Merge branch 'for-4.2/core' into for-4.2/drivers
[linux-2.6-block.git] / drivers / block / nvme-core.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
15#include <linux/nvme.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
1fa6aead 30#include <linux/kthread.h>
b60503ba
MW
31#include <linux/kernel.h>
32#include <linux/mm.h>
33#include <linux/module.h>
34#include <linux/moduleparam.h>
35#include <linux/pci.h>
be7b6275 36#include <linux/poison.h>
c3bfe717 37#include <linux/ptrace.h>
b60503ba
MW
38#include <linux/sched.h>
39#include <linux/slab.h>
e1e5e564 40#include <linux/t10-pi.h>
b60503ba 41#include <linux/types.h>
5d0f6131 42#include <scsi/sg.h>
797a796a
HM
43#include <asm-generic/io-64-nonatomic-lo-hi.h>
44
b3fffdef 45#define NVME_MINORS (1U << MINORBITS)
9d43cf64 46#define NVME_Q_DEPTH 1024
d31af0a3 47#define NVME_AQ_DEPTH 256
b60503ba
MW
48#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
49#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 50#define ADMIN_TIMEOUT (admin_timeout * HZ)
2484f407 51#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
9d43cf64
KB
52
53static unsigned char admin_timeout = 60;
54module_param(admin_timeout, byte, 0644);
55MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 56
bd67608a
MW
57unsigned char nvme_io_timeout = 30;
58module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 59MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 60
2484f407
DM
61static unsigned char shutdown_timeout = 5;
62module_param(shutdown_timeout, byte, 0644);
63MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
64
b60503ba
MW
65static int nvme_major;
66module_param(nvme_major, int, 0);
67
b3fffdef
KB
68static int nvme_char_major;
69module_param(nvme_char_major, int, 0);
70
58ffacb5
MW
71static int use_threaded_interrupts;
72module_param(use_threaded_interrupts, int, 0);
73
1fa6aead
MW
74static DEFINE_SPINLOCK(dev_list_lock);
75static LIST_HEAD(dev_list);
76static struct task_struct *nvme_thread;
9a6b9458 77static struct workqueue_struct *nvme_workq;
b9afca3e 78static wait_queue_head_t nvme_kthread_wait;
1fa6aead 79
b3fffdef
KB
80static struct class *nvme_class;
81
d4b4ff8e 82static void nvme_reset_failed_dev(struct work_struct *ws);
a4aea562 83static int nvme_process_cq(struct nvme_queue *nvmeq);
d4b4ff8e 84
4d115420
KB
85struct async_cmd_info {
86 struct kthread_work work;
87 struct kthread_worker *worker;
a4aea562 88 struct request *req;
4d115420
KB
89 u32 result;
90 int status;
91 void *ctx;
92};
1fa6aead 93
b60503ba
MW
94/*
95 * An NVM Express queue. Each device has at least two (one for admin
96 * commands and one for I/O commands).
97 */
98struct nvme_queue {
99 struct device *q_dmadev;
091b6092 100 struct nvme_dev *dev;
3193f07b 101 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
102 spinlock_t q_lock;
103 struct nvme_command *sq_cmds;
104 volatile struct nvme_completion *cqes;
105 dma_addr_t sq_dma_addr;
106 dma_addr_t cq_dma_addr;
b60503ba
MW
107 u32 __iomem *q_db;
108 u16 q_depth;
6222d172 109 s16 cq_vector;
b60503ba
MW
110 u16 sq_head;
111 u16 sq_tail;
112 u16 cq_head;
c30341dc 113 u16 qid;
e9539f47
MW
114 u8 cq_phase;
115 u8 cqe_seen;
4d115420 116 struct async_cmd_info cmdinfo;
a4aea562 117 struct blk_mq_hw_ctx *hctx;
b60503ba
MW
118};
119
120/*
121 * Check we didin't inadvertently grow the command struct
122 */
123static inline void _nvme_check_size(void)
124{
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
137}
138
edd10d33 139typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
140 struct nvme_completion *);
141
e85248e5 142struct nvme_cmd_info {
c2f5b650
MW
143 nvme_completion_fn fn;
144 void *ctx;
c30341dc 145 int aborted;
a4aea562 146 struct nvme_queue *nvmeq;
ac3dd5bd 147 struct nvme_iod iod[0];
e85248e5
MW
148};
149
ac3dd5bd
JA
150/*
151 * Max size of iod being embedded in the request payload
152 */
153#define NVME_INT_PAGES 2
154#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
fda631ff 155#define NVME_INT_MASK 0x01
ac3dd5bd
JA
156
157/*
158 * Will slightly overestimate the number of pages needed. This is OK
159 * as it only leads to a small amount of wasted memory for the lifetime of
160 * the I/O.
161 */
162static int nvme_npages(unsigned size, struct nvme_dev *dev)
163{
164 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
165 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
166}
167
168static unsigned int nvme_cmd_size(struct nvme_dev *dev)
169{
170 unsigned int ret = sizeof(struct nvme_cmd_info);
171
172 ret += sizeof(struct nvme_iod);
173 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
174 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
175
176 return ret;
177}
178
a4aea562
MB
179static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
180 unsigned int hctx_idx)
e85248e5 181{
a4aea562
MB
182 struct nvme_dev *dev = data;
183 struct nvme_queue *nvmeq = dev->queues[0];
184
185 WARN_ON(nvmeq->hctx);
186 nvmeq->hctx = hctx;
187 hctx->driver_data = nvmeq;
188 return 0;
e85248e5
MW
189}
190
a4aea562
MB
191static int nvme_admin_init_request(void *data, struct request *req,
192 unsigned int hctx_idx, unsigned int rq_idx,
193 unsigned int numa_node)
22404274 194{
a4aea562
MB
195 struct nvme_dev *dev = data;
196 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
197 struct nvme_queue *nvmeq = dev->queues[0];
198
199 BUG_ON(!nvmeq);
200 cmd->nvmeq = nvmeq;
201 return 0;
22404274
KB
202}
203
2c30540b
JA
204static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
205{
206 struct nvme_queue *nvmeq = hctx->driver_data;
207
208 nvmeq->hctx = NULL;
209}
210
a4aea562
MB
211static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
212 unsigned int hctx_idx)
b60503ba 213{
a4aea562
MB
214 struct nvme_dev *dev = data;
215 struct nvme_queue *nvmeq = dev->queues[
216 (hctx_idx % dev->queue_count) + 1];
b60503ba 217
a4aea562
MB
218 if (!nvmeq->hctx)
219 nvmeq->hctx = hctx;
220
221 /* nvmeq queues are shared between namespaces. We assume here that
222 * blk-mq map the tags so they match up with the nvme queue tags. */
223 WARN_ON(nvmeq->hctx->tags != hctx->tags);
b60503ba 224
a4aea562
MB
225 hctx->driver_data = nvmeq;
226 return 0;
b60503ba
MW
227}
228
a4aea562
MB
229static int nvme_init_request(void *data, struct request *req,
230 unsigned int hctx_idx, unsigned int rq_idx,
231 unsigned int numa_node)
b60503ba 232{
a4aea562
MB
233 struct nvme_dev *dev = data;
234 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
235 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
236
237 BUG_ON(!nvmeq);
238 cmd->nvmeq = nvmeq;
239 return 0;
240}
241
242static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
243 nvme_completion_fn handler)
244{
245 cmd->fn = handler;
246 cmd->ctx = ctx;
247 cmd->aborted = 0;
c917dfe5 248 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
249}
250
ac3dd5bd
JA
251static void *iod_get_private(struct nvme_iod *iod)
252{
253 return (void *) (iod->private & ~0x1UL);
254}
255
256/*
257 * If bit 0 is set, the iod is embedded in the request payload.
258 */
259static bool iod_should_kfree(struct nvme_iod *iod)
260{
fda631ff 261 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
262}
263
c2f5b650
MW
264/* Special values must be less than 0x1000 */
265#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
266#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
267#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
268#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 269
edd10d33 270static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
271 struct nvme_completion *cqe)
272{
273 if (ctx == CMD_CTX_CANCELLED)
274 return;
c2f5b650 275 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 276 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
277 "completed id %d twice on queue %d\n",
278 cqe->command_id, le16_to_cpup(&cqe->sq_id));
279 return;
280 }
281 if (ctx == CMD_CTX_INVALID) {
edd10d33 282 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
283 "invalid id %d completed on queue %d\n",
284 cqe->command_id, le16_to_cpup(&cqe->sq_id));
285 return;
286 }
edd10d33 287 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
288}
289
a4aea562 290static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 291{
c2f5b650 292 void *ctx;
b60503ba 293
859361a2 294 if (fn)
a4aea562
MB
295 *fn = cmd->fn;
296 ctx = cmd->ctx;
297 cmd->fn = special_completion;
298 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 299 return ctx;
b60503ba
MW
300}
301
a4aea562
MB
302static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
303 struct nvme_completion *cqe)
3c0cf138 304{
a4aea562
MB
305 u32 result = le32_to_cpup(&cqe->result);
306 u16 status = le16_to_cpup(&cqe->status) >> 1;
307
308 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
309 ++nvmeq->dev->event_limit;
310 if (status == NVME_SC_SUCCESS)
311 dev_warn(nvmeq->q_dmadev,
312 "async event result %08x\n", result);
b60503ba
MW
313}
314
a4aea562
MB
315static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
316 struct nvme_completion *cqe)
5a92e700 317{
a4aea562
MB
318 struct request *req = ctx;
319
320 u16 status = le16_to_cpup(&cqe->status) >> 1;
321 u32 result = le32_to_cpup(&cqe->result);
a51afb54 322
9d135bb8 323 blk_mq_free_hctx_request(nvmeq->hctx, req);
a51afb54 324
a4aea562
MB
325 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
326 ++nvmeq->dev->abort_limit;
5a92e700
KB
327}
328
a4aea562
MB
329static void async_completion(struct nvme_queue *nvmeq, void *ctx,
330 struct nvme_completion *cqe)
b60503ba 331{
a4aea562
MB
332 struct async_cmd_info *cmdinfo = ctx;
333 cmdinfo->result = le32_to_cpup(&cqe->result);
334 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
335 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
9d135bb8 336 blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
b60503ba
MW
337}
338
a4aea562
MB
339static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
340 unsigned int tag)
b60503ba 341{
a4aea562
MB
342 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
343 struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
a51afb54 344
a4aea562 345 return blk_mq_rq_to_pdu(req);
4f5099af
KB
346}
347
a4aea562
MB
348/*
349 * Called with local interrupts disabled and the q_lock held. May not sleep.
350 */
351static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
352 nvme_completion_fn *fn)
4f5099af 353{
a4aea562
MB
354 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
355 void *ctx;
356 if (tag >= nvmeq->q_depth) {
357 *fn = special_completion;
358 return CMD_CTX_INVALID;
359 }
360 if (fn)
361 *fn = cmd->fn;
362 ctx = cmd->ctx;
363 cmd->fn = special_completion;
364 cmd->ctx = CMD_CTX_COMPLETED;
365 return ctx;
b60503ba
MW
366}
367
368/**
714a7a22 369 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
370 * @nvmeq: The queue to use
371 * @cmd: The command to send
372 *
373 * Safe to use from interrupt context
374 */
a4aea562 375static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
b60503ba 376{
a4aea562
MB
377 u16 tail = nvmeq->sq_tail;
378
b60503ba 379 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
380 if (++tail == nvmeq->q_depth)
381 tail = 0;
7547881d 382 writel(tail, nvmeq->q_db);
b60503ba 383 nvmeq->sq_tail = tail;
b60503ba
MW
384
385 return 0;
386}
387
a4aea562
MB
388static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
389{
390 unsigned long flags;
391 int ret;
392 spin_lock_irqsave(&nvmeq->q_lock, flags);
393 ret = __nvme_submit_cmd(nvmeq, cmd);
394 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
395 return ret;
396}
397
eca18b23 398static __le64 **iod_list(struct nvme_iod *iod)
e025344c 399{
eca18b23 400 return ((void *)iod) + iod->offset;
e025344c
SMM
401}
402
ac3dd5bd
JA
403static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
404 unsigned nseg, unsigned long private)
eca18b23 405{
ac3dd5bd
JA
406 iod->private = private;
407 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
408 iod->npages = -1;
409 iod->length = nbytes;
410 iod->nents = 0;
eca18b23 411}
b60503ba 412
eca18b23 413static struct nvme_iod *
ac3dd5bd
JA
414__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
415 unsigned long priv, gfp_t gfp)
b60503ba 416{
eca18b23 417 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 418 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
419 sizeof(struct scatterlist) * nseg, gfp);
420
ac3dd5bd
JA
421 if (iod)
422 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
423
424 return iod;
b60503ba
MW
425}
426
ac3dd5bd
JA
427static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
428 gfp_t gfp)
429{
430 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
431 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
432 struct nvme_iod *iod;
433
434 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
435 size <= NVME_INT_BYTES(dev)) {
436 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
437
438 iod = cmd->iod;
ac3dd5bd 439 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 440 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
441 return iod;
442 }
443
444 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
445 (unsigned long) rq, gfp);
446}
447
d29ec824 448static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 449{
1d090624 450 const int last_prp = dev->page_size / 8 - 1;
eca18b23
MW
451 int i;
452 __le64 **list = iod_list(iod);
453 dma_addr_t prp_dma = iod->first_dma;
454
455 if (iod->npages == 0)
456 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
457 for (i = 0; i < iod->npages; i++) {
458 __le64 *prp_list = list[i];
459 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
460 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
461 prp_dma = next_prp_dma;
462 }
ac3dd5bd
JA
463
464 if (iod_should_kfree(iod))
465 kfree(iod);
b60503ba
MW
466}
467
b4ff9c8d
KB
468static int nvme_error_status(u16 status)
469{
470 switch (status & 0x7ff) {
471 case NVME_SC_SUCCESS:
472 return 0;
473 case NVME_SC_CAP_EXCEEDED:
474 return -ENOSPC;
475 default:
476 return -EIO;
477 }
478}
479
52b68d7e 480#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
481static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
482{
483 if (be32_to_cpu(pi->ref_tag) == v)
484 pi->ref_tag = cpu_to_be32(p);
485}
486
487static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
488{
489 if (be32_to_cpu(pi->ref_tag) == p)
490 pi->ref_tag = cpu_to_be32(v);
491}
492
493/**
494 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
495 *
496 * The virtual start sector is the one that was originally submitted by the
497 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
498 * start sector may be different. Remap protection information to match the
499 * physical LBA on writes, and back to the original seed on reads.
500 *
501 * Type 0 and 3 do not have a ref tag, so no remapping required.
502 */
503static void nvme_dif_remap(struct request *req,
504 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
505{
506 struct nvme_ns *ns = req->rq_disk->private_data;
507 struct bio_integrity_payload *bip;
508 struct t10_pi_tuple *pi;
509 void *p, *pmap;
510 u32 i, nlb, ts, phys, virt;
511
512 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
513 return;
514
515 bip = bio_integrity(req->bio);
516 if (!bip)
517 return;
518
519 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
520
521 p = pmap;
522 virt = bip_get_seed(bip);
523 phys = nvme_block_nr(ns, blk_rq_pos(req));
524 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
525 ts = ns->disk->integrity->tuple_size;
526
527 for (i = 0; i < nlb; i++, virt++, phys++) {
528 pi = (struct t10_pi_tuple *)p;
529 dif_swap(phys, virt, pi);
530 p += ts;
531 }
532 kunmap_atomic(pmap);
533}
534
52b68d7e
KB
535static int nvme_noop_verify(struct blk_integrity_iter *iter)
536{
537 return 0;
538}
539
540static int nvme_noop_generate(struct blk_integrity_iter *iter)
541{
542 return 0;
543}
544
545struct blk_integrity nvme_meta_noop = {
546 .name = "NVME_META_NOOP",
547 .generate_fn = nvme_noop_generate,
548 .verify_fn = nvme_noop_verify,
549};
550
551static void nvme_init_integrity(struct nvme_ns *ns)
552{
553 struct blk_integrity integrity;
554
555 switch (ns->pi_type) {
556 case NVME_NS_DPS_PI_TYPE3:
557 integrity = t10_pi_type3_crc;
558 break;
559 case NVME_NS_DPS_PI_TYPE1:
560 case NVME_NS_DPS_PI_TYPE2:
561 integrity = t10_pi_type1_crc;
562 break;
563 default:
564 integrity = nvme_meta_noop;
565 break;
566 }
567 integrity.tuple_size = ns->ms;
568 blk_integrity_register(ns->disk, &integrity);
569 blk_queue_max_integrity_segments(ns->queue, 1);
570}
571#else /* CONFIG_BLK_DEV_INTEGRITY */
572static void nvme_dif_remap(struct request *req,
573 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
574{
575}
576static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
577{
578}
579static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
580{
581}
582static void nvme_init_integrity(struct nvme_ns *ns)
583{
584}
585#endif
586
a4aea562 587static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
588 struct nvme_completion *cqe)
589{
eca18b23 590 struct nvme_iod *iod = ctx;
ac3dd5bd 591 struct request *req = iod_get_private(iod);
a4aea562
MB
592 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
593
b60503ba
MW
594 u16 status = le16_to_cpup(&cqe->status) >> 1;
595
edd10d33 596 if (unlikely(status)) {
a4aea562
MB
597 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
598 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
599 unsigned long flags;
600
a4aea562 601 blk_mq_requeue_request(req);
c9d3bf88
KB
602 spin_lock_irqsave(req->q->queue_lock, flags);
603 if (!blk_queue_stopped(req->q))
604 blk_mq_kick_requeue_list(req->q);
605 spin_unlock_irqrestore(req->q->queue_lock, flags);
edd10d33
KB
606 return;
607 }
d29ec824 608 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
d29ec824
CH
609 req->errors = status;
610 } else {
611 req->errors = nvme_error_status(status);
612 }
a4aea562
MB
613 } else
614 req->errors = 0;
a0a931d6
KB
615 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
616 u32 result = le32_to_cpup(&cqe->result);
617 req->special = (void *)(uintptr_t)result;
618 }
a4aea562
MB
619
620 if (cmd_rq->aborted)
e75ec752 621 dev_warn(nvmeq->dev->dev,
a4aea562
MB
622 "completing aborted command with status:%04x\n",
623 status);
624
e1e5e564 625 if (iod->nents) {
e75ec752 626 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
a4aea562 627 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
e1e5e564
KB
628 if (blk_integrity_rq(req)) {
629 if (!rq_data_dir(req))
630 nvme_dif_remap(req, nvme_dif_complete);
e75ec752 631 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
e1e5e564
KB
632 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
633 }
634 }
edd10d33 635 nvme_free_iod(nvmeq->dev, iod);
3291fa57 636
a4aea562 637 blk_mq_complete_request(req);
b60503ba
MW
638}
639
184d2944 640/* length is in bytes. gfp flags indicates whether we may sleep. */
d29ec824
CH
641static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
642 int total_len, gfp_t gfp)
ff22b54f 643{
99802a7a 644 struct dma_pool *pool;
eca18b23
MW
645 int length = total_len;
646 struct scatterlist *sg = iod->sg;
ff22b54f
MW
647 int dma_len = sg_dma_len(sg);
648 u64 dma_addr = sg_dma_address(sg);
f137e0f1
MI
649 u32 page_size = dev->page_size;
650 int offset = dma_addr & (page_size - 1);
e025344c 651 __le64 *prp_list;
eca18b23 652 __le64 **list = iod_list(iod);
e025344c 653 dma_addr_t prp_dma;
eca18b23 654 int nprps, i;
ff22b54f 655
1d090624 656 length -= (page_size - offset);
ff22b54f 657 if (length <= 0)
eca18b23 658 return total_len;
ff22b54f 659
1d090624 660 dma_len -= (page_size - offset);
ff22b54f 661 if (dma_len) {
1d090624 662 dma_addr += (page_size - offset);
ff22b54f
MW
663 } else {
664 sg = sg_next(sg);
665 dma_addr = sg_dma_address(sg);
666 dma_len = sg_dma_len(sg);
667 }
668
1d090624 669 if (length <= page_size) {
edd10d33 670 iod->first_dma = dma_addr;
eca18b23 671 return total_len;
e025344c
SMM
672 }
673
1d090624 674 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
675 if (nprps <= (256 / 8)) {
676 pool = dev->prp_small_pool;
eca18b23 677 iod->npages = 0;
99802a7a
MW
678 } else {
679 pool = dev->prp_page_pool;
eca18b23 680 iod->npages = 1;
99802a7a
MW
681 }
682
b77954cb
MW
683 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
684 if (!prp_list) {
edd10d33 685 iod->first_dma = dma_addr;
eca18b23 686 iod->npages = -1;
1d090624 687 return (total_len - length) + page_size;
b77954cb 688 }
eca18b23
MW
689 list[0] = prp_list;
690 iod->first_dma = prp_dma;
e025344c
SMM
691 i = 0;
692 for (;;) {
1d090624 693 if (i == page_size >> 3) {
e025344c 694 __le64 *old_prp_list = prp_list;
b77954cb 695 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
696 if (!prp_list)
697 return total_len - length;
698 list[iod->npages++] = prp_list;
7523d834
MW
699 prp_list[0] = old_prp_list[i - 1];
700 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
701 i = 1;
e025344c
SMM
702 }
703 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
704 dma_len -= page_size;
705 dma_addr += page_size;
706 length -= page_size;
e025344c
SMM
707 if (length <= 0)
708 break;
709 if (dma_len > 0)
710 continue;
711 BUG_ON(dma_len < 0);
712 sg = sg_next(sg);
713 dma_addr = sg_dma_address(sg);
714 dma_len = sg_dma_len(sg);
ff22b54f
MW
715 }
716
eca18b23 717 return total_len;
ff22b54f
MW
718}
719
d29ec824
CH
720static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
721 struct nvme_iod *iod)
722{
723 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
724
725 memcpy(cmnd, req->cmd, sizeof(struct nvme_command));
726 cmnd->rw.command_id = req->tag;
727 if (req->nr_phys_segments) {
728 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
729 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
730 }
731
732 if (++nvmeq->sq_tail == nvmeq->q_depth)
733 nvmeq->sq_tail = 0;
734 writel(nvmeq->sq_tail, nvmeq->q_db);
735}
736
a4aea562
MB
737/*
738 * We reuse the small pool to allocate the 16-byte range here as it is not
739 * worth having a special pool for these or additional cases to handle freeing
740 * the iod.
741 */
742static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
743 struct request *req, struct nvme_iod *iod)
0e5e4f0e 744{
edd10d33
KB
745 struct nvme_dsm_range *range =
746 (struct nvme_dsm_range *)iod_list(iod)[0];
0e5e4f0e
KB
747 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
748
0e5e4f0e 749 range->cattr = cpu_to_le32(0);
a4aea562
MB
750 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
751 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e
KB
752
753 memset(cmnd, 0, sizeof(*cmnd));
754 cmnd->dsm.opcode = nvme_cmd_dsm;
a4aea562 755 cmnd->dsm.command_id = req->tag;
0e5e4f0e
KB
756 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
757 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
758 cmnd->dsm.nr = 0;
759 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
760
761 if (++nvmeq->sq_tail == nvmeq->q_depth)
762 nvmeq->sq_tail = 0;
763 writel(nvmeq->sq_tail, nvmeq->q_db);
0e5e4f0e
KB
764}
765
a4aea562 766static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
00df5cb4
MW
767 int cmdid)
768{
769 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
770
771 memset(cmnd, 0, sizeof(*cmnd));
772 cmnd->common.opcode = nvme_cmd_flush;
773 cmnd->common.command_id = cmdid;
774 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
775
776 if (++nvmeq->sq_tail == nvmeq->q_depth)
777 nvmeq->sq_tail = 0;
778 writel(nvmeq->sq_tail, nvmeq->q_db);
00df5cb4
MW
779}
780
a4aea562
MB
781static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
782 struct nvme_ns *ns)
b60503ba 783{
ac3dd5bd 784 struct request *req = iod_get_private(iod);
ff22b54f 785 struct nvme_command *cmnd;
a4aea562
MB
786 u16 control = 0;
787 u32 dsmgmt = 0;
00df5cb4 788
a4aea562 789 if (req->cmd_flags & REQ_FUA)
b60503ba 790 control |= NVME_RW_FUA;
a4aea562 791 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
b60503ba
MW
792 control |= NVME_RW_LR;
793
a4aea562 794 if (req->cmd_flags & REQ_RAHEAD)
b60503ba
MW
795 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
796
ff22b54f 797 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b8deb62c 798 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 799
a4aea562
MB
800 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
801 cmnd->rw.command_id = req->tag;
ff22b54f 802 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
edd10d33
KB
803 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
804 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
a4aea562
MB
805 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
806 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
e1e5e564
KB
807
808 if (blk_integrity_rq(req)) {
809 cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
810 switch (ns->pi_type) {
811 case NVME_NS_DPS_PI_TYPE3:
812 control |= NVME_RW_PRINFO_PRCHK_GUARD;
813 break;
814 case NVME_NS_DPS_PI_TYPE1:
815 case NVME_NS_DPS_PI_TYPE2:
816 control |= NVME_RW_PRINFO_PRCHK_GUARD |
817 NVME_RW_PRINFO_PRCHK_REF;
818 cmnd->rw.reftag = cpu_to_le32(
819 nvme_block_nr(ns, blk_rq_pos(req)));
820 break;
821 }
822 } else if (ns->ms)
823 control |= NVME_RW_PRINFO_PRACT;
824
ff22b54f
MW
825 cmnd->rw.control = cpu_to_le16(control);
826 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 827
b60503ba
MW
828 if (++nvmeq->sq_tail == nvmeq->q_depth)
829 nvmeq->sq_tail = 0;
7547881d 830 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 831
1974b1ae 832 return 0;
edd10d33
KB
833}
834
d29ec824
CH
835/*
836 * NOTE: ns is NULL when called on the admin queue.
837 */
a4aea562
MB
838static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
839 const struct blk_mq_queue_data *bd)
edd10d33 840{
a4aea562
MB
841 struct nvme_ns *ns = hctx->queue->queuedata;
842 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 843 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
844 struct request *req = bd->rq;
845 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 846 struct nvme_iod *iod;
a4aea562 847 enum dma_data_direction dma_dir;
edd10d33 848
e1e5e564
KB
849 /*
850 * If formated with metadata, require the block layer provide a buffer
851 * unless this namespace is formated such that the metadata can be
852 * stripped/generated by the controller with PRACT=1.
853 */
d29ec824 854 if (ns && ns->ms && !blk_integrity_rq(req)) {
e1e5e564
KB
855 if (!(ns->pi_type && ns->ms == 8)) {
856 req->errors = -EFAULT;
857 blk_mq_complete_request(req);
858 return BLK_MQ_RQ_QUEUE_OK;
859 }
860 }
861
d29ec824 862 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 863 if (!iod)
fe54303e 864 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 865
a4aea562 866 if (req->cmd_flags & REQ_DISCARD) {
edd10d33
KB
867 void *range;
868 /*
869 * We reuse the small pool to allocate the 16-byte range here
870 * as it is not worth having a special pool for these or
871 * additional cases to handle freeing the iod.
872 */
d29ec824 873 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
edd10d33 874 &iod->first_dma);
a4aea562 875 if (!range)
fe54303e 876 goto retry_cmd;
edd10d33
KB
877 iod_list(iod)[0] = (__le64 *)range;
878 iod->npages = 0;
ac3dd5bd 879 } else if (req->nr_phys_segments) {
a4aea562
MB
880 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
881
ac3dd5bd 882 sg_init_table(iod->sg, req->nr_phys_segments);
a4aea562 883 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
fe54303e
JA
884 if (!iod->nents)
885 goto error_cmd;
a4aea562
MB
886
887 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
fe54303e 888 goto retry_cmd;
a4aea562 889
fe54303e 890 if (blk_rq_bytes(req) !=
d29ec824
CH
891 nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
892 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
fe54303e
JA
893 goto retry_cmd;
894 }
e1e5e564
KB
895 if (blk_integrity_rq(req)) {
896 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
897 goto error_cmd;
898
899 sg_init_table(iod->meta_sg, 1);
900 if (blk_rq_map_integrity_sg(
901 req->q, req->bio, iod->meta_sg) != 1)
902 goto error_cmd;
903
904 if (rq_data_dir(req))
905 nvme_dif_remap(req, nvme_dif_prep);
906
907 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
908 goto error_cmd;
909 }
edd10d33 910 }
1974b1ae 911
9af8785a 912 nvme_set_info(cmd, iod, req_completion);
a4aea562 913 spin_lock_irq(&nvmeq->q_lock);
d29ec824
CH
914 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
915 nvme_submit_priv(nvmeq, req, iod);
916 else if (req->cmd_flags & REQ_DISCARD)
a4aea562
MB
917 nvme_submit_discard(nvmeq, ns, req, iod);
918 else if (req->cmd_flags & REQ_FLUSH)
919 nvme_submit_flush(nvmeq, ns, req->tag);
920 else
921 nvme_submit_iod(nvmeq, iod, ns);
922
923 nvme_process_cq(nvmeq);
924 spin_unlock_irq(&nvmeq->q_lock);
925 return BLK_MQ_RQ_QUEUE_OK;
926
fe54303e 927 error_cmd:
d29ec824 928 nvme_free_iod(dev, iod);
fe54303e
JA
929 return BLK_MQ_RQ_QUEUE_ERROR;
930 retry_cmd:
d29ec824 931 nvme_free_iod(dev, iod);
fe54303e 932 return BLK_MQ_RQ_QUEUE_BUSY;
b60503ba
MW
933}
934
e9539f47 935static int nvme_process_cq(struct nvme_queue *nvmeq)
b60503ba 936{
82123460 937 u16 head, phase;
b60503ba 938
b60503ba 939 head = nvmeq->cq_head;
82123460 940 phase = nvmeq->cq_phase;
b60503ba
MW
941
942 for (;;) {
c2f5b650
MW
943 void *ctx;
944 nvme_completion_fn fn;
b60503ba 945 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 946 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
947 break;
948 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
949 if (++head == nvmeq->q_depth) {
950 head = 0;
82123460 951 phase = !phase;
b60503ba 952 }
a4aea562 953 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 954 fn(nvmeq, ctx, &cqe);
b60503ba
MW
955 }
956
957 /* If the controller ignores the cq head doorbell and continuously
958 * writes to the queue, it is theoretically possible to wrap around
959 * the queue twice and mistakenly return IRQ_NONE. Linux only
960 * requires that 0.1% of your interrupts are handled, so this isn't
961 * a big problem.
962 */
82123460 963 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
e9539f47 964 return 0;
b60503ba 965
b80d5ccc 966 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 967 nvmeq->cq_head = head;
82123460 968 nvmeq->cq_phase = phase;
b60503ba 969
e9539f47
MW
970 nvmeq->cqe_seen = 1;
971 return 1;
b60503ba
MW
972}
973
974static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
975{
976 irqreturn_t result;
977 struct nvme_queue *nvmeq = data;
978 spin_lock(&nvmeq->q_lock);
e9539f47
MW
979 nvme_process_cq(nvmeq);
980 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
981 nvmeq->cqe_seen = 0;
58ffacb5
MW
982 spin_unlock(&nvmeq->q_lock);
983 return result;
984}
985
986static irqreturn_t nvme_irq_check(int irq, void *data)
987{
988 struct nvme_queue *nvmeq = data;
989 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
990 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
991 return IRQ_NONE;
992 return IRQ_WAKE_THREAD;
993}
994
b60503ba
MW
995/*
996 * Returns 0 on success. If the result is negative, it's a Linux error code;
997 * if the result is positive, it's an NVM Express status code
998 */
d29ec824
CH
999int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1000 void *buffer, void __user *ubuffer, unsigned bufflen,
1001 u32 *result, unsigned timeout)
b60503ba 1002{
d29ec824
CH
1003 bool write = cmd->common.opcode & 1;
1004 struct bio *bio = NULL;
f705f837 1005 struct request *req;
d29ec824 1006 int ret;
f705f837 1007
d29ec824 1008 req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
f705f837
CH
1009 if (IS_ERR(req))
1010 return PTR_ERR(req);
b60503ba 1011
d29ec824 1012 req->cmd_type = REQ_TYPE_DRV_PRIV;
75619bfa 1013 req->cmd_flags = REQ_FAILFAST_DRIVER;
d29ec824
CH
1014 req->__data_len = 0;
1015 req->__sector = (sector_t) -1;
1016 req->bio = req->biotail = NULL;
b60503ba 1017
f4ff414a 1018 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
a4aea562 1019
d29ec824
CH
1020 req->cmd = (unsigned char *)cmd;
1021 req->cmd_len = sizeof(struct nvme_command);
a0a931d6 1022 req->special = (void *)0;
b60503ba 1023
d29ec824
CH
1024 if (buffer && bufflen) {
1025 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1026 if (ret)
1027 goto out;
1028 } else if (ubuffer && bufflen) {
1029 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1030 if (ret)
1031 goto out;
1032 bio = req->bio;
1033 }
3c0cf138 1034
d29ec824
CH
1035 blk_execute_rq(req->q, NULL, req, 0);
1036 if (bio)
1037 blk_rq_unmap_user(bio);
b60503ba 1038 if (result)
a0a931d6 1039 *result = (u32)(uintptr_t)req->special;
d29ec824
CH
1040 ret = req->errors;
1041 out:
f705f837 1042 blk_mq_free_request(req);
d29ec824 1043 return ret;
f705f837
CH
1044}
1045
d29ec824
CH
1046int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1047 void *buffer, unsigned bufflen)
f705f837 1048{
d29ec824 1049 return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
b60503ba
MW
1050}
1051
a4aea562
MB
1052static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1053{
1054 struct nvme_queue *nvmeq = dev->queues[0];
1055 struct nvme_command c;
1056 struct nvme_cmd_info *cmd_info;
1057 struct request *req;
1058
1efccc9d 1059 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
9f173b33
DC
1060 if (IS_ERR(req))
1061 return PTR_ERR(req);
a4aea562 1062
c917dfe5 1063 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 1064 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 1065 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
1066
1067 memset(&c, 0, sizeof(c));
1068 c.common.opcode = nvme_admin_async_event;
1069 c.common.command_id = req->tag;
1070
1efccc9d 1071 blk_mq_free_hctx_request(nvmeq->hctx, req);
a4aea562
MB
1072 return __nvme_submit_cmd(nvmeq, &c);
1073}
1074
1075static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
1076 struct nvme_command *cmd,
1077 struct async_cmd_info *cmdinfo, unsigned timeout)
1078{
a4aea562
MB
1079 struct nvme_queue *nvmeq = dev->queues[0];
1080 struct request *req;
1081 struct nvme_cmd_info *cmd_rq;
4d115420 1082
a4aea562 1083 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
9f173b33
DC
1084 if (IS_ERR(req))
1085 return PTR_ERR(req);
a4aea562
MB
1086
1087 req->timeout = timeout;
1088 cmd_rq = blk_mq_rq_to_pdu(req);
1089 cmdinfo->req = req;
1090 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1091 cmdinfo->status = -EINTR;
a4aea562
MB
1092
1093 cmd->common.command_id = req->tag;
1094
4f5099af 1095 return nvme_submit_cmd(nvmeq, cmd);
4d115420
KB
1096}
1097
b60503ba
MW
1098static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1099{
b60503ba
MW
1100 struct nvme_command c;
1101
1102 memset(&c, 0, sizeof(c));
1103 c.delete_queue.opcode = opcode;
1104 c.delete_queue.qid = cpu_to_le16(id);
1105
d29ec824 1106 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1107}
1108
1109static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1110 struct nvme_queue *nvmeq)
1111{
b60503ba
MW
1112 struct nvme_command c;
1113 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1114
d29ec824
CH
1115 /*
1116 * Note: we (ab)use the fact the the prp fields survive if no data
1117 * is attached to the request.
1118 */
b60503ba
MW
1119 memset(&c, 0, sizeof(c));
1120 c.create_cq.opcode = nvme_admin_create_cq;
1121 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1122 c.create_cq.cqid = cpu_to_le16(qid);
1123 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1124 c.create_cq.cq_flags = cpu_to_le16(flags);
1125 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1126
d29ec824 1127 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1128}
1129
1130static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1131 struct nvme_queue *nvmeq)
1132{
b60503ba
MW
1133 struct nvme_command c;
1134 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1135
d29ec824
CH
1136 /*
1137 * Note: we (ab)use the fact the the prp fields survive if no data
1138 * is attached to the request.
1139 */
b60503ba
MW
1140 memset(&c, 0, sizeof(c));
1141 c.create_sq.opcode = nvme_admin_create_sq;
1142 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1143 c.create_sq.sqid = cpu_to_le16(qid);
1144 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1145 c.create_sq.sq_flags = cpu_to_le16(flags);
1146 c.create_sq.cqid = cpu_to_le16(qid);
1147
d29ec824 1148 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1149}
1150
1151static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1152{
1153 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1154}
1155
1156static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1157{
1158 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1159}
1160
d29ec824 1161int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
bc5fc7e4 1162{
d29ec824
CH
1163 struct nvme_command c = {
1164 .identify.opcode = nvme_admin_identify,
1165 .identify.cns = cpu_to_le32(1),
1166 };
1167 int error;
bc5fc7e4 1168
d29ec824
CH
1169 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1170 if (!*id)
1171 return -ENOMEM;
1172
1173 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1174 sizeof(struct nvme_id_ctrl));
1175 if (error)
1176 kfree(*id);
1177 return error;
1178}
1179
1180int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1181 struct nvme_id_ns **id)
1182{
1183 struct nvme_command c = {
1184 .identify.opcode = nvme_admin_identify,
1185 .identify.nsid = cpu_to_le32(nsid),
1186 };
1187 int error;
bc5fc7e4 1188
d29ec824
CH
1189 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1190 if (!*id)
1191 return -ENOMEM;
1192
1193 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1194 sizeof(struct nvme_id_ns));
1195 if (error)
1196 kfree(*id);
1197 return error;
bc5fc7e4
MW
1198}
1199
5d0f6131 1200int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
08df1e05 1201 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
1202{
1203 struct nvme_command c;
1204
1205 memset(&c, 0, sizeof(c));
1206 c.features.opcode = nvme_admin_get_features;
a42cecce 1207 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
1208 c.features.prp1 = cpu_to_le64(dma_addr);
1209 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 1210
d29ec824
CH
1211 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1212 result, 0);
df348139
MW
1213}
1214
5d0f6131
VV
1215int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1216 dma_addr_t dma_addr, u32 *result)
df348139
MW
1217{
1218 struct nvme_command c;
1219
1220 memset(&c, 0, sizeof(c));
1221 c.features.opcode = nvme_admin_set_features;
1222 c.features.prp1 = cpu_to_le64(dma_addr);
1223 c.features.fid = cpu_to_le32(fid);
1224 c.features.dword11 = cpu_to_le32(dword11);
1225
d29ec824
CH
1226 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1227 result, 0);
1228}
1229
1230int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1231{
1232 struct nvme_command c = {
1233 .common.opcode = nvme_admin_get_log_page,
1234 .common.nsid = cpu_to_le32(0xFFFFFFFF),
1235 .common.cdw10[0] = cpu_to_le32(
1236 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1237 NVME_LOG_SMART),
1238 };
1239 int error;
1240
1241 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1242 if (!*log)
1243 return -ENOMEM;
1244
1245 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1246 sizeof(struct nvme_smart_log));
1247 if (error)
1248 kfree(*log);
1249 return error;
bc5fc7e4
MW
1250}
1251
c30341dc 1252/**
a4aea562 1253 * nvme_abort_req - Attempt aborting a request
c30341dc
KB
1254 *
1255 * Schedule controller reset if the command was already aborted once before and
1256 * still hasn't been returned to the driver, or if this is the admin queue.
1257 */
a4aea562 1258static void nvme_abort_req(struct request *req)
c30341dc 1259{
a4aea562
MB
1260 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1261 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1262 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1263 struct request *abort_req;
1264 struct nvme_cmd_info *abort_cmd;
1265 struct nvme_command cmd;
c30341dc 1266
a4aea562 1267 if (!nvmeq->qid || cmd_rq->aborted) {
7a509a6b
KB
1268 unsigned long flags;
1269
1270 spin_lock_irqsave(&dev_list_lock, flags);
c30341dc 1271 if (work_busy(&dev->reset_work))
7a509a6b 1272 goto out;
c30341dc 1273 list_del_init(&dev->node);
e75ec752 1274 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
a4aea562 1275 req->tag, nvmeq->qid);
9ca97374 1276 dev->reset_workfn = nvme_reset_failed_dev;
c30341dc 1277 queue_work(nvme_workq, &dev->reset_work);
7a509a6b
KB
1278 out:
1279 spin_unlock_irqrestore(&dev_list_lock, flags);
c30341dc
KB
1280 return;
1281 }
1282
1283 if (!dev->abort_limit)
1284 return;
1285
a4aea562
MB
1286 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1287 false);
9f173b33 1288 if (IS_ERR(abort_req))
c30341dc
KB
1289 return;
1290
a4aea562
MB
1291 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1292 nvme_set_info(abort_cmd, abort_req, abort_completion);
1293
c30341dc
KB
1294 memset(&cmd, 0, sizeof(cmd));
1295 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1296 cmd.abort.cid = req->tag;
c30341dc 1297 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1298 cmd.abort.command_id = abort_req->tag;
c30341dc
KB
1299
1300 --dev->abort_limit;
a4aea562 1301 cmd_rq->aborted = 1;
c30341dc 1302
a4aea562 1303 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
c30341dc 1304 nvmeq->qid);
a4aea562
MB
1305 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1306 dev_warn(nvmeq->q_dmadev,
1307 "Could not abort I/O %d QID %d",
1308 req->tag, nvmeq->qid);
c87fd540 1309 blk_mq_free_request(abort_req);
a4aea562 1310 }
c30341dc
KB
1311}
1312
a4aea562
MB
1313static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1314 struct request *req, void *data, bool reserved)
a09115b2 1315{
a4aea562
MB
1316 struct nvme_queue *nvmeq = data;
1317 void *ctx;
1318 nvme_completion_fn fn;
1319 struct nvme_cmd_info *cmd;
cef6a948
KB
1320 struct nvme_completion cqe;
1321
1322 if (!blk_mq_request_started(req))
1323 return;
a09115b2 1324
a4aea562 1325 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1326
a4aea562
MB
1327 if (cmd->ctx == CMD_CTX_CANCELLED)
1328 return;
1329
cef6a948
KB
1330 if (blk_queue_dying(req->q))
1331 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1332 else
1333 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1334
1335
a4aea562
MB
1336 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1337 req->tag, nvmeq->qid);
1338 ctx = cancel_cmd_info(cmd, &fn);
1339 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1340}
1341
a4aea562 1342static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
9e866774 1343{
a4aea562
MB
1344 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1345 struct nvme_queue *nvmeq = cmd->nvmeq;
1346
1347 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1348 nvmeq->qid);
7a509a6b 1349 spin_lock_irq(&nvmeq->q_lock);
07836e65 1350 nvme_abort_req(req);
7a509a6b 1351 spin_unlock_irq(&nvmeq->q_lock);
a4aea562 1352
07836e65
KB
1353 /*
1354 * The aborted req will be completed on receiving the abort req.
1355 * We enable the timer again. If hit twice, it'll cause a device reset,
1356 * as the device then is in a faulty state.
1357 */
1358 return BLK_EH_RESET_TIMER;
a4aea562 1359}
22404274 1360
a4aea562
MB
1361static void nvme_free_queue(struct nvme_queue *nvmeq)
1362{
9e866774
MW
1363 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1364 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1365 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1366 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1367 kfree(nvmeq);
1368}
1369
a1a5ef99 1370static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1371{
1372 int i;
1373
a1a5ef99 1374 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1375 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1376 dev->queue_count--;
a4aea562 1377 dev->queues[i] = NULL;
f435c282 1378 nvme_free_queue(nvmeq);
121c7ad4 1379 }
22404274
KB
1380}
1381
4d115420
KB
1382/**
1383 * nvme_suspend_queue - put queue into suspended state
1384 * @nvmeq - queue to suspend
4d115420
KB
1385 */
1386static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1387{
2b25d981 1388 int vector;
b60503ba 1389
a09115b2 1390 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1391 if (nvmeq->cq_vector == -1) {
1392 spin_unlock_irq(&nvmeq->q_lock);
1393 return 1;
1394 }
1395 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1396 nvmeq->dev->online_queues--;
2b25d981 1397 nvmeq->cq_vector = -1;
a09115b2
MW
1398 spin_unlock_irq(&nvmeq->q_lock);
1399
6df3dbc8
KB
1400 if (!nvmeq->qid && nvmeq->dev->admin_q)
1401 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1402
aba2080f
MW
1403 irq_set_affinity_hint(vector, NULL);
1404 free_irq(vector, nvmeq);
b60503ba 1405
4d115420
KB
1406 return 0;
1407}
b60503ba 1408
4d115420
KB
1409static void nvme_clear_queue(struct nvme_queue *nvmeq)
1410{
a4aea562
MB
1411 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1412
22404274 1413 spin_lock_irq(&nvmeq->q_lock);
a4aea562
MB
1414 if (hctx && hctx->tags)
1415 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
22404274 1416 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1417}
1418
4d115420
KB
1419static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1420{
a4aea562 1421 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1422
1423 if (!nvmeq)
1424 return;
1425 if (nvme_suspend_queue(nvmeq))
1426 return;
1427
0e53d180
KB
1428 /* Don't tell the adapter to delete the admin queue.
1429 * Don't tell a removed adapter to delete IO queues. */
1430 if (qid && readl(&dev->bar->csts) != -1) {
b60503ba
MW
1431 adapter_delete_sq(dev, qid);
1432 adapter_delete_cq(dev, qid);
1433 }
07836e65
KB
1434
1435 spin_lock_irq(&nvmeq->q_lock);
1436 nvme_process_cq(nvmeq);
1437 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1438}
1439
1440static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1441 int depth)
b60503ba 1442{
a4aea562 1443 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1444 if (!nvmeq)
1445 return NULL;
1446
e75ec752 1447 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1448 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1449 if (!nvmeq->cqes)
1450 goto free_nvmeq;
b60503ba 1451
e75ec752 1452 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
b60503ba
MW
1453 &nvmeq->sq_dma_addr, GFP_KERNEL);
1454 if (!nvmeq->sq_cmds)
1455 goto free_cqdma;
1456
e75ec752 1457 nvmeq->q_dmadev = dev->dev;
091b6092 1458 nvmeq->dev = dev;
3193f07b
MW
1459 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1460 dev->instance, qid);
b60503ba
MW
1461 spin_lock_init(&nvmeq->q_lock);
1462 nvmeq->cq_head = 0;
82123460 1463 nvmeq->cq_phase = 1;
b80d5ccc 1464 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1465 nvmeq->q_depth = depth;
c30341dc 1466 nvmeq->qid = qid;
22404274 1467 dev->queue_count++;
a4aea562 1468 dev->queues[qid] = nvmeq;
b60503ba
MW
1469
1470 return nvmeq;
1471
1472 free_cqdma:
e75ec752 1473 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1474 nvmeq->cq_dma_addr);
1475 free_nvmeq:
1476 kfree(nvmeq);
1477 return NULL;
1478}
1479
3001082c
MW
1480static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1481 const char *name)
1482{
58ffacb5
MW
1483 if (use_threaded_interrupts)
1484 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1485 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1486 name, nvmeq);
3001082c 1487 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1488 IRQF_SHARED, name, nvmeq);
3001082c
MW
1489}
1490
22404274 1491static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1492{
22404274 1493 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1494
7be50e93 1495 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1496 nvmeq->sq_tail = 0;
1497 nvmeq->cq_head = 0;
1498 nvmeq->cq_phase = 1;
b80d5ccc 1499 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1500 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1501 dev->online_queues++;
7be50e93 1502 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1503}
1504
1505static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1506{
1507 struct nvme_dev *dev = nvmeq->dev;
1508 int result;
3f85d50b 1509
2b25d981 1510 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1511 result = adapter_alloc_cq(dev, qid, nvmeq);
1512 if (result < 0)
22404274 1513 return result;
b60503ba
MW
1514
1515 result = adapter_alloc_sq(dev, qid, nvmeq);
1516 if (result < 0)
1517 goto release_cq;
1518
3193f07b 1519 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1520 if (result < 0)
1521 goto release_sq;
1522
22404274 1523 nvme_init_queue(nvmeq, qid);
22404274 1524 return result;
b60503ba
MW
1525
1526 release_sq:
1527 adapter_delete_sq(dev, qid);
1528 release_cq:
1529 adapter_delete_cq(dev, qid);
22404274 1530 return result;
b60503ba
MW
1531}
1532
ba47e386
MW
1533static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1534{
1535 unsigned long timeout;
1536 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1537
1538 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1539
1540 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1541 msleep(100);
1542 if (fatal_signal_pending(current))
1543 return -EINTR;
1544 if (time_after(jiffies, timeout)) {
e75ec752 1545 dev_err(dev->dev,
27e8166c
MW
1546 "Device not ready; aborting %s\n", enabled ?
1547 "initialisation" : "reset");
ba47e386
MW
1548 return -ENODEV;
1549 }
1550 }
1551
1552 return 0;
1553}
1554
1555/*
1556 * If the device has been passed off to us in an enabled state, just clear
1557 * the enabled bit. The spec says we should set the 'shutdown notification
1558 * bits', but doing so may cause the device to complete commands to the
1559 * admin queue ... and we don't know what memory that might be pointing at!
1560 */
1561static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1562{
01079522
DM
1563 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1564 dev->ctrl_config &= ~NVME_CC_ENABLE;
1565 writel(dev->ctrl_config, &dev->bar->cc);
44af146a 1566
ba47e386
MW
1567 return nvme_wait_ready(dev, cap, false);
1568}
1569
1570static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1571{
01079522
DM
1572 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1573 dev->ctrl_config |= NVME_CC_ENABLE;
1574 writel(dev->ctrl_config, &dev->bar->cc);
1575
ba47e386
MW
1576 return nvme_wait_ready(dev, cap, true);
1577}
1578
1894d8f1
KB
1579static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1580{
1581 unsigned long timeout;
1894d8f1 1582
01079522
DM
1583 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1584 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1585
1586 writel(dev->ctrl_config, &dev->bar->cc);
1894d8f1 1587
2484f407 1588 timeout = SHUTDOWN_TIMEOUT + jiffies;
1894d8f1
KB
1589 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1590 NVME_CSTS_SHST_CMPLT) {
1591 msleep(100);
1592 if (fatal_signal_pending(current))
1593 return -EINTR;
1594 if (time_after(jiffies, timeout)) {
e75ec752 1595 dev_err(dev->dev,
1894d8f1
KB
1596 "Device shutdown incomplete; abort shutdown\n");
1597 return -ENODEV;
1598 }
1599 }
1600
1601 return 0;
1602}
1603
a4aea562 1604static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1605 .queue_rq = nvme_queue_rq,
a4aea562
MB
1606 .map_queue = blk_mq_map_queue,
1607 .init_hctx = nvme_admin_init_hctx,
2c30540b 1608 .exit_hctx = nvme_exit_hctx,
a4aea562
MB
1609 .init_request = nvme_admin_init_request,
1610 .timeout = nvme_timeout,
1611};
1612
1613static struct blk_mq_ops nvme_mq_ops = {
1614 .queue_rq = nvme_queue_rq,
1615 .map_queue = blk_mq_map_queue,
1616 .init_hctx = nvme_init_hctx,
2c30540b 1617 .exit_hctx = nvme_exit_hctx,
a4aea562
MB
1618 .init_request = nvme_init_request,
1619 .timeout = nvme_timeout,
1620};
1621
ea191d2f
KB
1622static void nvme_dev_remove_admin(struct nvme_dev *dev)
1623{
1624 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1625 blk_cleanup_queue(dev->admin_q);
1626 blk_mq_free_tag_set(&dev->admin_tagset);
1627 }
1628}
1629
a4aea562
MB
1630static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1631{
1632 if (!dev->admin_q) {
1633 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1634 dev->admin_tagset.nr_hw_queues = 1;
1635 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1636 dev->admin_tagset.reserved_tags = 1;
a4aea562 1637 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1638 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1639 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1640 dev->admin_tagset.driver_data = dev;
1641
1642 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1643 return -ENOMEM;
1644
1645 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
35b489d3 1646 if (IS_ERR(dev->admin_q)) {
a4aea562
MB
1647 blk_mq_free_tag_set(&dev->admin_tagset);
1648 return -ENOMEM;
1649 }
ea191d2f
KB
1650 if (!blk_get_queue(dev->admin_q)) {
1651 nvme_dev_remove_admin(dev);
1652 return -ENODEV;
1653 }
0fb59cbc
KB
1654 } else
1655 blk_mq_unfreeze_queue(dev->admin_q);
a4aea562
MB
1656
1657 return 0;
1658}
1659
8d85fce7 1660static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1661{
ba47e386 1662 int result;
b60503ba 1663 u32 aqa;
ba47e386 1664 u64 cap = readq(&dev->bar->cap);
b60503ba 1665 struct nvme_queue *nvmeq;
1d090624
KB
1666 unsigned page_shift = PAGE_SHIFT;
1667 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1668 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1669
1670 if (page_shift < dev_page_min) {
e75ec752 1671 dev_err(dev->dev,
1d090624
KB
1672 "Minimum device page size (%u) too large for "
1673 "host (%u)\n", 1 << dev_page_min,
1674 1 << page_shift);
1675 return -ENODEV;
1676 }
1677 if (page_shift > dev_page_max) {
e75ec752 1678 dev_info(dev->dev,
1d090624
KB
1679 "Device maximum page size (%u) smaller than "
1680 "host (%u); enabling work-around\n",
1681 1 << dev_page_max, 1 << page_shift);
1682 page_shift = dev_page_max;
1683 }
b60503ba 1684
ba47e386
MW
1685 result = nvme_disable_ctrl(dev, cap);
1686 if (result < 0)
1687 return result;
b60503ba 1688
a4aea562 1689 nvmeq = dev->queues[0];
cd638946 1690 if (!nvmeq) {
2b25d981 1691 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1692 if (!nvmeq)
1693 return -ENOMEM;
cd638946 1694 }
b60503ba
MW
1695
1696 aqa = nvmeq->q_depth - 1;
1697 aqa |= aqa << 16;
1698
1d090624
KB
1699 dev->page_size = 1 << page_shift;
1700
01079522 1701 dev->ctrl_config = NVME_CC_CSS_NVM;
1d090624 1702 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
b60503ba 1703 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1704 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba
MW
1705
1706 writel(aqa, &dev->bar->aqa);
1707 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1708 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
b60503ba 1709
ba47e386 1710 result = nvme_enable_ctrl(dev, cap);
025c557a 1711 if (result)
a4aea562
MB
1712 goto free_nvmeq;
1713
2b25d981 1714 nvmeq->cq_vector = 0;
3193f07b 1715 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
025c557a 1716 if (result)
0fb59cbc 1717 goto free_nvmeq;
025c557a 1718
b60503ba 1719 return result;
a4aea562 1720
a4aea562
MB
1721 free_nvmeq:
1722 nvme_free_queues(dev, 0);
1723 return result;
b60503ba
MW
1724}
1725
a53295b6
MW
1726static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1727{
1728 struct nvme_dev *dev = ns->dev;
a53295b6
MW
1729 struct nvme_user_io io;
1730 struct nvme_command c;
d29ec824 1731 unsigned length, meta_len;
a67a9513 1732 int status, write;
a67a9513
KB
1733 dma_addr_t meta_dma = 0;
1734 void *meta = NULL;
a53295b6
MW
1735
1736 if (copy_from_user(&io, uio, sizeof(io)))
1737 return -EFAULT;
6c7d4945
MW
1738
1739 switch (io.opcode) {
1740 case nvme_cmd_write:
1741 case nvme_cmd_read:
6bbf1acd 1742 case nvme_cmd_compare:
6413214c 1743 break;
6c7d4945 1744 default:
6bbf1acd 1745 return -EINVAL;
6c7d4945
MW
1746 }
1747
d29ec824
CH
1748 length = (io.nblocks + 1) << ns->lba_shift;
1749 meta_len = (io.nblocks + 1) * ns->ms;
1750 write = io.opcode & 1;
a53295b6 1751
a67a9513 1752 if (meta_len) {
d29ec824
CH
1753 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1754 return -EINVAL;
1755
1756 if (ns->ext) {
1757 length += meta_len;
1758 meta_len = 0;
1759 }
1760
e75ec752 1761 meta = dma_alloc_coherent(dev->dev, meta_len,
a67a9513
KB
1762 &meta_dma, GFP_KERNEL);
1763 if (!meta) {
1764 status = -ENOMEM;
1765 goto unmap;
1766 }
1767 if (write) {
1768 if (copy_from_user(meta, (void __user *)io.metadata,
1769 meta_len)) {
1770 status = -EFAULT;
1771 goto unmap;
1772 }
1773 }
1774 }
1775
a53295b6
MW
1776 memset(&c, 0, sizeof(c));
1777 c.rw.opcode = io.opcode;
1778 c.rw.flags = io.flags;
6c7d4945 1779 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1780 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1781 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1782 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1783 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1784 c.rw.reftag = cpu_to_le32(io.reftag);
1785 c.rw.apptag = cpu_to_le16(io.apptag);
1786 c.rw.appmask = cpu_to_le16(io.appmask);
a67a9513 1787 c.rw.metadata = cpu_to_le64(meta_dma);
d29ec824
CH
1788
1789 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1790 (void __user *)io.addr, length, NULL, 0);
f410c680 1791 unmap:
a67a9513
KB
1792 if (meta) {
1793 if (status == NVME_SC_SUCCESS && !write) {
1794 if (copy_to_user((void __user *)io.metadata, meta,
1795 meta_len))
1796 status = -EFAULT;
1797 }
e75ec752 1798 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
f410c680 1799 }
a53295b6
MW
1800 return status;
1801}
1802
a4aea562
MB
1803static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1804 struct nvme_passthru_cmd __user *ucmd)
6ee44cdc 1805{
7963e521 1806 struct nvme_passthru_cmd cmd;
6ee44cdc 1807 struct nvme_command c;
d29ec824
CH
1808 unsigned timeout = 0;
1809 int status;
6ee44cdc 1810
6bbf1acd
MW
1811 if (!capable(CAP_SYS_ADMIN))
1812 return -EACCES;
1813 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1814 return -EFAULT;
6ee44cdc
MW
1815
1816 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1817 c.common.opcode = cmd.opcode;
1818 c.common.flags = cmd.flags;
1819 c.common.nsid = cpu_to_le32(cmd.nsid);
1820 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1821 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1822 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1823 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1824 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1825 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1826 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1827 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1828
d29ec824
CH
1829 if (cmd.timeout_ms)
1830 timeout = msecs_to_jiffies(cmd.timeout_ms);
f705f837
CH
1831
1832 status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
d29ec824
CH
1833 NULL, (void __user *)cmd.addr, cmd.data_len,
1834 &cmd.result, timeout);
1835 if (status >= 0) {
1836 if (put_user(cmd.result, &ucmd->result))
1837 return -EFAULT;
6bbf1acd 1838 }
f4f117f6 1839
6ee44cdc
MW
1840 return status;
1841}
1842
b60503ba
MW
1843static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1844 unsigned long arg)
1845{
1846 struct nvme_ns *ns = bdev->bd_disk->private_data;
1847
1848 switch (cmd) {
6bbf1acd 1849 case NVME_IOCTL_ID:
c3bfe717 1850 force_successful_syscall_return();
6bbf1acd
MW
1851 return ns->ns_id;
1852 case NVME_IOCTL_ADMIN_CMD:
a4aea562 1853 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
7963e521 1854 case NVME_IOCTL_IO_CMD:
a4aea562 1855 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
a53295b6
MW
1856 case NVME_IOCTL_SUBMIT_IO:
1857 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1858 case SG_GET_VERSION_NUM:
1859 return nvme_sg_get_version_num((void __user *)arg);
1860 case SG_IO:
1861 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1862 default:
1863 return -ENOTTY;
1864 }
1865}
1866
320a3827
KB
1867#ifdef CONFIG_COMPAT
1868static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1869 unsigned int cmd, unsigned long arg)
1870{
320a3827
KB
1871 switch (cmd) {
1872 case SG_IO:
e179729a 1873 return -ENOIOCTLCMD;
320a3827
KB
1874 }
1875 return nvme_ioctl(bdev, mode, cmd, arg);
1876}
1877#else
1878#define nvme_compat_ioctl NULL
1879#endif
1880
9ac27090
KB
1881static int nvme_open(struct block_device *bdev, fmode_t mode)
1882{
9e60352c
KB
1883 int ret = 0;
1884 struct nvme_ns *ns;
9ac27090 1885
9e60352c
KB
1886 spin_lock(&dev_list_lock);
1887 ns = bdev->bd_disk->private_data;
1888 if (!ns)
1889 ret = -ENXIO;
1890 else if (!kref_get_unless_zero(&ns->dev->kref))
1891 ret = -ENXIO;
1892 spin_unlock(&dev_list_lock);
1893
1894 return ret;
9ac27090
KB
1895}
1896
1897static void nvme_free_dev(struct kref *kref);
1898
1899static void nvme_release(struct gendisk *disk, fmode_t mode)
1900{
1901 struct nvme_ns *ns = disk->private_data;
1902 struct nvme_dev *dev = ns->dev;
1903
1904 kref_put(&dev->kref, nvme_free_dev);
1905}
1906
4cc09e2d
KB
1907static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1908{
1909 /* some standard values */
1910 geo->heads = 1 << 6;
1911 geo->sectors = 1 << 5;
1912 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1913 return 0;
1914}
1915
e1e5e564
KB
1916static void nvme_config_discard(struct nvme_ns *ns)
1917{
1918 u32 logical_block_size = queue_logical_block_size(ns->queue);
1919 ns->queue->limits.discard_zeroes_data = 0;
1920 ns->queue->limits.discard_alignment = logical_block_size;
1921 ns->queue->limits.discard_granularity = logical_block_size;
1922 ns->queue->limits.max_discard_sectors = 0xffffffff;
1923 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1924}
1925
1b9dbf7f
KB
1926static int nvme_revalidate_disk(struct gendisk *disk)
1927{
1928 struct nvme_ns *ns = disk->private_data;
1929 struct nvme_dev *dev = ns->dev;
1930 struct nvme_id_ns *id;
a67a9513
KB
1931 u8 lbaf, pi_type;
1932 u16 old_ms;
e1e5e564 1933 unsigned short bs;
1b9dbf7f 1934
d29ec824
CH
1935 if (nvme_identify_ns(dev, ns->ns_id, &id)) {
1936 dev_warn(dev->dev, "%s: Identify failure\n", __func__);
1b9dbf7f
KB
1937 return 0;
1938 }
1939
e1e5e564
KB
1940 old_ms = ns->ms;
1941 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1b9dbf7f 1942 ns->lba_shift = id->lbaf[lbaf].ds;
e1e5e564 1943 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
a67a9513 1944 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
e1e5e564
KB
1945
1946 /*
1947 * If identify namespace failed, use default 512 byte block size so
1948 * block layer can use before failing read/write for 0 capacity.
1949 */
1950 if (ns->lba_shift == 0)
1951 ns->lba_shift = 9;
1952 bs = 1 << ns->lba_shift;
1953
1954 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
1955 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
1956 id->dps & NVME_NS_DPS_PI_MASK : 0;
1957
52b68d7e
KB
1958 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
1959 ns->ms != old_ms ||
e1e5e564 1960 bs != queue_logical_block_size(disk->queue) ||
a67a9513 1961 (ns->ms && ns->ext)))
e1e5e564
KB
1962 blk_integrity_unregister(disk);
1963
1964 ns->pi_type = pi_type;
1965 blk_queue_logical_block_size(ns->queue, bs);
1966
52b68d7e 1967 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
a67a9513 1968 !ns->ext)
e1e5e564
KB
1969 nvme_init_integrity(ns);
1970
52b68d7e 1971 if (id->ncap == 0 || (ns->ms && !blk_get_integrity(disk)))
e1e5e564
KB
1972 set_capacity(disk, 0);
1973 else
1974 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1975
1976 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1977 nvme_config_discard(ns);
1b9dbf7f 1978
d29ec824 1979 kfree(id);
1b9dbf7f
KB
1980 return 0;
1981}
1982
b60503ba
MW
1983static const struct block_device_operations nvme_fops = {
1984 .owner = THIS_MODULE,
1985 .ioctl = nvme_ioctl,
320a3827 1986 .compat_ioctl = nvme_compat_ioctl,
9ac27090
KB
1987 .open = nvme_open,
1988 .release = nvme_release,
4cc09e2d 1989 .getgeo = nvme_getgeo,
1b9dbf7f 1990 .revalidate_disk= nvme_revalidate_disk,
b60503ba
MW
1991};
1992
1fa6aead
MW
1993static int nvme_kthread(void *data)
1994{
d4b4ff8e 1995 struct nvme_dev *dev, *next;
1fa6aead
MW
1996
1997 while (!kthread_should_stop()) {
564a232c 1998 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 1999 spin_lock(&dev_list_lock);
d4b4ff8e 2000 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 2001 int i;
07836e65 2002 if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
d4b4ff8e
KB
2003 if (work_busy(&dev->reset_work))
2004 continue;
2005 list_del_init(&dev->node);
e75ec752 2006 dev_warn(dev->dev,
a4aea562
MB
2007 "Failed status: %x, reset controller\n",
2008 readl(&dev->bar->csts));
9ca97374 2009 dev->reset_workfn = nvme_reset_failed_dev;
d4b4ff8e
KB
2010 queue_work(nvme_workq, &dev->reset_work);
2011 continue;
2012 }
1fa6aead 2013 for (i = 0; i < dev->queue_count; i++) {
a4aea562 2014 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
2015 if (!nvmeq)
2016 continue;
1fa6aead 2017 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 2018 nvme_process_cq(nvmeq);
6fccf938
KB
2019
2020 while ((i == 0) && (dev->event_limit > 0)) {
a4aea562 2021 if (nvme_submit_async_admin_req(dev))
6fccf938
KB
2022 break;
2023 dev->event_limit--;
2024 }
1fa6aead
MW
2025 spin_unlock_irq(&nvmeq->q_lock);
2026 }
2027 }
2028 spin_unlock(&dev_list_lock);
acb7aa0d 2029 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
2030 }
2031 return 0;
2032}
2033
e1e5e564 2034static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
b60503ba
MW
2035{
2036 struct nvme_ns *ns;
2037 struct gendisk *disk;
e75ec752 2038 int node = dev_to_node(dev->dev);
b60503ba 2039
a4aea562 2040 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
b60503ba 2041 if (!ns)
e1e5e564
KB
2042 return;
2043
a4aea562 2044 ns->queue = blk_mq_init_queue(&dev->tagset);
9f173b33 2045 if (IS_ERR(ns->queue))
b60503ba 2046 goto out_free_ns;
4eeb9215
MW
2047 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2048 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
a4aea562 2049 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
b60503ba
MW
2050 ns->dev = dev;
2051 ns->queue->queuedata = ns;
2052
a4aea562 2053 disk = alloc_disk_node(0, node);
b60503ba
MW
2054 if (!disk)
2055 goto out_free_queue;
a4aea562 2056
5aff9382 2057 ns->ns_id = nsid;
b60503ba 2058 ns->disk = disk;
e1e5e564
KB
2059 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2060 list_add_tail(&ns->list, &dev->namespaces);
2061
e9ef4636 2062 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
8fc23e03
KB
2063 if (dev->max_hw_sectors)
2064 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
a4aea562
MB
2065 if (dev->stripe_size)
2066 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
a7d2ce28
KB
2067 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2068 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
b60503ba
MW
2069
2070 disk->major = nvme_major;
469071a3 2071 disk->first_minor = 0;
b60503ba
MW
2072 disk->fops = &nvme_fops;
2073 disk->private_data = ns;
2074 disk->queue = ns->queue;
b3fffdef 2075 disk->driverfs_dev = dev->device;
469071a3 2076 disk->flags = GENHD_FL_EXT_DEVT;
5aff9382 2077 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba 2078
e1e5e564
KB
2079 /*
2080 * Initialize capacity to 0 until we establish the namespace format and
2081 * setup integrity extentions if necessary. The revalidate_disk after
2082 * add_disk allows the driver to register with integrity if the format
2083 * requires it.
2084 */
2085 set_capacity(disk, 0);
2086 nvme_revalidate_disk(ns->disk);
2087 add_disk(ns->disk);
2088 if (ns->ms)
2089 revalidate_disk(ns->disk);
2090 return;
b60503ba
MW
2091 out_free_queue:
2092 blk_cleanup_queue(ns->queue);
2093 out_free_ns:
2094 kfree(ns);
b60503ba
MW
2095}
2096
42f61420
KB
2097static void nvme_create_io_queues(struct nvme_dev *dev)
2098{
a4aea562 2099 unsigned i;
42f61420 2100
a4aea562 2101 for (i = dev->queue_count; i <= dev->max_qid; i++)
2b25d981 2102 if (!nvme_alloc_queue(dev, i, dev->q_depth))
42f61420
KB
2103 break;
2104
a4aea562
MB
2105 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2106 if (nvme_create_queue(dev->queues[i], i))
42f61420
KB
2107 break;
2108}
2109
b3b06812 2110static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
2111{
2112 int status;
2113 u32 result;
b3b06812 2114 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 2115
df348139 2116 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 2117 &result);
27e8166c
MW
2118 if (status < 0)
2119 return status;
2120 if (status > 0) {
e75ec752 2121 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
badc34d4 2122 return 0;
27e8166c 2123 }
b60503ba
MW
2124 return min(result & 0xffff, result >> 16) + 1;
2125}
2126
9d713c2b
KB
2127static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2128{
b80d5ccc 2129 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
2130}
2131
8d85fce7 2132static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2133{
a4aea562 2134 struct nvme_queue *adminq = dev->queues[0];
e75ec752 2135 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 2136 int result, i, vecs, nr_io_queues, size;
b60503ba 2137
42f61420 2138 nr_io_queues = num_possible_cpus();
b348b7d5 2139 result = set_queue_count(dev, nr_io_queues);
badc34d4 2140 if (result <= 0)
1b23484b 2141 return result;
b348b7d5
MW
2142 if (result < nr_io_queues)
2143 nr_io_queues = result;
b60503ba 2144
9d713c2b
KB
2145 size = db_bar_size(dev, nr_io_queues);
2146 if (size > 8192) {
f1938f6e 2147 iounmap(dev->bar);
9d713c2b
KB
2148 do {
2149 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2150 if (dev->bar)
2151 break;
2152 if (!--nr_io_queues)
2153 return -ENOMEM;
2154 size = db_bar_size(dev, nr_io_queues);
2155 } while (1);
f1938f6e 2156 dev->dbs = ((void __iomem *)dev->bar) + 4096;
5a92e700 2157 adminq->q_db = dev->dbs;
f1938f6e
MW
2158 }
2159
9d713c2b 2160 /* Deregister the admin queue's interrupt */
3193f07b 2161 free_irq(dev->entry[0].vector, adminq);
9d713c2b 2162
e32efbfc
JA
2163 /*
2164 * If we enable msix early due to not intx, disable it again before
2165 * setting up the full range we need.
2166 */
2167 if (!pdev->irq)
2168 pci_disable_msix(pdev);
2169
be577fab 2170 for (i = 0; i < nr_io_queues; i++)
1b23484b 2171 dev->entry[i].entry = i;
be577fab
AG
2172 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2173 if (vecs < 0) {
2174 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2175 if (vecs < 0) {
2176 vecs = 1;
2177 } else {
2178 for (i = 0; i < vecs; i++)
2179 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
2180 }
2181 }
2182
063a8096
MW
2183 /*
2184 * Should investigate if there's a performance win from allocating
2185 * more queues than interrupt vectors; it might allow the submission
2186 * path to scale better, even if the receive path is limited by the
2187 * number of interrupts.
2188 */
2189 nr_io_queues = vecs;
42f61420 2190 dev->max_qid = nr_io_queues;
063a8096 2191
3193f07b 2192 result = queue_request_irq(dev, adminq, adminq->irqname);
a4aea562 2193 if (result)
22404274 2194 goto free_queues;
1b23484b 2195
cd638946 2196 /* Free previously allocated queues that are no longer usable */
42f61420 2197 nvme_free_queues(dev, nr_io_queues + 1);
a4aea562 2198 nvme_create_io_queues(dev);
9ecdc946 2199
22404274 2200 return 0;
b60503ba 2201
22404274 2202 free_queues:
a1a5ef99 2203 nvme_free_queues(dev, 1);
22404274 2204 return result;
b60503ba
MW
2205}
2206
422ef0c7
MW
2207/*
2208 * Return: error value if an error occurred setting up the queues or calling
2209 * Identify Device. 0 if these succeeded, even if adding some of the
2210 * namespaces failed. At the moment, these failures are silent. TBD which
2211 * failures should be reported.
2212 */
8d85fce7 2213static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2214{
e75ec752 2215 struct pci_dev *pdev = to_pci_dev(dev->dev);
c3bfe717
MW
2216 int res;
2217 unsigned nn, i;
51814232 2218 struct nvme_id_ctrl *ctrl;
159b67d7 2219 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
b60503ba 2220
d29ec824 2221 res = nvme_identify_ctrl(dev, &ctrl);
b60503ba 2222 if (res) {
e75ec752 2223 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
e1e5e564 2224 return -EIO;
b60503ba
MW
2225 }
2226
51814232 2227 nn = le32_to_cpup(&ctrl->nn);
0e5e4f0e 2228 dev->oncs = le16_to_cpup(&ctrl->oncs);
c30341dc 2229 dev->abort_limit = ctrl->acl + 1;
a7d2ce28 2230 dev->vwc = ctrl->vwc;
51814232
MW
2231 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2232 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2233 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 2234 if (ctrl->mdts)
8fc23e03 2235 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
68608c26 2236 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
a4aea562
MB
2237 (pdev->device == 0x0953) && ctrl->vs[3]) {
2238 unsigned int max_hw_sectors;
2239
159b67d7 2240 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
a4aea562
MB
2241 max_hw_sectors = dev->stripe_size >> (shift - 9);
2242 if (dev->max_hw_sectors) {
2243 dev->max_hw_sectors = min(max_hw_sectors,
2244 dev->max_hw_sectors);
2245 } else
2246 dev->max_hw_sectors = max_hw_sectors;
2247 }
d29ec824 2248 kfree(ctrl);
a4aea562
MB
2249
2250 dev->tagset.ops = &nvme_mq_ops;
2251 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2252 dev->tagset.timeout = NVME_IO_TIMEOUT;
e75ec752 2253 dev->tagset.numa_node = dev_to_node(dev->dev);
a4aea562
MB
2254 dev->tagset.queue_depth =
2255 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ac3dd5bd 2256 dev->tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
2257 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2258 dev->tagset.driver_data = dev;
2259
2260 if (blk_mq_alloc_tag_set(&dev->tagset))
e1e5e564 2261 return 0;
b60503ba 2262
e1e5e564
KB
2263 for (i = 1; i <= nn; i++)
2264 nvme_alloc_ns(dev, i);
b60503ba 2265
e1e5e564 2266 return 0;
b60503ba
MW
2267}
2268
0877cb0d
KB
2269static int nvme_dev_map(struct nvme_dev *dev)
2270{
42f61420 2271 u64 cap;
0877cb0d 2272 int bars, result = -ENOMEM;
e75ec752 2273 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2274
2275 if (pci_enable_device_mem(pdev))
2276 return result;
2277
2278 dev->entry[0].vector = pdev->irq;
2279 pci_set_master(pdev);
2280 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
2281 if (!bars)
2282 goto disable_pci;
2283
0877cb0d
KB
2284 if (pci_request_selected_regions(pdev, bars, "nvme"))
2285 goto disable_pci;
2286
e75ec752
CH
2287 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2288 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2289 goto disable;
0877cb0d 2290
0877cb0d
KB
2291 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2292 if (!dev->bar)
2293 goto disable;
e32efbfc 2294
0e53d180
KB
2295 if (readl(&dev->bar->csts) == -1) {
2296 result = -ENODEV;
2297 goto unmap;
2298 }
e32efbfc
JA
2299
2300 /*
2301 * Some devices don't advertse INTx interrupts, pre-enable a single
2302 * MSIX vec for setup. We'll adjust this later.
2303 */
2304 if (!pdev->irq) {
2305 result = pci_enable_msix(pdev, dev->entry, 1);
2306 if (result < 0)
2307 goto unmap;
2308 }
2309
42f61420
KB
2310 cap = readq(&dev->bar->cap);
2311 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2312 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
0877cb0d
KB
2313 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2314
2315 return 0;
2316
0e53d180
KB
2317 unmap:
2318 iounmap(dev->bar);
2319 dev->bar = NULL;
0877cb0d
KB
2320 disable:
2321 pci_release_regions(pdev);
2322 disable_pci:
2323 pci_disable_device(pdev);
2324 return result;
2325}
2326
2327static void nvme_dev_unmap(struct nvme_dev *dev)
2328{
e75ec752
CH
2329 struct pci_dev *pdev = to_pci_dev(dev->dev);
2330
2331 if (pdev->msi_enabled)
2332 pci_disable_msi(pdev);
2333 else if (pdev->msix_enabled)
2334 pci_disable_msix(pdev);
0877cb0d
KB
2335
2336 if (dev->bar) {
2337 iounmap(dev->bar);
2338 dev->bar = NULL;
e75ec752 2339 pci_release_regions(pdev);
0877cb0d
KB
2340 }
2341
e75ec752
CH
2342 if (pci_is_enabled(pdev))
2343 pci_disable_device(pdev);
0877cb0d
KB
2344}
2345
4d115420
KB
2346struct nvme_delq_ctx {
2347 struct task_struct *waiter;
2348 struct kthread_worker *worker;
2349 atomic_t refcount;
2350};
2351
2352static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2353{
2354 dq->waiter = current;
2355 mb();
2356
2357 for (;;) {
2358 set_current_state(TASK_KILLABLE);
2359 if (!atomic_read(&dq->refcount))
2360 break;
2361 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2362 fatal_signal_pending(current)) {
0fb59cbc
KB
2363 /*
2364 * Disable the controller first since we can't trust it
2365 * at this point, but leave the admin queue enabled
2366 * until all queue deletion requests are flushed.
2367 * FIXME: This may take a while if there are more h/w
2368 * queues than admin tags.
2369 */
4d115420 2370 set_current_state(TASK_RUNNING);
4d115420 2371 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
0fb59cbc 2372 nvme_clear_queue(dev->queues[0]);
4d115420 2373 flush_kthread_worker(dq->worker);
0fb59cbc 2374 nvme_disable_queue(dev, 0);
4d115420
KB
2375 return;
2376 }
2377 }
2378 set_current_state(TASK_RUNNING);
2379}
2380
2381static void nvme_put_dq(struct nvme_delq_ctx *dq)
2382{
2383 atomic_dec(&dq->refcount);
2384 if (dq->waiter)
2385 wake_up_process(dq->waiter);
2386}
2387
2388static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2389{
2390 atomic_inc(&dq->refcount);
2391 return dq;
2392}
2393
2394static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2395{
2396 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420
KB
2397 nvme_put_dq(dq);
2398}
2399
2400static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2401 kthread_work_func_t fn)
2402{
2403 struct nvme_command c;
2404
2405 memset(&c, 0, sizeof(c));
2406 c.delete_queue.opcode = opcode;
2407 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2408
2409 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
2410 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2411 ADMIN_TIMEOUT);
4d115420
KB
2412}
2413
2414static void nvme_del_cq_work_handler(struct kthread_work *work)
2415{
2416 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2417 cmdinfo.work);
2418 nvme_del_queue_end(nvmeq);
2419}
2420
2421static int nvme_delete_cq(struct nvme_queue *nvmeq)
2422{
2423 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2424 nvme_del_cq_work_handler);
2425}
2426
2427static void nvme_del_sq_work_handler(struct kthread_work *work)
2428{
2429 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2430 cmdinfo.work);
2431 int status = nvmeq->cmdinfo.status;
2432
2433 if (!status)
2434 status = nvme_delete_cq(nvmeq);
2435 if (status)
2436 nvme_del_queue_end(nvmeq);
2437}
2438
2439static int nvme_delete_sq(struct nvme_queue *nvmeq)
2440{
2441 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2442 nvme_del_sq_work_handler);
2443}
2444
2445static void nvme_del_queue_start(struct kthread_work *work)
2446{
2447 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2448 cmdinfo.work);
4d115420
KB
2449 if (nvme_delete_sq(nvmeq))
2450 nvme_del_queue_end(nvmeq);
2451}
2452
2453static void nvme_disable_io_queues(struct nvme_dev *dev)
2454{
2455 int i;
2456 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2457 struct nvme_delq_ctx dq;
2458 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2459 &worker, "nvme%d", dev->instance);
2460
2461 if (IS_ERR(kworker_task)) {
e75ec752 2462 dev_err(dev->dev,
4d115420
KB
2463 "Failed to create queue del task\n");
2464 for (i = dev->queue_count - 1; i > 0; i--)
2465 nvme_disable_queue(dev, i);
2466 return;
2467 }
2468
2469 dq.waiter = NULL;
2470 atomic_set(&dq.refcount, 0);
2471 dq.worker = &worker;
2472 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2473 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2474
2475 if (nvme_suspend_queue(nvmeq))
2476 continue;
2477 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2478 nvmeq->cmdinfo.worker = dq.worker;
2479 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2480 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2481 }
2482 nvme_wait_dq(&dq, dev);
2483 kthread_stop(kworker_task);
2484}
2485
b9afca3e
DM
2486/*
2487* Remove the node from the device list and check
2488* for whether or not we need to stop the nvme_thread.
2489*/
2490static void nvme_dev_list_remove(struct nvme_dev *dev)
2491{
2492 struct task_struct *tmp = NULL;
2493
2494 spin_lock(&dev_list_lock);
2495 list_del_init(&dev->node);
2496 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2497 tmp = nvme_thread;
2498 nvme_thread = NULL;
2499 }
2500 spin_unlock(&dev_list_lock);
2501
2502 if (tmp)
2503 kthread_stop(tmp);
2504}
2505
c9d3bf88
KB
2506static void nvme_freeze_queues(struct nvme_dev *dev)
2507{
2508 struct nvme_ns *ns;
2509
2510 list_for_each_entry(ns, &dev->namespaces, list) {
2511 blk_mq_freeze_queue_start(ns->queue);
2512
cddcd72b 2513 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2514 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2515 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2516
2517 blk_mq_cancel_requeue_work(ns->queue);
2518 blk_mq_stop_hw_queues(ns->queue);
2519 }
2520}
2521
2522static void nvme_unfreeze_queues(struct nvme_dev *dev)
2523{
2524 struct nvme_ns *ns;
2525
2526 list_for_each_entry(ns, &dev->namespaces, list) {
2527 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2528 blk_mq_unfreeze_queue(ns->queue);
2529 blk_mq_start_stopped_hw_queues(ns->queue, true);
2530 blk_mq_kick_requeue_list(ns->queue);
2531 }
2532}
2533
f0b50732 2534static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2535{
22404274 2536 int i;
7c1b2450 2537 u32 csts = -1;
22404274 2538
b9afca3e 2539 nvme_dev_list_remove(dev);
1fa6aead 2540
c9d3bf88
KB
2541 if (dev->bar) {
2542 nvme_freeze_queues(dev);
7c1b2450 2543 csts = readl(&dev->bar->csts);
c9d3bf88 2544 }
7c1b2450 2545 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2546 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2547 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2548 nvme_suspend_queue(nvmeq);
4d115420
KB
2549 }
2550 } else {
2551 nvme_disable_io_queues(dev);
1894d8f1 2552 nvme_shutdown_ctrl(dev);
4d115420
KB
2553 nvme_disable_queue(dev, 0);
2554 }
f0b50732 2555 nvme_dev_unmap(dev);
07836e65
KB
2556
2557 for (i = dev->queue_count - 1; i >= 0; i--)
2558 nvme_clear_queue(dev->queues[i]);
f0b50732
KB
2559}
2560
2561static void nvme_dev_remove(struct nvme_dev *dev)
2562{
9ac27090 2563 struct nvme_ns *ns;
f0b50732 2564
9ac27090 2565 list_for_each_entry(ns, &dev->namespaces, list) {
e1e5e564 2566 if (ns->disk->flags & GENHD_FL_UP) {
52b68d7e 2567 if (blk_get_integrity(ns->disk))
e1e5e564 2568 blk_integrity_unregister(ns->disk);
9ac27090 2569 del_gendisk(ns->disk);
e1e5e564 2570 }
cef6a948
KB
2571 if (!blk_queue_dying(ns->queue)) {
2572 blk_mq_abort_requeue_list(ns->queue);
9ac27090 2573 blk_cleanup_queue(ns->queue);
cef6a948 2574 }
b60503ba 2575 }
b60503ba
MW
2576}
2577
091b6092
MW
2578static int nvme_setup_prp_pools(struct nvme_dev *dev)
2579{
e75ec752 2580 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2581 PAGE_SIZE, PAGE_SIZE, 0);
2582 if (!dev->prp_page_pool)
2583 return -ENOMEM;
2584
99802a7a 2585 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2586 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2587 256, 256, 0);
2588 if (!dev->prp_small_pool) {
2589 dma_pool_destroy(dev->prp_page_pool);
2590 return -ENOMEM;
2591 }
091b6092
MW
2592 return 0;
2593}
2594
2595static void nvme_release_prp_pools(struct nvme_dev *dev)
2596{
2597 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2598 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2599}
2600
cd58ad7d
QSA
2601static DEFINE_IDA(nvme_instance_ida);
2602
2603static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 2604{
cd58ad7d
QSA
2605 int instance, error;
2606
2607 do {
2608 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2609 return -ENODEV;
2610
2611 spin_lock(&dev_list_lock);
2612 error = ida_get_new(&nvme_instance_ida, &instance);
2613 spin_unlock(&dev_list_lock);
2614 } while (error == -EAGAIN);
2615
2616 if (error)
2617 return -ENODEV;
2618
2619 dev->instance = instance;
2620 return 0;
b60503ba
MW
2621}
2622
2623static void nvme_release_instance(struct nvme_dev *dev)
2624{
cd58ad7d
QSA
2625 spin_lock(&dev_list_lock);
2626 ida_remove(&nvme_instance_ida, dev->instance);
2627 spin_unlock(&dev_list_lock);
b60503ba
MW
2628}
2629
9ac27090
KB
2630static void nvme_free_namespaces(struct nvme_dev *dev)
2631{
2632 struct nvme_ns *ns, *next;
2633
2634 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2635 list_del(&ns->list);
9e60352c
KB
2636
2637 spin_lock(&dev_list_lock);
2638 ns->disk->private_data = NULL;
2639 spin_unlock(&dev_list_lock);
2640
9ac27090
KB
2641 put_disk(ns->disk);
2642 kfree(ns);
2643 }
2644}
2645
5e82e952
KB
2646static void nvme_free_dev(struct kref *kref)
2647{
2648 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
9ac27090 2649
e75ec752 2650 put_device(dev->dev);
b3fffdef 2651 put_device(dev->device);
9ac27090 2652 nvme_free_namespaces(dev);
285dffc9 2653 nvme_release_instance(dev);
a4aea562 2654 blk_mq_free_tag_set(&dev->tagset);
ea191d2f 2655 blk_put_queue(dev->admin_q);
5e82e952
KB
2656 kfree(dev->queues);
2657 kfree(dev->entry);
2658 kfree(dev);
2659}
2660
2661static int nvme_dev_open(struct inode *inode, struct file *f)
2662{
b3fffdef
KB
2663 struct nvme_dev *dev;
2664 int instance = iminor(inode);
2665 int ret = -ENODEV;
2666
2667 spin_lock(&dev_list_lock);
2668 list_for_each_entry(dev, &dev_list, node) {
2669 if (dev->instance == instance) {
2e1d8448
KB
2670 if (!dev->admin_q) {
2671 ret = -EWOULDBLOCK;
2672 break;
2673 }
b3fffdef
KB
2674 if (!kref_get_unless_zero(&dev->kref))
2675 break;
2676 f->private_data = dev;
2677 ret = 0;
2678 break;
2679 }
2680 }
2681 spin_unlock(&dev_list_lock);
2682
2683 return ret;
5e82e952
KB
2684}
2685
2686static int nvme_dev_release(struct inode *inode, struct file *f)
2687{
2688 struct nvme_dev *dev = f->private_data;
2689 kref_put(&dev->kref, nvme_free_dev);
2690 return 0;
2691}
2692
2693static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2694{
2695 struct nvme_dev *dev = f->private_data;
a4aea562
MB
2696 struct nvme_ns *ns;
2697
5e82e952
KB
2698 switch (cmd) {
2699 case NVME_IOCTL_ADMIN_CMD:
a4aea562 2700 return nvme_user_cmd(dev, NULL, (void __user *)arg);
7963e521 2701 case NVME_IOCTL_IO_CMD:
a4aea562
MB
2702 if (list_empty(&dev->namespaces))
2703 return -ENOTTY;
2704 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2705 return nvme_user_cmd(dev, ns, (void __user *)arg);
5e82e952
KB
2706 default:
2707 return -ENOTTY;
2708 }
2709}
2710
2711static const struct file_operations nvme_dev_fops = {
2712 .owner = THIS_MODULE,
2713 .open = nvme_dev_open,
2714 .release = nvme_dev_release,
2715 .unlocked_ioctl = nvme_dev_ioctl,
2716 .compat_ioctl = nvme_dev_ioctl,
2717};
2718
a4aea562
MB
2719static void nvme_set_irq_hints(struct nvme_dev *dev)
2720{
2721 struct nvme_queue *nvmeq;
2722 int i;
2723
2724 for (i = 0; i < dev->online_queues; i++) {
2725 nvmeq = dev->queues[i];
2726
2727 if (!nvmeq->hctx)
2728 continue;
2729
2730 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2731 nvmeq->hctx->cpumask);
2732 }
2733}
2734
f0b50732
KB
2735static int nvme_dev_start(struct nvme_dev *dev)
2736{
2737 int result;
b9afca3e 2738 bool start_thread = false;
f0b50732
KB
2739
2740 result = nvme_dev_map(dev);
2741 if (result)
2742 return result;
2743
2744 result = nvme_configure_admin_queue(dev);
2745 if (result)
2746 goto unmap;
2747
2748 spin_lock(&dev_list_lock);
b9afca3e
DM
2749 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2750 start_thread = true;
2751 nvme_thread = NULL;
2752 }
f0b50732
KB
2753 list_add(&dev->node, &dev_list);
2754 spin_unlock(&dev_list_lock);
2755
b9afca3e
DM
2756 if (start_thread) {
2757 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
387caa5a 2758 wake_up_all(&nvme_kthread_wait);
b9afca3e
DM
2759 } else
2760 wait_event_killable(nvme_kthread_wait, nvme_thread);
2761
2762 if (IS_ERR_OR_NULL(nvme_thread)) {
2763 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2764 goto disable;
2765 }
a4aea562
MB
2766
2767 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2768 result = nvme_alloc_admin_tags(dev);
2769 if (result)
2770 goto disable;
b9afca3e 2771
f0b50732 2772 result = nvme_setup_io_queues(dev);
badc34d4 2773 if (result)
0fb59cbc 2774 goto free_tags;
f0b50732 2775
a4aea562
MB
2776 nvme_set_irq_hints(dev);
2777
1efccc9d 2778 dev->event_limit = 1;
d82e8bfd 2779 return result;
f0b50732 2780
0fb59cbc
KB
2781 free_tags:
2782 nvme_dev_remove_admin(dev);
f0b50732 2783 disable:
a1a5ef99 2784 nvme_disable_queue(dev, 0);
b9afca3e 2785 nvme_dev_list_remove(dev);
f0b50732
KB
2786 unmap:
2787 nvme_dev_unmap(dev);
2788 return result;
2789}
2790
9a6b9458
KB
2791static int nvme_remove_dead_ctrl(void *arg)
2792{
2793 struct nvme_dev *dev = (struct nvme_dev *)arg;
e75ec752 2794 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
2795
2796 if (pci_get_drvdata(pdev))
c81f4975 2797 pci_stop_and_remove_bus_device_locked(pdev);
9a6b9458
KB
2798 kref_put(&dev->kref, nvme_free_dev);
2799 return 0;
2800}
2801
2802static void nvme_remove_disks(struct work_struct *ws)
2803{
9a6b9458
KB
2804 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2805
5a92e700 2806 nvme_free_queues(dev, 1);
302c6727 2807 nvme_dev_remove(dev);
9a6b9458
KB
2808}
2809
2810static int nvme_dev_resume(struct nvme_dev *dev)
2811{
2812 int ret;
2813
2814 ret = nvme_dev_start(dev);
badc34d4 2815 if (ret)
9a6b9458 2816 return ret;
badc34d4 2817 if (dev->online_queues < 2) {
9a6b9458 2818 spin_lock(&dev_list_lock);
9ca97374 2819 dev->reset_workfn = nvme_remove_disks;
9a6b9458
KB
2820 queue_work(nvme_workq, &dev->reset_work);
2821 spin_unlock(&dev_list_lock);
c9d3bf88
KB
2822 } else {
2823 nvme_unfreeze_queues(dev);
2824 nvme_set_irq_hints(dev);
9a6b9458
KB
2825 }
2826 return 0;
2827}
2828
2829static void nvme_dev_reset(struct nvme_dev *dev)
2830{
2831 nvme_dev_shutdown(dev);
2832 if (nvme_dev_resume(dev)) {
e75ec752 2833 dev_warn(dev->dev, "Device failed to resume\n");
9a6b9458
KB
2834 kref_get(&dev->kref);
2835 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2836 dev->instance))) {
e75ec752 2837 dev_err(dev->dev,
9a6b9458
KB
2838 "Failed to start controller remove task\n");
2839 kref_put(&dev->kref, nvme_free_dev);
2840 }
2841 }
2842}
2843
2844static void nvme_reset_failed_dev(struct work_struct *ws)
2845{
2846 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2847 nvme_dev_reset(dev);
2848}
2849
9ca97374
TH
2850static void nvme_reset_workfn(struct work_struct *work)
2851{
2852 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2853 dev->reset_workfn(work);
2854}
2855
2e1d8448 2856static void nvme_async_probe(struct work_struct *work);
8d85fce7 2857static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2858{
a4aea562 2859 int node, result = -ENOMEM;
b60503ba
MW
2860 struct nvme_dev *dev;
2861
a4aea562
MB
2862 node = dev_to_node(&pdev->dev);
2863 if (node == NUMA_NO_NODE)
2864 set_dev_node(&pdev->dev, 0);
2865
2866 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
2867 if (!dev)
2868 return -ENOMEM;
a4aea562
MB
2869 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2870 GFP_KERNEL, node);
b60503ba
MW
2871 if (!dev->entry)
2872 goto free;
a4aea562
MB
2873 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2874 GFP_KERNEL, node);
b60503ba
MW
2875 if (!dev->queues)
2876 goto free;
2877
2878 INIT_LIST_HEAD(&dev->namespaces);
9ca97374
TH
2879 dev->reset_workfn = nvme_reset_failed_dev;
2880 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
e75ec752 2881 dev->dev = get_device(&pdev->dev);
9a6b9458 2882 pci_set_drvdata(pdev, dev);
cd58ad7d
QSA
2883 result = nvme_set_instance(dev);
2884 if (result)
a96d4f5c 2885 goto put_pci;
b60503ba 2886
091b6092
MW
2887 result = nvme_setup_prp_pools(dev);
2888 if (result)
0877cb0d 2889 goto release;
091b6092 2890
fb35e914 2891 kref_init(&dev->kref);
b3fffdef
KB
2892 dev->device = device_create(nvme_class, &pdev->dev,
2893 MKDEV(nvme_char_major, dev->instance),
2894 dev, "nvme%d", dev->instance);
2895 if (IS_ERR(dev->device)) {
2896 result = PTR_ERR(dev->device);
2e1d8448 2897 goto release_pools;
b3fffdef
KB
2898 }
2899 get_device(dev->device);
740216fc 2900
e6e96d73 2901 INIT_LIST_HEAD(&dev->node);
2e1d8448
KB
2902 INIT_WORK(&dev->probe_work, nvme_async_probe);
2903 schedule_work(&dev->probe_work);
b60503ba
MW
2904 return 0;
2905
0877cb0d 2906 release_pools:
091b6092 2907 nvme_release_prp_pools(dev);
0877cb0d
KB
2908 release:
2909 nvme_release_instance(dev);
a96d4f5c 2910 put_pci:
e75ec752 2911 put_device(dev->dev);
b60503ba
MW
2912 free:
2913 kfree(dev->queues);
2914 kfree(dev->entry);
2915 kfree(dev);
2916 return result;
2917}
2918
2e1d8448
KB
2919static void nvme_async_probe(struct work_struct *work)
2920{
2921 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2922 int result;
2923
2924 result = nvme_dev_start(dev);
2925 if (result)
2926 goto reset;
2927
2928 if (dev->online_queues > 1)
2929 result = nvme_dev_add(dev);
2930 if (result)
2931 goto reset;
2932
2933 nvme_set_irq_hints(dev);
2e1d8448
KB
2934 return;
2935 reset:
07836e65
KB
2936 if (!work_busy(&dev->reset_work)) {
2937 dev->reset_workfn = nvme_reset_failed_dev;
2938 queue_work(nvme_workq, &dev->reset_work);
2939 }
2e1d8448
KB
2940}
2941
f0d54a54
KB
2942static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2943{
a6739479 2944 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 2945
a6739479
KB
2946 if (prepare)
2947 nvme_dev_shutdown(dev);
2948 else
2949 nvme_dev_resume(dev);
f0d54a54
KB
2950}
2951
09ece142
KB
2952static void nvme_shutdown(struct pci_dev *pdev)
2953{
2954 struct nvme_dev *dev = pci_get_drvdata(pdev);
2955 nvme_dev_shutdown(dev);
2956}
2957
8d85fce7 2958static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2959{
2960 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
2961
2962 spin_lock(&dev_list_lock);
2963 list_del_init(&dev->node);
2964 spin_unlock(&dev_list_lock);
2965
2966 pci_set_drvdata(pdev, NULL);
2e1d8448 2967 flush_work(&dev->probe_work);
9a6b9458 2968 flush_work(&dev->reset_work);
9a6b9458 2969 nvme_dev_shutdown(dev);
c9d3bf88 2970 nvme_dev_remove(dev);
a4aea562 2971 nvme_dev_remove_admin(dev);
b3fffdef 2972 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
a1a5ef99 2973 nvme_free_queues(dev, 0);
9a6b9458 2974 nvme_release_prp_pools(dev);
5e82e952 2975 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
2976}
2977
2978/* These functions are yet to be implemented */
2979#define nvme_error_detected NULL
2980#define nvme_dump_registers NULL
2981#define nvme_link_reset NULL
2982#define nvme_slot_reset NULL
2983#define nvme_error_resume NULL
cd638946 2984
671a6018 2985#ifdef CONFIG_PM_SLEEP
cd638946
KB
2986static int nvme_suspend(struct device *dev)
2987{
2988 struct pci_dev *pdev = to_pci_dev(dev);
2989 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2990
2991 nvme_dev_shutdown(ndev);
2992 return 0;
2993}
2994
2995static int nvme_resume(struct device *dev)
2996{
2997 struct pci_dev *pdev = to_pci_dev(dev);
2998 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 2999
9a6b9458 3000 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
9ca97374 3001 ndev->reset_workfn = nvme_reset_failed_dev;
9a6b9458
KB
3002 queue_work(nvme_workq, &ndev->reset_work);
3003 }
3004 return 0;
cd638946 3005}
671a6018 3006#endif
cd638946
KB
3007
3008static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 3009
1d352035 3010static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
3011 .error_detected = nvme_error_detected,
3012 .mmio_enabled = nvme_dump_registers,
3013 .link_reset = nvme_link_reset,
3014 .slot_reset = nvme_slot_reset,
3015 .resume = nvme_error_resume,
f0d54a54 3016 .reset_notify = nvme_reset_notify,
b60503ba
MW
3017};
3018
3019/* Move to pci_ids.h later */
3020#define PCI_CLASS_STORAGE_EXPRESS 0x010802
3021
6eb0d698 3022static const struct pci_device_id nvme_id_table[] = {
b60503ba
MW
3023 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3024 { 0, }
3025};
3026MODULE_DEVICE_TABLE(pci, nvme_id_table);
3027
3028static struct pci_driver nvme_driver = {
3029 .name = "nvme",
3030 .id_table = nvme_id_table,
3031 .probe = nvme_probe,
8d85fce7 3032 .remove = nvme_remove,
09ece142 3033 .shutdown = nvme_shutdown,
cd638946
KB
3034 .driver = {
3035 .pm = &nvme_dev_pm_ops,
3036 },
b60503ba
MW
3037 .err_handler = &nvme_err_handler,
3038};
3039
3040static int __init nvme_init(void)
3041{
0ac13140 3042 int result;
1fa6aead 3043
b9afca3e 3044 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 3045
9a6b9458
KB
3046 nvme_workq = create_singlethread_workqueue("nvme");
3047 if (!nvme_workq)
b9afca3e 3048 return -ENOMEM;
9a6b9458 3049
5c42ea16
KB
3050 result = register_blkdev(nvme_major, "nvme");
3051 if (result < 0)
9a6b9458 3052 goto kill_workq;
5c42ea16 3053 else if (result > 0)
0ac13140 3054 nvme_major = result;
b60503ba 3055
b3fffdef
KB
3056 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3057 &nvme_dev_fops);
3058 if (result < 0)
3059 goto unregister_blkdev;
3060 else if (result > 0)
3061 nvme_char_major = result;
3062
3063 nvme_class = class_create(THIS_MODULE, "nvme");
c727040b
AK
3064 if (IS_ERR(nvme_class)) {
3065 result = PTR_ERR(nvme_class);
b3fffdef 3066 goto unregister_chrdev;
c727040b 3067 }
b3fffdef 3068
f3db22fe
KB
3069 result = pci_register_driver(&nvme_driver);
3070 if (result)
b3fffdef 3071 goto destroy_class;
1fa6aead 3072 return 0;
b60503ba 3073
b3fffdef
KB
3074 destroy_class:
3075 class_destroy(nvme_class);
3076 unregister_chrdev:
3077 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1fa6aead 3078 unregister_blkdev:
b60503ba 3079 unregister_blkdev(nvme_major, "nvme");
9a6b9458
KB
3080 kill_workq:
3081 destroy_workqueue(nvme_workq);
b60503ba
MW
3082 return result;
3083}
3084
3085static void __exit nvme_exit(void)
3086{
3087 pci_unregister_driver(&nvme_driver);
3088 unregister_blkdev(nvme_major, "nvme");
9a6b9458 3089 destroy_workqueue(nvme_workq);
b3fffdef
KB
3090 class_destroy(nvme_class);
3091 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
b9afca3e 3092 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 3093 _nvme_check_size();
b60503ba
MW
3094}
3095
3096MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3097MODULE_LICENSE("GPL");
c78b4713 3098MODULE_VERSION("1.0");
b60503ba
MW
3099module_init(nvme_init);
3100module_exit(nvme_exit);