NVMe: Use normal shutdown
[linux-2.6-block.git] / drivers / block / nvme-core.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
8de05535 21#include <linux/bitops.h>
b60503ba 22#include <linux/blkdev.h>
fd63e9ce 23#include <linux/delay.h>
b60503ba
MW
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
1fa6aead 32#include <linux/kthread.h>
b60503ba
MW
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
c3bfe717 39#include <linux/ptrace.h>
b60503ba
MW
40#include <linux/sched.h>
41#include <linux/slab.h>
42#include <linux/types.h>
5d0f6131 43#include <scsi/sg.h>
797a796a
HM
44#include <asm-generic/io-64-nonatomic-lo-hi.h>
45
b60503ba
MW
46#define NVME_Q_DEPTH 1024
47#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
48#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
49#define NVME_MINORS 64
e85248e5 50#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
51
52static int nvme_major;
53module_param(nvme_major, int, 0);
54
58ffacb5
MW
55static int use_threaded_interrupts;
56module_param(use_threaded_interrupts, int, 0);
57
1fa6aead
MW
58static DEFINE_SPINLOCK(dev_list_lock);
59static LIST_HEAD(dev_list);
60static struct task_struct *nvme_thread;
61
b60503ba
MW
62/*
63 * An NVM Express queue. Each device has at least two (one for admin
64 * commands and one for I/O commands).
65 */
66struct nvme_queue {
67 struct device *q_dmadev;
091b6092 68 struct nvme_dev *dev;
b60503ba
MW
69 spinlock_t q_lock;
70 struct nvme_command *sq_cmds;
71 volatile struct nvme_completion *cqes;
72 dma_addr_t sq_dma_addr;
73 dma_addr_t cq_dma_addr;
74 wait_queue_head_t sq_full;
1fa6aead 75 wait_queue_t sq_cong_wait;
b60503ba
MW
76 struct bio_list sq_cong;
77 u32 __iomem *q_db;
78 u16 q_depth;
79 u16 cq_vector;
80 u16 sq_head;
81 u16 sq_tail;
82 u16 cq_head;
e9539f47
MW
83 u8 cq_phase;
84 u8 cqe_seen;
22404274 85 u8 q_suspended;
b60503ba
MW
86 unsigned long cmdid_data[];
87};
88
89/*
90 * Check we didin't inadvertently grow the command struct
91 */
92static inline void _nvme_check_size(void)
93{
94 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
95 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
96 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
97 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
98 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 99 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
b60503ba
MW
100 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
101 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
102 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
103 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 104 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
105}
106
5c1281a3 107typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
c2f5b650
MW
108 struct nvme_completion *);
109
e85248e5 110struct nvme_cmd_info {
c2f5b650
MW
111 nvme_completion_fn fn;
112 void *ctx;
e85248e5
MW
113 unsigned long timeout;
114};
115
116static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
117{
118 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
119}
120
22404274
KB
121static unsigned nvme_queue_extra(int depth)
122{
123 return DIV_ROUND_UP(depth, 8) + (depth * sizeof(struct nvme_cmd_info));
124}
125
b60503ba 126/**
714a7a22
MW
127 * alloc_cmdid() - Allocate a Command ID
128 * @nvmeq: The queue that will be used for this command
129 * @ctx: A pointer that will be passed to the handler
c2f5b650 130 * @handler: The function to call on completion
b60503ba
MW
131 *
132 * Allocate a Command ID for a queue. The data passed in will
133 * be passed to the completion handler. This is implemented by using
134 * the bottom two bits of the ctx pointer to store the handler ID.
135 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
136 * We can change this if it becomes a problem.
184d2944
MW
137 *
138 * May be called with local interrupts disabled and the q_lock held,
139 * or with interrupts enabled and no locks held.
b60503ba 140 */
c2f5b650
MW
141static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
142 nvme_completion_fn handler, unsigned timeout)
b60503ba 143{
e6d15f79 144 int depth = nvmeq->q_depth - 1;
e85248e5 145 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
146 int cmdid;
147
b60503ba
MW
148 do {
149 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
150 if (cmdid >= depth)
151 return -EBUSY;
152 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
153
c2f5b650
MW
154 info[cmdid].fn = handler;
155 info[cmdid].ctx = ctx;
e85248e5 156 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
157 return cmdid;
158}
159
160static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
c2f5b650 161 nvme_completion_fn handler, unsigned timeout)
b60503ba
MW
162{
163 int cmdid;
164 wait_event_killable(nvmeq->sq_full,
e85248e5 165 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
166 return (cmdid < 0) ? -EINTR : cmdid;
167}
168
c2f5b650
MW
169/* Special values must be less than 0x1000 */
170#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
171#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
172#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
173#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 174#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 175
5c1281a3 176static void special_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
177 struct nvme_completion *cqe)
178{
179 if (ctx == CMD_CTX_CANCELLED)
180 return;
181 if (ctx == CMD_CTX_FLUSH)
182 return;
183 if (ctx == CMD_CTX_COMPLETED) {
5c1281a3 184 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
185 "completed id %d twice on queue %d\n",
186 cqe->command_id, le16_to_cpup(&cqe->sq_id));
187 return;
188 }
189 if (ctx == CMD_CTX_INVALID) {
5c1281a3 190 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
191 "invalid id %d completed on queue %d\n",
192 cqe->command_id, le16_to_cpup(&cqe->sq_id));
193 return;
194 }
195
5c1281a3 196 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
197}
198
184d2944
MW
199/*
200 * Called with local interrupts disabled and the q_lock held. May not sleep.
201 */
c2f5b650
MW
202static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
203 nvme_completion_fn *fn)
b60503ba 204{
c2f5b650 205 void *ctx;
e85248e5 206 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 207
c2f5b650
MW
208 if (cmdid >= nvmeq->q_depth) {
209 *fn = special_completion;
48e3d398 210 return CMD_CTX_INVALID;
c2f5b650 211 }
859361a2
KB
212 if (fn)
213 *fn = info[cmdid].fn;
c2f5b650
MW
214 ctx = info[cmdid].ctx;
215 info[cmdid].fn = special_completion;
e85248e5 216 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
217 clear_bit(cmdid, nvmeq->cmdid_data);
218 wake_up(&nvmeq->sq_full);
c2f5b650 219 return ctx;
b60503ba
MW
220}
221
c2f5b650
MW
222static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
223 nvme_completion_fn *fn)
3c0cf138 224{
c2f5b650 225 void *ctx;
e85248e5 226 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
c2f5b650
MW
227 if (fn)
228 *fn = info[cmdid].fn;
229 ctx = info[cmdid].ctx;
230 info[cmdid].fn = special_completion;
e85248e5 231 info[cmdid].ctx = CMD_CTX_CANCELLED;
c2f5b650 232 return ctx;
3c0cf138
MW
233}
234
5d0f6131 235struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
b60503ba 236{
040a93b5 237 return dev->queues[get_cpu() + 1];
b60503ba
MW
238}
239
5d0f6131 240void put_nvmeq(struct nvme_queue *nvmeq)
b60503ba 241{
1b23484b 242 put_cpu();
b60503ba
MW
243}
244
245/**
714a7a22 246 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
247 * @nvmeq: The queue to use
248 * @cmd: The command to send
249 *
250 * Safe to use from interrupt context
251 */
252static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
253{
254 unsigned long flags;
255 u16 tail;
b60503ba
MW
256 spin_lock_irqsave(&nvmeq->q_lock, flags);
257 tail = nvmeq->sq_tail;
258 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
259 if (++tail == nvmeq->q_depth)
260 tail = 0;
7547881d 261 writel(tail, nvmeq->q_db);
b60503ba
MW
262 nvmeq->sq_tail = tail;
263 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
264
265 return 0;
266}
267
eca18b23 268static __le64 **iod_list(struct nvme_iod *iod)
e025344c 269{
eca18b23 270 return ((void *)iod) + iod->offset;
e025344c
SMM
271}
272
eca18b23
MW
273/*
274 * Will slightly overestimate the number of pages needed. This is OK
275 * as it only leads to a small amount of wasted memory for the lifetime of
276 * the I/O.
277 */
278static int nvme_npages(unsigned size)
279{
280 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
281 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
282}
b60503ba 283
eca18b23
MW
284static struct nvme_iod *
285nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
b60503ba 286{
eca18b23
MW
287 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
288 sizeof(__le64 *) * nvme_npages(nbytes) +
289 sizeof(struct scatterlist) * nseg, gfp);
290
291 if (iod) {
292 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
293 iod->npages = -1;
294 iod->length = nbytes;
2b196034 295 iod->nents = 0;
6198221f 296 iod->start_time = jiffies;
eca18b23
MW
297 }
298
299 return iod;
b60503ba
MW
300}
301
5d0f6131 302void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 303{
eca18b23
MW
304 const int last_prp = PAGE_SIZE / 8 - 1;
305 int i;
306 __le64 **list = iod_list(iod);
307 dma_addr_t prp_dma = iod->first_dma;
308
309 if (iod->npages == 0)
310 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
311 for (i = 0; i < iod->npages; i++) {
312 __le64 *prp_list = list[i];
313 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
314 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
315 prp_dma = next_prp_dma;
316 }
317 kfree(iod);
b60503ba
MW
318}
319
6198221f
KB
320static void nvme_start_io_acct(struct bio *bio)
321{
322 struct gendisk *disk = bio->bi_bdev->bd_disk;
323 const int rw = bio_data_dir(bio);
324 int cpu = part_stat_lock();
325 part_round_stats(cpu, &disk->part0);
326 part_stat_inc(cpu, &disk->part0, ios[rw]);
327 part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
328 part_inc_in_flight(&disk->part0, rw);
329 part_stat_unlock();
330}
331
332static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
333{
334 struct gendisk *disk = bio->bi_bdev->bd_disk;
335 const int rw = bio_data_dir(bio);
336 unsigned long duration = jiffies - start_time;
337 int cpu = part_stat_lock();
338 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
339 part_round_stats(cpu, &disk->part0);
340 part_dec_in_flight(&disk->part0, rw);
341 part_stat_unlock();
342}
343
5c1281a3 344static void bio_completion(struct nvme_dev *dev, void *ctx,
b60503ba
MW
345 struct nvme_completion *cqe)
346{
eca18b23
MW
347 struct nvme_iod *iod = ctx;
348 struct bio *bio = iod->private;
b60503ba
MW
349 u16 status = le16_to_cpup(&cqe->status) >> 1;
350
9e59d091 351 if (iod->nents) {
2b196034 352 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
b60503ba 353 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
9e59d091
KB
354 nvme_end_io_acct(bio, iod->start_time);
355 }
eca18b23 356 nvme_free_iod(dev, iod);
427e9708 357 if (status)
1ad2f893 358 bio_endio(bio, -EIO);
427e9708 359 else
1ad2f893 360 bio_endio(bio, 0);
b60503ba
MW
361}
362
184d2944 363/* length is in bytes. gfp flags indicates whether we may sleep. */
5d0f6131
VV
364int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
365 struct nvme_iod *iod, int total_len, gfp_t gfp)
ff22b54f 366{
99802a7a 367 struct dma_pool *pool;
eca18b23
MW
368 int length = total_len;
369 struct scatterlist *sg = iod->sg;
ff22b54f
MW
370 int dma_len = sg_dma_len(sg);
371 u64 dma_addr = sg_dma_address(sg);
372 int offset = offset_in_page(dma_addr);
e025344c 373 __le64 *prp_list;
eca18b23 374 __le64 **list = iod_list(iod);
e025344c 375 dma_addr_t prp_dma;
eca18b23 376 int nprps, i;
ff22b54f
MW
377
378 cmd->prp1 = cpu_to_le64(dma_addr);
379 length -= (PAGE_SIZE - offset);
380 if (length <= 0)
eca18b23 381 return total_len;
ff22b54f
MW
382
383 dma_len -= (PAGE_SIZE - offset);
384 if (dma_len) {
385 dma_addr += (PAGE_SIZE - offset);
386 } else {
387 sg = sg_next(sg);
388 dma_addr = sg_dma_address(sg);
389 dma_len = sg_dma_len(sg);
390 }
391
392 if (length <= PAGE_SIZE) {
393 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23 394 return total_len;
e025344c
SMM
395 }
396
397 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
99802a7a
MW
398 if (nprps <= (256 / 8)) {
399 pool = dev->prp_small_pool;
eca18b23 400 iod->npages = 0;
99802a7a
MW
401 } else {
402 pool = dev->prp_page_pool;
eca18b23 403 iod->npages = 1;
99802a7a
MW
404 }
405
b77954cb
MW
406 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
407 if (!prp_list) {
408 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23
MW
409 iod->npages = -1;
410 return (total_len - length) + PAGE_SIZE;
b77954cb 411 }
eca18b23
MW
412 list[0] = prp_list;
413 iod->first_dma = prp_dma;
e025344c
SMM
414 cmd->prp2 = cpu_to_le64(prp_dma);
415 i = 0;
416 for (;;) {
7523d834 417 if (i == PAGE_SIZE / 8) {
e025344c 418 __le64 *old_prp_list = prp_list;
b77954cb 419 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
420 if (!prp_list)
421 return total_len - length;
422 list[iod->npages++] = prp_list;
7523d834
MW
423 prp_list[0] = old_prp_list[i - 1];
424 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
425 i = 1;
e025344c
SMM
426 }
427 prp_list[i++] = cpu_to_le64(dma_addr);
428 dma_len -= PAGE_SIZE;
429 dma_addr += PAGE_SIZE;
430 length -= PAGE_SIZE;
431 if (length <= 0)
432 break;
433 if (dma_len > 0)
434 continue;
435 BUG_ON(dma_len < 0);
436 sg = sg_next(sg);
437 dma_addr = sg_dma_address(sg);
438 dma_len = sg_dma_len(sg);
ff22b54f
MW
439 }
440
eca18b23 441 return total_len;
ff22b54f
MW
442}
443
427e9708
KB
444struct nvme_bio_pair {
445 struct bio b1, b2, *parent;
446 struct bio_vec *bv1, *bv2;
447 int err;
448 atomic_t cnt;
449};
450
451static void nvme_bio_pair_endio(struct bio *bio, int err)
452{
453 struct nvme_bio_pair *bp = bio->bi_private;
454
455 if (err)
456 bp->err = err;
457
458 if (atomic_dec_and_test(&bp->cnt)) {
459 bio_endio(bp->parent, bp->err);
1b56749e
KB
460 kfree(bp->bv1);
461 kfree(bp->bv2);
427e9708
KB
462 kfree(bp);
463 }
464}
465
466static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
467 int len, int offset)
468{
469 struct nvme_bio_pair *bp;
470
471 BUG_ON(len > bio->bi_size);
472 BUG_ON(idx > bio->bi_vcnt);
473
474 bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
475 if (!bp)
476 return NULL;
477 bp->err = 0;
478
479 bp->b1 = *bio;
480 bp->b2 = *bio;
481
482 bp->b1.bi_size = len;
483 bp->b2.bi_size -= len;
484 bp->b1.bi_vcnt = idx;
485 bp->b2.bi_idx = idx;
486 bp->b2.bi_sector += len >> 9;
487
488 if (offset) {
489 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
490 GFP_ATOMIC);
491 if (!bp->bv1)
492 goto split_fail_1;
493
494 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
495 GFP_ATOMIC);
496 if (!bp->bv2)
497 goto split_fail_2;
498
499 memcpy(bp->bv1, bio->bi_io_vec,
500 bio->bi_max_vecs * sizeof(struct bio_vec));
501 memcpy(bp->bv2, bio->bi_io_vec,
502 bio->bi_max_vecs * sizeof(struct bio_vec));
503
504 bp->b1.bi_io_vec = bp->bv1;
505 bp->b2.bi_io_vec = bp->bv2;
506 bp->b2.bi_io_vec[idx].bv_offset += offset;
507 bp->b2.bi_io_vec[idx].bv_len -= offset;
508 bp->b1.bi_io_vec[idx].bv_len = offset;
509 bp->b1.bi_vcnt++;
510 } else
511 bp->bv1 = bp->bv2 = NULL;
512
513 bp->b1.bi_private = bp;
514 bp->b2.bi_private = bp;
515
516 bp->b1.bi_end_io = nvme_bio_pair_endio;
517 bp->b2.bi_end_io = nvme_bio_pair_endio;
518
519 bp->parent = bio;
520 atomic_set(&bp->cnt, 2);
521
522 return bp;
523
524 split_fail_2:
525 kfree(bp->bv1);
526 split_fail_1:
527 kfree(bp);
528 return NULL;
529}
530
531static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
532 int idx, int len, int offset)
533{
534 struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
535 if (!bp)
536 return -ENOMEM;
537
538 if (bio_list_empty(&nvmeq->sq_cong))
539 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
540 bio_list_add(&nvmeq->sq_cong, &bp->b1);
541 bio_list_add(&nvmeq->sq_cong, &bp->b2);
542
543 return 0;
544}
545
1ad2f893
MW
546/* NVMe scatterlists require no holes in the virtual address */
547#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
548 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
549
427e9708 550static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
b60503ba
MW
551 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
552{
76830840
MW
553 struct bio_vec *bvec, *bvprv = NULL;
554 struct scatterlist *sg = NULL;
159b67d7
KB
555 int i, length = 0, nsegs = 0, split_len = bio->bi_size;
556
557 if (nvmeq->dev->stripe_size)
558 split_len = nvmeq->dev->stripe_size -
559 ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
b60503ba 560
eca18b23 561 sg_init_table(iod->sg, psegs);
b60503ba 562 bio_for_each_segment(bvec, bio, i) {
76830840
MW
563 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
564 sg->length += bvec->bv_len;
565 } else {
1ad2f893 566 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
427e9708
KB
567 return nvme_split_and_submit(bio, nvmeq, i,
568 length, 0);
569
eca18b23 570 sg = sg ? sg + 1 : iod->sg;
76830840
MW
571 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
572 bvec->bv_offset);
573 nsegs++;
574 }
159b67d7
KB
575
576 if (split_len - length < bvec->bv_len)
577 return nvme_split_and_submit(bio, nvmeq, i, split_len,
578 split_len - length);
1ad2f893 579 length += bvec->bv_len;
76830840 580 bvprv = bvec;
b60503ba 581 }
eca18b23 582 iod->nents = nsegs;
76830840 583 sg_mark_end(sg);
427e9708 584 if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
1ad2f893 585 return -ENOMEM;
427e9708 586
159b67d7 587 BUG_ON(length != bio->bi_size);
1ad2f893 588 return length;
b60503ba
MW
589}
590
0e5e4f0e
KB
591/*
592 * We reuse the small pool to allocate the 16-byte range here as it is not
593 * worth having a special pool for these or additional cases to handle freeing
594 * the iod.
595 */
596static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
597 struct bio *bio, struct nvme_iod *iod, int cmdid)
598{
599 struct nvme_dsm_range *range;
600 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
601
602 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
603 &iod->first_dma);
604 if (!range)
605 return -ENOMEM;
606
607 iod_list(iod)[0] = (__le64 *)range;
608 iod->npages = 0;
609
610 range->cattr = cpu_to_le32(0);
611 range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
063cc6d5 612 range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
0e5e4f0e
KB
613
614 memset(cmnd, 0, sizeof(*cmnd));
615 cmnd->dsm.opcode = nvme_cmd_dsm;
616 cmnd->dsm.command_id = cmdid;
617 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
618 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
619 cmnd->dsm.nr = 0;
620 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
621
622 if (++nvmeq->sq_tail == nvmeq->q_depth)
623 nvmeq->sq_tail = 0;
624 writel(nvmeq->sq_tail, nvmeq->q_db);
625
626 return 0;
627}
628
00df5cb4
MW
629static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
630 int cmdid)
631{
632 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
633
634 memset(cmnd, 0, sizeof(*cmnd));
635 cmnd->common.opcode = nvme_cmd_flush;
636 cmnd->common.command_id = cmdid;
637 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
638
639 if (++nvmeq->sq_tail == nvmeq->q_depth)
640 nvmeq->sq_tail = 0;
641 writel(nvmeq->sq_tail, nvmeq->q_db);
642
643 return 0;
644}
645
5d0f6131 646int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
00df5cb4
MW
647{
648 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
ff976d72 649 special_completion, NVME_IO_TIMEOUT);
00df5cb4
MW
650 if (unlikely(cmdid < 0))
651 return cmdid;
652
653 return nvme_submit_flush(nvmeq, ns, cmdid);
654}
655
184d2944
MW
656/*
657 * Called with local interrupts disabled and the q_lock held. May not sleep.
658 */
b60503ba
MW
659static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
660 struct bio *bio)
661{
ff22b54f 662 struct nvme_command *cmnd;
eca18b23 663 struct nvme_iod *iod;
b60503ba 664 enum dma_data_direction dma_dir;
1287dabd 665 int cmdid, length, result;
b60503ba
MW
666 u16 control;
667 u32 dsmgmt;
b60503ba
MW
668 int psegs = bio_phys_segments(ns->queue, bio);
669
00df5cb4
MW
670 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
671 result = nvme_submit_flush_data(nvmeq, ns);
672 if (result)
673 return result;
674 }
675
1287dabd 676 result = -ENOMEM;
eca18b23
MW
677 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
678 if (!iod)
eeee3226 679 goto nomem;
eca18b23 680 iod->private = bio;
b60503ba 681
eeee3226 682 result = -EBUSY;
ff976d72 683 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
b60503ba 684 if (unlikely(cmdid < 0))
eca18b23 685 goto free_iod;
b60503ba 686
0e5e4f0e
KB
687 if (bio->bi_rw & REQ_DISCARD) {
688 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
689 if (result)
690 goto free_cmdid;
691 return result;
692 }
00df5cb4
MW
693 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
694 return nvme_submit_flush(nvmeq, ns, cmdid);
695
b60503ba
MW
696 control = 0;
697 if (bio->bi_rw & REQ_FUA)
698 control |= NVME_RW_FUA;
699 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
700 control |= NVME_RW_LR;
701
702 dsmgmt = 0;
703 if (bio->bi_rw & REQ_RAHEAD)
704 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
705
ff22b54f 706 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 707
b8deb62c 708 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 709 if (bio_data_dir(bio)) {
ff22b54f 710 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
711 dma_dir = DMA_TO_DEVICE;
712 } else {
ff22b54f 713 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
714 dma_dir = DMA_FROM_DEVICE;
715 }
716
427e9708
KB
717 result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
718 if (result <= 0)
859361a2 719 goto free_cmdid;
1ad2f893 720 length = result;
b60503ba 721
ff22b54f
MW
722 cmnd->rw.command_id = cmdid;
723 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
eca18b23
MW
724 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
725 GFP_ATOMIC);
063cc6d5 726 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
1ad2f893 727 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
728 cmnd->rw.control = cpu_to_le16(control);
729 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 730
6198221f 731 nvme_start_io_acct(bio);
b60503ba
MW
732 if (++nvmeq->sq_tail == nvmeq->q_depth)
733 nvmeq->sq_tail = 0;
7547881d 734 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 735
1974b1ae
MW
736 return 0;
737
859361a2
KB
738 free_cmdid:
739 free_cmdid(nvmeq, cmdid, NULL);
eca18b23
MW
740 free_iod:
741 nvme_free_iod(nvmeq->dev, iod);
eeee3226
MW
742 nomem:
743 return result;
b60503ba
MW
744}
745
e9539f47 746static int nvme_process_cq(struct nvme_queue *nvmeq)
b60503ba 747{
82123460 748 u16 head, phase;
b60503ba 749
b60503ba 750 head = nvmeq->cq_head;
82123460 751 phase = nvmeq->cq_phase;
b60503ba
MW
752
753 for (;;) {
c2f5b650
MW
754 void *ctx;
755 nvme_completion_fn fn;
b60503ba 756 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 757 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
758 break;
759 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
760 if (++head == nvmeq->q_depth) {
761 head = 0;
82123460 762 phase = !phase;
b60503ba
MW
763 }
764
c2f5b650 765 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
5c1281a3 766 fn(nvmeq->dev, ctx, &cqe);
b60503ba
MW
767 }
768
769 /* If the controller ignores the cq head doorbell and continuously
770 * writes to the queue, it is theoretically possible to wrap around
771 * the queue twice and mistakenly return IRQ_NONE. Linux only
772 * requires that 0.1% of your interrupts are handled, so this isn't
773 * a big problem.
774 */
82123460 775 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
e9539f47 776 return 0;
b60503ba 777
f1938f6e 778 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
b60503ba 779 nvmeq->cq_head = head;
82123460 780 nvmeq->cq_phase = phase;
b60503ba 781
e9539f47
MW
782 nvmeq->cqe_seen = 1;
783 return 1;
b60503ba
MW
784}
785
7d822457
MW
786static void nvme_make_request(struct request_queue *q, struct bio *bio)
787{
788 struct nvme_ns *ns = q->queuedata;
789 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
790 int result = -EBUSY;
791
792 spin_lock_irq(&nvmeq->q_lock);
22404274 793 if (!nvmeq->q_suspended && bio_list_empty(&nvmeq->sq_cong))
7d822457
MW
794 result = nvme_submit_bio_queue(nvmeq, ns, bio);
795 if (unlikely(result)) {
796 if (bio_list_empty(&nvmeq->sq_cong))
797 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
798 bio_list_add(&nvmeq->sq_cong, bio);
799 }
800
801 nvme_process_cq(nvmeq);
802 spin_unlock_irq(&nvmeq->q_lock);
803 put_nvmeq(nvmeq);
804}
805
b60503ba 806static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
807{
808 irqreturn_t result;
809 struct nvme_queue *nvmeq = data;
810 spin_lock(&nvmeq->q_lock);
e9539f47
MW
811 nvme_process_cq(nvmeq);
812 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
813 nvmeq->cqe_seen = 0;
58ffacb5
MW
814 spin_unlock(&nvmeq->q_lock);
815 return result;
816}
817
818static irqreturn_t nvme_irq_check(int irq, void *data)
819{
820 struct nvme_queue *nvmeq = data;
821 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
822 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
823 return IRQ_NONE;
824 return IRQ_WAKE_THREAD;
825}
826
3c0cf138
MW
827static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
828{
829 spin_lock_irq(&nvmeq->q_lock);
c2f5b650 830 cancel_cmdid(nvmeq, cmdid, NULL);
3c0cf138
MW
831 spin_unlock_irq(&nvmeq->q_lock);
832}
833
c2f5b650
MW
834struct sync_cmd_info {
835 struct task_struct *task;
836 u32 result;
837 int status;
838};
839
5c1281a3 840static void sync_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
841 struct nvme_completion *cqe)
842{
843 struct sync_cmd_info *cmdinfo = ctx;
844 cmdinfo->result = le32_to_cpup(&cqe->result);
845 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
846 wake_up_process(cmdinfo->task);
847}
848
b60503ba
MW
849/*
850 * Returns 0 on success. If the result is negative, it's a Linux error code;
851 * if the result is positive, it's an NVM Express status code
852 */
5d0f6131
VV
853int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
854 u32 *result, unsigned timeout)
b60503ba
MW
855{
856 int cmdid;
857 struct sync_cmd_info cmdinfo;
858
859 cmdinfo.task = current;
860 cmdinfo.status = -EINTR;
861
c2f5b650 862 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
e85248e5 863 timeout);
b60503ba
MW
864 if (cmdid < 0)
865 return cmdid;
866 cmd->common.command_id = cmdid;
867
3c0cf138
MW
868 set_current_state(TASK_KILLABLE);
869 nvme_submit_cmd(nvmeq, cmd);
78f8d257 870 schedule_timeout(timeout);
b60503ba 871
3c0cf138
MW
872 if (cmdinfo.status == -EINTR) {
873 nvme_abort_command(nvmeq, cmdid);
874 return -EINTR;
875 }
876
b60503ba
MW
877 if (result)
878 *result = cmdinfo.result;
879
880 return cmdinfo.status;
881}
882
5d0f6131 883int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
b60503ba
MW
884 u32 *result)
885{
e85248e5 886 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
887}
888
889static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
890{
891 int status;
892 struct nvme_command c;
893
894 memset(&c, 0, sizeof(c));
895 c.delete_queue.opcode = opcode;
896 c.delete_queue.qid = cpu_to_le16(id);
897
898 status = nvme_submit_admin_cmd(dev, &c, NULL);
899 if (status)
900 return -EIO;
901 return 0;
902}
903
904static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
905 struct nvme_queue *nvmeq)
906{
907 int status;
908 struct nvme_command c;
909 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
910
911 memset(&c, 0, sizeof(c));
912 c.create_cq.opcode = nvme_admin_create_cq;
913 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
914 c.create_cq.cqid = cpu_to_le16(qid);
915 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
916 c.create_cq.cq_flags = cpu_to_le16(flags);
917 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
918
919 status = nvme_submit_admin_cmd(dev, &c, NULL);
920 if (status)
921 return -EIO;
922 return 0;
923}
924
925static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
926 struct nvme_queue *nvmeq)
927{
928 int status;
929 struct nvme_command c;
930 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
931
932 memset(&c, 0, sizeof(c));
933 c.create_sq.opcode = nvme_admin_create_sq;
934 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
935 c.create_sq.sqid = cpu_to_le16(qid);
936 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
937 c.create_sq.sq_flags = cpu_to_le16(flags);
938 c.create_sq.cqid = cpu_to_le16(qid);
939
940 status = nvme_submit_admin_cmd(dev, &c, NULL);
941 if (status)
942 return -EIO;
943 return 0;
944}
945
946static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
947{
948 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
949}
950
951static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
952{
953 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
954}
955
5d0f6131 956int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
bc5fc7e4
MW
957 dma_addr_t dma_addr)
958{
959 struct nvme_command c;
960
961 memset(&c, 0, sizeof(c));
962 c.identify.opcode = nvme_admin_identify;
963 c.identify.nsid = cpu_to_le32(nsid);
964 c.identify.prp1 = cpu_to_le64(dma_addr);
965 c.identify.cns = cpu_to_le32(cns);
966
967 return nvme_submit_admin_cmd(dev, &c, NULL);
968}
969
5d0f6131 970int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
08df1e05 971 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
972{
973 struct nvme_command c;
974
975 memset(&c, 0, sizeof(c));
976 c.features.opcode = nvme_admin_get_features;
a42cecce 977 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
978 c.features.prp1 = cpu_to_le64(dma_addr);
979 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 980
08df1e05 981 return nvme_submit_admin_cmd(dev, &c, result);
df348139
MW
982}
983
5d0f6131
VV
984int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
985 dma_addr_t dma_addr, u32 *result)
df348139
MW
986{
987 struct nvme_command c;
988
989 memset(&c, 0, sizeof(c));
990 c.features.opcode = nvme_admin_set_features;
991 c.features.prp1 = cpu_to_le64(dma_addr);
992 c.features.fid = cpu_to_le32(fid);
993 c.features.dword11 = cpu_to_le32(dword11);
994
bc5fc7e4
MW
995 return nvme_submit_admin_cmd(dev, &c, result);
996}
997
a09115b2
MW
998/**
999 * nvme_cancel_ios - Cancel outstanding I/Os
1000 * @queue: The queue to cancel I/Os on
1001 * @timeout: True to only cancel I/Os which have timed out
1002 */
1003static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
1004{
1005 int depth = nvmeq->q_depth - 1;
1006 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1007 unsigned long now = jiffies;
1008 int cmdid;
1009
1010 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1011 void *ctx;
1012 nvme_completion_fn fn;
1013 static struct nvme_completion cqe = {
af2d9ca7 1014 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
a09115b2
MW
1015 };
1016
1017 if (timeout && !time_after(now, info[cmdid].timeout))
1018 continue;
053ab702
KB
1019 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1020 continue;
a09115b2
MW
1021 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1022 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1023 fn(nvmeq->dev, ctx, &cqe);
1024 }
1025}
1026
22404274 1027static void nvme_free_queue(struct nvme_queue *nvmeq)
9e866774 1028{
22404274
KB
1029 spin_lock_irq(&nvmeq->q_lock);
1030 while (bio_list_peek(&nvmeq->sq_cong)) {
1031 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1032 bio_endio(bio, -EIO);
1033 }
1034 spin_unlock_irq(&nvmeq->q_lock);
1035
9e866774
MW
1036 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1037 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1038 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1039 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1040 kfree(nvmeq);
1041}
1042
22404274
KB
1043static void nvme_free_queues(struct nvme_dev *dev)
1044{
1045 int i;
1046
1047 for (i = dev->queue_count - 1; i >= 0; i--) {
1048 nvme_free_queue(dev->queues[i]);
1049 dev->queue_count--;
1050 dev->queues[i] = NULL;
1051 }
1052}
1053
1054static void nvme_disable_queue(struct nvme_dev *dev, int qid)
b60503ba
MW
1055{
1056 struct nvme_queue *nvmeq = dev->queues[qid];
aba2080f 1057 int vector = dev->entry[nvmeq->cq_vector].vector;
b60503ba 1058
a09115b2 1059 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1060 if (nvmeq->q_suspended) {
1061 spin_unlock_irq(&nvmeq->q_lock);
1062 return;
3295874b 1063 }
22404274 1064 nvmeq->q_suspended = 1;
a09115b2
MW
1065 spin_unlock_irq(&nvmeq->q_lock);
1066
aba2080f
MW
1067 irq_set_affinity_hint(vector, NULL);
1068 free_irq(vector, nvmeq);
b60503ba
MW
1069
1070 /* Don't tell the adapter to delete the admin queue */
1071 if (qid) {
1072 adapter_delete_sq(dev, qid);
1073 adapter_delete_cq(dev, qid);
1074 }
1075
22404274
KB
1076 spin_lock_irq(&nvmeq->q_lock);
1077 nvme_process_cq(nvmeq);
1078 nvme_cancel_ios(nvmeq, false);
1079 spin_unlock_irq(&nvmeq->q_lock);
b60503ba
MW
1080}
1081
1082static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1083 int depth, int vector)
1084{
1085 struct device *dmadev = &dev->pci_dev->dev;
22404274 1086 unsigned extra = nvme_queue_extra(depth);
b60503ba
MW
1087 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1088 if (!nvmeq)
1089 return NULL;
1090
1091 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1092 &nvmeq->cq_dma_addr, GFP_KERNEL);
1093 if (!nvmeq->cqes)
1094 goto free_nvmeq;
1095 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1096
1097 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1098 &nvmeq->sq_dma_addr, GFP_KERNEL);
1099 if (!nvmeq->sq_cmds)
1100 goto free_cqdma;
1101
1102 nvmeq->q_dmadev = dmadev;
091b6092 1103 nvmeq->dev = dev;
b60503ba
MW
1104 spin_lock_init(&nvmeq->q_lock);
1105 nvmeq->cq_head = 0;
82123460 1106 nvmeq->cq_phase = 1;
b60503ba 1107 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 1108 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba 1109 bio_list_init(&nvmeq->sq_cong);
f1938f6e 1110 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
b60503ba
MW
1111 nvmeq->q_depth = depth;
1112 nvmeq->cq_vector = vector;
22404274
KB
1113 nvmeq->q_suspended = 1;
1114 dev->queue_count++;
b60503ba
MW
1115
1116 return nvmeq;
1117
1118 free_cqdma:
68b8eca5 1119 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1120 nvmeq->cq_dma_addr);
1121 free_nvmeq:
1122 kfree(nvmeq);
1123 return NULL;
1124}
1125
3001082c
MW
1126static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1127 const char *name)
1128{
58ffacb5
MW
1129 if (use_threaded_interrupts)
1130 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 1131 nvme_irq_check, nvme_irq,
58ffacb5
MW
1132 IRQF_DISABLED | IRQF_SHARED,
1133 name, nvmeq);
3001082c
MW
1134 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1135 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1136}
1137
22404274 1138static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
b60503ba 1139{
22404274
KB
1140 struct nvme_dev *dev = nvmeq->dev;
1141 unsigned extra = nvme_queue_extra(nvmeq->q_depth);
b60503ba 1142
22404274
KB
1143 nvmeq->sq_tail = 0;
1144 nvmeq->cq_head = 0;
1145 nvmeq->cq_phase = 1;
1146 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1147 memset(nvmeq->cmdid_data, 0, extra);
1148 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1149 nvme_cancel_ios(nvmeq, false);
1150 nvmeq->q_suspended = 0;
1151}
1152
1153static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1154{
1155 struct nvme_dev *dev = nvmeq->dev;
1156 int result;
3f85d50b 1157
b60503ba
MW
1158 result = adapter_alloc_cq(dev, qid, nvmeq);
1159 if (result < 0)
22404274 1160 return result;
b60503ba
MW
1161
1162 result = adapter_alloc_sq(dev, qid, nvmeq);
1163 if (result < 0)
1164 goto release_cq;
1165
3001082c 1166 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
1167 if (result < 0)
1168 goto release_sq;
1169
22404274
KB
1170 spin_lock(&nvmeq->q_lock);
1171 nvme_init_queue(nvmeq, qid);
1172 spin_unlock(&nvmeq->q_lock);
1173
1174 return result;
b60503ba
MW
1175
1176 release_sq:
1177 adapter_delete_sq(dev, qid);
1178 release_cq:
1179 adapter_delete_cq(dev, qid);
22404274 1180 return result;
b60503ba
MW
1181}
1182
ba47e386
MW
1183static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1184{
1185 unsigned long timeout;
1186 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1187
1188 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1189
1190 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1191 msleep(100);
1192 if (fatal_signal_pending(current))
1193 return -EINTR;
1194 if (time_after(jiffies, timeout)) {
1195 dev_err(&dev->pci_dev->dev,
1196 "Device not ready; aborting initialisation\n");
1197 return -ENODEV;
1198 }
1199 }
1200
1201 return 0;
1202}
1203
1204/*
1205 * If the device has been passed off to us in an enabled state, just clear
1206 * the enabled bit. The spec says we should set the 'shutdown notification
1207 * bits', but doing so may cause the device to complete commands to the
1208 * admin queue ... and we don't know what memory that might be pointing at!
1209 */
1210static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1211{
44af146a
MW
1212 u32 cc = readl(&dev->bar->cc);
1213
1214 if (cc & NVME_CC_ENABLE)
1215 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
ba47e386
MW
1216 return nvme_wait_ready(dev, cap, false);
1217}
1218
1219static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1220{
1221 return nvme_wait_ready(dev, cap, true);
1222}
1223
1894d8f1
KB
1224static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1225{
1226 unsigned long timeout;
1227 u32 cc;
1228
1229 cc = (readl(&dev->bar->cc) & ~NVME_CC_SHN_MASK) | NVME_CC_SHN_NORMAL;
1230 writel(cc, &dev->bar->cc);
1231
1232 timeout = 2 * HZ + jiffies;
1233 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1234 NVME_CSTS_SHST_CMPLT) {
1235 msleep(100);
1236 if (fatal_signal_pending(current))
1237 return -EINTR;
1238 if (time_after(jiffies, timeout)) {
1239 dev_err(&dev->pci_dev->dev,
1240 "Device shutdown incomplete; abort shutdown\n");
1241 return -ENODEV;
1242 }
1243 }
1244
1245 return 0;
1246}
1247
8d85fce7 1248static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1249{
ba47e386 1250 int result;
b60503ba 1251 u32 aqa;
ba47e386 1252 u64 cap = readq(&dev->bar->cap);
b60503ba
MW
1253 struct nvme_queue *nvmeq;
1254
ba47e386
MW
1255 result = nvme_disable_ctrl(dev, cap);
1256 if (result < 0)
1257 return result;
b60503ba
MW
1258
1259 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
1260 if (!nvmeq)
1261 return -ENOMEM;
b60503ba
MW
1262
1263 aqa = nvmeq->q_depth - 1;
1264 aqa |= aqa << 16;
1265
1266 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1267 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1268 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1269 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba
MW
1270
1271 writel(aqa, &dev->bar->aqa);
1272 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1273 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1274 writel(dev->ctrl_config, &dev->bar->cc);
1275
ba47e386 1276 result = nvme_enable_ctrl(dev, cap);
025c557a
KB
1277 if (result)
1278 goto free_q;
9e866774 1279
3001082c 1280 result = queue_request_irq(dev, nvmeq, "nvme admin");
025c557a
KB
1281 if (result)
1282 goto free_q;
1283
b60503ba 1284 dev->queues[0] = nvmeq;
22404274
KB
1285 spin_lock(&nvmeq->q_lock);
1286 nvme_init_queue(nvmeq, 0);
1287 spin_unlock(&nvmeq->q_lock);
b60503ba 1288 return result;
025c557a
KB
1289
1290 free_q:
22404274 1291 nvme_free_queue(nvmeq);
025c557a 1292 return result;
b60503ba
MW
1293}
1294
5d0f6131 1295struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
eca18b23 1296 unsigned long addr, unsigned length)
b60503ba 1297{
36c14ed9 1298 int i, err, count, nents, offset;
7fc3cdab
MW
1299 struct scatterlist *sg;
1300 struct page **pages;
eca18b23 1301 struct nvme_iod *iod;
36c14ed9
MW
1302
1303 if (addr & 3)
eca18b23 1304 return ERR_PTR(-EINVAL);
5460fc03 1305 if (!length || length > INT_MAX - PAGE_SIZE)
eca18b23 1306 return ERR_PTR(-EINVAL);
7fc3cdab 1307
36c14ed9 1308 offset = offset_in_page(addr);
7fc3cdab
MW
1309 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1310 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
22fff826
DC
1311 if (!pages)
1312 return ERR_PTR(-ENOMEM);
36c14ed9
MW
1313
1314 err = get_user_pages_fast(addr, count, 1, pages);
1315 if (err < count) {
1316 count = err;
1317 err = -EFAULT;
1318 goto put_pages;
1319 }
7fc3cdab 1320
eca18b23
MW
1321 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1322 sg = iod->sg;
36c14ed9 1323 sg_init_table(sg, count);
d0ba1e49
MW
1324 for (i = 0; i < count; i++) {
1325 sg_set_page(&sg[i], pages[i],
5460fc03
DC
1326 min_t(unsigned, length, PAGE_SIZE - offset),
1327 offset);
d0ba1e49
MW
1328 length -= (PAGE_SIZE - offset);
1329 offset = 0;
7fc3cdab 1330 }
fe304c43 1331 sg_mark_end(&sg[i - 1]);
1c2ad9fa 1332 iod->nents = count;
7fc3cdab
MW
1333
1334 err = -ENOMEM;
1335 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1336 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9 1337 if (!nents)
eca18b23 1338 goto free_iod;
b60503ba 1339
7fc3cdab 1340 kfree(pages);
eca18b23 1341 return iod;
b60503ba 1342
eca18b23
MW
1343 free_iod:
1344 kfree(iod);
7fc3cdab
MW
1345 put_pages:
1346 for (i = 0; i < count; i++)
1347 put_page(pages[i]);
1348 kfree(pages);
eca18b23 1349 return ERR_PTR(err);
7fc3cdab 1350}
b60503ba 1351
5d0f6131 1352void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1c2ad9fa 1353 struct nvme_iod *iod)
7fc3cdab 1354{
1c2ad9fa 1355 int i;
b60503ba 1356
1c2ad9fa
MW
1357 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1358 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
7fc3cdab 1359
1c2ad9fa
MW
1360 for (i = 0; i < iod->nents; i++)
1361 put_page(sg_page(&iod->sg[i]));
7fc3cdab 1362}
b60503ba 1363
a53295b6
MW
1364static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1365{
1366 struct nvme_dev *dev = ns->dev;
1367 struct nvme_queue *nvmeq;
1368 struct nvme_user_io io;
1369 struct nvme_command c;
f410c680
KB
1370 unsigned length, meta_len;
1371 int status, i;
1372 struct nvme_iod *iod, *meta_iod = NULL;
1373 dma_addr_t meta_dma_addr;
1374 void *meta, *uninitialized_var(meta_mem);
a53295b6
MW
1375
1376 if (copy_from_user(&io, uio, sizeof(io)))
1377 return -EFAULT;
6c7d4945 1378 length = (io.nblocks + 1) << ns->lba_shift;
f410c680
KB
1379 meta_len = (io.nblocks + 1) * ns->ms;
1380
1381 if (meta_len && ((io.metadata & 3) || !io.metadata))
1382 return -EINVAL;
6c7d4945
MW
1383
1384 switch (io.opcode) {
1385 case nvme_cmd_write:
1386 case nvme_cmd_read:
6bbf1acd 1387 case nvme_cmd_compare:
eca18b23 1388 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
6413214c 1389 break;
6c7d4945 1390 default:
6bbf1acd 1391 return -EINVAL;
6c7d4945
MW
1392 }
1393
eca18b23
MW
1394 if (IS_ERR(iod))
1395 return PTR_ERR(iod);
a53295b6
MW
1396
1397 memset(&c, 0, sizeof(c));
1398 c.rw.opcode = io.opcode;
1399 c.rw.flags = io.flags;
6c7d4945 1400 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1401 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1402 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1403 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1404 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1405 c.rw.reftag = cpu_to_le32(io.reftag);
1406 c.rw.apptag = cpu_to_le16(io.apptag);
1407 c.rw.appmask = cpu_to_le16(io.appmask);
f410c680
KB
1408
1409 if (meta_len) {
1b56749e
KB
1410 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1411 meta_len);
f410c680
KB
1412 if (IS_ERR(meta_iod)) {
1413 status = PTR_ERR(meta_iod);
1414 meta_iod = NULL;
1415 goto unmap;
1416 }
1417
1418 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1419 &meta_dma_addr, GFP_KERNEL);
1420 if (!meta_mem) {
1421 status = -ENOMEM;
1422 goto unmap;
1423 }
1424
1425 if (io.opcode & 1) {
1426 int meta_offset = 0;
1427
1428 for (i = 0; i < meta_iod->nents; i++) {
1429 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1430 meta_iod->sg[i].offset;
1431 memcpy(meta_mem + meta_offset, meta,
1432 meta_iod->sg[i].length);
1433 kunmap_atomic(meta);
1434 meta_offset += meta_iod->sg[i].length;
1435 }
1436 }
1437
1438 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1439 }
1440
eca18b23 1441 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
a53295b6 1442
040a93b5 1443 nvmeq = get_nvmeq(dev);
fa922821
MW
1444 /*
1445 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1446 * disabled. We may be preempted at any point, and be rescheduled
1447 * to a different CPU. That will cause cacheline bouncing, but no
1448 * additional races since q_lock already protects against other CPUs.
1449 */
a53295b6 1450 put_nvmeq(nvmeq);
b77954cb
MW
1451 if (length != (io.nblocks + 1) << ns->lba_shift)
1452 status = -ENOMEM;
22404274
KB
1453 else if (!nvmeq || nvmeq->q_suspended)
1454 status = -EBUSY;
b77954cb 1455 else
ff976d72 1456 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
a53295b6 1457
f410c680
KB
1458 if (meta_len) {
1459 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1460 int meta_offset = 0;
1461
1462 for (i = 0; i < meta_iod->nents; i++) {
1463 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1464 meta_iod->sg[i].offset;
1465 memcpy(meta, meta_mem + meta_offset,
1466 meta_iod->sg[i].length);
1467 kunmap_atomic(meta);
1468 meta_offset += meta_iod->sg[i].length;
1469 }
1470 }
1471
1472 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1473 meta_dma_addr);
1474 }
1475
1476 unmap:
1c2ad9fa 1477 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
eca18b23 1478 nvme_free_iod(dev, iod);
f410c680
KB
1479
1480 if (meta_iod) {
1481 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1482 nvme_free_iod(dev, meta_iod);
1483 }
1484
a53295b6
MW
1485 return status;
1486}
1487
50af8bae 1488static int nvme_user_admin_cmd(struct nvme_dev *dev,
6bbf1acd 1489 struct nvme_admin_cmd __user *ucmd)
6ee44cdc 1490{
6bbf1acd 1491 struct nvme_admin_cmd cmd;
6ee44cdc 1492 struct nvme_command c;
eca18b23 1493 int status, length;
c7d36ab8 1494 struct nvme_iod *uninitialized_var(iod);
94f370ca 1495 unsigned timeout;
6ee44cdc 1496
6bbf1acd
MW
1497 if (!capable(CAP_SYS_ADMIN))
1498 return -EACCES;
1499 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1500 return -EFAULT;
6ee44cdc
MW
1501
1502 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1503 c.common.opcode = cmd.opcode;
1504 c.common.flags = cmd.flags;
1505 c.common.nsid = cpu_to_le32(cmd.nsid);
1506 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1507 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1508 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1509 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1510 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1511 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1512 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1513 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1514
1515 length = cmd.data_len;
1516 if (cmd.data_len) {
49742188
MW
1517 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1518 length);
eca18b23
MW
1519 if (IS_ERR(iod))
1520 return PTR_ERR(iod);
1521 length = nvme_setup_prps(dev, &c.common, iod, length,
1522 GFP_KERNEL);
6bbf1acd
MW
1523 }
1524
94f370ca
KB
1525 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1526 ADMIN_TIMEOUT;
6bbf1acd 1527 if (length != cmd.data_len)
b77954cb
MW
1528 status = -ENOMEM;
1529 else
94f370ca
KB
1530 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1531 timeout);
eca18b23 1532
6bbf1acd 1533 if (cmd.data_len) {
1c2ad9fa 1534 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
eca18b23 1535 nvme_free_iod(dev, iod);
6bbf1acd 1536 }
f4f117f6 1537
cf90bc48 1538 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
f4f117f6
KB
1539 sizeof(cmd.result)))
1540 status = -EFAULT;
1541
6ee44cdc
MW
1542 return status;
1543}
1544
b60503ba
MW
1545static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1546 unsigned long arg)
1547{
1548 struct nvme_ns *ns = bdev->bd_disk->private_data;
1549
1550 switch (cmd) {
6bbf1acd 1551 case NVME_IOCTL_ID:
c3bfe717 1552 force_successful_syscall_return();
6bbf1acd
MW
1553 return ns->ns_id;
1554 case NVME_IOCTL_ADMIN_CMD:
50af8bae 1555 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
a53295b6
MW
1556 case NVME_IOCTL_SUBMIT_IO:
1557 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1558 case SG_GET_VERSION_NUM:
1559 return nvme_sg_get_version_num((void __user *)arg);
1560 case SG_IO:
1561 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1562 default:
1563 return -ENOTTY;
1564 }
1565}
1566
1567static const struct block_device_operations nvme_fops = {
1568 .owner = THIS_MODULE,
1569 .ioctl = nvme_ioctl,
49481682 1570 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1571};
1572
1fa6aead
MW
1573static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1574{
1575 while (bio_list_peek(&nvmeq->sq_cong)) {
1576 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1577 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
427e9708
KB
1578
1579 if (bio_list_empty(&nvmeq->sq_cong))
1580 remove_wait_queue(&nvmeq->sq_full,
1581 &nvmeq->sq_cong_wait);
1fa6aead 1582 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
427e9708
KB
1583 if (bio_list_empty(&nvmeq->sq_cong))
1584 add_wait_queue(&nvmeq->sq_full,
1585 &nvmeq->sq_cong_wait);
1fa6aead
MW
1586 bio_list_add_head(&nvmeq->sq_cong, bio);
1587 break;
1588 }
1589 }
1590}
1591
1592static int nvme_kthread(void *data)
1593{
1594 struct nvme_dev *dev;
1595
1596 while (!kthread_should_stop()) {
564a232c 1597 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead
MW
1598 spin_lock(&dev_list_lock);
1599 list_for_each_entry(dev, &dev_list, node) {
1600 int i;
1601 for (i = 0; i < dev->queue_count; i++) {
1602 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1603 if (!nvmeq)
1604 continue;
1fa6aead 1605 spin_lock_irq(&nvmeq->q_lock);
22404274
KB
1606 if (nvmeq->q_suspended)
1607 goto unlock;
bc57a0f7 1608 nvme_process_cq(nvmeq);
a09115b2 1609 nvme_cancel_ios(nvmeq, true);
1fa6aead 1610 nvme_resubmit_bios(nvmeq);
22404274 1611 unlock:
1fa6aead
MW
1612 spin_unlock_irq(&nvmeq->q_lock);
1613 }
1614 }
1615 spin_unlock(&dev_list_lock);
acb7aa0d 1616 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1617 }
1618 return 0;
1619}
1620
5aff9382
MW
1621static DEFINE_IDA(nvme_index_ida);
1622
1623static int nvme_get_ns_idx(void)
1624{
1625 int index, error;
1626
1627 do {
1628 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1629 return -1;
1630
1631 spin_lock(&dev_list_lock);
1632 error = ida_get_new(&nvme_index_ida, &index);
1633 spin_unlock(&dev_list_lock);
1634 } while (error == -EAGAIN);
1635
1636 if (error)
1637 index = -1;
1638 return index;
1639}
1640
1641static void nvme_put_ns_idx(int index)
1642{
1643 spin_lock(&dev_list_lock);
1644 ida_remove(&nvme_index_ida, index);
1645 spin_unlock(&dev_list_lock);
1646}
1647
0e5e4f0e
KB
1648static void nvme_config_discard(struct nvme_ns *ns)
1649{
1650 u32 logical_block_size = queue_logical_block_size(ns->queue);
1651 ns->queue->limits.discard_zeroes_data = 0;
1652 ns->queue->limits.discard_alignment = logical_block_size;
1653 ns->queue->limits.discard_granularity = logical_block_size;
1654 ns->queue->limits.max_discard_sectors = 0xffffffff;
1655 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1656}
1657
c3bfe717 1658static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
b60503ba
MW
1659 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1660{
1661 struct nvme_ns *ns;
1662 struct gendisk *disk;
1663 int lbaf;
1664
1665 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1666 return NULL;
1667
1668 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1669 if (!ns)
1670 return NULL;
1671 ns->queue = blk_alloc_queue(GFP_KERNEL);
1672 if (!ns->queue)
1673 goto out_free_ns;
4eeb9215
MW
1674 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1675 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1676 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
b60503ba
MW
1677 blk_queue_make_request(ns->queue, nvme_make_request);
1678 ns->dev = dev;
1679 ns->queue->queuedata = ns;
1680
1681 disk = alloc_disk(NVME_MINORS);
1682 if (!disk)
1683 goto out_free_queue;
5aff9382 1684 ns->ns_id = nsid;
b60503ba
MW
1685 ns->disk = disk;
1686 lbaf = id->flbas & 0xf;
1687 ns->lba_shift = id->lbaf[lbaf].ds;
f410c680 1688 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
e9ef4636 1689 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
8fc23e03
KB
1690 if (dev->max_hw_sectors)
1691 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
b60503ba
MW
1692
1693 disk->major = nvme_major;
1694 disk->minors = NVME_MINORS;
5aff9382 1695 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
b60503ba
MW
1696 disk->fops = &nvme_fops;
1697 disk->private_data = ns;
1698 disk->queue = ns->queue;
388f037f 1699 disk->driverfs_dev = &dev->pci_dev->dev;
5aff9382 1700 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba
MW
1701 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1702
0e5e4f0e
KB
1703 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1704 nvme_config_discard(ns);
1705
b60503ba
MW
1706 return ns;
1707
1708 out_free_queue:
1709 blk_cleanup_queue(ns->queue);
1710 out_free_ns:
1711 kfree(ns);
1712 return NULL;
1713}
1714
1715static void nvme_ns_free(struct nvme_ns *ns)
1716{
5aff9382 1717 int index = ns->disk->first_minor / NVME_MINORS;
b60503ba 1718 put_disk(ns->disk);
5aff9382 1719 nvme_put_ns_idx(index);
b60503ba
MW
1720 blk_cleanup_queue(ns->queue);
1721 kfree(ns);
1722}
1723
b3b06812 1724static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1725{
1726 int status;
1727 u32 result;
b3b06812 1728 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 1729
df348139 1730 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 1731 &result);
b60503ba 1732 if (status)
7e03b124 1733 return status < 0 ? -EIO : -EBUSY;
b60503ba
MW
1734 return min(result & 0xffff, result >> 16) + 1;
1735}
1736
8d85fce7 1737static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1738{
fa08a396 1739 struct pci_dev *pdev = dev->pci_dev;
063a8096 1740 int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
b60503ba 1741
b348b7d5
MW
1742 nr_io_queues = num_online_cpus();
1743 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1744 if (result < 0)
1745 return result;
b348b7d5
MW
1746 if (result < nr_io_queues)
1747 nr_io_queues = result;
b60503ba 1748
1b23484b
MW
1749 /* Deregister the admin queue's interrupt */
1750 free_irq(dev->entry[0].vector, dev->queues[0]);
1751
f1938f6e
MW
1752 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1753 if (db_bar_size > 8192) {
1754 iounmap(dev->bar);
fa08a396 1755 dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
f1938f6e
MW
1756 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1757 dev->queues[0]->q_db = dev->dbs;
1758 }
1759
063a8096
MW
1760 vecs = nr_io_queues;
1761 for (i = 0; i < vecs; i++)
1b23484b
MW
1762 dev->entry[i].entry = i;
1763 for (;;) {
063a8096
MW
1764 result = pci_enable_msix(pdev, dev->entry, vecs);
1765 if (result <= 0)
1b23484b 1766 break;
063a8096 1767 vecs = result;
1b23484b
MW
1768 }
1769
063a8096
MW
1770 if (result < 0) {
1771 vecs = nr_io_queues;
1772 if (vecs > 32)
1773 vecs = 32;
fa08a396 1774 for (;;) {
063a8096 1775 result = pci_enable_msi_block(pdev, vecs);
fa08a396 1776 if (result == 0) {
063a8096 1777 for (i = 0; i < vecs; i++)
fa08a396
RRG
1778 dev->entry[i].vector = i + pdev->irq;
1779 break;
063a8096
MW
1780 } else if (result < 0) {
1781 vecs = 1;
fa08a396
RRG
1782 break;
1783 }
063a8096 1784 vecs = result;
fa08a396
RRG
1785 }
1786 }
1787
063a8096
MW
1788 /*
1789 * Should investigate if there's a performance win from allocating
1790 * more queues than interrupt vectors; it might allow the submission
1791 * path to scale better, even if the receive path is limited by the
1792 * number of interrupts.
1793 */
1794 nr_io_queues = vecs;
1795
1b23484b 1796 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
22404274
KB
1797 if (result)
1798 goto free_queues;
1b23484b
MW
1799
1800 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1801 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1802 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1803 cpu = cpumask_next(cpu, cpu_online_mask);
1804 }
1805
a0cadb85
KB
1806 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1807 NVME_Q_DEPTH);
b348b7d5 1808 for (i = 0; i < nr_io_queues; i++) {
22404274
KB
1809 dev->queues[i + 1] = nvme_alloc_queue(dev, i + 1, q_depth, i);
1810 if (!dev->queues[i + 1]) {
1811 result = -ENOMEM;
1812 goto free_queues;
1813 }
1b23484b 1814 }
b60503ba 1815
9ecdc946
MW
1816 for (; i < num_possible_cpus(); i++) {
1817 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1818 dev->queues[i + 1] = dev->queues[target + 1];
1819 }
1820
22404274
KB
1821 for (i = 1; i < dev->queue_count; i++) {
1822 result = nvme_create_queue(dev->queues[i], i);
1823 if (result) {
1824 for (--i; i > 0; i--)
1825 nvme_disable_queue(dev, i);
1826 goto free_queues;
1827 }
1828 }
b60503ba 1829
22404274 1830 return 0;
b60503ba 1831
22404274
KB
1832 free_queues:
1833 nvme_free_queues(dev);
1834 return result;
b60503ba
MW
1835}
1836
422ef0c7
MW
1837/*
1838 * Return: error value if an error occurred setting up the queues or calling
1839 * Identify Device. 0 if these succeeded, even if adding some of the
1840 * namespaces failed. At the moment, these failures are silent. TBD which
1841 * failures should be reported.
1842 */
8d85fce7 1843static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1844{
c3bfe717
MW
1845 int res;
1846 unsigned nn, i;
cbb6218f 1847 struct nvme_ns *ns;
51814232 1848 struct nvme_id_ctrl *ctrl;
bc5fc7e4
MW
1849 struct nvme_id_ns *id_ns;
1850 void *mem;
b60503ba 1851 dma_addr_t dma_addr;
159b67d7 1852 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
b60503ba 1853
bc5fc7e4 1854 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
b60503ba 1855 GFP_KERNEL);
a9ef4343
KB
1856 if (!mem)
1857 return -ENOMEM;
b60503ba 1858
bc5fc7e4 1859 res = nvme_identify(dev, 0, 1, dma_addr);
b60503ba
MW
1860 if (res) {
1861 res = -EIO;
cbb6218f 1862 goto out;
b60503ba
MW
1863 }
1864
bc5fc7e4 1865 ctrl = mem;
51814232 1866 nn = le32_to_cpup(&ctrl->nn);
0e5e4f0e 1867 dev->oncs = le16_to_cpup(&ctrl->oncs);
51814232
MW
1868 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1869 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1870 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 1871 if (ctrl->mdts)
8fc23e03 1872 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
159b67d7
KB
1873 if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1874 (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1875 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
b60503ba 1876
bc5fc7e4 1877 id_ns = mem;
2b2c1896 1878 for (i = 1; i <= nn; i++) {
bc5fc7e4 1879 res = nvme_identify(dev, i, 0, dma_addr);
b60503ba
MW
1880 if (res)
1881 continue;
1882
bc5fc7e4 1883 if (id_ns->ncap == 0)
b60503ba
MW
1884 continue;
1885
bc5fc7e4 1886 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
08df1e05 1887 dma_addr + 4096, NULL);
b60503ba 1888 if (res)
12209036 1889 memset(mem + 4096, 0, 4096);
b60503ba 1890
bc5fc7e4 1891 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
b60503ba
MW
1892 if (ns)
1893 list_add_tail(&ns->list, &dev->namespaces);
1894 }
1895 list_for_each_entry(ns, &dev->namespaces, list)
1896 add_disk(ns->disk);
422ef0c7 1897 res = 0;
b60503ba 1898
bc5fc7e4 1899 out:
684f5c20 1900 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
b60503ba
MW
1901 return res;
1902}
1903
0877cb0d
KB
1904static int nvme_dev_map(struct nvme_dev *dev)
1905{
1906 int bars, result = -ENOMEM;
1907 struct pci_dev *pdev = dev->pci_dev;
1908
1909 if (pci_enable_device_mem(pdev))
1910 return result;
1911
1912 dev->entry[0].vector = pdev->irq;
1913 pci_set_master(pdev);
1914 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1915 if (pci_request_selected_regions(pdev, bars, "nvme"))
1916 goto disable_pci;
1917
1918 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1919 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1920 else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1921 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1922 else
1923 goto disable_pci;
1924
1925 pci_set_drvdata(pdev, dev);
1926 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1927 if (!dev->bar)
1928 goto disable;
1929
1930 dev->db_stride = NVME_CAP_STRIDE(readq(&dev->bar->cap));
1931 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1932
1933 return 0;
1934
1935 disable:
1936 pci_release_regions(pdev);
1937 disable_pci:
1938 pci_disable_device(pdev);
1939 return result;
1940}
1941
1942static void nvme_dev_unmap(struct nvme_dev *dev)
1943{
1944 if (dev->pci_dev->msi_enabled)
1945 pci_disable_msi(dev->pci_dev);
1946 else if (dev->pci_dev->msix_enabled)
1947 pci_disable_msix(dev->pci_dev);
1948
1949 if (dev->bar) {
1950 iounmap(dev->bar);
1951 dev->bar = NULL;
1952 }
1953
1954 pci_release_regions(dev->pci_dev);
1955 if (pci_is_enabled(dev->pci_dev))
1956 pci_disable_device(dev->pci_dev);
1957}
1958
f0b50732 1959static void nvme_dev_shutdown(struct nvme_dev *dev)
b60503ba 1960{
22404274
KB
1961 int i;
1962
1963 for (i = dev->queue_count - 1; i >= 0; i--)
1964 nvme_disable_queue(dev, i);
b60503ba 1965
1fa6aead 1966 spin_lock(&dev_list_lock);
f0b50732 1967 list_del_init(&dev->node);
1fa6aead
MW
1968 spin_unlock(&dev_list_lock);
1969
1894d8f1
KB
1970 if (dev->bar)
1971 nvme_shutdown_ctrl(dev);
f0b50732
KB
1972 nvme_dev_unmap(dev);
1973}
1974
1975static void nvme_dev_remove(struct nvme_dev *dev)
1976{
1977 struct nvme_ns *ns, *next;
1978
b60503ba
MW
1979 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1980 list_del(&ns->list);
1981 del_gendisk(ns->disk);
1982 nvme_ns_free(ns);
1983 }
b60503ba
MW
1984}
1985
091b6092
MW
1986static int nvme_setup_prp_pools(struct nvme_dev *dev)
1987{
1988 struct device *dmadev = &dev->pci_dev->dev;
1989 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1990 PAGE_SIZE, PAGE_SIZE, 0);
1991 if (!dev->prp_page_pool)
1992 return -ENOMEM;
1993
99802a7a
MW
1994 /* Optimisation for I/Os between 4k and 128k */
1995 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1996 256, 256, 0);
1997 if (!dev->prp_small_pool) {
1998 dma_pool_destroy(dev->prp_page_pool);
1999 return -ENOMEM;
2000 }
091b6092
MW
2001 return 0;
2002}
2003
2004static void nvme_release_prp_pools(struct nvme_dev *dev)
2005{
2006 dma_pool_destroy(dev->prp_page_pool);
99802a7a 2007 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
2008}
2009
cd58ad7d
QSA
2010static DEFINE_IDA(nvme_instance_ida);
2011
2012static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 2013{
cd58ad7d
QSA
2014 int instance, error;
2015
2016 do {
2017 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2018 return -ENODEV;
2019
2020 spin_lock(&dev_list_lock);
2021 error = ida_get_new(&nvme_instance_ida, &instance);
2022 spin_unlock(&dev_list_lock);
2023 } while (error == -EAGAIN);
2024
2025 if (error)
2026 return -ENODEV;
2027
2028 dev->instance = instance;
2029 return 0;
b60503ba
MW
2030}
2031
2032static void nvme_release_instance(struct nvme_dev *dev)
2033{
cd58ad7d
QSA
2034 spin_lock(&dev_list_lock);
2035 ida_remove(&nvme_instance_ida, dev->instance);
2036 spin_unlock(&dev_list_lock);
b60503ba
MW
2037}
2038
5e82e952
KB
2039static void nvme_free_dev(struct kref *kref)
2040{
2041 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2042 nvme_dev_remove(dev);
f0b50732
KB
2043 nvme_dev_shutdown(dev);
2044 nvme_free_queues(dev);
5e82e952
KB
2045 nvme_release_instance(dev);
2046 nvme_release_prp_pools(dev);
5e82e952
KB
2047 kfree(dev->queues);
2048 kfree(dev->entry);
2049 kfree(dev);
2050}
2051
2052static int nvme_dev_open(struct inode *inode, struct file *f)
2053{
2054 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2055 miscdev);
2056 kref_get(&dev->kref);
2057 f->private_data = dev;
2058 return 0;
2059}
2060
2061static int nvme_dev_release(struct inode *inode, struct file *f)
2062{
2063 struct nvme_dev *dev = f->private_data;
2064 kref_put(&dev->kref, nvme_free_dev);
2065 return 0;
2066}
2067
2068static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2069{
2070 struct nvme_dev *dev = f->private_data;
2071 switch (cmd) {
2072 case NVME_IOCTL_ADMIN_CMD:
2073 return nvme_user_admin_cmd(dev, (void __user *)arg);
2074 default:
2075 return -ENOTTY;
2076 }
2077}
2078
2079static const struct file_operations nvme_dev_fops = {
2080 .owner = THIS_MODULE,
2081 .open = nvme_dev_open,
2082 .release = nvme_dev_release,
2083 .unlocked_ioctl = nvme_dev_ioctl,
2084 .compat_ioctl = nvme_dev_ioctl,
2085};
2086
f0b50732
KB
2087static int nvme_dev_start(struct nvme_dev *dev)
2088{
2089 int result;
2090
2091 result = nvme_dev_map(dev);
2092 if (result)
2093 return result;
2094
2095 result = nvme_configure_admin_queue(dev);
2096 if (result)
2097 goto unmap;
2098
2099 spin_lock(&dev_list_lock);
2100 list_add(&dev->node, &dev_list);
2101 spin_unlock(&dev_list_lock);
2102
2103 result = nvme_setup_io_queues(dev);
2104 if (result)
2105 goto disable;
2106
2107 return 0;
2108
2109 disable:
2110 spin_lock(&dev_list_lock);
2111 list_del_init(&dev->node);
2112 spin_unlock(&dev_list_lock);
2113 unmap:
2114 nvme_dev_unmap(dev);
2115 return result;
2116}
2117
8d85fce7 2118static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2119{
0877cb0d 2120 int result = -ENOMEM;
b60503ba
MW
2121 struct nvme_dev *dev;
2122
2123 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2124 if (!dev)
2125 return -ENOMEM;
2126 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2127 GFP_KERNEL);
2128 if (!dev->entry)
2129 goto free;
1b23484b
MW
2130 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2131 GFP_KERNEL);
b60503ba
MW
2132 if (!dev->queues)
2133 goto free;
2134
2135 INIT_LIST_HEAD(&dev->namespaces);
2136 dev->pci_dev = pdev;
cd58ad7d
QSA
2137 result = nvme_set_instance(dev);
2138 if (result)
0877cb0d 2139 goto free;
b60503ba 2140
091b6092
MW
2141 result = nvme_setup_prp_pools(dev);
2142 if (result)
0877cb0d 2143 goto release;
091b6092 2144
f0b50732 2145 result = nvme_dev_start(dev);
0877cb0d
KB
2146 if (result)
2147 goto release_pools;
b60503ba 2148
740216fc 2149 result = nvme_dev_add(dev);
7e03b124 2150 if (result && result != -EBUSY)
f0b50732 2151 goto shutdown;
740216fc 2152
5e82e952
KB
2153 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2154 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2155 dev->miscdev.parent = &pdev->dev;
2156 dev->miscdev.name = dev->name;
2157 dev->miscdev.fops = &nvme_dev_fops;
2158 result = misc_register(&dev->miscdev);
2159 if (result)
2160 goto remove;
2161
2162 kref_init(&dev->kref);
b60503ba
MW
2163 return 0;
2164
5e82e952
KB
2165 remove:
2166 nvme_dev_remove(dev);
f0b50732
KB
2167 shutdown:
2168 nvme_dev_shutdown(dev);
0877cb0d 2169 release_pools:
f0b50732 2170 nvme_free_queues(dev);
091b6092 2171 nvme_release_prp_pools(dev);
0877cb0d
KB
2172 release:
2173 nvme_release_instance(dev);
b60503ba
MW
2174 free:
2175 kfree(dev->queues);
2176 kfree(dev->entry);
2177 kfree(dev);
2178 return result;
2179}
2180
8d85fce7 2181static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2182{
2183 struct nvme_dev *dev = pci_get_drvdata(pdev);
5e82e952
KB
2184 misc_deregister(&dev->miscdev);
2185 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
2186}
2187
2188/* These functions are yet to be implemented */
2189#define nvme_error_detected NULL
2190#define nvme_dump_registers NULL
2191#define nvme_link_reset NULL
2192#define nvme_slot_reset NULL
2193#define nvme_error_resume NULL
2194#define nvme_suspend NULL
2195#define nvme_resume NULL
2196
1d352035 2197static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
2198 .error_detected = nvme_error_detected,
2199 .mmio_enabled = nvme_dump_registers,
2200 .link_reset = nvme_link_reset,
2201 .slot_reset = nvme_slot_reset,
2202 .resume = nvme_error_resume,
2203};
2204
2205/* Move to pci_ids.h later */
2206#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2207
2208static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2209 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2210 { 0, }
2211};
2212MODULE_DEVICE_TABLE(pci, nvme_id_table);
2213
2214static struct pci_driver nvme_driver = {
2215 .name = "nvme",
2216 .id_table = nvme_id_table,
2217 .probe = nvme_probe,
8d85fce7 2218 .remove = nvme_remove,
b60503ba
MW
2219 .suspend = nvme_suspend,
2220 .resume = nvme_resume,
2221 .err_handler = &nvme_err_handler,
2222};
2223
2224static int __init nvme_init(void)
2225{
0ac13140 2226 int result;
1fa6aead
MW
2227
2228 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2229 if (IS_ERR(nvme_thread))
2230 return PTR_ERR(nvme_thread);
b60503ba 2231
5c42ea16
KB
2232 result = register_blkdev(nvme_major, "nvme");
2233 if (result < 0)
1fa6aead 2234 goto kill_kthread;
5c42ea16 2235 else if (result > 0)
0ac13140 2236 nvme_major = result;
b60503ba
MW
2237
2238 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
2239 if (result)
2240 goto unregister_blkdev;
2241 return 0;
b60503ba 2242
1fa6aead 2243 unregister_blkdev:
b60503ba 2244 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
2245 kill_kthread:
2246 kthread_stop(nvme_thread);
b60503ba
MW
2247 return result;
2248}
2249
2250static void __exit nvme_exit(void)
2251{
2252 pci_unregister_driver(&nvme_driver);
2253 unregister_blkdev(nvme_major, "nvme");
1fa6aead 2254 kthread_stop(nvme_thread);
b60503ba
MW
2255}
2256
2257MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2258MODULE_LICENSE("GPL");
366e8217 2259MODULE_VERSION("0.8");
b60503ba
MW
2260module_init(nvme_init);
2261module_exit(nvme_exit);