NVMe: Group pci related actions in functions
[linux-2.6-block.git] / drivers / block / nvme-core.c
CommitLineData
b60503ba
MW
1/*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19#include <linux/nvme.h>
20#include <linux/bio.h>
8de05535 21#include <linux/bitops.h>
b60503ba 22#include <linux/blkdev.h>
fd63e9ce 23#include <linux/delay.h>
b60503ba
MW
24#include <linux/errno.h>
25#include <linux/fs.h>
26#include <linux/genhd.h>
5aff9382 27#include <linux/idr.h>
b60503ba
MW
28#include <linux/init.h>
29#include <linux/interrupt.h>
30#include <linux/io.h>
31#include <linux/kdev_t.h>
1fa6aead 32#include <linux/kthread.h>
b60503ba
MW
33#include <linux/kernel.h>
34#include <linux/mm.h>
35#include <linux/module.h>
36#include <linux/moduleparam.h>
37#include <linux/pci.h>
be7b6275 38#include <linux/poison.h>
c3bfe717 39#include <linux/ptrace.h>
b60503ba
MW
40#include <linux/sched.h>
41#include <linux/slab.h>
42#include <linux/types.h>
5d0f6131 43#include <scsi/sg.h>
797a796a
HM
44#include <asm-generic/io-64-nonatomic-lo-hi.h>
45
b60503ba
MW
46#define NVME_Q_DEPTH 1024
47#define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
48#define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
49#define NVME_MINORS 64
e85248e5 50#define ADMIN_TIMEOUT (60 * HZ)
b60503ba
MW
51
52static int nvme_major;
53module_param(nvme_major, int, 0);
54
58ffacb5
MW
55static int use_threaded_interrupts;
56module_param(use_threaded_interrupts, int, 0);
57
1fa6aead
MW
58static DEFINE_SPINLOCK(dev_list_lock);
59static LIST_HEAD(dev_list);
60static struct task_struct *nvme_thread;
61
b60503ba
MW
62/*
63 * An NVM Express queue. Each device has at least two (one for admin
64 * commands and one for I/O commands).
65 */
66struct nvme_queue {
67 struct device *q_dmadev;
091b6092 68 struct nvme_dev *dev;
b60503ba
MW
69 spinlock_t q_lock;
70 struct nvme_command *sq_cmds;
71 volatile struct nvme_completion *cqes;
72 dma_addr_t sq_dma_addr;
73 dma_addr_t cq_dma_addr;
74 wait_queue_head_t sq_full;
1fa6aead 75 wait_queue_t sq_cong_wait;
b60503ba
MW
76 struct bio_list sq_cong;
77 u32 __iomem *q_db;
78 u16 q_depth;
79 u16 cq_vector;
80 u16 sq_head;
81 u16 sq_tail;
82 u16 cq_head;
e9539f47
MW
83 u8 cq_phase;
84 u8 cqe_seen;
b60503ba
MW
85 unsigned long cmdid_data[];
86};
87
88/*
89 * Check we didin't inadvertently grow the command struct
90 */
91static inline void _nvme_check_size(void)
92{
93 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
94 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
95 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
96 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
97 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
f8ebf840 98 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
b60503ba
MW
99 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
100 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
101 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
102 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
6ecec745 103 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
b60503ba
MW
104}
105
5c1281a3 106typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
c2f5b650
MW
107 struct nvme_completion *);
108
e85248e5 109struct nvme_cmd_info {
c2f5b650
MW
110 nvme_completion_fn fn;
111 void *ctx;
e85248e5
MW
112 unsigned long timeout;
113};
114
115static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
116{
117 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
118}
119
b60503ba 120/**
714a7a22
MW
121 * alloc_cmdid() - Allocate a Command ID
122 * @nvmeq: The queue that will be used for this command
123 * @ctx: A pointer that will be passed to the handler
c2f5b650 124 * @handler: The function to call on completion
b60503ba
MW
125 *
126 * Allocate a Command ID for a queue. The data passed in will
127 * be passed to the completion handler. This is implemented by using
128 * the bottom two bits of the ctx pointer to store the handler ID.
129 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
130 * We can change this if it becomes a problem.
184d2944
MW
131 *
132 * May be called with local interrupts disabled and the q_lock held,
133 * or with interrupts enabled and no locks held.
b60503ba 134 */
c2f5b650
MW
135static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
136 nvme_completion_fn handler, unsigned timeout)
b60503ba 137{
e6d15f79 138 int depth = nvmeq->q_depth - 1;
e85248e5 139 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba
MW
140 int cmdid;
141
b60503ba
MW
142 do {
143 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
144 if (cmdid >= depth)
145 return -EBUSY;
146 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
147
c2f5b650
MW
148 info[cmdid].fn = handler;
149 info[cmdid].ctx = ctx;
e85248e5 150 info[cmdid].timeout = jiffies + timeout;
b60503ba
MW
151 return cmdid;
152}
153
154static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
c2f5b650 155 nvme_completion_fn handler, unsigned timeout)
b60503ba
MW
156{
157 int cmdid;
158 wait_event_killable(nvmeq->sq_full,
e85248e5 159 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
b60503ba
MW
160 return (cmdid < 0) ? -EINTR : cmdid;
161}
162
c2f5b650
MW
163/* Special values must be less than 0x1000 */
164#define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
d2d87034
MW
165#define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
166#define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
167#define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
00df5cb4 168#define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
be7b6275 169
5c1281a3 170static void special_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
171 struct nvme_completion *cqe)
172{
173 if (ctx == CMD_CTX_CANCELLED)
174 return;
175 if (ctx == CMD_CTX_FLUSH)
176 return;
177 if (ctx == CMD_CTX_COMPLETED) {
5c1281a3 178 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
179 "completed id %d twice on queue %d\n",
180 cqe->command_id, le16_to_cpup(&cqe->sq_id));
181 return;
182 }
183 if (ctx == CMD_CTX_INVALID) {
5c1281a3 184 dev_warn(&dev->pci_dev->dev,
c2f5b650
MW
185 "invalid id %d completed on queue %d\n",
186 cqe->command_id, le16_to_cpup(&cqe->sq_id));
187 return;
188 }
189
5c1281a3 190 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
c2f5b650
MW
191}
192
184d2944
MW
193/*
194 * Called with local interrupts disabled and the q_lock held. May not sleep.
195 */
c2f5b650
MW
196static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
197 nvme_completion_fn *fn)
b60503ba 198{
c2f5b650 199 void *ctx;
e85248e5 200 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
b60503ba 201
c2f5b650
MW
202 if (cmdid >= nvmeq->q_depth) {
203 *fn = special_completion;
48e3d398 204 return CMD_CTX_INVALID;
c2f5b650 205 }
859361a2
KB
206 if (fn)
207 *fn = info[cmdid].fn;
c2f5b650
MW
208 ctx = info[cmdid].ctx;
209 info[cmdid].fn = special_completion;
e85248e5 210 info[cmdid].ctx = CMD_CTX_COMPLETED;
b60503ba
MW
211 clear_bit(cmdid, nvmeq->cmdid_data);
212 wake_up(&nvmeq->sq_full);
c2f5b650 213 return ctx;
b60503ba
MW
214}
215
c2f5b650
MW
216static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
217 nvme_completion_fn *fn)
3c0cf138 218{
c2f5b650 219 void *ctx;
e85248e5 220 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
c2f5b650
MW
221 if (fn)
222 *fn = info[cmdid].fn;
223 ctx = info[cmdid].ctx;
224 info[cmdid].fn = special_completion;
e85248e5 225 info[cmdid].ctx = CMD_CTX_CANCELLED;
c2f5b650 226 return ctx;
3c0cf138
MW
227}
228
5d0f6131 229struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
b60503ba 230{
040a93b5 231 return dev->queues[get_cpu() + 1];
b60503ba
MW
232}
233
5d0f6131 234void put_nvmeq(struct nvme_queue *nvmeq)
b60503ba 235{
1b23484b 236 put_cpu();
b60503ba
MW
237}
238
239/**
714a7a22 240 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
b60503ba
MW
241 * @nvmeq: The queue to use
242 * @cmd: The command to send
243 *
244 * Safe to use from interrupt context
245 */
246static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
247{
248 unsigned long flags;
249 u16 tail;
b60503ba
MW
250 spin_lock_irqsave(&nvmeq->q_lock, flags);
251 tail = nvmeq->sq_tail;
252 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
b60503ba
MW
253 if (++tail == nvmeq->q_depth)
254 tail = 0;
7547881d 255 writel(tail, nvmeq->q_db);
b60503ba
MW
256 nvmeq->sq_tail = tail;
257 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
258
259 return 0;
260}
261
eca18b23 262static __le64 **iod_list(struct nvme_iod *iod)
e025344c 263{
eca18b23 264 return ((void *)iod) + iod->offset;
e025344c
SMM
265}
266
eca18b23
MW
267/*
268 * Will slightly overestimate the number of pages needed. This is OK
269 * as it only leads to a small amount of wasted memory for the lifetime of
270 * the I/O.
271 */
272static int nvme_npages(unsigned size)
273{
274 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
275 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
276}
b60503ba 277
eca18b23
MW
278static struct nvme_iod *
279nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
b60503ba 280{
eca18b23
MW
281 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
282 sizeof(__le64 *) * nvme_npages(nbytes) +
283 sizeof(struct scatterlist) * nseg, gfp);
284
285 if (iod) {
286 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
287 iod->npages = -1;
288 iod->length = nbytes;
2b196034 289 iod->nents = 0;
6198221f 290 iod->start_time = jiffies;
eca18b23
MW
291 }
292
293 return iod;
b60503ba
MW
294}
295
5d0f6131 296void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
b60503ba 297{
eca18b23
MW
298 const int last_prp = PAGE_SIZE / 8 - 1;
299 int i;
300 __le64 **list = iod_list(iod);
301 dma_addr_t prp_dma = iod->first_dma;
302
303 if (iod->npages == 0)
304 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
305 for (i = 0; i < iod->npages; i++) {
306 __le64 *prp_list = list[i];
307 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
308 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
309 prp_dma = next_prp_dma;
310 }
311 kfree(iod);
b60503ba
MW
312}
313
6198221f
KB
314static void nvme_start_io_acct(struct bio *bio)
315{
316 struct gendisk *disk = bio->bi_bdev->bd_disk;
317 const int rw = bio_data_dir(bio);
318 int cpu = part_stat_lock();
319 part_round_stats(cpu, &disk->part0);
320 part_stat_inc(cpu, &disk->part0, ios[rw]);
321 part_stat_add(cpu, &disk->part0, sectors[rw], bio_sectors(bio));
322 part_inc_in_flight(&disk->part0, rw);
323 part_stat_unlock();
324}
325
326static void nvme_end_io_acct(struct bio *bio, unsigned long start_time)
327{
328 struct gendisk *disk = bio->bi_bdev->bd_disk;
329 const int rw = bio_data_dir(bio);
330 unsigned long duration = jiffies - start_time;
331 int cpu = part_stat_lock();
332 part_stat_add(cpu, &disk->part0, ticks[rw], duration);
333 part_round_stats(cpu, &disk->part0);
334 part_dec_in_flight(&disk->part0, rw);
335 part_stat_unlock();
336}
337
5c1281a3 338static void bio_completion(struct nvme_dev *dev, void *ctx,
b60503ba
MW
339 struct nvme_completion *cqe)
340{
eca18b23
MW
341 struct nvme_iod *iod = ctx;
342 struct bio *bio = iod->private;
b60503ba
MW
343 u16 status = le16_to_cpup(&cqe->status) >> 1;
344
9e59d091 345 if (iod->nents) {
2b196034 346 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
b60503ba 347 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
9e59d091
KB
348 nvme_end_io_acct(bio, iod->start_time);
349 }
eca18b23 350 nvme_free_iod(dev, iod);
427e9708 351 if (status)
1ad2f893 352 bio_endio(bio, -EIO);
427e9708 353 else
1ad2f893 354 bio_endio(bio, 0);
b60503ba
MW
355}
356
184d2944 357/* length is in bytes. gfp flags indicates whether we may sleep. */
5d0f6131
VV
358int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
359 struct nvme_iod *iod, int total_len, gfp_t gfp)
ff22b54f 360{
99802a7a 361 struct dma_pool *pool;
eca18b23
MW
362 int length = total_len;
363 struct scatterlist *sg = iod->sg;
ff22b54f
MW
364 int dma_len = sg_dma_len(sg);
365 u64 dma_addr = sg_dma_address(sg);
366 int offset = offset_in_page(dma_addr);
e025344c 367 __le64 *prp_list;
eca18b23 368 __le64 **list = iod_list(iod);
e025344c 369 dma_addr_t prp_dma;
eca18b23 370 int nprps, i;
ff22b54f
MW
371
372 cmd->prp1 = cpu_to_le64(dma_addr);
373 length -= (PAGE_SIZE - offset);
374 if (length <= 0)
eca18b23 375 return total_len;
ff22b54f
MW
376
377 dma_len -= (PAGE_SIZE - offset);
378 if (dma_len) {
379 dma_addr += (PAGE_SIZE - offset);
380 } else {
381 sg = sg_next(sg);
382 dma_addr = sg_dma_address(sg);
383 dma_len = sg_dma_len(sg);
384 }
385
386 if (length <= PAGE_SIZE) {
387 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23 388 return total_len;
e025344c
SMM
389 }
390
391 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
99802a7a
MW
392 if (nprps <= (256 / 8)) {
393 pool = dev->prp_small_pool;
eca18b23 394 iod->npages = 0;
99802a7a
MW
395 } else {
396 pool = dev->prp_page_pool;
eca18b23 397 iod->npages = 1;
99802a7a
MW
398 }
399
b77954cb
MW
400 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
401 if (!prp_list) {
402 cmd->prp2 = cpu_to_le64(dma_addr);
eca18b23
MW
403 iod->npages = -1;
404 return (total_len - length) + PAGE_SIZE;
b77954cb 405 }
eca18b23
MW
406 list[0] = prp_list;
407 iod->first_dma = prp_dma;
e025344c
SMM
408 cmd->prp2 = cpu_to_le64(prp_dma);
409 i = 0;
410 for (;;) {
7523d834 411 if (i == PAGE_SIZE / 8) {
e025344c 412 __le64 *old_prp_list = prp_list;
b77954cb 413 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
eca18b23
MW
414 if (!prp_list)
415 return total_len - length;
416 list[iod->npages++] = prp_list;
7523d834
MW
417 prp_list[0] = old_prp_list[i - 1];
418 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
419 i = 1;
e025344c
SMM
420 }
421 prp_list[i++] = cpu_to_le64(dma_addr);
422 dma_len -= PAGE_SIZE;
423 dma_addr += PAGE_SIZE;
424 length -= PAGE_SIZE;
425 if (length <= 0)
426 break;
427 if (dma_len > 0)
428 continue;
429 BUG_ON(dma_len < 0);
430 sg = sg_next(sg);
431 dma_addr = sg_dma_address(sg);
432 dma_len = sg_dma_len(sg);
ff22b54f
MW
433 }
434
eca18b23 435 return total_len;
ff22b54f
MW
436}
437
427e9708
KB
438struct nvme_bio_pair {
439 struct bio b1, b2, *parent;
440 struct bio_vec *bv1, *bv2;
441 int err;
442 atomic_t cnt;
443};
444
445static void nvme_bio_pair_endio(struct bio *bio, int err)
446{
447 struct nvme_bio_pair *bp = bio->bi_private;
448
449 if (err)
450 bp->err = err;
451
452 if (atomic_dec_and_test(&bp->cnt)) {
453 bio_endio(bp->parent, bp->err);
1b56749e
KB
454 kfree(bp->bv1);
455 kfree(bp->bv2);
427e9708
KB
456 kfree(bp);
457 }
458}
459
460static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
461 int len, int offset)
462{
463 struct nvme_bio_pair *bp;
464
465 BUG_ON(len > bio->bi_size);
466 BUG_ON(idx > bio->bi_vcnt);
467
468 bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
469 if (!bp)
470 return NULL;
471 bp->err = 0;
472
473 bp->b1 = *bio;
474 bp->b2 = *bio;
475
476 bp->b1.bi_size = len;
477 bp->b2.bi_size -= len;
478 bp->b1.bi_vcnt = idx;
479 bp->b2.bi_idx = idx;
480 bp->b2.bi_sector += len >> 9;
481
482 if (offset) {
483 bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
484 GFP_ATOMIC);
485 if (!bp->bv1)
486 goto split_fail_1;
487
488 bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
489 GFP_ATOMIC);
490 if (!bp->bv2)
491 goto split_fail_2;
492
493 memcpy(bp->bv1, bio->bi_io_vec,
494 bio->bi_max_vecs * sizeof(struct bio_vec));
495 memcpy(bp->bv2, bio->bi_io_vec,
496 bio->bi_max_vecs * sizeof(struct bio_vec));
497
498 bp->b1.bi_io_vec = bp->bv1;
499 bp->b2.bi_io_vec = bp->bv2;
500 bp->b2.bi_io_vec[idx].bv_offset += offset;
501 bp->b2.bi_io_vec[idx].bv_len -= offset;
502 bp->b1.bi_io_vec[idx].bv_len = offset;
503 bp->b1.bi_vcnt++;
504 } else
505 bp->bv1 = bp->bv2 = NULL;
506
507 bp->b1.bi_private = bp;
508 bp->b2.bi_private = bp;
509
510 bp->b1.bi_end_io = nvme_bio_pair_endio;
511 bp->b2.bi_end_io = nvme_bio_pair_endio;
512
513 bp->parent = bio;
514 atomic_set(&bp->cnt, 2);
515
516 return bp;
517
518 split_fail_2:
519 kfree(bp->bv1);
520 split_fail_1:
521 kfree(bp);
522 return NULL;
523}
524
525static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
526 int idx, int len, int offset)
527{
528 struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
529 if (!bp)
530 return -ENOMEM;
531
532 if (bio_list_empty(&nvmeq->sq_cong))
533 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
534 bio_list_add(&nvmeq->sq_cong, &bp->b1);
535 bio_list_add(&nvmeq->sq_cong, &bp->b2);
536
537 return 0;
538}
539
1ad2f893
MW
540/* NVMe scatterlists require no holes in the virtual address */
541#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
542 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
543
427e9708 544static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
b60503ba
MW
545 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
546{
76830840
MW
547 struct bio_vec *bvec, *bvprv = NULL;
548 struct scatterlist *sg = NULL;
159b67d7
KB
549 int i, length = 0, nsegs = 0, split_len = bio->bi_size;
550
551 if (nvmeq->dev->stripe_size)
552 split_len = nvmeq->dev->stripe_size -
553 ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
b60503ba 554
eca18b23 555 sg_init_table(iod->sg, psegs);
b60503ba 556 bio_for_each_segment(bvec, bio, i) {
76830840
MW
557 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
558 sg->length += bvec->bv_len;
559 } else {
1ad2f893 560 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
427e9708
KB
561 return nvme_split_and_submit(bio, nvmeq, i,
562 length, 0);
563
eca18b23 564 sg = sg ? sg + 1 : iod->sg;
76830840
MW
565 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
566 bvec->bv_offset);
567 nsegs++;
568 }
159b67d7
KB
569
570 if (split_len - length < bvec->bv_len)
571 return nvme_split_and_submit(bio, nvmeq, i, split_len,
572 split_len - length);
1ad2f893 573 length += bvec->bv_len;
76830840 574 bvprv = bvec;
b60503ba 575 }
eca18b23 576 iod->nents = nsegs;
76830840 577 sg_mark_end(sg);
427e9708 578 if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
1ad2f893 579 return -ENOMEM;
427e9708 580
159b67d7 581 BUG_ON(length != bio->bi_size);
1ad2f893 582 return length;
b60503ba
MW
583}
584
0e5e4f0e
KB
585/*
586 * We reuse the small pool to allocate the 16-byte range here as it is not
587 * worth having a special pool for these or additional cases to handle freeing
588 * the iod.
589 */
590static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
591 struct bio *bio, struct nvme_iod *iod, int cmdid)
592{
593 struct nvme_dsm_range *range;
594 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
595
596 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
597 &iod->first_dma);
598 if (!range)
599 return -ENOMEM;
600
601 iod_list(iod)[0] = (__le64 *)range;
602 iod->npages = 0;
603
604 range->cattr = cpu_to_le32(0);
605 range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
063cc6d5 606 range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
0e5e4f0e
KB
607
608 memset(cmnd, 0, sizeof(*cmnd));
609 cmnd->dsm.opcode = nvme_cmd_dsm;
610 cmnd->dsm.command_id = cmdid;
611 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
612 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
613 cmnd->dsm.nr = 0;
614 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
615
616 if (++nvmeq->sq_tail == nvmeq->q_depth)
617 nvmeq->sq_tail = 0;
618 writel(nvmeq->sq_tail, nvmeq->q_db);
619
620 return 0;
621}
622
00df5cb4
MW
623static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
624 int cmdid)
625{
626 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
627
628 memset(cmnd, 0, sizeof(*cmnd));
629 cmnd->common.opcode = nvme_cmd_flush;
630 cmnd->common.command_id = cmdid;
631 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
632
633 if (++nvmeq->sq_tail == nvmeq->q_depth)
634 nvmeq->sq_tail = 0;
635 writel(nvmeq->sq_tail, nvmeq->q_db);
636
637 return 0;
638}
639
5d0f6131 640int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
00df5cb4
MW
641{
642 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
ff976d72 643 special_completion, NVME_IO_TIMEOUT);
00df5cb4
MW
644 if (unlikely(cmdid < 0))
645 return cmdid;
646
647 return nvme_submit_flush(nvmeq, ns, cmdid);
648}
649
184d2944
MW
650/*
651 * Called with local interrupts disabled and the q_lock held. May not sleep.
652 */
b60503ba
MW
653static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
654 struct bio *bio)
655{
ff22b54f 656 struct nvme_command *cmnd;
eca18b23 657 struct nvme_iod *iod;
b60503ba 658 enum dma_data_direction dma_dir;
1287dabd 659 int cmdid, length, result;
b60503ba
MW
660 u16 control;
661 u32 dsmgmt;
b60503ba
MW
662 int psegs = bio_phys_segments(ns->queue, bio);
663
00df5cb4
MW
664 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
665 result = nvme_submit_flush_data(nvmeq, ns);
666 if (result)
667 return result;
668 }
669
1287dabd 670 result = -ENOMEM;
eca18b23
MW
671 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
672 if (!iod)
eeee3226 673 goto nomem;
eca18b23 674 iod->private = bio;
b60503ba 675
eeee3226 676 result = -EBUSY;
ff976d72 677 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
b60503ba 678 if (unlikely(cmdid < 0))
eca18b23 679 goto free_iod;
b60503ba 680
0e5e4f0e
KB
681 if (bio->bi_rw & REQ_DISCARD) {
682 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
683 if (result)
684 goto free_cmdid;
685 return result;
686 }
00df5cb4
MW
687 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
688 return nvme_submit_flush(nvmeq, ns, cmdid);
689
b60503ba
MW
690 control = 0;
691 if (bio->bi_rw & REQ_FUA)
692 control |= NVME_RW_FUA;
693 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
694 control |= NVME_RW_LR;
695
696 dsmgmt = 0;
697 if (bio->bi_rw & REQ_RAHEAD)
698 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
699
ff22b54f 700 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
b60503ba 701
b8deb62c 702 memset(cmnd, 0, sizeof(*cmnd));
b60503ba 703 if (bio_data_dir(bio)) {
ff22b54f 704 cmnd->rw.opcode = nvme_cmd_write;
b60503ba
MW
705 dma_dir = DMA_TO_DEVICE;
706 } else {
ff22b54f 707 cmnd->rw.opcode = nvme_cmd_read;
b60503ba
MW
708 dma_dir = DMA_FROM_DEVICE;
709 }
710
427e9708
KB
711 result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
712 if (result <= 0)
859361a2 713 goto free_cmdid;
1ad2f893 714 length = result;
b60503ba 715
ff22b54f
MW
716 cmnd->rw.command_id = cmdid;
717 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
eca18b23
MW
718 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
719 GFP_ATOMIC);
063cc6d5 720 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
1ad2f893 721 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
ff22b54f
MW
722 cmnd->rw.control = cpu_to_le16(control);
723 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
b60503ba 724
6198221f 725 nvme_start_io_acct(bio);
b60503ba
MW
726 if (++nvmeq->sq_tail == nvmeq->q_depth)
727 nvmeq->sq_tail = 0;
7547881d 728 writel(nvmeq->sq_tail, nvmeq->q_db);
b60503ba 729
1974b1ae
MW
730 return 0;
731
859361a2
KB
732 free_cmdid:
733 free_cmdid(nvmeq, cmdid, NULL);
eca18b23
MW
734 free_iod:
735 nvme_free_iod(nvmeq->dev, iod);
eeee3226
MW
736 nomem:
737 return result;
b60503ba
MW
738}
739
e9539f47 740static int nvme_process_cq(struct nvme_queue *nvmeq)
b60503ba 741{
82123460 742 u16 head, phase;
b60503ba 743
b60503ba 744 head = nvmeq->cq_head;
82123460 745 phase = nvmeq->cq_phase;
b60503ba
MW
746
747 for (;;) {
c2f5b650
MW
748 void *ctx;
749 nvme_completion_fn fn;
b60503ba 750 struct nvme_completion cqe = nvmeq->cqes[head];
82123460 751 if ((le16_to_cpu(cqe.status) & 1) != phase)
b60503ba
MW
752 break;
753 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
754 if (++head == nvmeq->q_depth) {
755 head = 0;
82123460 756 phase = !phase;
b60503ba
MW
757 }
758
c2f5b650 759 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
5c1281a3 760 fn(nvmeq->dev, ctx, &cqe);
b60503ba
MW
761 }
762
763 /* If the controller ignores the cq head doorbell and continuously
764 * writes to the queue, it is theoretically possible to wrap around
765 * the queue twice and mistakenly return IRQ_NONE. Linux only
766 * requires that 0.1% of your interrupts are handled, so this isn't
767 * a big problem.
768 */
82123460 769 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
e9539f47 770 return 0;
b60503ba 771
f1938f6e 772 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
b60503ba 773 nvmeq->cq_head = head;
82123460 774 nvmeq->cq_phase = phase;
b60503ba 775
e9539f47
MW
776 nvmeq->cqe_seen = 1;
777 return 1;
b60503ba
MW
778}
779
7d822457
MW
780static void nvme_make_request(struct request_queue *q, struct bio *bio)
781{
782 struct nvme_ns *ns = q->queuedata;
783 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
784 int result = -EBUSY;
785
786 spin_lock_irq(&nvmeq->q_lock);
787 if (bio_list_empty(&nvmeq->sq_cong))
788 result = nvme_submit_bio_queue(nvmeq, ns, bio);
789 if (unlikely(result)) {
790 if (bio_list_empty(&nvmeq->sq_cong))
791 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
792 bio_list_add(&nvmeq->sq_cong, bio);
793 }
794
795 nvme_process_cq(nvmeq);
796 spin_unlock_irq(&nvmeq->q_lock);
797 put_nvmeq(nvmeq);
798}
799
b60503ba 800static irqreturn_t nvme_irq(int irq, void *data)
58ffacb5
MW
801{
802 irqreturn_t result;
803 struct nvme_queue *nvmeq = data;
804 spin_lock(&nvmeq->q_lock);
e9539f47
MW
805 nvme_process_cq(nvmeq);
806 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
807 nvmeq->cqe_seen = 0;
58ffacb5
MW
808 spin_unlock(&nvmeq->q_lock);
809 return result;
810}
811
812static irqreturn_t nvme_irq_check(int irq, void *data)
813{
814 struct nvme_queue *nvmeq = data;
815 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
816 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
817 return IRQ_NONE;
818 return IRQ_WAKE_THREAD;
819}
820
3c0cf138
MW
821static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
822{
823 spin_lock_irq(&nvmeq->q_lock);
c2f5b650 824 cancel_cmdid(nvmeq, cmdid, NULL);
3c0cf138
MW
825 spin_unlock_irq(&nvmeq->q_lock);
826}
827
c2f5b650
MW
828struct sync_cmd_info {
829 struct task_struct *task;
830 u32 result;
831 int status;
832};
833
5c1281a3 834static void sync_completion(struct nvme_dev *dev, void *ctx,
c2f5b650
MW
835 struct nvme_completion *cqe)
836{
837 struct sync_cmd_info *cmdinfo = ctx;
838 cmdinfo->result = le32_to_cpup(&cqe->result);
839 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
840 wake_up_process(cmdinfo->task);
841}
842
b60503ba
MW
843/*
844 * Returns 0 on success. If the result is negative, it's a Linux error code;
845 * if the result is positive, it's an NVM Express status code
846 */
5d0f6131
VV
847int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
848 u32 *result, unsigned timeout)
b60503ba
MW
849{
850 int cmdid;
851 struct sync_cmd_info cmdinfo;
852
853 cmdinfo.task = current;
854 cmdinfo.status = -EINTR;
855
c2f5b650 856 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
e85248e5 857 timeout);
b60503ba
MW
858 if (cmdid < 0)
859 return cmdid;
860 cmd->common.command_id = cmdid;
861
3c0cf138
MW
862 set_current_state(TASK_KILLABLE);
863 nvme_submit_cmd(nvmeq, cmd);
78f8d257 864 schedule_timeout(timeout);
b60503ba 865
3c0cf138
MW
866 if (cmdinfo.status == -EINTR) {
867 nvme_abort_command(nvmeq, cmdid);
868 return -EINTR;
869 }
870
b60503ba
MW
871 if (result)
872 *result = cmdinfo.result;
873
874 return cmdinfo.status;
875}
876
5d0f6131 877int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
b60503ba
MW
878 u32 *result)
879{
e85248e5 880 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
b60503ba
MW
881}
882
883static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
884{
885 int status;
886 struct nvme_command c;
887
888 memset(&c, 0, sizeof(c));
889 c.delete_queue.opcode = opcode;
890 c.delete_queue.qid = cpu_to_le16(id);
891
892 status = nvme_submit_admin_cmd(dev, &c, NULL);
893 if (status)
894 return -EIO;
895 return 0;
896}
897
898static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
899 struct nvme_queue *nvmeq)
900{
901 int status;
902 struct nvme_command c;
903 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
904
905 memset(&c, 0, sizeof(c));
906 c.create_cq.opcode = nvme_admin_create_cq;
907 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
908 c.create_cq.cqid = cpu_to_le16(qid);
909 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
910 c.create_cq.cq_flags = cpu_to_le16(flags);
911 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
912
913 status = nvme_submit_admin_cmd(dev, &c, NULL);
914 if (status)
915 return -EIO;
916 return 0;
917}
918
919static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
920 struct nvme_queue *nvmeq)
921{
922 int status;
923 struct nvme_command c;
924 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
925
926 memset(&c, 0, sizeof(c));
927 c.create_sq.opcode = nvme_admin_create_sq;
928 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
929 c.create_sq.sqid = cpu_to_le16(qid);
930 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
931 c.create_sq.sq_flags = cpu_to_le16(flags);
932 c.create_sq.cqid = cpu_to_le16(qid);
933
934 status = nvme_submit_admin_cmd(dev, &c, NULL);
935 if (status)
936 return -EIO;
937 return 0;
938}
939
940static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
941{
942 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
943}
944
945static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
946{
947 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
948}
949
5d0f6131 950int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
bc5fc7e4
MW
951 dma_addr_t dma_addr)
952{
953 struct nvme_command c;
954
955 memset(&c, 0, sizeof(c));
956 c.identify.opcode = nvme_admin_identify;
957 c.identify.nsid = cpu_to_le32(nsid);
958 c.identify.prp1 = cpu_to_le64(dma_addr);
959 c.identify.cns = cpu_to_le32(cns);
960
961 return nvme_submit_admin_cmd(dev, &c, NULL);
962}
963
5d0f6131 964int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
08df1e05 965 dma_addr_t dma_addr, u32 *result)
bc5fc7e4
MW
966{
967 struct nvme_command c;
968
969 memset(&c, 0, sizeof(c));
970 c.features.opcode = nvme_admin_get_features;
a42cecce 971 c.features.nsid = cpu_to_le32(nsid);
bc5fc7e4
MW
972 c.features.prp1 = cpu_to_le64(dma_addr);
973 c.features.fid = cpu_to_le32(fid);
bc5fc7e4 974
08df1e05 975 return nvme_submit_admin_cmd(dev, &c, result);
df348139
MW
976}
977
5d0f6131
VV
978int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
979 dma_addr_t dma_addr, u32 *result)
df348139
MW
980{
981 struct nvme_command c;
982
983 memset(&c, 0, sizeof(c));
984 c.features.opcode = nvme_admin_set_features;
985 c.features.prp1 = cpu_to_le64(dma_addr);
986 c.features.fid = cpu_to_le32(fid);
987 c.features.dword11 = cpu_to_le32(dword11);
988
bc5fc7e4
MW
989 return nvme_submit_admin_cmd(dev, &c, result);
990}
991
a09115b2
MW
992/**
993 * nvme_cancel_ios - Cancel outstanding I/Os
994 * @queue: The queue to cancel I/Os on
995 * @timeout: True to only cancel I/Os which have timed out
996 */
997static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
998{
999 int depth = nvmeq->q_depth - 1;
1000 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
1001 unsigned long now = jiffies;
1002 int cmdid;
1003
1004 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
1005 void *ctx;
1006 nvme_completion_fn fn;
1007 static struct nvme_completion cqe = {
af2d9ca7 1008 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
a09115b2
MW
1009 };
1010
1011 if (timeout && !time_after(now, info[cmdid].timeout))
1012 continue;
053ab702
KB
1013 if (info[cmdid].ctx == CMD_CTX_CANCELLED)
1014 continue;
a09115b2
MW
1015 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
1016 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
1017 fn(nvmeq->dev, ctx, &cqe);
1018 }
1019}
1020
9e866774
MW
1021static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
1022{
1023 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1024 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1025 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1026 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1027 kfree(nvmeq);
1028}
1029
b60503ba
MW
1030static void nvme_free_queue(struct nvme_dev *dev, int qid)
1031{
1032 struct nvme_queue *nvmeq = dev->queues[qid];
aba2080f 1033 int vector = dev->entry[nvmeq->cq_vector].vector;
b60503ba 1034
a09115b2
MW
1035 spin_lock_irq(&nvmeq->q_lock);
1036 nvme_cancel_ios(nvmeq, false);
3295874b
KB
1037 while (bio_list_peek(&nvmeq->sq_cong)) {
1038 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1039 bio_endio(bio, -EIO);
1040 }
a09115b2
MW
1041 spin_unlock_irq(&nvmeq->q_lock);
1042
aba2080f
MW
1043 irq_set_affinity_hint(vector, NULL);
1044 free_irq(vector, nvmeq);
b60503ba
MW
1045
1046 /* Don't tell the adapter to delete the admin queue */
1047 if (qid) {
1048 adapter_delete_sq(dev, qid);
1049 adapter_delete_cq(dev, qid);
1050 }
1051
9e866774 1052 nvme_free_queue_mem(nvmeq);
b60503ba
MW
1053}
1054
1055static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1056 int depth, int vector)
1057{
1058 struct device *dmadev = &dev->pci_dev->dev;
a0cadb85
KB
1059 unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1060 sizeof(struct nvme_cmd_info));
b60503ba
MW
1061 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1062 if (!nvmeq)
1063 return NULL;
1064
1065 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1066 &nvmeq->cq_dma_addr, GFP_KERNEL);
1067 if (!nvmeq->cqes)
1068 goto free_nvmeq;
1069 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1070
1071 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1072 &nvmeq->sq_dma_addr, GFP_KERNEL);
1073 if (!nvmeq->sq_cmds)
1074 goto free_cqdma;
1075
1076 nvmeq->q_dmadev = dmadev;
091b6092 1077 nvmeq->dev = dev;
b60503ba
MW
1078 spin_lock_init(&nvmeq->q_lock);
1079 nvmeq->cq_head = 0;
82123460 1080 nvmeq->cq_phase = 1;
b60503ba 1081 init_waitqueue_head(&nvmeq->sq_full);
1fa6aead 1082 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
b60503ba 1083 bio_list_init(&nvmeq->sq_cong);
f1938f6e 1084 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
b60503ba
MW
1085 nvmeq->q_depth = depth;
1086 nvmeq->cq_vector = vector;
1087
1088 return nvmeq;
1089
1090 free_cqdma:
68b8eca5 1091 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
b60503ba
MW
1092 nvmeq->cq_dma_addr);
1093 free_nvmeq:
1094 kfree(nvmeq);
1095 return NULL;
1096}
1097
3001082c
MW
1098static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1099 const char *name)
1100{
58ffacb5
MW
1101 if (use_threaded_interrupts)
1102 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
ec6ce618 1103 nvme_irq_check, nvme_irq,
58ffacb5
MW
1104 IRQF_DISABLED | IRQF_SHARED,
1105 name, nvmeq);
3001082c
MW
1106 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1107 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1108}
1109
8d85fce7
GKH
1110static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1111 int cq_size, int vector)
b60503ba
MW
1112{
1113 int result;
1114 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1115
3f85d50b 1116 if (!nvmeq)
6f0f5449 1117 return ERR_PTR(-ENOMEM);
3f85d50b 1118
b60503ba
MW
1119 result = adapter_alloc_cq(dev, qid, nvmeq);
1120 if (result < 0)
1121 goto free_nvmeq;
1122
1123 result = adapter_alloc_sq(dev, qid, nvmeq);
1124 if (result < 0)
1125 goto release_cq;
1126
3001082c 1127 result = queue_request_irq(dev, nvmeq, "nvme");
b60503ba
MW
1128 if (result < 0)
1129 goto release_sq;
1130
1131 return nvmeq;
1132
1133 release_sq:
1134 adapter_delete_sq(dev, qid);
1135 release_cq:
1136 adapter_delete_cq(dev, qid);
1137 free_nvmeq:
1138 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1139 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1140 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1141 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1142 kfree(nvmeq);
6f0f5449 1143 return ERR_PTR(result);
b60503ba
MW
1144}
1145
ba47e386
MW
1146static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1147{
1148 unsigned long timeout;
1149 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1150
1151 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1152
1153 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1154 msleep(100);
1155 if (fatal_signal_pending(current))
1156 return -EINTR;
1157 if (time_after(jiffies, timeout)) {
1158 dev_err(&dev->pci_dev->dev,
1159 "Device not ready; aborting initialisation\n");
1160 return -ENODEV;
1161 }
1162 }
1163
1164 return 0;
1165}
1166
1167/*
1168 * If the device has been passed off to us in an enabled state, just clear
1169 * the enabled bit. The spec says we should set the 'shutdown notification
1170 * bits', but doing so may cause the device to complete commands to the
1171 * admin queue ... and we don't know what memory that might be pointing at!
1172 */
1173static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1174{
44af146a
MW
1175 u32 cc = readl(&dev->bar->cc);
1176
1177 if (cc & NVME_CC_ENABLE)
1178 writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
ba47e386
MW
1179 return nvme_wait_ready(dev, cap, false);
1180}
1181
1182static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1183{
1184 return nvme_wait_ready(dev, cap, true);
1185}
1186
8d85fce7 1187static int nvme_configure_admin_queue(struct nvme_dev *dev)
b60503ba 1188{
ba47e386 1189 int result;
b60503ba 1190 u32 aqa;
ba47e386 1191 u64 cap = readq(&dev->bar->cap);
b60503ba
MW
1192 struct nvme_queue *nvmeq;
1193
ba47e386
MW
1194 result = nvme_disable_ctrl(dev, cap);
1195 if (result < 0)
1196 return result;
b60503ba
MW
1197
1198 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
3f85d50b
MW
1199 if (!nvmeq)
1200 return -ENOMEM;
b60503ba
MW
1201
1202 aqa = nvmeq->q_depth - 1;
1203 aqa |= aqa << 16;
1204
1205 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1206 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1207 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
7f53f9d2 1208 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
b60503ba
MW
1209
1210 writel(aqa, &dev->bar->aqa);
1211 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1212 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1213 writel(dev->ctrl_config, &dev->bar->cc);
1214
ba47e386 1215 result = nvme_enable_ctrl(dev, cap);
025c557a
KB
1216 if (result)
1217 goto free_q;
9e866774 1218
3001082c 1219 result = queue_request_irq(dev, nvmeq, "nvme admin");
025c557a
KB
1220 if (result)
1221 goto free_q;
1222
b60503ba
MW
1223 dev->queues[0] = nvmeq;
1224 return result;
025c557a
KB
1225
1226 free_q:
1227 nvme_free_queue_mem(nvmeq);
1228 return result;
b60503ba
MW
1229}
1230
5d0f6131 1231struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
eca18b23 1232 unsigned long addr, unsigned length)
b60503ba 1233{
36c14ed9 1234 int i, err, count, nents, offset;
7fc3cdab
MW
1235 struct scatterlist *sg;
1236 struct page **pages;
eca18b23 1237 struct nvme_iod *iod;
36c14ed9
MW
1238
1239 if (addr & 3)
eca18b23 1240 return ERR_PTR(-EINVAL);
5460fc03 1241 if (!length || length > INT_MAX - PAGE_SIZE)
eca18b23 1242 return ERR_PTR(-EINVAL);
7fc3cdab 1243
36c14ed9 1244 offset = offset_in_page(addr);
7fc3cdab
MW
1245 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1246 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
22fff826
DC
1247 if (!pages)
1248 return ERR_PTR(-ENOMEM);
36c14ed9
MW
1249
1250 err = get_user_pages_fast(addr, count, 1, pages);
1251 if (err < count) {
1252 count = err;
1253 err = -EFAULT;
1254 goto put_pages;
1255 }
7fc3cdab 1256
eca18b23
MW
1257 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1258 sg = iod->sg;
36c14ed9 1259 sg_init_table(sg, count);
d0ba1e49
MW
1260 for (i = 0; i < count; i++) {
1261 sg_set_page(&sg[i], pages[i],
5460fc03
DC
1262 min_t(unsigned, length, PAGE_SIZE - offset),
1263 offset);
d0ba1e49
MW
1264 length -= (PAGE_SIZE - offset);
1265 offset = 0;
7fc3cdab 1266 }
fe304c43 1267 sg_mark_end(&sg[i - 1]);
1c2ad9fa 1268 iod->nents = count;
7fc3cdab
MW
1269
1270 err = -ENOMEM;
1271 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1272 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
36c14ed9 1273 if (!nents)
eca18b23 1274 goto free_iod;
b60503ba 1275
7fc3cdab 1276 kfree(pages);
eca18b23 1277 return iod;
b60503ba 1278
eca18b23
MW
1279 free_iod:
1280 kfree(iod);
7fc3cdab
MW
1281 put_pages:
1282 for (i = 0; i < count; i++)
1283 put_page(pages[i]);
1284 kfree(pages);
eca18b23 1285 return ERR_PTR(err);
7fc3cdab 1286}
b60503ba 1287
5d0f6131 1288void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1c2ad9fa 1289 struct nvme_iod *iod)
7fc3cdab 1290{
1c2ad9fa 1291 int i;
b60503ba 1292
1c2ad9fa
MW
1293 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1294 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
7fc3cdab 1295
1c2ad9fa
MW
1296 for (i = 0; i < iod->nents; i++)
1297 put_page(sg_page(&iod->sg[i]));
7fc3cdab 1298}
b60503ba 1299
a53295b6
MW
1300static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1301{
1302 struct nvme_dev *dev = ns->dev;
1303 struct nvme_queue *nvmeq;
1304 struct nvme_user_io io;
1305 struct nvme_command c;
f410c680
KB
1306 unsigned length, meta_len;
1307 int status, i;
1308 struct nvme_iod *iod, *meta_iod = NULL;
1309 dma_addr_t meta_dma_addr;
1310 void *meta, *uninitialized_var(meta_mem);
a53295b6
MW
1311
1312 if (copy_from_user(&io, uio, sizeof(io)))
1313 return -EFAULT;
6c7d4945 1314 length = (io.nblocks + 1) << ns->lba_shift;
f410c680
KB
1315 meta_len = (io.nblocks + 1) * ns->ms;
1316
1317 if (meta_len && ((io.metadata & 3) || !io.metadata))
1318 return -EINVAL;
6c7d4945
MW
1319
1320 switch (io.opcode) {
1321 case nvme_cmd_write:
1322 case nvme_cmd_read:
6bbf1acd 1323 case nvme_cmd_compare:
eca18b23 1324 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
6413214c 1325 break;
6c7d4945 1326 default:
6bbf1acd 1327 return -EINVAL;
6c7d4945
MW
1328 }
1329
eca18b23
MW
1330 if (IS_ERR(iod))
1331 return PTR_ERR(iod);
a53295b6
MW
1332
1333 memset(&c, 0, sizeof(c));
1334 c.rw.opcode = io.opcode;
1335 c.rw.flags = io.flags;
6c7d4945 1336 c.rw.nsid = cpu_to_le32(ns->ns_id);
a53295b6 1337 c.rw.slba = cpu_to_le64(io.slba);
6c7d4945 1338 c.rw.length = cpu_to_le16(io.nblocks);
a53295b6 1339 c.rw.control = cpu_to_le16(io.control);
1c9b5265
MW
1340 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1341 c.rw.reftag = cpu_to_le32(io.reftag);
1342 c.rw.apptag = cpu_to_le16(io.apptag);
1343 c.rw.appmask = cpu_to_le16(io.appmask);
f410c680
KB
1344
1345 if (meta_len) {
1b56749e
KB
1346 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1347 meta_len);
f410c680
KB
1348 if (IS_ERR(meta_iod)) {
1349 status = PTR_ERR(meta_iod);
1350 meta_iod = NULL;
1351 goto unmap;
1352 }
1353
1354 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1355 &meta_dma_addr, GFP_KERNEL);
1356 if (!meta_mem) {
1357 status = -ENOMEM;
1358 goto unmap;
1359 }
1360
1361 if (io.opcode & 1) {
1362 int meta_offset = 0;
1363
1364 for (i = 0; i < meta_iod->nents; i++) {
1365 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1366 meta_iod->sg[i].offset;
1367 memcpy(meta_mem + meta_offset, meta,
1368 meta_iod->sg[i].length);
1369 kunmap_atomic(meta);
1370 meta_offset += meta_iod->sg[i].length;
1371 }
1372 }
1373
1374 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1375 }
1376
eca18b23 1377 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
a53295b6 1378
040a93b5 1379 nvmeq = get_nvmeq(dev);
fa922821
MW
1380 /*
1381 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
b1ad37ef
MW
1382 * disabled. We may be preempted at any point, and be rescheduled
1383 * to a different CPU. That will cause cacheline bouncing, but no
1384 * additional races since q_lock already protects against other CPUs.
1385 */
a53295b6 1386 put_nvmeq(nvmeq);
b77954cb
MW
1387 if (length != (io.nblocks + 1) << ns->lba_shift)
1388 status = -ENOMEM;
1389 else
ff976d72 1390 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
a53295b6 1391
f410c680
KB
1392 if (meta_len) {
1393 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1394 int meta_offset = 0;
1395
1396 for (i = 0; i < meta_iod->nents; i++) {
1397 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1398 meta_iod->sg[i].offset;
1399 memcpy(meta, meta_mem + meta_offset,
1400 meta_iod->sg[i].length);
1401 kunmap_atomic(meta);
1402 meta_offset += meta_iod->sg[i].length;
1403 }
1404 }
1405
1406 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1407 meta_dma_addr);
1408 }
1409
1410 unmap:
1c2ad9fa 1411 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
eca18b23 1412 nvme_free_iod(dev, iod);
f410c680
KB
1413
1414 if (meta_iod) {
1415 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1416 nvme_free_iod(dev, meta_iod);
1417 }
1418
a53295b6
MW
1419 return status;
1420}
1421
50af8bae 1422static int nvme_user_admin_cmd(struct nvme_dev *dev,
6bbf1acd 1423 struct nvme_admin_cmd __user *ucmd)
6ee44cdc 1424{
6bbf1acd 1425 struct nvme_admin_cmd cmd;
6ee44cdc 1426 struct nvme_command c;
eca18b23 1427 int status, length;
c7d36ab8 1428 struct nvme_iod *uninitialized_var(iod);
94f370ca 1429 unsigned timeout;
6ee44cdc 1430
6bbf1acd
MW
1431 if (!capable(CAP_SYS_ADMIN))
1432 return -EACCES;
1433 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
6ee44cdc 1434 return -EFAULT;
6ee44cdc
MW
1435
1436 memset(&c, 0, sizeof(c));
6bbf1acd
MW
1437 c.common.opcode = cmd.opcode;
1438 c.common.flags = cmd.flags;
1439 c.common.nsid = cpu_to_le32(cmd.nsid);
1440 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1441 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1442 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1443 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1444 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1445 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1446 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1447 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1448
1449 length = cmd.data_len;
1450 if (cmd.data_len) {
49742188
MW
1451 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1452 length);
eca18b23
MW
1453 if (IS_ERR(iod))
1454 return PTR_ERR(iod);
1455 length = nvme_setup_prps(dev, &c.common, iod, length,
1456 GFP_KERNEL);
6bbf1acd
MW
1457 }
1458
94f370ca
KB
1459 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1460 ADMIN_TIMEOUT;
6bbf1acd 1461 if (length != cmd.data_len)
b77954cb
MW
1462 status = -ENOMEM;
1463 else
94f370ca
KB
1464 status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1465 timeout);
eca18b23 1466
6bbf1acd 1467 if (cmd.data_len) {
1c2ad9fa 1468 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
eca18b23 1469 nvme_free_iod(dev, iod);
6bbf1acd 1470 }
f4f117f6 1471
cf90bc48 1472 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
f4f117f6
KB
1473 sizeof(cmd.result)))
1474 status = -EFAULT;
1475
6ee44cdc
MW
1476 return status;
1477}
1478
b60503ba
MW
1479static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1480 unsigned long arg)
1481{
1482 struct nvme_ns *ns = bdev->bd_disk->private_data;
1483
1484 switch (cmd) {
6bbf1acd 1485 case NVME_IOCTL_ID:
c3bfe717 1486 force_successful_syscall_return();
6bbf1acd
MW
1487 return ns->ns_id;
1488 case NVME_IOCTL_ADMIN_CMD:
50af8bae 1489 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
a53295b6
MW
1490 case NVME_IOCTL_SUBMIT_IO:
1491 return nvme_submit_io(ns, (void __user *)arg);
5d0f6131
VV
1492 case SG_GET_VERSION_NUM:
1493 return nvme_sg_get_version_num((void __user *)arg);
1494 case SG_IO:
1495 return nvme_sg_io(ns, (void __user *)arg);
b60503ba
MW
1496 default:
1497 return -ENOTTY;
1498 }
1499}
1500
1501static const struct block_device_operations nvme_fops = {
1502 .owner = THIS_MODULE,
1503 .ioctl = nvme_ioctl,
49481682 1504 .compat_ioctl = nvme_ioctl,
b60503ba
MW
1505};
1506
1fa6aead
MW
1507static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1508{
1509 while (bio_list_peek(&nvmeq->sq_cong)) {
1510 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1511 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
427e9708
KB
1512
1513 if (bio_list_empty(&nvmeq->sq_cong))
1514 remove_wait_queue(&nvmeq->sq_full,
1515 &nvmeq->sq_cong_wait);
1fa6aead 1516 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
427e9708
KB
1517 if (bio_list_empty(&nvmeq->sq_cong))
1518 add_wait_queue(&nvmeq->sq_full,
1519 &nvmeq->sq_cong_wait);
1fa6aead
MW
1520 bio_list_add_head(&nvmeq->sq_cong, bio);
1521 break;
1522 }
1523 }
1524}
1525
1526static int nvme_kthread(void *data)
1527{
1528 struct nvme_dev *dev;
1529
1530 while (!kthread_should_stop()) {
564a232c 1531 set_current_state(TASK_INTERRUPTIBLE);
1fa6aead
MW
1532 spin_lock(&dev_list_lock);
1533 list_for_each_entry(dev, &dev_list, node) {
1534 int i;
1535 for (i = 0; i < dev->queue_count; i++) {
1536 struct nvme_queue *nvmeq = dev->queues[i];
740216fc
MW
1537 if (!nvmeq)
1538 continue;
1fa6aead 1539 spin_lock_irq(&nvmeq->q_lock);
bc57a0f7 1540 nvme_process_cq(nvmeq);
a09115b2 1541 nvme_cancel_ios(nvmeq, true);
1fa6aead
MW
1542 nvme_resubmit_bios(nvmeq);
1543 spin_unlock_irq(&nvmeq->q_lock);
1544 }
1545 }
1546 spin_unlock(&dev_list_lock);
acb7aa0d 1547 schedule_timeout(round_jiffies_relative(HZ));
1fa6aead
MW
1548 }
1549 return 0;
1550}
1551
5aff9382
MW
1552static DEFINE_IDA(nvme_index_ida);
1553
1554static int nvme_get_ns_idx(void)
1555{
1556 int index, error;
1557
1558 do {
1559 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1560 return -1;
1561
1562 spin_lock(&dev_list_lock);
1563 error = ida_get_new(&nvme_index_ida, &index);
1564 spin_unlock(&dev_list_lock);
1565 } while (error == -EAGAIN);
1566
1567 if (error)
1568 index = -1;
1569 return index;
1570}
1571
1572static void nvme_put_ns_idx(int index)
1573{
1574 spin_lock(&dev_list_lock);
1575 ida_remove(&nvme_index_ida, index);
1576 spin_unlock(&dev_list_lock);
1577}
1578
0e5e4f0e
KB
1579static void nvme_config_discard(struct nvme_ns *ns)
1580{
1581 u32 logical_block_size = queue_logical_block_size(ns->queue);
1582 ns->queue->limits.discard_zeroes_data = 0;
1583 ns->queue->limits.discard_alignment = logical_block_size;
1584 ns->queue->limits.discard_granularity = logical_block_size;
1585 ns->queue->limits.max_discard_sectors = 0xffffffff;
1586 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1587}
1588
c3bfe717 1589static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
b60503ba
MW
1590 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1591{
1592 struct nvme_ns *ns;
1593 struct gendisk *disk;
1594 int lbaf;
1595
1596 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1597 return NULL;
1598
1599 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1600 if (!ns)
1601 return NULL;
1602 ns->queue = blk_alloc_queue(GFP_KERNEL);
1603 if (!ns->queue)
1604 goto out_free_ns;
4eeb9215
MW
1605 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1606 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1607 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
b60503ba
MW
1608 blk_queue_make_request(ns->queue, nvme_make_request);
1609 ns->dev = dev;
1610 ns->queue->queuedata = ns;
1611
1612 disk = alloc_disk(NVME_MINORS);
1613 if (!disk)
1614 goto out_free_queue;
5aff9382 1615 ns->ns_id = nsid;
b60503ba
MW
1616 ns->disk = disk;
1617 lbaf = id->flbas & 0xf;
1618 ns->lba_shift = id->lbaf[lbaf].ds;
f410c680 1619 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
e9ef4636 1620 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
8fc23e03
KB
1621 if (dev->max_hw_sectors)
1622 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
b60503ba
MW
1623
1624 disk->major = nvme_major;
1625 disk->minors = NVME_MINORS;
5aff9382 1626 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
b60503ba
MW
1627 disk->fops = &nvme_fops;
1628 disk->private_data = ns;
1629 disk->queue = ns->queue;
388f037f 1630 disk->driverfs_dev = &dev->pci_dev->dev;
5aff9382 1631 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
b60503ba
MW
1632 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1633
0e5e4f0e
KB
1634 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1635 nvme_config_discard(ns);
1636
b60503ba
MW
1637 return ns;
1638
1639 out_free_queue:
1640 blk_cleanup_queue(ns->queue);
1641 out_free_ns:
1642 kfree(ns);
1643 return NULL;
1644}
1645
1646static void nvme_ns_free(struct nvme_ns *ns)
1647{
5aff9382 1648 int index = ns->disk->first_minor / NVME_MINORS;
b60503ba 1649 put_disk(ns->disk);
5aff9382 1650 nvme_put_ns_idx(index);
b60503ba
MW
1651 blk_cleanup_queue(ns->queue);
1652 kfree(ns);
1653}
1654
b3b06812 1655static int set_queue_count(struct nvme_dev *dev, int count)
b60503ba
MW
1656{
1657 int status;
1658 u32 result;
b3b06812 1659 u32 q_count = (count - 1) | ((count - 1) << 16);
b60503ba 1660
df348139 1661 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
bc5fc7e4 1662 &result);
b60503ba 1663 if (status)
7e03b124 1664 return status < 0 ? -EIO : -EBUSY;
b60503ba
MW
1665 return min(result & 0xffff, result >> 16) + 1;
1666}
1667
8d85fce7 1668static int nvme_setup_io_queues(struct nvme_dev *dev)
b60503ba 1669{
fa08a396 1670 struct pci_dev *pdev = dev->pci_dev;
063a8096 1671 int result, cpu, i, vecs, nr_io_queues, db_bar_size, q_depth;
b60503ba 1672
b348b7d5
MW
1673 nr_io_queues = num_online_cpus();
1674 result = set_queue_count(dev, nr_io_queues);
1b23484b
MW
1675 if (result < 0)
1676 return result;
b348b7d5
MW
1677 if (result < nr_io_queues)
1678 nr_io_queues = result;
b60503ba 1679
1b23484b
MW
1680 /* Deregister the admin queue's interrupt */
1681 free_irq(dev->entry[0].vector, dev->queues[0]);
1682
f1938f6e
MW
1683 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1684 if (db_bar_size > 8192) {
1685 iounmap(dev->bar);
fa08a396 1686 dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
f1938f6e
MW
1687 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1688 dev->queues[0]->q_db = dev->dbs;
1689 }
1690
063a8096
MW
1691 vecs = nr_io_queues;
1692 for (i = 0; i < vecs; i++)
1b23484b
MW
1693 dev->entry[i].entry = i;
1694 for (;;) {
063a8096
MW
1695 result = pci_enable_msix(pdev, dev->entry, vecs);
1696 if (result <= 0)
1b23484b 1697 break;
063a8096 1698 vecs = result;
1b23484b
MW
1699 }
1700
063a8096
MW
1701 if (result < 0) {
1702 vecs = nr_io_queues;
1703 if (vecs > 32)
1704 vecs = 32;
fa08a396 1705 for (;;) {
063a8096 1706 result = pci_enable_msi_block(pdev, vecs);
fa08a396 1707 if (result == 0) {
063a8096 1708 for (i = 0; i < vecs; i++)
fa08a396
RRG
1709 dev->entry[i].vector = i + pdev->irq;
1710 break;
063a8096
MW
1711 } else if (result < 0) {
1712 vecs = 1;
fa08a396
RRG
1713 break;
1714 }
063a8096 1715 vecs = result;
fa08a396
RRG
1716 }
1717 }
1718
063a8096
MW
1719 /*
1720 * Should investigate if there's a performance win from allocating
1721 * more queues than interrupt vectors; it might allow the submission
1722 * path to scale better, even if the receive path is limited by the
1723 * number of interrupts.
1724 */
1725 nr_io_queues = vecs;
1726
1b23484b
MW
1727 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1728 /* XXX: handle failure here */
1729
1730 cpu = cpumask_first(cpu_online_mask);
b348b7d5 1731 for (i = 0; i < nr_io_queues; i++) {
1b23484b
MW
1732 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1733 cpu = cpumask_next(cpu, cpu_online_mask);
1734 }
1735
a0cadb85
KB
1736 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1737 NVME_Q_DEPTH);
b348b7d5 1738 for (i = 0; i < nr_io_queues; i++) {
a0cadb85 1739 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
6f0f5449
MW
1740 if (IS_ERR(dev->queues[i + 1]))
1741 return PTR_ERR(dev->queues[i + 1]);
1b23484b
MW
1742 dev->queue_count++;
1743 }
b60503ba 1744
9ecdc946
MW
1745 for (; i < num_possible_cpus(); i++) {
1746 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1747 dev->queues[i + 1] = dev->queues[target + 1];
1748 }
1749
b60503ba
MW
1750 return 0;
1751}
1752
1753static void nvme_free_queues(struct nvme_dev *dev)
1754{
1755 int i;
1756
1757 for (i = dev->queue_count - 1; i >= 0; i--)
1758 nvme_free_queue(dev, i);
1759}
1760
422ef0c7
MW
1761/*
1762 * Return: error value if an error occurred setting up the queues or calling
1763 * Identify Device. 0 if these succeeded, even if adding some of the
1764 * namespaces failed. At the moment, these failures are silent. TBD which
1765 * failures should be reported.
1766 */
8d85fce7 1767static int nvme_dev_add(struct nvme_dev *dev)
b60503ba 1768{
c3bfe717
MW
1769 int res;
1770 unsigned nn, i;
cbb6218f 1771 struct nvme_ns *ns;
51814232 1772 struct nvme_id_ctrl *ctrl;
bc5fc7e4
MW
1773 struct nvme_id_ns *id_ns;
1774 void *mem;
b60503ba 1775 dma_addr_t dma_addr;
159b67d7 1776 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
b60503ba
MW
1777
1778 res = nvme_setup_io_queues(dev);
1779 if (res)
1780 return res;
1781
bc5fc7e4 1782 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
b60503ba 1783 GFP_KERNEL);
a9ef4343
KB
1784 if (!mem)
1785 return -ENOMEM;
b60503ba 1786
bc5fc7e4 1787 res = nvme_identify(dev, 0, 1, dma_addr);
b60503ba
MW
1788 if (res) {
1789 res = -EIO;
cbb6218f 1790 goto out;
b60503ba
MW
1791 }
1792
bc5fc7e4 1793 ctrl = mem;
51814232 1794 nn = le32_to_cpup(&ctrl->nn);
0e5e4f0e 1795 dev->oncs = le16_to_cpup(&ctrl->oncs);
51814232
MW
1796 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1797 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1798 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
159b67d7 1799 if (ctrl->mdts)
8fc23e03 1800 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
159b67d7
KB
1801 if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1802 (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1803 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
b60503ba 1804
bc5fc7e4 1805 id_ns = mem;
2b2c1896 1806 for (i = 1; i <= nn; i++) {
bc5fc7e4 1807 res = nvme_identify(dev, i, 0, dma_addr);
b60503ba
MW
1808 if (res)
1809 continue;
1810
bc5fc7e4 1811 if (id_ns->ncap == 0)
b60503ba
MW
1812 continue;
1813
bc5fc7e4 1814 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
08df1e05 1815 dma_addr + 4096, NULL);
b60503ba 1816 if (res)
12209036 1817 memset(mem + 4096, 0, 4096);
b60503ba 1818
bc5fc7e4 1819 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
b60503ba
MW
1820 if (ns)
1821 list_add_tail(&ns->list, &dev->namespaces);
1822 }
1823 list_for_each_entry(ns, &dev->namespaces, list)
1824 add_disk(ns->disk);
422ef0c7 1825 res = 0;
b60503ba 1826
bc5fc7e4 1827 out:
684f5c20 1828 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
b60503ba
MW
1829 return res;
1830}
1831
0877cb0d
KB
1832static int nvme_dev_map(struct nvme_dev *dev)
1833{
1834 int bars, result = -ENOMEM;
1835 struct pci_dev *pdev = dev->pci_dev;
1836
1837 if (pci_enable_device_mem(pdev))
1838 return result;
1839
1840 dev->entry[0].vector = pdev->irq;
1841 pci_set_master(pdev);
1842 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1843 if (pci_request_selected_regions(pdev, bars, "nvme"))
1844 goto disable_pci;
1845
1846 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1847 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1848 else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1849 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1850 else
1851 goto disable_pci;
1852
1853 pci_set_drvdata(pdev, dev);
1854 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1855 if (!dev->bar)
1856 goto disable;
1857
1858 dev->db_stride = NVME_CAP_STRIDE(readq(&dev->bar->cap));
1859 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1860
1861 return 0;
1862
1863 disable:
1864 pci_release_regions(pdev);
1865 disable_pci:
1866 pci_disable_device(pdev);
1867 return result;
1868}
1869
1870static void nvme_dev_unmap(struct nvme_dev *dev)
1871{
1872 if (dev->pci_dev->msi_enabled)
1873 pci_disable_msi(dev->pci_dev);
1874 else if (dev->pci_dev->msix_enabled)
1875 pci_disable_msix(dev->pci_dev);
1876
1877 if (dev->bar) {
1878 iounmap(dev->bar);
1879 dev->bar = NULL;
1880 }
1881
1882 pci_release_regions(dev->pci_dev);
1883 if (pci_is_enabled(dev->pci_dev))
1884 pci_disable_device(dev->pci_dev);
1885}
1886
b60503ba
MW
1887static int nvme_dev_remove(struct nvme_dev *dev)
1888{
1889 struct nvme_ns *ns, *next;
1890
1fa6aead
MW
1891 spin_lock(&dev_list_lock);
1892 list_del(&dev->node);
1893 spin_unlock(&dev_list_lock);
1894
b60503ba
MW
1895 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1896 list_del(&ns->list);
1897 del_gendisk(ns->disk);
1898 nvme_ns_free(ns);
1899 }
1900
1901 nvme_free_queues(dev);
1902
1903 return 0;
1904}
1905
091b6092
MW
1906static int nvme_setup_prp_pools(struct nvme_dev *dev)
1907{
1908 struct device *dmadev = &dev->pci_dev->dev;
1909 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1910 PAGE_SIZE, PAGE_SIZE, 0);
1911 if (!dev->prp_page_pool)
1912 return -ENOMEM;
1913
99802a7a
MW
1914 /* Optimisation for I/Os between 4k and 128k */
1915 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1916 256, 256, 0);
1917 if (!dev->prp_small_pool) {
1918 dma_pool_destroy(dev->prp_page_pool);
1919 return -ENOMEM;
1920 }
091b6092
MW
1921 return 0;
1922}
1923
1924static void nvme_release_prp_pools(struct nvme_dev *dev)
1925{
1926 dma_pool_destroy(dev->prp_page_pool);
99802a7a 1927 dma_pool_destroy(dev->prp_small_pool);
091b6092
MW
1928}
1929
cd58ad7d
QSA
1930static DEFINE_IDA(nvme_instance_ida);
1931
1932static int nvme_set_instance(struct nvme_dev *dev)
b60503ba 1933{
cd58ad7d
QSA
1934 int instance, error;
1935
1936 do {
1937 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1938 return -ENODEV;
1939
1940 spin_lock(&dev_list_lock);
1941 error = ida_get_new(&nvme_instance_ida, &instance);
1942 spin_unlock(&dev_list_lock);
1943 } while (error == -EAGAIN);
1944
1945 if (error)
1946 return -ENODEV;
1947
1948 dev->instance = instance;
1949 return 0;
b60503ba
MW
1950}
1951
1952static void nvme_release_instance(struct nvme_dev *dev)
1953{
cd58ad7d
QSA
1954 spin_lock(&dev_list_lock);
1955 ida_remove(&nvme_instance_ida, dev->instance);
1956 spin_unlock(&dev_list_lock);
b60503ba
MW
1957}
1958
5e82e952
KB
1959static void nvme_free_dev(struct kref *kref)
1960{
1961 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1962 nvme_dev_remove(dev);
0877cb0d 1963 nvme_dev_unmap(dev);
5e82e952
KB
1964 nvme_release_instance(dev);
1965 nvme_release_prp_pools(dev);
5e82e952
KB
1966 kfree(dev->queues);
1967 kfree(dev->entry);
1968 kfree(dev);
1969}
1970
1971static int nvme_dev_open(struct inode *inode, struct file *f)
1972{
1973 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1974 miscdev);
1975 kref_get(&dev->kref);
1976 f->private_data = dev;
1977 return 0;
1978}
1979
1980static int nvme_dev_release(struct inode *inode, struct file *f)
1981{
1982 struct nvme_dev *dev = f->private_data;
1983 kref_put(&dev->kref, nvme_free_dev);
1984 return 0;
1985}
1986
1987static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1988{
1989 struct nvme_dev *dev = f->private_data;
1990 switch (cmd) {
1991 case NVME_IOCTL_ADMIN_CMD:
1992 return nvme_user_admin_cmd(dev, (void __user *)arg);
1993 default:
1994 return -ENOTTY;
1995 }
1996}
1997
1998static const struct file_operations nvme_dev_fops = {
1999 .owner = THIS_MODULE,
2000 .open = nvme_dev_open,
2001 .release = nvme_dev_release,
2002 .unlocked_ioctl = nvme_dev_ioctl,
2003 .compat_ioctl = nvme_dev_ioctl,
2004};
2005
8d85fce7 2006static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
b60503ba 2007{
0877cb0d 2008 int result = -ENOMEM;
b60503ba
MW
2009 struct nvme_dev *dev;
2010
2011 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2012 if (!dev)
2013 return -ENOMEM;
2014 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
2015 GFP_KERNEL);
2016 if (!dev->entry)
2017 goto free;
1b23484b
MW
2018 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
2019 GFP_KERNEL);
b60503ba
MW
2020 if (!dev->queues)
2021 goto free;
2022
2023 INIT_LIST_HEAD(&dev->namespaces);
2024 dev->pci_dev = pdev;
cd58ad7d
QSA
2025 result = nvme_set_instance(dev);
2026 if (result)
0877cb0d 2027 goto free;
b60503ba 2028
091b6092
MW
2029 result = nvme_setup_prp_pools(dev);
2030 if (result)
0877cb0d 2031 goto release;
091b6092 2032
0877cb0d
KB
2033 result = nvme_dev_map(dev);
2034 if (result)
2035 goto release_pools;
b60503ba
MW
2036
2037 result = nvme_configure_admin_queue(dev);
2038 if (result)
2039 goto unmap;
2040 dev->queue_count++;
2041
1fa6aead
MW
2042 spin_lock(&dev_list_lock);
2043 list_add(&dev->node, &dev_list);
2044 spin_unlock(&dev_list_lock);
2045
740216fc 2046 result = nvme_dev_add(dev);
7e03b124 2047 if (result && result != -EBUSY)
740216fc
MW
2048 goto delete;
2049
5e82e952
KB
2050 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2051 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2052 dev->miscdev.parent = &pdev->dev;
2053 dev->miscdev.name = dev->name;
2054 dev->miscdev.fops = &nvme_dev_fops;
2055 result = misc_register(&dev->miscdev);
2056 if (result)
2057 goto remove;
2058
2059 kref_init(&dev->kref);
b60503ba
MW
2060 return 0;
2061
5e82e952
KB
2062 remove:
2063 nvme_dev_remove(dev);
b60503ba 2064 delete:
740216fc
MW
2065 spin_lock(&dev_list_lock);
2066 list_del(&dev->node);
2067 spin_unlock(&dev_list_lock);
2068
b60503ba
MW
2069 nvme_free_queues(dev);
2070 unmap:
0877cb0d
KB
2071 nvme_dev_unmap(dev);
2072 release_pools:
091b6092 2073 nvme_release_prp_pools(dev);
0877cb0d
KB
2074 release:
2075 nvme_release_instance(dev);
b60503ba
MW
2076 free:
2077 kfree(dev->queues);
2078 kfree(dev->entry);
2079 kfree(dev);
2080 return result;
2081}
2082
8d85fce7 2083static void nvme_remove(struct pci_dev *pdev)
b60503ba
MW
2084{
2085 struct nvme_dev *dev = pci_get_drvdata(pdev);
5e82e952
KB
2086 misc_deregister(&dev->miscdev);
2087 kref_put(&dev->kref, nvme_free_dev);
b60503ba
MW
2088}
2089
2090/* These functions are yet to be implemented */
2091#define nvme_error_detected NULL
2092#define nvme_dump_registers NULL
2093#define nvme_link_reset NULL
2094#define nvme_slot_reset NULL
2095#define nvme_error_resume NULL
2096#define nvme_suspend NULL
2097#define nvme_resume NULL
2098
1d352035 2099static const struct pci_error_handlers nvme_err_handler = {
b60503ba
MW
2100 .error_detected = nvme_error_detected,
2101 .mmio_enabled = nvme_dump_registers,
2102 .link_reset = nvme_link_reset,
2103 .slot_reset = nvme_slot_reset,
2104 .resume = nvme_error_resume,
2105};
2106
2107/* Move to pci_ids.h later */
2108#define PCI_CLASS_STORAGE_EXPRESS 0x010802
2109
2110static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2111 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2112 { 0, }
2113};
2114MODULE_DEVICE_TABLE(pci, nvme_id_table);
2115
2116static struct pci_driver nvme_driver = {
2117 .name = "nvme",
2118 .id_table = nvme_id_table,
2119 .probe = nvme_probe,
8d85fce7 2120 .remove = nvme_remove,
b60503ba
MW
2121 .suspend = nvme_suspend,
2122 .resume = nvme_resume,
2123 .err_handler = &nvme_err_handler,
2124};
2125
2126static int __init nvme_init(void)
2127{
0ac13140 2128 int result;
1fa6aead
MW
2129
2130 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2131 if (IS_ERR(nvme_thread))
2132 return PTR_ERR(nvme_thread);
b60503ba 2133
5c42ea16
KB
2134 result = register_blkdev(nvme_major, "nvme");
2135 if (result < 0)
1fa6aead 2136 goto kill_kthread;
5c42ea16 2137 else if (result > 0)
0ac13140 2138 nvme_major = result;
b60503ba
MW
2139
2140 result = pci_register_driver(&nvme_driver);
1fa6aead
MW
2141 if (result)
2142 goto unregister_blkdev;
2143 return 0;
b60503ba 2144
1fa6aead 2145 unregister_blkdev:
b60503ba 2146 unregister_blkdev(nvme_major, "nvme");
1fa6aead
MW
2147 kill_kthread:
2148 kthread_stop(nvme_thread);
b60503ba
MW
2149 return result;
2150}
2151
2152static void __exit nvme_exit(void)
2153{
2154 pci_unregister_driver(&nvme_driver);
2155 unregister_blkdev(nvme_major, "nvme");
1fa6aead 2156 kthread_stop(nvme_thread);
b60503ba
MW
2157}
2158
2159MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2160MODULE_LICENSE("GPL");
366e8217 2161MODULE_VERSION("0.8");
b60503ba
MW
2162module_init(nvme_init);
2163module_exit(nvme_exit);