NVMe: Add result to nvme_get_features
[linux-2.6-block.git] / drivers / block / nvme.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
8de05535 21#include <linux/bitops.h>
b60503ba 22#include <linux/blkdev.h>
fd63e9ce 23#include <linux/delay.h>
b60503ba
MW
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
1fa6aead 32#include <linux/kthread.h>
b60503ba
MW
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
41#include <linux/types.h>
b60503ba 42
797a796a
HM
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
b60503ba
MW
45#define NVME_Q_DEPTH 1024
46#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48#define NVME_MINORS 64
ff976d72 49#define NVME_IO_TIMEOUT (5 * HZ)
e85248e5 50#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
51
52static int nvme_major;
53module_param(nvme_major, int, 0);
54
58ffacb5
MW
55static int use_threaded_interrupts;
56module_param(use_threaded_interrupts, int, 0);
57
1fa6aead
MW
58static DEFINE_SPINLOCK(dev_list_lock);
59static LIST_HEAD(dev_list);
60static struct task_struct *nvme_thread;
61
b60503ba
MW
62/*
63 * Represents an NVM Express device. Each nvme_dev is a PCI function.
64 */
65struct nvme_dev {
1fa6aead 66 struct list_head node;
b60503ba
MW
67 struct nvme_queue **queues;
68 u32 __iomem *dbs;
69 struct pci_dev *pci_dev;
091b6092 70 struct dma_pool *prp_page_pool;
99802a7a 71 struct dma_pool *prp_small_pool;
b60503ba
MW
72 int instance;
73 int queue_count;
f1938f6e 74 int db_stride;
b60503ba
MW
75 u32 ctrl_config;
76 struct msix_entry *entry;
77 struct nvme_bar __iomem *bar;
78 struct list_head namespaces;
51814232
MW
79 char serial[20];
80 char model[40];
81 char firmware_rev[8];
8fc23e03 82 u32 max_hw_sectors;
b60503ba
MW
83};
84
85/*
86 * An NVM Express namespace is equivalent to a SCSI LUN
87 */
88struct nvme_ns {
89 struct list_head list;
90
91 struct nvme_dev *dev;
92 struct request_queue *queue;
93 struct gendisk *disk;
94
95 int ns_id;
96 int lba_shift;
97};
98
99/*
100 * An NVM Express queue. Each device has at least two (one for admin
101 * commands and one for I/O commands).
102 */
103struct nvme_queue {
104 struct device *q_dmadev;
091b6092 105 struct nvme_dev *dev;
b60503ba
MW
106 spinlock_t q_lock;
107 struct nvme_command *sq_cmds;
108 volatile struct nvme_completion *cqes;
109 dma_addr_t sq_dma_addr;
110 dma_addr_t cq_dma_addr;
111 wait_queue_head_t sq_full;
1fa6aead 112 wait_queue_t sq_cong_wait;
b60503ba
MW
113 struct bio_list sq_cong;
114 u32 __iomem *q_db;
115 u16 q_depth;
116 u16 cq_vector;
117 u16 sq_head;
118 u16 sq_tail;
119 u16 cq_head;
82123460 120 u16 cq_phase;
b60503ba
MW
121 unsigned long cmdid_data[];
122};
123
124/*
125 * Check we didin't inadvertently grow the command struct
126 */
127static inline void _nvme_check_size(void)
128{
129 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
135 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
136 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
137 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
138}
139
5c1281a3 140typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
c2f5b650
MW
141 struct nvme_completion *);
142
e85248e5 143struct nvme_cmd_info {
c2f5b650
MW
144 nvme_completion_fn fn;
145 void *ctx;
e85248e5
MW
146 unsigned long timeout;
147};
148
149static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
150{
151 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
152}
153
b60503ba 154/**
714a7a22
MW
155 * alloc_cmdid() - Allocate a Command ID
156 * @nvmeq: The queue that will be used for this command
157 * @ctx: A pointer that will be passed to the handler
c2f5b650 158 * @handler: The function to call on completion
b60503ba
MW
159 *
160 * Allocate a Command ID for a queue. The data passed in will
161 * be passed to the completion handler. This is implemented by using
162 * the bottom two bits of the ctx pointer to store the handler ID.
163 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
164 * We can change this if it becomes a problem.
184d2944
MW
165 *
166 * May be called with local interrupts disabled and the q_lock held,
167 * or with interrupts enabled and no locks held.
b60503ba 168 */
c2f5b650
MW
169static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
170 nvme_completion_fn handler, unsigned timeout)
b60503ba 171{
e6d15f79 172 int depth = nvmeq->q_depth - 1;
e85248e5 173 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
174 int cmdid;
175
b60503ba
MW
176 do {
177 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
178 if (cmdid >= depth)
179 return -EBUSY;
180 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
181
c2f5b650
MW
182 info[cmdid].fn = handler;
183 info[cmdid].ctx = ctx;
e85248e5 184 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
185 return cmdid;
186}
187
188static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
c2f5b650 189 nvme_completion_fn handler, unsigned timeout)
b60503ba
MW
190{
191 int cmdid;
192 wait_event_killable(nvmeq->sq_full,
e85248e5 193 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
194 return (cmdid < 0) ? -EINTR : cmdid;
195}
196
c2f5b650
MW
197/* Special values must be less than 0x1000 */
198#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
199#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
200#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
201#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 202#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 203
5c1281a3 204static void special_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
205 struct nvme_completion *cqe)
206{
207 if (ctx == CMD_CTX_CANCELLED)
208 return;
209 if (ctx == CMD_CTX_FLUSH)
210 return;
211 if (ctx == CMD_CTX_COMPLETED) {
5c1281a3 212 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
213 "completed id %d twice on queue %d\n",
214 cqe->command_id, le16_to_cpup(&cqe->sq_id));
215 return;
216 }
217 if (ctx == CMD_CTX_INVALID) {
5c1281a3 218 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
219 "invalid id %d completed on queue %d\n",
220 cqe->command_id, le16_to_cpup(&cqe->sq_id));
221 return;
222 }
223
5c1281a3 224 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
225}
226
184d2944
MW
227/*
228 * Called with local interrupts disabled and the q_lock held. May not sleep.
229 */
c2f5b650
MW
230static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
231 nvme_completion_fn *fn)
b60503ba 232{
c2f5b650 233 void *ctx;
e85248e5 234 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 235
c2f5b650
MW
236 if (cmdid >= nvmeq->q_depth) {
237 *fn = special_completion;
48e3d398 238 return CMD_CTX_INVALID;
c2f5b650 239 }
859361a2
KB
240 if (fn)
241 *fn = info[cmdid].fn;
c2f5b650
MW
242 ctx = info[cmdid].ctx;
243 info[cmdid].fn = special_completion;
e85248e5 244 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
245 clear_bit(cmdid, nvmeq->cmdid_data);
246 wake_up(&nvmeq->sq_full);
c2f5b650 247 return ctx;
b60503ba
MW
248}
249
c2f5b650
MW
250static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
251 nvme_completion_fn *fn)
3c0cf138 252{
c2f5b650 253 void *ctx;
e85248e5 254 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
c2f5b650
MW
255 if (fn)
256 *fn = info[cmdid].fn;
257 ctx = info[cmdid].ctx;
258 info[cmdid].fn = special_completion;
e85248e5 259 info[cmdid].ctx = CMD_CTX_CANCELLED;
c2f5b650 260 return ctx;
3c0cf138
MW
261}
262
040a93b5 263static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
b60503ba 264{
040a93b5 265 return dev->queues[get_cpu() + 1];
b60503ba
MW
266}
267
268static void put_nvmeq(struct nvme_queue *nvmeq)
269{
1b23484b 270 put_cpu();
b60503ba
MW
271}
272
273/**
714a7a22 274 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
275 * @nvmeq: The queue to use
276 * @cmd: The command to send
277 *
278 * Safe to use from interrupt context
279 */
280static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
281{
282 unsigned long flags;
283 u16 tail;
b60503ba
MW
284 spin_lock_irqsave(&nvmeq->q_lock, flags);
285 tail = nvmeq->sq_tail;
286 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
287 if (++tail == nvmeq->q_depth)
288 tail = 0;
7547881d 289 writel(tail, nvmeq->q_db);
b60503ba
MW
290 nvmeq->sq_tail = tail;
291 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
292
293 return 0;
294}
295
eca18b23
MW
296/*
297 * The nvme_iod describes the data in an I/O, including the list of PRP
298 * entries. You can't see it in this data structure because C doesn't let
299 * me express that. Use nvme_alloc_iod to ensure there's enough space
300 * allocated to store the PRP list.
301 */
302struct nvme_iod {
303 void *private; /* For the use of the submitter of the I/O */
304 int npages; /* In the PRP list. 0 means small pool in use */
305 int offset; /* Of PRP list */
306 int nents; /* Used in scatterlist */
307 int length; /* Of data, in bytes */
e025344c 308 dma_addr_t first_dma;
eca18b23 309 struct scatterlist sg[0];
e025344c
SMM
310};
311
eca18b23 312static __le64 **iod_list(struct nvme_iod *iod)
e025344c 313{
eca18b23 314 return ((void *)iod) + iod->offset;
e025344c
SMM
315}
316
eca18b23
MW
317/*
318 * Will slightly overestimate the number of pages needed. This is OK
319 * as it only leads to a small amount of wasted memory for the lifetime of
320 * the I/O.
321 */
322static int nvme_npages(unsigned size)
323{
324 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
325 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
326}
b60503ba 327
eca18b23
MW
328static struct nvme_iod *
329nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
b60503ba 330{
eca18b23
MW
331 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
332 sizeof(__le64 *) * nvme_npages(nbytes) +
333 sizeof(struct scatterlist) * nseg, gfp);
334
335 if (iod) {
336 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
337 iod->npages = -1;
338 iod->length = nbytes;
339 }
340
341 return iod;
b60503ba
MW
342}
343
eca18b23 344static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 345{
eca18b23
MW
346 const int last_prp = PAGE_SIZE / 8 - 1;
347 int i;
348 __le64 **list = iod_list(iod);
349 dma_addr_t prp_dma = iod->first_dma;
350
351 if (iod->npages == 0)
352 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
353 for (i = 0; i < iod->npages; i++) {
354 __le64 *prp_list = list[i];
355 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
356 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
357 prp_dma = next_prp_dma;
358 }
359 kfree(iod);
b60503ba
MW
360}
361
5c1281a3
MW
362static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
363{
364 struct nvme_queue *nvmeq = get_nvmeq(dev);
365 if (bio_list_empty(&nvmeq->sq_cong))
366 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
367 bio_list_add(&nvmeq->sq_cong, bio);
368 put_nvmeq(nvmeq);
369 wake_up_process(nvme_thread);
370}
371
372static void bio_completion(struct nvme_dev *dev, void *ctx,
b60503ba
MW
373 struct nvme_completion *cqe)
374{
eca18b23
MW
375 struct nvme_iod *iod = ctx;
376 struct bio *bio = iod->private;
b60503ba
MW
377 u16 status = le16_to_cpup(&cqe->status) >> 1;
378
eca18b23 379 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
b60503ba 380 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
eca18b23 381 nvme_free_iod(dev, iod);
09a58f53 382 if (status) {
1ad2f893 383 bio_endio(bio, -EIO);
09a58f53 384 } else if (bio->bi_vcnt > bio->bi_idx) {
5c1281a3 385 requeue_bio(dev, bio);
1ad2f893
MW
386 } else {
387 bio_endio(bio, 0);
388 }
b60503ba
MW
389}
390
184d2944 391/* length is in bytes. gfp flags indicates whether we may sleep. */
eca18b23
MW
392static int nvme_setup_prps(struct nvme_dev *dev,
393 struct nvme_common_command *cmd, struct nvme_iod *iod,
394 int total_len, gfp_t gfp)
ff22b54f 395{
99802a7a 396 struct dma_pool *pool;
eca18b23
MW
397 int length = total_len;
398 struct scatterlist *sg = iod->sg;
ff22b54f
MW
399 int dma_len = sg_dma_len(sg);
400 u64 dma_addr = sg_dma_address(sg);
401 int offset = offset_in_page(dma_addr);
e025344c 402 __le64 *prp_list;
eca18b23 403 __le64 **list = iod_list(iod);
e025344c 404 dma_addr_t prp_dma;
eca18b23 405 int nprps, i;
ff22b54f
MW
406
407 cmd->prp1 = cpu_to_le64(dma_addr);
408 length -= (PAGE_SIZE - offset);
409 if (length <= 0)
eca18b23 410 return total_len;
ff22b54f
MW
411
412 dma_len -= (PAGE_SIZE - offset);
413 if (dma_len) {
414 dma_addr += (PAGE_SIZE - offset);
415 } else {
416 sg = sg_next(sg);
417 dma_addr = sg_dma_address(sg);
418 dma_len = sg_dma_len(sg);
419 }
420
421 if (length <= PAGE_SIZE) {
422 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23 423 return total_len;
e025344c
SMM
424 }
425
426 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
99802a7a
MW
427 if (nprps <= (256 / 8)) {
428 pool = dev->prp_small_pool;
eca18b23 429 iod->npages = 0;
99802a7a
MW
430 } else {
431 pool = dev->prp_page_pool;
eca18b23 432 iod->npages = 1;
99802a7a
MW
433 }
434
b77954cb
MW
435 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
436 if (!prp_list) {
437 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23
MW
438 iod->npages = -1;
439 return (total_len - length) + PAGE_SIZE;
b77954cb 440 }
eca18b23
MW
441 list[0] = prp_list;
442 iod->first_dma = prp_dma;
e025344c
SMM
443 cmd->prp2 = cpu_to_le64(prp_dma);
444 i = 0;
445 for (;;) {
7523d834 446 if (i == PAGE_SIZE / 8) {
e025344c 447 __le64 *old_prp_list = prp_list;
b77954cb 448 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
449 if (!prp_list)
450 return total_len - length;
451 list[iod->npages++] = prp_list;
7523d834
MW
452 prp_list[0] = old_prp_list[i - 1];
453 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
454 i = 1;
e025344c
SMM
455 }
456 prp_list[i++] = cpu_to_le64(dma_addr);
457 dma_len -= PAGE_SIZE;
458 dma_addr += PAGE_SIZE;
459 length -= PAGE_SIZE;
460 if (length <= 0)
461 break;
462 if (dma_len > 0)
463 continue;
464 BUG_ON(dma_len < 0);
465 sg = sg_next(sg);
466 dma_addr = sg_dma_address(sg);
467 dma_len = sg_dma_len(sg);
ff22b54f
MW
468 }
469
eca18b23 470 return total_len;
ff22b54f
MW
471}
472
1ad2f893
MW
473/* NVMe scatterlists require no holes in the virtual address */
474#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
475 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
476
eca18b23 477static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
b60503ba
MW
478 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
479{
76830840
MW
480 struct bio_vec *bvec, *bvprv = NULL;
481 struct scatterlist *sg = NULL;
1ad2f893 482 int i, old_idx, length = 0, nsegs = 0;
b60503ba 483
eca18b23 484 sg_init_table(iod->sg, psegs);
1ad2f893 485 old_idx = bio->bi_idx;
b60503ba 486 bio_for_each_segment(bvec, bio, i) {
76830840
MW
487 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
488 sg->length += bvec->bv_len;
489 } else {
1ad2f893
MW
490 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
491 break;
eca18b23 492 sg = sg ? sg + 1 : iod->sg;
76830840
MW
493 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
494 bvec->bv_offset);
495 nsegs++;
496 }
1ad2f893 497 length += bvec->bv_len;
76830840 498 bvprv = bvec;
b60503ba 499 }
1ad2f893 500 bio->bi_idx = i;
eca18b23 501 iod->nents = nsegs;
76830840 502 sg_mark_end(sg);
eca18b23 503 if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
1ad2f893
MW
504 bio->bi_idx = old_idx;
505 return -ENOMEM;
506 }
507 return length;
b60503ba
MW
508}
509
00df5cb4
MW
510static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
511 int cmdid)
512{
513 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
514
515 memset(cmnd, 0, sizeof(*cmnd));
516 cmnd->common.opcode = nvme_cmd_flush;
517 cmnd->common.command_id = cmdid;
518 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
519
520 if (++nvmeq->sq_tail == nvmeq->q_depth)
521 nvmeq->sq_tail = 0;
522 writel(nvmeq->sq_tail, nvmeq->q_db);
523
524 return 0;
525}
526
527static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
528{
529 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
ff976d72 530 special_completion, NVME_IO_TIMEOUT);
00df5cb4
MW
531 if (unlikely(cmdid < 0))
532 return cmdid;
533
534 return nvme_submit_flush(nvmeq, ns, cmdid);
535}
536
184d2944
MW
537/*
538 * Called with local interrupts disabled and the q_lock held. May not sleep.
539 */
b60503ba
MW
540static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
541 struct bio *bio)
542{
ff22b54f 543 struct nvme_command *cmnd;
eca18b23 544 struct nvme_iod *iod;
b60503ba 545 enum dma_data_direction dma_dir;
1ad2f893 546 int cmdid, length, result = -ENOMEM;
b60503ba
MW
547 u16 control;
548 u32 dsmgmt;
b60503ba
MW
549 int psegs = bio_phys_segments(ns->queue, bio);
550
00df5cb4
MW
551 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
552 result = nvme_submit_flush_data(nvmeq, ns);
553 if (result)
554 return result;
555 }
556
eca18b23
MW
557 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
558 if (!iod)
eeee3226 559 goto nomem;
eca18b23 560 iod->private = bio;
b60503ba 561
eeee3226 562 result = -EBUSY;
ff976d72 563 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
b60503ba 564 if (unlikely(cmdid < 0))
eca18b23 565 goto free_iod;
b60503ba 566
00df5cb4
MW
567 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
568 return nvme_submit_flush(nvmeq, ns, cmdid);
569
b60503ba
MW
570 control = 0;
571 if (bio->bi_rw & REQ_FUA)
572 control |= NVME_RW_FUA;
573 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
574 control |= NVME_RW_LR;
575
576 dsmgmt = 0;
577 if (bio->bi_rw & REQ_RAHEAD)
578 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
579
ff22b54f 580 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 581
b8deb62c 582 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 583 if (bio_data_dir(bio)) {
ff22b54f 584 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
585 dma_dir = DMA_TO_DEVICE;
586 } else {
ff22b54f 587 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
588 dma_dir = DMA_FROM_DEVICE;
589 }
590
eca18b23 591 result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
1ad2f893 592 if (result < 0)
859361a2 593 goto free_cmdid;
1ad2f893 594 length = result;
b60503ba 595
ff22b54f
MW
596 cmnd->rw.command_id = cmdid;
597 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
eca18b23
MW
598 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
599 GFP_ATOMIC);
ff22b54f 600 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
1ad2f893 601 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
602 cmnd->rw.control = cpu_to_le16(control);
603 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 604
d8ee9d69
MW
605 bio->bi_sector += length >> 9;
606
b60503ba
MW
607 if (++nvmeq->sq_tail == nvmeq->q_depth)
608 nvmeq->sq_tail = 0;
7547881d 609 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 610
1974b1ae
MW
611 return 0;
612
859361a2
KB
613 free_cmdid:
614 free_cmdid(nvmeq, cmdid, NULL);
eca18b23
MW
615 free_iod:
616 nvme_free_iod(nvmeq->dev, iod);
eeee3226
MW
617 nomem:
618 return result;
b60503ba
MW
619}
620
93c3d65b 621static void nvme_make_request(struct request_queue *q, struct bio *bio)
b60503ba
MW
622{
623 struct nvme_ns *ns = q->queuedata;
040a93b5 624 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
eeee3226
MW
625 int result = -EBUSY;
626
627 spin_lock_irq(&nvmeq->q_lock);
628 if (bio_list_empty(&nvmeq->sq_cong))
629 result = nvme_submit_bio_queue(nvmeq, ns, bio);
630 if (unlikely(result)) {
631 if (bio_list_empty(&nvmeq->sq_cong))
632 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
b60503ba
MW
633 bio_list_add(&nvmeq->sq_cong, bio);
634 }
eeee3226
MW
635
636 spin_unlock_irq(&nvmeq->q_lock);
b60503ba 637 put_nvmeq(nvmeq);
b60503ba
MW
638}
639
b60503ba
MW
640static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
641{
82123460 642 u16 head, phase;
b60503ba 643
b60503ba 644 head = nvmeq->cq_head;
82123460 645 phase = nvmeq->cq_phase;
b60503ba
MW
646
647 for (;;) {
c2f5b650
MW
648 void *ctx;
649 nvme_completion_fn fn;
b60503ba 650 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 651 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
652 break;
653 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
654 if (++head == nvmeq->q_depth) {
655 head = 0;
82123460 656 phase = !phase;
b60503ba
MW
657 }
658
c2f5b650 659 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
5c1281a3 660 fn(nvmeq->dev, ctx, &cqe);
b60503ba
MW
661 }
662
663 /* If the controller ignores the cq head doorbell and continuously
664 * writes to the queue, it is theoretically possible to wrap around
665 * the queue twice and mistakenly return IRQ_NONE. Linux only
666 * requires that 0.1% of your interrupts are handled, so this isn't
667 * a big problem.
668 */
82123460 669 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
b60503ba
MW
670 return IRQ_NONE;
671
f1938f6e 672 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
b60503ba 673 nvmeq->cq_head = head;
82123460 674 nvmeq->cq_phase = phase;
b60503ba
MW
675
676 return IRQ_HANDLED;
677}
678
679static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
680{
681 irqreturn_t result;
682 struct nvme_queue *nvmeq = data;
683 spin_lock(&nvmeq->q_lock);
684 result = nvme_process_cq(nvmeq);
685 spin_unlock(&nvmeq->q_lock);
686 return result;
687}
688
689static irqreturn_t nvme_irq_check(int irq, void *data)
690{
691 struct nvme_queue *nvmeq = data;
692 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
693 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
694 return IRQ_NONE;
695 return IRQ_WAKE_THREAD;
696}
697
3c0cf138
MW
698static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
699{
700 spin_lock_irq(&nvmeq->q_lock);
c2f5b650 701 cancel_cmdid(nvmeq, cmdid, NULL);
3c0cf138
MW
702 spin_unlock_irq(&nvmeq->q_lock);
703}
704
c2f5b650
MW
705struct sync_cmd_info {
706 struct task_struct *task;
707 u32 result;
708 int status;
709};
710
5c1281a3 711static void sync_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
712 struct nvme_completion *cqe)
713{
714 struct sync_cmd_info *cmdinfo = ctx;
715 cmdinfo->result = le32_to_cpup(&cqe->result);
716 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
717 wake_up_process(cmdinfo->task);
718}
719
b60503ba
MW
720/*
721 * Returns 0 on success. If the result is negative, it's a Linux error code;
722 * if the result is positive, it's an NVM Express status code
723 */
3c0cf138 724static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
e85248e5 725 struct nvme_command *cmd, u32 *result, unsigned timeout)
b60503ba
MW
726{
727 int cmdid;
728 struct sync_cmd_info cmdinfo;
729
730 cmdinfo.task = current;
731 cmdinfo.status = -EINTR;
732
c2f5b650 733 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
e85248e5 734 timeout);
b60503ba
MW
735 if (cmdid < 0)
736 return cmdid;
737 cmd->common.command_id = cmdid;
738
3c0cf138
MW
739 set_current_state(TASK_KILLABLE);
740 nvme_submit_cmd(nvmeq, cmd);
b60503ba
MW
741 schedule();
742
3c0cf138
MW
743 if (cmdinfo.status == -EINTR) {
744 nvme_abort_command(nvmeq, cmdid);
745 return -EINTR;
746 }
747
b60503ba
MW
748 if (result)
749 *result = cmdinfo.result;
750
751 return cmdinfo.status;
752}
753
754static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
755 u32 *result)
756{
e85248e5 757 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
758}
759
760static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
761{
762 int status;
763 struct nvme_command c;
764
765 memset(&c, 0, sizeof(c));
766 c.delete_queue.opcode = opcode;
767 c.delete_queue.qid = cpu_to_le16(id);
768
769 status = nvme_submit_admin_cmd(dev, &c, NULL);
770 if (status)
771 return -EIO;
772 return 0;
773}
774
775static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
776 struct nvme_queue *nvmeq)
777{
778 int status;
779 struct nvme_command c;
780 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
781
782 memset(&c, 0, sizeof(c));
783 c.create_cq.opcode = nvme_admin_create_cq;
784 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
785 c.create_cq.cqid = cpu_to_le16(qid);
786 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
787 c.create_cq.cq_flags = cpu_to_le16(flags);
788 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
789
790 status = nvme_submit_admin_cmd(dev, &c, NULL);
791 if (status)
792 return -EIO;
793 return 0;
794}
795
796static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
797 struct nvme_queue *nvmeq)
798{
799 int status;
800 struct nvme_command c;
801 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
802
803 memset(&c, 0, sizeof(c));
804 c.create_sq.opcode = nvme_admin_create_sq;
805 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
806 c.create_sq.sqid = cpu_to_le16(qid);
807 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
808 c.create_sq.sq_flags = cpu_to_le16(flags);
809 c.create_sq.cqid = cpu_to_le16(qid);
810
811 status = nvme_submit_admin_cmd(dev, &c, NULL);
812 if (status)
813 return -EIO;
814 return 0;
815}
816
817static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
818{
819 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
820}
821
822static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
823{
824 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
825}
826
bc5fc7e4
MW
827static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
828 dma_addr_t dma_addr)
829{
830 struct nvme_command c;
831
832 memset(&c, 0, sizeof(c));
833 c.identify.opcode = nvme_admin_identify;
834 c.identify.nsid = cpu_to_le32(nsid);
835 c.identify.prp1 = cpu_to_le64(dma_addr);
836 c.identify.cns = cpu_to_le32(cns);
837
838 return nvme_submit_admin_cmd(dev, &c, NULL);
839}
840
08df1e05
KB
841static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
842 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
843{
844 struct nvme_command c;
845
846 memset(&c, 0, sizeof(c));
847 c.features.opcode = nvme_admin_get_features;
a42cecce 848 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
849 c.features.prp1 = cpu_to_le64(dma_addr);
850 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 851
08df1e05 852 return nvme_submit_admin_cmd(dev, &c, result);
df348139
MW
853}
854
855static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
856 unsigned dword11, dma_addr_t dma_addr, u32 *result)
857{
858 struct nvme_command c;
859
860 memset(&c, 0, sizeof(c));
861 c.features.opcode = nvme_admin_set_features;
862 c.features.prp1 = cpu_to_le64(dma_addr);
863 c.features.fid = cpu_to_le32(fid);
864 c.features.dword11 = cpu_to_le32(dword11);
865
bc5fc7e4
MW
866 return nvme_submit_admin_cmd(dev, &c, result);
867}
868
a09115b2
MW
869/**
870 * nvme_cancel_ios - Cancel outstanding I/Os
871 * @queue: The queue to cancel I/Os on
872 * @timeout: True to only cancel I/Os which have timed out
873 */
874static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
875{
876 int depth = nvmeq->q_depth - 1;
877 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
878 unsigned long now = jiffies;
879 int cmdid;
880
881 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
882 void *ctx;
883 nvme_completion_fn fn;
884 static struct nvme_completion cqe = {
885 .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1,
886 };
887
888 if (timeout && !time_after(now, info[cmdid].timeout))
889 continue;
890 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
891 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
892 fn(nvmeq->dev, ctx, &cqe);
893 }
894}
895
9e866774
MW
896static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
897{
898 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
899 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
900 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
901 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
902 kfree(nvmeq);
903}
904
b60503ba
MW
905static void nvme_free_queue(struct nvme_dev *dev, int qid)
906{
907 struct nvme_queue *nvmeq = dev->queues[qid];
aba2080f 908 int vector = dev->entry[nvmeq->cq_vector].vector;
b60503ba 909
a09115b2
MW
910 spin_lock_irq(&nvmeq->q_lock);
911 nvme_cancel_ios(nvmeq, false);
3295874b
KB
912 while (bio_list_peek(&nvmeq->sq_cong)) {
913 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
914 bio_endio(bio, -EIO);
915 }
a09115b2
MW
916 spin_unlock_irq(&nvmeq->q_lock);
917
aba2080f
MW
918 irq_set_affinity_hint(vector, NULL);
919 free_irq(vector, nvmeq);
b60503ba
MW
920
921 /* Don't tell the adapter to delete the admin queue */
922 if (qid) {
923 adapter_delete_sq(dev, qid);
924 adapter_delete_cq(dev, qid);
925 }
926
9e866774 927 nvme_free_queue_mem(nvmeq);
b60503ba
MW
928}
929
930static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
931 int depth, int vector)
932{
933 struct device *dmadev = &dev->pci_dev->dev;
a0cadb85
KB
934 unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
935 sizeof(struct nvme_cmd_info));
b60503ba
MW
936 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
937 if (!nvmeq)
938 return NULL;
939
940 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
941 &nvmeq->cq_dma_addr, GFP_KERNEL);
942 if (!nvmeq->cqes)
943 goto free_nvmeq;
944 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
945
946 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
947 &nvmeq->sq_dma_addr, GFP_KERNEL);
948 if (!nvmeq->sq_cmds)
949 goto free_cqdma;
950
951 nvmeq->q_dmadev = dmadev;
091b6092 952 nvmeq->dev = dev;
b60503ba
MW
953 spin_lock_init(&nvmeq->q_lock);
954 nvmeq->cq_head = 0;
82123460 955 nvmeq->cq_phase = 1;
b60503ba 956 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 957 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba 958 bio_list_init(&nvmeq->sq_cong);
f1938f6e 959 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
b60503ba
MW
960 nvmeq->q_depth = depth;
961 nvmeq->cq_vector = vector;
962
963 return nvmeq;
964
965 free_cqdma:
966 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
967 nvmeq->cq_dma_addr);
968 free_nvmeq:
969 kfree(nvmeq);
970 return NULL;
971}
972
3001082c
MW
973static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
974 const char *name)
975{
58ffacb5
MW
976 if (use_threaded_interrupts)
977 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 978 nvme_irq_check, nvme_irq,
58ffacb5
MW
979 IRQF_DISABLED | IRQF_SHARED,
980 name, nvmeq);
3001082c
MW
981 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
982 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
983}
984
b60503ba
MW
985static __devinit struct nvme_queue *nvme_create_queue(struct nvme_dev *dev,
986 int qid, int cq_size, int vector)
987{
988 int result;
989 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
990
3f85d50b 991 if (!nvmeq)
6f0f5449 992 return ERR_PTR(-ENOMEM);
3f85d50b 993
b60503ba
MW
994 result = adapter_alloc_cq(dev, qid, nvmeq);
995 if (result < 0)
996 goto free_nvmeq;
997
998 result = adapter_alloc_sq(dev, qid, nvmeq);
999 if (result < 0)
1000 goto release_cq;
1001
3001082c 1002 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
1003 if (result < 0)
1004 goto release_sq;
1005
1006 return nvmeq;
1007
1008 release_sq:
1009 adapter_delete_sq(dev, qid);
1010 release_cq:
1011 adapter_delete_cq(dev, qid);
1012 free_nvmeq:
1013 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1014 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1015 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1016 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1017 kfree(nvmeq);
6f0f5449 1018 return ERR_PTR(result);
b60503ba
MW
1019}
1020
1021static int __devinit nvme_configure_admin_queue(struct nvme_dev *dev)
1022{
9e866774 1023 int result = 0;
b60503ba 1024 u32 aqa;
22605f96
MW
1025 u64 cap;
1026 unsigned long timeout;
b60503ba
MW
1027 struct nvme_queue *nvmeq;
1028
1029 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1030
1031 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
1032 if (!nvmeq)
1033 return -ENOMEM;
b60503ba
MW
1034
1035 aqa = nvmeq->q_depth - 1;
1036 aqa |= aqa << 16;
1037
1038 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1039 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1040 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1041 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba 1042
5911f200 1043 writel(0, &dev->bar->cc);
b60503ba
MW
1044 writel(aqa, &dev->bar->aqa);
1045 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1046 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1047 writel(dev->ctrl_config, &dev->bar->cc);
1048
22605f96
MW
1049 cap = readq(&dev->bar->cap);
1050 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
f1938f6e 1051 dev->db_stride = NVME_CAP_STRIDE(cap);
22605f96 1052
9e866774 1053 while (!result && !(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
b60503ba
MW
1054 msleep(100);
1055 if (fatal_signal_pending(current))
9e866774 1056 result = -EINTR;
22605f96
MW
1057 if (time_after(jiffies, timeout)) {
1058 dev_err(&dev->pci_dev->dev,
1059 "Device not ready; aborting initialisation\n");
9e866774 1060 result = -ENODEV;
22605f96 1061 }
b60503ba
MW
1062 }
1063
9e866774
MW
1064 if (result) {
1065 nvme_free_queue_mem(nvmeq);
1066 return result;
1067 }
1068
3001082c 1069 result = queue_request_irq(dev, nvmeq, "nvme admin");
b60503ba
MW
1070 dev->queues[0] = nvmeq;
1071 return result;
1072}
1073
eca18b23
MW
1074static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1075 unsigned long addr, unsigned length)
b60503ba 1076{
36c14ed9 1077 int i, err, count, nents, offset;
7fc3cdab
MW
1078 struct scatterlist *sg;
1079 struct page **pages;
eca18b23 1080 struct nvme_iod *iod;
36c14ed9
MW
1081
1082 if (addr & 3)
eca18b23 1083 return ERR_PTR(-EINVAL);
7fc3cdab 1084 if (!length)
eca18b23 1085 return ERR_PTR(-EINVAL);
7fc3cdab 1086
36c14ed9 1087 offset = offset_in_page(addr);
7fc3cdab
MW
1088 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1089 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
22fff826
DC
1090 if (!pages)
1091 return ERR_PTR(-ENOMEM);
36c14ed9
MW
1092
1093 err = get_user_pages_fast(addr, count, 1, pages);
1094 if (err < count) {
1095 count = err;
1096 err = -EFAULT;
1097 goto put_pages;
1098 }
7fc3cdab 1099
eca18b23
MW
1100 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1101 sg = iod->sg;
36c14ed9 1102 sg_init_table(sg, count);
d0ba1e49
MW
1103 for (i = 0; i < count; i++) {
1104 sg_set_page(&sg[i], pages[i],
1105 min_t(int, length, PAGE_SIZE - offset), offset);
1106 length -= (PAGE_SIZE - offset);
1107 offset = 0;
7fc3cdab 1108 }
fe304c43 1109 sg_mark_end(&sg[i - 1]);
1c2ad9fa 1110 iod->nents = count;
7fc3cdab
MW
1111
1112 err = -ENOMEM;
1113 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1114 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9 1115 if (!nents)
eca18b23 1116 goto free_iod;
b60503ba 1117
7fc3cdab 1118 kfree(pages);
eca18b23 1119 return iod;
b60503ba 1120
eca18b23
MW
1121 free_iod:
1122 kfree(iod);
7fc3cdab
MW
1123 put_pages:
1124 for (i = 0; i < count; i++)
1125 put_page(pages[i]);
1126 kfree(pages);
eca18b23 1127 return ERR_PTR(err);
7fc3cdab 1128}
b60503ba 1129
7fc3cdab 1130static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1c2ad9fa 1131 struct nvme_iod *iod)
7fc3cdab 1132{
1c2ad9fa 1133 int i;
b60503ba 1134
1c2ad9fa
MW
1135 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1136 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
7fc3cdab 1137
1c2ad9fa
MW
1138 for (i = 0; i < iod->nents; i++)
1139 put_page(sg_page(&iod->sg[i]));
7fc3cdab 1140}
b60503ba 1141
a53295b6
MW
1142static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1143{
1144 struct nvme_dev *dev = ns->dev;
1145 struct nvme_queue *nvmeq;
1146 struct nvme_user_io io;
1147 struct nvme_command c;
1148 unsigned length;
eca18b23
MW
1149 int status;
1150 struct nvme_iod *iod;
a53295b6
MW
1151
1152 if (copy_from_user(&io, uio, sizeof(io)))
1153 return -EFAULT;
6c7d4945
MW
1154 length = (io.nblocks + 1) << ns->lba_shift;
1155
1156 switch (io.opcode) {
1157 case nvme_cmd_write:
1158 case nvme_cmd_read:
6bbf1acd 1159 case nvme_cmd_compare:
eca18b23 1160 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
6413214c 1161 break;
6c7d4945 1162 default:
6bbf1acd 1163 return -EINVAL;
6c7d4945
MW
1164 }
1165
eca18b23
MW
1166 if (IS_ERR(iod))
1167 return PTR_ERR(iod);
a53295b6
MW
1168
1169 memset(&c, 0, sizeof(c));
1170 c.rw.opcode = io.opcode;
1171 c.rw.flags = io.flags;
6c7d4945 1172 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1173 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1174 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6
MW
1175 c.rw.control = cpu_to_le16(io.control);
1176 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
6c7d4945
MW
1177 c.rw.reftag = io.reftag;
1178 c.rw.apptag = io.apptag;
1179 c.rw.appmask = io.appmask;
a53295b6 1180 /* XXX: metadata */
eca18b23 1181 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
a53295b6 1182
040a93b5 1183 nvmeq = get_nvmeq(dev);
fa922821
MW
1184 /*
1185 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1186 * disabled. We may be preempted at any point, and be rescheduled
1187 * to a different CPU. That will cause cacheline bouncing, but no
1188 * additional races since q_lock already protects against other CPUs.
1189 */
a53295b6 1190 put_nvmeq(nvmeq);
b77954cb
MW
1191 if (length != (io.nblocks + 1) << ns->lba_shift)
1192 status = -ENOMEM;
1193 else
ff976d72 1194 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
a53295b6 1195
1c2ad9fa 1196 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
eca18b23 1197 nvme_free_iod(dev, iod);
a53295b6
MW
1198 return status;
1199}
1200
50af8bae 1201static int nvme_user_admin_cmd(struct nvme_dev *dev,
6bbf1acd 1202 struct nvme_admin_cmd __user *ucmd)
6ee44cdc 1203{
6bbf1acd 1204 struct nvme_admin_cmd cmd;
6ee44cdc 1205 struct nvme_command c;
eca18b23 1206 int status, length;
c7d36ab8 1207 struct nvme_iod *uninitialized_var(iod);
6ee44cdc 1208
6bbf1acd
MW
1209 if (!capable(CAP_SYS_ADMIN))
1210 return -EACCES;
1211 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1212 return -EFAULT;
6ee44cdc
MW
1213
1214 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1215 c.common.opcode = cmd.opcode;
1216 c.common.flags = cmd.flags;
1217 c.common.nsid = cpu_to_le32(cmd.nsid);
1218 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1219 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1220 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1221 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1222 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1223 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1224 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1225 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1226
1227 length = cmd.data_len;
1228 if (cmd.data_len) {
49742188
MW
1229 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1230 length);
eca18b23
MW
1231 if (IS_ERR(iod))
1232 return PTR_ERR(iod);
1233 length = nvme_setup_prps(dev, &c.common, iod, length,
1234 GFP_KERNEL);
6bbf1acd
MW
1235 }
1236
1237 if (length != cmd.data_len)
b77954cb
MW
1238 status = -ENOMEM;
1239 else
f4f117f6 1240 status = nvme_submit_admin_cmd(dev, &c, &cmd.result);
eca18b23 1241
6bbf1acd 1242 if (cmd.data_len) {
1c2ad9fa 1243 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
eca18b23 1244 nvme_free_iod(dev, iod);
6bbf1acd 1245 }
f4f117f6
KB
1246
1247 if (!status && copy_to_user(&ucmd->result, &cmd.result,
1248 sizeof(cmd.result)))
1249 status = -EFAULT;
1250
6ee44cdc
MW
1251 return status;
1252}
1253
b60503ba
MW
1254static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1255 unsigned long arg)
1256{
1257 struct nvme_ns *ns = bdev->bd_disk->private_data;
1258
1259 switch (cmd) {
6bbf1acd
MW
1260 case NVME_IOCTL_ID:
1261 return ns->ns_id;
1262 case NVME_IOCTL_ADMIN_CMD:
50af8bae 1263 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
a53295b6
MW
1264 case NVME_IOCTL_SUBMIT_IO:
1265 return nvme_submit_io(ns, (void __user *)arg);
b60503ba
MW
1266 default:
1267 return -ENOTTY;
1268 }
1269}
1270
1271static const struct block_device_operations nvme_fops = {
1272 .owner = THIS_MODULE,
1273 .ioctl = nvme_ioctl,
49481682 1274 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1275};
1276
1fa6aead
MW
1277static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1278{
1279 while (bio_list_peek(&nvmeq->sq_cong)) {
1280 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1281 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1282 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1283 bio_list_add_head(&nvmeq->sq_cong, bio);
1284 break;
1285 }
3cb967c0
MW
1286 if (bio_list_empty(&nvmeq->sq_cong))
1287 remove_wait_queue(&nvmeq->sq_full,
1288 &nvmeq->sq_cong_wait);
1fa6aead
MW
1289 }
1290}
1291
1292static int nvme_kthread(void *data)
1293{
1294 struct nvme_dev *dev;
1295
1296 while (!kthread_should_stop()) {
1297 __set_current_state(TASK_RUNNING);
1298 spin_lock(&dev_list_lock);
1299 list_for_each_entry(dev, &dev_list, node) {
1300 int i;
1301 for (i = 0; i < dev->queue_count; i++) {
1302 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1303 if (!nvmeq)
1304 continue;
1fa6aead
MW
1305 spin_lock_irq(&nvmeq->q_lock);
1306 if (nvme_process_cq(nvmeq))
1307 printk("process_cq did something\n");
a09115b2 1308 nvme_cancel_ios(nvmeq, true);
1fa6aead
MW
1309 nvme_resubmit_bios(nvmeq);
1310 spin_unlock_irq(&nvmeq->q_lock);
1311 }
1312 }
1313 spin_unlock(&dev_list_lock);
1314 set_current_state(TASK_INTERRUPTIBLE);
1315 schedule_timeout(HZ);
1316 }
1317 return 0;
1318}
1319
5aff9382
MW
1320static DEFINE_IDA(nvme_index_ida);
1321
1322static int nvme_get_ns_idx(void)
1323{
1324 int index, error;
1325
1326 do {
1327 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1328 return -1;
1329
1330 spin_lock(&dev_list_lock);
1331 error = ida_get_new(&nvme_index_ida, &index);
1332 spin_unlock(&dev_list_lock);
1333 } while (error == -EAGAIN);
1334
1335 if (error)
1336 index = -1;
1337 return index;
1338}
1339
1340static void nvme_put_ns_idx(int index)
1341{
1342 spin_lock(&dev_list_lock);
1343 ida_remove(&nvme_index_ida, index);
1344 spin_unlock(&dev_list_lock);
1345}
1346
1347static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
b60503ba
MW
1348 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1349{
1350 struct nvme_ns *ns;
1351 struct gendisk *disk;
1352 int lbaf;
1353
1354 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1355 return NULL;
1356
1357 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1358 if (!ns)
1359 return NULL;
1360 ns->queue = blk_alloc_queue(GFP_KERNEL);
1361 if (!ns->queue)
1362 goto out_free_ns;
4eeb9215
MW
1363 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1364 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1365 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1366/* queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue); */
b60503ba
MW
1367 blk_queue_make_request(ns->queue, nvme_make_request);
1368 ns->dev = dev;
1369 ns->queue->queuedata = ns;
1370
1371 disk = alloc_disk(NVME_MINORS);
1372 if (!disk)
1373 goto out_free_queue;
5aff9382 1374 ns->ns_id = nsid;
b60503ba
MW
1375 ns->disk = disk;
1376 lbaf = id->flbas & 0xf;
1377 ns->lba_shift = id->lbaf[lbaf].ds;
e9ef4636 1378 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
8fc23e03
KB
1379 if (dev->max_hw_sectors)
1380 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
b60503ba
MW
1381
1382 disk->major = nvme_major;
1383 disk->minors = NVME_MINORS;
5aff9382 1384 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
b60503ba
MW
1385 disk->fops = &nvme_fops;
1386 disk->private_data = ns;
1387 disk->queue = ns->queue;
388f037f 1388 disk->driverfs_dev = &dev->pci_dev->dev;
5aff9382 1389 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba
MW
1390 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1391
1392 return ns;
1393
1394 out_free_queue:
1395 blk_cleanup_queue(ns->queue);
1396 out_free_ns:
1397 kfree(ns);
1398 return NULL;
1399}
1400
1401static void nvme_ns_free(struct nvme_ns *ns)
1402{
5aff9382 1403 int index = ns->disk->first_minor / NVME_MINORS;
b60503ba 1404 put_disk(ns->disk);
5aff9382 1405 nvme_put_ns_idx(index);
b60503ba
MW
1406 blk_cleanup_queue(ns->queue);
1407 kfree(ns);
1408}
1409
b3b06812 1410static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1411{
1412 int status;
1413 u32 result;
b3b06812 1414 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 1415
df348139 1416 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 1417 &result);
b60503ba
MW
1418 if (status)
1419 return -EIO;
1420 return min(result & 0xffff, result >> 16) + 1;
1421}
1422
b60503ba
MW
1423static int __devinit nvme_setup_io_queues(struct nvme_dev *dev)
1424{
a0cadb85 1425 int result, cpu, i, nr_io_queues, db_bar_size, q_depth;
b60503ba 1426
b348b7d5
MW
1427 nr_io_queues = num_online_cpus();
1428 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1429 if (result < 0)
1430 return result;
b348b7d5
MW
1431 if (result < nr_io_queues)
1432 nr_io_queues = result;
b60503ba 1433
1b23484b
MW
1434 /* Deregister the admin queue's interrupt */
1435 free_irq(dev->entry[0].vector, dev->queues[0]);
1436
f1938f6e
MW
1437 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1438 if (db_bar_size > 8192) {
1439 iounmap(dev->bar);
1440 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1441 db_bar_size);
1442 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1443 dev->queues[0]->q_db = dev->dbs;
1444 }
1445
b348b7d5 1446 for (i = 0; i < nr_io_queues; i++)
1b23484b
MW
1447 dev->entry[i].entry = i;
1448 for (;;) {
b348b7d5
MW
1449 result = pci_enable_msix(dev->pci_dev, dev->entry,
1450 nr_io_queues);
1b23484b
MW
1451 if (result == 0) {
1452 break;
1453 } else if (result > 0) {
b348b7d5 1454 nr_io_queues = result;
1b23484b
MW
1455 continue;
1456 } else {
b348b7d5 1457 nr_io_queues = 1;
1b23484b
MW
1458 break;
1459 }
1460 }
1461
1462 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1463 /* XXX: handle failure here */
1464
1465 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1466 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1467 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1468 cpu = cpumask_next(cpu, cpu_online_mask);
1469 }
1470
a0cadb85
KB
1471 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1472 NVME_Q_DEPTH);
b348b7d5 1473 for (i = 0; i < nr_io_queues; i++) {
a0cadb85 1474 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
6f0f5449
MW
1475 if (IS_ERR(dev->queues[i + 1]))
1476 return PTR_ERR(dev->queues[i + 1]);
1b23484b
MW
1477 dev->queue_count++;
1478 }
b60503ba 1479
9ecdc946
MW
1480 for (; i < num_possible_cpus(); i++) {
1481 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1482 dev->queues[i + 1] = dev->queues[target + 1];
1483 }
1484
b60503ba
MW
1485 return 0;
1486}
1487
1488static void nvme_free_queues(struct nvme_dev *dev)
1489{
1490 int i;
1491
1492 for (i = dev->queue_count - 1; i >= 0; i--)
1493 nvme_free_queue(dev, i);
1494}
1495
1496static int __devinit nvme_dev_add(struct nvme_dev *dev)
1497{
1498 int res, nn, i;
1499 struct nvme_ns *ns, *next;
51814232 1500 struct nvme_id_ctrl *ctrl;
bc5fc7e4
MW
1501 struct nvme_id_ns *id_ns;
1502 void *mem;
b60503ba 1503 dma_addr_t dma_addr;
b60503ba
MW
1504
1505 res = nvme_setup_io_queues(dev);
1506 if (res)
1507 return res;
1508
bc5fc7e4 1509 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
b60503ba
MW
1510 GFP_KERNEL);
1511
bc5fc7e4 1512 res = nvme_identify(dev, 0, 1, dma_addr);
b60503ba
MW
1513 if (res) {
1514 res = -EIO;
1515 goto out_free;
1516 }
1517
bc5fc7e4 1518 ctrl = mem;
51814232
MW
1519 nn = le32_to_cpup(&ctrl->nn);
1520 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1521 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1522 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
8fc23e03
KB
1523 if (ctrl->mdts) {
1524 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1525 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1526 }
b60503ba 1527
bc5fc7e4 1528 id_ns = mem;
2b2c1896 1529 for (i = 1; i <= nn; i++) {
bc5fc7e4 1530 res = nvme_identify(dev, i, 0, dma_addr);
b60503ba
MW
1531 if (res)
1532 continue;
1533
bc5fc7e4 1534 if (id_ns->ncap == 0)
b60503ba
MW
1535 continue;
1536
bc5fc7e4 1537 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
08df1e05 1538 dma_addr + 4096, NULL);
b60503ba
MW
1539 if (res)
1540 continue;
1541
bc5fc7e4 1542 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
b60503ba
MW
1543 if (ns)
1544 list_add_tail(&ns->list, &dev->namespaces);
1545 }
1546 list_for_each_entry(ns, &dev->namespaces, list)
1547 add_disk(ns->disk);
1548
bc5fc7e4 1549 goto out;
b60503ba
MW
1550
1551 out_free:
1552 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1553 list_del(&ns->list);
1554 nvme_ns_free(ns);
1555 }
1556
bc5fc7e4 1557 out:
684f5c20 1558 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
b60503ba
MW
1559 return res;
1560}
1561
1562static int nvme_dev_remove(struct nvme_dev *dev)
1563{
1564 struct nvme_ns *ns, *next;
1565
1fa6aead
MW
1566 spin_lock(&dev_list_lock);
1567 list_del(&dev->node);
1568 spin_unlock(&dev_list_lock);
1569
b60503ba
MW
1570 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1571 list_del(&ns->list);
1572 del_gendisk(ns->disk);
1573 nvme_ns_free(ns);
1574 }
1575
1576 nvme_free_queues(dev);
1577
1578 return 0;
1579}
1580
091b6092
MW
1581static int nvme_setup_prp_pools(struct nvme_dev *dev)
1582{
1583 struct device *dmadev = &dev->pci_dev->dev;
1584 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1585 PAGE_SIZE, PAGE_SIZE, 0);
1586 if (!dev->prp_page_pool)
1587 return -ENOMEM;
1588
99802a7a
MW
1589 /* Optimisation for I/Os between 4k and 128k */
1590 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1591 256, 256, 0);
1592 if (!dev->prp_small_pool) {
1593 dma_pool_destroy(dev->prp_page_pool);
1594 return -ENOMEM;
1595 }
091b6092
MW
1596 return 0;
1597}
1598
1599static void nvme_release_prp_pools(struct nvme_dev *dev)
1600{
1601 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1602 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1603}
1604
cd58ad7d
QSA
1605static DEFINE_IDA(nvme_instance_ida);
1606
1607static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 1608{
cd58ad7d
QSA
1609 int instance, error;
1610
1611 do {
1612 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1613 return -ENODEV;
1614
1615 spin_lock(&dev_list_lock);
1616 error = ida_get_new(&nvme_instance_ida, &instance);
1617 spin_unlock(&dev_list_lock);
1618 } while (error == -EAGAIN);
1619
1620 if (error)
1621 return -ENODEV;
1622
1623 dev->instance = instance;
1624 return 0;
b60503ba
MW
1625}
1626
1627static void nvme_release_instance(struct nvme_dev *dev)
1628{
cd58ad7d
QSA
1629 spin_lock(&dev_list_lock);
1630 ida_remove(&nvme_instance_ida, dev->instance);
1631 spin_unlock(&dev_list_lock);
b60503ba
MW
1632}
1633
1634static int __devinit nvme_probe(struct pci_dev *pdev,
1635 const struct pci_device_id *id)
1636{
574e8b95 1637 int bars, result = -ENOMEM;
b60503ba
MW
1638 struct nvme_dev *dev;
1639
1640 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1641 if (!dev)
1642 return -ENOMEM;
1643 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1644 GFP_KERNEL);
1645 if (!dev->entry)
1646 goto free;
1b23484b
MW
1647 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1648 GFP_KERNEL);
b60503ba
MW
1649 if (!dev->queues)
1650 goto free;
1651
0ee5a7d7
SMM
1652 if (pci_enable_device_mem(pdev))
1653 goto free;
f64d3365 1654 pci_set_master(pdev);
574e8b95
MW
1655 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1656 if (pci_request_selected_regions(pdev, bars, "nvme"))
1657 goto disable;
0ee5a7d7 1658
b60503ba
MW
1659 INIT_LIST_HEAD(&dev->namespaces);
1660 dev->pci_dev = pdev;
1661 pci_set_drvdata(pdev, dev);
2930353f
MW
1662 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1663 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
cd58ad7d
QSA
1664 result = nvme_set_instance(dev);
1665 if (result)
1666 goto disable;
1667
53c9577e 1668 dev->entry[0].vector = pdev->irq;
b60503ba 1669
091b6092
MW
1670 result = nvme_setup_prp_pools(dev);
1671 if (result)
1672 goto disable_msix;
1673
b60503ba
MW
1674 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1675 if (!dev->bar) {
1676 result = -ENOMEM;
574e8b95 1677 goto disable_msix;
b60503ba
MW
1678 }
1679
1680 result = nvme_configure_admin_queue(dev);
1681 if (result)
1682 goto unmap;
1683 dev->queue_count++;
1684
1fa6aead
MW
1685 spin_lock(&dev_list_lock);
1686 list_add(&dev->node, &dev_list);
1687 spin_unlock(&dev_list_lock);
1688
740216fc
MW
1689 result = nvme_dev_add(dev);
1690 if (result)
1691 goto delete;
1692
b60503ba
MW
1693 return 0;
1694
1695 delete:
740216fc
MW
1696 spin_lock(&dev_list_lock);
1697 list_del(&dev->node);
1698 spin_unlock(&dev_list_lock);
1699
b60503ba
MW
1700 nvme_free_queues(dev);
1701 unmap:
1702 iounmap(dev->bar);
574e8b95 1703 disable_msix:
b60503ba
MW
1704 pci_disable_msix(pdev);
1705 nvme_release_instance(dev);
091b6092 1706 nvme_release_prp_pools(dev);
574e8b95 1707 disable:
0ee5a7d7 1708 pci_disable_device(pdev);
574e8b95 1709 pci_release_regions(pdev);
b60503ba
MW
1710 free:
1711 kfree(dev->queues);
1712 kfree(dev->entry);
1713 kfree(dev);
1714 return result;
1715}
1716
1717static void __devexit nvme_remove(struct pci_dev *pdev)
1718{
1719 struct nvme_dev *dev = pci_get_drvdata(pdev);
1720 nvme_dev_remove(dev);
1721 pci_disable_msix(pdev);
1722 iounmap(dev->bar);
1723 nvme_release_instance(dev);
091b6092 1724 nvme_release_prp_pools(dev);
0ee5a7d7 1725 pci_disable_device(pdev);
574e8b95 1726 pci_release_regions(pdev);
b60503ba
MW
1727 kfree(dev->queues);
1728 kfree(dev->entry);
1729 kfree(dev);
1730}
1731
1732/* These functions are yet to be implemented */
1733#define nvme_error_detected NULL
1734#define nvme_dump_registers NULL
1735#define nvme_link_reset NULL
1736#define nvme_slot_reset NULL
1737#define nvme_error_resume NULL
1738#define nvme_suspend NULL
1739#define nvme_resume NULL
1740
1d352035 1741static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
1742 .error_detected = nvme_error_detected,
1743 .mmio_enabled = nvme_dump_registers,
1744 .link_reset = nvme_link_reset,
1745 .slot_reset = nvme_slot_reset,
1746 .resume = nvme_error_resume,
1747};
1748
1749/* Move to pci_ids.h later */
1750#define PCI_CLASS_STORAGE_EXPRESS 0x010802
1751
1752static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1753 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1754 { 0, }
1755};
1756MODULE_DEVICE_TABLE(pci, nvme_id_table);
1757
1758static struct pci_driver nvme_driver = {
1759 .name = "nvme",
1760 .id_table = nvme_id_table,
1761 .probe = nvme_probe,
1762 .remove = __devexit_p(nvme_remove),
1763 .suspend = nvme_suspend,
1764 .resume = nvme_resume,
1765 .err_handler = &nvme_err_handler,
1766};
1767
1768static int __init nvme_init(void)
1769{
0ac13140 1770 int result;
1fa6aead
MW
1771
1772 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1773 if (IS_ERR(nvme_thread))
1774 return PTR_ERR(nvme_thread);
b60503ba 1775
5c42ea16
KB
1776 result = register_blkdev(nvme_major, "nvme");
1777 if (result < 0)
1fa6aead 1778 goto kill_kthread;
5c42ea16 1779 else if (result > 0)
0ac13140 1780 nvme_major = result;
b60503ba
MW
1781
1782 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
1783 if (result)
1784 goto unregister_blkdev;
1785 return 0;
b60503ba 1786
1fa6aead 1787 unregister_blkdev:
b60503ba 1788 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
1789 kill_kthread:
1790 kthread_stop(nvme_thread);
b60503ba
MW
1791 return result;
1792}
1793
1794static void __exit nvme_exit(void)
1795{
1796 pci_unregister_driver(&nvme_driver);
1797 unregister_blkdev(nvme_major, "nvme");
1fa6aead 1798 kthread_stop(nvme_thread);
b60503ba
MW
1799}
1800
1801MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1802MODULE_LICENSE("GPL");
366e8217 1803MODULE_VERSION("0.8");
b60503ba
MW
1804module_init(nvme_init);
1805module_exit(nvme_exit);