blk_alloc_queue(GFP_KERNEL);
1145 if (!ns->queue)
1146 goto out_free_ns;
1147 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1148 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1149 blk_queue_make_request(ns->queue, nvme_make_request);
1150 ns->dev = dev;
1151 ns->queue->queuedata = ns;
1152
1153 disk = alloc_disk(NVME_MINORS);
1154 if (!disk)
1155 goto out_free_queue;
1156 ns->ns_id = index;
1157 ns->disk = disk;
1158 lbaf = id->flbas & 0xf;
1159 ns->lba_shift = id->lbaf[lbaf].ds;
1160
1161 disk->major = nvme_major;
1162 disk->minors = NVME_MINORS;
1163 disk->first_minor = NVME_MINORS * index;
1164 disk->fops = &nvme_fops;
1165 disk->private_data = ns;
1166 disk->queue = ns->queue;
388f037f 1167 disk->driverfs_dev = &dev->pci_dev->dev;
b60503ba
MW
1168 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, index);
1169 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1170
1171 return ns;
1172
1173 out_free_queue:
1174 blk_cleanup_queue(ns->queue);
1175 out_free_ns:
1176 kfree(ns);
1177 return NULL;
1178}
1179
1180static void nvme_ns_free(struct nvme_ns *ns)
1181{
1182 put_disk(ns->disk);
1183 blk_cleanup_queue(ns->queue);
1184 kfree(ns);
1185}
1186
b3b06812 1187static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1188{
1189 int status;
1190 u32 result;
1191 struct nvme_command c;
b3b06812 1192 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba
MW
1193
1194 memset(&c, 0, sizeof(c));
1195 c.features.opcode = nvme_admin_get_features;
1196 c.features.fid = cpu_to_le32(NVME_FEAT_NUM_QUEUES);
1197 c.features.dword11 = cpu_to_le32(q_count);
1198
1199 status = nvme_submit_admin_cmd(dev, &c, &result);
1200 if (status)
1201 return -EIO;
1202 return min(result & 0xffff, result >> 16) + 1;
1203}
1204
b60503ba
MW
1205static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1206{
b348b7d5 1207 int result, cpu, i, nr_io_queues;
b60503ba 1208
b348b7d5
MW
1209 nr_io_queues = num_online_cpus();
1210 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1211 if (result < 0)
1212 return result;
b348b7d5
MW
1213 if (result < nr_io_queues)
1214 nr_io_queues = result;
b60503ba 1215
1b23484b
MW
1216 /* Deregister the admin queue's interrupt */
1217 free_irq(dev->entry[0].vector, dev->queues[0]);
1218
b348b7d5 1219 for (i = 0; i < nr_io_queues; i++)
1b23484b
MW
1220 dev->entry[i].entry = i;
1221 for (;;) {
b348b7d5
MW
1222 result = pci_enable_msix(dev->pci_dev, dev->entry,
1223 nr_io_queues);
1b23484b
MW
1224 if (result == 0) {
1225 break;
1226 } else if (result > 0) {
b348b7d5 1227 nr_io_queues = result;
1b23484b
MW
1228 continue;
1229 } else {
b348b7d5 1230 nr_io_queues = 1;
1b23484b
MW
1231 break;
1232 }
1233 }
1234
1235 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1236 /* XXX: handle failure here */
1237
1238 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1239 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1240 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1241 cpu = cpumask_next(cpu, cpu_online_mask);
1242 }
1243
b348b7d5 1244 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1245 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1246 NVME_Q_DEPTH, i);
1247 if (!dev->queues[i + 1])
1248 return -ENOMEM;
1249 dev->queue_count++;
1250 }
b60503ba
MW
1251
1252 return 0;
1253}
1254
1255static void nvme_free_queues(struct nvme_dev *dev)
1256{
1257 int i;
1258
1259 for (i = dev->queue_count - 1; i >= 0; i--)
1260 nvme_free_queue(dev, i);
1261}
1262
1263static int __devinit nvme_dev_add(struct nvme_dev *dev)
1264{
1265 int res, nn, i;
1266 struct nvme_ns *ns, *next;
51814232 1267 struct nvme_id_ctrl *ctrl;
b60503ba
MW
1268 void *id;
1269 dma_addr_t dma_addr;
1270 struct nvme_command cid, crt;
1271
1272 res = nvme_setup_io_queues(dev);
1273 if (res)
1274 return res;
1275
1276 /* XXX: Switch to a SG list once prp2 works */
1277 id = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1278 GFP_KERNEL);
1279
1280 memset(&cid, 0, sizeof(cid));
1281 cid.identify.opcode = nvme_admin_identify;
1282 cid.identify.nsid = 0;
1283 cid.identify.prp1 = cpu_to_le64(dma_addr);
1284 cid.identify.cns = cpu_to_le32(1);
1285
1286 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1287 if (res) {
1288 res = -EIO;
1289 goto out_free;
1290 }
1291
51814232
MW
1292 ctrl = id;
1293 nn = le32_to_cpup(&ctrl->nn);
1294 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1295 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1296 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba
MW
1297
1298 cid.identify.cns = 0;
1299 memset(&crt, 0, sizeof(crt));
1300 crt.features.opcode = nvme_admin_get_features;
1301 crt.features.prp1 = cpu_to_le64(dma_addr + 4096);
1302 crt.features.fid = cpu_to_le32(NVME_FEAT_LBA_RANGE);
1303
1304 for (i = 0; i < nn; i++) {
1305 cid.identify.nsid = cpu_to_le32(i);
1306 res = nvme_submit_admin_cmd(dev, &cid, NULL);
1307 if (res)
1308 continue;
1309
1310 if (((struct nvme_id_ns *)id)->ncap == 0)
1311 continue;
1312
1313 crt.features.nsid = cpu_to_le32(i);
1314 res = nvme_submit_admin_cmd(dev, &crt, NULL);
1315 if (res)
1316 continue;
1317
1318 ns = nvme_alloc_ns(dev, i, id, id + 4096);
1319 if (ns)
1320 list_add_tail(&ns->list, &dev->namespaces);
1321 }
1322 list_for_each_entry(ns, &dev->namespaces, list)
1323 add_disk(ns->disk);
1324
1325 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1326 return 0;
1327
1328 out_free:
1329 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1330 list_del(&ns->list);
1331 nvme_ns_free(ns);
1332 }
1333
1334 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1335 return res;
1336}
1337
1338static int nvme_dev_remove(struct nvme_dev *dev)
1339{
1340 struct nvme_ns *ns, *next;
1341
1fa6aead
MW
1342 spin_lock(&dev_list_lock);
1343 list_del(&dev->node);
1344 spin_unlock(&dev_list_lock);
1345
b60503ba
MW
1346 /* TODO: wait all I/O finished or cancel them */
1347
1348 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1349 list_del(&ns->list);
1350 del_gendisk(ns->disk);
1351 nvme_ns_free(ns);
1352 }
1353
1354 nvme_free_queues(dev);
1355
1356 return 0;
1357}
1358
091b6092
MW
1359static int nvme_setup_prp_pools(struct nvme_dev *dev)
1360{
1361 struct device *dmadev = &dev->pci_dev->dev;
1362 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1363 PAGE_SIZE, PAGE_SIZE, 0);
1364 if (!dev->prp_page_pool)
1365 return -ENOMEM;
1366
99802a7a
MW
1367 /* Optimisation for I/Os between 4k and 128k */
1368 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1369 256, 256, 0);
1370 if (!dev->prp_small_pool) {
1371 dma_pool_destroy(dev->prp_page_pool);
1372 return -ENOMEM;
1373 }
091b6092
MW
1374 return 0;
1375}
1376
1377static void nvme_release_prp_pools(struct nvme_dev *dev)
1378{
1379 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1380 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1381}
1382
b60503ba
MW
1383/* XXX: Use an ida or something to let remove / add work correctly */
1384static void nvme_set_instance(struct nvme_dev *dev)
1385{
1386 static int instance;
1387 dev->instance = instance++;
1388}
1389
1390static void nvme_release_instance(struct nvme_dev *dev)
1391{
1392}
1393
1394static int __devinit nvme_probe(struct pci_dev *pdev,
1395 const struct pci_device_id *id)
1396{
574e8b95 1397 int bars, result = -ENOMEM;
b60503ba
MW
1398 struct nvme_dev *dev;
1399
1400 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1401 if (!dev)
1402 return -ENOMEM;
1403 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1404 GFP_KERNEL);
1405 if (!dev->entry)
1406 goto free;
1b23484b
MW
1407 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1408 GFP_KERNEL);
b60503ba
MW
1409 if (!dev->queues)
1410 goto free;
1411
0ee5a7d7
SMM
1412 if (pci_enable_device_mem(pdev))
1413 goto free;
f64d3365 1414 pci_set_master(pdev);
574e8b95
MW
1415 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1416 if (pci_request_selected_regions(pdev, bars, "nvme"))
1417 goto disable;
0ee5a7d7 1418
b60503ba
MW
1419 INIT_LIST_HEAD(&dev->namespaces);
1420 dev->pci_dev = pdev;
1421 pci_set_drvdata(pdev, dev);
2930353f
MW
1422 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1423 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1424 nvme_set_instance(dev);
53c9577e 1425 dev->entry[0].vector = pdev->irq;
b60503ba 1426
091b6092
MW
1427 result = nvme_setup_prp_pools(dev);
1428 if (result)
1429 goto disable_msix;
1430
b60503ba
MW
1431 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1432 if (!dev->bar) {
1433 result = -ENOMEM;
574e8b95 1434 goto disable_msix;
b60503ba
MW
1435 }
1436
1437 result = nvme_configure_admin_queue(dev);
1438 if (result)
1439 goto unmap;
1440 dev->queue_count++;
1441
1fa6aead
MW
1442 spin_lock(&dev_list_lock);
1443 list_add(&dev->node, &dev_list);
1444 spin_unlock(&dev_list_lock);
1445
740216fc
MW
1446 result = nvme_dev_add(dev);
1447 if (result)
1448 goto delete;
1449
b60503ba
MW
1450 return 0;
1451
1452 delete:
740216fc
MW
1453 spin_lock(&dev_list_lock);
1454 list_del(&dev->node);
1455 spin_unlock(&dev_list_lock);
1456
b60503ba
MW
1457 nvme_free_queues(dev);
1458 unmap:
1459 iounmap(dev->bar);
574e8b95 1460 disable_msix:
b60503ba
MW
1461 pci_disable_msix(pdev);
1462 nvme_release_instance(dev);
091b6092 1463 nvme_release_prp_pools(dev);
574e8b95 1464 disable:
0ee5a7d7 1465 pci_disable_device(pdev);
574e8b95 1466 pci_release_regions(pdev);
b60503ba
MW
1467 free:
1468 kfree(dev->queues);
1469 kfree(dev->entry);
1470 kfree(dev);
1471 return result;
1472}
1473
1474static void __devexit nvme_remove(struct pci_dev *pdev)
1475{
1476 struct nvme_dev *dev = pci_get_drvdata(pdev);
1477 nvme_dev_remove(dev);
1478 pci_disable_msix(pdev);
1479 iounmap(dev->bar);
1480 nvme_release_instance(dev);
091b6092 1481 nvme_release_prp_pools(dev);
0ee5a7d7 1482 pci_disable_device(pdev);
574e8b95 1483 pci_release_regions(pdev);
b60503ba
MW
1484 kfree(dev->queues);
1485 kfree(dev->entry);
1486 kfree(dev);
1487}
1488
1489/* These functions are yet to be implemented */
1490#define nvme_error_detected NULL
1491#define nvme_dump_registers NULL
1492#define nvme_link_reset NULL
1493#define nvme_slot_reset NULL
1494#define nvme_error_resume NULL
1495#define nvme_suspend NULL
1496#define nvme_resume NULL
1497
1498static struct pci_error_handlers nvme_err_handler = {
1499 .error_detected = nvme_error_detected,
1500 .mmio_enabled = nvme_dump_registers,
1501 .link_reset = nvme_link_reset,
1502 .slot_reset = nvme_slot_reset,
1503 .resume = nvme_error_resume,
1504};
1505
1506/* Move to pci_ids.h later */
1507#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1508
1509static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1510 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1511 { 0, }
1512};
1513MODULE_DEVICE_TABLE(pci, nvme_id_table);
1514
1515static struct pci_driver nvme_driver = {
1516 .name = "nvme",
1517 .id_table = nvme_id_table,
1518 .probe = nvme_probe,
1519 .remove = __devexit_p(nvme_remove),
1520 .suspend = nvme_suspend,
1521 .resume = nvme_resume,
1522 .err_handler = &nvme_err_handler,
1523};
1524
1525static int __init nvme_init(void)
1526{
1fa6aead
MW
1527 int result = -EBUSY;
1528
1529 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1530 if (IS_ERR(nvme_thread))
1531 return PTR_ERR(nvme_thread);
b60503ba
MW
1532
1533 nvme_major = register_blkdev(nvme_major, "nvme");
1534 if (nvme_major <= 0)
1fa6aead 1535 goto kill_kthread;
b60503ba
MW
1536
1537 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
1538 if (result)
1539 goto unregister_blkdev;
1540 return 0;
b60503ba 1541
1fa6aead 1542 unregister_blkdev:
b60503ba 1543 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
1544 kill_kthread:
1545 kthread_stop(nvme_thread);
b60503ba
MW
1546 return result;
1547}
1548
1549static void __exit nvme_exit(void)
1550{
1551 pci_unregister_driver(&nvme_driver);
1552 unregister_blkdev(nvme_major, "nvme");
1fa6aead 1553 kthread_stop(nvme_thread);
b60503ba
MW
1554}
1555
1556MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1557MODULE_LICENSE("GPL");
ad8a5df9 1558MODULE_VERSION("0.3");
b60503ba
MW
1559module_init(nvme_init);
1560module_exit(nvme_exit);