[BLOCK] Don't clear sg_dma_len/addr() in blk_rq_map_sg()
[linux-2.6-block.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
f565913e 33#include <linux/scatterlist.h>
1da177e4
LT
34
35/*
36 * for max sense size
37 */
38#include <scsi/scsi_cmnd.h>
39
65f27f38 40static void blk_unplug_work(struct work_struct *work);
1da177e4 41static void blk_unplug_timeout(unsigned long data);
93d17d3d 42static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
52d9e675 43static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 44static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 45static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 46static void blk_recalc_rq_segments(struct request *rq);
66846572
N
47static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
e18b890b 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
e18b890b 58static struct kmem_cache *requestq_cachep;
1da177e4
LT
59
60/*
61 * For io context allocations
62 */
e18b890b 63static struct kmem_cache *iocontext_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
69
70unsigned long blk_max_low_pfn, blk_max_pfn;
71
72EXPORT_SYMBOL(blk_max_low_pfn);
73EXPORT_SYMBOL(blk_max_pfn);
74
ff856bad
JA
75static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
1da177e4
LT
77/* Amount of time in which a process may batch requests */
78#define BLK_BATCH_TIME (HZ/50UL)
79
80/* Number of requests a "batching" process may submit */
81#define BLK_BATCH_REQ 32
82
83/*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88static inline int queue_congestion_on_threshold(struct request_queue *q)
89{
90 return q->nr_congestion_on;
91}
92
93/*
94 * The threshold at which a queue is considered to be uncongested
95 */
96static inline int queue_congestion_off_threshold(struct request_queue *q)
97{
98 return q->nr_congestion_off;
99}
100
101static void blk_queue_congestion_threshold(struct request_queue *q)
102{
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114}
115
1da177e4
LT
116/**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126{
127 struct backing_dev_info *ret = NULL;
165125e1 128 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133}
1da177e4
LT
134EXPORT_SYMBOL(blk_get_backing_dev_info);
135
1da177e4
LT
136/**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
165125e1 147void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
148{
149 q->prep_rq_fn = pfn;
150}
151
152EXPORT_SYMBOL(blk_queue_prep_rq);
153
154/**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
165125e1 170void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
171{
172 q->merge_bvec_fn = mbfn;
173}
174
175EXPORT_SYMBOL(blk_queue_merge_bvec);
176
165125e1 177void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
178{
179 q->softirq_done_fn = fn;
180}
181
182EXPORT_SYMBOL(blk_queue_softirq_done);
183
1da177e4
LT
184/**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
165125e1 206void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
207{
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
65f27f38 229 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
238}
239
240EXPORT_SYMBOL(blk_queue_make_request);
241
165125e1 242static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
243{
244 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 245 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
246
247 rq->errors = 0;
1da177e4 248 rq->bio = rq->biotail = NULL;
2e662b65
JA
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 251 rq->ioprio = 0;
1da177e4
LT
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
1da177e4
LT
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
df46b9a4 258 rq->nr_phys_segments = 0;
1da177e4
LT
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
ff856bad 262 rq->completion_data = NULL;
abae1fde 263 rq->next_rq = NULL;
1da177e4
LT
264}
265
266/**
267 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
165125e1 279int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
280 prepare_flush_fn *prepare_flush_fn)
281{
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
1da177e4 297 }
797e7dbb 298
60481b12 299 q->ordered = ordered;
797e7dbb
TH
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
1da177e4
LT
304}
305
306EXPORT_SYMBOL(blk_queue_ordered);
307
1da177e4
LT
308/*
309 * Cache flushing for ordered writes handling
310 */
165125e1 311inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 312{
797e7dbb
TH
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
1da177e4
LT
316}
317
797e7dbb 318unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 319{
165125e1 320 struct request_queue *q = rq->q;
1da177e4 321
797e7dbb 322 BUG_ON(q->ordseq == 0);
8922e16c 323
797e7dbb
TH
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 330
bc90ba09
TH
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
4aff5e23
JA
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
345}
346
165125e1 347void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 348{
797e7dbb
TH
349 struct request *rq;
350 int uptodate;
1da177e4 351
797e7dbb
TH
352 if (error && !q->orderr)
353 q->orderr = error;
1da177e4 354
797e7dbb
TH
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
1da177e4 357
797e7dbb
TH
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
1da177e4
LT
360
361 /*
797e7dbb 362 * Okay, sequence complete.
1da177e4 363 */
4fa253f3
JA
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
1da177e4 367
797e7dbb 368 q->ordseq = 0;
4fa253f3 369 rq = q->orig_bar_rq;
1da177e4 370
797e7dbb
TH
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
1da177e4
LT
373}
374
797e7dbb 375static void pre_flush_end_io(struct request *rq, int error)
1da177e4 376{
797e7dbb
TH
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379}
1da177e4 380
797e7dbb
TH
381static void bar_end_io(struct request *rq, int error)
382{
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385}
1da177e4 386
797e7dbb
TH
387static void post_flush_end_io(struct request *rq, int error)
388{
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391}
1da177e4 392
165125e1 393static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
394{
395 struct request *rq;
396 rq_end_io_fn *end_io;
1da177e4 397
797e7dbb
TH
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
1da177e4 404 }
797e7dbb 405
4aff5e23 406 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 407 rq_init(q, rq);
797e7dbb 408 rq->elevator_private = NULL;
c00895ab 409 rq->elevator_private2 = NULL;
797e7dbb 410 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
30e9656c 414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
415}
416
165125e1 417static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 418 struct request *rq)
1da177e4 419{
797e7dbb
TH
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
4aff5e23 430 rq->cmd_flags = 0;
797e7dbb 431 rq_init(q, rq);
4aff5e23
JA
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
4fa253f3
JA
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
797e7dbb 436 rq->elevator_private = NULL;
c00895ab 437 rq->elevator_private2 = NULL;
797e7dbb
TH
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
bf2de6f5
JA
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
797e7dbb 449 */
bf2de6f5 450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
797e7dbb
TH
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
30e9656c 455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 462
797e7dbb
TH
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
1da177e4
LT
469}
470
165125e1 471int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 472{
9a7a67af 473 struct request *rq = *rqp;
bf2de6f5 474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 475
797e7dbb
TH
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
1da177e4 479
797e7dbb
TH
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
1da177e4 496
9a7a67af
JA
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
797e7dbb 506 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 507 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
9a7a67af
JA
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
1da177e4
LT
515 }
516
517 return 1;
518}
519
5bb23a68
N
520static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
1da177e4 522{
165125e1 523 struct request_queue *q = rq->q;
797e7dbb 524
5bb23a68
N
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
797e7dbb 530
5bb23a68
N
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
797e7dbb 536
5bb23a68
N
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
6712ecf8 540 bio_endio(bio, error);
5bb23a68
N
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
1da177e4 550}
1da177e4
LT
551
552/**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 561 * buffers for doing I/O to pages residing above @page.
1da177e4 562 **/
165125e1 563void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
564{
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569#if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
8269730b 573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576#else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580#endif
581 if (dma) {
1da177e4
LT
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
584 q->bounce_pfn = bounce_pfn;
585 }
1da177e4
LT
586}
587
588EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590/**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
165125e1 599void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
600{
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
defd94b7
MC
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
1da177e4
LT
612}
613
614EXPORT_SYMBOL(blk_queue_max_sectors);
615
616/**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
165125e1
JA
626void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
1da177e4
LT
628{
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635}
636
637EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639/**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
165125e1
JA
650void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
1da177e4
LT
652{
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659}
660
661EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663/**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
165125e1 672void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
673{
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680}
681
682EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684/**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
165125e1 695void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
696{
697 q->hardsect_size = size;
698}
699
700EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702/*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707/**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
165125e1 712void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
713{
714 /* zero is "infinity" */
defd94b7
MC
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
724}
725
726EXPORT_SYMBOL(blk_queue_stack_limits);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
165125e1 733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
734{
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741}
742
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
165125e1 755void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
756{
757 q->dma_alignment = mask;
758}
759
760EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762/**
763 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
165125e1 773struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 774{
f583f492 775 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
776}
777
778EXPORT_SYMBOL(blk_queue_find_tag);
779
780/**
492dfb48
JB
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
1da177e4 783 *
492dfb48
JB
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 788{
492dfb48 789 int retval;
1da177e4 790
492dfb48
JB
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
1da177e4
LT
793 BUG_ON(bqt->busy);
794 BUG_ON(!list_empty(&bqt->busy_list));
795
796 kfree(bqt->tag_index);
797 bqt->tag_index = NULL;
798
799 kfree(bqt->tag_map);
800 bqt->tag_map = NULL;
801
802 kfree(bqt);
492dfb48 803
1da177e4
LT
804 }
805
492dfb48
JB
806 return retval;
807}
808
809/**
810 * __blk_queue_free_tags - release tag maintenance info
811 * @q: the request queue for the device
812 *
813 * Notes:
814 * blk_cleanup_queue() will take care of calling this function, if tagging
815 * has been used. So there's no need to call this directly.
816 **/
165125e1 817static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
818{
819 struct blk_queue_tag *bqt = q->queue_tags;
820
821 if (!bqt)
822 return;
823
824 __blk_free_tags(bqt);
825
1da177e4
LT
826 q->queue_tags = NULL;
827 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
828}
829
492dfb48
JB
830
831/**
832 * blk_free_tags - release a given set of tag maintenance info
833 * @bqt: the tag map to free
834 *
835 * For externally managed @bqt@ frees the map. Callers of this
836 * function must guarantee to have released all the queues that
837 * might have been using this tag map.
838 */
839void blk_free_tags(struct blk_queue_tag *bqt)
840{
841 if (unlikely(!__blk_free_tags(bqt)))
842 BUG();
843}
844EXPORT_SYMBOL(blk_free_tags);
845
1da177e4
LT
846/**
847 * blk_queue_free_tags - release tag maintenance info
848 * @q: the request queue for the device
849 *
850 * Notes:
851 * This is used to disabled tagged queuing to a device, yet leave
852 * queue in function.
853 **/
165125e1 854void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
855{
856 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
857}
858
859EXPORT_SYMBOL(blk_queue_free_tags);
860
861static int
165125e1 862init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 863{
1da177e4
LT
864 struct request **tag_index;
865 unsigned long *tag_map;
fa72b903 866 int nr_ulongs;
1da177e4 867
492dfb48 868 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
869 depth = q->nr_requests * 2;
870 printk(KERN_ERR "%s: adjusted depth to %d\n",
871 __FUNCTION__, depth);
872 }
873
f68110fc 874 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
875 if (!tag_index)
876 goto fail;
877
f7d37d02 878 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 879 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
880 if (!tag_map)
881 goto fail;
882
ba025082 883 tags->real_max_depth = depth;
1da177e4 884 tags->max_depth = depth;
1da177e4
LT
885 tags->tag_index = tag_index;
886 tags->tag_map = tag_map;
887
1da177e4
LT
888 return 0;
889fail:
890 kfree(tag_index);
891 return -ENOMEM;
892}
893
492dfb48
JB
894static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
895 int depth)
896{
897 struct blk_queue_tag *tags;
898
899 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
900 if (!tags)
901 goto fail;
902
903 if (init_tag_map(q, tags, depth))
904 goto fail;
905
906 INIT_LIST_HEAD(&tags->busy_list);
907 tags->busy = 0;
908 atomic_set(&tags->refcnt, 1);
909 return tags;
910fail:
911 kfree(tags);
912 return NULL;
913}
914
915/**
916 * blk_init_tags - initialize the tag info for an external tag map
917 * @depth: the maximum queue depth supported
918 * @tags: the tag to use
919 **/
920struct blk_queue_tag *blk_init_tags(int depth)
921{
922 return __blk_queue_init_tags(NULL, depth);
923}
924EXPORT_SYMBOL(blk_init_tags);
925
1da177e4
LT
926/**
927 * blk_queue_init_tags - initialize the queue tag info
928 * @q: the request queue for the device
929 * @depth: the maximum queue depth supported
930 * @tags: the tag to use
931 **/
165125e1 932int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
933 struct blk_queue_tag *tags)
934{
935 int rc;
936
937 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
938
939 if (!tags && !q->queue_tags) {
492dfb48 940 tags = __blk_queue_init_tags(q, depth);
1da177e4 941
492dfb48 942 if (!tags)
1da177e4 943 goto fail;
1da177e4
LT
944 } else if (q->queue_tags) {
945 if ((rc = blk_queue_resize_tags(q, depth)))
946 return rc;
947 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
948 return 0;
949 } else
950 atomic_inc(&tags->refcnt);
951
952 /*
953 * assign it, all done
954 */
955 q->queue_tags = tags;
956 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
957 return 0;
958fail:
959 kfree(tags);
960 return -ENOMEM;
961}
962
963EXPORT_SYMBOL(blk_queue_init_tags);
964
965/**
966 * blk_queue_resize_tags - change the queueing depth
967 * @q: the request queue for the device
968 * @new_depth: the new max command queueing depth
969 *
970 * Notes:
971 * Must be called with the queue lock held.
972 **/
165125e1 973int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
974{
975 struct blk_queue_tag *bqt = q->queue_tags;
976 struct request **tag_index;
977 unsigned long *tag_map;
fa72b903 978 int max_depth, nr_ulongs;
1da177e4
LT
979
980 if (!bqt)
981 return -ENXIO;
982
ba025082
TH
983 /*
984 * if we already have large enough real_max_depth. just
985 * adjust max_depth. *NOTE* as requests with tag value
986 * between new_depth and real_max_depth can be in-flight, tag
987 * map can not be shrunk blindly here.
988 */
989 if (new_depth <= bqt->real_max_depth) {
990 bqt->max_depth = new_depth;
991 return 0;
992 }
993
492dfb48
JB
994 /*
995 * Currently cannot replace a shared tag map with a new
996 * one, so error out if this is the case
997 */
998 if (atomic_read(&bqt->refcnt) != 1)
999 return -EBUSY;
1000
1da177e4
LT
1001 /*
1002 * save the old state info, so we can copy it back
1003 */
1004 tag_index = bqt->tag_index;
1005 tag_map = bqt->tag_map;
ba025082 1006 max_depth = bqt->real_max_depth;
1da177e4
LT
1007
1008 if (init_tag_map(q, bqt, new_depth))
1009 return -ENOMEM;
1010
1011 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1012 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1013 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1014
1015 kfree(tag_index);
1016 kfree(tag_map);
1017 return 0;
1018}
1019
1020EXPORT_SYMBOL(blk_queue_resize_tags);
1021
1022/**
1023 * blk_queue_end_tag - end tag operations for a request
1024 * @q: the request queue for the device
1025 * @rq: the request that has completed
1026 *
1027 * Description:
1028 * Typically called when end_that_request_first() returns 0, meaning
1029 * all transfers have been done for a request. It's important to call
1030 * this function before end_that_request_last(), as that will put the
1031 * request back on the free list thus corrupting the internal tag list.
1032 *
1033 * Notes:
1034 * queue lock must be held.
1035 **/
165125e1 1036void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1037{
1038 struct blk_queue_tag *bqt = q->queue_tags;
1039 int tag = rq->tag;
1040
1041 BUG_ON(tag == -1);
1042
ba025082 1043 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1044 /*
1045 * This can happen after tag depth has been reduced.
1046 * FIXME: how about a warning or info message here?
1047 */
1da177e4
LT
1048 return;
1049
1da177e4 1050 list_del_init(&rq->queuelist);
4aff5e23 1051 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1052 rq->tag = -1;
1053
1054 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1055 printk(KERN_ERR "%s: tag %d is missing\n",
1056 __FUNCTION__, tag);
1da177e4
LT
1057
1058 bqt->tag_index[tag] = NULL;
f3da54ba 1059
dd941252
NP
1060 /*
1061 * We use test_and_clear_bit's memory ordering properties here.
1062 * The tag_map bit acts as a lock for tag_index[bit], so we need
1063 * a barrer before clearing the bit (precisely: release semantics).
1064 * Could use clear_bit_unlock when it is merged.
1065 */
f3da54ba
JA
1066 if (unlikely(!test_and_clear_bit(tag, bqt->tag_map))) {
1067 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1068 __FUNCTION__, tag);
1069 return;
1070 }
1071
1da177e4
LT
1072 bqt->busy--;
1073}
1074
1075EXPORT_SYMBOL(blk_queue_end_tag);
1076
1077/**
1078 * blk_queue_start_tag - find a free tag and assign it
1079 * @q: the request queue for the device
1080 * @rq: the block request that needs tagging
1081 *
1082 * Description:
1083 * This can either be used as a stand-alone helper, or possibly be
1084 * assigned as the queue &prep_rq_fn (in which case &struct request
1085 * automagically gets a tag assigned). Note that this function
1086 * assumes that any type of request can be queued! if this is not
1087 * true for your device, you must check the request type before
1088 * calling this function. The request will also be removed from
1089 * the request queue, so it's the drivers responsibility to readd
1090 * it if it should need to be restarted for some reason.
1091 *
1092 * Notes:
1093 * queue lock must be held.
1094 **/
165125e1 1095int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1096{
1097 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1098 int tag;
1da177e4 1099
4aff5e23 1100 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1101 printk(KERN_ERR
040c928c
TH
1102 "%s: request %p for device [%s] already tagged %d",
1103 __FUNCTION__, rq,
1104 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1105 BUG();
1106 }
1107
059af497
JA
1108 /*
1109 * Protect against shared tag maps, as we may not have exclusive
1110 * access to the tag map.
1111 */
1112 do {
1113 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1114 if (tag >= bqt->max_depth)
1115 return 1;
1da177e4 1116
059af497 1117 } while (test_and_set_bit(tag, bqt->tag_map));
dd941252
NP
1118 /*
1119 * We rely on test_and_set_bit providing lock memory ordering semantics
1120 * (could use test_and_set_bit_lock when it is merged).
1121 */
1da177e4 1122
4aff5e23 1123 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1124 rq->tag = tag;
1125 bqt->tag_index[tag] = rq;
1126 blkdev_dequeue_request(rq);
1127 list_add(&rq->queuelist, &bqt->busy_list);
1128 bqt->busy++;
1129 return 0;
1130}
1131
1132EXPORT_SYMBOL(blk_queue_start_tag);
1133
1134/**
1135 * blk_queue_invalidate_tags - invalidate all pending tags
1136 * @q: the request queue for the device
1137 *
1138 * Description:
1139 * Hardware conditions may dictate a need to stop all pending requests.
1140 * In this case, we will safely clear the block side of the tag queue and
1141 * readd all requests to the request queue in the right order.
1142 *
1143 * Notes:
1144 * queue lock must be held.
1145 **/
165125e1 1146void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4
LT
1147{
1148 struct blk_queue_tag *bqt = q->queue_tags;
1149 struct list_head *tmp, *n;
1150 struct request *rq;
1151
1152 list_for_each_safe(tmp, n, &bqt->busy_list) {
1153 rq = list_entry_rq(tmp);
1154
1155 if (rq->tag == -1) {
040c928c
TH
1156 printk(KERN_ERR
1157 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1158 list_del_init(&rq->queuelist);
4aff5e23 1159 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1160 } else
1161 blk_queue_end_tag(q, rq);
1162
4aff5e23 1163 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1164 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1165 }
1166}
1167
1168EXPORT_SYMBOL(blk_queue_invalidate_tags);
1169
1da177e4
LT
1170void blk_dump_rq_flags(struct request *rq, char *msg)
1171{
1172 int bit;
1173
4aff5e23
JA
1174 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1175 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1176 rq->cmd_flags);
1da177e4
LT
1177
1178 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1179 rq->nr_sectors,
1180 rq->current_nr_sectors);
1181 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1182
4aff5e23 1183 if (blk_pc_request(rq)) {
1da177e4
LT
1184 printk("cdb: ");
1185 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1186 printk("%02x ", rq->cmd[bit]);
1187 printk("\n");
1188 }
1189}
1190
1191EXPORT_SYMBOL(blk_dump_rq_flags);
1192
165125e1 1193void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1194{
9dfa5283
N
1195 struct request rq;
1196 struct bio *nxt = bio->bi_next;
1197 rq.q = q;
1198 rq.bio = rq.biotail = bio;
1199 bio->bi_next = NULL;
1200 blk_recalc_rq_segments(&rq);
1201 bio->bi_next = nxt;
1202 bio->bi_phys_segments = rq.nr_phys_segments;
1203 bio->bi_hw_segments = rq.nr_hw_segments;
1204 bio->bi_flags |= (1 << BIO_SEG_VALID);
1205}
1206EXPORT_SYMBOL(blk_recount_segments);
1207
1208static void blk_recalc_rq_segments(struct request *rq)
1209{
1210 int nr_phys_segs;
1211 int nr_hw_segs;
1212 unsigned int phys_size;
1213 unsigned int hw_size;
1da177e4 1214 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1215 int seg_size;
1216 int hw_seg_size;
1217 int cluster;
5705f702 1218 struct req_iterator iter;
1da177e4 1219 int high, highprv = 1;
9dfa5283 1220 struct request_queue *q = rq->q;
1da177e4 1221
9dfa5283 1222 if (!rq->bio)
1da177e4
LT
1223 return;
1224
1225 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1226 hw_seg_size = seg_size = 0;
1227 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1228 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1229 /*
1230 * the trick here is making sure that a high page is never
1231 * considered part of another segment, since that might
1232 * change with the bounce page.
1233 */
f772b3d9 1234 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1235 if (high || highprv)
1236 goto new_hw_segment;
1237 if (cluster) {
1238 if (seg_size + bv->bv_len > q->max_segment_size)
1239 goto new_segment;
1240 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1241 goto new_segment;
1242 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1243 goto new_segment;
1244 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1245 goto new_hw_segment;
1246
1247 seg_size += bv->bv_len;
1248 hw_seg_size += bv->bv_len;
1249 bvprv = bv;
1250 continue;
1251 }
1252new_segment:
1253 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1254 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1255 hw_seg_size += bv->bv_len;
9dfa5283 1256 else {
1da177e4 1257new_hw_segment:
9dfa5283
N
1258 if (nr_hw_segs == 1 &&
1259 hw_seg_size > rq->bio->bi_hw_front_size)
1260 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1261 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1262 nr_hw_segs++;
1263 }
1264
1265 nr_phys_segs++;
1266 bvprv = bv;
1267 seg_size = bv->bv_len;
1268 highprv = high;
1269 }
9dfa5283
N
1270
1271 if (nr_hw_segs == 1 &&
1272 hw_seg_size > rq->bio->bi_hw_front_size)
1273 rq->bio->bi_hw_front_size = hw_seg_size;
1274 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1275 rq->biotail->bi_hw_back_size = hw_seg_size;
1276 rq->nr_phys_segments = nr_phys_segs;
1277 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1278}
1da177e4 1279
165125e1 1280static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1281 struct bio *nxt)
1282{
1283 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1284 return 0;
1285
1286 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1287 return 0;
1288 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1289 return 0;
1290
1291 /*
1292 * bio and nxt are contigous in memory, check if the queue allows
1293 * these two to be merged into one
1294 */
1295 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1296 return 1;
1297
1298 return 0;
1299}
1300
165125e1 1301static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1302 struct bio *nxt)
1303{
1304 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1305 blk_recount_segments(q, bio);
1306 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1307 blk_recount_segments(q, nxt);
1308 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1309 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1310 return 0;
32eef964 1311 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1312 return 0;
1313
1314 return 1;
1315}
1316
1da177e4
LT
1317/*
1318 * map a request to scatterlist, return number of sg entries setup. Caller
1319 * must make sure sg can hold rq->nr_phys_segments entries
1320 */
165125e1 1321int blk_rq_map_sg(struct request_queue *q, struct request *rq,
f565913e 1322 struct scatterlist *sglist)
1da177e4
LT
1323{
1324 struct bio_vec *bvec, *bvprv;
5705f702 1325 struct req_iterator iter;
ba951841 1326 struct scatterlist *sg;
5705f702 1327 int nsegs, cluster;
1da177e4
LT
1328
1329 nsegs = 0;
1330 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1331
1332 /*
1333 * for each bio in rq
1334 */
1335 bvprv = NULL;
ba951841 1336 sg = NULL;
5705f702 1337 rq_for_each_segment(bvec, rq, iter) {
6c92e699 1338 int nbytes = bvec->bv_len;
1da177e4 1339
6c92e699 1340 if (bvprv && cluster) {
f565913e 1341 if (sg->length + nbytes > q->max_segment_size)
6c92e699 1342 goto new_segment;
1da177e4 1343
6c92e699
JA
1344 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1345 goto new_segment;
1346 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1347 goto new_segment;
1da177e4 1348
f565913e 1349 sg->length += nbytes;
6c92e699 1350 } else {
1da177e4 1351new_segment:
ba951841
JA
1352 if (!sg)
1353 sg = sglist;
1354 else
1355 sg = sg_next(sg);
6c92e699 1356
9b61764b 1357 sg_set_page(sg, bvec->bv_page);
f565913e
JA
1358 sg->length = nbytes;
1359 sg->offset = bvec->bv_offset;
6c92e699
JA
1360 nsegs++;
1361 }
1362 bvprv = bvec;
5705f702 1363 } /* segments in rq */
1da177e4 1364
9b61764b
JA
1365 if (sg)
1366 __sg_mark_end(sg);
1367
1da177e4
LT
1368 return nsegs;
1369}
1370
1371EXPORT_SYMBOL(blk_rq_map_sg);
1372
1373/*
1374 * the standard queue merge functions, can be overridden with device
1375 * specific ones if so desired
1376 */
1377
165125e1 1378static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1379 struct request *req,
1380 struct bio *bio)
1381{
1382 int nr_phys_segs = bio_phys_segments(q, bio);
1383
1384 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1385 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1386 if (req == q->last_merge)
1387 q->last_merge = NULL;
1388 return 0;
1389 }
1390
1391 /*
1392 * A hw segment is just getting larger, bump just the phys
1393 * counter.
1394 */
1395 req->nr_phys_segments += nr_phys_segs;
1396 return 1;
1397}
1398
165125e1 1399static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1400 struct request *req,
1401 struct bio *bio)
1402{
1403 int nr_hw_segs = bio_hw_segments(q, bio);
1404 int nr_phys_segs = bio_phys_segments(q, bio);
1405
1406 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1407 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1408 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1409 if (req == q->last_merge)
1410 q->last_merge = NULL;
1411 return 0;
1412 }
1413
1414 /*
1415 * This will form the start of a new hw segment. Bump both
1416 * counters.
1417 */
1418 req->nr_hw_segments += nr_hw_segs;
1419 req->nr_phys_segments += nr_phys_segs;
1420 return 1;
1421}
1422
3001ca77
N
1423static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1424 struct bio *bio)
1da177e4 1425{
defd94b7 1426 unsigned short max_sectors;
1da177e4
LT
1427 int len;
1428
defd94b7
MC
1429 if (unlikely(blk_pc_request(req)))
1430 max_sectors = q->max_hw_sectors;
1431 else
1432 max_sectors = q->max_sectors;
1433
1434 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1435 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1436 if (req == q->last_merge)
1437 q->last_merge = NULL;
1438 return 0;
1439 }
1440 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1441 blk_recount_segments(q, req->biotail);
1442 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1443 blk_recount_segments(q, bio);
1444 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1445 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1446 !BIOVEC_VIRT_OVERSIZE(len)) {
1447 int mergeable = ll_new_mergeable(q, req, bio);
1448
1449 if (mergeable) {
1450 if (req->nr_hw_segments == 1)
1451 req->bio->bi_hw_front_size = len;
1452 if (bio->bi_hw_segments == 1)
1453 bio->bi_hw_back_size = len;
1454 }
1455 return mergeable;
1456 }
1457
1458 return ll_new_hw_segment(q, req, bio);
1459}
1460
165125e1 1461static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1462 struct bio *bio)
1463{
defd94b7 1464 unsigned short max_sectors;
1da177e4
LT
1465 int len;
1466
defd94b7
MC
1467 if (unlikely(blk_pc_request(req)))
1468 max_sectors = q->max_hw_sectors;
1469 else
1470 max_sectors = q->max_sectors;
1471
1472
1473 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1474 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1475 if (req == q->last_merge)
1476 q->last_merge = NULL;
1477 return 0;
1478 }
1479 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1480 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1481 blk_recount_segments(q, bio);
1482 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1483 blk_recount_segments(q, req->bio);
1484 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1485 !BIOVEC_VIRT_OVERSIZE(len)) {
1486 int mergeable = ll_new_mergeable(q, req, bio);
1487
1488 if (mergeable) {
1489 if (bio->bi_hw_segments == 1)
1490 bio->bi_hw_front_size = len;
1491 if (req->nr_hw_segments == 1)
1492 req->biotail->bi_hw_back_size = len;
1493 }
1494 return mergeable;
1495 }
1496
1497 return ll_new_hw_segment(q, req, bio);
1498}
1499
165125e1 1500static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1501 struct request *next)
1502{
dfa1a553
ND
1503 int total_phys_segments;
1504 int total_hw_segments;
1da177e4
LT
1505
1506 /*
1507 * First check if the either of the requests are re-queued
1508 * requests. Can't merge them if they are.
1509 */
1510 if (req->special || next->special)
1511 return 0;
1512
1513 /*
dfa1a553 1514 * Will it become too large?
1da177e4
LT
1515 */
1516 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1517 return 0;
1518
1519 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1520 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1521 total_phys_segments--;
1522
1523 if (total_phys_segments > q->max_phys_segments)
1524 return 0;
1525
1526 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1527 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1528 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1529 /*
1530 * propagate the combined length to the end of the requests
1531 */
1532 if (req->nr_hw_segments == 1)
1533 req->bio->bi_hw_front_size = len;
1534 if (next->nr_hw_segments == 1)
1535 next->biotail->bi_hw_back_size = len;
1536 total_hw_segments--;
1537 }
1538
1539 if (total_hw_segments > q->max_hw_segments)
1540 return 0;
1541
1542 /* Merge is OK... */
1543 req->nr_phys_segments = total_phys_segments;
1544 req->nr_hw_segments = total_hw_segments;
1545 return 1;
1546}
1547
1548/*
1549 * "plug" the device if there are no outstanding requests: this will
1550 * force the transfer to start only after we have put all the requests
1551 * on the list.
1552 *
1553 * This is called with interrupts off and no requests on the queue and
1554 * with the queue lock held.
1555 */
165125e1 1556void blk_plug_device(struct request_queue *q)
1da177e4
LT
1557{
1558 WARN_ON(!irqs_disabled());
1559
1560 /*
1561 * don't plug a stopped queue, it must be paired with blk_start_queue()
1562 * which will restart the queueing
1563 */
7daac490 1564 if (blk_queue_stopped(q))
1da177e4
LT
1565 return;
1566
2056a782 1567 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1568 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1569 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1570 }
1da177e4
LT
1571}
1572
1573EXPORT_SYMBOL(blk_plug_device);
1574
1575/*
1576 * remove the queue from the plugged list, if present. called with
1577 * queue lock held and interrupts disabled.
1578 */
165125e1 1579int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1580{
1581 WARN_ON(!irqs_disabled());
1582
1583 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1584 return 0;
1585
1586 del_timer(&q->unplug_timer);
1587 return 1;
1588}
1589
1590EXPORT_SYMBOL(blk_remove_plug);
1591
1592/*
1593 * remove the plug and let it rip..
1594 */
165125e1 1595void __generic_unplug_device(struct request_queue *q)
1da177e4 1596{
7daac490 1597 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1598 return;
1599
1600 if (!blk_remove_plug(q))
1601 return;
1602
22e2c507 1603 q->request_fn(q);
1da177e4
LT
1604}
1605EXPORT_SYMBOL(__generic_unplug_device);
1606
1607/**
1608 * generic_unplug_device - fire a request queue
165125e1 1609 * @q: The &struct request_queue in question
1da177e4
LT
1610 *
1611 * Description:
1612 * Linux uses plugging to build bigger requests queues before letting
1613 * the device have at them. If a queue is plugged, the I/O scheduler
1614 * is still adding and merging requests on the queue. Once the queue
1615 * gets unplugged, the request_fn defined for the queue is invoked and
1616 * transfers started.
1617 **/
165125e1 1618void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1619{
1620 spin_lock_irq(q->queue_lock);
1621 __generic_unplug_device(q);
1622 spin_unlock_irq(q->queue_lock);
1623}
1624EXPORT_SYMBOL(generic_unplug_device);
1625
1626static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1627 struct page *page)
1628{
165125e1 1629 struct request_queue *q = bdi->unplug_io_data;
1da177e4
LT
1630
1631 /*
1632 * devices don't necessarily have an ->unplug_fn defined
1633 */
2056a782
JA
1634 if (q->unplug_fn) {
1635 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1636 q->rq.count[READ] + q->rq.count[WRITE]);
1637
1da177e4 1638 q->unplug_fn(q);
2056a782 1639 }
1da177e4
LT
1640}
1641
65f27f38 1642static void blk_unplug_work(struct work_struct *work)
1da177e4 1643{
165125e1
JA
1644 struct request_queue *q =
1645 container_of(work, struct request_queue, unplug_work);
1da177e4 1646
2056a782
JA
1647 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1648 q->rq.count[READ] + q->rq.count[WRITE]);
1649
1da177e4
LT
1650 q->unplug_fn(q);
1651}
1652
1653static void blk_unplug_timeout(unsigned long data)
1654{
165125e1 1655 struct request_queue *q = (struct request_queue *)data;
1da177e4 1656
2056a782
JA
1657 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1658 q->rq.count[READ] + q->rq.count[WRITE]);
1659
1da177e4
LT
1660 kblockd_schedule_work(&q->unplug_work);
1661}
1662
1663/**
1664 * blk_start_queue - restart a previously stopped queue
165125e1 1665 * @q: The &struct request_queue in question
1da177e4
LT
1666 *
1667 * Description:
1668 * blk_start_queue() will clear the stop flag on the queue, and call
1669 * the request_fn for the queue if it was in a stopped state when
1670 * entered. Also see blk_stop_queue(). Queue lock must be held.
1671 **/
165125e1 1672void blk_start_queue(struct request_queue *q)
1da177e4 1673{
a038e253
PBG
1674 WARN_ON(!irqs_disabled());
1675
1da177e4
LT
1676 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1677
1678 /*
1679 * one level of recursion is ok and is much faster than kicking
1680 * the unplug handling
1681 */
1682 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1683 q->request_fn(q);
1684 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1685 } else {
1686 blk_plug_device(q);
1687 kblockd_schedule_work(&q->unplug_work);
1688 }
1689}
1690
1691EXPORT_SYMBOL(blk_start_queue);
1692
1693/**
1694 * blk_stop_queue - stop a queue
165125e1 1695 * @q: The &struct request_queue in question
1da177e4
LT
1696 *
1697 * Description:
1698 * The Linux block layer assumes that a block driver will consume all
1699 * entries on the request queue when the request_fn strategy is called.
1700 * Often this will not happen, because of hardware limitations (queue
1701 * depth settings). If a device driver gets a 'queue full' response,
1702 * or if it simply chooses not to queue more I/O at one point, it can
1703 * call this function to prevent the request_fn from being called until
1704 * the driver has signalled it's ready to go again. This happens by calling
1705 * blk_start_queue() to restart queue operations. Queue lock must be held.
1706 **/
165125e1 1707void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1708{
1709 blk_remove_plug(q);
1710 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1711}
1712EXPORT_SYMBOL(blk_stop_queue);
1713
1714/**
1715 * blk_sync_queue - cancel any pending callbacks on a queue
1716 * @q: the queue
1717 *
1718 * Description:
1719 * The block layer may perform asynchronous callback activity
1720 * on a queue, such as calling the unplug function after a timeout.
1721 * A block device may call blk_sync_queue to ensure that any
1722 * such activity is cancelled, thus allowing it to release resources
59c51591 1723 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1724 * that its ->make_request_fn will not re-add plugging prior to calling
1725 * this function.
1726 *
1727 */
1728void blk_sync_queue(struct request_queue *q)
1729{
1730 del_timer_sync(&q->unplug_timer);
1da177e4
LT
1731}
1732EXPORT_SYMBOL(blk_sync_queue);
1733
1734/**
1735 * blk_run_queue - run a single device queue
1736 * @q: The queue to run
1737 */
1738void blk_run_queue(struct request_queue *q)
1739{
1740 unsigned long flags;
1741
1742 spin_lock_irqsave(q->queue_lock, flags);
1743 blk_remove_plug(q);
dac07ec1
JA
1744
1745 /*
1746 * Only recurse once to avoid overrunning the stack, let the unplug
1747 * handling reinvoke the handler shortly if we already got there.
1748 */
1749 if (!elv_queue_empty(q)) {
1750 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1751 q->request_fn(q);
1752 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1753 } else {
1754 blk_plug_device(q);
1755 kblockd_schedule_work(&q->unplug_work);
1756 }
1757 }
1758
1da177e4
LT
1759 spin_unlock_irqrestore(q->queue_lock, flags);
1760}
1761EXPORT_SYMBOL(blk_run_queue);
1762
1763/**
165125e1 1764 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1765 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1766 *
1767 * Description:
1768 * blk_cleanup_queue is the pair to blk_init_queue() or
1769 * blk_queue_make_request(). It should be called when a request queue is
1770 * being released; typically when a block device is being de-registered.
1771 * Currently, its primary task it to free all the &struct request
1772 * structures that were allocated to the queue and the queue itself.
1773 *
1774 * Caveat:
1775 * Hopefully the low level driver will have finished any
1776 * outstanding requests first...
1777 **/
483f4afc 1778static void blk_release_queue(struct kobject *kobj)
1da177e4 1779{
165125e1
JA
1780 struct request_queue *q =
1781 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1782 struct request_list *rl = &q->rq;
1783
1da177e4
LT
1784 blk_sync_queue(q);
1785
1786 if (rl->rq_pool)
1787 mempool_destroy(rl->rq_pool);
1788
1789 if (q->queue_tags)
1790 __blk_queue_free_tags(q);
1791
6c5c9341 1792 blk_trace_shutdown(q);
2056a782 1793
e0bf68dd 1794 bdi_destroy(&q->backing_dev_info);
1da177e4
LT
1795 kmem_cache_free(requestq_cachep, q);
1796}
1797
165125e1 1798void blk_put_queue(struct request_queue *q)
483f4afc
AV
1799{
1800 kobject_put(&q->kobj);
1801}
1802EXPORT_SYMBOL(blk_put_queue);
1803
165125e1 1804void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1805{
1806 mutex_lock(&q->sysfs_lock);
1807 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1808 mutex_unlock(&q->sysfs_lock);
1809
1810 if (q->elevator)
1811 elevator_exit(q->elevator);
1812
1813 blk_put_queue(q);
1814}
1815
1da177e4
LT
1816EXPORT_SYMBOL(blk_cleanup_queue);
1817
165125e1 1818static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1819{
1820 struct request_list *rl = &q->rq;
1821
1822 rl->count[READ] = rl->count[WRITE] = 0;
1823 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1824 rl->elvpriv = 0;
1da177e4
LT
1825 init_waitqueue_head(&rl->wait[READ]);
1826 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1827
1946089a
CL
1828 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1829 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1830
1831 if (!rl->rq_pool)
1832 return -ENOMEM;
1833
1834 return 0;
1835}
1836
165125e1 1837struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1838{
1946089a
CL
1839 return blk_alloc_queue_node(gfp_mask, -1);
1840}
1841EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1842
483f4afc
AV
1843static struct kobj_type queue_ktype;
1844
165125e1 1845struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1846{
165125e1 1847 struct request_queue *q;
e0bf68dd 1848 int err;
1946089a 1849
94f6030c
CL
1850 q = kmem_cache_alloc_node(requestq_cachep,
1851 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1852 if (!q)
1853 return NULL;
1854
e0bf68dd
PZ
1855 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1856 q->backing_dev_info.unplug_io_data = q;
1857 err = bdi_init(&q->backing_dev_info);
1858 if (err) {
1859 kmem_cache_free(requestq_cachep, q);
1860 return NULL;
1861 }
1862
1da177e4 1863 init_timer(&q->unplug_timer);
483f4afc 1864
19c38de8 1865 kobject_set_name(&q->kobj, "%s", "queue");
483f4afc
AV
1866 q->kobj.ktype = &queue_ktype;
1867 kobject_init(&q->kobj);
1da177e4 1868
483f4afc
AV
1869 mutex_init(&q->sysfs_lock);
1870
1da177e4
LT
1871 return q;
1872}
1946089a 1873EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1874
1875/**
1876 * blk_init_queue - prepare a request queue for use with a block device
1877 * @rfn: The function to be called to process requests that have been
1878 * placed on the queue.
1879 * @lock: Request queue spin lock
1880 *
1881 * Description:
1882 * If a block device wishes to use the standard request handling procedures,
1883 * which sorts requests and coalesces adjacent requests, then it must
1884 * call blk_init_queue(). The function @rfn will be called when there
1885 * are requests on the queue that need to be processed. If the device
1886 * supports plugging, then @rfn may not be called immediately when requests
1887 * are available on the queue, but may be called at some time later instead.
1888 * Plugged queues are generally unplugged when a buffer belonging to one
1889 * of the requests on the queue is needed, or due to memory pressure.
1890 *
1891 * @rfn is not required, or even expected, to remove all requests off the
1892 * queue, but only as many as it can handle at a time. If it does leave
1893 * requests on the queue, it is responsible for arranging that the requests
1894 * get dealt with eventually.
1895 *
1896 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1897 * request queue; this lock will be taken also from interrupt context, so irq
1898 * disabling is needed for it.
1da177e4
LT
1899 *
1900 * Function returns a pointer to the initialized request queue, or NULL if
1901 * it didn't succeed.
1902 *
1903 * Note:
1904 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1905 * when the block device is deactivated (such as at module unload).
1906 **/
1946089a 1907
165125e1 1908struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1909{
1946089a
CL
1910 return blk_init_queue_node(rfn, lock, -1);
1911}
1912EXPORT_SYMBOL(blk_init_queue);
1913
165125e1 1914struct request_queue *
1946089a
CL
1915blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1916{
165125e1 1917 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1918
1919 if (!q)
1920 return NULL;
1921
1946089a 1922 q->node = node_id;
8669aafd
AV
1923 if (blk_init_free_list(q)) {
1924 kmem_cache_free(requestq_cachep, q);
1925 return NULL;
1926 }
1da177e4 1927
152587de 1928 /*
1929 * if caller didn't supply a lock, they get per-queue locking with
1930 * our embedded lock
1931 */
1932 if (!lock) {
1933 spin_lock_init(&q->__queue_lock);
1934 lock = &q->__queue_lock;
1935 }
1936
1da177e4 1937 q->request_fn = rfn;
1da177e4
LT
1938 q->prep_rq_fn = NULL;
1939 q->unplug_fn = generic_unplug_device;
1940 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1941 q->queue_lock = lock;
1942
1943 blk_queue_segment_boundary(q, 0xffffffff);
1944
1945 blk_queue_make_request(q, __make_request);
1946 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1947
1948 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1949 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1950
44ec9542
AS
1951 q->sg_reserved_size = INT_MAX;
1952
1da177e4
LT
1953 /*
1954 * all done
1955 */
1956 if (!elevator_init(q, NULL)) {
1957 blk_queue_congestion_threshold(q);
1958 return q;
1959 }
1960
8669aafd 1961 blk_put_queue(q);
1da177e4
LT
1962 return NULL;
1963}
1946089a 1964EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1965
165125e1 1966int blk_get_queue(struct request_queue *q)
1da177e4 1967{
fde6ad22 1968 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1969 kobject_get(&q->kobj);
1da177e4
LT
1970 return 0;
1971 }
1972
1973 return 1;
1974}
1975
1976EXPORT_SYMBOL(blk_get_queue);
1977
165125e1 1978static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 1979{
4aff5e23 1980 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1981 elv_put_request(q, rq);
1da177e4
LT
1982 mempool_free(rq, q->rq.rq_pool);
1983}
1984
1ea25ecb 1985static struct request *
165125e1 1986blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1987{
1988 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1989
1990 if (!rq)
1991 return NULL;
1992
1993 /*
4aff5e23 1994 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
1995 * see bio.h and blkdev.h
1996 */
49171e5c 1997 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 1998
cb98fc8b 1999 if (priv) {
cb78b285 2000 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
2001 mempool_free(rq, q->rq.rq_pool);
2002 return NULL;
2003 }
4aff5e23 2004 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2005 }
1da177e4 2006
cb98fc8b 2007 return rq;
1da177e4
LT
2008}
2009
2010/*
2011 * ioc_batching returns true if the ioc is a valid batching request and
2012 * should be given priority access to a request.
2013 */
165125e1 2014static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2015{
2016 if (!ioc)
2017 return 0;
2018
2019 /*
2020 * Make sure the process is able to allocate at least 1 request
2021 * even if the batch times out, otherwise we could theoretically
2022 * lose wakeups.
2023 */
2024 return ioc->nr_batch_requests == q->nr_batching ||
2025 (ioc->nr_batch_requests > 0
2026 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2027}
2028
2029/*
2030 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2031 * will cause the process to be a "batcher" on all queues in the system. This
2032 * is the behaviour we want though - once it gets a wakeup it should be given
2033 * a nice run.
2034 */
165125e1 2035static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2036{
2037 if (!ioc || ioc_batching(q, ioc))
2038 return;
2039
2040 ioc->nr_batch_requests = q->nr_batching;
2041 ioc->last_waited = jiffies;
2042}
2043
165125e1 2044static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2045{
2046 struct request_list *rl = &q->rq;
2047
2048 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2049 blk_clear_queue_congested(q, rw);
1da177e4
LT
2050
2051 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2052 if (waitqueue_active(&rl->wait[rw]))
2053 wake_up(&rl->wait[rw]);
2054
2055 blk_clear_queue_full(q, rw);
2056 }
2057}
2058
2059/*
2060 * A request has just been released. Account for it, update the full and
2061 * congestion status, wake up any waiters. Called under q->queue_lock.
2062 */
165125e1 2063static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2064{
2065 struct request_list *rl = &q->rq;
2066
2067 rl->count[rw]--;
cb98fc8b
TH
2068 if (priv)
2069 rl->elvpriv--;
1da177e4
LT
2070
2071 __freed_request(q, rw);
2072
2073 if (unlikely(rl->starved[rw ^ 1]))
2074 __freed_request(q, rw ^ 1);
1da177e4
LT
2075}
2076
2077#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2078/*
d6344532
NP
2079 * Get a free request, queue_lock must be held.
2080 * Returns NULL on failure, with queue_lock held.
2081 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2082 */
165125e1 2083static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2084 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2085{
2086 struct request *rq = NULL;
2087 struct request_list *rl = &q->rq;
88ee5ef1 2088 struct io_context *ioc = NULL;
7749a8d4 2089 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2090 int may_queue, priv;
2091
7749a8d4 2092 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2093 if (may_queue == ELV_MQUEUE_NO)
2094 goto rq_starved;
2095
2096 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2097 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2098 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2099 /*
2100 * The queue will fill after this allocation, so set
2101 * it as full, and mark this process as "batching".
2102 * This process will be allowed to complete a batch of
2103 * requests, others will be blocked.
2104 */
2105 if (!blk_queue_full(q, rw)) {
2106 ioc_set_batching(q, ioc);
2107 blk_set_queue_full(q, rw);
2108 } else {
2109 if (may_queue != ELV_MQUEUE_MUST
2110 && !ioc_batching(q, ioc)) {
2111 /*
2112 * The queue is full and the allocating
2113 * process is not a "batcher", and not
2114 * exempted by the IO scheduler
2115 */
2116 goto out;
2117 }
2118 }
1da177e4 2119 }
79e2de4b 2120 blk_set_queue_congested(q, rw);
1da177e4
LT
2121 }
2122
082cf69e
JA
2123 /*
2124 * Only allow batching queuers to allocate up to 50% over the defined
2125 * limit of requests, otherwise we could have thousands of requests
2126 * allocated with any setting of ->nr_requests
2127 */
fd782a4a 2128 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2129 goto out;
fd782a4a 2130
1da177e4
LT
2131 rl->count[rw]++;
2132 rl->starved[rw] = 0;
cb98fc8b 2133
64521d1a 2134 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2135 if (priv)
2136 rl->elvpriv++;
2137
1da177e4
LT
2138 spin_unlock_irq(q->queue_lock);
2139
7749a8d4 2140 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2141 if (unlikely(!rq)) {
1da177e4
LT
2142 /*
2143 * Allocation failed presumably due to memory. Undo anything
2144 * we might have messed up.
2145 *
2146 * Allocating task should really be put onto the front of the
2147 * wait queue, but this is pretty rare.
2148 */
2149 spin_lock_irq(q->queue_lock);
cb98fc8b 2150 freed_request(q, rw, priv);
1da177e4
LT
2151
2152 /*
2153 * in the very unlikely event that allocation failed and no
2154 * requests for this direction was pending, mark us starved
2155 * so that freeing of a request in the other direction will
2156 * notice us. another possible fix would be to split the
2157 * rq mempool into READ and WRITE
2158 */
2159rq_starved:
2160 if (unlikely(rl->count[rw] == 0))
2161 rl->starved[rw] = 1;
2162
1da177e4
LT
2163 goto out;
2164 }
2165
88ee5ef1
JA
2166 /*
2167 * ioc may be NULL here, and ioc_batching will be false. That's
2168 * OK, if the queue is under the request limit then requests need
2169 * not count toward the nr_batch_requests limit. There will always
2170 * be some limit enforced by BLK_BATCH_TIME.
2171 */
1da177e4
LT
2172 if (ioc_batching(q, ioc))
2173 ioc->nr_batch_requests--;
2174
2175 rq_init(q, rq);
2056a782
JA
2176
2177 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2178out:
1da177e4
LT
2179 return rq;
2180}
2181
2182/*
2183 * No available requests for this queue, unplug the device and wait for some
2184 * requests to become available.
d6344532
NP
2185 *
2186 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2187 */
165125e1 2188static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2189 struct bio *bio)
1da177e4 2190{
7749a8d4 2191 const int rw = rw_flags & 0x01;
1da177e4
LT
2192 struct request *rq;
2193
7749a8d4 2194 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2195 while (!rq) {
2196 DEFINE_WAIT(wait);
1da177e4
LT
2197 struct request_list *rl = &q->rq;
2198
2199 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2200 TASK_UNINTERRUPTIBLE);
2201
7749a8d4 2202 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2203
2204 if (!rq) {
2205 struct io_context *ioc;
2206
2056a782
JA
2207 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2208
d6344532
NP
2209 __generic_unplug_device(q);
2210 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2211 io_schedule();
2212
2213 /*
2214 * After sleeping, we become a "batching" process and
2215 * will be able to allocate at least one request, and
2216 * up to a big batch of them for a small period time.
2217 * See ioc_batching, ioc_set_batching
2218 */
b5deef90 2219 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2220 ioc_set_batching(q, ioc);
d6344532
NP
2221
2222 spin_lock_irq(q->queue_lock);
1da177e4
LT
2223 }
2224 finish_wait(&rl->wait[rw], &wait);
450991bc 2225 }
1da177e4
LT
2226
2227 return rq;
2228}
2229
165125e1 2230struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2231{
2232 struct request *rq;
2233
2234 BUG_ON(rw != READ && rw != WRITE);
2235
d6344532
NP
2236 spin_lock_irq(q->queue_lock);
2237 if (gfp_mask & __GFP_WAIT) {
22e2c507 2238 rq = get_request_wait(q, rw, NULL);
d6344532 2239 } else {
22e2c507 2240 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2241 if (!rq)
2242 spin_unlock_irq(q->queue_lock);
2243 }
2244 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2245
2246 return rq;
2247}
1da177e4
LT
2248EXPORT_SYMBOL(blk_get_request);
2249
dc72ef4a
JA
2250/**
2251 * blk_start_queueing - initiate dispatch of requests to device
2252 * @q: request queue to kick into gear
2253 *
2254 * This is basically a helper to remove the need to know whether a queue
2255 * is plugged or not if someone just wants to initiate dispatch of requests
2256 * for this queue.
2257 *
2258 * The queue lock must be held with interrupts disabled.
2259 */
165125e1 2260void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2261{
2262 if (!blk_queue_plugged(q))
2263 q->request_fn(q);
2264 else
2265 __generic_unplug_device(q);
2266}
2267EXPORT_SYMBOL(blk_start_queueing);
2268
1da177e4
LT
2269/**
2270 * blk_requeue_request - put a request back on queue
2271 * @q: request queue where request should be inserted
2272 * @rq: request to be inserted
2273 *
2274 * Description:
2275 * Drivers often keep queueing requests until the hardware cannot accept
2276 * more, when that condition happens we need to put the request back
2277 * on the queue. Must be called with queue lock held.
2278 */
165125e1 2279void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2280{
2056a782
JA
2281 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2282
1da177e4
LT
2283 if (blk_rq_tagged(rq))
2284 blk_queue_end_tag(q, rq);
2285
2286 elv_requeue_request(q, rq);
2287}
2288
2289EXPORT_SYMBOL(blk_requeue_request);
2290
2291/**
2292 * blk_insert_request - insert a special request in to a request queue
2293 * @q: request queue where request should be inserted
2294 * @rq: request to be inserted
2295 * @at_head: insert request at head or tail of queue
2296 * @data: private data
1da177e4
LT
2297 *
2298 * Description:
2299 * Many block devices need to execute commands asynchronously, so they don't
2300 * block the whole kernel from preemption during request execution. This is
2301 * accomplished normally by inserting aritficial requests tagged as
2302 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2303 * scheduled for actual execution by the request queue.
2304 *
2305 * We have the option of inserting the head or the tail of the queue.
2306 * Typically we use the tail for new ioctls and so forth. We use the head
2307 * of the queue for things like a QUEUE_FULL message from a device, or a
2308 * host that is unable to accept a particular command.
2309 */
165125e1 2310void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2311 int at_head, void *data)
1da177e4 2312{
867d1191 2313 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2314 unsigned long flags;
2315
2316 /*
2317 * tell I/O scheduler that this isn't a regular read/write (ie it
2318 * must not attempt merges on this) and that it acts as a soft
2319 * barrier
2320 */
4aff5e23
JA
2321 rq->cmd_type = REQ_TYPE_SPECIAL;
2322 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2323
2324 rq->special = data;
2325
2326 spin_lock_irqsave(q->queue_lock, flags);
2327
2328 /*
2329 * If command is tagged, release the tag
2330 */
867d1191
TH
2331 if (blk_rq_tagged(rq))
2332 blk_queue_end_tag(q, rq);
1da177e4 2333
867d1191
TH
2334 drive_stat_acct(rq, rq->nr_sectors, 1);
2335 __elv_add_request(q, rq, where, 0);
dc72ef4a 2336 blk_start_queueing(q);
1da177e4
LT
2337 spin_unlock_irqrestore(q->queue_lock, flags);
2338}
2339
2340EXPORT_SYMBOL(blk_insert_request);
2341
0e75f906
MC
2342static int __blk_rq_unmap_user(struct bio *bio)
2343{
2344 int ret = 0;
2345
2346 if (bio) {
2347 if (bio_flagged(bio, BIO_USER_MAPPED))
2348 bio_unmap_user(bio);
2349 else
2350 ret = bio_uncopy_user(bio);
2351 }
2352
2353 return ret;
2354}
2355
3001ca77
N
2356int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2357 struct bio *bio)
2358{
2359 if (!rq->bio)
2360 blk_rq_bio_prep(q, rq, bio);
2361 else if (!ll_back_merge_fn(q, rq, bio))
2362 return -EINVAL;
2363 else {
2364 rq->biotail->bi_next = bio;
2365 rq->biotail = bio;
2366
2367 rq->data_len += bio->bi_size;
2368 }
2369 return 0;
2370}
2371EXPORT_SYMBOL(blk_rq_append_bio);
2372
165125e1 2373static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2374 void __user *ubuf, unsigned int len)
2375{
2376 unsigned long uaddr;
2377 struct bio *bio, *orig_bio;
2378 int reading, ret;
2379
2380 reading = rq_data_dir(rq) == READ;
2381
2382 /*
2383 * if alignment requirement is satisfied, map in user pages for
2384 * direct dma. else, set up kernel bounce buffers
2385 */
2386 uaddr = (unsigned long) ubuf;
2387 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2388 bio = bio_map_user(q, NULL, uaddr, len, reading);
2389 else
2390 bio = bio_copy_user(q, uaddr, len, reading);
2391
2985259b 2392 if (IS_ERR(bio))
0e75f906 2393 return PTR_ERR(bio);
0e75f906
MC
2394
2395 orig_bio = bio;
2396 blk_queue_bounce(q, &bio);
2985259b 2397
0e75f906
MC
2398 /*
2399 * We link the bounce buffer in and could have to traverse it
2400 * later so we have to get a ref to prevent it from being freed
2401 */
2402 bio_get(bio);
2403
3001ca77
N
2404 ret = blk_rq_append_bio(q, rq, bio);
2405 if (!ret)
2406 return bio->bi_size;
0e75f906 2407
0e75f906 2408 /* if it was boucned we must call the end io function */
6712ecf8 2409 bio_endio(bio, 0);
0e75f906
MC
2410 __blk_rq_unmap_user(orig_bio);
2411 bio_put(bio);
2412 return ret;
2413}
2414
1da177e4
LT
2415/**
2416 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2417 * @q: request queue where request should be inserted
73747aed 2418 * @rq: request structure to fill
1da177e4
LT
2419 * @ubuf: the user buffer
2420 * @len: length of user data
2421 *
2422 * Description:
2423 * Data will be mapped directly for zero copy io, if possible. Otherwise
2424 * a kernel bounce buffer is used.
2425 *
2426 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2427 * still in process context.
2428 *
2429 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2430 * before being submitted to the device, as pages mapped may be out of
2431 * reach. It's the callers responsibility to make sure this happens. The
2432 * original bio must be passed back in to blk_rq_unmap_user() for proper
2433 * unmapping.
2434 */
165125e1
JA
2435int blk_rq_map_user(struct request_queue *q, struct request *rq,
2436 void __user *ubuf, unsigned long len)
1da177e4 2437{
0e75f906 2438 unsigned long bytes_read = 0;
8e5cfc45 2439 struct bio *bio = NULL;
0e75f906 2440 int ret;
1da177e4 2441
defd94b7 2442 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2443 return -EINVAL;
2444 if (!len || !ubuf)
2445 return -EINVAL;
1da177e4 2446
0e75f906
MC
2447 while (bytes_read != len) {
2448 unsigned long map_len, end, start;
1da177e4 2449
0e75f906
MC
2450 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2451 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2452 >> PAGE_SHIFT;
2453 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2454
0e75f906
MC
2455 /*
2456 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2457 * pages. If this happens we just lower the requested
2458 * mapping len by a page so that we can fit
2459 */
2460 if (end - start > BIO_MAX_PAGES)
2461 map_len -= PAGE_SIZE;
1da177e4 2462
0e75f906
MC
2463 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2464 if (ret < 0)
2465 goto unmap_rq;
8e5cfc45
JA
2466 if (!bio)
2467 bio = rq->bio;
0e75f906
MC
2468 bytes_read += ret;
2469 ubuf += ret;
1da177e4
LT
2470 }
2471
0e75f906
MC
2472 rq->buffer = rq->data = NULL;
2473 return 0;
2474unmap_rq:
8e5cfc45 2475 blk_rq_unmap_user(bio);
0e75f906 2476 return ret;
1da177e4
LT
2477}
2478
2479EXPORT_SYMBOL(blk_rq_map_user);
2480
f1970baf
JB
2481/**
2482 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2483 * @q: request queue where request should be inserted
2484 * @rq: request to map data to
2485 * @iov: pointer to the iovec
2486 * @iov_count: number of elements in the iovec
af9997e4 2487 * @len: I/O byte count
f1970baf
JB
2488 *
2489 * Description:
2490 * Data will be mapped directly for zero copy io, if possible. Otherwise
2491 * a kernel bounce buffer is used.
2492 *
2493 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2494 * still in process context.
2495 *
2496 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2497 * before being submitted to the device, as pages mapped may be out of
2498 * reach. It's the callers responsibility to make sure this happens. The
2499 * original bio must be passed back in to blk_rq_unmap_user() for proper
2500 * unmapping.
2501 */
165125e1 2502int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2503 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2504{
2505 struct bio *bio;
2506
2507 if (!iov || iov_count <= 0)
2508 return -EINVAL;
2509
2510 /* we don't allow misaligned data like bio_map_user() does. If the
2511 * user is using sg, they're expected to know the alignment constraints
2512 * and respect them accordingly */
2513 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2514 if (IS_ERR(bio))
2515 return PTR_ERR(bio);
2516
0e75f906 2517 if (bio->bi_size != len) {
6712ecf8 2518 bio_endio(bio, 0);
0e75f906
MC
2519 bio_unmap_user(bio);
2520 return -EINVAL;
2521 }
2522
2523 bio_get(bio);
f1970baf
JB
2524 blk_rq_bio_prep(q, rq, bio);
2525 rq->buffer = rq->data = NULL;
f1970baf
JB
2526 return 0;
2527}
2528
2529EXPORT_SYMBOL(blk_rq_map_user_iov);
2530
1da177e4
LT
2531/**
2532 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2533 * @bio: start of bio list
1da177e4
LT
2534 *
2535 * Description:
8e5cfc45
JA
2536 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2537 * supply the original rq->bio from the blk_rq_map_user() return, since
2538 * the io completion may have changed rq->bio.
1da177e4 2539 */
8e5cfc45 2540int blk_rq_unmap_user(struct bio *bio)
1da177e4 2541{
8e5cfc45 2542 struct bio *mapped_bio;
48785bb9 2543 int ret = 0, ret2;
1da177e4 2544
8e5cfc45
JA
2545 while (bio) {
2546 mapped_bio = bio;
2547 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2548 mapped_bio = bio->bi_private;
1da177e4 2549
48785bb9
JA
2550 ret2 = __blk_rq_unmap_user(mapped_bio);
2551 if (ret2 && !ret)
2552 ret = ret2;
2553
8e5cfc45
JA
2554 mapped_bio = bio;
2555 bio = bio->bi_next;
2556 bio_put(mapped_bio);
0e75f906 2557 }
48785bb9
JA
2558
2559 return ret;
1da177e4
LT
2560}
2561
2562EXPORT_SYMBOL(blk_rq_unmap_user);
2563
df46b9a4
MC
2564/**
2565 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2566 * @q: request queue where request should be inserted
73747aed 2567 * @rq: request to fill
df46b9a4
MC
2568 * @kbuf: the kernel buffer
2569 * @len: length of user data
73747aed 2570 * @gfp_mask: memory allocation flags
df46b9a4 2571 */
165125e1 2572int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2573 unsigned int len, gfp_t gfp_mask)
df46b9a4 2574{
df46b9a4
MC
2575 struct bio *bio;
2576
defd94b7 2577 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2578 return -EINVAL;
2579 if (!len || !kbuf)
2580 return -EINVAL;
df46b9a4
MC
2581
2582 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2583 if (IS_ERR(bio))
2584 return PTR_ERR(bio);
df46b9a4 2585
dd1cab95
JA
2586 if (rq_data_dir(rq) == WRITE)
2587 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2588
dd1cab95 2589 blk_rq_bio_prep(q, rq, bio);
821de3a2 2590 blk_queue_bounce(q, &rq->bio);
dd1cab95 2591 rq->buffer = rq->data = NULL;
dd1cab95 2592 return 0;
df46b9a4
MC
2593}
2594
2595EXPORT_SYMBOL(blk_rq_map_kern);
2596
73747aed
CH
2597/**
2598 * blk_execute_rq_nowait - insert a request into queue for execution
2599 * @q: queue to insert the request in
2600 * @bd_disk: matching gendisk
2601 * @rq: request to insert
2602 * @at_head: insert request at head or tail of queue
2603 * @done: I/O completion handler
2604 *
2605 * Description:
2606 * Insert a fully prepared request at the back of the io scheduler queue
2607 * for execution. Don't wait for completion.
2608 */
165125e1 2609void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2610 struct request *rq, int at_head,
8ffdc655 2611 rq_end_io_fn *done)
f1970baf
JB
2612{
2613 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2614
2615 rq->rq_disk = bd_disk;
4aff5e23 2616 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2617 rq->end_io = done;
4c5d0bbd
AM
2618 WARN_ON(irqs_disabled());
2619 spin_lock_irq(q->queue_lock);
2620 __elv_add_request(q, rq, where, 1);
2621 __generic_unplug_device(q);
2622 spin_unlock_irq(q->queue_lock);
f1970baf 2623}
6e39b69e
MC
2624EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2625
1da177e4
LT
2626/**
2627 * blk_execute_rq - insert a request into queue for execution
2628 * @q: queue to insert the request in
2629 * @bd_disk: matching gendisk
2630 * @rq: request to insert
994ca9a1 2631 * @at_head: insert request at head or tail of queue
1da177e4
LT
2632 *
2633 * Description:
2634 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2635 * for execution and wait for completion.
1da177e4 2636 */
165125e1 2637int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2638 struct request *rq, int at_head)
1da177e4 2639{
60be6b9a 2640 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2641 char sense[SCSI_SENSE_BUFFERSIZE];
2642 int err = 0;
2643
1da177e4
LT
2644 /*
2645 * we need an extra reference to the request, so we can look at
2646 * it after io completion
2647 */
2648 rq->ref_count++;
2649
2650 if (!rq->sense) {
2651 memset(sense, 0, sizeof(sense));
2652 rq->sense = sense;
2653 rq->sense_len = 0;
2654 }
2655
c00895ab 2656 rq->end_io_data = &wait;
994ca9a1 2657 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2658 wait_for_completion(&wait);
1da177e4
LT
2659
2660 if (rq->errors)
2661 err = -EIO;
2662
2663 return err;
2664}
2665
2666EXPORT_SYMBOL(blk_execute_rq);
2667
fd5d8062
JA
2668static void bio_end_empty_barrier(struct bio *bio, int err)
2669{
2670 if (err)
2671 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2672
2673 complete(bio->bi_private);
2674}
2675
1da177e4
LT
2676/**
2677 * blkdev_issue_flush - queue a flush
2678 * @bdev: blockdev to issue flush for
2679 * @error_sector: error sector
2680 *
2681 * Description:
2682 * Issue a flush for the block device in question. Caller can supply
2683 * room for storing the error offset in case of a flush error, if they
2684 * wish to. Caller must run wait_for_completion() on its own.
2685 */
2686int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2687{
fd5d8062 2688 DECLARE_COMPLETION_ONSTACK(wait);
165125e1 2689 struct request_queue *q;
fd5d8062
JA
2690 struct bio *bio;
2691 int ret;
1da177e4
LT
2692
2693 if (bdev->bd_disk == NULL)
2694 return -ENXIO;
2695
2696 q = bdev_get_queue(bdev);
2697 if (!q)
2698 return -ENXIO;
1da177e4 2699
fd5d8062
JA
2700 bio = bio_alloc(GFP_KERNEL, 0);
2701 if (!bio)
2702 return -ENOMEM;
2703
2704 bio->bi_end_io = bio_end_empty_barrier;
2705 bio->bi_private = &wait;
2706 bio->bi_bdev = bdev;
2707 submit_bio(1 << BIO_RW_BARRIER, bio);
2708
2709 wait_for_completion(&wait);
2710
2711 /*
2712 * The driver must store the error location in ->bi_sector, if
2713 * it supports it. For non-stacked drivers, this should be copied
2714 * from rq->sector.
2715 */
2716 if (error_sector)
2717 *error_sector = bio->bi_sector;
2718
2719 ret = 0;
2720 if (!bio_flagged(bio, BIO_UPTODATE))
2721 ret = -EIO;
2722
2723 bio_put(bio);
2724 return ret;
1da177e4
LT
2725}
2726
2727EXPORT_SYMBOL(blkdev_issue_flush);
2728
93d17d3d 2729static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
1da177e4
LT
2730{
2731 int rw = rq_data_dir(rq);
2732
2733 if (!blk_fs_request(rq) || !rq->rq_disk)
2734 return;
2735
d72d904a 2736 if (!new_io) {
a362357b 2737 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2738 } else {
1da177e4
LT
2739 disk_round_stats(rq->rq_disk);
2740 rq->rq_disk->in_flight++;
2741 }
2742}
2743
2744/*
2745 * add-request adds a request to the linked list.
2746 * queue lock is held and interrupts disabled, as we muck with the
2747 * request queue list.
2748 */
165125e1 2749static inline void add_request(struct request_queue * q, struct request * req)
1da177e4
LT
2750{
2751 drive_stat_acct(req, req->nr_sectors, 1);
2752
1da177e4
LT
2753 /*
2754 * elevator indicated where it wants this request to be
2755 * inserted at elevator_merge time
2756 */
2757 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2758}
2759
2760/*
2761 * disk_round_stats() - Round off the performance stats on a struct
2762 * disk_stats.
2763 *
2764 * The average IO queue length and utilisation statistics are maintained
2765 * by observing the current state of the queue length and the amount of
2766 * time it has been in this state for.
2767 *
2768 * Normally, that accounting is done on IO completion, but that can result
2769 * in more than a second's worth of IO being accounted for within any one
2770 * second, leading to >100% utilisation. To deal with that, we call this
2771 * function to do a round-off before returning the results when reading
2772 * /proc/diskstats. This accounts immediately for all queue usage up to
2773 * the current jiffies and restarts the counters again.
2774 */
2775void disk_round_stats(struct gendisk *disk)
2776{
2777 unsigned long now = jiffies;
2778
b2982649
CK
2779 if (now == disk->stamp)
2780 return;
1da177e4 2781
20e5c81f
CK
2782 if (disk->in_flight) {
2783 __disk_stat_add(disk, time_in_queue,
2784 disk->in_flight * (now - disk->stamp));
2785 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2786 }
1da177e4 2787 disk->stamp = now;
1da177e4
LT
2788}
2789
3eaf840e
JNN
2790EXPORT_SYMBOL_GPL(disk_round_stats);
2791
1da177e4
LT
2792/*
2793 * queue lock must be held
2794 */
165125e1 2795void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2796{
1da177e4
LT
2797 if (unlikely(!q))
2798 return;
2799 if (unlikely(--req->ref_count))
2800 return;
2801
8922e16c
TH
2802 elv_completed_request(q, req);
2803
1da177e4
LT
2804 /*
2805 * Request may not have originated from ll_rw_blk. if not,
2806 * it didn't come out of our reserved rq pools
2807 */
49171e5c 2808 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2809 int rw = rq_data_dir(req);
4aff5e23 2810 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2811
1da177e4 2812 BUG_ON(!list_empty(&req->queuelist));
9817064b 2813 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2814
2815 blk_free_request(q, req);
cb98fc8b 2816 freed_request(q, rw, priv);
1da177e4
LT
2817 }
2818}
2819
6e39b69e
MC
2820EXPORT_SYMBOL_GPL(__blk_put_request);
2821
1da177e4
LT
2822void blk_put_request(struct request *req)
2823{
8922e16c 2824 unsigned long flags;
165125e1 2825 struct request_queue *q = req->q;
8922e16c 2826
1da177e4 2827 /*
8922e16c
TH
2828 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2829 * following if (q) test.
1da177e4 2830 */
8922e16c 2831 if (q) {
1da177e4
LT
2832 spin_lock_irqsave(q->queue_lock, flags);
2833 __blk_put_request(q, req);
2834 spin_unlock_irqrestore(q->queue_lock, flags);
2835 }
2836}
2837
2838EXPORT_SYMBOL(blk_put_request);
2839
2840/**
2841 * blk_end_sync_rq - executes a completion event on a request
2842 * @rq: request to complete
fddfdeaf 2843 * @error: end io status of the request
1da177e4 2844 */
8ffdc655 2845void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2846{
c00895ab 2847 struct completion *waiting = rq->end_io_data;
1da177e4 2848
c00895ab 2849 rq->end_io_data = NULL;
1da177e4
LT
2850 __blk_put_request(rq->q, rq);
2851
2852 /*
2853 * complete last, if this is a stack request the process (and thus
2854 * the rq pointer) could be invalid right after this complete()
2855 */
2856 complete(waiting);
2857}
2858EXPORT_SYMBOL(blk_end_sync_rq);
2859
1da177e4
LT
2860/*
2861 * Has to be called with the request spinlock acquired
2862 */
165125e1 2863static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2864 struct request *next)
2865{
2866 if (!rq_mergeable(req) || !rq_mergeable(next))
2867 return 0;
2868
2869 /*
d6e05edc 2870 * not contiguous
1da177e4
LT
2871 */
2872 if (req->sector + req->nr_sectors != next->sector)
2873 return 0;
2874
2875 if (rq_data_dir(req) != rq_data_dir(next)
2876 || req->rq_disk != next->rq_disk
c00895ab 2877 || next->special)
1da177e4
LT
2878 return 0;
2879
2880 /*
2881 * If we are allowed to merge, then append bio list
2882 * from next to rq and release next. merge_requests_fn
2883 * will have updated segment counts, update sector
2884 * counts here.
2885 */
1aa4f24f 2886 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2887 return 0;
2888
2889 /*
2890 * At this point we have either done a back merge
2891 * or front merge. We need the smaller start_time of
2892 * the merged requests to be the current request
2893 * for accounting purposes.
2894 */
2895 if (time_after(req->start_time, next->start_time))
2896 req->start_time = next->start_time;
2897
2898 req->biotail->bi_next = next->bio;
2899 req->biotail = next->biotail;
2900
2901 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2902
2903 elv_merge_requests(q, req, next);
2904
2905 if (req->rq_disk) {
2906 disk_round_stats(req->rq_disk);
2907 req->rq_disk->in_flight--;
2908 }
2909
22e2c507
JA
2910 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2911
1da177e4
LT
2912 __blk_put_request(q, next);
2913 return 1;
2914}
2915
165125e1
JA
2916static inline int attempt_back_merge(struct request_queue *q,
2917 struct request *rq)
1da177e4
LT
2918{
2919 struct request *next = elv_latter_request(q, rq);
2920
2921 if (next)
2922 return attempt_merge(q, rq, next);
2923
2924 return 0;
2925}
2926
165125e1
JA
2927static inline int attempt_front_merge(struct request_queue *q,
2928 struct request *rq)
1da177e4
LT
2929{
2930 struct request *prev = elv_former_request(q, rq);
2931
2932 if (prev)
2933 return attempt_merge(q, prev, rq);
2934
2935 return 0;
2936}
2937
52d9e675
TH
2938static void init_request_from_bio(struct request *req, struct bio *bio)
2939{
4aff5e23 2940 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2941
2942 /*
2943 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2944 */
2945 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2946 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2947
2948 /*
2949 * REQ_BARRIER implies no merging, but lets make it explicit
2950 */
2951 if (unlikely(bio_barrier(bio)))
4aff5e23 2952 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2953
b31dc66a 2954 if (bio_sync(bio))
4aff5e23 2955 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2956 if (bio_rw_meta(bio))
2957 req->cmd_flags |= REQ_RW_META;
b31dc66a 2958
52d9e675
TH
2959 req->errors = 0;
2960 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 2961 req->ioprio = bio_prio(bio);
52d9e675 2962 req->start_time = jiffies;
bc1c56fd 2963 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
2964}
2965
165125e1 2966static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2967{
450991bc 2968 struct request *req;
51da90fc
JA
2969 int el_ret, nr_sectors, barrier, err;
2970 const unsigned short prio = bio_prio(bio);
2971 const int sync = bio_sync(bio);
7749a8d4 2972 int rw_flags;
1da177e4 2973
1da177e4 2974 nr_sectors = bio_sectors(bio);
1da177e4
LT
2975
2976 /*
2977 * low level driver can indicate that it wants pages above a
2978 * certain limit bounced to low memory (ie for highmem, or even
2979 * ISA dma in theory)
2980 */
2981 blk_queue_bounce(q, &bio);
2982
1da177e4 2983 barrier = bio_barrier(bio);
797e7dbb 2984 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2985 err = -EOPNOTSUPP;
2986 goto end_io;
2987 }
2988
1da177e4
LT
2989 spin_lock_irq(q->queue_lock);
2990
450991bc 2991 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
2992 goto get_rq;
2993
2994 el_ret = elv_merge(q, &req, bio);
2995 switch (el_ret) {
2996 case ELEVATOR_BACK_MERGE:
2997 BUG_ON(!rq_mergeable(req));
2998
1aa4f24f 2999 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
3000 break;
3001
2056a782
JA
3002 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3003
1da177e4
LT
3004 req->biotail->bi_next = bio;
3005 req->biotail = bio;
3006 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3007 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3008 drive_stat_acct(req, nr_sectors, 0);
3009 if (!attempt_back_merge(q, req))
2e662b65 3010 elv_merged_request(q, req, el_ret);
1da177e4
LT
3011 goto out;
3012
3013 case ELEVATOR_FRONT_MERGE:
3014 BUG_ON(!rq_mergeable(req));
3015
1aa4f24f 3016 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3017 break;
3018
2056a782
JA
3019 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3020
1da177e4
LT
3021 bio->bi_next = req->bio;
3022 req->bio = bio;
3023
3024 /*
3025 * may not be valid. if the low level driver said
3026 * it didn't need a bounce buffer then it better
3027 * not touch req->buffer either...
3028 */
3029 req->buffer = bio_data(bio);
51da90fc
JA
3030 req->current_nr_sectors = bio_cur_sectors(bio);
3031 req->hard_cur_sectors = req->current_nr_sectors;
3032 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3033 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3034 req->ioprio = ioprio_best(req->ioprio, prio);
1da177e4
LT
3035 drive_stat_acct(req, nr_sectors, 0);
3036 if (!attempt_front_merge(q, req))
2e662b65 3037 elv_merged_request(q, req, el_ret);
1da177e4
LT
3038 goto out;
3039
450991bc 3040 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3041 default:
450991bc 3042 ;
1da177e4
LT
3043 }
3044
450991bc 3045get_rq:
7749a8d4
JA
3046 /*
3047 * This sync check and mask will be re-done in init_request_from_bio(),
3048 * but we need to set it earlier to expose the sync flag to the
3049 * rq allocator and io schedulers.
3050 */
3051 rw_flags = bio_data_dir(bio);
3052 if (sync)
3053 rw_flags |= REQ_RW_SYNC;
3054
1da177e4 3055 /*
450991bc 3056 * Grab a free request. This is might sleep but can not fail.
d6344532 3057 * Returns with the queue unlocked.
450991bc 3058 */
7749a8d4 3059 req = get_request_wait(q, rw_flags, bio);
d6344532 3060
450991bc
NP
3061 /*
3062 * After dropping the lock and possibly sleeping here, our request
3063 * may now be mergeable after it had proven unmergeable (above).
3064 * We don't worry about that case for efficiency. It won't happen
3065 * often, and the elevators are able to handle it.
1da177e4 3066 */
52d9e675 3067 init_request_from_bio(req, bio);
1da177e4 3068
450991bc
NP
3069 spin_lock_irq(q->queue_lock);
3070 if (elv_queue_empty(q))
3071 blk_plug_device(q);
1da177e4
LT
3072 add_request(q, req);
3073out:
4a534f93 3074 if (sync)
1da177e4
LT
3075 __generic_unplug_device(q);
3076
3077 spin_unlock_irq(q->queue_lock);
3078 return 0;
3079
3080end_io:
6712ecf8 3081 bio_endio(bio, err);
1da177e4
LT
3082 return 0;
3083}
3084
3085/*
3086 * If bio->bi_dev is a partition, remap the location
3087 */
3088static inline void blk_partition_remap(struct bio *bio)
3089{
3090 struct block_device *bdev = bio->bi_bdev;
3091
bf2de6f5 3092 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4 3093 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3094 const int rw = bio_data_dir(bio);
3095
3096 p->sectors[rw] += bio_sectors(bio);
3097 p->ios[rw]++;
1da177e4 3098
1da177e4
LT
3099 bio->bi_sector += p->start_sect;
3100 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3101
3102 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3103 bdev->bd_dev, bio->bi_sector,
3104 bio->bi_sector - p->start_sect);
1da177e4
LT
3105 }
3106}
3107
1da177e4
LT
3108static void handle_bad_sector(struct bio *bio)
3109{
3110 char b[BDEVNAME_SIZE];
3111
3112 printk(KERN_INFO "attempt to access beyond end of device\n");
3113 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3114 bdevname(bio->bi_bdev, b),
3115 bio->bi_rw,
3116 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3117 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3118
3119 set_bit(BIO_EOF, &bio->bi_flags);
3120}
3121
c17bb495
AM
3122#ifdef CONFIG_FAIL_MAKE_REQUEST
3123
3124static DECLARE_FAULT_ATTR(fail_make_request);
3125
3126static int __init setup_fail_make_request(char *str)
3127{
3128 return setup_fault_attr(&fail_make_request, str);
3129}
3130__setup("fail_make_request=", setup_fail_make_request);
3131
3132static int should_fail_request(struct bio *bio)
3133{
3134 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3135 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3136 return should_fail(&fail_make_request, bio->bi_size);
3137
3138 return 0;
3139}
3140
3141static int __init fail_make_request_debugfs(void)
3142{
3143 return init_fault_attr_dentries(&fail_make_request,
3144 "fail_make_request");
3145}
3146
3147late_initcall(fail_make_request_debugfs);
3148
3149#else /* CONFIG_FAIL_MAKE_REQUEST */
3150
3151static inline int should_fail_request(struct bio *bio)
3152{
3153 return 0;
3154}
3155
3156#endif /* CONFIG_FAIL_MAKE_REQUEST */
3157
c07e2b41
JA
3158/*
3159 * Check whether this bio extends beyond the end of the device.
3160 */
3161static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3162{
3163 sector_t maxsector;
3164
3165 if (!nr_sectors)
3166 return 0;
3167
3168 /* Test device or partition size, when known. */
3169 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3170 if (maxsector) {
3171 sector_t sector = bio->bi_sector;
3172
3173 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3174 /*
3175 * This may well happen - the kernel calls bread()
3176 * without checking the size of the device, e.g., when
3177 * mounting a device.
3178 */
3179 handle_bad_sector(bio);
3180 return 1;
3181 }
3182 }
3183
3184 return 0;
3185}
3186
1da177e4
LT
3187/**
3188 * generic_make_request: hand a buffer to its device driver for I/O
3189 * @bio: The bio describing the location in memory and on the device.
3190 *
3191 * generic_make_request() is used to make I/O requests of block
3192 * devices. It is passed a &struct bio, which describes the I/O that needs
3193 * to be done.
3194 *
3195 * generic_make_request() does not return any status. The
3196 * success/failure status of the request, along with notification of
3197 * completion, is delivered asynchronously through the bio->bi_end_io
3198 * function described (one day) else where.
3199 *
3200 * The caller of generic_make_request must make sure that bi_io_vec
3201 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3202 * set to describe the device address, and the
3203 * bi_end_io and optionally bi_private are set to describe how
3204 * completion notification should be signaled.
3205 *
3206 * generic_make_request and the drivers it calls may use bi_next if this
3207 * bio happens to be merged with someone else, and may change bi_dev and
3208 * bi_sector for remaps as it sees fit. So the values of these fields
3209 * should NOT be depended on after the call to generic_make_request.
3210 */
d89d8796 3211static inline void __generic_make_request(struct bio *bio)
1da177e4 3212{
165125e1 3213 struct request_queue *q;
5ddfe969 3214 sector_t old_sector;
1da177e4 3215 int ret, nr_sectors = bio_sectors(bio);
2056a782 3216 dev_t old_dev;
1da177e4
LT
3217
3218 might_sleep();
1da177e4 3219
c07e2b41
JA
3220 if (bio_check_eod(bio, nr_sectors))
3221 goto end_io;
1da177e4
LT
3222
3223 /*
3224 * Resolve the mapping until finished. (drivers are
3225 * still free to implement/resolve their own stacking
3226 * by explicitly returning 0)
3227 *
3228 * NOTE: we don't repeat the blk_size check for each new device.
3229 * Stacking drivers are expected to know what they are doing.
3230 */
5ddfe969 3231 old_sector = -1;
2056a782 3232 old_dev = 0;
1da177e4
LT
3233 do {
3234 char b[BDEVNAME_SIZE];
3235
3236 q = bdev_get_queue(bio->bi_bdev);
3237 if (!q) {
3238 printk(KERN_ERR
3239 "generic_make_request: Trying to access "
3240 "nonexistent block-device %s (%Lu)\n",
3241 bdevname(bio->bi_bdev, b),
3242 (long long) bio->bi_sector);
3243end_io:
6712ecf8 3244 bio_endio(bio, -EIO);
1da177e4
LT
3245 break;
3246 }
3247
4fa253f3 3248 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1da177e4
LT
3249 printk("bio too big device %s (%u > %u)\n",
3250 bdevname(bio->bi_bdev, b),
3251 bio_sectors(bio),
3252 q->max_hw_sectors);
3253 goto end_io;
3254 }
3255
fde6ad22 3256 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3257 goto end_io;
3258
c17bb495
AM
3259 if (should_fail_request(bio))
3260 goto end_io;
3261
1da177e4
LT
3262 /*
3263 * If this device has partitions, remap block n
3264 * of partition p to block n+start(p) of the disk.
3265 */
3266 blk_partition_remap(bio);
3267
5ddfe969 3268 if (old_sector != -1)
4fa253f3 3269 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3270 old_sector);
2056a782
JA
3271
3272 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3273
5ddfe969 3274 old_sector = bio->bi_sector;
2056a782
JA
3275 old_dev = bio->bi_bdev->bd_dev;
3276
c07e2b41
JA
3277 if (bio_check_eod(bio, nr_sectors))
3278 goto end_io;
5ddfe969 3279
1da177e4
LT
3280 ret = q->make_request_fn(q, bio);
3281 } while (ret);
3282}
3283
d89d8796
NB
3284/*
3285 * We only want one ->make_request_fn to be active at a time,
3286 * else stack usage with stacked devices could be a problem.
3287 * So use current->bio_{list,tail} to keep a list of requests
3288 * submited by a make_request_fn function.
3289 * current->bio_tail is also used as a flag to say if
3290 * generic_make_request is currently active in this task or not.
3291 * If it is NULL, then no make_request is active. If it is non-NULL,
3292 * then a make_request is active, and new requests should be added
3293 * at the tail
3294 */
3295void generic_make_request(struct bio *bio)
3296{
3297 if (current->bio_tail) {
3298 /* make_request is active */
3299 *(current->bio_tail) = bio;
3300 bio->bi_next = NULL;
3301 current->bio_tail = &bio->bi_next;
3302 return;
3303 }
3304 /* following loop may be a bit non-obvious, and so deserves some
3305 * explanation.
3306 * Before entering the loop, bio->bi_next is NULL (as all callers
3307 * ensure that) so we have a list with a single bio.
3308 * We pretend that we have just taken it off a longer list, so
3309 * we assign bio_list to the next (which is NULL) and bio_tail
3310 * to &bio_list, thus initialising the bio_list of new bios to be
3311 * added. __generic_make_request may indeed add some more bios
3312 * through a recursive call to generic_make_request. If it
3313 * did, we find a non-NULL value in bio_list and re-enter the loop
3314 * from the top. In this case we really did just take the bio
3315 * of the top of the list (no pretending) and so fixup bio_list and
3316 * bio_tail or bi_next, and call into __generic_make_request again.
3317 *
3318 * The loop was structured like this to make only one call to
3319 * __generic_make_request (which is important as it is large and
3320 * inlined) and to keep the structure simple.
3321 */
3322 BUG_ON(bio->bi_next);
3323 do {
3324 current->bio_list = bio->bi_next;
3325 if (bio->bi_next == NULL)
3326 current->bio_tail = &current->bio_list;
3327 else
3328 bio->bi_next = NULL;
3329 __generic_make_request(bio);
3330 bio = current->bio_list;
3331 } while (bio);
3332 current->bio_tail = NULL; /* deactivate */
3333}
3334
1da177e4
LT
3335EXPORT_SYMBOL(generic_make_request);
3336
3337/**
3338 * submit_bio: submit a bio to the block device layer for I/O
3339 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3340 * @bio: The &struct bio which describes the I/O
3341 *
3342 * submit_bio() is very similar in purpose to generic_make_request(), and
3343 * uses that function to do most of the work. Both are fairly rough
3344 * interfaces, @bio must be presetup and ready for I/O.
3345 *
3346 */
3347void submit_bio(int rw, struct bio *bio)
3348{
3349 int count = bio_sectors(bio);
3350
22e2c507 3351 bio->bi_rw |= rw;
1da177e4 3352
bf2de6f5
JA
3353 /*
3354 * If it's a regular read/write or a barrier with data attached,
3355 * go through the normal accounting stuff before submission.
3356 */
3357 if (!bio_empty_barrier(bio)) {
3358
3359 BIO_BUG_ON(!bio->bi_size);
3360 BIO_BUG_ON(!bio->bi_io_vec);
3361
3362 if (rw & WRITE) {
3363 count_vm_events(PGPGOUT, count);
3364 } else {
3365 task_io_account_read(bio->bi_size);
3366 count_vm_events(PGPGIN, count);
3367 }
3368
3369 if (unlikely(block_dump)) {
3370 char b[BDEVNAME_SIZE];
3371 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 3372 current->comm, task_pid_nr(current),
bf2de6f5
JA
3373 (rw & WRITE) ? "WRITE" : "READ",
3374 (unsigned long long)bio->bi_sector,
3375 bdevname(bio->bi_bdev,b));
3376 }
1da177e4
LT
3377 }
3378
3379 generic_make_request(bio);
3380}
3381
3382EXPORT_SYMBOL(submit_bio);
3383
93d17d3d 3384static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3385{
3386 if (blk_fs_request(rq)) {
3387 rq->hard_sector += nsect;
3388 rq->hard_nr_sectors -= nsect;
3389
3390 /*
3391 * Move the I/O submission pointers ahead if required.
3392 */
3393 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3394 (rq->sector <= rq->hard_sector)) {
3395 rq->sector = rq->hard_sector;
3396 rq->nr_sectors = rq->hard_nr_sectors;
3397 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3398 rq->current_nr_sectors = rq->hard_cur_sectors;
3399 rq->buffer = bio_data(rq->bio);
3400 }
3401
3402 /*
3403 * if total number of sectors is less than the first segment
3404 * size, something has gone terribly wrong
3405 */
3406 if (rq->nr_sectors < rq->current_nr_sectors) {
3407 printk("blk: request botched\n");
3408 rq->nr_sectors = rq->current_nr_sectors;
3409 }
3410 }
3411}
3412
3413static int __end_that_request_first(struct request *req, int uptodate,
3414 int nr_bytes)
3415{
3416 int total_bytes, bio_nbytes, error, next_idx = 0;
3417 struct bio *bio;
3418
2056a782
JA
3419 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3420
1da177e4
LT
3421 /*
3422 * extend uptodate bool to allow < 0 value to be direct io error
3423 */
3424 error = 0;
3425 if (end_io_error(uptodate))
3426 error = !uptodate ? -EIO : uptodate;
3427
3428 /*
3429 * for a REQ_BLOCK_PC request, we want to carry any eventual
3430 * sense key with us all the way through
3431 */
3432 if (!blk_pc_request(req))
3433 req->errors = 0;
3434
3435 if (!uptodate) {
4aff5e23 3436 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3437 printk("end_request: I/O error, dev %s, sector %llu\n",
3438 req->rq_disk ? req->rq_disk->disk_name : "?",
3439 (unsigned long long)req->sector);
3440 }
3441
d72d904a 3442 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3443 const int rw = rq_data_dir(req);
3444
53e86061 3445 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3446 }
3447
1da177e4
LT
3448 total_bytes = bio_nbytes = 0;
3449 while ((bio = req->bio) != NULL) {
3450 int nbytes;
3451
bf2de6f5
JA
3452 /*
3453 * For an empty barrier request, the low level driver must
3454 * store a potential error location in ->sector. We pass
3455 * that back up in ->bi_sector.
3456 */
3457 if (blk_empty_barrier(req))
3458 bio->bi_sector = req->sector;
3459
1da177e4
LT
3460 if (nr_bytes >= bio->bi_size) {
3461 req->bio = bio->bi_next;
3462 nbytes = bio->bi_size;
5bb23a68 3463 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
3464 next_idx = 0;
3465 bio_nbytes = 0;
3466 } else {
3467 int idx = bio->bi_idx + next_idx;
3468
3469 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3470 blk_dump_rq_flags(req, "__end_that");
3471 printk("%s: bio idx %d >= vcnt %d\n",
3472 __FUNCTION__,
3473 bio->bi_idx, bio->bi_vcnt);
3474 break;
3475 }
3476
3477 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3478 BIO_BUG_ON(nbytes > bio->bi_size);
3479
3480 /*
3481 * not a complete bvec done
3482 */
3483 if (unlikely(nbytes > nr_bytes)) {
3484 bio_nbytes += nr_bytes;
3485 total_bytes += nr_bytes;
3486 break;
3487 }
3488
3489 /*
3490 * advance to the next vector
3491 */
3492 next_idx++;
3493 bio_nbytes += nbytes;
3494 }
3495
3496 total_bytes += nbytes;
3497 nr_bytes -= nbytes;
3498
3499 if ((bio = req->bio)) {
3500 /*
3501 * end more in this run, or just return 'not-done'
3502 */
3503 if (unlikely(nr_bytes <= 0))
3504 break;
3505 }
3506 }
3507
3508 /*
3509 * completely done
3510 */
3511 if (!req->bio)
3512 return 0;
3513
3514 /*
3515 * if the request wasn't completed, update state
3516 */
3517 if (bio_nbytes) {
5bb23a68 3518 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
3519 bio->bi_idx += next_idx;
3520 bio_iovec(bio)->bv_offset += nr_bytes;
3521 bio_iovec(bio)->bv_len -= nr_bytes;
3522 }
3523
3524 blk_recalc_rq_sectors(req, total_bytes >> 9);
3525 blk_recalc_rq_segments(req);
3526 return 1;
3527}
3528
3529/**
3530 * end_that_request_first - end I/O on a request
3531 * @req: the request being processed
3532 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3533 * @nr_sectors: number of sectors to end I/O on
3534 *
3535 * Description:
3536 * Ends I/O on a number of sectors attached to @req, and sets it up
3537 * for the next range of segments (if any) in the cluster.
3538 *
3539 * Return:
3540 * 0 - we are done with this request, call end_that_request_last()
3541 * 1 - still buffers pending for this request
3542 **/
3543int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3544{
3545 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3546}
3547
3548EXPORT_SYMBOL(end_that_request_first);
3549
3550/**
3551 * end_that_request_chunk - end I/O on a request
3552 * @req: the request being processed
3553 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3554 * @nr_bytes: number of bytes to complete
3555 *
3556 * Description:
3557 * Ends I/O on a number of bytes attached to @req, and sets it up
3558 * for the next range of segments (if any). Like end_that_request_first(),
3559 * but deals with bytes instead of sectors.
3560 *
3561 * Return:
3562 * 0 - we are done with this request, call end_that_request_last()
3563 * 1 - still buffers pending for this request
3564 **/
3565int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3566{
3567 return __end_that_request_first(req, uptodate, nr_bytes);
3568}
3569
3570EXPORT_SYMBOL(end_that_request_chunk);
3571
ff856bad
JA
3572/*
3573 * splice the completion data to a local structure and hand off to
3574 * process_completion_queue() to complete the requests
3575 */
3576static void blk_done_softirq(struct softirq_action *h)
3577{
626ab0e6 3578 struct list_head *cpu_list, local_list;
ff856bad
JA
3579
3580 local_irq_disable();
3581 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3582 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3583 local_irq_enable();
3584
3585 while (!list_empty(&local_list)) {
3586 struct request *rq = list_entry(local_list.next, struct request, donelist);
3587
3588 list_del_init(&rq->donelist);
3589 rq->q->softirq_done_fn(rq);
3590 }
3591}
3592
db47d475 3593static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
ff856bad
JA
3594 void *hcpu)
3595{
3596 /*
3597 * If a CPU goes away, splice its entries to the current CPU
3598 * and trigger a run of the softirq
3599 */
8bb78442 3600 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3601 int cpu = (unsigned long) hcpu;
3602
3603 local_irq_disable();
3604 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3605 &__get_cpu_var(blk_cpu_done));
3606 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3607 local_irq_enable();
3608 }
3609
3610 return NOTIFY_OK;
3611}
3612
3613
db47d475 3614static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
3615 .notifier_call = blk_cpu_notify,
3616};
3617
ff856bad
JA
3618/**
3619 * blk_complete_request - end I/O on a request
3620 * @req: the request being processed
3621 *
3622 * Description:
3623 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3624 * unless the driver actually implements this in its completion callback
4fa253f3 3625 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
3626 * through a softirq handler. The user must have registered a completion
3627 * callback through blk_queue_softirq_done().
3628 **/
3629
3630void blk_complete_request(struct request *req)
3631{
3632 struct list_head *cpu_list;
3633 unsigned long flags;
3634
3635 BUG_ON(!req->q->softirq_done_fn);
3636
3637 local_irq_save(flags);
3638
3639 cpu_list = &__get_cpu_var(blk_cpu_done);
3640 list_add_tail(&req->donelist, cpu_list);
3641 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3642
3643 local_irq_restore(flags);
3644}
3645
3646EXPORT_SYMBOL(blk_complete_request);
3647
1da177e4
LT
3648/*
3649 * queue lock must be held
3650 */
8ffdc655 3651void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3652{
3653 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3654 int error;
3655
3656 /*
3657 * extend uptodate bool to allow < 0 value to be direct io error
3658 */
3659 error = 0;
3660 if (end_io_error(uptodate))
3661 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3662
3663 if (unlikely(laptop_mode) && blk_fs_request(req))
3664 laptop_io_completion();
3665
fd0ff8aa
JA
3666 /*
3667 * Account IO completion. bar_rq isn't accounted as a normal
3668 * IO on queueing nor completion. Accounting the containing
3669 * request is enough.
3670 */
3671 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3672 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3673 const int rw = rq_data_dir(req);
3674
3675 __disk_stat_inc(disk, ios[rw]);
3676 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3677 disk_round_stats(disk);
3678 disk->in_flight--;
3679 }
3680 if (req->end_io)
8ffdc655 3681 req->end_io(req, error);
1da177e4
LT
3682 else
3683 __blk_put_request(req->q, req);
3684}
3685
3686EXPORT_SYMBOL(end_that_request_last);
3687
a0cd1285
JA
3688static inline void __end_request(struct request *rq, int uptodate,
3689 unsigned int nr_bytes, int dequeue)
1da177e4 3690{
a0cd1285
JA
3691 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3692 if (dequeue)
3693 blkdev_dequeue_request(rq);
3694 add_disk_randomness(rq->rq_disk);
3695 end_that_request_last(rq, uptodate);
1da177e4
LT
3696 }
3697}
3698
a0cd1285
JA
3699static unsigned int rq_byte_size(struct request *rq)
3700{
3701 if (blk_fs_request(rq))
3702 return rq->hard_nr_sectors << 9;
3703
3704 return rq->data_len;
3705}
3706
3707/**
3708 * end_queued_request - end all I/O on a queued request
3709 * @rq: the request being processed
3710 * @uptodate: error value or 0/1 uptodate flag
3711 *
3712 * Description:
3713 * Ends all I/O on a request, and removes it from the block layer queues.
3714 * Not suitable for normal IO completion, unless the driver still has
3715 * the request attached to the block layer.
3716 *
3717 **/
3718void end_queued_request(struct request *rq, int uptodate)
3719{
3720 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3721}
3722EXPORT_SYMBOL(end_queued_request);
3723
3724/**
3725 * end_dequeued_request - end all I/O on a dequeued request
3726 * @rq: the request being processed
3727 * @uptodate: error value or 0/1 uptodate flag
3728 *
3729 * Description:
3730 * Ends all I/O on a request. The request must already have been
3731 * dequeued using blkdev_dequeue_request(), as is normally the case
3732 * for most drivers.
3733 *
3734 **/
3735void end_dequeued_request(struct request *rq, int uptodate)
3736{
3737 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3738}
3739EXPORT_SYMBOL(end_dequeued_request);
3740
3741
3742/**
3743 * end_request - end I/O on the current segment of the request
8f731f7d 3744 * @req: the request being processed
a0cd1285
JA
3745 * @uptodate: error value or 0/1 uptodate flag
3746 *
3747 * Description:
3748 * Ends I/O on the current segment of a request. If that is the only
3749 * remaining segment, the request is also completed and freed.
3750 *
3751 * This is a remnant of how older block drivers handled IO completions.
3752 * Modern drivers typically end IO on the full request in one go, unless
3753 * they have a residual value to account for. For that case this function
3754 * isn't really useful, unless the residual just happens to be the
3755 * full current segment. In other words, don't use this function in new
3756 * code. Either use end_request_completely(), or the
3757 * end_that_request_chunk() (along with end_that_request_last()) for
3758 * partial completions.
3759 *
3760 **/
3761void end_request(struct request *req, int uptodate)
3762{
3763 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3764}
1da177e4
LT
3765EXPORT_SYMBOL(end_request);
3766
66846572
N
3767static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3768 struct bio *bio)
1da177e4 3769{
4aff5e23
JA
3770 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3771 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3772
3773 rq->nr_phys_segments = bio_phys_segments(q, bio);
3774 rq->nr_hw_segments = bio_hw_segments(q, bio);
3775 rq->current_nr_sectors = bio_cur_sectors(bio);
3776 rq->hard_cur_sectors = rq->current_nr_sectors;
3777 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3778 rq->buffer = bio_data(bio);
0e75f906 3779 rq->data_len = bio->bi_size;
1da177e4
LT
3780
3781 rq->bio = rq->biotail = bio;
1da177e4 3782
66846572
N
3783 if (bio->bi_bdev)
3784 rq->rq_disk = bio->bi_bdev->bd_disk;
3785}
1da177e4
LT
3786
3787int kblockd_schedule_work(struct work_struct *work)
3788{
3789 return queue_work(kblockd_workqueue, work);
3790}
3791
3792EXPORT_SYMBOL(kblockd_schedule_work);
3793
19a75d83 3794void kblockd_flush_work(struct work_struct *work)
1da177e4 3795{
28e53bdd 3796 cancel_work_sync(work);
1da177e4 3797}
19a75d83 3798EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3799
3800int __init blk_dev_init(void)
3801{
ff856bad
JA
3802 int i;
3803
1da177e4
LT
3804 kblockd_workqueue = create_workqueue("kblockd");
3805 if (!kblockd_workqueue)
3806 panic("Failed to create kblockd\n");
3807
3808 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3809 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3810
3811 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3812 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3813
3814 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3815 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3816
0a945022 3817 for_each_possible_cpu(i)
ff856bad
JA
3818 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3819
3820 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3821 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3822
f772b3d9
VT
3823 blk_max_low_pfn = max_low_pfn - 1;
3824 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3825
3826 return 0;
3827}
3828
3829/*
3830 * IO Context helper functions
3831 */
3832void put_io_context(struct io_context *ioc)
3833{
3834 if (ioc == NULL)
3835 return;
3836
3837 BUG_ON(atomic_read(&ioc->refcount) == 0);
3838
3839 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3840 struct cfq_io_context *cic;
3841
334e94de 3842 rcu_read_lock();
1da177e4
LT
3843 if (ioc->aic && ioc->aic->dtor)
3844 ioc->aic->dtor(ioc->aic);
e2d74ac0 3845 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3846 struct rb_node *n = rb_first(&ioc->cic_root);
3847
3848 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3849 cic->dtor(ioc);
3850 }
334e94de 3851 rcu_read_unlock();
1da177e4
LT
3852
3853 kmem_cache_free(iocontext_cachep, ioc);
3854 }
3855}
3856EXPORT_SYMBOL(put_io_context);
3857
3858/* Called by the exitting task */
3859void exit_io_context(void)
3860{
1da177e4 3861 struct io_context *ioc;
e2d74ac0 3862 struct cfq_io_context *cic;
1da177e4 3863
22e2c507 3864 task_lock(current);
1da177e4
LT
3865 ioc = current->io_context;
3866 current->io_context = NULL;
22e2c507 3867 task_unlock(current);
1da177e4 3868
25034d7a 3869 ioc->task = NULL;
1da177e4
LT
3870 if (ioc->aic && ioc->aic->exit)
3871 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3872 if (ioc->cic_root.rb_node != NULL) {
3873 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3874 cic->exit(ioc);
3875 }
25034d7a 3876
1da177e4
LT
3877 put_io_context(ioc);
3878}
3879
3880/*
3881 * If the current task has no IO context then create one and initialise it.
fb3cc432 3882 * Otherwise, return its existing IO context.
1da177e4 3883 *
fb3cc432
NP
3884 * This returned IO context doesn't have a specifically elevated refcount,
3885 * but since the current task itself holds a reference, the context can be
3886 * used in general code, so long as it stays within `current` context.
1da177e4 3887 */
b5deef90 3888static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3889{
3890 struct task_struct *tsk = current;
1da177e4
LT
3891 struct io_context *ret;
3892
1da177e4 3893 ret = tsk->io_context;
fb3cc432
NP
3894 if (likely(ret))
3895 return ret;
1da177e4 3896
b5deef90 3897 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3898 if (ret) {
3899 atomic_set(&ret->refcount, 1);
22e2c507 3900 ret->task = current;
fc46379d 3901 ret->ioprio_changed = 0;
1da177e4
LT
3902 ret->last_waited = jiffies; /* doesn't matter... */
3903 ret->nr_batch_requests = 0; /* because this is 0 */
3904 ret->aic = NULL;
e2d74ac0 3905 ret->cic_root.rb_node = NULL;
4e521c27 3906 ret->ioc_data = NULL;
9f83e45e
ON
3907 /* make sure set_task_ioprio() sees the settings above */
3908 smp_wmb();
fb3cc432
NP
3909 tsk->io_context = ret;
3910 }
1da177e4 3911
fb3cc432
NP
3912 return ret;
3913}
1da177e4 3914
fb3cc432
NP
3915/*
3916 * If the current task has no IO context then create one and initialise it.
3917 * If it does have a context, take a ref on it.
3918 *
3919 * This is always called in the context of the task which submitted the I/O.
3920 */
b5deef90 3921struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3922{
3923 struct io_context *ret;
b5deef90 3924 ret = current_io_context(gfp_flags, node);
fb3cc432 3925 if (likely(ret))
1da177e4 3926 atomic_inc(&ret->refcount);
1da177e4
LT
3927 return ret;
3928}
3929EXPORT_SYMBOL(get_io_context);
3930
3931void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3932{
3933 struct io_context *src = *psrc;
3934 struct io_context *dst = *pdst;
3935
3936 if (src) {
3937 BUG_ON(atomic_read(&src->refcount) == 0);
3938 atomic_inc(&src->refcount);
3939 put_io_context(dst);
3940 *pdst = src;
3941 }
3942}
3943EXPORT_SYMBOL(copy_io_context);
3944
3945void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3946{
3947 struct io_context *temp;
3948 temp = *ioc1;
3949 *ioc1 = *ioc2;
3950 *ioc2 = temp;
3951}
3952EXPORT_SYMBOL(swap_io_context);
3953
3954/*
3955 * sysfs parts below
3956 */
3957struct queue_sysfs_entry {
3958 struct attribute attr;
3959 ssize_t (*show)(struct request_queue *, char *);
3960 ssize_t (*store)(struct request_queue *, const char *, size_t);
3961};
3962
3963static ssize_t
3964queue_var_show(unsigned int var, char *page)
3965{
3966 return sprintf(page, "%d\n", var);
3967}
3968
3969static ssize_t
3970queue_var_store(unsigned long *var, const char *page, size_t count)
3971{
3972 char *p = (char *) page;
3973
3974 *var = simple_strtoul(p, &p, 10);
3975 return count;
3976}
3977
3978static ssize_t queue_requests_show(struct request_queue *q, char *page)
3979{
3980 return queue_var_show(q->nr_requests, (page));
3981}
3982
3983static ssize_t
3984queue_requests_store(struct request_queue *q, const char *page, size_t count)
3985{
3986 struct request_list *rl = &q->rq;
c981ff9f
AV
3987 unsigned long nr;
3988 int ret = queue_var_store(&nr, page, count);
3989 if (nr < BLKDEV_MIN_RQ)
3990 nr = BLKDEV_MIN_RQ;
1da177e4 3991
c981ff9f
AV
3992 spin_lock_irq(q->queue_lock);
3993 q->nr_requests = nr;
1da177e4
LT
3994 blk_queue_congestion_threshold(q);
3995
3996 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 3997 blk_set_queue_congested(q, READ);
1da177e4 3998 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 3999 blk_clear_queue_congested(q, READ);
1da177e4
LT
4000
4001 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 4002 blk_set_queue_congested(q, WRITE);
1da177e4 4003 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 4004 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
4005
4006 if (rl->count[READ] >= q->nr_requests) {
4007 blk_set_queue_full(q, READ);
4008 } else if (rl->count[READ]+1 <= q->nr_requests) {
4009 blk_clear_queue_full(q, READ);
4010 wake_up(&rl->wait[READ]);
4011 }
4012
4013 if (rl->count[WRITE] >= q->nr_requests) {
4014 blk_set_queue_full(q, WRITE);
4015 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4016 blk_clear_queue_full(q, WRITE);
4017 wake_up(&rl->wait[WRITE]);
4018 }
c981ff9f 4019 spin_unlock_irq(q->queue_lock);
1da177e4
LT
4020 return ret;
4021}
4022
4023static ssize_t queue_ra_show(struct request_queue *q, char *page)
4024{
4025 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4026
4027 return queue_var_show(ra_kb, (page));
4028}
4029
4030static ssize_t
4031queue_ra_store(struct request_queue *q, const char *page, size_t count)
4032{
4033 unsigned long ra_kb;
4034 ssize_t ret = queue_var_store(&ra_kb, page, count);
4035
4036 spin_lock_irq(q->queue_lock);
1da177e4
LT
4037 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4038 spin_unlock_irq(q->queue_lock);
4039
4040 return ret;
4041}
4042
4043static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4044{
4045 int max_sectors_kb = q->max_sectors >> 1;
4046
4047 return queue_var_show(max_sectors_kb, (page));
4048}
4049
4050static ssize_t
4051queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4052{
4053 unsigned long max_sectors_kb,
4054 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4055 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4056 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
1da177e4
LT
4057
4058 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4059 return -EINVAL;
4060 /*
4061 * Take the queue lock to update the readahead and max_sectors
4062 * values synchronously:
4063 */
4064 spin_lock_irq(q->queue_lock);
1da177e4
LT
4065 q->max_sectors = max_sectors_kb << 1;
4066 spin_unlock_irq(q->queue_lock);
4067
4068 return ret;
4069}
4070
4071static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4072{
4073 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4074
4075 return queue_var_show(max_hw_sectors_kb, (page));
4076}
4077
563063a8
JA
4078static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
4079{
4080 return queue_var_show(q->max_phys_segments, page);
4081}
4082
4083static ssize_t queue_max_segments_store(struct request_queue *q,
4084 const char *page, size_t count)
4085{
4086 unsigned long segments;
4087 ssize_t ret = queue_var_store(&segments, page, count);
1da177e4 4088
563063a8
JA
4089 spin_lock_irq(q->queue_lock);
4090 q->max_phys_segments = segments;
4091 spin_unlock_irq(q->queue_lock);
1da177e4 4092
563063a8
JA
4093 return ret;
4094}
1da177e4
LT
4095static struct queue_sysfs_entry queue_requests_entry = {
4096 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4097 .show = queue_requests_show,
4098 .store = queue_requests_store,
4099};
4100
4101static struct queue_sysfs_entry queue_ra_entry = {
4102 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4103 .show = queue_ra_show,
4104 .store = queue_ra_store,
4105};
4106
4107static struct queue_sysfs_entry queue_max_sectors_entry = {
4108 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4109 .show = queue_max_sectors_show,
4110 .store = queue_max_sectors_store,
4111};
4112
4113static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4114 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4115 .show = queue_max_hw_sectors_show,
4116};
4117
563063a8
JA
4118static struct queue_sysfs_entry queue_max_segments_entry = {
4119 .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
4120 .show = queue_max_segments_show,
4121 .store = queue_max_segments_store,
4122};
4123
1da177e4
LT
4124static struct queue_sysfs_entry queue_iosched_entry = {
4125 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4126 .show = elv_iosched_show,
4127 .store = elv_iosched_store,
4128};
4129
4130static struct attribute *default_attrs[] = {
4131 &queue_requests_entry.attr,
4132 &queue_ra_entry.attr,
4133 &queue_max_hw_sectors_entry.attr,
4134 &queue_max_sectors_entry.attr,
563063a8 4135 &queue_max_segments_entry.attr,
1da177e4
LT
4136 &queue_iosched_entry.attr,
4137 NULL,
4138};
4139
4140#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4141
4142static ssize_t
4143queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4144{
4145 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4146 struct request_queue *q =
4147 container_of(kobj, struct request_queue, kobj);
483f4afc 4148 ssize_t res;
1da177e4 4149
1da177e4 4150 if (!entry->show)
6c1852a0 4151 return -EIO;
483f4afc
AV
4152 mutex_lock(&q->sysfs_lock);
4153 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4154 mutex_unlock(&q->sysfs_lock);
4155 return -ENOENT;
4156 }
4157 res = entry->show(q, page);
4158 mutex_unlock(&q->sysfs_lock);
4159 return res;
1da177e4
LT
4160}
4161
4162static ssize_t
4163queue_attr_store(struct kobject *kobj, struct attribute *attr,
4164 const char *page, size_t length)
4165{
4166 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4167 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4168
4169 ssize_t res;
1da177e4 4170
1da177e4 4171 if (!entry->store)
6c1852a0 4172 return -EIO;
483f4afc
AV
4173 mutex_lock(&q->sysfs_lock);
4174 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4175 mutex_unlock(&q->sysfs_lock);
4176 return -ENOENT;
4177 }
4178 res = entry->store(q, page, length);
4179 mutex_unlock(&q->sysfs_lock);
4180 return res;
1da177e4
LT
4181}
4182
4183static struct sysfs_ops queue_sysfs_ops = {
4184 .show = queue_attr_show,
4185 .store = queue_attr_store,
4186};
4187
93d17d3d 4188static struct kobj_type queue_ktype = {
1da177e4
LT
4189 .sysfs_ops = &queue_sysfs_ops,
4190 .default_attrs = default_attrs,
483f4afc 4191 .release = blk_release_queue,
1da177e4
LT
4192};
4193
4194int blk_register_queue(struct gendisk *disk)
4195{
4196 int ret;
4197
165125e1 4198 struct request_queue *q = disk->queue;
1da177e4
LT
4199
4200 if (!q || !q->request_fn)
4201 return -ENXIO;
4202
4203 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4204
483f4afc 4205 ret = kobject_add(&q->kobj);
1da177e4
LT
4206 if (ret < 0)
4207 return ret;
4208
483f4afc
AV
4209 kobject_uevent(&q->kobj, KOBJ_ADD);
4210
1da177e4
LT
4211 ret = elv_register_queue(q);
4212 if (ret) {
483f4afc
AV
4213 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4214 kobject_del(&q->kobj);
1da177e4
LT
4215 return ret;
4216 }
4217
4218 return 0;
4219}
4220
4221void blk_unregister_queue(struct gendisk *disk)
4222{
165125e1 4223 struct request_queue *q = disk->queue;
1da177e4
LT
4224
4225 if (q && q->request_fn) {
4226 elv_unregister_queue(q);
4227
483f4afc
AV
4228 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4229 kobject_del(&q->kobj);
1da177e4
LT
4230 kobject_put(&disk->kobj);
4231 }
4232}