nvme: merge nvme_dev_reset into nvme_reset_failed_dev
[linux-2.6-block.git] / drivers / block / nvme-core.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
6eb0d698 3 * Copyright (c) 2011-2014, Intel Corporation.
b60503ba
MW
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
b60503ba
MW
13 */
14
15#include <linux/nvme.h>
8de05535 16#include <linux/bitops.h>
b60503ba 17#include <linux/blkdev.h>
a4aea562 18#include <linux/blk-mq.h>
42f61420 19#include <linux/cpu.h>
fd63e9ce 20#include <linux/delay.h>
b60503ba
MW
21#include <linux/errno.h>
22#include <linux/fs.h>
23#include <linux/genhd.h>
4cc09e2d 24#include <linux/hdreg.h>
5aff9382 25#include <linux/idr.h>
b60503ba
MW
26#include <linux/init.h>
27#include <linux/interrupt.h>
28#include <linux/io.h>
29#include <linux/kdev_t.h>
1fa6aead 30#include <linux/kthread.h>
b60503ba 31#include <linux/kernel.h>
a5768aa8 32#include <linux/list_sort.h>
b60503ba
MW
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/moduleparam.h>
36#include <linux/pci.h>
be7b6275 37#include <linux/poison.h>
c3bfe717 38#include <linux/ptrace.h>
b60503ba
MW
39#include <linux/sched.h>
40#include <linux/slab.h>
e1e5e564 41#include <linux/t10-pi.h>
b60503ba 42#include <linux/types.h>
5d0f6131 43#include <scsi/sg.h>
797a796a
HM
44#include <asm-generic/io-64-nonatomic-lo-hi.h>
45
b3fffdef 46#define NVME_MINORS (1U << MINORBITS)
9d43cf64 47#define NVME_Q_DEPTH 1024
d31af0a3 48#define NVME_AQ_DEPTH 256
b60503ba
MW
49#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
50#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
9d43cf64 51#define ADMIN_TIMEOUT (admin_timeout * HZ)
2484f407 52#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
9d43cf64
KB
53
54static unsigned char admin_timeout = 60;
55module_param(admin_timeout, byte, 0644);
56MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
b60503ba 57
bd67608a
MW
58unsigned char nvme_io_timeout = 30;
59module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
b355084a 60MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
b60503ba 61
2484f407
DM
62static unsigned char shutdown_timeout = 5;
63module_param(shutdown_timeout, byte, 0644);
64MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
65
b60503ba
MW
66static int nvme_major;
67module_param(nvme_major, int, 0);
68
b3fffdef
KB
69static int nvme_char_major;
70module_param(nvme_char_major, int, 0);
71
58ffacb5
MW
72static int use_threaded_interrupts;
73module_param(use_threaded_interrupts, int, 0);
74
8ffaadf7
JD
75static bool use_cmb_sqes = true;
76module_param(use_cmb_sqes, bool, 0644);
77MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes");
78
1fa6aead
MW
79static DEFINE_SPINLOCK(dev_list_lock);
80static LIST_HEAD(dev_list);
81static struct task_struct *nvme_thread;
9a6b9458 82static struct workqueue_struct *nvme_workq;
b9afca3e 83static wait_queue_head_t nvme_kthread_wait;
1fa6aead 84
b3fffdef
KB
85static struct class *nvme_class;
86
4cc06521 87static int nvme_reset(struct nvme_dev *dev);
a4aea562 88static int nvme_process_cq(struct nvme_queue *nvmeq);
d4b4ff8e 89
4d115420
KB
90struct async_cmd_info {
91 struct kthread_work work;
92 struct kthread_worker *worker;
a4aea562 93 struct request *req;
4d115420
KB
94 u32 result;
95 int status;
96 void *ctx;
97};
1fa6aead 98
b60503ba
MW
99/*
100 * An NVM Express queue. Each device has at least two (one for admin
101 * commands and one for I/O commands).
102 */
103struct nvme_queue {
104 struct device *q_dmadev;
091b6092 105 struct nvme_dev *dev;
3193f07b 106 char irqname[24]; /* nvme4294967295-65535\0 */
b60503ba
MW
107 spinlock_t q_lock;
108 struct nvme_command *sq_cmds;
8ffaadf7 109 struct nvme_command __iomem *sq_cmds_io;
b60503ba 110 volatile struct nvme_completion *cqes;
42483228 111 struct blk_mq_tags **tags;
b60503ba
MW
112 dma_addr_t sq_dma_addr;
113 dma_addr_t cq_dma_addr;
b60503ba
MW
114 u32 __iomem *q_db;
115 u16 q_depth;
6222d172 116 s16 cq_vector;
b60503ba
MW
117 u16 sq_head;
118 u16 sq_tail;
119 u16 cq_head;
c30341dc 120 u16 qid;
e9539f47
MW
121 u8 cq_phase;
122 u8 cqe_seen;
4d115420 123 struct async_cmd_info cmdinfo;
b60503ba
MW
124};
125
126/*
127 * Check we didin't inadvertently grow the command struct
128 */
129static inline void _nvme_check_size(void)
130{
131 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
134 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
135 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 136 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
c30341dc 137 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
b60503ba
MW
138 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
139 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
140 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
141 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 142 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
143}
144
edd10d33 145typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
c2f5b650
MW
146 struct nvme_completion *);
147
e85248e5 148struct nvme_cmd_info {
c2f5b650
MW
149 nvme_completion_fn fn;
150 void *ctx;
c30341dc 151 int aborted;
a4aea562 152 struct nvme_queue *nvmeq;
ac3dd5bd 153 struct nvme_iod iod[0];
e85248e5
MW
154};
155
ac3dd5bd
JA
156/*
157 * Max size of iod being embedded in the request payload
158 */
159#define NVME_INT_PAGES 2
160#define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
fda631ff 161#define NVME_INT_MASK 0x01
ac3dd5bd
JA
162
163/*
164 * Will slightly overestimate the number of pages needed. This is OK
165 * as it only leads to a small amount of wasted memory for the lifetime of
166 * the I/O.
167 */
168static int nvme_npages(unsigned size, struct nvme_dev *dev)
169{
170 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
171 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
172}
173
174static unsigned int nvme_cmd_size(struct nvme_dev *dev)
175{
176 unsigned int ret = sizeof(struct nvme_cmd_info);
177
178 ret += sizeof(struct nvme_iod);
179 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
180 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
181
182 return ret;
183}
184
a4aea562
MB
185static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
186 unsigned int hctx_idx)
e85248e5 187{
a4aea562
MB
188 struct nvme_dev *dev = data;
189 struct nvme_queue *nvmeq = dev->queues[0];
190
42483228
KB
191 WARN_ON(hctx_idx != 0);
192 WARN_ON(dev->admin_tagset.tags[0] != hctx->tags);
193 WARN_ON(nvmeq->tags);
194
a4aea562 195 hctx->driver_data = nvmeq;
42483228 196 nvmeq->tags = &dev->admin_tagset.tags[0];
a4aea562 197 return 0;
e85248e5
MW
198}
199
4af0e21c
KB
200static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
201{
202 struct nvme_queue *nvmeq = hctx->driver_data;
203
204 nvmeq->tags = NULL;
205}
206
a4aea562
MB
207static int nvme_admin_init_request(void *data, struct request *req,
208 unsigned int hctx_idx, unsigned int rq_idx,
209 unsigned int numa_node)
22404274 210{
a4aea562
MB
211 struct nvme_dev *dev = data;
212 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
213 struct nvme_queue *nvmeq = dev->queues[0];
214
215 BUG_ON(!nvmeq);
216 cmd->nvmeq = nvmeq;
217 return 0;
22404274
KB
218}
219
a4aea562
MB
220static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
221 unsigned int hctx_idx)
b60503ba 222{
a4aea562 223 struct nvme_dev *dev = data;
42483228 224 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
a4aea562 225
42483228
KB
226 if (!nvmeq->tags)
227 nvmeq->tags = &dev->tagset.tags[hctx_idx];
b60503ba 228
42483228 229 WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags);
a4aea562
MB
230 hctx->driver_data = nvmeq;
231 return 0;
b60503ba
MW
232}
233
a4aea562
MB
234static int nvme_init_request(void *data, struct request *req,
235 unsigned int hctx_idx, unsigned int rq_idx,
236 unsigned int numa_node)
b60503ba 237{
a4aea562
MB
238 struct nvme_dev *dev = data;
239 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
240 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
241
242 BUG_ON(!nvmeq);
243 cmd->nvmeq = nvmeq;
244 return 0;
245}
246
247static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
248 nvme_completion_fn handler)
249{
250 cmd->fn = handler;
251 cmd->ctx = ctx;
252 cmd->aborted = 0;
c917dfe5 253 blk_mq_start_request(blk_mq_rq_from_pdu(cmd));
b60503ba
MW
254}
255
ac3dd5bd
JA
256static void *iod_get_private(struct nvme_iod *iod)
257{
258 return (void *) (iod->private & ~0x1UL);
259}
260
261/*
262 * If bit 0 is set, the iod is embedded in the request payload.
263 */
264static bool iod_should_kfree(struct nvme_iod *iod)
265{
fda631ff 266 return (iod->private & NVME_INT_MASK) == 0;
ac3dd5bd
JA
267}
268
c2f5b650
MW
269/* Special values must be less than 0x1000 */
270#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
271#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
272#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
273#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
be7b6275 274
edd10d33 275static void special_completion(struct nvme_queue *nvmeq, void *ctx,
c2f5b650
MW
276 struct nvme_completion *cqe)
277{
278 if (ctx == CMD_CTX_CANCELLED)
279 return;
c2f5b650 280 if (ctx == CMD_CTX_COMPLETED) {
edd10d33 281 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
282 "completed id %d twice on queue %d\n",
283 cqe->command_id, le16_to_cpup(&cqe->sq_id));
284 return;
285 }
286 if (ctx == CMD_CTX_INVALID) {
edd10d33 287 dev_warn(nvmeq->q_dmadev,
c2f5b650
MW
288 "invalid id %d completed on queue %d\n",
289 cqe->command_id, le16_to_cpup(&cqe->sq_id));
290 return;
291 }
edd10d33 292 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
293}
294
a4aea562 295static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
b60503ba 296{
c2f5b650 297 void *ctx;
b60503ba 298
859361a2 299 if (fn)
a4aea562
MB
300 *fn = cmd->fn;
301 ctx = cmd->ctx;
302 cmd->fn = special_completion;
303 cmd->ctx = CMD_CTX_CANCELLED;
c2f5b650 304 return ctx;
b60503ba
MW
305}
306
a4aea562
MB
307static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
308 struct nvme_completion *cqe)
3c0cf138 309{
a4aea562
MB
310 u32 result = le32_to_cpup(&cqe->result);
311 u16 status = le16_to_cpup(&cqe->status) >> 1;
312
313 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
314 ++nvmeq->dev->event_limit;
a5768aa8
KB
315 if (status != NVME_SC_SUCCESS)
316 return;
317
318 switch (result & 0xff07) {
319 case NVME_AER_NOTICE_NS_CHANGED:
320 dev_info(nvmeq->q_dmadev, "rescanning\n");
321 schedule_work(&nvmeq->dev->scan_work);
322 default:
323 dev_warn(nvmeq->q_dmadev, "async event result %08x\n", result);
324 }
b60503ba
MW
325}
326
a4aea562
MB
327static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
328 struct nvme_completion *cqe)
5a92e700 329{
a4aea562
MB
330 struct request *req = ctx;
331
332 u16 status = le16_to_cpup(&cqe->status) >> 1;
333 u32 result = le32_to_cpup(&cqe->result);
a51afb54 334
42483228 335 blk_mq_free_request(req);
a51afb54 336
a4aea562
MB
337 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
338 ++nvmeq->dev->abort_limit;
5a92e700
KB
339}
340
a4aea562
MB
341static void async_completion(struct nvme_queue *nvmeq, void *ctx,
342 struct nvme_completion *cqe)
b60503ba 343{
a4aea562
MB
344 struct async_cmd_info *cmdinfo = ctx;
345 cmdinfo->result = le32_to_cpup(&cqe->result);
346 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
347 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
42483228 348 blk_mq_free_request(cmdinfo->req);
b60503ba
MW
349}
350
a4aea562
MB
351static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
352 unsigned int tag)
b60503ba 353{
42483228 354 struct request *req = blk_mq_tag_to_rq(*nvmeq->tags, tag);
a51afb54 355
a4aea562 356 return blk_mq_rq_to_pdu(req);
4f5099af
KB
357}
358
a4aea562
MB
359/*
360 * Called with local interrupts disabled and the q_lock held. May not sleep.
361 */
362static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
363 nvme_completion_fn *fn)
4f5099af 364{
a4aea562
MB
365 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
366 void *ctx;
367 if (tag >= nvmeq->q_depth) {
368 *fn = special_completion;
369 return CMD_CTX_INVALID;
370 }
371 if (fn)
372 *fn = cmd->fn;
373 ctx = cmd->ctx;
374 cmd->fn = special_completion;
375 cmd->ctx = CMD_CTX_COMPLETED;
376 return ctx;
b60503ba
MW
377}
378
379/**
714a7a22 380 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
381 * @nvmeq: The queue to use
382 * @cmd: The command to send
383 *
384 * Safe to use from interrupt context
385 */
e3f879bf
SB
386static void __nvme_submit_cmd(struct nvme_queue *nvmeq,
387 struct nvme_command *cmd)
b60503ba 388{
a4aea562
MB
389 u16 tail = nvmeq->sq_tail;
390
8ffaadf7
JD
391 if (nvmeq->sq_cmds_io)
392 memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd));
393 else
394 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
395
b60503ba
MW
396 if (++tail == nvmeq->q_depth)
397 tail = 0;
7547881d 398 writel(tail, nvmeq->q_db);
b60503ba 399 nvmeq->sq_tail = tail;
b60503ba
MW
400}
401
e3f879bf 402static void nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
a4aea562
MB
403{
404 unsigned long flags;
a4aea562 405 spin_lock_irqsave(&nvmeq->q_lock, flags);
e3f879bf 406 __nvme_submit_cmd(nvmeq, cmd);
a4aea562 407 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
a4aea562
MB
408}
409
eca18b23 410static __le64 **iod_list(struct nvme_iod *iod)
e025344c 411{
eca18b23 412 return ((void *)iod) + iod->offset;
e025344c
SMM
413}
414
ac3dd5bd
JA
415static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
416 unsigned nseg, unsigned long private)
eca18b23 417{
ac3dd5bd
JA
418 iod->private = private;
419 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
420 iod->npages = -1;
421 iod->length = nbytes;
422 iod->nents = 0;
eca18b23 423}
b60503ba 424
eca18b23 425static struct nvme_iod *
ac3dd5bd
JA
426__nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
427 unsigned long priv, gfp_t gfp)
b60503ba 428{
eca18b23 429 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
ac3dd5bd 430 sizeof(__le64 *) * nvme_npages(bytes, dev) +
eca18b23
MW
431 sizeof(struct scatterlist) * nseg, gfp);
432
ac3dd5bd
JA
433 if (iod)
434 iod_init(iod, bytes, nseg, priv);
eca18b23
MW
435
436 return iod;
b60503ba
MW
437}
438
ac3dd5bd
JA
439static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
440 gfp_t gfp)
441{
442 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
443 sizeof(struct nvme_dsm_range);
ac3dd5bd
JA
444 struct nvme_iod *iod;
445
446 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
447 size <= NVME_INT_BYTES(dev)) {
448 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
449
450 iod = cmd->iod;
ac3dd5bd 451 iod_init(iod, size, rq->nr_phys_segments,
fda631ff 452 (unsigned long) rq | NVME_INT_MASK);
ac3dd5bd
JA
453 return iod;
454 }
455
456 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
457 (unsigned long) rq, gfp);
458}
459
d29ec824 460static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 461{
1d090624 462 const int last_prp = dev->page_size / 8 - 1;
eca18b23
MW
463 int i;
464 __le64 **list = iod_list(iod);
465 dma_addr_t prp_dma = iod->first_dma;
466
467 if (iod->npages == 0)
468 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
469 for (i = 0; i < iod->npages; i++) {
470 __le64 *prp_list = list[i];
471 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
472 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
473 prp_dma = next_prp_dma;
474 }
ac3dd5bd
JA
475
476 if (iod_should_kfree(iod))
477 kfree(iod);
b60503ba
MW
478}
479
b4ff9c8d
KB
480static int nvme_error_status(u16 status)
481{
482 switch (status & 0x7ff) {
483 case NVME_SC_SUCCESS:
484 return 0;
485 case NVME_SC_CAP_EXCEEDED:
486 return -ENOSPC;
487 default:
488 return -EIO;
489 }
490}
491
52b68d7e 492#ifdef CONFIG_BLK_DEV_INTEGRITY
e1e5e564
KB
493static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
494{
495 if (be32_to_cpu(pi->ref_tag) == v)
496 pi->ref_tag = cpu_to_be32(p);
497}
498
499static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
500{
501 if (be32_to_cpu(pi->ref_tag) == p)
502 pi->ref_tag = cpu_to_be32(v);
503}
504
505/**
506 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
507 *
508 * The virtual start sector is the one that was originally submitted by the
509 * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical
510 * start sector may be different. Remap protection information to match the
511 * physical LBA on writes, and back to the original seed on reads.
512 *
513 * Type 0 and 3 do not have a ref tag, so no remapping required.
514 */
515static void nvme_dif_remap(struct request *req,
516 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
517{
518 struct nvme_ns *ns = req->rq_disk->private_data;
519 struct bio_integrity_payload *bip;
520 struct t10_pi_tuple *pi;
521 void *p, *pmap;
522 u32 i, nlb, ts, phys, virt;
523
524 if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
525 return;
526
527 bip = bio_integrity(req->bio);
528 if (!bip)
529 return;
530
531 pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
e1e5e564
KB
532
533 p = pmap;
534 virt = bip_get_seed(bip);
535 phys = nvme_block_nr(ns, blk_rq_pos(req));
536 nlb = (blk_rq_bytes(req) >> ns->lba_shift);
537 ts = ns->disk->integrity->tuple_size;
538
539 for (i = 0; i < nlb; i++, virt++, phys++) {
540 pi = (struct t10_pi_tuple *)p;
541 dif_swap(phys, virt, pi);
542 p += ts;
543 }
544 kunmap_atomic(pmap);
545}
546
52b68d7e
KB
547static int nvme_noop_verify(struct blk_integrity_iter *iter)
548{
549 return 0;
550}
551
552static int nvme_noop_generate(struct blk_integrity_iter *iter)
553{
554 return 0;
555}
556
557struct blk_integrity nvme_meta_noop = {
558 .name = "NVME_META_NOOP",
559 .generate_fn = nvme_noop_generate,
560 .verify_fn = nvme_noop_verify,
561};
562
563static void nvme_init_integrity(struct nvme_ns *ns)
564{
565 struct blk_integrity integrity;
566
567 switch (ns->pi_type) {
568 case NVME_NS_DPS_PI_TYPE3:
569 integrity = t10_pi_type3_crc;
570 break;
571 case NVME_NS_DPS_PI_TYPE1:
572 case NVME_NS_DPS_PI_TYPE2:
573 integrity = t10_pi_type1_crc;
574 break;
575 default:
576 integrity = nvme_meta_noop;
577 break;
578 }
579 integrity.tuple_size = ns->ms;
580 blk_integrity_register(ns->disk, &integrity);
581 blk_queue_max_integrity_segments(ns->queue, 1);
582}
583#else /* CONFIG_BLK_DEV_INTEGRITY */
584static void nvme_dif_remap(struct request *req,
585 void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
586{
587}
588static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
589{
590}
591static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
592{
593}
594static void nvme_init_integrity(struct nvme_ns *ns)
595{
596}
597#endif
598
a4aea562 599static void req_completion(struct nvme_queue *nvmeq, void *ctx,
b60503ba
MW
600 struct nvme_completion *cqe)
601{
eca18b23 602 struct nvme_iod *iod = ctx;
ac3dd5bd 603 struct request *req = iod_get_private(iod);
a4aea562
MB
604 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
605
b60503ba
MW
606 u16 status = le16_to_cpup(&cqe->status) >> 1;
607
edd10d33 608 if (unlikely(status)) {
a4aea562
MB
609 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
610 && (jiffies - req->start_time) < req->timeout) {
c9d3bf88
KB
611 unsigned long flags;
612
a4aea562 613 blk_mq_requeue_request(req);
c9d3bf88
KB
614 spin_lock_irqsave(req->q->queue_lock, flags);
615 if (!blk_queue_stopped(req->q))
616 blk_mq_kick_requeue_list(req->q);
617 spin_unlock_irqrestore(req->q->queue_lock, flags);
edd10d33
KB
618 return;
619 }
f4829a9b 620
d29ec824 621 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
17188bb4 622 if (cmd_rq->ctx == CMD_CTX_CANCELLED)
f4829a9b 623 status = -EINTR;
d29ec824 624 } else {
f4829a9b 625 status = nvme_error_status(status);
d29ec824 626 }
f4829a9b
CH
627 }
628
a0a931d6
KB
629 if (req->cmd_type == REQ_TYPE_DRV_PRIV) {
630 u32 result = le32_to_cpup(&cqe->result);
631 req->special = (void *)(uintptr_t)result;
632 }
a4aea562
MB
633
634 if (cmd_rq->aborted)
e75ec752 635 dev_warn(nvmeq->dev->dev,
a4aea562
MB
636 "completing aborted command with status:%04x\n",
637 status);
638
e1e5e564 639 if (iod->nents) {
e75ec752 640 dma_unmap_sg(nvmeq->dev->dev, iod->sg, iod->nents,
a4aea562 641 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
e1e5e564
KB
642 if (blk_integrity_rq(req)) {
643 if (!rq_data_dir(req))
644 nvme_dif_remap(req, nvme_dif_complete);
e75ec752 645 dma_unmap_sg(nvmeq->dev->dev, iod->meta_sg, 1,
e1e5e564
KB
646 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
647 }
648 }
edd10d33 649 nvme_free_iod(nvmeq->dev, iod);
3291fa57 650
f4829a9b 651 blk_mq_complete_request(req, status);
b60503ba
MW
652}
653
184d2944 654/* length is in bytes. gfp flags indicates whether we may sleep. */
d29ec824
CH
655static int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod,
656 int total_len, gfp_t gfp)
ff22b54f 657{
99802a7a 658 struct dma_pool *pool;
eca18b23
MW
659 int length = total_len;
660 struct scatterlist *sg = iod->sg;
ff22b54f
MW
661 int dma_len = sg_dma_len(sg);
662 u64 dma_addr = sg_dma_address(sg);
f137e0f1
MI
663 u32 page_size = dev->page_size;
664 int offset = dma_addr & (page_size - 1);
e025344c 665 __le64 *prp_list;
eca18b23 666 __le64 **list = iod_list(iod);
e025344c 667 dma_addr_t prp_dma;
eca18b23 668 int nprps, i;
ff22b54f 669
1d090624 670 length -= (page_size - offset);
ff22b54f 671 if (length <= 0)
eca18b23 672 return total_len;
ff22b54f 673
1d090624 674 dma_len -= (page_size - offset);
ff22b54f 675 if (dma_len) {
1d090624 676 dma_addr += (page_size - offset);
ff22b54f
MW
677 } else {
678 sg = sg_next(sg);
679 dma_addr = sg_dma_address(sg);
680 dma_len = sg_dma_len(sg);
681 }
682
1d090624 683 if (length <= page_size) {
edd10d33 684 iod->first_dma = dma_addr;
eca18b23 685 return total_len;
e025344c
SMM
686 }
687
1d090624 688 nprps = DIV_ROUND_UP(length, page_size);
99802a7a
MW
689 if (nprps <= (256 / 8)) {
690 pool = dev->prp_small_pool;
eca18b23 691 iod->npages = 0;
99802a7a
MW
692 } else {
693 pool = dev->prp_page_pool;
eca18b23 694 iod->npages = 1;
99802a7a
MW
695 }
696
b77954cb
MW
697 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
698 if (!prp_list) {
edd10d33 699 iod->first_dma = dma_addr;
eca18b23 700 iod->npages = -1;
1d090624 701 return (total_len - length) + page_size;
b77954cb 702 }
eca18b23
MW
703 list[0] = prp_list;
704 iod->first_dma = prp_dma;
e025344c
SMM
705 i = 0;
706 for (;;) {
1d090624 707 if (i == page_size >> 3) {
e025344c 708 __le64 *old_prp_list = prp_list;
b77954cb 709 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
710 if (!prp_list)
711 return total_len - length;
712 list[iod->npages++] = prp_list;
7523d834
MW
713 prp_list[0] = old_prp_list[i - 1];
714 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
715 i = 1;
e025344c
SMM
716 }
717 prp_list[i++] = cpu_to_le64(dma_addr);
1d090624
KB
718 dma_len -= page_size;
719 dma_addr += page_size;
720 length -= page_size;
e025344c
SMM
721 if (length <= 0)
722 break;
723 if (dma_len > 0)
724 continue;
725 BUG_ON(dma_len < 0);
726 sg = sg_next(sg);
727 dma_addr = sg_dma_address(sg);
728 dma_len = sg_dma_len(sg);
ff22b54f
MW
729 }
730
eca18b23 731 return total_len;
ff22b54f
MW
732}
733
d29ec824
CH
734static void nvme_submit_priv(struct nvme_queue *nvmeq, struct request *req,
735 struct nvme_iod *iod)
736{
498c4394 737 struct nvme_command cmnd;
d29ec824 738
498c4394
JD
739 memcpy(&cmnd, req->cmd, sizeof(cmnd));
740 cmnd.rw.command_id = req->tag;
d29ec824 741 if (req->nr_phys_segments) {
498c4394
JD
742 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
743 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
d29ec824
CH
744 }
745
498c4394 746 __nvme_submit_cmd(nvmeq, &cmnd);
d29ec824
CH
747}
748
a4aea562
MB
749/*
750 * We reuse the small pool to allocate the 16-byte range here as it is not
751 * worth having a special pool for these or additional cases to handle freeing
752 * the iod.
753 */
754static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
755 struct request *req, struct nvme_iod *iod)
0e5e4f0e 756{
edd10d33
KB
757 struct nvme_dsm_range *range =
758 (struct nvme_dsm_range *)iod_list(iod)[0];
498c4394 759 struct nvme_command cmnd;
0e5e4f0e 760
0e5e4f0e 761 range->cattr = cpu_to_le32(0);
a4aea562
MB
762 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
763 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
0e5e4f0e 764
498c4394
JD
765 memset(&cmnd, 0, sizeof(cmnd));
766 cmnd.dsm.opcode = nvme_cmd_dsm;
767 cmnd.dsm.command_id = req->tag;
768 cmnd.dsm.nsid = cpu_to_le32(ns->ns_id);
769 cmnd.dsm.prp1 = cpu_to_le64(iod->first_dma);
770 cmnd.dsm.nr = 0;
771 cmnd.dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
0e5e4f0e 772
498c4394 773 __nvme_submit_cmd(nvmeq, &cmnd);
0e5e4f0e
KB
774}
775
a4aea562 776static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
00df5cb4
MW
777 int cmdid)
778{
498c4394 779 struct nvme_command cmnd;
00df5cb4 780
498c4394
JD
781 memset(&cmnd, 0, sizeof(cmnd));
782 cmnd.common.opcode = nvme_cmd_flush;
783 cmnd.common.command_id = cmdid;
784 cmnd.common.nsid = cpu_to_le32(ns->ns_id);
00df5cb4 785
498c4394 786 __nvme_submit_cmd(nvmeq, &cmnd);
00df5cb4
MW
787}
788
a4aea562
MB
789static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
790 struct nvme_ns *ns)
b60503ba 791{
ac3dd5bd 792 struct request *req = iod_get_private(iod);
498c4394 793 struct nvme_command cmnd;
a4aea562
MB
794 u16 control = 0;
795 u32 dsmgmt = 0;
00df5cb4 796
a4aea562 797 if (req->cmd_flags & REQ_FUA)
b60503ba 798 control |= NVME_RW_FUA;
a4aea562 799 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
b60503ba
MW
800 control |= NVME_RW_LR;
801
a4aea562 802 if (req->cmd_flags & REQ_RAHEAD)
b60503ba
MW
803 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
804
498c4394
JD
805 memset(&cmnd, 0, sizeof(cmnd));
806 cmnd.rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
807 cmnd.rw.command_id = req->tag;
808 cmnd.rw.nsid = cpu_to_le32(ns->ns_id);
809 cmnd.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
810 cmnd.rw.prp2 = cpu_to_le64(iod->first_dma);
811 cmnd.rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
812 cmnd.rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
b60503ba 813
e19b127f 814 if (ns->ms) {
e1e5e564
KB
815 switch (ns->pi_type) {
816 case NVME_NS_DPS_PI_TYPE3:
817 control |= NVME_RW_PRINFO_PRCHK_GUARD;
818 break;
819 case NVME_NS_DPS_PI_TYPE1:
820 case NVME_NS_DPS_PI_TYPE2:
821 control |= NVME_RW_PRINFO_PRCHK_GUARD |
822 NVME_RW_PRINFO_PRCHK_REF;
498c4394 823 cmnd.rw.reftag = cpu_to_le32(
e1e5e564
KB
824 nvme_block_nr(ns, blk_rq_pos(req)));
825 break;
826 }
e19b127f
AP
827 if (blk_integrity_rq(req))
828 cmnd.rw.metadata =
829 cpu_to_le64(sg_dma_address(iod->meta_sg));
830 else
831 control |= NVME_RW_PRINFO_PRACT;
832 }
e1e5e564 833
498c4394
JD
834 cmnd.rw.control = cpu_to_le16(control);
835 cmnd.rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 836
498c4394 837 __nvme_submit_cmd(nvmeq, &cmnd);
b60503ba 838
1974b1ae 839 return 0;
edd10d33
KB
840}
841
d29ec824
CH
842/*
843 * NOTE: ns is NULL when called on the admin queue.
844 */
a4aea562
MB
845static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
846 const struct blk_mq_queue_data *bd)
edd10d33 847{
a4aea562
MB
848 struct nvme_ns *ns = hctx->queue->queuedata;
849 struct nvme_queue *nvmeq = hctx->driver_data;
d29ec824 850 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
851 struct request *req = bd->rq;
852 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
edd10d33 853 struct nvme_iod *iod;
a4aea562 854 enum dma_data_direction dma_dir;
edd10d33 855
e1e5e564
KB
856 /*
857 * If formated with metadata, require the block layer provide a buffer
858 * unless this namespace is formated such that the metadata can be
859 * stripped/generated by the controller with PRACT=1.
860 */
d29ec824 861 if (ns && ns->ms && !blk_integrity_rq(req)) {
71feb364
KB
862 if (!(ns->pi_type && ns->ms == 8) &&
863 req->cmd_type != REQ_TYPE_DRV_PRIV) {
f4829a9b 864 blk_mq_complete_request(req, -EFAULT);
e1e5e564
KB
865 return BLK_MQ_RQ_QUEUE_OK;
866 }
867 }
868
d29ec824 869 iod = nvme_alloc_iod(req, dev, GFP_ATOMIC);
edd10d33 870 if (!iod)
fe54303e 871 return BLK_MQ_RQ_QUEUE_BUSY;
a4aea562 872
a4aea562 873 if (req->cmd_flags & REQ_DISCARD) {
edd10d33
KB
874 void *range;
875 /*
876 * We reuse the small pool to allocate the 16-byte range here
877 * as it is not worth having a special pool for these or
878 * additional cases to handle freeing the iod.
879 */
d29ec824 880 range = dma_pool_alloc(dev->prp_small_pool, GFP_ATOMIC,
edd10d33 881 &iod->first_dma);
a4aea562 882 if (!range)
fe54303e 883 goto retry_cmd;
edd10d33
KB
884 iod_list(iod)[0] = (__le64 *)range;
885 iod->npages = 0;
ac3dd5bd 886 } else if (req->nr_phys_segments) {
a4aea562
MB
887 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
888
ac3dd5bd 889 sg_init_table(iod->sg, req->nr_phys_segments);
a4aea562 890 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
fe54303e
JA
891 if (!iod->nents)
892 goto error_cmd;
a4aea562
MB
893
894 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
fe54303e 895 goto retry_cmd;
a4aea562 896
fe54303e 897 if (blk_rq_bytes(req) !=
d29ec824
CH
898 nvme_setup_prps(dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
899 dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir);
fe54303e
JA
900 goto retry_cmd;
901 }
e1e5e564
KB
902 if (blk_integrity_rq(req)) {
903 if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
904 goto error_cmd;
905
906 sg_init_table(iod->meta_sg, 1);
907 if (blk_rq_map_integrity_sg(
908 req->q, req->bio, iod->meta_sg) != 1)
909 goto error_cmd;
910
911 if (rq_data_dir(req))
912 nvme_dif_remap(req, nvme_dif_prep);
913
914 if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
915 goto error_cmd;
916 }
edd10d33 917 }
1974b1ae 918
9af8785a 919 nvme_set_info(cmd, iod, req_completion);
a4aea562 920 spin_lock_irq(&nvmeq->q_lock);
d29ec824
CH
921 if (req->cmd_type == REQ_TYPE_DRV_PRIV)
922 nvme_submit_priv(nvmeq, req, iod);
923 else if (req->cmd_flags & REQ_DISCARD)
a4aea562
MB
924 nvme_submit_discard(nvmeq, ns, req, iod);
925 else if (req->cmd_flags & REQ_FLUSH)
926 nvme_submit_flush(nvmeq, ns, req->tag);
927 else
928 nvme_submit_iod(nvmeq, iod, ns);
929
930 nvme_process_cq(nvmeq);
931 spin_unlock_irq(&nvmeq->q_lock);
932 return BLK_MQ_RQ_QUEUE_OK;
933
fe54303e 934 error_cmd:
d29ec824 935 nvme_free_iod(dev, iod);
fe54303e
JA
936 return BLK_MQ_RQ_QUEUE_ERROR;
937 retry_cmd:
d29ec824 938 nvme_free_iod(dev, iod);
fe54303e 939 return BLK_MQ_RQ_QUEUE_BUSY;
b60503ba
MW
940}
941
e9539f47 942static int nvme_process_cq(struct nvme_queue *nvmeq)
b60503ba 943{
82123460 944 u16 head, phase;
b60503ba 945
b60503ba 946 head = nvmeq->cq_head;
82123460 947 phase = nvmeq->cq_phase;
b60503ba
MW
948
949 for (;;) {
c2f5b650
MW
950 void *ctx;
951 nvme_completion_fn fn;
b60503ba 952 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 953 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
954 break;
955 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
956 if (++head == nvmeq->q_depth) {
957 head = 0;
82123460 958 phase = !phase;
b60503ba 959 }
a4aea562 960 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
edd10d33 961 fn(nvmeq, ctx, &cqe);
b60503ba
MW
962 }
963
964 /* If the controller ignores the cq head doorbell and continuously
965 * writes to the queue, it is theoretically possible to wrap around
966 * the queue twice and mistakenly return IRQ_NONE. Linux only
967 * requires that 0.1% of your interrupts are handled, so this isn't
968 * a big problem.
969 */
82123460 970 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
e9539f47 971 return 0;
b60503ba 972
b80d5ccc 973 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
b60503ba 974 nvmeq->cq_head = head;
82123460 975 nvmeq->cq_phase = phase;
b60503ba 976
e9539f47
MW
977 nvmeq->cqe_seen = 1;
978 return 1;
b60503ba
MW
979}
980
981static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
982{
983 irqreturn_t result;
984 struct nvme_queue *nvmeq = data;
985 spin_lock(&nvmeq->q_lock);
e9539f47
MW
986 nvme_process_cq(nvmeq);
987 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
988 nvmeq->cqe_seen = 0;
58ffacb5
MW
989 spin_unlock(&nvmeq->q_lock);
990 return result;
991}
992
993static irqreturn_t nvme_irq_check(int irq, void *data)
994{
995 struct nvme_queue *nvmeq = data;
996 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
997 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
998 return IRQ_NONE;
999 return IRQ_WAKE_THREAD;
1000}
1001
b60503ba
MW
1002/*
1003 * Returns 0 on success. If the result is negative, it's a Linux error code;
1004 * if the result is positive, it's an NVM Express status code
1005 */
d29ec824
CH
1006int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1007 void *buffer, void __user *ubuffer, unsigned bufflen,
1008 u32 *result, unsigned timeout)
b60503ba 1009{
d29ec824
CH
1010 bool write = cmd->common.opcode & 1;
1011 struct bio *bio = NULL;
f705f837 1012 struct request *req;
d29ec824 1013 int ret;
b60503ba 1014
d29ec824 1015 req = blk_mq_alloc_request(q, write, GFP_KERNEL, false);
f705f837
CH
1016 if (IS_ERR(req))
1017 return PTR_ERR(req);
b60503ba 1018
d29ec824 1019 req->cmd_type = REQ_TYPE_DRV_PRIV;
e112af0d 1020 req->cmd_flags |= REQ_FAILFAST_DRIVER;
d29ec824
CH
1021 req->__data_len = 0;
1022 req->__sector = (sector_t) -1;
1023 req->bio = req->biotail = NULL;
b60503ba 1024
f4ff414a 1025 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
a4aea562 1026
d29ec824
CH
1027 req->cmd = (unsigned char *)cmd;
1028 req->cmd_len = sizeof(struct nvme_command);
a0a931d6 1029 req->special = (void *)0;
b60503ba 1030
d29ec824
CH
1031 if (buffer && bufflen) {
1032 ret = blk_rq_map_kern(q, req, buffer, bufflen, __GFP_WAIT);
1033 if (ret)
1034 goto out;
1035 } else if (ubuffer && bufflen) {
1036 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen, __GFP_WAIT);
1037 if (ret)
1038 goto out;
1039 bio = req->bio;
1040 }
3c0cf138 1041
d29ec824
CH
1042 blk_execute_rq(req->q, NULL, req, 0);
1043 if (bio)
1044 blk_rq_unmap_user(bio);
b60503ba 1045 if (result)
a0a931d6 1046 *result = (u32)(uintptr_t)req->special;
d29ec824
CH
1047 ret = req->errors;
1048 out:
f705f837 1049 blk_mq_free_request(req);
d29ec824 1050 return ret;
f705f837
CH
1051}
1052
d29ec824
CH
1053int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1054 void *buffer, unsigned bufflen)
f705f837 1055{
d29ec824 1056 return __nvme_submit_sync_cmd(q, cmd, buffer, NULL, bufflen, NULL, 0);
b60503ba
MW
1057}
1058
a4aea562
MB
1059static int nvme_submit_async_admin_req(struct nvme_dev *dev)
1060{
1061 struct nvme_queue *nvmeq = dev->queues[0];
1062 struct nvme_command c;
1063 struct nvme_cmd_info *cmd_info;
1064 struct request *req;
1065
1efccc9d 1066 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, true);
9f173b33
DC
1067 if (IS_ERR(req))
1068 return PTR_ERR(req);
a4aea562 1069
c917dfe5 1070 req->cmd_flags |= REQ_NO_TIMEOUT;
a4aea562 1071 cmd_info = blk_mq_rq_to_pdu(req);
1efccc9d 1072 nvme_set_info(cmd_info, NULL, async_req_completion);
a4aea562
MB
1073
1074 memset(&c, 0, sizeof(c));
1075 c.common.opcode = nvme_admin_async_event;
1076 c.common.command_id = req->tag;
1077
42483228 1078 blk_mq_free_request(req);
e3f879bf
SB
1079 __nvme_submit_cmd(nvmeq, &c);
1080 return 0;
a4aea562
MB
1081}
1082
1083static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
4d115420
KB
1084 struct nvme_command *cmd,
1085 struct async_cmd_info *cmdinfo, unsigned timeout)
1086{
a4aea562
MB
1087 struct nvme_queue *nvmeq = dev->queues[0];
1088 struct request *req;
1089 struct nvme_cmd_info *cmd_rq;
4d115420 1090
a4aea562 1091 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
9f173b33
DC
1092 if (IS_ERR(req))
1093 return PTR_ERR(req);
a4aea562
MB
1094
1095 req->timeout = timeout;
1096 cmd_rq = blk_mq_rq_to_pdu(req);
1097 cmdinfo->req = req;
1098 nvme_set_info(cmd_rq, cmdinfo, async_completion);
4d115420 1099 cmdinfo->status = -EINTR;
a4aea562
MB
1100
1101 cmd->common.command_id = req->tag;
1102
e3f879bf
SB
1103 nvme_submit_cmd(nvmeq, cmd);
1104 return 0;
4d115420
KB
1105}
1106
b60503ba
MW
1107static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
1108{
b60503ba
MW
1109 struct nvme_command c;
1110
1111 memset(&c, 0, sizeof(c));
1112 c.delete_queue.opcode = opcode;
1113 c.delete_queue.qid = cpu_to_le16(id);
1114
d29ec824 1115 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1116}
1117
1118static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
1119 struct nvme_queue *nvmeq)
1120{
b60503ba
MW
1121 struct nvme_command c;
1122 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
1123
d29ec824
CH
1124 /*
1125 * Note: we (ab)use the fact the the prp fields survive if no data
1126 * is attached to the request.
1127 */
b60503ba
MW
1128 memset(&c, 0, sizeof(c));
1129 c.create_cq.opcode = nvme_admin_create_cq;
1130 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
1131 c.create_cq.cqid = cpu_to_le16(qid);
1132 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1133 c.create_cq.cq_flags = cpu_to_le16(flags);
1134 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
1135
d29ec824 1136 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1137}
1138
1139static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
1140 struct nvme_queue *nvmeq)
1141{
b60503ba
MW
1142 struct nvme_command c;
1143 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
1144
d29ec824
CH
1145 /*
1146 * Note: we (ab)use the fact the the prp fields survive if no data
1147 * is attached to the request.
1148 */
b60503ba
MW
1149 memset(&c, 0, sizeof(c));
1150 c.create_sq.opcode = nvme_admin_create_sq;
1151 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1152 c.create_sq.sqid = cpu_to_le16(qid);
1153 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1154 c.create_sq.sq_flags = cpu_to_le16(flags);
1155 c.create_sq.cqid = cpu_to_le16(qid);
1156
d29ec824 1157 return nvme_submit_sync_cmd(dev->admin_q, &c, NULL, 0);
b60503ba
MW
1158}
1159
1160static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1161{
1162 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1163}
1164
1165static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1166{
1167 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1168}
1169
d29ec824 1170int nvme_identify_ctrl(struct nvme_dev *dev, struct nvme_id_ctrl **id)
bc5fc7e4 1171{
e44ac588 1172 struct nvme_command c = { };
d29ec824 1173 int error;
bc5fc7e4 1174
e44ac588
AM
1175 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1176 c.identify.opcode = nvme_admin_identify;
1177 c.identify.cns = cpu_to_le32(1);
1178
d29ec824
CH
1179 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1180 if (!*id)
1181 return -ENOMEM;
bc5fc7e4 1182
d29ec824
CH
1183 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1184 sizeof(struct nvme_id_ctrl));
1185 if (error)
1186 kfree(*id);
1187 return error;
1188}
1189
1190int nvme_identify_ns(struct nvme_dev *dev, unsigned nsid,
1191 struct nvme_id_ns **id)
1192{
e44ac588 1193 struct nvme_command c = { };
d29ec824 1194 int error;
bc5fc7e4 1195
e44ac588
AM
1196 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1197 c.identify.opcode = nvme_admin_identify,
1198 c.identify.nsid = cpu_to_le32(nsid),
1199
d29ec824
CH
1200 *id = kmalloc(sizeof(struct nvme_id_ns), GFP_KERNEL);
1201 if (!*id)
1202 return -ENOMEM;
1203
1204 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1205 sizeof(struct nvme_id_ns));
1206 if (error)
1207 kfree(*id);
1208 return error;
bc5fc7e4
MW
1209}
1210
5d0f6131 1211int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
08df1e05 1212 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
1213{
1214 struct nvme_command c;
1215
1216 memset(&c, 0, sizeof(c));
1217 c.features.opcode = nvme_admin_get_features;
a42cecce 1218 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
1219 c.features.prp1 = cpu_to_le64(dma_addr);
1220 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 1221
d29ec824
CH
1222 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1223 result, 0);
df348139
MW
1224}
1225
5d0f6131
VV
1226int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1227 dma_addr_t dma_addr, u32 *result)
df348139
MW
1228{
1229 struct nvme_command c;
1230
1231 memset(&c, 0, sizeof(c));
1232 c.features.opcode = nvme_admin_set_features;
1233 c.features.prp1 = cpu_to_le64(dma_addr);
1234 c.features.fid = cpu_to_le32(fid);
1235 c.features.dword11 = cpu_to_le32(dword11);
1236
d29ec824
CH
1237 return __nvme_submit_sync_cmd(dev->admin_q, &c, NULL, NULL, 0,
1238 result, 0);
1239}
1240
1241int nvme_get_log_page(struct nvme_dev *dev, struct nvme_smart_log **log)
1242{
e44ac588
AM
1243 struct nvme_command c = { };
1244 int error;
1245
1246 c.common.opcode = nvme_admin_get_log_page,
1247 c.common.nsid = cpu_to_le32(0xFFFFFFFF),
1248 c.common.cdw10[0] = cpu_to_le32(
d29ec824
CH
1249 (((sizeof(struct nvme_smart_log) / 4) - 1) << 16) |
1250 NVME_LOG_SMART),
d29ec824
CH
1251
1252 *log = kmalloc(sizeof(struct nvme_smart_log), GFP_KERNEL);
1253 if (!*log)
1254 return -ENOMEM;
1255
1256 error = nvme_submit_sync_cmd(dev->admin_q, &c, *log,
1257 sizeof(struct nvme_smart_log));
1258 if (error)
1259 kfree(*log);
1260 return error;
bc5fc7e4
MW
1261}
1262
c30341dc 1263/**
a4aea562 1264 * nvme_abort_req - Attempt aborting a request
c30341dc
KB
1265 *
1266 * Schedule controller reset if the command was already aborted once before and
1267 * still hasn't been returned to the driver, or if this is the admin queue.
1268 */
a4aea562 1269static void nvme_abort_req(struct request *req)
c30341dc 1270{
a4aea562
MB
1271 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1272 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
c30341dc 1273 struct nvme_dev *dev = nvmeq->dev;
a4aea562
MB
1274 struct request *abort_req;
1275 struct nvme_cmd_info *abort_cmd;
1276 struct nvme_command cmd;
c30341dc 1277
a4aea562 1278 if (!nvmeq->qid || cmd_rq->aborted) {
7a509a6b
KB
1279 unsigned long flags;
1280
1281 spin_lock_irqsave(&dev_list_lock, flags);
c30341dc 1282 if (work_busy(&dev->reset_work))
7a509a6b 1283 goto out;
c30341dc 1284 list_del_init(&dev->node);
e75ec752 1285 dev_warn(dev->dev, "I/O %d QID %d timeout, reset controller\n",
a4aea562 1286 req->tag, nvmeq->qid);
c30341dc 1287 queue_work(nvme_workq, &dev->reset_work);
7a509a6b
KB
1288 out:
1289 spin_unlock_irqrestore(&dev_list_lock, flags);
c30341dc
KB
1290 return;
1291 }
1292
1293 if (!dev->abort_limit)
1294 return;
1295
a4aea562
MB
1296 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1297 false);
9f173b33 1298 if (IS_ERR(abort_req))
c30341dc
KB
1299 return;
1300
a4aea562
MB
1301 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1302 nvme_set_info(abort_cmd, abort_req, abort_completion);
1303
c30341dc
KB
1304 memset(&cmd, 0, sizeof(cmd));
1305 cmd.abort.opcode = nvme_admin_abort_cmd;
a4aea562 1306 cmd.abort.cid = req->tag;
c30341dc 1307 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
a4aea562 1308 cmd.abort.command_id = abort_req->tag;
c30341dc
KB
1309
1310 --dev->abort_limit;
a4aea562 1311 cmd_rq->aborted = 1;
c30341dc 1312
a4aea562 1313 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
c30341dc 1314 nvmeq->qid);
e3f879bf 1315 nvme_submit_cmd(dev->queues[0], &cmd);
c30341dc
KB
1316}
1317
42483228 1318static void nvme_cancel_queue_ios(struct request *req, void *data, bool reserved)
a09115b2 1319{
a4aea562
MB
1320 struct nvme_queue *nvmeq = data;
1321 void *ctx;
1322 nvme_completion_fn fn;
1323 struct nvme_cmd_info *cmd;
cef6a948
KB
1324 struct nvme_completion cqe;
1325
1326 if (!blk_mq_request_started(req))
1327 return;
a09115b2 1328
a4aea562 1329 cmd = blk_mq_rq_to_pdu(req);
a09115b2 1330
a4aea562
MB
1331 if (cmd->ctx == CMD_CTX_CANCELLED)
1332 return;
1333
cef6a948
KB
1334 if (blk_queue_dying(req->q))
1335 cqe.status = cpu_to_le16((NVME_SC_ABORT_REQ | NVME_SC_DNR) << 1);
1336 else
1337 cqe.status = cpu_to_le16(NVME_SC_ABORT_REQ << 1);
1338
1339
a4aea562
MB
1340 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1341 req->tag, nvmeq->qid);
1342 ctx = cancel_cmd_info(cmd, &fn);
1343 fn(nvmeq, ctx, &cqe);
a09115b2
MW
1344}
1345
a4aea562 1346static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
9e866774 1347{
a4aea562
MB
1348 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1349 struct nvme_queue *nvmeq = cmd->nvmeq;
1350
1351 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1352 nvmeq->qid);
7a509a6b 1353 spin_lock_irq(&nvmeq->q_lock);
07836e65 1354 nvme_abort_req(req);
7a509a6b 1355 spin_unlock_irq(&nvmeq->q_lock);
a4aea562 1356
07836e65
KB
1357 /*
1358 * The aborted req will be completed on receiving the abort req.
1359 * We enable the timer again. If hit twice, it'll cause a device reset,
1360 * as the device then is in a faulty state.
1361 */
1362 return BLK_EH_RESET_TIMER;
a4aea562 1363}
22404274 1364
a4aea562
MB
1365static void nvme_free_queue(struct nvme_queue *nvmeq)
1366{
9e866774
MW
1367 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1368 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
8ffaadf7
JD
1369 if (nvmeq->sq_cmds)
1370 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
9e866774
MW
1371 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1372 kfree(nvmeq);
1373}
1374
a1a5ef99 1375static void nvme_free_queues(struct nvme_dev *dev, int lowest)
22404274
KB
1376{
1377 int i;
1378
a1a5ef99 1379 for (i = dev->queue_count - 1; i >= lowest; i--) {
a4aea562 1380 struct nvme_queue *nvmeq = dev->queues[i];
22404274 1381 dev->queue_count--;
a4aea562 1382 dev->queues[i] = NULL;
f435c282 1383 nvme_free_queue(nvmeq);
121c7ad4 1384 }
22404274
KB
1385}
1386
4d115420
KB
1387/**
1388 * nvme_suspend_queue - put queue into suspended state
1389 * @nvmeq - queue to suspend
4d115420
KB
1390 */
1391static int nvme_suspend_queue(struct nvme_queue *nvmeq)
b60503ba 1392{
2b25d981 1393 int vector;
b60503ba 1394
a09115b2 1395 spin_lock_irq(&nvmeq->q_lock);
2b25d981
KB
1396 if (nvmeq->cq_vector == -1) {
1397 spin_unlock_irq(&nvmeq->q_lock);
1398 return 1;
1399 }
1400 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
42f61420 1401 nvmeq->dev->online_queues--;
2b25d981 1402 nvmeq->cq_vector = -1;
a09115b2
MW
1403 spin_unlock_irq(&nvmeq->q_lock);
1404
6df3dbc8
KB
1405 if (!nvmeq->qid && nvmeq->dev->admin_q)
1406 blk_mq_freeze_queue_start(nvmeq->dev->admin_q);
1407
aba2080f
MW
1408 irq_set_affinity_hint(vector, NULL);
1409 free_irq(vector, nvmeq);
b60503ba 1410
4d115420
KB
1411 return 0;
1412}
b60503ba 1413
4d115420
KB
1414static void nvme_clear_queue(struct nvme_queue *nvmeq)
1415{
22404274 1416 spin_lock_irq(&nvmeq->q_lock);
42483228
KB
1417 if (nvmeq->tags && *nvmeq->tags)
1418 blk_mq_all_tag_busy_iter(*nvmeq->tags, nvme_cancel_queue_ios, nvmeq);
22404274 1419 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1420}
1421
4d115420
KB
1422static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1423{
a4aea562 1424 struct nvme_queue *nvmeq = dev->queues[qid];
4d115420
KB
1425
1426 if (!nvmeq)
1427 return;
1428 if (nvme_suspend_queue(nvmeq))
1429 return;
1430
0e53d180
KB
1431 /* Don't tell the adapter to delete the admin queue.
1432 * Don't tell a removed adapter to delete IO queues. */
1433 if (qid && readl(&dev->bar->csts) != -1) {
b60503ba
MW
1434 adapter_delete_sq(dev, qid);
1435 adapter_delete_cq(dev, qid);
1436 }
07836e65
KB
1437
1438 spin_lock_irq(&nvmeq->q_lock);
1439 nvme_process_cq(nvmeq);
1440 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1441}
1442
8ffaadf7
JD
1443static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues,
1444 int entry_size)
1445{
1446 int q_depth = dev->q_depth;
1447 unsigned q_size_aligned = roundup(q_depth * entry_size, dev->page_size);
1448
1449 if (q_size_aligned * nr_io_queues > dev->cmb_size) {
c45f5c99
JD
1450 u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues);
1451 mem_per_q = round_down(mem_per_q, dev->page_size);
1452 q_depth = div_u64(mem_per_q, entry_size);
8ffaadf7
JD
1453
1454 /*
1455 * Ensure the reduced q_depth is above some threshold where it
1456 * would be better to map queues in system memory with the
1457 * original depth
1458 */
1459 if (q_depth < 64)
1460 return -ENOMEM;
1461 }
1462
1463 return q_depth;
1464}
1465
1466static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1467 int qid, int depth)
1468{
1469 if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) {
1470 unsigned offset = (qid - 1) *
1471 roundup(SQ_SIZE(depth), dev->page_size);
1472 nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset;
1473 nvmeq->sq_cmds_io = dev->cmb + offset;
1474 } else {
1475 nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth),
1476 &nvmeq->sq_dma_addr, GFP_KERNEL);
1477 if (!nvmeq->sq_cmds)
1478 return -ENOMEM;
1479 }
1480
1481 return 0;
1482}
1483
b60503ba 1484static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
2b25d981 1485 int depth)
b60503ba 1486{
a4aea562 1487 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
b60503ba
MW
1488 if (!nvmeq)
1489 return NULL;
1490
e75ec752 1491 nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth),
4d51abf9 1492 &nvmeq->cq_dma_addr, GFP_KERNEL);
b60503ba
MW
1493 if (!nvmeq->cqes)
1494 goto free_nvmeq;
b60503ba 1495
8ffaadf7 1496 if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth))
b60503ba
MW
1497 goto free_cqdma;
1498
e75ec752 1499 nvmeq->q_dmadev = dev->dev;
091b6092 1500 nvmeq->dev = dev;
3193f07b
MW
1501 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1502 dev->instance, qid);
b60503ba
MW
1503 spin_lock_init(&nvmeq->q_lock);
1504 nvmeq->cq_head = 0;
82123460 1505 nvmeq->cq_phase = 1;
b80d5ccc 1506 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
b60503ba 1507 nvmeq->q_depth = depth;
c30341dc 1508 nvmeq->qid = qid;
758dd7fd 1509 nvmeq->cq_vector = -1;
a4aea562 1510 dev->queues[qid] = nvmeq;
b60503ba 1511
36a7e993
JD
1512 /* make sure queue descriptor is set before queue count, for kthread */
1513 mb();
1514 dev->queue_count++;
1515
b60503ba
MW
1516 return nvmeq;
1517
1518 free_cqdma:
e75ec752 1519 dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1520 nvmeq->cq_dma_addr);
1521 free_nvmeq:
1522 kfree(nvmeq);
1523 return NULL;
1524}
1525
3001082c
MW
1526static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1527 const char *name)
1528{
58ffacb5
MW
1529 if (use_threaded_interrupts)
1530 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
481e5bad 1531 nvme_irq_check, nvme_irq, IRQF_SHARED,
58ffacb5 1532 name, nvmeq);
3001082c 1533 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
481e5bad 1534 IRQF_SHARED, name, nvmeq);
3001082c
MW
1535}
1536
22404274 1537static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1538{
22404274 1539 struct nvme_dev *dev = nvmeq->dev;
b60503ba 1540
7be50e93 1541 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1542 nvmeq->sq_tail = 0;
1543 nvmeq->cq_head = 0;
1544 nvmeq->cq_phase = 1;
b80d5ccc 1545 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
22404274 1546 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
42f61420 1547 dev->online_queues++;
7be50e93 1548 spin_unlock_irq(&nvmeq->q_lock);
22404274
KB
1549}
1550
1551static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1552{
1553 struct nvme_dev *dev = nvmeq->dev;
1554 int result;
3f85d50b 1555
2b25d981 1556 nvmeq->cq_vector = qid - 1;
b60503ba
MW
1557 result = adapter_alloc_cq(dev, qid, nvmeq);
1558 if (result < 0)
22404274 1559 return result;
b60503ba
MW
1560
1561 result = adapter_alloc_sq(dev, qid, nvmeq);
1562 if (result < 0)
1563 goto release_cq;
1564
3193f07b 1565 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
b60503ba
MW
1566 if (result < 0)
1567 goto release_sq;
1568
22404274 1569 nvme_init_queue(nvmeq, qid);
22404274 1570 return result;
b60503ba
MW
1571
1572 release_sq:
1573 adapter_delete_sq(dev, qid);
1574 release_cq:
1575 adapter_delete_cq(dev, qid);
22404274 1576 return result;
b60503ba
MW
1577}
1578
ba47e386
MW
1579static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1580{
1581 unsigned long timeout;
1582 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1583
1584 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1585
1586 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1587 msleep(100);
1588 if (fatal_signal_pending(current))
1589 return -EINTR;
1590 if (time_after(jiffies, timeout)) {
e75ec752 1591 dev_err(dev->dev,
27e8166c
MW
1592 "Device not ready; aborting %s\n", enabled ?
1593 "initialisation" : "reset");
ba47e386
MW
1594 return -ENODEV;
1595 }
1596 }
1597
1598 return 0;
1599}
1600
1601/*
1602 * If the device has been passed off to us in an enabled state, just clear
1603 * the enabled bit. The spec says we should set the 'shutdown notification
1604 * bits', but doing so may cause the device to complete commands to the
1605 * admin queue ... and we don't know what memory that might be pointing at!
1606 */
1607static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1608{
01079522
DM
1609 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1610 dev->ctrl_config &= ~NVME_CC_ENABLE;
1611 writel(dev->ctrl_config, &dev->bar->cc);
44af146a 1612
ba47e386
MW
1613 return nvme_wait_ready(dev, cap, false);
1614}
1615
1616static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1617{
01079522
DM
1618 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1619 dev->ctrl_config |= NVME_CC_ENABLE;
1620 writel(dev->ctrl_config, &dev->bar->cc);
1621
ba47e386
MW
1622 return nvme_wait_ready(dev, cap, true);
1623}
1624
1894d8f1
KB
1625static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1626{
1627 unsigned long timeout;
1894d8f1 1628
01079522
DM
1629 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1630 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1631
1632 writel(dev->ctrl_config, &dev->bar->cc);
1894d8f1 1633
2484f407 1634 timeout = SHUTDOWN_TIMEOUT + jiffies;
1894d8f1
KB
1635 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1636 NVME_CSTS_SHST_CMPLT) {
1637 msleep(100);
1638 if (fatal_signal_pending(current))
1639 return -EINTR;
1640 if (time_after(jiffies, timeout)) {
e75ec752 1641 dev_err(dev->dev,
1894d8f1
KB
1642 "Device shutdown incomplete; abort shutdown\n");
1643 return -ENODEV;
1644 }
1645 }
1646
1647 return 0;
1648}
1649
a4aea562 1650static struct blk_mq_ops nvme_mq_admin_ops = {
d29ec824 1651 .queue_rq = nvme_queue_rq,
a4aea562
MB
1652 .map_queue = blk_mq_map_queue,
1653 .init_hctx = nvme_admin_init_hctx,
4af0e21c 1654 .exit_hctx = nvme_admin_exit_hctx,
a4aea562
MB
1655 .init_request = nvme_admin_init_request,
1656 .timeout = nvme_timeout,
1657};
1658
1659static struct blk_mq_ops nvme_mq_ops = {
1660 .queue_rq = nvme_queue_rq,
1661 .map_queue = blk_mq_map_queue,
1662 .init_hctx = nvme_init_hctx,
1663 .init_request = nvme_init_request,
1664 .timeout = nvme_timeout,
1665};
1666
ea191d2f
KB
1667static void nvme_dev_remove_admin(struct nvme_dev *dev)
1668{
1669 if (dev->admin_q && !blk_queue_dying(dev->admin_q)) {
1670 blk_cleanup_queue(dev->admin_q);
1671 blk_mq_free_tag_set(&dev->admin_tagset);
1672 }
1673}
1674
a4aea562
MB
1675static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1676{
1677 if (!dev->admin_q) {
1678 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1679 dev->admin_tagset.nr_hw_queues = 1;
1680 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1efccc9d 1681 dev->admin_tagset.reserved_tags = 1;
a4aea562 1682 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
e75ec752 1683 dev->admin_tagset.numa_node = dev_to_node(dev->dev);
ac3dd5bd 1684 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
a4aea562
MB
1685 dev->admin_tagset.driver_data = dev;
1686
1687 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1688 return -ENOMEM;
1689
1690 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
35b489d3 1691 if (IS_ERR(dev->admin_q)) {
a4aea562
MB
1692 blk_mq_free_tag_set(&dev->admin_tagset);
1693 return -ENOMEM;
1694 }
ea191d2f
KB
1695 if (!blk_get_queue(dev->admin_q)) {
1696 nvme_dev_remove_admin(dev);
4af0e21c 1697 dev->admin_q = NULL;
ea191d2f
KB
1698 return -ENODEV;
1699 }
0fb59cbc
KB
1700 } else
1701 blk_mq_unfreeze_queue(dev->admin_q);
a4aea562
MB
1702
1703 return 0;
1704}
1705
8d85fce7 1706static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1707{
ba47e386 1708 int result;
b60503ba 1709 u32 aqa;
ba47e386 1710 u64 cap = readq(&dev->bar->cap);
b60503ba 1711 struct nvme_queue *nvmeq;
1d090624
KB
1712 unsigned page_shift = PAGE_SHIFT;
1713 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1714 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1715
1716 if (page_shift < dev_page_min) {
e75ec752 1717 dev_err(dev->dev,
1d090624
KB
1718 "Minimum device page size (%u) too large for "
1719 "host (%u)\n", 1 << dev_page_min,
1720 1 << page_shift);
1721 return -ENODEV;
1722 }
1723 if (page_shift > dev_page_max) {
e75ec752 1724 dev_info(dev->dev,
1d090624
KB
1725 "Device maximum page size (%u) smaller than "
1726 "host (%u); enabling work-around\n",
1727 1 << dev_page_max, 1 << page_shift);
1728 page_shift = dev_page_max;
1729 }
b60503ba 1730
dfbac8c7
KB
1731 dev->subsystem = readl(&dev->bar->vs) >= NVME_VS(1, 1) ?
1732 NVME_CAP_NSSRC(cap) : 0;
1733
1734 if (dev->subsystem && (readl(&dev->bar->csts) & NVME_CSTS_NSSRO))
1735 writel(NVME_CSTS_NSSRO, &dev->bar->csts);
1736
ba47e386
MW
1737 result = nvme_disable_ctrl(dev, cap);
1738 if (result < 0)
1739 return result;
b60503ba 1740
a4aea562 1741 nvmeq = dev->queues[0];
cd638946 1742 if (!nvmeq) {
2b25d981 1743 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
cd638946
KB
1744 if (!nvmeq)
1745 return -ENOMEM;
cd638946 1746 }
b60503ba
MW
1747
1748 aqa = nvmeq->q_depth - 1;
1749 aqa |= aqa << 16;
1750
1d090624
KB
1751 dev->page_size = 1 << page_shift;
1752
01079522 1753 dev->ctrl_config = NVME_CC_CSS_NVM;
1d090624 1754 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
b60503ba 1755 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1756 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba
MW
1757
1758 writel(aqa, &dev->bar->aqa);
1759 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1760 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
b60503ba 1761
ba47e386 1762 result = nvme_enable_ctrl(dev, cap);
025c557a 1763 if (result)
a4aea562
MB
1764 goto free_nvmeq;
1765
2b25d981 1766 nvmeq->cq_vector = 0;
3193f07b 1767 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
758dd7fd
JD
1768 if (result) {
1769 nvmeq->cq_vector = -1;
0fb59cbc 1770 goto free_nvmeq;
758dd7fd 1771 }
025c557a 1772
b60503ba 1773 return result;
a4aea562 1774
a4aea562
MB
1775 free_nvmeq:
1776 nvme_free_queues(dev, 0);
1777 return result;
b60503ba
MW
1778}
1779
a53295b6
MW
1780static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1781{
1782 struct nvme_dev *dev = ns->dev;
a53295b6
MW
1783 struct nvme_user_io io;
1784 struct nvme_command c;
d29ec824 1785 unsigned length, meta_len;
a67a9513 1786 int status, write;
a67a9513
KB
1787 dma_addr_t meta_dma = 0;
1788 void *meta = NULL;
fec558b5 1789 void __user *metadata;
a53295b6
MW
1790
1791 if (copy_from_user(&io, uio, sizeof(io)))
1792 return -EFAULT;
6c7d4945
MW
1793
1794 switch (io.opcode) {
1795 case nvme_cmd_write:
1796 case nvme_cmd_read:
6bbf1acd 1797 case nvme_cmd_compare:
6413214c 1798 break;
6c7d4945 1799 default:
6bbf1acd 1800 return -EINVAL;
6c7d4945
MW
1801 }
1802
d29ec824
CH
1803 length = (io.nblocks + 1) << ns->lba_shift;
1804 meta_len = (io.nblocks + 1) * ns->ms;
6a398a3e 1805 metadata = (void __user *)(unsigned long)io.metadata;
d29ec824 1806 write = io.opcode & 1;
a53295b6 1807
71feb364
KB
1808 if (ns->ext) {
1809 length += meta_len;
1810 meta_len = 0;
a67a9513
KB
1811 }
1812 if (meta_len) {
d29ec824
CH
1813 if (((io.metadata & 3) || !io.metadata) && !ns->ext)
1814 return -EINVAL;
1815
e75ec752 1816 meta = dma_alloc_coherent(dev->dev, meta_len,
a67a9513 1817 &meta_dma, GFP_KERNEL);
fec558b5 1818
a67a9513
KB
1819 if (!meta) {
1820 status = -ENOMEM;
1821 goto unmap;
1822 }
1823 if (write) {
fec558b5 1824 if (copy_from_user(meta, metadata, meta_len)) {
a67a9513
KB
1825 status = -EFAULT;
1826 goto unmap;
1827 }
1828 }
1829 }
1830
a53295b6
MW
1831 memset(&c, 0, sizeof(c));
1832 c.rw.opcode = io.opcode;
1833 c.rw.flags = io.flags;
6c7d4945 1834 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1835 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1836 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1837 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1838 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1839 c.rw.reftag = cpu_to_le32(io.reftag);
1840 c.rw.apptag = cpu_to_le16(io.apptag);
1841 c.rw.appmask = cpu_to_le16(io.appmask);
a67a9513 1842 c.rw.metadata = cpu_to_le64(meta_dma);
d29ec824
CH
1843
1844 status = __nvme_submit_sync_cmd(ns->queue, &c, NULL,
1845 (void __user *)io.addr, length, NULL, 0);
f410c680 1846 unmap:
a67a9513
KB
1847 if (meta) {
1848 if (status == NVME_SC_SUCCESS && !write) {
fec558b5 1849 if (copy_to_user(metadata, meta, meta_len))
a67a9513
KB
1850 status = -EFAULT;
1851 }
e75ec752 1852 dma_free_coherent(dev->dev, meta_len, meta, meta_dma);
f410c680 1853 }
a53295b6
MW
1854 return status;
1855}
1856
a4aea562
MB
1857static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1858 struct nvme_passthru_cmd __user *ucmd)
6ee44cdc 1859{
7963e521 1860 struct nvme_passthru_cmd cmd;
6ee44cdc 1861 struct nvme_command c;
d29ec824
CH
1862 unsigned timeout = 0;
1863 int status;
6ee44cdc 1864
6bbf1acd
MW
1865 if (!capable(CAP_SYS_ADMIN))
1866 return -EACCES;
1867 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1868 return -EFAULT;
6ee44cdc
MW
1869
1870 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1871 c.common.opcode = cmd.opcode;
1872 c.common.flags = cmd.flags;
1873 c.common.nsid = cpu_to_le32(cmd.nsid);
1874 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1875 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1876 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1877 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1878 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1879 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1880 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1881 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1882
d29ec824
CH
1883 if (cmd.timeout_ms)
1884 timeout = msecs_to_jiffies(cmd.timeout_ms);
eca18b23 1885
f705f837 1886 status = __nvme_submit_sync_cmd(ns ? ns->queue : dev->admin_q, &c,
d29ec824
CH
1887 NULL, (void __user *)cmd.addr, cmd.data_len,
1888 &cmd.result, timeout);
1889 if (status >= 0) {
1890 if (put_user(cmd.result, &ucmd->result))
1891 return -EFAULT;
6bbf1acd 1892 }
f4f117f6 1893
6ee44cdc
MW
1894 return status;
1895}
1896
81f03fed
JD
1897static int nvme_subsys_reset(struct nvme_dev *dev)
1898{
1899 if (!dev->subsystem)
1900 return -ENOTTY;
1901
1902 writel(0x4E564D65, &dev->bar->nssr); /* "NVMe" */
1903 return 0;
1904}
1905
b60503ba
MW
1906static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1907 unsigned long arg)
1908{
1909 struct nvme_ns *ns = bdev->bd_disk->private_data;
1910
1911 switch (cmd) {
6bbf1acd 1912 case NVME_IOCTL_ID:
c3bfe717 1913 force_successful_syscall_return();
6bbf1acd
MW
1914 return ns->ns_id;
1915 case NVME_IOCTL_ADMIN_CMD:
a4aea562 1916 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
7963e521 1917 case NVME_IOCTL_IO_CMD:
a4aea562 1918 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
a53295b6
MW
1919 case NVME_IOCTL_SUBMIT_IO:
1920 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1921 case SG_GET_VERSION_NUM:
1922 return nvme_sg_get_version_num((void __user *)arg);
1923 case SG_IO:
1924 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1925 default:
1926 return -ENOTTY;
1927 }
1928}
1929
320a3827
KB
1930#ifdef CONFIG_COMPAT
1931static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1932 unsigned int cmd, unsigned long arg)
1933{
320a3827
KB
1934 switch (cmd) {
1935 case SG_IO:
e179729a 1936 return -ENOIOCTLCMD;
320a3827
KB
1937 }
1938 return nvme_ioctl(bdev, mode, cmd, arg);
1939}
1940#else
1941#define nvme_compat_ioctl NULL
1942#endif
1943
5105aa55 1944static void nvme_free_dev(struct kref *kref);
188c3568
KB
1945static void nvme_free_ns(struct kref *kref)
1946{
1947 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
1948
1949 spin_lock(&dev_list_lock);
1950 ns->disk->private_data = NULL;
1951 spin_unlock(&dev_list_lock);
1952
5105aa55 1953 kref_put(&ns->dev->kref, nvme_free_dev);
188c3568
KB
1954 put_disk(ns->disk);
1955 kfree(ns);
1956}
1957
9ac27090
KB
1958static int nvme_open(struct block_device *bdev, fmode_t mode)
1959{
9e60352c
KB
1960 int ret = 0;
1961 struct nvme_ns *ns;
9ac27090 1962
9e60352c
KB
1963 spin_lock(&dev_list_lock);
1964 ns = bdev->bd_disk->private_data;
1965 if (!ns)
1966 ret = -ENXIO;
188c3568 1967 else if (!kref_get_unless_zero(&ns->kref))
9e60352c
KB
1968 ret = -ENXIO;
1969 spin_unlock(&dev_list_lock);
1970
1971 return ret;
9ac27090
KB
1972}
1973
9ac27090
KB
1974static void nvme_release(struct gendisk *disk, fmode_t mode)
1975{
1976 struct nvme_ns *ns = disk->private_data;
188c3568 1977 kref_put(&ns->kref, nvme_free_ns);
9ac27090
KB
1978}
1979
4cc09e2d
KB
1980static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1981{
1982 /* some standard values */
1983 geo->heads = 1 << 6;
1984 geo->sectors = 1 << 5;
1985 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1986 return 0;
1987}
1988
e1e5e564
KB
1989static void nvme_config_discard(struct nvme_ns *ns)
1990{
1991 u32 logical_block_size = queue_logical_block_size(ns->queue);
1992 ns->queue->limits.discard_zeroes_data = 0;
1993 ns->queue->limits.discard_alignment = logical_block_size;
1994 ns->queue->limits.discard_granularity = logical_block_size;
2bb4cd5c 1995 blk_queue_max_discard_sectors(ns->queue, 0xffffffff);
e1e5e564
KB
1996 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1997}
1998
1b9dbf7f
KB
1999static int nvme_revalidate_disk(struct gendisk *disk)
2000{
2001 struct nvme_ns *ns = disk->private_data;
2002 struct nvme_dev *dev = ns->dev;
2003 struct nvme_id_ns *id;
a67a9513
KB
2004 u8 lbaf, pi_type;
2005 u16 old_ms;
e1e5e564 2006 unsigned short bs;
1b9dbf7f 2007
d29ec824 2008 if (nvme_identify_ns(dev, ns->ns_id, &id)) {
a5768aa8
KB
2009 dev_warn(dev->dev, "%s: Identify failure nvme%dn%d\n", __func__,
2010 dev->instance, ns->ns_id);
2011 return -ENODEV;
1b9dbf7f 2012 }
a5768aa8
KB
2013 if (id->ncap == 0) {
2014 kfree(id);
2015 return -ENODEV;
e1e5e564 2016 }
1b9dbf7f 2017
e1e5e564
KB
2018 old_ms = ns->ms;
2019 lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
1b9dbf7f 2020 ns->lba_shift = id->lbaf[lbaf].ds;
e1e5e564 2021 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
a67a9513 2022 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
e1e5e564
KB
2023
2024 /*
2025 * If identify namespace failed, use default 512 byte block size so
2026 * block layer can use before failing read/write for 0 capacity.
2027 */
2028 if (ns->lba_shift == 0)
2029 ns->lba_shift = 9;
2030 bs = 1 << ns->lba_shift;
2031
2032 /* XXX: PI implementation requires metadata equal t10 pi tuple size */
2033 pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
2034 id->dps & NVME_NS_DPS_PI_MASK : 0;
2035
52b68d7e
KB
2036 if (blk_get_integrity(disk) && (ns->pi_type != pi_type ||
2037 ns->ms != old_ms ||
e1e5e564 2038 bs != queue_logical_block_size(disk->queue) ||
a67a9513 2039 (ns->ms && ns->ext)))
e1e5e564
KB
2040 blk_integrity_unregister(disk);
2041
2042 ns->pi_type = pi_type;
2043 blk_queue_logical_block_size(ns->queue, bs);
2044
52b68d7e 2045 if (ns->ms && !blk_get_integrity(disk) && (disk->flags & GENHD_FL_UP) &&
a67a9513 2046 !ns->ext)
e1e5e564
KB
2047 nvme_init_integrity(ns);
2048
e19b127f 2049 if (ns->ms && !(ns->ms == 8 && ns->pi_type) && !blk_get_integrity(disk))
e1e5e564
KB
2050 set_capacity(disk, 0);
2051 else
2052 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
2053
2054 if (dev->oncs & NVME_CTRL_ONCS_DSM)
2055 nvme_config_discard(ns);
1b9dbf7f 2056
d29ec824 2057 kfree(id);
1b9dbf7f
KB
2058 return 0;
2059}
2060
b60503ba
MW
2061static const struct block_device_operations nvme_fops = {
2062 .owner = THIS_MODULE,
2063 .ioctl = nvme_ioctl,
320a3827 2064 .compat_ioctl = nvme_compat_ioctl,
9ac27090
KB
2065 .open = nvme_open,
2066 .release = nvme_release,
4cc09e2d 2067 .getgeo = nvme_getgeo,
1b9dbf7f 2068 .revalidate_disk= nvme_revalidate_disk,
b60503ba
MW
2069};
2070
1fa6aead
MW
2071static int nvme_kthread(void *data)
2072{
d4b4ff8e 2073 struct nvme_dev *dev, *next;
1fa6aead
MW
2074
2075 while (!kthread_should_stop()) {
564a232c 2076 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead 2077 spin_lock(&dev_list_lock);
d4b4ff8e 2078 list_for_each_entry_safe(dev, next, &dev_list, node) {
1fa6aead 2079 int i;
dfbac8c7
KB
2080 u32 csts = readl(&dev->bar->csts);
2081
2082 if ((dev->subsystem && (csts & NVME_CSTS_NSSRO)) ||
2083 csts & NVME_CSTS_CFS) {
d4b4ff8e
KB
2084 if (work_busy(&dev->reset_work))
2085 continue;
2086 list_del_init(&dev->node);
e75ec752 2087 dev_warn(dev->dev,
a4aea562
MB
2088 "Failed status: %x, reset controller\n",
2089 readl(&dev->bar->csts));
d4b4ff8e
KB
2090 queue_work(nvme_workq, &dev->reset_work);
2091 continue;
2092 }
1fa6aead 2093 for (i = 0; i < dev->queue_count; i++) {
a4aea562 2094 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
2095 if (!nvmeq)
2096 continue;
1fa6aead 2097 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 2098 nvme_process_cq(nvmeq);
6fccf938
KB
2099
2100 while ((i == 0) && (dev->event_limit > 0)) {
a4aea562 2101 if (nvme_submit_async_admin_req(dev))
6fccf938
KB
2102 break;
2103 dev->event_limit--;
2104 }
1fa6aead
MW
2105 spin_unlock_irq(&nvmeq->q_lock);
2106 }
2107 }
2108 spin_unlock(&dev_list_lock);
acb7aa0d 2109 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
2110 }
2111 return 0;
2112}
2113
e1e5e564 2114static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
b60503ba
MW
2115{
2116 struct nvme_ns *ns;
2117 struct gendisk *disk;
e75ec752 2118 int node = dev_to_node(dev->dev);
b60503ba 2119
a4aea562 2120 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
b60503ba 2121 if (!ns)
e1e5e564
KB
2122 return;
2123
a4aea562 2124 ns->queue = blk_mq_init_queue(&dev->tagset);
9f173b33 2125 if (IS_ERR(ns->queue))
b60503ba 2126 goto out_free_ns;
4eeb9215
MW
2127 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
2128 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
b60503ba
MW
2129 ns->dev = dev;
2130 ns->queue->queuedata = ns;
2131
a4aea562 2132 disk = alloc_disk_node(0, node);
b60503ba
MW
2133 if (!disk)
2134 goto out_free_queue;
a4aea562 2135
188c3568 2136 kref_init(&ns->kref);
5aff9382 2137 ns->ns_id = nsid;
b60503ba 2138 ns->disk = disk;
e1e5e564
KB
2139 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2140 list_add_tail(&ns->list, &dev->namespaces);
2141
e9ef4636 2142 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
e824410f 2143 if (dev->max_hw_sectors) {
8fc23e03 2144 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
e824410f
KB
2145 blk_queue_max_segments(ns->queue,
2146 ((dev->max_hw_sectors << 9) / dev->page_size) + 1);
2147 }
a4aea562
MB
2148 if (dev->stripe_size)
2149 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
a7d2ce28
KB
2150 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
2151 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
03100aad 2152 blk_queue_virt_boundary(ns->queue, dev->page_size - 1);
b60503ba
MW
2153
2154 disk->major = nvme_major;
469071a3 2155 disk->first_minor = 0;
b60503ba
MW
2156 disk->fops = &nvme_fops;
2157 disk->private_data = ns;
2158 disk->queue = ns->queue;
b3fffdef 2159 disk->driverfs_dev = dev->device;
469071a3 2160 disk->flags = GENHD_FL_EXT_DEVT;
5aff9382 2161 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba 2162
e1e5e564
KB
2163 /*
2164 * Initialize capacity to 0 until we establish the namespace format and
2165 * setup integrity extentions if necessary. The revalidate_disk after
2166 * add_disk allows the driver to register with integrity if the format
2167 * requires it.
2168 */
2169 set_capacity(disk, 0);
a5768aa8
KB
2170 if (nvme_revalidate_disk(ns->disk))
2171 goto out_free_disk;
2172
5105aa55 2173 kref_get(&dev->kref);
e1e5e564 2174 add_disk(ns->disk);
7bee6074
KB
2175 if (ns->ms) {
2176 struct block_device *bd = bdget_disk(ns->disk, 0);
2177 if (!bd)
2178 return;
2179 if (blkdev_get(bd, FMODE_READ, NULL)) {
2180 bdput(bd);
2181 return;
2182 }
2183 blkdev_reread_part(bd);
2184 blkdev_put(bd, FMODE_READ);
2185 }
e1e5e564 2186 return;
a5768aa8
KB
2187 out_free_disk:
2188 kfree(disk);
2189 list_del(&ns->list);
b60503ba
MW
2190 out_free_queue:
2191 blk_cleanup_queue(ns->queue);
2192 out_free_ns:
2193 kfree(ns);
b60503ba
MW
2194}
2195
42f61420
KB
2196static void nvme_create_io_queues(struct nvme_dev *dev)
2197{
a4aea562 2198 unsigned i;
42f61420 2199
a4aea562 2200 for (i = dev->queue_count; i <= dev->max_qid; i++)
2b25d981 2201 if (!nvme_alloc_queue(dev, i, dev->q_depth))
42f61420
KB
2202 break;
2203
a4aea562
MB
2204 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2205 if (nvme_create_queue(dev->queues[i], i))
42f61420
KB
2206 break;
2207}
2208
b3b06812 2209static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
2210{
2211 int status;
2212 u32 result;
b3b06812 2213 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 2214
df348139 2215 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 2216 &result);
27e8166c
MW
2217 if (status < 0)
2218 return status;
2219 if (status > 0) {
e75ec752 2220 dev_err(dev->dev, "Could not set queue count (%d)\n", status);
badc34d4 2221 return 0;
27e8166c 2222 }
b60503ba
MW
2223 return min(result & 0xffff, result >> 16) + 1;
2224}
2225
8ffaadf7
JD
2226static void __iomem *nvme_map_cmb(struct nvme_dev *dev)
2227{
2228 u64 szu, size, offset;
2229 u32 cmbloc;
2230 resource_size_t bar_size;
2231 struct pci_dev *pdev = to_pci_dev(dev->dev);
2232 void __iomem *cmb;
2233 dma_addr_t dma_addr;
2234
2235 if (!use_cmb_sqes)
2236 return NULL;
2237
2238 dev->cmbsz = readl(&dev->bar->cmbsz);
2239 if (!(NVME_CMB_SZ(dev->cmbsz)))
2240 return NULL;
2241
2242 cmbloc = readl(&dev->bar->cmbloc);
2243
2244 szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz));
2245 size = szu * NVME_CMB_SZ(dev->cmbsz);
2246 offset = szu * NVME_CMB_OFST(cmbloc);
2247 bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc));
2248
2249 if (offset > bar_size)
2250 return NULL;
2251
2252 /*
2253 * Controllers may support a CMB size larger than their BAR,
2254 * for example, due to being behind a bridge. Reduce the CMB to
2255 * the reported size of the BAR
2256 */
2257 if (size > bar_size - offset)
2258 size = bar_size - offset;
2259
2260 dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset;
2261 cmb = ioremap_wc(dma_addr, size);
2262 if (!cmb)
2263 return NULL;
2264
2265 dev->cmb_dma_addr = dma_addr;
2266 dev->cmb_size = size;
2267 return cmb;
2268}
2269
2270static inline void nvme_release_cmb(struct nvme_dev *dev)
2271{
2272 if (dev->cmb) {
2273 iounmap(dev->cmb);
2274 dev->cmb = NULL;
2275 }
2276}
2277
9d713c2b
KB
2278static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2279{
b80d5ccc 2280 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
9d713c2b
KB
2281}
2282
8d85fce7 2283static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 2284{
a4aea562 2285 struct nvme_queue *adminq = dev->queues[0];
e75ec752 2286 struct pci_dev *pdev = to_pci_dev(dev->dev);
42f61420 2287 int result, i, vecs, nr_io_queues, size;
b60503ba 2288
42f61420 2289 nr_io_queues = num_possible_cpus();
b348b7d5 2290 result = set_queue_count(dev, nr_io_queues);
badc34d4 2291 if (result <= 0)
1b23484b 2292 return result;
b348b7d5
MW
2293 if (result < nr_io_queues)
2294 nr_io_queues = result;
b60503ba 2295
8ffaadf7
JD
2296 if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) {
2297 result = nvme_cmb_qdepth(dev, nr_io_queues,
2298 sizeof(struct nvme_command));
2299 if (result > 0)
2300 dev->q_depth = result;
2301 else
2302 nvme_release_cmb(dev);
2303 }
2304
9d713c2b
KB
2305 size = db_bar_size(dev, nr_io_queues);
2306 if (size > 8192) {
f1938f6e 2307 iounmap(dev->bar);
9d713c2b
KB
2308 do {
2309 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2310 if (dev->bar)
2311 break;
2312 if (!--nr_io_queues)
2313 return -ENOMEM;
2314 size = db_bar_size(dev, nr_io_queues);
2315 } while (1);
f1938f6e 2316 dev->dbs = ((void __iomem *)dev->bar) + 4096;
5a92e700 2317 adminq->q_db = dev->dbs;
f1938f6e
MW
2318 }
2319
9d713c2b 2320 /* Deregister the admin queue's interrupt */
3193f07b 2321 free_irq(dev->entry[0].vector, adminq);
9d713c2b 2322
e32efbfc
JA
2323 /*
2324 * If we enable msix early due to not intx, disable it again before
2325 * setting up the full range we need.
2326 */
2327 if (!pdev->irq)
2328 pci_disable_msix(pdev);
2329
be577fab 2330 for (i = 0; i < nr_io_queues; i++)
1b23484b 2331 dev->entry[i].entry = i;
be577fab
AG
2332 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2333 if (vecs < 0) {
2334 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2335 if (vecs < 0) {
2336 vecs = 1;
2337 } else {
2338 for (i = 0; i < vecs; i++)
2339 dev->entry[i].vector = i + pdev->irq;
fa08a396
RRG
2340 }
2341 }
2342
063a8096
MW
2343 /*
2344 * Should investigate if there's a performance win from allocating
2345 * more queues than interrupt vectors; it might allow the submission
2346 * path to scale better, even if the receive path is limited by the
2347 * number of interrupts.
2348 */
2349 nr_io_queues = vecs;
42f61420 2350 dev->max_qid = nr_io_queues;
063a8096 2351
3193f07b 2352 result = queue_request_irq(dev, adminq, adminq->irqname);
758dd7fd
JD
2353 if (result) {
2354 adminq->cq_vector = -1;
22404274 2355 goto free_queues;
758dd7fd 2356 }
1b23484b 2357
cd638946 2358 /* Free previously allocated queues that are no longer usable */
42f61420 2359 nvme_free_queues(dev, nr_io_queues + 1);
a4aea562 2360 nvme_create_io_queues(dev);
9ecdc946 2361
22404274 2362 return 0;
b60503ba 2363
22404274 2364 free_queues:
a1a5ef99 2365 nvme_free_queues(dev, 1);
22404274 2366 return result;
b60503ba
MW
2367}
2368
a5768aa8
KB
2369static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2370{
2371 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2372 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2373
2374 return nsa->ns_id - nsb->ns_id;
2375}
2376
2377static struct nvme_ns *nvme_find_ns(struct nvme_dev *dev, unsigned nsid)
2378{
2379 struct nvme_ns *ns;
2380
2381 list_for_each_entry(ns, &dev->namespaces, list) {
2382 if (ns->ns_id == nsid)
2383 return ns;
2384 if (ns->ns_id > nsid)
2385 break;
2386 }
2387 return NULL;
2388}
2389
2390static inline bool nvme_io_incapable(struct nvme_dev *dev)
2391{
2392 return (!dev->bar || readl(&dev->bar->csts) & NVME_CSTS_CFS ||
2393 dev->online_queues < 2);
2394}
2395
2396static void nvme_ns_remove(struct nvme_ns *ns)
2397{
2398 bool kill = nvme_io_incapable(ns->dev) && !blk_queue_dying(ns->queue);
2399
2400 if (kill)
2401 blk_set_queue_dying(ns->queue);
2402 if (ns->disk->flags & GENHD_FL_UP) {
2403 if (blk_get_integrity(ns->disk))
2404 blk_integrity_unregister(ns->disk);
2405 del_gendisk(ns->disk);
2406 }
2407 if (kill || !blk_queue_dying(ns->queue)) {
2408 blk_mq_abort_requeue_list(ns->queue);
2409 blk_cleanup_queue(ns->queue);
5105aa55
KB
2410 }
2411 list_del_init(&ns->list);
2412 kref_put(&ns->kref, nvme_free_ns);
a5768aa8
KB
2413}
2414
2415static void nvme_scan_namespaces(struct nvme_dev *dev, unsigned nn)
2416{
2417 struct nvme_ns *ns, *next;
2418 unsigned i;
2419
2420 for (i = 1; i <= nn; i++) {
2421 ns = nvme_find_ns(dev, i);
2422 if (ns) {
5105aa55 2423 if (revalidate_disk(ns->disk))
a5768aa8 2424 nvme_ns_remove(ns);
a5768aa8
KB
2425 } else
2426 nvme_alloc_ns(dev, i);
2427 }
2428 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
5105aa55 2429 if (ns->ns_id > nn)
a5768aa8 2430 nvme_ns_remove(ns);
a5768aa8
KB
2431 }
2432 list_sort(NULL, &dev->namespaces, ns_cmp);
2433}
2434
bda4e0fb
KB
2435static void nvme_set_irq_hints(struct nvme_dev *dev)
2436{
2437 struct nvme_queue *nvmeq;
2438 int i;
2439
2440 for (i = 0; i < dev->online_queues; i++) {
2441 nvmeq = dev->queues[i];
2442
2443 if (!nvmeq->tags || !(*nvmeq->tags))
2444 continue;
2445
2446 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2447 blk_mq_tags_cpumask(*nvmeq->tags));
2448 }
2449}
2450
a5768aa8
KB
2451static void nvme_dev_scan(struct work_struct *work)
2452{
2453 struct nvme_dev *dev = container_of(work, struct nvme_dev, scan_work);
2454 struct nvme_id_ctrl *ctrl;
2455
2456 if (!dev->tagset.tags)
2457 return;
2458 if (nvme_identify_ctrl(dev, &ctrl))
2459 return;
2460 nvme_scan_namespaces(dev, le32_to_cpup(&ctrl->nn));
2461 kfree(ctrl);
bda4e0fb 2462 nvme_set_irq_hints(dev);
a5768aa8
KB
2463}
2464
422ef0c7
MW
2465/*
2466 * Return: error value if an error occurred setting up the queues or calling
2467 * Identify Device. 0 if these succeeded, even if adding some of the
2468 * namespaces failed. At the moment, these failures are silent. TBD which
2469 * failures should be reported.
2470 */
8d85fce7 2471static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 2472{
e75ec752 2473 struct pci_dev *pdev = to_pci_dev(dev->dev);
c3bfe717 2474 int res;
51814232 2475 struct nvme_id_ctrl *ctrl;
159b67d7 2476 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
b60503ba 2477
d29ec824 2478 res = nvme_identify_ctrl(dev, &ctrl);
b60503ba 2479 if (res) {
e75ec752 2480 dev_err(dev->dev, "Identify Controller failed (%d)\n", res);
e1e5e564 2481 return -EIO;
b60503ba
MW
2482 }
2483
0e5e4f0e 2484 dev->oncs = le16_to_cpup(&ctrl->oncs);
c30341dc 2485 dev->abort_limit = ctrl->acl + 1;
a7d2ce28 2486 dev->vwc = ctrl->vwc;
51814232
MW
2487 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2488 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2489 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 2490 if (ctrl->mdts)
8fc23e03 2491 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
68608c26 2492 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
a4aea562
MB
2493 (pdev->device == 0x0953) && ctrl->vs[3]) {
2494 unsigned int max_hw_sectors;
2495
159b67d7 2496 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
a4aea562
MB
2497 max_hw_sectors = dev->stripe_size >> (shift - 9);
2498 if (dev->max_hw_sectors) {
2499 dev->max_hw_sectors = min(max_hw_sectors,
2500 dev->max_hw_sectors);
2501 } else
2502 dev->max_hw_sectors = max_hw_sectors;
2503 }
d29ec824 2504 kfree(ctrl);
a4aea562 2505
ffe7704d
KB
2506 if (!dev->tagset.tags) {
2507 dev->tagset.ops = &nvme_mq_ops;
2508 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2509 dev->tagset.timeout = NVME_IO_TIMEOUT;
2510 dev->tagset.numa_node = dev_to_node(dev->dev);
2511 dev->tagset.queue_depth =
a4aea562 2512 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
ffe7704d
KB
2513 dev->tagset.cmd_size = nvme_cmd_size(dev);
2514 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2515 dev->tagset.driver_data = dev;
b60503ba 2516
ffe7704d
KB
2517 if (blk_mq_alloc_tag_set(&dev->tagset))
2518 return 0;
2519 }
a5768aa8 2520 schedule_work(&dev->scan_work);
e1e5e564 2521 return 0;
b60503ba
MW
2522}
2523
0877cb0d
KB
2524static int nvme_dev_map(struct nvme_dev *dev)
2525{
42f61420 2526 u64 cap;
0877cb0d 2527 int bars, result = -ENOMEM;
e75ec752 2528 struct pci_dev *pdev = to_pci_dev(dev->dev);
0877cb0d
KB
2529
2530 if (pci_enable_device_mem(pdev))
2531 return result;
2532
2533 dev->entry[0].vector = pdev->irq;
2534 pci_set_master(pdev);
2535 bars = pci_select_bars(pdev, IORESOURCE_MEM);
be7837e8
JA
2536 if (!bars)
2537 goto disable_pci;
2538
0877cb0d
KB
2539 if (pci_request_selected_regions(pdev, bars, "nvme"))
2540 goto disable_pci;
2541
e75ec752
CH
2542 if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) &&
2543 dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32)))
052d0efa 2544 goto disable;
0877cb0d 2545
0877cb0d
KB
2546 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2547 if (!dev->bar)
2548 goto disable;
e32efbfc 2549
0e53d180
KB
2550 if (readl(&dev->bar->csts) == -1) {
2551 result = -ENODEV;
2552 goto unmap;
2553 }
e32efbfc
JA
2554
2555 /*
2556 * Some devices don't advertse INTx interrupts, pre-enable a single
2557 * MSIX vec for setup. We'll adjust this later.
2558 */
2559 if (!pdev->irq) {
2560 result = pci_enable_msix(pdev, dev->entry, 1);
2561 if (result < 0)
2562 goto unmap;
2563 }
2564
42f61420
KB
2565 cap = readq(&dev->bar->cap);
2566 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2567 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
0877cb0d 2568 dev->dbs = ((void __iomem *)dev->bar) + 4096;
8ffaadf7
JD
2569 if (readl(&dev->bar->vs) >= NVME_VS(1, 2))
2570 dev->cmb = nvme_map_cmb(dev);
0877cb0d
KB
2571
2572 return 0;
2573
0e53d180
KB
2574 unmap:
2575 iounmap(dev->bar);
2576 dev->bar = NULL;
0877cb0d
KB
2577 disable:
2578 pci_release_regions(pdev);
2579 disable_pci:
2580 pci_disable_device(pdev);
2581 return result;
2582}
2583
2584static void nvme_dev_unmap(struct nvme_dev *dev)
2585{
e75ec752
CH
2586 struct pci_dev *pdev = to_pci_dev(dev->dev);
2587
2588 if (pdev->msi_enabled)
2589 pci_disable_msi(pdev);
2590 else if (pdev->msix_enabled)
2591 pci_disable_msix(pdev);
0877cb0d
KB
2592
2593 if (dev->bar) {
2594 iounmap(dev->bar);
2595 dev->bar = NULL;
e75ec752 2596 pci_release_regions(pdev);
0877cb0d
KB
2597 }
2598
e75ec752
CH
2599 if (pci_is_enabled(pdev))
2600 pci_disable_device(pdev);
0877cb0d
KB
2601}
2602
4d115420
KB
2603struct nvme_delq_ctx {
2604 struct task_struct *waiter;
2605 struct kthread_worker *worker;
2606 atomic_t refcount;
2607};
2608
2609static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2610{
2611 dq->waiter = current;
2612 mb();
2613
2614 for (;;) {
2615 set_current_state(TASK_KILLABLE);
2616 if (!atomic_read(&dq->refcount))
2617 break;
2618 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2619 fatal_signal_pending(current)) {
0fb59cbc
KB
2620 /*
2621 * Disable the controller first since we can't trust it
2622 * at this point, but leave the admin queue enabled
2623 * until all queue deletion requests are flushed.
2624 * FIXME: This may take a while if there are more h/w
2625 * queues than admin tags.
2626 */
4d115420 2627 set_current_state(TASK_RUNNING);
4d115420 2628 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
0fb59cbc 2629 nvme_clear_queue(dev->queues[0]);
4d115420 2630 flush_kthread_worker(dq->worker);
0fb59cbc 2631 nvme_disable_queue(dev, 0);
4d115420
KB
2632 return;
2633 }
2634 }
2635 set_current_state(TASK_RUNNING);
2636}
2637
2638static void nvme_put_dq(struct nvme_delq_ctx *dq)
2639{
2640 atomic_dec(&dq->refcount);
2641 if (dq->waiter)
2642 wake_up_process(dq->waiter);
2643}
2644
2645static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2646{
2647 atomic_inc(&dq->refcount);
2648 return dq;
2649}
2650
2651static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2652{
2653 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
4d115420
KB
2654 nvme_put_dq(dq);
2655}
2656
2657static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2658 kthread_work_func_t fn)
2659{
2660 struct nvme_command c;
2661
2662 memset(&c, 0, sizeof(c));
2663 c.delete_queue.opcode = opcode;
2664 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2665
2666 init_kthread_work(&nvmeq->cmdinfo.work, fn);
a4aea562
MB
2667 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2668 ADMIN_TIMEOUT);
4d115420
KB
2669}
2670
2671static void nvme_del_cq_work_handler(struct kthread_work *work)
2672{
2673 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2674 cmdinfo.work);
2675 nvme_del_queue_end(nvmeq);
2676}
2677
2678static int nvme_delete_cq(struct nvme_queue *nvmeq)
2679{
2680 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2681 nvme_del_cq_work_handler);
2682}
2683
2684static void nvme_del_sq_work_handler(struct kthread_work *work)
2685{
2686 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2687 cmdinfo.work);
2688 int status = nvmeq->cmdinfo.status;
2689
2690 if (!status)
2691 status = nvme_delete_cq(nvmeq);
2692 if (status)
2693 nvme_del_queue_end(nvmeq);
2694}
2695
2696static int nvme_delete_sq(struct nvme_queue *nvmeq)
2697{
2698 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2699 nvme_del_sq_work_handler);
2700}
2701
2702static void nvme_del_queue_start(struct kthread_work *work)
2703{
2704 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2705 cmdinfo.work);
4d115420
KB
2706 if (nvme_delete_sq(nvmeq))
2707 nvme_del_queue_end(nvmeq);
2708}
2709
2710static void nvme_disable_io_queues(struct nvme_dev *dev)
2711{
2712 int i;
2713 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2714 struct nvme_delq_ctx dq;
2715 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2716 &worker, "nvme%d", dev->instance);
2717
2718 if (IS_ERR(kworker_task)) {
e75ec752 2719 dev_err(dev->dev,
4d115420
KB
2720 "Failed to create queue del task\n");
2721 for (i = dev->queue_count - 1; i > 0; i--)
2722 nvme_disable_queue(dev, i);
2723 return;
2724 }
2725
2726 dq.waiter = NULL;
2727 atomic_set(&dq.refcount, 0);
2728 dq.worker = &worker;
2729 for (i = dev->queue_count - 1; i > 0; i--) {
a4aea562 2730 struct nvme_queue *nvmeq = dev->queues[i];
4d115420
KB
2731
2732 if (nvme_suspend_queue(nvmeq))
2733 continue;
2734 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2735 nvmeq->cmdinfo.worker = dq.worker;
2736 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2737 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2738 }
2739 nvme_wait_dq(&dq, dev);
2740 kthread_stop(kworker_task);
2741}
2742
b9afca3e
DM
2743/*
2744* Remove the node from the device list and check
2745* for whether or not we need to stop the nvme_thread.
2746*/
2747static void nvme_dev_list_remove(struct nvme_dev *dev)
2748{
2749 struct task_struct *tmp = NULL;
2750
2751 spin_lock(&dev_list_lock);
2752 list_del_init(&dev->node);
2753 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2754 tmp = nvme_thread;
2755 nvme_thread = NULL;
2756 }
2757 spin_unlock(&dev_list_lock);
2758
2759 if (tmp)
2760 kthread_stop(tmp);
2761}
2762
c9d3bf88
KB
2763static void nvme_freeze_queues(struct nvme_dev *dev)
2764{
2765 struct nvme_ns *ns;
2766
2767 list_for_each_entry(ns, &dev->namespaces, list) {
2768 blk_mq_freeze_queue_start(ns->queue);
2769
cddcd72b 2770 spin_lock_irq(ns->queue->queue_lock);
c9d3bf88 2771 queue_flag_set(QUEUE_FLAG_STOPPED, ns->queue);
cddcd72b 2772 spin_unlock_irq(ns->queue->queue_lock);
c9d3bf88
KB
2773
2774 blk_mq_cancel_requeue_work(ns->queue);
2775 blk_mq_stop_hw_queues(ns->queue);
2776 }
2777}
2778
2779static void nvme_unfreeze_queues(struct nvme_dev *dev)
2780{
2781 struct nvme_ns *ns;
2782
2783 list_for_each_entry(ns, &dev->namespaces, list) {
2784 queue_flag_clear_unlocked(QUEUE_FLAG_STOPPED, ns->queue);
2785 blk_mq_unfreeze_queue(ns->queue);
2786 blk_mq_start_stopped_hw_queues(ns->queue, true);
2787 blk_mq_kick_requeue_list(ns->queue);
2788 }
2789}
2790
f0b50732 2791static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 2792{
22404274 2793 int i;
7c1b2450 2794 u32 csts = -1;
22404274 2795
b9afca3e 2796 nvme_dev_list_remove(dev);
1fa6aead 2797
c9d3bf88
KB
2798 if (dev->bar) {
2799 nvme_freeze_queues(dev);
7c1b2450 2800 csts = readl(&dev->bar->csts);
c9d3bf88 2801 }
7c1b2450 2802 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
4d115420 2803 for (i = dev->queue_count - 1; i >= 0; i--) {
a4aea562 2804 struct nvme_queue *nvmeq = dev->queues[i];
4d115420 2805 nvme_suspend_queue(nvmeq);
4d115420
KB
2806 }
2807 } else {
2808 nvme_disable_io_queues(dev);
1894d8f1 2809 nvme_shutdown_ctrl(dev);
4d115420
KB
2810 nvme_disable_queue(dev, 0);
2811 }
f0b50732 2812 nvme_dev_unmap(dev);
07836e65
KB
2813
2814 for (i = dev->queue_count - 1; i >= 0; i--)
2815 nvme_clear_queue(dev->queues[i]);
f0b50732
KB
2816}
2817
2818static void nvme_dev_remove(struct nvme_dev *dev)
2819{
5105aa55 2820 struct nvme_ns *ns, *next;
f0b50732 2821
5105aa55 2822 list_for_each_entry_safe(ns, next, &dev->namespaces, list)
a5768aa8 2823 nvme_ns_remove(ns);
b60503ba
MW
2824}
2825
091b6092
MW
2826static int nvme_setup_prp_pools(struct nvme_dev *dev)
2827{
e75ec752 2828 dev->prp_page_pool = dma_pool_create("prp list page", dev->dev,
091b6092
MW
2829 PAGE_SIZE, PAGE_SIZE, 0);
2830 if (!dev->prp_page_pool)
2831 return -ENOMEM;
2832
99802a7a 2833 /* Optimisation for I/Os between 4k and 128k */
e75ec752 2834 dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev,
99802a7a
MW
2835 256, 256, 0);
2836 if (!dev->prp_small_pool) {
2837 dma_pool_destroy(dev->prp_page_pool);
2838 return -ENOMEM;
2839 }
091b6092
MW
2840 return 0;
2841}
2842
2843static void nvme_release_prp_pools(struct nvme_dev *dev)
2844{
2845 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2846 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2847}
2848
cd58ad7d
QSA
2849static DEFINE_IDA(nvme_instance_ida);
2850
2851static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 2852{
cd58ad7d
QSA
2853 int instance, error;
2854
2855 do {
2856 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2857 return -ENODEV;
2858
2859 spin_lock(&dev_list_lock);
2860 error = ida_get_new(&nvme_instance_ida, &instance);
2861 spin_unlock(&dev_list_lock);
2862 } while (error == -EAGAIN);
2863
2864 if (error)
2865 return -ENODEV;
2866
2867 dev->instance = instance;
2868 return 0;
b60503ba
MW
2869}
2870
2871static void nvme_release_instance(struct nvme_dev *dev)
2872{
cd58ad7d
QSA
2873 spin_lock(&dev_list_lock);
2874 ida_remove(&nvme_instance_ida, dev->instance);
2875 spin_unlock(&dev_list_lock);
b60503ba
MW
2876}
2877
5e82e952
KB
2878static void nvme_free_dev(struct kref *kref)
2879{
2880 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
9ac27090 2881
e75ec752 2882 put_device(dev->dev);
b3fffdef 2883 put_device(dev->device);
285dffc9 2884 nvme_release_instance(dev);
4af0e21c
KB
2885 if (dev->tagset.tags)
2886 blk_mq_free_tag_set(&dev->tagset);
2887 if (dev->admin_q)
2888 blk_put_queue(dev->admin_q);
5e82e952
KB
2889 kfree(dev->queues);
2890 kfree(dev->entry);
2891 kfree(dev);
2892}
2893
2894static int nvme_dev_open(struct inode *inode, struct file *f)
2895{
b3fffdef
KB
2896 struct nvme_dev *dev;
2897 int instance = iminor(inode);
2898 int ret = -ENODEV;
2899
2900 spin_lock(&dev_list_lock);
2901 list_for_each_entry(dev, &dev_list, node) {
2902 if (dev->instance == instance) {
2e1d8448
KB
2903 if (!dev->admin_q) {
2904 ret = -EWOULDBLOCK;
2905 break;
2906 }
b3fffdef
KB
2907 if (!kref_get_unless_zero(&dev->kref))
2908 break;
2909 f->private_data = dev;
2910 ret = 0;
2911 break;
2912 }
2913 }
2914 spin_unlock(&dev_list_lock);
2915
2916 return ret;
5e82e952
KB
2917}
2918
2919static int nvme_dev_release(struct inode *inode, struct file *f)
2920{
2921 struct nvme_dev *dev = f->private_data;
2922 kref_put(&dev->kref, nvme_free_dev);
2923 return 0;
2924}
2925
2926static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2927{
2928 struct nvme_dev *dev = f->private_data;
a4aea562
MB
2929 struct nvme_ns *ns;
2930
5e82e952
KB
2931 switch (cmd) {
2932 case NVME_IOCTL_ADMIN_CMD:
a4aea562 2933 return nvme_user_cmd(dev, NULL, (void __user *)arg);
7963e521 2934 case NVME_IOCTL_IO_CMD:
a4aea562
MB
2935 if (list_empty(&dev->namespaces))
2936 return -ENOTTY;
2937 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2938 return nvme_user_cmd(dev, ns, (void __user *)arg);
4cc06521
KB
2939 case NVME_IOCTL_RESET:
2940 dev_warn(dev->dev, "resetting controller\n");
2941 return nvme_reset(dev);
81f03fed
JD
2942 case NVME_IOCTL_SUBSYS_RESET:
2943 return nvme_subsys_reset(dev);
5e82e952
KB
2944 default:
2945 return -ENOTTY;
2946 }
2947}
2948
2949static const struct file_operations nvme_dev_fops = {
2950 .owner = THIS_MODULE,
2951 .open = nvme_dev_open,
2952 .release = nvme_dev_release,
2953 .unlocked_ioctl = nvme_dev_ioctl,
2954 .compat_ioctl = nvme_dev_ioctl,
2955};
2956
f0b50732
KB
2957static int nvme_dev_start(struct nvme_dev *dev)
2958{
2959 int result;
b9afca3e 2960 bool start_thread = false;
f0b50732
KB
2961
2962 result = nvme_dev_map(dev);
2963 if (result)
2964 return result;
2965
2966 result = nvme_configure_admin_queue(dev);
2967 if (result)
2968 goto unmap;
2969
2970 spin_lock(&dev_list_lock);
b9afca3e
DM
2971 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2972 start_thread = true;
2973 nvme_thread = NULL;
2974 }
f0b50732
KB
2975 list_add(&dev->node, &dev_list);
2976 spin_unlock(&dev_list_lock);
2977
b9afca3e
DM
2978 if (start_thread) {
2979 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
387caa5a 2980 wake_up_all(&nvme_kthread_wait);
b9afca3e
DM
2981 } else
2982 wait_event_killable(nvme_kthread_wait, nvme_thread);
2983
2984 if (IS_ERR_OR_NULL(nvme_thread)) {
2985 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2986 goto disable;
2987 }
a4aea562
MB
2988
2989 nvme_init_queue(dev->queues[0], 0);
0fb59cbc
KB
2990 result = nvme_alloc_admin_tags(dev);
2991 if (result)
2992 goto disable;
b9afca3e 2993
f0b50732 2994 result = nvme_setup_io_queues(dev);
badc34d4 2995 if (result)
0fb59cbc 2996 goto free_tags;
f0b50732 2997
1efccc9d 2998 dev->event_limit = 1;
d82e8bfd 2999 return result;
f0b50732 3000
0fb59cbc
KB
3001 free_tags:
3002 nvme_dev_remove_admin(dev);
4af0e21c
KB
3003 blk_put_queue(dev->admin_q);
3004 dev->admin_q = NULL;
3005 dev->queues[0]->tags = NULL;
f0b50732 3006 disable:
a1a5ef99 3007 nvme_disable_queue(dev, 0);
b9afca3e 3008 nvme_dev_list_remove(dev);
f0b50732
KB
3009 unmap:
3010 nvme_dev_unmap(dev);
3011 return result;
3012}
3013
9a6b9458
KB
3014static int nvme_remove_dead_ctrl(void *arg)
3015{
3016 struct nvme_dev *dev = (struct nvme_dev *)arg;
e75ec752 3017 struct pci_dev *pdev = to_pci_dev(dev->dev);
9a6b9458
KB
3018
3019 if (pci_get_drvdata(pdev))
c81f4975 3020 pci_stop_and_remove_bus_device_locked(pdev);
9a6b9458
KB
3021 kref_put(&dev->kref, nvme_free_dev);
3022 return 0;
3023}
3024
9a6b9458
KB
3025static int nvme_dev_resume(struct nvme_dev *dev)
3026{
3027 int ret;
3028
3029 ret = nvme_dev_start(dev);
badc34d4 3030 if (ret)
9a6b9458 3031 return ret;
badc34d4 3032 if (dev->online_queues < 2) {
0a7385ad
KB
3033 dev_warn(dev->dev, "IO queues not created\n");
3034 nvme_free_queues(dev, 1);
3035 nvme_dev_remove(dev);
c9d3bf88
KB
3036 } else {
3037 nvme_unfreeze_queues(dev);
ffe7704d 3038 nvme_dev_add(dev);
9a6b9458
KB
3039 }
3040 return 0;
3041}
3042
de3eff2b
KB
3043static void nvme_dead_ctrl(struct nvme_dev *dev)
3044{
3045 dev_warn(dev->dev, "Device failed to resume\n");
3046 kref_get(&dev->kref);
3047 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
3048 dev->instance))) {
3049 dev_err(dev->dev,
3050 "Failed to start controller remove task\n");
3051 kref_put(&dev->kref, nvme_free_dev);
3052 }
3053}
3054
77b50d9e 3055static void nvme_reset_work(struct work_struct *ws)
9a6b9458 3056{
77b50d9e 3057 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
ffe7704d
KB
3058 bool in_probe = work_busy(&dev->probe_work);
3059
9a6b9458 3060 nvme_dev_shutdown(dev);
ffe7704d
KB
3061
3062 /* Synchronize with device probe so that work will see failure status
3063 * and exit gracefully without trying to schedule another reset */
3064 flush_work(&dev->probe_work);
3065
3066 /* Fail this device if reset occured during probe to avoid
3067 * infinite initialization loops. */
3068 if (in_probe) {
de3eff2b 3069 nvme_dead_ctrl(dev);
ffe7704d 3070 return;
9a6b9458 3071 }
ffe7704d
KB
3072 /* Schedule device resume asynchronously so the reset work is available
3073 * to cleanup errors that may occur during reinitialization */
3074 schedule_work(&dev->probe_work);
9a6b9458
KB
3075}
3076
4cc06521
KB
3077static int nvme_reset(struct nvme_dev *dev)
3078{
3079 int ret = -EBUSY;
3080
3081 if (!dev->admin_q || blk_queue_dying(dev->admin_q))
3082 return -ENODEV;
3083
3084 spin_lock(&dev_list_lock);
3085 if (!work_pending(&dev->reset_work)) {
201cf1ec 3086 list_del_init(&dev->node);
4cc06521
KB
3087 queue_work(nvme_workq, &dev->reset_work);
3088 ret = 0;
3089 }
3090 spin_unlock(&dev_list_lock);
3091
3092 if (!ret) {
3093 flush_work(&dev->reset_work);
ffe7704d 3094 flush_work(&dev->probe_work);
4cc06521
KB
3095 return 0;
3096 }
3097
3098 return ret;
3099}
3100
3101static ssize_t nvme_sysfs_reset(struct device *dev,
3102 struct device_attribute *attr, const char *buf,
3103 size_t count)
3104{
3105 struct nvme_dev *ndev = dev_get_drvdata(dev);
3106 int ret;
3107
3108 ret = nvme_reset(ndev);
3109 if (ret < 0)
3110 return ret;
3111
3112 return count;
3113}
3114static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3115
2e1d8448 3116static void nvme_async_probe(struct work_struct *work);
8d85fce7 3117static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 3118{
a4aea562 3119 int node, result = -ENOMEM;
b60503ba
MW
3120 struct nvme_dev *dev;
3121
a4aea562
MB
3122 node = dev_to_node(&pdev->dev);
3123 if (node == NUMA_NO_NODE)
3124 set_dev_node(&pdev->dev, 0);
3125
3126 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
b60503ba
MW
3127 if (!dev)
3128 return -ENOMEM;
a4aea562
MB
3129 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
3130 GFP_KERNEL, node);
b60503ba
MW
3131 if (!dev->entry)
3132 goto free;
a4aea562
MB
3133 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
3134 GFP_KERNEL, node);
b60503ba
MW
3135 if (!dev->queues)
3136 goto free;
3137
3138 INIT_LIST_HEAD(&dev->namespaces);
77b50d9e 3139 INIT_WORK(&dev->reset_work, nvme_reset_work);
e75ec752 3140 dev->dev = get_device(&pdev->dev);
9a6b9458 3141 pci_set_drvdata(pdev, dev);
cd58ad7d
QSA
3142 result = nvme_set_instance(dev);
3143 if (result)
a96d4f5c 3144 goto put_pci;
b60503ba 3145
091b6092
MW
3146 result = nvme_setup_prp_pools(dev);
3147 if (result)
0877cb0d 3148 goto release;
091b6092 3149
fb35e914 3150 kref_init(&dev->kref);
b3fffdef
KB
3151 dev->device = device_create(nvme_class, &pdev->dev,
3152 MKDEV(nvme_char_major, dev->instance),
3153 dev, "nvme%d", dev->instance);
3154 if (IS_ERR(dev->device)) {
3155 result = PTR_ERR(dev->device);
2e1d8448 3156 goto release_pools;
b3fffdef
KB
3157 }
3158 get_device(dev->device);
4cc06521
KB
3159 dev_set_drvdata(dev->device, dev);
3160
3161 result = device_create_file(dev->device, &dev_attr_reset_controller);
3162 if (result)
3163 goto put_dev;
740216fc 3164
e6e96d73 3165 INIT_LIST_HEAD(&dev->node);
a5768aa8 3166 INIT_WORK(&dev->scan_work, nvme_dev_scan);
2e1d8448
KB
3167 INIT_WORK(&dev->probe_work, nvme_async_probe);
3168 schedule_work(&dev->probe_work);
b60503ba
MW
3169 return 0;
3170
4cc06521
KB
3171 put_dev:
3172 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
3173 put_device(dev->device);
0877cb0d 3174 release_pools:
091b6092 3175 nvme_release_prp_pools(dev);
0877cb0d
KB
3176 release:
3177 nvme_release_instance(dev);
a96d4f5c 3178 put_pci:
e75ec752 3179 put_device(dev->dev);
b60503ba
MW
3180 free:
3181 kfree(dev->queues);
3182 kfree(dev->entry);
3183 kfree(dev);
3184 return result;
3185}
3186
2e1d8448
KB
3187static void nvme_async_probe(struct work_struct *work)
3188{
3189 struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
2e1d8448 3190
de3eff2b
KB
3191 if (nvme_dev_resume(dev) && !work_busy(&dev->reset_work))
3192 nvme_dead_ctrl(dev);
2e1d8448
KB
3193}
3194
f0d54a54
KB
3195static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
3196{
a6739479 3197 struct nvme_dev *dev = pci_get_drvdata(pdev);
f0d54a54 3198
a6739479
KB
3199 if (prepare)
3200 nvme_dev_shutdown(dev);
3201 else
0a7385ad 3202 schedule_work(&dev->probe_work);
f0d54a54
KB
3203}
3204
09ece142
KB
3205static void nvme_shutdown(struct pci_dev *pdev)
3206{
3207 struct nvme_dev *dev = pci_get_drvdata(pdev);
3208 nvme_dev_shutdown(dev);
3209}
3210
8d85fce7 3211static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
3212{
3213 struct nvme_dev *dev = pci_get_drvdata(pdev);
9a6b9458
KB
3214
3215 spin_lock(&dev_list_lock);
3216 list_del_init(&dev->node);
3217 spin_unlock(&dev_list_lock);
3218
3219 pci_set_drvdata(pdev, NULL);
2e1d8448 3220 flush_work(&dev->probe_work);
9a6b9458 3221 flush_work(&dev->reset_work);
a5768aa8 3222 flush_work(&dev->scan_work);
4cc06521 3223 device_remove_file(dev->device, &dev_attr_reset_controller);
c9d3bf88 3224 nvme_dev_remove(dev);
3399a3f7 3225 nvme_dev_shutdown(dev);
a4aea562 3226 nvme_dev_remove_admin(dev);
b3fffdef 3227 device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
a1a5ef99 3228 nvme_free_queues(dev, 0);
8ffaadf7 3229 nvme_release_cmb(dev);
9a6b9458 3230 nvme_release_prp_pools(dev);
5e82e952 3231 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
3232}
3233
3234/* These functions are yet to be implemented */
3235#define nvme_error_detected NULL
3236#define nvme_dump_registers NULL
3237#define nvme_link_reset NULL
3238#define nvme_slot_reset NULL
3239#define nvme_error_resume NULL
cd638946 3240
671a6018 3241#ifdef CONFIG_PM_SLEEP
cd638946
KB
3242static int nvme_suspend(struct device *dev)
3243{
3244 struct pci_dev *pdev = to_pci_dev(dev);
3245 struct nvme_dev *ndev = pci_get_drvdata(pdev);
3246
3247 nvme_dev_shutdown(ndev);
3248 return 0;
3249}
3250
3251static int nvme_resume(struct device *dev)
3252{
3253 struct pci_dev *pdev = to_pci_dev(dev);
3254 struct nvme_dev *ndev = pci_get_drvdata(pdev);
cd638946 3255
0a7385ad 3256 schedule_work(&ndev->probe_work);
9a6b9458 3257 return 0;
cd638946 3258}
671a6018 3259#endif
cd638946
KB
3260
3261static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
b60503ba 3262
1d352035 3263static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
3264 .error_detected = nvme_error_detected,
3265 .mmio_enabled = nvme_dump_registers,
3266 .link_reset = nvme_link_reset,
3267 .slot_reset = nvme_slot_reset,
3268 .resume = nvme_error_resume,
f0d54a54 3269 .reset_notify = nvme_reset_notify,
b60503ba
MW
3270};
3271
3272/* Move to pci_ids.h later */
3273#define PCI_CLASS_STORAGE_EXPRESS 0x010802
3274
6eb0d698 3275static const struct pci_device_id nvme_id_table[] = {
b60503ba
MW
3276 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
3277 { 0, }
3278};
3279MODULE_DEVICE_TABLE(pci, nvme_id_table);
3280
3281static struct pci_driver nvme_driver = {
3282 .name = "nvme",
3283 .id_table = nvme_id_table,
3284 .probe = nvme_probe,
8d85fce7 3285 .remove = nvme_remove,
09ece142 3286 .shutdown = nvme_shutdown,
cd638946
KB
3287 .driver = {
3288 .pm = &nvme_dev_pm_ops,
3289 },
b60503ba
MW
3290 .err_handler = &nvme_err_handler,
3291};
3292
3293static int __init nvme_init(void)
3294{
0ac13140 3295 int result;
1fa6aead 3296
b9afca3e 3297 init_waitqueue_head(&nvme_kthread_wait);
b60503ba 3298
9a6b9458
KB
3299 nvme_workq = create_singlethread_workqueue("nvme");
3300 if (!nvme_workq)
b9afca3e 3301 return -ENOMEM;
9a6b9458 3302
5c42ea16
KB
3303 result = register_blkdev(nvme_major, "nvme");
3304 if (result < 0)
9a6b9458 3305 goto kill_workq;
5c42ea16 3306 else if (result > 0)
0ac13140 3307 nvme_major = result;
b60503ba 3308
b3fffdef
KB
3309 result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
3310 &nvme_dev_fops);
3311 if (result < 0)
3312 goto unregister_blkdev;
3313 else if (result > 0)
3314 nvme_char_major = result;
3315
3316 nvme_class = class_create(THIS_MODULE, "nvme");
c727040b
AK
3317 if (IS_ERR(nvme_class)) {
3318 result = PTR_ERR(nvme_class);
b3fffdef 3319 goto unregister_chrdev;
c727040b 3320 }
b3fffdef 3321
f3db22fe
KB
3322 result = pci_register_driver(&nvme_driver);
3323 if (result)
b3fffdef 3324 goto destroy_class;
1fa6aead 3325 return 0;
b60503ba 3326
b3fffdef
KB
3327 destroy_class:
3328 class_destroy(nvme_class);
3329 unregister_chrdev:
3330 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
1fa6aead 3331 unregister_blkdev:
b60503ba 3332 unregister_blkdev(nvme_major, "nvme");
9a6b9458
KB
3333 kill_workq:
3334 destroy_workqueue(nvme_workq);
b60503ba
MW
3335 return result;
3336}
3337
3338static void __exit nvme_exit(void)
3339{
3340 pci_unregister_driver(&nvme_driver);
3341 unregister_blkdev(nvme_major, "nvme");
9a6b9458 3342 destroy_workqueue(nvme_workq);
b3fffdef
KB
3343 class_destroy(nvme_class);
3344 __unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
b9afca3e 3345 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
21bd78bc 3346 _nvme_check_size();
b60503ba
MW
3347}
3348
3349MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
3350MODULE_LICENSE("GPL");
c78b4713 3351MODULE_VERSION("1.0");
b60503ba
MW
3352module_init(nvme_init);
3353module_exit(nvme_exit);