NVMe: Change nvme_completion_fn to take a dev
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
8de05535 21#include <linux/bitops.h>
b60503ba 22#include <linux/blkdev.h>
fd63e9ce 23#include <linux/delay.h>
b60503ba
MW
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
1fa6aead 32#include <linux/kthread.h>
b60503ba
MW
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
42#include <linux/version.h>
43
44#define NVME_Q_DEPTH 1024
45#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
46#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
47#define NVME_MINORS 64
e85248e5
MW
48#define IO_TIMEOUT (5 * HZ)
49#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
50
51static int nvme_major;
52module_param(nvme_major, int, 0);
53
58ffacb5
MW
54static int use_threaded_interrupts;
55module_param(use_threaded_interrupts, int, 0);
56
1fa6aead
MW
57static DEFINE_SPINLOCK(dev_list_lock);
58static LIST_HEAD(dev_list);
59static struct task_struct *nvme_thread;
60
b60503ba
MW
61/*
62 * Represents an NVM Express device. Each nvme_dev is a PCI function.
63 */
64struct nvme_dev {
1fa6aead 65 struct list_head node;
b60503ba
MW
66 struct nvme_queue **queues;
67 u32 __iomem *dbs;
68 struct pci_dev *pci_dev;
091b6092 69 struct dma_pool *prp_page_pool;
99802a7a 70 struct dma_pool *prp_small_pool;
b60503ba
MW
71 int instance;
72 int queue_count;
f1938f6e 73 int db_stride;
b60503ba
MW
74 u32 ctrl_config;
75 struct msix_entry *entry;
76 struct nvme_bar __iomem *bar;
77 struct list_head namespaces;
51814232
MW
78 char serial[20];
79 char model[40];
80 char firmware_rev[8];
b60503ba
MW
81};
82
83/*
84 * An NVM Express namespace is equivalent to a SCSI LUN
85 */
86struct nvme_ns {
87 struct list_head list;
88
89 struct nvme_dev *dev;
90 struct request_queue *queue;
91 struct gendisk *disk;
92
93 int ns_id;
94 int lba_shift;
95};
96
97/*
98 * An NVM Express queue. Each device has at least two (one for admin
99 * commands and one for I/O commands).
100 */
101struct nvme_queue {
102 struct device *q_dmadev;
091b6092 103 struct nvme_dev *dev;
b60503ba
MW
104 spinlock_t q_lock;
105 struct nvme_command *sq_cmds;
106 volatile struct nvme_completion *cqes;
107 dma_addr_t sq_dma_addr;
108 dma_addr_t cq_dma_addr;
109 wait_queue_head_t sq_full;
1fa6aead 110 wait_queue_t sq_cong_wait;
b60503ba
MW
111 struct bio_list sq_cong;
112 u32 __iomem *q_db;
113 u16 q_depth;
114 u16 cq_vector;
115 u16 sq_head;
116 u16 sq_tail;
117 u16 cq_head;
82123460 118 u16 cq_phase;
b60503ba
MW
119 unsigned long cmdid_data[];
120};
121
122/*
123 * Check we didin't inadvertently grow the command struct
124 */
125static inline void _nvme_check_size(void)
126{
127 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136}
137
5c1281a3 138typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
c2f5b650
MW
139 struct nvme_completion *);
140
e85248e5 141struct nvme_cmd_info {
c2f5b650
MW
142 nvme_completion_fn fn;
143 void *ctx;
e85248e5
MW
144 unsigned long timeout;
145};
146
147static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
148{
149 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
150}
151
b60503ba 152/**
714a7a22
MW
153 * alloc_cmdid() - Allocate a Command ID
154 * @nvmeq: The queue that will be used for this command
155 * @ctx: A pointer that will be passed to the handler
c2f5b650 156 * @handler: The function to call on completion
b60503ba
MW
157 *
158 * Allocate a Command ID for a queue. The data passed in will
159 * be passed to the completion handler. This is implemented by using
160 * the bottom two bits of the ctx pointer to store the handler ID.
161 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
162 * We can change this if it becomes a problem.
184d2944
MW
163 *
164 * May be called with local interrupts disabled and the q_lock held,
165 * or with interrupts enabled and no locks held.
b60503ba 166 */
c2f5b650
MW
167static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
168 nvme_completion_fn handler, unsigned timeout)
b60503ba 169{
e6d15f79 170 int depth = nvmeq->q_depth - 1;
e85248e5 171 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
172 int cmdid;
173
b60503ba
MW
174 do {
175 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
176 if (cmdid >= depth)
177 return -EBUSY;
178 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
179
c2f5b650
MW
180 info[cmdid].fn = handler;
181 info[cmdid].ctx = ctx;
e85248e5 182 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
183 return cmdid;
184}
185
186static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
c2f5b650 187 nvme_completion_fn handler, unsigned timeout)
b60503ba
MW
188{
189 int cmdid;
190 wait_event_killable(nvmeq->sq_full,
e85248e5 191 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
192 return (cmdid < 0) ? -EINTR : cmdid;
193}
194
c2f5b650
MW
195/* Special values must be less than 0x1000 */
196#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
197#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
198#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
199#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 200#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 201
5c1281a3 202static void special_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
203 struct nvme_completion *cqe)
204{
205 if (ctx == CMD_CTX_CANCELLED)
206 return;
207 if (ctx == CMD_CTX_FLUSH)
208 return;
209 if (ctx == CMD_CTX_COMPLETED) {
5c1281a3 210 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
211 "completed id %d twice on queue %d\n",
212 cqe->command_id, le16_to_cpup(&cqe->sq_id));
213 return;
214 }
215 if (ctx == CMD_CTX_INVALID) {
5c1281a3 216 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
217 "invalid id %d completed on queue %d\n",
218 cqe->command_id, le16_to_cpup(&cqe->sq_id));
219 return;
220 }
221
5c1281a3 222 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
223}
224
184d2944
MW
225/*
226 * Called with local interrupts disabled and the q_lock held. May not sleep.
227 */
c2f5b650
MW
228static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
229 nvme_completion_fn *fn)
b60503ba 230{
c2f5b650 231 void *ctx;
e85248e5 232 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 233
c2f5b650
MW
234 if (cmdid >= nvmeq->q_depth) {
235 *fn = special_completion;
48e3d398 236 return CMD_CTX_INVALID;
c2f5b650
MW
237 }
238 *fn = info[cmdid].fn;
239 ctx = info[cmdid].ctx;
240 info[cmdid].fn = special_completion;
e85248e5 241 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
242 clear_bit(cmdid, nvmeq->cmdid_data);
243 wake_up(&nvmeq->sq_full);
c2f5b650 244 return ctx;
b60503ba
MW
245}
246
c2f5b650
MW
247static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
248 nvme_completion_fn *fn)
3c0cf138 249{
c2f5b650 250 void *ctx;
e85248e5 251 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
c2f5b650
MW
252 if (fn)
253 *fn = info[cmdid].fn;
254 ctx = info[cmdid].ctx;
255 info[cmdid].fn = special_completion;
e85248e5 256 info[cmdid].ctx = CMD_CTX_CANCELLED;
c2f5b650 257 return ctx;
3c0cf138
MW
258}
259
040a93b5 260static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
b60503ba 261{
040a93b5 262 return dev->queues[get_cpu() + 1];
b60503ba
MW
263}
264
265static void put_nvmeq(struct nvme_queue *nvmeq)
266{
1b23484b 267 put_cpu();
b60503ba
MW
268}
269
270/**
714a7a22 271 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
272 * @nvmeq: The queue to use
273 * @cmd: The command to send
274 *
275 * Safe to use from interrupt context
276 */
277static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
278{
279 unsigned long flags;
280 u16 tail;
b60503ba
MW
281 spin_lock_irqsave(&nvmeq->q_lock, flags);
282 tail = nvmeq->sq_tail;
283 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
284 if (++tail == nvmeq->q_depth)
285 tail = 0;
7547881d 286 writel(tail, nvmeq->q_db);
b60503ba
MW
287 nvmeq->sq_tail = tail;
288 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
289
290 return 0;
291}
292
e025344c 293struct nvme_prps {
0d1bc912 294 int npages; /* 0 means small pool in use */
e025344c
SMM
295 dma_addr_t first_dma;
296 __le64 *list[0];
297};
298
d567760c 299static void nvme_free_prps(struct nvme_dev *dev, struct nvme_prps *prps)
e025344c
SMM
300{
301 const int last_prp = PAGE_SIZE / 8 - 1;
302 int i;
303 dma_addr_t prp_dma;
304
305 if (!prps)
306 return;
307
308 prp_dma = prps->first_dma;
99802a7a
MW
309
310 if (prps->npages == 0)
311 dma_pool_free(dev->prp_small_pool, prps->list[0], prp_dma);
e025344c
SMM
312 for (i = 0; i < prps->npages; i++) {
313 __le64 *prp_list = prps->list[i];
314 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
091b6092 315 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
e025344c
SMM
316 prp_dma = next_prp_dma;
317 }
318 kfree(prps);
319}
320
d534df3c 321struct nvme_bio {
b60503ba
MW
322 struct bio *bio;
323 int nents;
e025344c 324 struct nvme_prps *prps;
b60503ba
MW
325 struct scatterlist sg[0];
326};
327
328/* XXX: use a mempool */
d534df3c 329static struct nvme_bio *alloc_nbio(unsigned nseg, gfp_t gfp)
b60503ba 330{
d534df3c 331 return kzalloc(sizeof(struct nvme_bio) +
b60503ba
MW
332 sizeof(struct scatterlist) * nseg, gfp);
333}
334
5c1281a3 335static void free_nbio(struct nvme_dev *dev, struct nvme_bio *nbio)
b60503ba 336{
5c1281a3 337 nvme_free_prps(dev, nbio->prps);
d534df3c 338 kfree(nbio);
b60503ba
MW
339}
340
5c1281a3
MW
341static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
342{
343 struct nvme_queue *nvmeq = get_nvmeq(dev);
344 if (bio_list_empty(&nvmeq->sq_cong))
345 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
346 bio_list_add(&nvmeq->sq_cong, bio);
347 put_nvmeq(nvmeq);
348 wake_up_process(nvme_thread);
349}
350
351static void bio_completion(struct nvme_dev *dev, void *ctx,
b60503ba
MW
352 struct nvme_completion *cqe)
353{
d534df3c
MW
354 struct nvme_bio *nbio = ctx;
355 struct bio *bio = nbio->bio;
b60503ba
MW
356 u16 status = le16_to_cpup(&cqe->status) >> 1;
357
5c1281a3 358 dma_unmap_sg(&dev->pci_dev->dev, nbio->sg, nbio->nents,
b60503ba 359 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
5c1281a3 360 free_nbio(dev, nbio);
09a58f53 361 if (status) {
1ad2f893 362 bio_endio(bio, -EIO);
09a58f53 363 } else if (bio->bi_vcnt > bio->bi_idx) {
5c1281a3 364 requeue_bio(dev, bio);
1ad2f893
MW
365 } else {
366 bio_endio(bio, 0);
367 }
b60503ba
MW
368}
369
184d2944 370/* length is in bytes. gfp flags indicates whether we may sleep. */
d567760c 371static struct nvme_prps *nvme_setup_prps(struct nvme_dev *dev,
e025344c 372 struct nvme_common_command *cmd,
b77954cb
MW
373 struct scatterlist *sg, int *len,
374 gfp_t gfp)
ff22b54f 375{
99802a7a 376 struct dma_pool *pool;
b77954cb 377 int length = *len;
ff22b54f
MW
378 int dma_len = sg_dma_len(sg);
379 u64 dma_addr = sg_dma_address(sg);
380 int offset = offset_in_page(dma_addr);
e025344c
SMM
381 __le64 *prp_list;
382 dma_addr_t prp_dma;
0d1bc912 383 int nprps, npages, i;
e025344c 384 struct nvme_prps *prps = NULL;
ff22b54f
MW
385
386 cmd->prp1 = cpu_to_le64(dma_addr);
387 length -= (PAGE_SIZE - offset);
388 if (length <= 0)
e025344c 389 return prps;
ff22b54f
MW
390
391 dma_len -= (PAGE_SIZE - offset);
392 if (dma_len) {
393 dma_addr += (PAGE_SIZE - offset);
394 } else {
395 sg = sg_next(sg);
396 dma_addr = sg_dma_address(sg);
397 dma_len = sg_dma_len(sg);
398 }
399
400 if (length <= PAGE_SIZE) {
401 cmd->prp2 = cpu_to_le64(dma_addr);
e025344c
SMM
402 return prps;
403 }
404
405 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
0d1bc912 406 npages = DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
b77954cb
MW
407 prps = kmalloc(sizeof(*prps) + sizeof(__le64 *) * npages, gfp);
408 if (!prps) {
409 cmd->prp2 = cpu_to_le64(dma_addr);
410 *len = (*len - length) + PAGE_SIZE;
411 return prps;
412 }
0d1bc912 413
99802a7a
MW
414 if (nprps <= (256 / 8)) {
415 pool = dev->prp_small_pool;
416 prps->npages = 0;
417 } else {
418 pool = dev->prp_page_pool;
0d1bc912 419 prps->npages = 1;
99802a7a
MW
420 }
421
b77954cb
MW
422 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
423 if (!prp_list) {
424 cmd->prp2 = cpu_to_le64(dma_addr);
425 *len = (*len - length) + PAGE_SIZE;
426 kfree(prps);
427 return NULL;
428 }
0d1bc912 429 prps->list[0] = prp_list;
e025344c
SMM
430 prps->first_dma = prp_dma;
431 cmd->prp2 = cpu_to_le64(prp_dma);
432 i = 0;
433 for (;;) {
7523d834 434 if (i == PAGE_SIZE / 8) {
e025344c 435 __le64 *old_prp_list = prp_list;
b77954cb
MW
436 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
437 if (!prp_list) {
438 *len = (*len - length);
439 return prps;
440 }
0d1bc912 441 prps->list[prps->npages++] = prp_list;
7523d834
MW
442 prp_list[0] = old_prp_list[i - 1];
443 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
444 i = 1;
e025344c
SMM
445 }
446 prp_list[i++] = cpu_to_le64(dma_addr);
447 dma_len -= PAGE_SIZE;
448 dma_addr += PAGE_SIZE;
449 length -= PAGE_SIZE;
450 if (length <= 0)
451 break;
452 if (dma_len > 0)
453 continue;
454 BUG_ON(dma_len < 0);
455 sg = sg_next(sg);
456 dma_addr = sg_dma_address(sg);
457 dma_len = sg_dma_len(sg);
ff22b54f
MW
458 }
459
e025344c 460 return prps;
ff22b54f
MW
461}
462
1ad2f893
MW
463/* NVMe scatterlists require no holes in the virtual address */
464#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
465 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
466
d534df3c 467static int nvme_map_bio(struct device *dev, struct nvme_bio *nbio,
b60503ba
MW
468 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
469{
76830840
MW
470 struct bio_vec *bvec, *bvprv = NULL;
471 struct scatterlist *sg = NULL;
1ad2f893 472 int i, old_idx, length = 0, nsegs = 0;
b60503ba 473
76830840 474 sg_init_table(nbio->sg, psegs);
1ad2f893 475 old_idx = bio->bi_idx;
b60503ba 476 bio_for_each_segment(bvec, bio, i) {
76830840
MW
477 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
478 sg->length += bvec->bv_len;
479 } else {
1ad2f893
MW
480 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
481 break;
76830840
MW
482 sg = sg ? sg + 1 : nbio->sg;
483 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
484 bvec->bv_offset);
485 nsegs++;
486 }
1ad2f893 487 length += bvec->bv_len;
76830840 488 bvprv = bvec;
b60503ba 489 }
1ad2f893 490 bio->bi_idx = i;
d534df3c 491 nbio->nents = nsegs;
76830840 492 sg_mark_end(sg);
1ad2f893
MW
493 if (dma_map_sg(dev, nbio->sg, nbio->nents, dma_dir) == 0) {
494 bio->bi_idx = old_idx;
495 return -ENOMEM;
496 }
497 return length;
b60503ba
MW
498}
499
00df5cb4
MW
500static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
501 int cmdid)
502{
503 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
504
505 memset(cmnd, 0, sizeof(*cmnd));
506 cmnd->common.opcode = nvme_cmd_flush;
507 cmnd->common.command_id = cmdid;
508 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
509
510 if (++nvmeq->sq_tail == nvmeq->q_depth)
511 nvmeq->sq_tail = 0;
512 writel(nvmeq->sq_tail, nvmeq->q_db);
513
514 return 0;
515}
516
517static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
518{
519 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
c2f5b650 520 special_completion, IO_TIMEOUT);
00df5cb4
MW
521 if (unlikely(cmdid < 0))
522 return cmdid;
523
524 return nvme_submit_flush(nvmeq, ns, cmdid);
525}
526
184d2944
MW
527/*
528 * Called with local interrupts disabled and the q_lock held. May not sleep.
529 */
b60503ba
MW
530static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
531 struct bio *bio)
532{
ff22b54f 533 struct nvme_command *cmnd;
d534df3c 534 struct nvme_bio *nbio;
b60503ba 535 enum dma_data_direction dma_dir;
1ad2f893 536 int cmdid, length, result = -ENOMEM;
b60503ba
MW
537 u16 control;
538 u32 dsmgmt;
b60503ba
MW
539 int psegs = bio_phys_segments(ns->queue, bio);
540
00df5cb4
MW
541 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
542 result = nvme_submit_flush_data(nvmeq, ns);
543 if (result)
544 return result;
545 }
546
eeee3226 547 nbio = alloc_nbio(psegs, GFP_ATOMIC);
d534df3c 548 if (!nbio)
eeee3226 549 goto nomem;
d534df3c 550 nbio->bio = bio;
b60503ba 551
eeee3226 552 result = -EBUSY;
c2f5b650 553 cmdid = alloc_cmdid(nvmeq, nbio, bio_completion, IO_TIMEOUT);
b60503ba 554 if (unlikely(cmdid < 0))
d534df3c 555 goto free_nbio;
b60503ba 556
00df5cb4
MW
557 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
558 return nvme_submit_flush(nvmeq, ns, cmdid);
559
b60503ba
MW
560 control = 0;
561 if (bio->bi_rw & REQ_FUA)
562 control |= NVME_RW_FUA;
563 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
564 control |= NVME_RW_LR;
565
566 dsmgmt = 0;
567 if (bio->bi_rw & REQ_RAHEAD)
568 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
569
ff22b54f 570 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 571
b8deb62c 572 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 573 if (bio_data_dir(bio)) {
ff22b54f 574 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
575 dma_dir = DMA_TO_DEVICE;
576 } else {
ff22b54f 577 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
578 dma_dir = DMA_FROM_DEVICE;
579 }
580
1ad2f893
MW
581 result = nvme_map_bio(nvmeq->q_dmadev, nbio, bio, dma_dir, psegs);
582 if (result < 0)
eeee3226 583 goto free_nbio;
1ad2f893 584 length = result;
b60503ba 585
ff22b54f
MW
586 cmnd->rw.command_id = cmdid;
587 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
d567760c 588 nbio->prps = nvme_setup_prps(nvmeq->dev, &cmnd->common, nbio->sg,
b77954cb 589 &length, GFP_ATOMIC);
ff22b54f 590 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
1ad2f893 591 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
592 cmnd->rw.control = cpu_to_le16(control);
593 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 594
d8ee9d69
MW
595 bio->bi_sector += length >> 9;
596
b60503ba
MW
597 if (++nvmeq->sq_tail == nvmeq->q_depth)
598 nvmeq->sq_tail = 0;
7547881d 599 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 600
1974b1ae
MW
601 return 0;
602
d534df3c 603 free_nbio:
5c1281a3 604 free_nbio(nvmeq->dev, nbio);
eeee3226
MW
605 nomem:
606 return result;
b60503ba
MW
607}
608
609/*
610 * NB: return value of non-zero would mean that we were a stacking driver.
611 * make_request must always succeed.
612 */
613static int nvme_make_request(struct request_queue *q, struct bio *bio)
614{
615 struct nvme_ns *ns = q->queuedata;
040a93b5 616 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
eeee3226
MW
617 int result = -EBUSY;
618
619 spin_lock_irq(&nvmeq->q_lock);
620 if (bio_list_empty(&nvmeq->sq_cong))
621 result = nvme_submit_bio_queue(nvmeq, ns, bio);
622 if (unlikely(result)) {
623 if (bio_list_empty(&nvmeq->sq_cong))
624 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
625 bio_list_add(&nvmeq->sq_cong, bio);
626 }
eeee3226
MW
627
628 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
629 put_nvmeq(nvmeq);
630
631 return 0;
632}
633
b60503ba
MW
634static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
635{
82123460 636 u16 head, phase;
b60503ba 637
b60503ba 638 head = nvmeq->cq_head;
82123460 639 phase = nvmeq->cq_phase;
b60503ba
MW
640
641 for (;;) {
c2f5b650
MW
642 void *ctx;
643 nvme_completion_fn fn;
b60503ba 644 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 645 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
646 break;
647 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
648 if (++head == nvmeq->q_depth) {
649 head = 0;
82123460 650 phase = !phase;
b60503ba
MW
651 }
652
c2f5b650 653 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
5c1281a3 654 fn(nvmeq->dev, ctx, &cqe);
b60503ba
MW
655 }
656
657 /* If the controller ignores the cq head doorbell and continuously
658 * writes to the queue, it is theoretically possible to wrap around
659 * the queue twice and mistakenly return IRQ_NONE. Linux only
660 * requires that 0.1% of your interrupts are handled, so this isn't
661 * a big problem.
662 */
82123460 663 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
664 return IRQ_NONE;
665
f1938f6e 666 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
b60503ba 667 nvmeq->cq_head = head;
82123460 668 nvmeq->cq_phase = phase;
b60503ba
MW
669
670 return IRQ_HANDLED;
671}
672
673static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
674{
675 irqreturn_t result;
676 struct nvme_queue *nvmeq = data;
677 spin_lock(&nvmeq->q_lock);
678 result = nvme_process_cq(nvmeq);
679 spin_unlock(&nvmeq->q_lock);
680 return result;
681}
682
683static irqreturn_t nvme_irq_check(int irq, void *data)
684{
685 struct nvme_queue *nvmeq = data;
686 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
687 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
688 return IRQ_NONE;
689 return IRQ_WAKE_THREAD;
690}
691
3c0cf138
MW
692static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
693{
694 spin_lock_irq(&nvmeq->q_lock);
c2f5b650 695 cancel_cmdid(nvmeq, cmdid, NULL);
3c0cf138
MW
696 spin_unlock_irq(&nvmeq->q_lock);
697}
698
c2f5b650
MW
699struct sync_cmd_info {
700 struct task_struct *task;
701 u32 result;
702 int status;
703};
704
5c1281a3 705static void sync_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
706 struct nvme_completion *cqe)
707{
708 struct sync_cmd_info *cmdinfo = ctx;
709 cmdinfo->result = le32_to_cpup(&cqe->result);
710 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
711 wake_up_process(cmdinfo->task);
712}
713
b60503ba
MW
714/*
715 * Returns 0 on success. If the result is negative, it's a Linux error code;
716 * if the result is positive, it's an NVM Express status code
717 */
3c0cf138 718static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 719 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
720{
721 int cmdid;
722 struct sync_cmd_info cmdinfo;
723
724 cmdinfo.task = current;
725 cmdinfo.status = -EINTR;
726
c2f5b650 727 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
e85248e5 728 timeout);
b60503ba
MW
729 if (cmdid < 0)
730 return cmdid;
731 cmd->common.command_id = cmdid;
732
3c0cf138
MW
733 set_current_state(TASK_KILLABLE);
734 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
735 schedule();
736
3c0cf138
MW
737 if (cmdinfo.status == -EINTR) {
738 nvme_abort_command(nvmeq, cmdid);
739 return -EINTR;
740 }
741
b60503ba
MW
742 if (result)
743 *result = cmdinfo.result;
744
745 return cmdinfo.status;
746}
747
748static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
749 u32 *result)
750{
e85248e5 751 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
752}
753
754static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
755{
756 int status;
757 struct nvme_command c;
758
759 memset(&c, 0, sizeof(c));
760 c.delete_queue.opcode = opcode;
761 c.delete_queue.qid = cpu_to_le16(id);
762
763 status = nvme_submit_admin_cmd(dev, &c, NULL);
764 if (status)
765 return -EIO;
766 return 0;
767}
768
769static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
770 struct nvme_queue *nvmeq)
771{
772 int status;
773 struct nvme_command c;
774 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
775
776 memset(&c, 0, sizeof(c));
777 c.create_cq.opcode = nvme_admin_create_cq;
778 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
779 c.create_cq.cqid = cpu_to_le16(qid);
780 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
781 c.create_cq.cq_flags = cpu_to_le16(flags);
782 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
783
784 status = nvme_submit_admin_cmd(dev, &c, NULL);
785 if (status)
786 return -EIO;
787 return 0;
788}
789
790static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
791 struct nvme_queue *nvmeq)
792{
793 int status;
794 struct nvme_command c;
795 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
796
797 memset(&c, 0, sizeof(c));
798 c.create_sq.opcode = nvme_admin_create_sq;
799 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
800 c.create_sq.sqid = cpu_to_le16(qid);
801 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
802 c.create_sq.sq_flags = cpu_to_le16(flags);
803 c.create_sq.cqid = cpu_to_le16(qid);
804
805 status = nvme_submit_admin_cmd(dev, &c, NULL);
806 if (status)
807 return -EIO;
808 return 0;
809}
810
811static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
812{
813 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
814}
815
816static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
817{
818 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
819}
820
bc5fc7e4
MW
821static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
822 dma_addr_t dma_addr)
823{
824 struct nvme_command c;
825
826 memset(&c, 0, sizeof(c));
827 c.identify.opcode = nvme_admin_identify;
828 c.identify.nsid = cpu_to_le32(nsid);
829 c.identify.prp1 = cpu_to_le64(dma_addr);
830 c.identify.cns = cpu_to_le32(cns);
831
832 return nvme_submit_admin_cmd(dev, &c, NULL);
833}
834
835static int nvme_get_features(struct nvme_dev *dev, unsigned fid,
836 unsigned dword11, dma_addr_t dma_addr, u32 *result)
837{
838 struct nvme_command c;
839
840 memset(&c, 0, sizeof(c));
841 c.features.opcode = nvme_admin_get_features;
842 c.features.prp1 = cpu_to_le64(dma_addr);
843 c.features.fid = cpu_to_le32(fid);
844 c.features.dword11 = cpu_to_le32(dword11);
845
846 return nvme_submit_admin_cmd(dev, &c, result);
847}
848
b60503ba
MW
849static void nvme_free_queue(struct nvme_dev *dev, int qid)
850{
851 struct nvme_queue *nvmeq = dev->queues[qid];
aba2080f 852 int vector = dev->entry[nvmeq->cq_vector].vector;
b60503ba 853
aba2080f
MW
854 irq_set_affinity_hint(vector, NULL);
855 free_irq(vector, nvmeq);
b60503ba
MW
856
857 /* Don't tell the adapter to delete the admin queue */
858 if (qid) {
859 adapter_delete_sq(dev, qid);
860 adapter_delete_cq(dev, qid);
861 }
862
863 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
864 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
865 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
866 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
867 kfree(nvmeq);
868}
869
870static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
871 int depth, int vector)
872{
873 struct device *dmadev = &dev->pci_dev->dev;
e85248e5 874 unsigned extra = (depth / 8) + (depth * sizeof(struct nvme_cmd_info));
b60503ba
MW
875 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
876 if (!nvmeq)
877 return NULL;
878
879 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
880 &nvmeq->cq_dma_addr, GFP_KERNEL);
881 if (!nvmeq->cqes)
882 goto free_nvmeq;
883 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
884
885 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
886 &nvmeq->sq_dma_addr, GFP_KERNEL);
887 if (!nvmeq->sq_cmds)
888 goto free_cqdma;
889
890 nvmeq->q_dmadev = dmadev;
091b6092 891 nvmeq->dev = dev;
b60503ba
MW
892 spin_lock_init(&nvmeq->q_lock);
893 nvmeq->cq_head = 0;
82123460 894 nvmeq->cq_phase = 1;
b60503ba 895 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 896 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba 897 bio_list_init(&nvmeq->sq_cong);
f1938f6e 898 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
b60503ba
MW
899 nvmeq->q_depth = depth;
900 nvmeq->cq_vector = vector;
901
902 return nvmeq;
903
904 free_cqdma:
905 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
906 nvmeq->cq_dma_addr);
907 free_nvmeq:
908 kfree(nvmeq);
909 return NULL;
910}
911
3001082c
MW
912static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
913 const char *name)
914{
58ffacb5
MW
915 if (use_threaded_interrupts)
916 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 917 nvme_irq_check, nvme_irq,
58ffacb5
MW
918 IRQF_DISABLED | IRQF_SHARED,
919 name, nvmeq);
3001082c
MW
920 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
921 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
922}
923
b60503ba
MW
924static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
925 int qid, int cq_size, int vector)
926{
927 int result;
928 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
929
3f85d50b 930 if (!nvmeq)
6f0f5449 931 return ERR_PTR(-ENOMEM);
3f85d50b 932
b60503ba
MW
933 result = adapter_alloc_cq(dev, qid, nvmeq);
934 if (result < 0)
935 goto free_nvmeq;
936
937 result = adapter_alloc_sq(dev, qid, nvmeq);
938 if (result < 0)
939 goto release_cq;
940
3001082c 941 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
942 if (result < 0)
943 goto release_sq;
944
945 return nvmeq;
946
947 release_sq:
948 adapter_delete_sq(dev, qid);
949 release_cq:
950 adapter_delete_cq(dev, qid);
951 free_nvmeq:
952 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
953 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
954 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
955 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
956 kfree(nvmeq);
6f0f5449 957 return ERR_PTR(result);
b60503ba
MW
958}
959
960static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
961{
962 int result;
963 u32 aqa;
22605f96
MW
964 u64 cap;
965 unsigned long timeout;
b60503ba
MW
966 struct nvme_queue *nvmeq;
967
968 dev->dbs = ((void __iomem *)dev->bar) + 4096;
969
970 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
971 if (!nvmeq)
972 return -ENOMEM;
b60503ba
MW
973
974 aqa = nvmeq->q_depth - 1;
975 aqa |= aqa << 16;
976
977 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
978 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
979 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 980 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba 981
5911f200 982 writel(0, &dev->bar->cc);
b60503ba
MW
983 writel(aqa, &dev->bar->aqa);
984 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
985 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
986 writel(dev->ctrl_config, &dev->bar->cc);
987
22605f96
MW
988 cap = readq(&dev->bar->cap);
989 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
f1938f6e 990 dev->db_stride = NVME_CAP_STRIDE(cap);
22605f96 991
b60503ba
MW
992 while (!(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
993 msleep(100);
994 if (fatal_signal_pending(current))
995 return -EINTR;
22605f96
MW
996 if (time_after(jiffies, timeout)) {
997 dev_err(&dev->pci_dev->dev,
998 "Device not ready; aborting initialisation\n");
999 return -ENODEV;
1000 }
b60503ba
MW
1001 }
1002
3001082c 1003 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
1004 dev->queues[0] = nvmeq;
1005 return result;
1006}
1007
7fc3cdab
MW
1008static int nvme_map_user_pages(struct nvme_dev *dev, int write,
1009 unsigned long addr, unsigned length,
1010 struct scatterlist **sgp)
b60503ba 1011{
36c14ed9 1012 int i, err, count, nents, offset;
7fc3cdab
MW
1013 struct scatterlist *sg;
1014 struct page **pages;
36c14ed9
MW
1015
1016 if (addr & 3)
1017 return -EINVAL;
7fc3cdab
MW
1018 if (!length)
1019 return -EINVAL;
1020
36c14ed9 1021 offset = offset_in_page(addr);
7fc3cdab
MW
1022 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1023 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
36c14ed9
MW
1024
1025 err = get_user_pages_fast(addr, count, 1, pages);
1026 if (err < count) {
1027 count = err;
1028 err = -EFAULT;
1029 goto put_pages;
1030 }
7fc3cdab
MW
1031
1032 sg = kcalloc(count, sizeof(*sg), GFP_KERNEL);
36c14ed9 1033 sg_init_table(sg, count);
d0ba1e49
MW
1034 for (i = 0; i < count; i++) {
1035 sg_set_page(&sg[i], pages[i],
1036 min_t(int, length, PAGE_SIZE - offset), offset);
1037 length -= (PAGE_SIZE - offset);
1038 offset = 0;
7fc3cdab
MW
1039 }
1040
1041 err = -ENOMEM;
1042 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1043 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9
MW
1044 if (!nents)
1045 goto put_pages;
b60503ba 1046
7fc3cdab
MW
1047 kfree(pages);
1048 *sgp = sg;
1049 return nents;
b60503ba 1050
7fc3cdab
MW
1051 put_pages:
1052 for (i = 0; i < count; i++)
1053 put_page(pages[i]);
1054 kfree(pages);
1055 return err;
1056}
b60503ba 1057
7fc3cdab 1058static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
d1a490e0 1059 unsigned long addr, int length, struct scatterlist *sg)
7fc3cdab
MW
1060{
1061 int i, count;
b60503ba 1062
7fc3cdab 1063 count = DIV_ROUND_UP(offset_in_page(addr) + length, PAGE_SIZE);
d1a490e0 1064 dma_unmap_sg(&dev->pci_dev->dev, sg, count, DMA_FROM_DEVICE);
7fc3cdab 1065
36c14ed9 1066 for (i = 0; i < count; i++)
7fc3cdab
MW
1067 put_page(sg_page(&sg[i]));
1068}
b60503ba 1069
a53295b6
MW
1070static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1071{
1072 struct nvme_dev *dev = ns->dev;
1073 struct nvme_queue *nvmeq;
1074 struct nvme_user_io io;
1075 struct nvme_command c;
1076 unsigned length;
a53295b6
MW
1077 int nents, status;
1078 struct scatterlist *sg;
e025344c 1079 struct nvme_prps *prps;
a53295b6
MW
1080
1081 if (copy_from_user(&io, uio, sizeof(io)))
1082 return -EFAULT;
6c7d4945
MW
1083 length = (io.nblocks + 1) << ns->lba_shift;
1084
1085 switch (io.opcode) {
1086 case nvme_cmd_write:
1087 case nvme_cmd_read:
6bbf1acd 1088 case nvme_cmd_compare:
6c7d4945
MW
1089 nents = nvme_map_user_pages(dev, io.opcode & 1, io.addr,
1090 length, &sg);
6413214c 1091 break;
6c7d4945 1092 default:
6bbf1acd 1093 return -EINVAL;
6c7d4945
MW
1094 }
1095
a53295b6
MW
1096 if (nents < 0)
1097 return nents;
1098
1099 memset(&c, 0, sizeof(c));
1100 c.rw.opcode = io.opcode;
1101 c.rw.flags = io.flags;
6c7d4945 1102 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1103 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1104 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6
MW
1105 c.rw.control = cpu_to_le16(io.control);
1106 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
6c7d4945
MW
1107 c.rw.reftag = io.reftag;
1108 c.rw.apptag = io.apptag;
1109 c.rw.appmask = io.appmask;
a53295b6 1110 /* XXX: metadata */
b77954cb 1111 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
a53295b6 1112
040a93b5 1113 nvmeq = get_nvmeq(dev);
fa922821
MW
1114 /*
1115 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1116 * disabled. We may be preempted at any point, and be rescheduled
1117 * to a different CPU. That will cause cacheline bouncing, but no
1118 * additional races since q_lock already protects against other CPUs.
1119 */
a53295b6 1120 put_nvmeq(nvmeq);
b77954cb
MW
1121 if (length != (io.nblocks + 1) << ns->lba_shift)
1122 status = -ENOMEM;
1123 else
1124 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, IO_TIMEOUT);
a53295b6 1125
d1a490e0 1126 nvme_unmap_user_pages(dev, io.opcode & 1, io.addr, length, sg);
d567760c 1127 nvme_free_prps(dev, prps);
a53295b6
MW
1128 return status;
1129}
1130
6bbf1acd
MW
1131static int nvme_user_admin_cmd(struct nvme_ns *ns,
1132 struct nvme_admin_cmd __user *ucmd)
6ee44cdc
MW
1133{
1134 struct nvme_dev *dev = ns->dev;
6bbf1acd 1135 struct nvme_admin_cmd cmd;
6ee44cdc 1136 struct nvme_command c;
6bbf1acd 1137 int status, length, nents = 0;
6ee44cdc 1138 struct scatterlist *sg;
6bbf1acd 1139 struct nvme_prps *prps = NULL;
6ee44cdc 1140
6bbf1acd
MW
1141 if (!capable(CAP_SYS_ADMIN))
1142 return -EACCES;
1143 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1144 return -EFAULT;
6ee44cdc
MW
1145
1146 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1147 c.common.opcode = cmd.opcode;
1148 c.common.flags = cmd.flags;
1149 c.common.nsid = cpu_to_le32(cmd.nsid);
1150 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1151 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1152 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1153 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1154 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1155 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1156 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1157 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1158
1159 length = cmd.data_len;
1160 if (cmd.data_len) {
1161 nents = nvme_map_user_pages(dev, 1, cmd.addr, length, &sg);
1162 if (nents < 0)
1163 return nents;
1164 prps = nvme_setup_prps(dev, &c.common, sg, &length, GFP_KERNEL);
1165 }
1166
1167 if (length != cmd.data_len)
b77954cb
MW
1168 status = -ENOMEM;
1169 else
1170 status = nvme_submit_admin_cmd(dev, &c, NULL);
6bbf1acd 1171 if (cmd.data_len) {
d1a490e0 1172 nvme_unmap_user_pages(dev, 0, cmd.addr, cmd.data_len, sg);
6bbf1acd
MW
1173 nvme_free_prps(dev, prps);
1174 }
6ee44cdc
MW
1175 return status;
1176}
1177
b60503ba
MW
1178static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1179 unsigned long arg)
1180{
1181 struct nvme_ns *ns = bdev->bd_disk->private_data;
1182
1183 switch (cmd) {
6bbf1acd
MW
1184 case NVME_IOCTL_ID:
1185 return ns->ns_id;
1186 case NVME_IOCTL_ADMIN_CMD:
1187 return nvme_user_admin_cmd(ns, (void __user *)arg);
a53295b6
MW
1188 case NVME_IOCTL_SUBMIT_IO:
1189 return nvme_submit_io(ns, (void __user *)arg);
b60503ba
MW
1190 default:
1191 return -ENOTTY;
1192 }
1193}
1194
1195static const struct block_device_operations nvme_fops = {
1196 .owner = THIS_MODULE,
1197 .ioctl = nvme_ioctl,
49481682 1198 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1199};
1200
8de05535
MW
1201static void nvme_timeout_ios(struct nvme_queue *nvmeq)
1202{
1203 int depth = nvmeq->q_depth - 1;
1204 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1205 unsigned long now = jiffies;
1206 int cmdid;
1207
1208 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
c2f5b650
MW
1209 void *ctx;
1210 nvme_completion_fn fn;
8de05535
MW
1211 static struct nvme_completion cqe = { .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1, };
1212
1213 if (!time_after(now, info[cmdid].timeout))
1214 continue;
1215 dev_warn(nvmeq->q_dmadev, "Timing out I/O %d\n", cmdid);
c2f5b650 1216 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
5c1281a3 1217 fn(nvmeq->dev, ctx, &cqe);
8de05535
MW
1218 }
1219}
1220
1fa6aead
MW
1221static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1222{
1223 while (bio_list_peek(&nvmeq->sq_cong)) {
1224 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1225 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1226 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1227 bio_list_add_head(&nvmeq->sq_cong, bio);
1228 break;
1229 }
3cb967c0
MW
1230 if (bio_list_empty(&nvmeq->sq_cong))
1231 remove_wait_queue(&nvmeq->sq_full,
1232 &nvmeq->sq_cong_wait);
1fa6aead
MW
1233 }
1234}
1235
1236static int nvme_kthread(void *data)
1237{
1238 struct nvme_dev *dev;
1239
1240 while (!kthread_should_stop()) {
1241 __set_current_state(TASK_RUNNING);
1242 spin_lock(&dev_list_lock);
1243 list_for_each_entry(dev, &dev_list, node) {
1244 int i;
1245 for (i = 0; i < dev->queue_count; i++) {
1246 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1247 if (!nvmeq)
1248 continue;
1fa6aead
MW
1249 spin_lock_irq(&nvmeq->q_lock);
1250 if (nvme_process_cq(nvmeq))
1251 printk("process_cq did something\n");
8de05535 1252 nvme_timeout_ios(nvmeq);
1fa6aead
MW
1253 nvme_resubmit_bios(nvmeq);
1254 spin_unlock_irq(&nvmeq->q_lock);
1255 }
1256 }
1257 spin_unlock(&dev_list_lock);
1258 set_current_state(TASK_INTERRUPTIBLE);
1259 schedule_timeout(HZ);
1260 }
1261 return 0;
1262}
1263
5aff9382
MW
1264static DEFINE_IDA(nvme_index_ida);
1265
1266static int nvme_get_ns_idx(void)
1267{
1268 int index, error;
1269
1270 do {
1271 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1272 return -1;
1273
1274 spin_lock(&dev_list_lock);
1275 error = ida_get_new(&nvme_index_ida, &index);
1276 spin_unlock(&dev_list_lock);
1277 } while (error == -EAGAIN);
1278
1279 if (error)
1280 index = -1;
1281 return index;
1282}
1283
1284static void nvme_put_ns_idx(int index)
1285{
1286 spin_lock(&dev_list_lock);
1287 ida_remove(&nvme_index_ida, index);
1288 spin_unlock(&dev_list_lock);
1289}
1290
1291static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
b60503ba
MW
1292 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1293{
1294 struct nvme_ns *ns;
1295 struct gendisk *disk;
1296 int lbaf;
1297
1298 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1299 return NULL;
1300
1301 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1302 if (!ns)
1303 return NULL;
1304 ns->queue = blk_alloc_queue(GFP_KERNEL);
1305 if (!ns->queue)
1306 goto out_free_ns;
1307 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT | QUEUE_FLAG_NOMERGES |
1308 QUEUE_FLAG_NONROT | QUEUE_FLAG_DISCARD;
1309 blk_queue_make_request(ns->queue, nvme_make_request);
1310 ns->dev = dev;
1311 ns->queue->queuedata = ns;
1312
1313 disk = alloc_disk(NVME_MINORS);
1314 if (!disk)
1315 goto out_free_queue;
5aff9382 1316 ns->ns_id = nsid;
b60503ba
MW
1317 ns->disk = disk;
1318 lbaf = id->flbas & 0xf;
1319 ns->lba_shift = id->lbaf[lbaf].ds;
1320
1321 disk->major = nvme_major;
1322 disk->minors = NVME_MINORS;
5aff9382 1323 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
b60503ba
MW
1324 disk->fops = &nvme_fops;
1325 disk->private_data = ns;
1326 disk->queue = ns->queue;
388f037f 1327 disk->driverfs_dev = &dev->pci_dev->dev;
5aff9382 1328 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba
MW
1329 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1330
1331 return ns;
1332
1333 out_free_queue:
1334 blk_cleanup_queue(ns->queue);
1335 out_free_ns:
1336 kfree(ns);
1337 return NULL;
1338}
1339
1340static void nvme_ns_free(struct nvme_ns *ns)
1341{
5aff9382 1342 int index = ns->disk->first_minor / NVME_MINORS;
b60503ba 1343 put_disk(ns->disk);
5aff9382 1344 nvme_put_ns_idx(index);
b60503ba
MW
1345 blk_cleanup_queue(ns->queue);
1346 kfree(ns);
1347}
1348
b3b06812 1349static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1350{
1351 int status;
1352 u32 result;
b3b06812 1353 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 1354
bc5fc7e4
MW
1355 status = nvme_get_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1356 &result);
b60503ba
MW
1357 if (status)
1358 return -EIO;
1359 return min(result & 0xffff, result >> 16) + 1;
1360}
1361
b60503ba
MW
1362static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1363{
f1938f6e 1364 int result, cpu, i, nr_io_queues, db_bar_size;
b60503ba 1365
b348b7d5
MW
1366 nr_io_queues = num_online_cpus();
1367 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1368 if (result < 0)
1369 return result;
b348b7d5
MW
1370 if (result < nr_io_queues)
1371 nr_io_queues = result;
b60503ba 1372
1b23484b
MW
1373 /* Deregister the admin queue's interrupt */
1374 free_irq(dev->entry[0].vector, dev->queues[0]);
1375
f1938f6e
MW
1376 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1377 if (db_bar_size > 8192) {
1378 iounmap(dev->bar);
1379 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1380 db_bar_size);
1381 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1382 dev->queues[0]->q_db = dev->dbs;
1383 }
1384
b348b7d5 1385 for (i = 0; i < nr_io_queues; i++)
1b23484b
MW
1386 dev->entry[i].entry = i;
1387 for (;;) {
b348b7d5
MW
1388 result = pci_enable_msix(dev->pci_dev, dev->entry,
1389 nr_io_queues);
1b23484b
MW
1390 if (result == 0) {
1391 break;
1392 } else if (result > 0) {
b348b7d5 1393 nr_io_queues = result;
1b23484b
MW
1394 continue;
1395 } else {
b348b7d5 1396 nr_io_queues = 1;
1b23484b
MW
1397 break;
1398 }
1399 }
1400
1401 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1402 /* XXX: handle failure here */
1403
1404 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1405 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1406 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1407 cpu = cpumask_next(cpu, cpu_online_mask);
1408 }
1409
b348b7d5 1410 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1411 dev->queues[i + 1] = nvme_create_queue(dev, i + 1,
1412 NVME_Q_DEPTH, i);
6f0f5449
MW
1413 if (IS_ERR(dev->queues[i + 1]))
1414 return PTR_ERR(dev->queues[i + 1]);
1b23484b
MW
1415 dev->queue_count++;
1416 }
b60503ba 1417
9ecdc946
MW
1418 for (; i < num_possible_cpus(); i++) {
1419 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1420 dev->queues[i + 1] = dev->queues[target + 1];
1421 }
1422
b60503ba
MW
1423 return 0;
1424}
1425
1426static void nvme_free_queues(struct nvme_dev *dev)
1427{
1428 int i;
1429
1430 for (i = dev->queue_count - 1; i >= 0; i--)
1431 nvme_free_queue(dev, i);
1432}
1433
1434static int __devinit nvme_dev_add(struct nvme_dev *dev)
1435{
1436 int res, nn, i;
1437 struct nvme_ns *ns, *next;
51814232 1438 struct nvme_id_ctrl *ctrl;
bc5fc7e4
MW
1439 struct nvme_id_ns *id_ns;
1440 void *mem;
b60503ba 1441 dma_addr_t dma_addr;
b60503ba
MW
1442
1443 res = nvme_setup_io_queues(dev);
1444 if (res)
1445 return res;
1446
bc5fc7e4 1447 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
b60503ba
MW
1448 GFP_KERNEL);
1449
bc5fc7e4 1450 res = nvme_identify(dev, 0, 1, dma_addr);
b60503ba
MW
1451 if (res) {
1452 res = -EIO;
1453 goto out_free;
1454 }
1455
bc5fc7e4 1456 ctrl = mem;
51814232
MW
1457 nn = le32_to_cpup(&ctrl->nn);
1458 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1459 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1460 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
b60503ba 1461
bc5fc7e4 1462 id_ns = mem;
2b2c1896 1463 for (i = 1; i <= nn; i++) {
bc5fc7e4 1464 res = nvme_identify(dev, i, 0, dma_addr);
b60503ba
MW
1465 if (res)
1466 continue;
1467
bc5fc7e4 1468 if (id_ns->ncap == 0)
b60503ba
MW
1469 continue;
1470
bc5fc7e4
MW
1471 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1472 dma_addr + 4096, NULL);
b60503ba
MW
1473 if (res)
1474 continue;
1475
bc5fc7e4 1476 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
b60503ba
MW
1477 if (ns)
1478 list_add_tail(&ns->list, &dev->namespaces);
1479 }
1480 list_for_each_entry(ns, &dev->namespaces, list)
1481 add_disk(ns->disk);
1482
bc5fc7e4 1483 goto out;
b60503ba
MW
1484
1485 out_free:
1486 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1487 list_del(&ns->list);
1488 nvme_ns_free(ns);
1489 }
1490
bc5fc7e4 1491 out:
684f5c20 1492 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
b60503ba
MW
1493 return res;
1494}
1495
1496static int nvme_dev_remove(struct nvme_dev *dev)
1497{
1498 struct nvme_ns *ns, *next;
1499
1fa6aead
MW
1500 spin_lock(&dev_list_lock);
1501 list_del(&dev->node);
1502 spin_unlock(&dev_list_lock);
1503
b60503ba
MW
1504 /* TODO: wait all I/O finished or cancel them */
1505
1506 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1507 list_del(&ns->list);
1508 del_gendisk(ns->disk);
1509 nvme_ns_free(ns);
1510 }
1511
1512 nvme_free_queues(dev);
1513
1514 return 0;
1515}
1516
091b6092
MW
1517static int nvme_setup_prp_pools(struct nvme_dev *dev)
1518{
1519 struct device *dmadev = &dev->pci_dev->dev;
1520 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1521 PAGE_SIZE, PAGE_SIZE, 0);
1522 if (!dev->prp_page_pool)
1523 return -ENOMEM;
1524
99802a7a
MW
1525 /* Optimisation for I/Os between 4k and 128k */
1526 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1527 256, 256, 0);
1528 if (!dev->prp_small_pool) {
1529 dma_pool_destroy(dev->prp_page_pool);
1530 return -ENOMEM;
1531 }
091b6092
MW
1532 return 0;
1533}
1534
1535static void nvme_release_prp_pools(struct nvme_dev *dev)
1536{
1537 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1538 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1539}
1540
b60503ba
MW
1541/* XXX: Use an ida or something to let remove / add work correctly */
1542static void nvme_set_instance(struct nvme_dev *dev)
1543{
1544 static int instance;
1545 dev->instance = instance++;
1546}
1547
1548static void nvme_release_instance(struct nvme_dev *dev)
1549{
1550}
1551
1552static int __devinit nvme_probe(struct pci_dev *pdev,
1553 const struct pci_device_id *id)
1554{
574e8b95 1555 int bars, result = -ENOMEM;
b60503ba
MW
1556 struct nvme_dev *dev;
1557
1558 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1559 if (!dev)
1560 return -ENOMEM;
1561 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1562 GFP_KERNEL);
1563 if (!dev->entry)
1564 goto free;
1b23484b
MW
1565 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1566 GFP_KERNEL);
b60503ba
MW
1567 if (!dev->queues)
1568 goto free;
1569
0ee5a7d7
SMM
1570 if (pci_enable_device_mem(pdev))
1571 goto free;
f64d3365 1572 pci_set_master(pdev);
574e8b95
MW
1573 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1574 if (pci_request_selected_regions(pdev, bars, "nvme"))
1575 goto disable;
0ee5a7d7 1576
b60503ba
MW
1577 INIT_LIST_HEAD(&dev->namespaces);
1578 dev->pci_dev = pdev;
1579 pci_set_drvdata(pdev, dev);
2930353f
MW
1580 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1581 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
b60503ba 1582 nvme_set_instance(dev);
53c9577e 1583 dev->entry[0].vector = pdev->irq;
b60503ba 1584
091b6092
MW
1585 result = nvme_setup_prp_pools(dev);
1586 if (result)
1587 goto disable_msix;
1588
b60503ba
MW
1589 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1590 if (!dev->bar) {
1591 result = -ENOMEM;
574e8b95 1592 goto disable_msix;
b60503ba
MW
1593 }
1594
1595 result = nvme_configure_admin_queue(dev);
1596 if (result)
1597 goto unmap;
1598 dev->queue_count++;
1599
1fa6aead
MW
1600 spin_lock(&dev_list_lock);
1601 list_add(&dev->node, &dev_list);
1602 spin_unlock(&dev_list_lock);
1603
740216fc
MW
1604 result = nvme_dev_add(dev);
1605 if (result)
1606 goto delete;
1607
b60503ba
MW
1608 return 0;
1609
1610 delete:
740216fc
MW
1611 spin_lock(&dev_list_lock);
1612 list_del(&dev->node);
1613 spin_unlock(&dev_list_lock);
1614
b60503ba
MW
1615 nvme_free_queues(dev);
1616 unmap:
1617 iounmap(dev->bar);
574e8b95 1618 disable_msix:
b60503ba
MW
1619 pci_disable_msix(pdev);
1620 nvme_release_instance(dev);
091b6092 1621 nvme_release_prp_pools(dev);
574e8b95 1622 disable:
0ee5a7d7 1623 pci_disable_device(pdev);
574e8b95 1624 pci_release_regions(pdev);
b60503ba
MW
1625 free:
1626 kfree(dev->queues);
1627 kfree(dev->entry);
1628 kfree(dev);
1629 return result;
1630}
1631
1632static void __devexit nvme_remove(struct pci_dev *pdev)
1633{
1634 struct nvme_dev *dev = pci_get_drvdata(pdev);
1635 nvme_dev_remove(dev);
1636 pci_disable_msix(pdev);
1637 iounmap(dev->bar);
1638 nvme_release_instance(dev);
091b6092 1639 nvme_release_prp_pools(dev);
0ee5a7d7 1640 pci_disable_device(pdev);
574e8b95 1641 pci_release_regions(pdev);
b60503ba
MW
1642 kfree(dev->queues);
1643 kfree(dev->entry);
1644 kfree(dev);
1645}
1646
1647/* These functions are yet to be implemented */
1648#define nvme_error_detected NULL
1649#define nvme_dump_registers NULL
1650#define nvme_link_reset NULL
1651#define nvme_slot_reset NULL
1652#define nvme_error_resume NULL
1653#define nvme_suspend NULL
1654#define nvme_resume NULL
1655
1656static struct pci_error_handlers nvme_err_handler = {
1657 .error_detected = nvme_error_detected,
1658 .mmio_enabled = nvme_dump_registers,
1659 .link_reset = nvme_link_reset,
1660 .slot_reset = nvme_slot_reset,
1661 .resume = nvme_error_resume,
1662};
1663
1664/* Move to pci_ids.h later */
1665#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1666
1667static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1668 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1669 { 0, }
1670};
1671MODULE_DEVICE_TABLE(pci, nvme_id_table);
1672
1673static struct pci_driver nvme_driver = {
1674 .name = "nvme",
1675 .id_table = nvme_id_table,
1676 .probe = nvme_probe,
1677 .remove = __devexit_p(nvme_remove),
1678 .suspend = nvme_suspend,
1679 .resume = nvme_resume,
1680 .err_handler = &nvme_err_handler,
1681};
1682
1683static int __init nvme_init(void)
1684{
1fa6aead
MW
1685 int result = -EBUSY;
1686
1687 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1688 if (IS_ERR(nvme_thread))
1689 return PTR_ERR(nvme_thread);
b60503ba
MW
1690
1691 nvme_major = register_blkdev(nvme_major, "nvme");
1692 if (nvme_major <= 0)
1fa6aead 1693 goto kill_kthread;
b60503ba
MW
1694
1695 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
1696 if (result)
1697 goto unregister_blkdev;
1698 return 0;
b60503ba 1699
1fa6aead 1700 unregister_blkdev:
b60503ba 1701 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
1702 kill_kthread:
1703 kthread_stop(nvme_thread);
b60503ba
MW
1704 return result;
1705}
1706
1707static void __exit nvme_exit(void)
1708{
1709 pci_unregister_driver(&nvme_driver);
1710 unregister_blkdev(nvme_major, "nvme");
1fa6aead 1711 kthread_stop(nvme_thread);
b60503ba
MW
1712}
1713
1714MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1715MODULE_LICENSE("GPL");
ce38c149 1716MODULE_VERSION("0.7");
b60503ba
MW
1717module_init(nvme_init);
1718module_exit(nvme_exit);