Fix a build error when BLOCK=n
[linux-2.6-block.git] / block / ll_rw_blk.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
7 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
8 */
9
10/*
11 * This handles all read/write requests to block devices
12 */
1da177e4
LT
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/backing-dev.h>
16#include <linux/bio.h>
17#include <linux/blkdev.h>
18#include <linux/highmem.h>
19#include <linux/mm.h>
20#include <linux/kernel_stat.h>
21#include <linux/string.h>
22#include <linux/init.h>
23#include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
ff856bad
JA
29#include <linux/interrupt.h>
30#include <linux/cpu.h>
2056a782 31#include <linux/blktrace_api.h>
c17bb495 32#include <linux/fault-inject.h>
f565913e 33#include <linux/scatterlist.h>
1da177e4
LT
34
35/*
36 * for max sense size
37 */
38#include <scsi/scsi_cmnd.h>
39
65f27f38 40static void blk_unplug_work(struct work_struct *work);
1da177e4 41static void blk_unplug_timeout(unsigned long data);
b238b3d4 42static void drive_stat_acct(struct request *rq, int new_io);
52d9e675 43static void init_request_from_bio(struct request *req, struct bio *bio);
165125e1 44static int __make_request(struct request_queue *q, struct bio *bio);
b5deef90 45static struct io_context *current_io_context(gfp_t gfp_flags, int node);
9dfa5283 46static void blk_recalc_rq_segments(struct request *rq);
66846572
N
47static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
48 struct bio *bio);
1da177e4
LT
49
50/*
51 * For the allocated request tables
52 */
e18b890b 53static struct kmem_cache *request_cachep;
1da177e4
LT
54
55/*
56 * For queue allocation
57 */
e18b890b 58static struct kmem_cache *requestq_cachep;
1da177e4
LT
59
60/*
61 * For io context allocations
62 */
e18b890b 63static struct kmem_cache *iocontext_cachep;
1da177e4 64
1da177e4
LT
65/*
66 * Controlling structure to kblockd
67 */
ff856bad 68static struct workqueue_struct *kblockd_workqueue;
1da177e4
LT
69
70unsigned long blk_max_low_pfn, blk_max_pfn;
71
72EXPORT_SYMBOL(blk_max_low_pfn);
73EXPORT_SYMBOL(blk_max_pfn);
74
ff856bad
JA
75static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
76
1da177e4
LT
77/* Amount of time in which a process may batch requests */
78#define BLK_BATCH_TIME (HZ/50UL)
79
80/* Number of requests a "batching" process may submit */
81#define BLK_BATCH_REQ 32
82
83/*
84 * Return the threshold (number of used requests) at which the queue is
85 * considered to be congested. It include a little hysteresis to keep the
86 * context switch rate down.
87 */
88static inline int queue_congestion_on_threshold(struct request_queue *q)
89{
90 return q->nr_congestion_on;
91}
92
93/*
94 * The threshold at which a queue is considered to be uncongested
95 */
96static inline int queue_congestion_off_threshold(struct request_queue *q)
97{
98 return q->nr_congestion_off;
99}
100
101static void blk_queue_congestion_threshold(struct request_queue *q)
102{
103 int nr;
104
105 nr = q->nr_requests - (q->nr_requests / 8) + 1;
106 if (nr > q->nr_requests)
107 nr = q->nr_requests;
108 q->nr_congestion_on = nr;
109
110 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
111 if (nr < 1)
112 nr = 1;
113 q->nr_congestion_off = nr;
114}
115
1da177e4
LT
116/**
117 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
118 * @bdev: device
119 *
120 * Locates the passed device's request queue and returns the address of its
121 * backing_dev_info
122 *
123 * Will return NULL if the request queue cannot be located.
124 */
125struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
126{
127 struct backing_dev_info *ret = NULL;
165125e1 128 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
129
130 if (q)
131 ret = &q->backing_dev_info;
132 return ret;
133}
1da177e4
LT
134EXPORT_SYMBOL(blk_get_backing_dev_info);
135
1da177e4
LT
136/**
137 * blk_queue_prep_rq - set a prepare_request function for queue
138 * @q: queue
139 * @pfn: prepare_request function
140 *
141 * It's possible for a queue to register a prepare_request callback which
142 * is invoked before the request is handed to the request_fn. The goal of
143 * the function is to prepare a request for I/O, it can be used to build a
144 * cdb from the request data for instance.
145 *
146 */
165125e1 147void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
1da177e4
LT
148{
149 q->prep_rq_fn = pfn;
150}
151
152EXPORT_SYMBOL(blk_queue_prep_rq);
153
154/**
155 * blk_queue_merge_bvec - set a merge_bvec function for queue
156 * @q: queue
157 * @mbfn: merge_bvec_fn
158 *
159 * Usually queues have static limitations on the max sectors or segments that
160 * we can put in a request. Stacking drivers may have some settings that
161 * are dynamic, and thus we have to query the queue whether it is ok to
162 * add a new bio_vec to a bio at a given offset or not. If the block device
163 * has such limitations, it needs to register a merge_bvec_fn to control
164 * the size of bio's sent to it. Note that a block device *must* allow a
165 * single page to be added to an empty bio. The block device driver may want
166 * to use the bio_split() function to deal with these bio's. By default
167 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
168 * honored.
169 */
165125e1 170void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
1da177e4
LT
171{
172 q->merge_bvec_fn = mbfn;
173}
174
175EXPORT_SYMBOL(blk_queue_merge_bvec);
176
165125e1 177void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
ff856bad
JA
178{
179 q->softirq_done_fn = fn;
180}
181
182EXPORT_SYMBOL(blk_queue_softirq_done);
183
1da177e4
LT
184/**
185 * blk_queue_make_request - define an alternate make_request function for a device
186 * @q: the request queue for the device to be affected
187 * @mfn: the alternate make_request function
188 *
189 * Description:
190 * The normal way for &struct bios to be passed to a device
191 * driver is for them to be collected into requests on a request
192 * queue, and then to allow the device driver to select requests
193 * off that queue when it is ready. This works well for many block
194 * devices. However some block devices (typically virtual devices
195 * such as md or lvm) do not benefit from the processing on the
196 * request queue, and are served best by having the requests passed
197 * directly to them. This can be achieved by providing a function
198 * to blk_queue_make_request().
199 *
200 * Caveat:
201 * The driver that does this *must* be able to deal appropriately
202 * with buffers in "highmemory". This can be accomplished by either calling
203 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
204 * blk_queue_bounce() to create a buffer in normal memory.
205 **/
165125e1 206void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
1da177e4
LT
207{
208 /*
209 * set defaults
210 */
211 q->nr_requests = BLKDEV_MAX_RQ;
309c0a1d
SM
212 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
213 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1da177e4
LT
214 q->make_request_fn = mfn;
215 q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
216 q->backing_dev_info.state = 0;
217 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
defd94b7 218 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
1da177e4
LT
219 blk_queue_hardsect_size(q, 512);
220 blk_queue_dma_alignment(q, 511);
221 blk_queue_congestion_threshold(q);
222 q->nr_batching = BLK_BATCH_REQ;
223
224 q->unplug_thresh = 4; /* hmm */
225 q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
226 if (q->unplug_delay == 0)
227 q->unplug_delay = 1;
228
65f27f38 229 INIT_WORK(&q->unplug_work, blk_unplug_work);
1da177e4
LT
230
231 q->unplug_timer.function = blk_unplug_timeout;
232 q->unplug_timer.data = (unsigned long)q;
233
234 /*
235 * by default assume old behaviour and bounce for any highmem page
236 */
237 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
1da177e4
LT
238}
239
240EXPORT_SYMBOL(blk_queue_make_request);
241
165125e1 242static void rq_init(struct request_queue *q, struct request *rq)
1da177e4
LT
243{
244 INIT_LIST_HEAD(&rq->queuelist);
ff856bad 245 INIT_LIST_HEAD(&rq->donelist);
1da177e4
LT
246
247 rq->errors = 0;
1da177e4 248 rq->bio = rq->biotail = NULL;
2e662b65
JA
249 INIT_HLIST_NODE(&rq->hash);
250 RB_CLEAR_NODE(&rq->rb_node);
22e2c507 251 rq->ioprio = 0;
1da177e4
LT
252 rq->buffer = NULL;
253 rq->ref_count = 1;
254 rq->q = q;
1da177e4
LT
255 rq->special = NULL;
256 rq->data_len = 0;
257 rq->data = NULL;
df46b9a4 258 rq->nr_phys_segments = 0;
1da177e4
LT
259 rq->sense = NULL;
260 rq->end_io = NULL;
261 rq->end_io_data = NULL;
ff856bad 262 rq->completion_data = NULL;
abae1fde 263 rq->next_rq = NULL;
1da177e4
LT
264}
265
266/**
267 * blk_queue_ordered - does this queue support ordered writes
797e7dbb
TH
268 * @q: the request queue
269 * @ordered: one of QUEUE_ORDERED_*
fddfdeaf 270 * @prepare_flush_fn: rq setup helper for cache flush ordered writes
1da177e4
LT
271 *
272 * Description:
273 * For journalled file systems, doing ordered writes on a commit
274 * block instead of explicitly doing wait_on_buffer (which is bad
275 * for performance) can be a big win. Block drivers supporting this
276 * feature should call this function and indicate so.
277 *
278 **/
165125e1 279int blk_queue_ordered(struct request_queue *q, unsigned ordered,
797e7dbb
TH
280 prepare_flush_fn *prepare_flush_fn)
281{
282 if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
283 prepare_flush_fn == NULL) {
284 printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
285 return -EINVAL;
286 }
287
288 if (ordered != QUEUE_ORDERED_NONE &&
289 ordered != QUEUE_ORDERED_DRAIN &&
290 ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
291 ordered != QUEUE_ORDERED_DRAIN_FUA &&
292 ordered != QUEUE_ORDERED_TAG &&
293 ordered != QUEUE_ORDERED_TAG_FLUSH &&
294 ordered != QUEUE_ORDERED_TAG_FUA) {
295 printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
296 return -EINVAL;
1da177e4 297 }
797e7dbb 298
60481b12 299 q->ordered = ordered;
797e7dbb
TH
300 q->next_ordered = ordered;
301 q->prepare_flush_fn = prepare_flush_fn;
302
303 return 0;
1da177e4
LT
304}
305
306EXPORT_SYMBOL(blk_queue_ordered);
307
1da177e4
LT
308/*
309 * Cache flushing for ordered writes handling
310 */
165125e1 311inline unsigned blk_ordered_cur_seq(struct request_queue *q)
1da177e4 312{
797e7dbb
TH
313 if (!q->ordseq)
314 return 0;
315 return 1 << ffz(q->ordseq);
1da177e4
LT
316}
317
797e7dbb 318unsigned blk_ordered_req_seq(struct request *rq)
1da177e4 319{
165125e1 320 struct request_queue *q = rq->q;
1da177e4 321
797e7dbb 322 BUG_ON(q->ordseq == 0);
8922e16c 323
797e7dbb
TH
324 if (rq == &q->pre_flush_rq)
325 return QUEUE_ORDSEQ_PREFLUSH;
326 if (rq == &q->bar_rq)
327 return QUEUE_ORDSEQ_BAR;
328 if (rq == &q->post_flush_rq)
329 return QUEUE_ORDSEQ_POSTFLUSH;
1da177e4 330
bc90ba09
TH
331 /*
332 * !fs requests don't need to follow barrier ordering. Always
333 * put them at the front. This fixes the following deadlock.
334 *
335 * http://thread.gmane.org/gmane.linux.kernel/537473
336 */
337 if (!blk_fs_request(rq))
338 return QUEUE_ORDSEQ_DRAIN;
339
4aff5e23
JA
340 if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
341 (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
797e7dbb
TH
342 return QUEUE_ORDSEQ_DRAIN;
343 else
344 return QUEUE_ORDSEQ_DONE;
1da177e4
LT
345}
346
165125e1 347void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
1da177e4 348{
797e7dbb
TH
349 struct request *rq;
350 int uptodate;
1da177e4 351
797e7dbb
TH
352 if (error && !q->orderr)
353 q->orderr = error;
1da177e4 354
797e7dbb
TH
355 BUG_ON(q->ordseq & seq);
356 q->ordseq |= seq;
1da177e4 357
797e7dbb
TH
358 if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
359 return;
1da177e4
LT
360
361 /*
797e7dbb 362 * Okay, sequence complete.
1da177e4 363 */
4fa253f3
JA
364 uptodate = 1;
365 if (q->orderr)
366 uptodate = q->orderr;
1da177e4 367
797e7dbb 368 q->ordseq = 0;
4fa253f3 369 rq = q->orig_bar_rq;
1da177e4 370
797e7dbb
TH
371 end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
372 end_that_request_last(rq, uptodate);
1da177e4
LT
373}
374
797e7dbb 375static void pre_flush_end_io(struct request *rq, int error)
1da177e4 376{
797e7dbb
TH
377 elv_completed_request(rq->q, rq);
378 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
379}
1da177e4 380
797e7dbb
TH
381static void bar_end_io(struct request *rq, int error)
382{
383 elv_completed_request(rq->q, rq);
384 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
385}
1da177e4 386
797e7dbb
TH
387static void post_flush_end_io(struct request *rq, int error)
388{
389 elv_completed_request(rq->q, rq);
390 blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
391}
1da177e4 392
165125e1 393static void queue_flush(struct request_queue *q, unsigned which)
797e7dbb
TH
394{
395 struct request *rq;
396 rq_end_io_fn *end_io;
1da177e4 397
797e7dbb
TH
398 if (which == QUEUE_ORDERED_PREFLUSH) {
399 rq = &q->pre_flush_rq;
400 end_io = pre_flush_end_io;
401 } else {
402 rq = &q->post_flush_rq;
403 end_io = post_flush_end_io;
1da177e4 404 }
797e7dbb 405
4aff5e23 406 rq->cmd_flags = REQ_HARDBARRIER;
797e7dbb 407 rq_init(q, rq);
797e7dbb 408 rq->elevator_private = NULL;
c00895ab 409 rq->elevator_private2 = NULL;
797e7dbb 410 rq->rq_disk = q->bar_rq.rq_disk;
797e7dbb
TH
411 rq->end_io = end_io;
412 q->prepare_flush_fn(q, rq);
413
30e9656c 414 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
1da177e4
LT
415}
416
165125e1 417static inline struct request *start_ordered(struct request_queue *q,
797e7dbb 418 struct request *rq)
1da177e4 419{
797e7dbb
TH
420 q->orderr = 0;
421 q->ordered = q->next_ordered;
422 q->ordseq |= QUEUE_ORDSEQ_STARTED;
423
424 /*
425 * Prep proxy barrier request.
426 */
427 blkdev_dequeue_request(rq);
428 q->orig_bar_rq = rq;
429 rq = &q->bar_rq;
4aff5e23 430 rq->cmd_flags = 0;
797e7dbb 431 rq_init(q, rq);
4aff5e23
JA
432 if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
433 rq->cmd_flags |= REQ_RW;
4fa253f3
JA
434 if (q->ordered & QUEUE_ORDERED_FUA)
435 rq->cmd_flags |= REQ_FUA;
797e7dbb 436 rq->elevator_private = NULL;
c00895ab 437 rq->elevator_private2 = NULL;
797e7dbb
TH
438 init_request_from_bio(rq, q->orig_bar_rq->bio);
439 rq->end_io = bar_end_io;
440
441 /*
442 * Queue ordered sequence. As we stack them at the head, we
443 * need to queue in reverse order. Note that we rely on that
444 * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
bf2de6f5
JA
445 * request gets inbetween ordered sequence. If this request is
446 * an empty barrier, we don't need to do a postflush ever since
447 * there will be no data written between the pre and post flush.
448 * Hence a single flush will suffice.
797e7dbb 449 */
bf2de6f5 450 if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
797e7dbb
TH
451 queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
452 else
453 q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
454
30e9656c 455 elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
797e7dbb
TH
456
457 if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
458 queue_flush(q, QUEUE_ORDERED_PREFLUSH);
459 rq = &q->pre_flush_rq;
460 } else
461 q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
1da177e4 462
797e7dbb
TH
463 if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
464 q->ordseq |= QUEUE_ORDSEQ_DRAIN;
465 else
466 rq = NULL;
467
468 return rq;
1da177e4
LT
469}
470
165125e1 471int blk_do_ordered(struct request_queue *q, struct request **rqp)
1da177e4 472{
9a7a67af 473 struct request *rq = *rqp;
bf2de6f5 474 const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
1da177e4 475
797e7dbb
TH
476 if (!q->ordseq) {
477 if (!is_barrier)
478 return 1;
1da177e4 479
797e7dbb
TH
480 if (q->next_ordered != QUEUE_ORDERED_NONE) {
481 *rqp = start_ordered(q, rq);
482 return 1;
483 } else {
484 /*
485 * This can happen when the queue switches to
486 * ORDERED_NONE while this request is on it.
487 */
488 blkdev_dequeue_request(rq);
489 end_that_request_first(rq, -EOPNOTSUPP,
490 rq->hard_nr_sectors);
491 end_that_request_last(rq, -EOPNOTSUPP);
492 *rqp = NULL;
493 return 0;
494 }
495 }
1da177e4 496
9a7a67af
JA
497 /*
498 * Ordered sequence in progress
499 */
500
501 /* Special requests are not subject to ordering rules. */
502 if (!blk_fs_request(rq) &&
503 rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
504 return 1;
505
797e7dbb 506 if (q->ordered & QUEUE_ORDERED_TAG) {
9a7a67af 507 /* Ordered by tag. Blocking the next barrier is enough. */
797e7dbb
TH
508 if (is_barrier && rq != &q->bar_rq)
509 *rqp = NULL;
9a7a67af
JA
510 } else {
511 /* Ordered by draining. Wait for turn. */
512 WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
513 if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
514 *rqp = NULL;
1da177e4
LT
515 }
516
517 return 1;
518}
519
5bb23a68
N
520static void req_bio_endio(struct request *rq, struct bio *bio,
521 unsigned int nbytes, int error)
1da177e4 522{
165125e1 523 struct request_queue *q = rq->q;
797e7dbb 524
5bb23a68
N
525 if (&q->bar_rq != rq) {
526 if (error)
527 clear_bit(BIO_UPTODATE, &bio->bi_flags);
528 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
529 error = -EIO;
797e7dbb 530
5bb23a68
N
531 if (unlikely(nbytes > bio->bi_size)) {
532 printk("%s: want %u bytes done, only %u left\n",
533 __FUNCTION__, nbytes, bio->bi_size);
534 nbytes = bio->bi_size;
535 }
797e7dbb 536
5bb23a68
N
537 bio->bi_size -= nbytes;
538 bio->bi_sector += (nbytes >> 9);
539 if (bio->bi_size == 0)
6712ecf8 540 bio_endio(bio, error);
5bb23a68
N
541 } else {
542
543 /*
544 * Okay, this is the barrier request in progress, just
545 * record the error;
546 */
547 if (error && !q->orderr)
548 q->orderr = error;
549 }
1da177e4 550}
1da177e4
LT
551
552/**
553 * blk_queue_bounce_limit - set bounce buffer limit for queue
554 * @q: the request queue for the device
555 * @dma_addr: bus address limit
556 *
557 * Description:
558 * Different hardware can have different requirements as to what pages
559 * it can do I/O directly to. A low level driver can call
560 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
5ee1af9f 561 * buffers for doing I/O to pages residing above @page.
1da177e4 562 **/
165125e1 563void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
1da177e4
LT
564{
565 unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
5ee1af9f
AK
566 int dma = 0;
567
568 q->bounce_gfp = GFP_NOIO;
569#if BITS_PER_LONG == 64
570 /* Assume anything <= 4GB can be handled by IOMMU.
571 Actually some IOMMUs can handle everything, but I don't
572 know of a way to test this here. */
8269730b 573 if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
5ee1af9f
AK
574 dma = 1;
575 q->bounce_pfn = max_low_pfn;
576#else
577 if (bounce_pfn < blk_max_low_pfn)
578 dma = 1;
579 q->bounce_pfn = bounce_pfn;
580#endif
581 if (dma) {
1da177e4
LT
582 init_emergency_isa_pool();
583 q->bounce_gfp = GFP_NOIO | GFP_DMA;
5ee1af9f
AK
584 q->bounce_pfn = bounce_pfn;
585 }
1da177e4
LT
586}
587
588EXPORT_SYMBOL(blk_queue_bounce_limit);
589
590/**
591 * blk_queue_max_sectors - set max sectors for a request for this queue
592 * @q: the request queue for the device
593 * @max_sectors: max sectors in the usual 512b unit
594 *
595 * Description:
596 * Enables a low level driver to set an upper limit on the size of
597 * received requests.
598 **/
165125e1 599void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
1da177e4
LT
600{
601 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
602 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
603 printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
604 }
605
defd94b7
MC
606 if (BLK_DEF_MAX_SECTORS > max_sectors)
607 q->max_hw_sectors = q->max_sectors = max_sectors;
608 else {
609 q->max_sectors = BLK_DEF_MAX_SECTORS;
610 q->max_hw_sectors = max_sectors;
611 }
1da177e4
LT
612}
613
614EXPORT_SYMBOL(blk_queue_max_sectors);
615
616/**
617 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
618 * @q: the request queue for the device
619 * @max_segments: max number of segments
620 *
621 * Description:
622 * Enables a low level driver to set an upper limit on the number of
623 * physical data segments in a request. This would be the largest sized
624 * scatter list the driver could handle.
625 **/
165125e1
JA
626void blk_queue_max_phys_segments(struct request_queue *q,
627 unsigned short max_segments)
1da177e4
LT
628{
629 if (!max_segments) {
630 max_segments = 1;
631 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
632 }
633
634 q->max_phys_segments = max_segments;
635}
636
637EXPORT_SYMBOL(blk_queue_max_phys_segments);
638
639/**
640 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
641 * @q: the request queue for the device
642 * @max_segments: max number of segments
643 *
644 * Description:
645 * Enables a low level driver to set an upper limit on the number of
646 * hw data segments in a request. This would be the largest number of
647 * address/length pairs the host adapter can actually give as once
648 * to the device.
649 **/
165125e1
JA
650void blk_queue_max_hw_segments(struct request_queue *q,
651 unsigned short max_segments)
1da177e4
LT
652{
653 if (!max_segments) {
654 max_segments = 1;
655 printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
656 }
657
658 q->max_hw_segments = max_segments;
659}
660
661EXPORT_SYMBOL(blk_queue_max_hw_segments);
662
663/**
664 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
665 * @q: the request queue for the device
666 * @max_size: max size of segment in bytes
667 *
668 * Description:
669 * Enables a low level driver to set an upper limit on the size of a
670 * coalesced segment
671 **/
165125e1 672void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
1da177e4
LT
673{
674 if (max_size < PAGE_CACHE_SIZE) {
675 max_size = PAGE_CACHE_SIZE;
676 printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
677 }
678
679 q->max_segment_size = max_size;
680}
681
682EXPORT_SYMBOL(blk_queue_max_segment_size);
683
684/**
685 * blk_queue_hardsect_size - set hardware sector size for the queue
686 * @q: the request queue for the device
687 * @size: the hardware sector size, in bytes
688 *
689 * Description:
690 * This should typically be set to the lowest possible sector size
691 * that the hardware can operate on (possible without reverting to
692 * even internal read-modify-write operations). Usually the default
693 * of 512 covers most hardware.
694 **/
165125e1 695void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
1da177e4
LT
696{
697 q->hardsect_size = size;
698}
699
700EXPORT_SYMBOL(blk_queue_hardsect_size);
701
702/*
703 * Returns the minimum that is _not_ zero, unless both are zero.
704 */
705#define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
706
707/**
708 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
709 * @t: the stacking driver (top)
710 * @b: the underlying device (bottom)
711 **/
165125e1 712void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
1da177e4
LT
713{
714 /* zero is "infinity" */
defd94b7
MC
715 t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
716 t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
1da177e4
LT
717
718 t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
719 t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
720 t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
721 t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
89e5c8b5
N
722 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
723 clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
1da177e4
LT
724}
725
726EXPORT_SYMBOL(blk_queue_stack_limits);
727
728/**
729 * blk_queue_segment_boundary - set boundary rules for segment merging
730 * @q: the request queue for the device
731 * @mask: the memory boundary mask
732 **/
165125e1 733void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
1da177e4
LT
734{
735 if (mask < PAGE_CACHE_SIZE - 1) {
736 mask = PAGE_CACHE_SIZE - 1;
737 printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
738 }
739
740 q->seg_boundary_mask = mask;
741}
742
743EXPORT_SYMBOL(blk_queue_segment_boundary);
744
745/**
746 * blk_queue_dma_alignment - set dma length and memory alignment
747 * @q: the request queue for the device
748 * @mask: alignment mask
749 *
750 * description:
751 * set required memory and length aligment for direct dma transactions.
752 * this is used when buiding direct io requests for the queue.
753 *
754 **/
165125e1 755void blk_queue_dma_alignment(struct request_queue *q, int mask)
1da177e4
LT
756{
757 q->dma_alignment = mask;
758}
759
760EXPORT_SYMBOL(blk_queue_dma_alignment);
761
762/**
763 * blk_queue_find_tag - find a request by its tag and queue
1da177e4
LT
764 * @q: The request queue for the device
765 * @tag: The tag of the request
766 *
767 * Notes:
768 * Should be used when a device returns a tag and you want to match
769 * it with a request.
770 *
771 * no locks need be held.
772 **/
165125e1 773struct request *blk_queue_find_tag(struct request_queue *q, int tag)
1da177e4 774{
f583f492 775 return blk_map_queue_find_tag(q->queue_tags, tag);
1da177e4
LT
776}
777
778EXPORT_SYMBOL(blk_queue_find_tag);
779
780/**
492dfb48
JB
781 * __blk_free_tags - release a given set of tag maintenance info
782 * @bqt: the tag map to free
1da177e4 783 *
492dfb48
JB
784 * Tries to free the specified @bqt@. Returns true if it was
785 * actually freed and false if there are still references using it
786 */
787static int __blk_free_tags(struct blk_queue_tag *bqt)
1da177e4 788{
492dfb48 789 int retval;
1da177e4 790
492dfb48
JB
791 retval = atomic_dec_and_test(&bqt->refcnt);
792 if (retval) {
1da177e4
LT
793 BUG_ON(bqt->busy);
794 BUG_ON(!list_empty(&bqt->busy_list));
795
796 kfree(bqt->tag_index);
797 bqt->tag_index = NULL;
798
799 kfree(bqt->tag_map);
800 bqt->tag_map = NULL;
801
802 kfree(bqt);
492dfb48 803
1da177e4
LT
804 }
805
492dfb48
JB
806 return retval;
807}
808
809/**
810 * __blk_queue_free_tags - release tag maintenance info
811 * @q: the request queue for the device
812 *
813 * Notes:
814 * blk_cleanup_queue() will take care of calling this function, if tagging
815 * has been used. So there's no need to call this directly.
816 **/
165125e1 817static void __blk_queue_free_tags(struct request_queue *q)
492dfb48
JB
818{
819 struct blk_queue_tag *bqt = q->queue_tags;
820
821 if (!bqt)
822 return;
823
824 __blk_free_tags(bqt);
825
1da177e4
LT
826 q->queue_tags = NULL;
827 q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
828}
829
492dfb48
JB
830
831/**
832 * blk_free_tags - release a given set of tag maintenance info
833 * @bqt: the tag map to free
834 *
835 * For externally managed @bqt@ frees the map. Callers of this
836 * function must guarantee to have released all the queues that
837 * might have been using this tag map.
838 */
839void blk_free_tags(struct blk_queue_tag *bqt)
840{
841 if (unlikely(!__blk_free_tags(bqt)))
842 BUG();
843}
844EXPORT_SYMBOL(blk_free_tags);
845
1da177e4
LT
846/**
847 * blk_queue_free_tags - release tag maintenance info
848 * @q: the request queue for the device
849 *
850 * Notes:
851 * This is used to disabled tagged queuing to a device, yet leave
852 * queue in function.
853 **/
165125e1 854void blk_queue_free_tags(struct request_queue *q)
1da177e4
LT
855{
856 clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
857}
858
859EXPORT_SYMBOL(blk_queue_free_tags);
860
861static int
165125e1 862init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
1da177e4 863{
1da177e4
LT
864 struct request **tag_index;
865 unsigned long *tag_map;
fa72b903 866 int nr_ulongs;
1da177e4 867
492dfb48 868 if (q && depth > q->nr_requests * 2) {
1da177e4
LT
869 depth = q->nr_requests * 2;
870 printk(KERN_ERR "%s: adjusted depth to %d\n",
871 __FUNCTION__, depth);
872 }
873
f68110fc 874 tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
1da177e4
LT
875 if (!tag_index)
876 goto fail;
877
f7d37d02 878 nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
f68110fc 879 tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
1da177e4
LT
880 if (!tag_map)
881 goto fail;
882
ba025082 883 tags->real_max_depth = depth;
1da177e4 884 tags->max_depth = depth;
1da177e4
LT
885 tags->tag_index = tag_index;
886 tags->tag_map = tag_map;
887
1da177e4
LT
888 return 0;
889fail:
890 kfree(tag_index);
891 return -ENOMEM;
892}
893
492dfb48
JB
894static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
895 int depth)
896{
897 struct blk_queue_tag *tags;
898
899 tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
900 if (!tags)
901 goto fail;
902
903 if (init_tag_map(q, tags, depth))
904 goto fail;
905
906 INIT_LIST_HEAD(&tags->busy_list);
907 tags->busy = 0;
908 atomic_set(&tags->refcnt, 1);
909 return tags;
910fail:
911 kfree(tags);
912 return NULL;
913}
914
915/**
916 * blk_init_tags - initialize the tag info for an external tag map
917 * @depth: the maximum queue depth supported
918 * @tags: the tag to use
919 **/
920struct blk_queue_tag *blk_init_tags(int depth)
921{
922 return __blk_queue_init_tags(NULL, depth);
923}
924EXPORT_SYMBOL(blk_init_tags);
925
1da177e4
LT
926/**
927 * blk_queue_init_tags - initialize the queue tag info
928 * @q: the request queue for the device
929 * @depth: the maximum queue depth supported
930 * @tags: the tag to use
931 **/
165125e1 932int blk_queue_init_tags(struct request_queue *q, int depth,
1da177e4
LT
933 struct blk_queue_tag *tags)
934{
935 int rc;
936
937 BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
938
939 if (!tags && !q->queue_tags) {
492dfb48 940 tags = __blk_queue_init_tags(q, depth);
1da177e4 941
492dfb48 942 if (!tags)
1da177e4 943 goto fail;
1da177e4
LT
944 } else if (q->queue_tags) {
945 if ((rc = blk_queue_resize_tags(q, depth)))
946 return rc;
947 set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
948 return 0;
949 } else
950 atomic_inc(&tags->refcnt);
951
952 /*
953 * assign it, all done
954 */
955 q->queue_tags = tags;
956 q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
957 return 0;
958fail:
959 kfree(tags);
960 return -ENOMEM;
961}
962
963EXPORT_SYMBOL(blk_queue_init_tags);
964
965/**
966 * blk_queue_resize_tags - change the queueing depth
967 * @q: the request queue for the device
968 * @new_depth: the new max command queueing depth
969 *
970 * Notes:
971 * Must be called with the queue lock held.
972 **/
165125e1 973int blk_queue_resize_tags(struct request_queue *q, int new_depth)
1da177e4
LT
974{
975 struct blk_queue_tag *bqt = q->queue_tags;
976 struct request **tag_index;
977 unsigned long *tag_map;
fa72b903 978 int max_depth, nr_ulongs;
1da177e4
LT
979
980 if (!bqt)
981 return -ENXIO;
982
ba025082
TH
983 /*
984 * if we already have large enough real_max_depth. just
985 * adjust max_depth. *NOTE* as requests with tag value
986 * between new_depth and real_max_depth can be in-flight, tag
987 * map can not be shrunk blindly here.
988 */
989 if (new_depth <= bqt->real_max_depth) {
990 bqt->max_depth = new_depth;
991 return 0;
992 }
993
492dfb48
JB
994 /*
995 * Currently cannot replace a shared tag map with a new
996 * one, so error out if this is the case
997 */
998 if (atomic_read(&bqt->refcnt) != 1)
999 return -EBUSY;
1000
1da177e4
LT
1001 /*
1002 * save the old state info, so we can copy it back
1003 */
1004 tag_index = bqt->tag_index;
1005 tag_map = bqt->tag_map;
ba025082 1006 max_depth = bqt->real_max_depth;
1da177e4
LT
1007
1008 if (init_tag_map(q, bqt, new_depth))
1009 return -ENOMEM;
1010
1011 memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
f7d37d02 1012 nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
fa72b903 1013 memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
1da177e4
LT
1014
1015 kfree(tag_index);
1016 kfree(tag_map);
1017 return 0;
1018}
1019
1020EXPORT_SYMBOL(blk_queue_resize_tags);
1021
1022/**
1023 * blk_queue_end_tag - end tag operations for a request
1024 * @q: the request queue for the device
1025 * @rq: the request that has completed
1026 *
1027 * Description:
1028 * Typically called when end_that_request_first() returns 0, meaning
1029 * all transfers have been done for a request. It's important to call
1030 * this function before end_that_request_last(), as that will put the
1031 * request back on the free list thus corrupting the internal tag list.
1032 *
1033 * Notes:
1034 * queue lock must be held.
1035 **/
165125e1 1036void blk_queue_end_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1037{
1038 struct blk_queue_tag *bqt = q->queue_tags;
1039 int tag = rq->tag;
1040
1041 BUG_ON(tag == -1);
1042
ba025082 1043 if (unlikely(tag >= bqt->real_max_depth))
040c928c
TH
1044 /*
1045 * This can happen after tag depth has been reduced.
1046 * FIXME: how about a warning or info message here?
1047 */
1da177e4
LT
1048 return;
1049
1da177e4 1050 list_del_init(&rq->queuelist);
4aff5e23 1051 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1052 rq->tag = -1;
1053
1054 if (unlikely(bqt->tag_index[tag] == NULL))
040c928c
TH
1055 printk(KERN_ERR "%s: tag %d is missing\n",
1056 __FUNCTION__, tag);
1da177e4
LT
1057
1058 bqt->tag_index[tag] = NULL;
f3da54ba 1059
adb4ddbb 1060 if (unlikely(!test_bit(tag, bqt->tag_map))) {
f3da54ba
JA
1061 printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
1062 __FUNCTION__, tag);
1063 return;
1064 }
adb4ddbb
NP
1065 /*
1066 * The tag_map bit acts as a lock for tag_index[bit], so we need
1067 * unlock memory barrier semantics.
1068 */
1069 clear_bit_unlock(tag, bqt->tag_map);
1da177e4
LT
1070 bqt->busy--;
1071}
1072
1073EXPORT_SYMBOL(blk_queue_end_tag);
1074
1075/**
1076 * blk_queue_start_tag - find a free tag and assign it
1077 * @q: the request queue for the device
1078 * @rq: the block request that needs tagging
1079 *
1080 * Description:
1081 * This can either be used as a stand-alone helper, or possibly be
1082 * assigned as the queue &prep_rq_fn (in which case &struct request
1083 * automagically gets a tag assigned). Note that this function
1084 * assumes that any type of request can be queued! if this is not
1085 * true for your device, you must check the request type before
1086 * calling this function. The request will also be removed from
1087 * the request queue, so it's the drivers responsibility to readd
1088 * it if it should need to be restarted for some reason.
1089 *
1090 * Notes:
1091 * queue lock must be held.
1092 **/
165125e1 1093int blk_queue_start_tag(struct request_queue *q, struct request *rq)
1da177e4
LT
1094{
1095 struct blk_queue_tag *bqt = q->queue_tags;
2bf0fdad 1096 int tag;
1da177e4 1097
4aff5e23 1098 if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
1da177e4 1099 printk(KERN_ERR
040c928c
TH
1100 "%s: request %p for device [%s] already tagged %d",
1101 __FUNCTION__, rq,
1102 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
1da177e4
LT
1103 BUG();
1104 }
1105
059af497
JA
1106 /*
1107 * Protect against shared tag maps, as we may not have exclusive
1108 * access to the tag map.
1109 */
1110 do {
1111 tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
1112 if (tag >= bqt->max_depth)
1113 return 1;
1da177e4 1114
adb4ddbb 1115 } while (test_and_set_bit_lock(tag, bqt->tag_map));
dd941252 1116 /*
adb4ddbb
NP
1117 * We need lock ordering semantics given by test_and_set_bit_lock.
1118 * See blk_queue_end_tag for details.
dd941252 1119 */
1da177e4 1120
4aff5e23 1121 rq->cmd_flags |= REQ_QUEUED;
1da177e4
LT
1122 rq->tag = tag;
1123 bqt->tag_index[tag] = rq;
1124 blkdev_dequeue_request(rq);
1125 list_add(&rq->queuelist, &bqt->busy_list);
1126 bqt->busy++;
1127 return 0;
1128}
1129
1130EXPORT_SYMBOL(blk_queue_start_tag);
1131
1132/**
1133 * blk_queue_invalidate_tags - invalidate all pending tags
1134 * @q: the request queue for the device
1135 *
1136 * Description:
1137 * Hardware conditions may dictate a need to stop all pending requests.
1138 * In this case, we will safely clear the block side of the tag queue and
1139 * readd all requests to the request queue in the right order.
1140 *
1141 * Notes:
1142 * queue lock must be held.
1143 **/
165125e1 1144void blk_queue_invalidate_tags(struct request_queue *q)
1da177e4
LT
1145{
1146 struct blk_queue_tag *bqt = q->queue_tags;
1147 struct list_head *tmp, *n;
1148 struct request *rq;
1149
1150 list_for_each_safe(tmp, n, &bqt->busy_list) {
1151 rq = list_entry_rq(tmp);
1152
1153 if (rq->tag == -1) {
040c928c
TH
1154 printk(KERN_ERR
1155 "%s: bad tag found on list\n", __FUNCTION__);
1da177e4 1156 list_del_init(&rq->queuelist);
4aff5e23 1157 rq->cmd_flags &= ~REQ_QUEUED;
1da177e4
LT
1158 } else
1159 blk_queue_end_tag(q, rq);
1160
4aff5e23 1161 rq->cmd_flags &= ~REQ_STARTED;
1da177e4
LT
1162 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1163 }
1164}
1165
1166EXPORT_SYMBOL(blk_queue_invalidate_tags);
1167
1da177e4
LT
1168void blk_dump_rq_flags(struct request *rq, char *msg)
1169{
1170 int bit;
1171
4aff5e23
JA
1172 printk("%s: dev %s: type=%x, flags=%x\n", msg,
1173 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
1174 rq->cmd_flags);
1da177e4
LT
1175
1176 printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
1177 rq->nr_sectors,
1178 rq->current_nr_sectors);
1179 printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
1180
4aff5e23 1181 if (blk_pc_request(rq)) {
1da177e4
LT
1182 printk("cdb: ");
1183 for (bit = 0; bit < sizeof(rq->cmd); bit++)
1184 printk("%02x ", rq->cmd[bit]);
1185 printk("\n");
1186 }
1187}
1188
1189EXPORT_SYMBOL(blk_dump_rq_flags);
1190
165125e1 1191void blk_recount_segments(struct request_queue *q, struct bio *bio)
1da177e4 1192{
9dfa5283
N
1193 struct request rq;
1194 struct bio *nxt = bio->bi_next;
1195 rq.q = q;
1196 rq.bio = rq.biotail = bio;
1197 bio->bi_next = NULL;
1198 blk_recalc_rq_segments(&rq);
1199 bio->bi_next = nxt;
1200 bio->bi_phys_segments = rq.nr_phys_segments;
1201 bio->bi_hw_segments = rq.nr_hw_segments;
1202 bio->bi_flags |= (1 << BIO_SEG_VALID);
1203}
1204EXPORT_SYMBOL(blk_recount_segments);
1205
1206static void blk_recalc_rq_segments(struct request *rq)
1207{
1208 int nr_phys_segs;
1209 int nr_hw_segs;
1210 unsigned int phys_size;
1211 unsigned int hw_size;
1da177e4 1212 struct bio_vec *bv, *bvprv = NULL;
9dfa5283
N
1213 int seg_size;
1214 int hw_seg_size;
1215 int cluster;
5705f702 1216 struct req_iterator iter;
1da177e4 1217 int high, highprv = 1;
9dfa5283 1218 struct request_queue *q = rq->q;
1da177e4 1219
9dfa5283 1220 if (!rq->bio)
1da177e4
LT
1221 return;
1222
1223 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
9dfa5283
N
1224 hw_seg_size = seg_size = 0;
1225 phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
5705f702 1226 rq_for_each_segment(bv, rq, iter) {
1da177e4
LT
1227 /*
1228 * the trick here is making sure that a high page is never
1229 * considered part of another segment, since that might
1230 * change with the bounce page.
1231 */
f772b3d9 1232 high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
1da177e4
LT
1233 if (high || highprv)
1234 goto new_hw_segment;
1235 if (cluster) {
1236 if (seg_size + bv->bv_len > q->max_segment_size)
1237 goto new_segment;
1238 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
1239 goto new_segment;
1240 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
1241 goto new_segment;
1242 if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1243 goto new_hw_segment;
1244
1245 seg_size += bv->bv_len;
1246 hw_seg_size += bv->bv_len;
1247 bvprv = bv;
1248 continue;
1249 }
1250new_segment:
1251 if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
9dfa5283 1252 !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
1da177e4 1253 hw_seg_size += bv->bv_len;
9dfa5283 1254 else {
1da177e4 1255new_hw_segment:
9dfa5283
N
1256 if (nr_hw_segs == 1 &&
1257 hw_seg_size > rq->bio->bi_hw_front_size)
1258 rq->bio->bi_hw_front_size = hw_seg_size;
1da177e4
LT
1259 hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
1260 nr_hw_segs++;
1261 }
1262
1263 nr_phys_segs++;
1264 bvprv = bv;
1265 seg_size = bv->bv_len;
1266 highprv = high;
1267 }
9dfa5283
N
1268
1269 if (nr_hw_segs == 1 &&
1270 hw_seg_size > rq->bio->bi_hw_front_size)
1271 rq->bio->bi_hw_front_size = hw_seg_size;
1272 if (hw_seg_size > rq->biotail->bi_hw_back_size)
1273 rq->biotail->bi_hw_back_size = hw_seg_size;
1274 rq->nr_phys_segments = nr_phys_segs;
1275 rq->nr_hw_segments = nr_hw_segs;
1da177e4 1276}
1da177e4 1277
165125e1 1278static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1279 struct bio *nxt)
1280{
1281 if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
1282 return 0;
1283
1284 if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
1285 return 0;
1286 if (bio->bi_size + nxt->bi_size > q->max_segment_size)
1287 return 0;
1288
1289 /*
1290 * bio and nxt are contigous in memory, check if the queue allows
1291 * these two to be merged into one
1292 */
1293 if (BIO_SEG_BOUNDARY(q, bio, nxt))
1294 return 1;
1295
1296 return 0;
1297}
1298
165125e1 1299static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
1da177e4
LT
1300 struct bio *nxt)
1301{
1302 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1303 blk_recount_segments(q, bio);
1304 if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
1305 blk_recount_segments(q, nxt);
1306 if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
32eef964 1307 BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
1da177e4 1308 return 0;
32eef964 1309 if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
1da177e4
LT
1310 return 0;
1311
1312 return 1;
1313}
1314
1da177e4
LT
1315/*
1316 * map a request to scatterlist, return number of sg entries setup. Caller
1317 * must make sure sg can hold rq->nr_phys_segments entries
1318 */
165125e1 1319int blk_rq_map_sg(struct request_queue *q, struct request *rq,
f565913e 1320 struct scatterlist *sglist)
1da177e4
LT
1321{
1322 struct bio_vec *bvec, *bvprv;
5705f702 1323 struct req_iterator iter;
ba951841 1324 struct scatterlist *sg;
5705f702 1325 int nsegs, cluster;
1da177e4
LT
1326
1327 nsegs = 0;
1328 cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
1329
1330 /*
1331 * for each bio in rq
1332 */
1333 bvprv = NULL;
ba951841 1334 sg = NULL;
5705f702 1335 rq_for_each_segment(bvec, rq, iter) {
6c92e699 1336 int nbytes = bvec->bv_len;
1da177e4 1337
6c92e699 1338 if (bvprv && cluster) {
f565913e 1339 if (sg->length + nbytes > q->max_segment_size)
6c92e699 1340 goto new_segment;
1da177e4 1341
6c92e699
JA
1342 if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
1343 goto new_segment;
1344 if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
1345 goto new_segment;
1da177e4 1346
f565913e 1347 sg->length += nbytes;
6c92e699 1348 } else {
1da177e4 1349new_segment:
ba951841
JA
1350 if (!sg)
1351 sg = sglist;
7aeacf98
JA
1352 else {
1353 /*
1354 * If the driver previously mapped a shorter
1355 * list, we could see a termination bit
1356 * prematurely unless it fully inits the sg
1357 * table on each mapping. We KNOW that there
1358 * must be more entries here or the driver
1359 * would be buggy, so force clear the
1360 * termination bit to avoid doing a full
1361 * sg_init_table() in drivers for each command.
1362 */
1363 sg->page_link &= ~0x02;
ba951841 1364 sg = sg_next(sg);
7aeacf98 1365 }
6c92e699 1366
642f1490 1367 sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
6c92e699
JA
1368 nsegs++;
1369 }
1370 bvprv = bvec;
5705f702 1371 } /* segments in rq */
1da177e4 1372
9b61764b
JA
1373 if (sg)
1374 __sg_mark_end(sg);
1375
1da177e4
LT
1376 return nsegs;
1377}
1378
1379EXPORT_SYMBOL(blk_rq_map_sg);
1380
1381/*
1382 * the standard queue merge functions, can be overridden with device
1383 * specific ones if so desired
1384 */
1385
165125e1 1386static inline int ll_new_mergeable(struct request_queue *q,
1da177e4
LT
1387 struct request *req,
1388 struct bio *bio)
1389{
1390 int nr_phys_segs = bio_phys_segments(q, bio);
1391
1392 if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1393 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1394 if (req == q->last_merge)
1395 q->last_merge = NULL;
1396 return 0;
1397 }
1398
1399 /*
1400 * A hw segment is just getting larger, bump just the phys
1401 * counter.
1402 */
1403 req->nr_phys_segments += nr_phys_segs;
1404 return 1;
1405}
1406
165125e1 1407static inline int ll_new_hw_segment(struct request_queue *q,
1da177e4
LT
1408 struct request *req,
1409 struct bio *bio)
1410{
1411 int nr_hw_segs = bio_hw_segments(q, bio);
1412 int nr_phys_segs = bio_phys_segments(q, bio);
1413
1414 if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
1415 || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
4aff5e23 1416 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1417 if (req == q->last_merge)
1418 q->last_merge = NULL;
1419 return 0;
1420 }
1421
1422 /*
1423 * This will form the start of a new hw segment. Bump both
1424 * counters.
1425 */
1426 req->nr_hw_segments += nr_hw_segs;
1427 req->nr_phys_segments += nr_phys_segs;
1428 return 1;
1429}
1430
3001ca77
N
1431static int ll_back_merge_fn(struct request_queue *q, struct request *req,
1432 struct bio *bio)
1da177e4 1433{
defd94b7 1434 unsigned short max_sectors;
1da177e4
LT
1435 int len;
1436
defd94b7
MC
1437 if (unlikely(blk_pc_request(req)))
1438 max_sectors = q->max_hw_sectors;
1439 else
1440 max_sectors = q->max_sectors;
1441
1442 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1443 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1444 if (req == q->last_merge)
1445 q->last_merge = NULL;
1446 return 0;
1447 }
1448 if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
1449 blk_recount_segments(q, req->biotail);
1450 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1451 blk_recount_segments(q, bio);
1452 len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
1453 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
1454 !BIOVEC_VIRT_OVERSIZE(len)) {
1455 int mergeable = ll_new_mergeable(q, req, bio);
1456
1457 if (mergeable) {
1458 if (req->nr_hw_segments == 1)
1459 req->bio->bi_hw_front_size = len;
1460 if (bio->bi_hw_segments == 1)
1461 bio->bi_hw_back_size = len;
1462 }
1463 return mergeable;
1464 }
1465
1466 return ll_new_hw_segment(q, req, bio);
1467}
1468
165125e1 1469static int ll_front_merge_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1470 struct bio *bio)
1471{
defd94b7 1472 unsigned short max_sectors;
1da177e4
LT
1473 int len;
1474
defd94b7
MC
1475 if (unlikely(blk_pc_request(req)))
1476 max_sectors = q->max_hw_sectors;
1477 else
1478 max_sectors = q->max_sectors;
1479
1480
1481 if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
4aff5e23 1482 req->cmd_flags |= REQ_NOMERGE;
1da177e4
LT
1483 if (req == q->last_merge)
1484 q->last_merge = NULL;
1485 return 0;
1486 }
1487 len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
1488 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
1489 blk_recount_segments(q, bio);
1490 if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
1491 blk_recount_segments(q, req->bio);
1492 if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
1493 !BIOVEC_VIRT_OVERSIZE(len)) {
1494 int mergeable = ll_new_mergeable(q, req, bio);
1495
1496 if (mergeable) {
1497 if (bio->bi_hw_segments == 1)
1498 bio->bi_hw_front_size = len;
1499 if (req->nr_hw_segments == 1)
1500 req->biotail->bi_hw_back_size = len;
1501 }
1502 return mergeable;
1503 }
1504
1505 return ll_new_hw_segment(q, req, bio);
1506}
1507
165125e1 1508static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
1da177e4
LT
1509 struct request *next)
1510{
dfa1a553
ND
1511 int total_phys_segments;
1512 int total_hw_segments;
1da177e4
LT
1513
1514 /*
1515 * First check if the either of the requests are re-queued
1516 * requests. Can't merge them if they are.
1517 */
1518 if (req->special || next->special)
1519 return 0;
1520
1521 /*
dfa1a553 1522 * Will it become too large?
1da177e4
LT
1523 */
1524 if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
1525 return 0;
1526
1527 total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
1528 if (blk_phys_contig_segment(q, req->biotail, next->bio))
1529 total_phys_segments--;
1530
1531 if (total_phys_segments > q->max_phys_segments)
1532 return 0;
1533
1534 total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
1535 if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
1536 int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
1537 /*
1538 * propagate the combined length to the end of the requests
1539 */
1540 if (req->nr_hw_segments == 1)
1541 req->bio->bi_hw_front_size = len;
1542 if (next->nr_hw_segments == 1)
1543 next->biotail->bi_hw_back_size = len;
1544 total_hw_segments--;
1545 }
1546
1547 if (total_hw_segments > q->max_hw_segments)
1548 return 0;
1549
1550 /* Merge is OK... */
1551 req->nr_phys_segments = total_phys_segments;
1552 req->nr_hw_segments = total_hw_segments;
1553 return 1;
1554}
1555
1556/*
1557 * "plug" the device if there are no outstanding requests: this will
1558 * force the transfer to start only after we have put all the requests
1559 * on the list.
1560 *
1561 * This is called with interrupts off and no requests on the queue and
1562 * with the queue lock held.
1563 */
165125e1 1564void blk_plug_device(struct request_queue *q)
1da177e4
LT
1565{
1566 WARN_ON(!irqs_disabled());
1567
1568 /*
1569 * don't plug a stopped queue, it must be paired with blk_start_queue()
1570 * which will restart the queueing
1571 */
7daac490 1572 if (blk_queue_stopped(q))
1da177e4
LT
1573 return;
1574
2056a782 1575 if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
1da177e4 1576 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
1577 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
1578 }
1da177e4
LT
1579}
1580
1581EXPORT_SYMBOL(blk_plug_device);
1582
1583/*
1584 * remove the queue from the plugged list, if present. called with
1585 * queue lock held and interrupts disabled.
1586 */
165125e1 1587int blk_remove_plug(struct request_queue *q)
1da177e4
LT
1588{
1589 WARN_ON(!irqs_disabled());
1590
1591 if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
1592 return 0;
1593
1594 del_timer(&q->unplug_timer);
1595 return 1;
1596}
1597
1598EXPORT_SYMBOL(blk_remove_plug);
1599
1600/*
1601 * remove the plug and let it rip..
1602 */
165125e1 1603void __generic_unplug_device(struct request_queue *q)
1da177e4 1604{
7daac490 1605 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
1606 return;
1607
1608 if (!blk_remove_plug(q))
1609 return;
1610
22e2c507 1611 q->request_fn(q);
1da177e4
LT
1612}
1613EXPORT_SYMBOL(__generic_unplug_device);
1614
1615/**
1616 * generic_unplug_device - fire a request queue
165125e1 1617 * @q: The &struct request_queue in question
1da177e4
LT
1618 *
1619 * Description:
1620 * Linux uses plugging to build bigger requests queues before letting
1621 * the device have at them. If a queue is plugged, the I/O scheduler
1622 * is still adding and merging requests on the queue. Once the queue
1623 * gets unplugged, the request_fn defined for the queue is invoked and
1624 * transfers started.
1625 **/
165125e1 1626void generic_unplug_device(struct request_queue *q)
1da177e4
LT
1627{
1628 spin_lock_irq(q->queue_lock);
1629 __generic_unplug_device(q);
1630 spin_unlock_irq(q->queue_lock);
1631}
1632EXPORT_SYMBOL(generic_unplug_device);
1633
1634static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
1635 struct page *page)
1636{
165125e1 1637 struct request_queue *q = bdi->unplug_io_data;
1da177e4
LT
1638
1639 /*
1640 * devices don't necessarily have an ->unplug_fn defined
1641 */
2056a782
JA
1642 if (q->unplug_fn) {
1643 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1644 q->rq.count[READ] + q->rq.count[WRITE]);
1645
1da177e4 1646 q->unplug_fn(q);
2056a782 1647 }
1da177e4
LT
1648}
1649
65f27f38 1650static void blk_unplug_work(struct work_struct *work)
1da177e4 1651{
165125e1
JA
1652 struct request_queue *q =
1653 container_of(work, struct request_queue, unplug_work);
1da177e4 1654
2056a782
JA
1655 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
1656 q->rq.count[READ] + q->rq.count[WRITE]);
1657
1da177e4
LT
1658 q->unplug_fn(q);
1659}
1660
1661static void blk_unplug_timeout(unsigned long data)
1662{
165125e1 1663 struct request_queue *q = (struct request_queue *)data;
1da177e4 1664
2056a782
JA
1665 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
1666 q->rq.count[READ] + q->rq.count[WRITE]);
1667
1da177e4
LT
1668 kblockd_schedule_work(&q->unplug_work);
1669}
1670
1671/**
1672 * blk_start_queue - restart a previously stopped queue
165125e1 1673 * @q: The &struct request_queue in question
1da177e4
LT
1674 *
1675 * Description:
1676 * blk_start_queue() will clear the stop flag on the queue, and call
1677 * the request_fn for the queue if it was in a stopped state when
1678 * entered. Also see blk_stop_queue(). Queue lock must be held.
1679 **/
165125e1 1680void blk_start_queue(struct request_queue *q)
1da177e4 1681{
a038e253
PBG
1682 WARN_ON(!irqs_disabled());
1683
1da177e4
LT
1684 clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1685
1686 /*
1687 * one level of recursion is ok and is much faster than kicking
1688 * the unplug handling
1689 */
1690 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1691 q->request_fn(q);
1692 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1693 } else {
1694 blk_plug_device(q);
1695 kblockd_schedule_work(&q->unplug_work);
1696 }
1697}
1698
1699EXPORT_SYMBOL(blk_start_queue);
1700
1701/**
1702 * blk_stop_queue - stop a queue
165125e1 1703 * @q: The &struct request_queue in question
1da177e4
LT
1704 *
1705 * Description:
1706 * The Linux block layer assumes that a block driver will consume all
1707 * entries on the request queue when the request_fn strategy is called.
1708 * Often this will not happen, because of hardware limitations (queue
1709 * depth settings). If a device driver gets a 'queue full' response,
1710 * or if it simply chooses not to queue more I/O at one point, it can
1711 * call this function to prevent the request_fn from being called until
1712 * the driver has signalled it's ready to go again. This happens by calling
1713 * blk_start_queue() to restart queue operations. Queue lock must be held.
1714 **/
165125e1 1715void blk_stop_queue(struct request_queue *q)
1da177e4
LT
1716{
1717 blk_remove_plug(q);
1718 set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
1719}
1720EXPORT_SYMBOL(blk_stop_queue);
1721
1722/**
1723 * blk_sync_queue - cancel any pending callbacks on a queue
1724 * @q: the queue
1725 *
1726 * Description:
1727 * The block layer may perform asynchronous callback activity
1728 * on a queue, such as calling the unplug function after a timeout.
1729 * A block device may call blk_sync_queue to ensure that any
1730 * such activity is cancelled, thus allowing it to release resources
59c51591 1731 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
1732 * that its ->make_request_fn will not re-add plugging prior to calling
1733 * this function.
1734 *
1735 */
1736void blk_sync_queue(struct request_queue *q)
1737{
1738 del_timer_sync(&q->unplug_timer);
abbeb88d 1739 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
1740}
1741EXPORT_SYMBOL(blk_sync_queue);
1742
1743/**
1744 * blk_run_queue - run a single device queue
1745 * @q: The queue to run
1746 */
1747void blk_run_queue(struct request_queue *q)
1748{
1749 unsigned long flags;
1750
1751 spin_lock_irqsave(q->queue_lock, flags);
1752 blk_remove_plug(q);
dac07ec1
JA
1753
1754 /*
1755 * Only recurse once to avoid overrunning the stack, let the unplug
1756 * handling reinvoke the handler shortly if we already got there.
1757 */
1758 if (!elv_queue_empty(q)) {
1759 if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
1760 q->request_fn(q);
1761 clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
1762 } else {
1763 blk_plug_device(q);
1764 kblockd_schedule_work(&q->unplug_work);
1765 }
1766 }
1767
1da177e4
LT
1768 spin_unlock_irqrestore(q->queue_lock, flags);
1769}
1770EXPORT_SYMBOL(blk_run_queue);
1771
1772/**
165125e1 1773 * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
a580290c 1774 * @kobj: the kobj belonging of the request queue to be released
1da177e4
LT
1775 *
1776 * Description:
1777 * blk_cleanup_queue is the pair to blk_init_queue() or
1778 * blk_queue_make_request(). It should be called when a request queue is
1779 * being released; typically when a block device is being de-registered.
1780 * Currently, its primary task it to free all the &struct request
1781 * structures that were allocated to the queue and the queue itself.
1782 *
1783 * Caveat:
1784 * Hopefully the low level driver will have finished any
1785 * outstanding requests first...
1786 **/
483f4afc 1787static void blk_release_queue(struct kobject *kobj)
1da177e4 1788{
165125e1
JA
1789 struct request_queue *q =
1790 container_of(kobj, struct request_queue, kobj);
1da177e4
LT
1791 struct request_list *rl = &q->rq;
1792
1da177e4
LT
1793 blk_sync_queue(q);
1794
1795 if (rl->rq_pool)
1796 mempool_destroy(rl->rq_pool);
1797
1798 if (q->queue_tags)
1799 __blk_queue_free_tags(q);
1800
6c5c9341 1801 blk_trace_shutdown(q);
2056a782 1802
e0bf68dd 1803 bdi_destroy(&q->backing_dev_info);
1da177e4
LT
1804 kmem_cache_free(requestq_cachep, q);
1805}
1806
165125e1 1807void blk_put_queue(struct request_queue *q)
483f4afc
AV
1808{
1809 kobject_put(&q->kobj);
1810}
1811EXPORT_SYMBOL(blk_put_queue);
1812
165125e1 1813void blk_cleanup_queue(struct request_queue * q)
483f4afc
AV
1814{
1815 mutex_lock(&q->sysfs_lock);
1816 set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
1817 mutex_unlock(&q->sysfs_lock);
1818
1819 if (q->elevator)
1820 elevator_exit(q->elevator);
1821
1822 blk_put_queue(q);
1823}
1824
1da177e4
LT
1825EXPORT_SYMBOL(blk_cleanup_queue);
1826
165125e1 1827static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
1828{
1829 struct request_list *rl = &q->rq;
1830
1831 rl->count[READ] = rl->count[WRITE] = 0;
1832 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 1833 rl->elvpriv = 0;
1da177e4
LT
1834 init_waitqueue_head(&rl->wait[READ]);
1835 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 1836
1946089a
CL
1837 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
1838 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
1839
1840 if (!rl->rq_pool)
1841 return -ENOMEM;
1842
1843 return 0;
1844}
1845
165125e1 1846struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 1847{
1946089a
CL
1848 return blk_alloc_queue_node(gfp_mask, -1);
1849}
1850EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 1851
483f4afc
AV
1852static struct kobj_type queue_ktype;
1853
165125e1 1854struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 1855{
165125e1 1856 struct request_queue *q;
e0bf68dd 1857 int err;
1946089a 1858
94f6030c
CL
1859 q = kmem_cache_alloc_node(requestq_cachep,
1860 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
1861 if (!q)
1862 return NULL;
1863
e0bf68dd
PZ
1864 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
1865 q->backing_dev_info.unplug_io_data = q;
1866 err = bdi_init(&q->backing_dev_info);
1867 if (err) {
1868 kmem_cache_free(requestq_cachep, q);
1869 return NULL;
1870 }
1871
1da177e4 1872 init_timer(&q->unplug_timer);
483f4afc 1873
19c38de8 1874 kobject_set_name(&q->kobj, "%s", "queue");
483f4afc
AV
1875 q->kobj.ktype = &queue_ktype;
1876 kobject_init(&q->kobj);
1da177e4 1877
483f4afc
AV
1878 mutex_init(&q->sysfs_lock);
1879
1da177e4
LT
1880 return q;
1881}
1946089a 1882EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
1883
1884/**
1885 * blk_init_queue - prepare a request queue for use with a block device
1886 * @rfn: The function to be called to process requests that have been
1887 * placed on the queue.
1888 * @lock: Request queue spin lock
1889 *
1890 * Description:
1891 * If a block device wishes to use the standard request handling procedures,
1892 * which sorts requests and coalesces adjacent requests, then it must
1893 * call blk_init_queue(). The function @rfn will be called when there
1894 * are requests on the queue that need to be processed. If the device
1895 * supports plugging, then @rfn may not be called immediately when requests
1896 * are available on the queue, but may be called at some time later instead.
1897 * Plugged queues are generally unplugged when a buffer belonging to one
1898 * of the requests on the queue is needed, or due to memory pressure.
1899 *
1900 * @rfn is not required, or even expected, to remove all requests off the
1901 * queue, but only as many as it can handle at a time. If it does leave
1902 * requests on the queue, it is responsible for arranging that the requests
1903 * get dealt with eventually.
1904 *
1905 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
1906 * request queue; this lock will be taken also from interrupt context, so irq
1907 * disabling is needed for it.
1da177e4
LT
1908 *
1909 * Function returns a pointer to the initialized request queue, or NULL if
1910 * it didn't succeed.
1911 *
1912 * Note:
1913 * blk_init_queue() must be paired with a blk_cleanup_queue() call
1914 * when the block device is deactivated (such as at module unload).
1915 **/
1946089a 1916
165125e1 1917struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 1918{
1946089a
CL
1919 return blk_init_queue_node(rfn, lock, -1);
1920}
1921EXPORT_SYMBOL(blk_init_queue);
1922
165125e1 1923struct request_queue *
1946089a
CL
1924blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1925{
165125e1 1926 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
1927
1928 if (!q)
1929 return NULL;
1930
1946089a 1931 q->node = node_id;
8669aafd
AV
1932 if (blk_init_free_list(q)) {
1933 kmem_cache_free(requestq_cachep, q);
1934 return NULL;
1935 }
1da177e4 1936
152587de 1937 /*
1938 * if caller didn't supply a lock, they get per-queue locking with
1939 * our embedded lock
1940 */
1941 if (!lock) {
1942 spin_lock_init(&q->__queue_lock);
1943 lock = &q->__queue_lock;
1944 }
1945
1da177e4 1946 q->request_fn = rfn;
1da177e4
LT
1947 q->prep_rq_fn = NULL;
1948 q->unplug_fn = generic_unplug_device;
1949 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
1950 q->queue_lock = lock;
1951
1952 blk_queue_segment_boundary(q, 0xffffffff);
1953
1954 blk_queue_make_request(q, __make_request);
1955 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1956
1957 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1958 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1959
44ec9542
AS
1960 q->sg_reserved_size = INT_MAX;
1961
1da177e4
LT
1962 /*
1963 * all done
1964 */
1965 if (!elevator_init(q, NULL)) {
1966 blk_queue_congestion_threshold(q);
1967 return q;
1968 }
1969
8669aafd 1970 blk_put_queue(q);
1da177e4
LT
1971 return NULL;
1972}
1946089a 1973EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 1974
165125e1 1975int blk_get_queue(struct request_queue *q)
1da177e4 1976{
fde6ad22 1977 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 1978 kobject_get(&q->kobj);
1da177e4
LT
1979 return 0;
1980 }
1981
1982 return 1;
1983}
1984
1985EXPORT_SYMBOL(blk_get_queue);
1986
165125e1 1987static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 1988{
4aff5e23 1989 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 1990 elv_put_request(q, rq);
1da177e4
LT
1991 mempool_free(rq, q->rq.rq_pool);
1992}
1993
1ea25ecb 1994static struct request *
165125e1 1995blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
1996{
1997 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
1998
1999 if (!rq)
2000 return NULL;
2001
2002 /*
4aff5e23 2003 * first three bits are identical in rq->cmd_flags and bio->bi_rw,
1da177e4
LT
2004 * see bio.h and blkdev.h
2005 */
49171e5c 2006 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 2007
cb98fc8b 2008 if (priv) {
cb78b285 2009 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
2010 mempool_free(rq, q->rq.rq_pool);
2011 return NULL;
2012 }
4aff5e23 2013 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 2014 }
1da177e4 2015
cb98fc8b 2016 return rq;
1da177e4
LT
2017}
2018
2019/*
2020 * ioc_batching returns true if the ioc is a valid batching request and
2021 * should be given priority access to a request.
2022 */
165125e1 2023static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2024{
2025 if (!ioc)
2026 return 0;
2027
2028 /*
2029 * Make sure the process is able to allocate at least 1 request
2030 * even if the batch times out, otherwise we could theoretically
2031 * lose wakeups.
2032 */
2033 return ioc->nr_batch_requests == q->nr_batching ||
2034 (ioc->nr_batch_requests > 0
2035 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
2036}
2037
2038/*
2039 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
2040 * will cause the process to be a "batcher" on all queues in the system. This
2041 * is the behaviour we want though - once it gets a wakeup it should be given
2042 * a nice run.
2043 */
165125e1 2044static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
2045{
2046 if (!ioc || ioc_batching(q, ioc))
2047 return;
2048
2049 ioc->nr_batch_requests = q->nr_batching;
2050 ioc->last_waited = jiffies;
2051}
2052
165125e1 2053static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
2054{
2055 struct request_list *rl = &q->rq;
2056
2057 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 2058 blk_clear_queue_congested(q, rw);
1da177e4
LT
2059
2060 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
2061 if (waitqueue_active(&rl->wait[rw]))
2062 wake_up(&rl->wait[rw]);
2063
2064 blk_clear_queue_full(q, rw);
2065 }
2066}
2067
2068/*
2069 * A request has just been released. Account for it, update the full and
2070 * congestion status, wake up any waiters. Called under q->queue_lock.
2071 */
165125e1 2072static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
2073{
2074 struct request_list *rl = &q->rq;
2075
2076 rl->count[rw]--;
cb98fc8b
TH
2077 if (priv)
2078 rl->elvpriv--;
1da177e4
LT
2079
2080 __freed_request(q, rw);
2081
2082 if (unlikely(rl->starved[rw ^ 1]))
2083 __freed_request(q, rw ^ 1);
1da177e4
LT
2084}
2085
2086#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
2087/*
d6344532
NP
2088 * Get a free request, queue_lock must be held.
2089 * Returns NULL on failure, with queue_lock held.
2090 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 2091 */
165125e1 2092static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 2093 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
2094{
2095 struct request *rq = NULL;
2096 struct request_list *rl = &q->rq;
88ee5ef1 2097 struct io_context *ioc = NULL;
7749a8d4 2098 const int rw = rw_flags & 0x01;
88ee5ef1
JA
2099 int may_queue, priv;
2100
7749a8d4 2101 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
2102 if (may_queue == ELV_MQUEUE_NO)
2103 goto rq_starved;
2104
2105 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
2106 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 2107 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
2108 /*
2109 * The queue will fill after this allocation, so set
2110 * it as full, and mark this process as "batching".
2111 * This process will be allowed to complete a batch of
2112 * requests, others will be blocked.
2113 */
2114 if (!blk_queue_full(q, rw)) {
2115 ioc_set_batching(q, ioc);
2116 blk_set_queue_full(q, rw);
2117 } else {
2118 if (may_queue != ELV_MQUEUE_MUST
2119 && !ioc_batching(q, ioc)) {
2120 /*
2121 * The queue is full and the allocating
2122 * process is not a "batcher", and not
2123 * exempted by the IO scheduler
2124 */
2125 goto out;
2126 }
2127 }
1da177e4 2128 }
79e2de4b 2129 blk_set_queue_congested(q, rw);
1da177e4
LT
2130 }
2131
082cf69e
JA
2132 /*
2133 * Only allow batching queuers to allocate up to 50% over the defined
2134 * limit of requests, otherwise we could have thousands of requests
2135 * allocated with any setting of ->nr_requests
2136 */
fd782a4a 2137 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 2138 goto out;
fd782a4a 2139
1da177e4
LT
2140 rl->count[rw]++;
2141 rl->starved[rw] = 0;
cb98fc8b 2142
64521d1a 2143 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
2144 if (priv)
2145 rl->elvpriv++;
2146
1da177e4
LT
2147 spin_unlock_irq(q->queue_lock);
2148
7749a8d4 2149 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 2150 if (unlikely(!rq)) {
1da177e4
LT
2151 /*
2152 * Allocation failed presumably due to memory. Undo anything
2153 * we might have messed up.
2154 *
2155 * Allocating task should really be put onto the front of the
2156 * wait queue, but this is pretty rare.
2157 */
2158 spin_lock_irq(q->queue_lock);
cb98fc8b 2159 freed_request(q, rw, priv);
1da177e4
LT
2160
2161 /*
2162 * in the very unlikely event that allocation failed and no
2163 * requests for this direction was pending, mark us starved
2164 * so that freeing of a request in the other direction will
2165 * notice us. another possible fix would be to split the
2166 * rq mempool into READ and WRITE
2167 */
2168rq_starved:
2169 if (unlikely(rl->count[rw] == 0))
2170 rl->starved[rw] = 1;
2171
1da177e4
LT
2172 goto out;
2173 }
2174
88ee5ef1
JA
2175 /*
2176 * ioc may be NULL here, and ioc_batching will be false. That's
2177 * OK, if the queue is under the request limit then requests need
2178 * not count toward the nr_batch_requests limit. There will always
2179 * be some limit enforced by BLK_BATCH_TIME.
2180 */
1da177e4
LT
2181 if (ioc_batching(q, ioc))
2182 ioc->nr_batch_requests--;
2183
2184 rq_init(q, rq);
2056a782
JA
2185
2186 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 2187out:
1da177e4
LT
2188 return rq;
2189}
2190
2191/*
2192 * No available requests for this queue, unplug the device and wait for some
2193 * requests to become available.
d6344532
NP
2194 *
2195 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 2196 */
165125e1 2197static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 2198 struct bio *bio)
1da177e4 2199{
7749a8d4 2200 const int rw = rw_flags & 0x01;
1da177e4
LT
2201 struct request *rq;
2202
7749a8d4 2203 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
2204 while (!rq) {
2205 DEFINE_WAIT(wait);
1da177e4
LT
2206 struct request_list *rl = &q->rq;
2207
2208 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
2209 TASK_UNINTERRUPTIBLE);
2210
7749a8d4 2211 rq = get_request(q, rw_flags, bio, GFP_NOIO);
1da177e4
LT
2212
2213 if (!rq) {
2214 struct io_context *ioc;
2215
2056a782
JA
2216 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
2217
d6344532
NP
2218 __generic_unplug_device(q);
2219 spin_unlock_irq(q->queue_lock);
1da177e4
LT
2220 io_schedule();
2221
2222 /*
2223 * After sleeping, we become a "batching" process and
2224 * will be able to allocate at least one request, and
2225 * up to a big batch of them for a small period time.
2226 * See ioc_batching, ioc_set_batching
2227 */
b5deef90 2228 ioc = current_io_context(GFP_NOIO, q->node);
1da177e4 2229 ioc_set_batching(q, ioc);
d6344532
NP
2230
2231 spin_lock_irq(q->queue_lock);
1da177e4
LT
2232 }
2233 finish_wait(&rl->wait[rw], &wait);
450991bc 2234 }
1da177e4
LT
2235
2236 return rq;
2237}
2238
165125e1 2239struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
2240{
2241 struct request *rq;
2242
2243 BUG_ON(rw != READ && rw != WRITE);
2244
d6344532
NP
2245 spin_lock_irq(q->queue_lock);
2246 if (gfp_mask & __GFP_WAIT) {
22e2c507 2247 rq = get_request_wait(q, rw, NULL);
d6344532 2248 } else {
22e2c507 2249 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
2250 if (!rq)
2251 spin_unlock_irq(q->queue_lock);
2252 }
2253 /* q->queue_lock is unlocked at this point */
1da177e4
LT
2254
2255 return rq;
2256}
1da177e4
LT
2257EXPORT_SYMBOL(blk_get_request);
2258
dc72ef4a
JA
2259/**
2260 * blk_start_queueing - initiate dispatch of requests to device
2261 * @q: request queue to kick into gear
2262 *
2263 * This is basically a helper to remove the need to know whether a queue
2264 * is plugged or not if someone just wants to initiate dispatch of requests
2265 * for this queue.
2266 *
2267 * The queue lock must be held with interrupts disabled.
2268 */
165125e1 2269void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
2270{
2271 if (!blk_queue_plugged(q))
2272 q->request_fn(q);
2273 else
2274 __generic_unplug_device(q);
2275}
2276EXPORT_SYMBOL(blk_start_queueing);
2277
1da177e4
LT
2278/**
2279 * blk_requeue_request - put a request back on queue
2280 * @q: request queue where request should be inserted
2281 * @rq: request to be inserted
2282 *
2283 * Description:
2284 * Drivers often keep queueing requests until the hardware cannot accept
2285 * more, when that condition happens we need to put the request back
2286 * on the queue. Must be called with queue lock held.
2287 */
165125e1 2288void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 2289{
2056a782
JA
2290 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
2291
1da177e4
LT
2292 if (blk_rq_tagged(rq))
2293 blk_queue_end_tag(q, rq);
2294
2295 elv_requeue_request(q, rq);
2296}
2297
2298EXPORT_SYMBOL(blk_requeue_request);
2299
2300/**
2301 * blk_insert_request - insert a special request in to a request queue
2302 * @q: request queue where request should be inserted
2303 * @rq: request to be inserted
2304 * @at_head: insert request at head or tail of queue
2305 * @data: private data
1da177e4
LT
2306 *
2307 * Description:
2308 * Many block devices need to execute commands asynchronously, so they don't
2309 * block the whole kernel from preemption during request execution. This is
2310 * accomplished normally by inserting aritficial requests tagged as
2311 * REQ_SPECIAL in to the corresponding request queue, and letting them be
2312 * scheduled for actual execution by the request queue.
2313 *
2314 * We have the option of inserting the head or the tail of the queue.
2315 * Typically we use the tail for new ioctls and so forth. We use the head
2316 * of the queue for things like a QUEUE_FULL message from a device, or a
2317 * host that is unable to accept a particular command.
2318 */
165125e1 2319void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 2320 int at_head, void *data)
1da177e4 2321{
867d1191 2322 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
2323 unsigned long flags;
2324
2325 /*
2326 * tell I/O scheduler that this isn't a regular read/write (ie it
2327 * must not attempt merges on this) and that it acts as a soft
2328 * barrier
2329 */
4aff5e23
JA
2330 rq->cmd_type = REQ_TYPE_SPECIAL;
2331 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
2332
2333 rq->special = data;
2334
2335 spin_lock_irqsave(q->queue_lock, flags);
2336
2337 /*
2338 * If command is tagged, release the tag
2339 */
867d1191
TH
2340 if (blk_rq_tagged(rq))
2341 blk_queue_end_tag(q, rq);
1da177e4 2342
b238b3d4 2343 drive_stat_acct(rq, 1);
867d1191 2344 __elv_add_request(q, rq, where, 0);
dc72ef4a 2345 blk_start_queueing(q);
1da177e4
LT
2346 spin_unlock_irqrestore(q->queue_lock, flags);
2347}
2348
2349EXPORT_SYMBOL(blk_insert_request);
2350
0e75f906
MC
2351static int __blk_rq_unmap_user(struct bio *bio)
2352{
2353 int ret = 0;
2354
2355 if (bio) {
2356 if (bio_flagged(bio, BIO_USER_MAPPED))
2357 bio_unmap_user(bio);
2358 else
2359 ret = bio_uncopy_user(bio);
2360 }
2361
2362 return ret;
2363}
2364
3001ca77
N
2365int blk_rq_append_bio(struct request_queue *q, struct request *rq,
2366 struct bio *bio)
2367{
2368 if (!rq->bio)
2369 blk_rq_bio_prep(q, rq, bio);
2370 else if (!ll_back_merge_fn(q, rq, bio))
2371 return -EINVAL;
2372 else {
2373 rq->biotail->bi_next = bio;
2374 rq->biotail = bio;
2375
2376 rq->data_len += bio->bi_size;
2377 }
2378 return 0;
2379}
2380EXPORT_SYMBOL(blk_rq_append_bio);
2381
165125e1 2382static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
0e75f906
MC
2383 void __user *ubuf, unsigned int len)
2384{
2385 unsigned long uaddr;
2386 struct bio *bio, *orig_bio;
2387 int reading, ret;
2388
2389 reading = rq_data_dir(rq) == READ;
2390
2391 /*
2392 * if alignment requirement is satisfied, map in user pages for
2393 * direct dma. else, set up kernel bounce buffers
2394 */
2395 uaddr = (unsigned long) ubuf;
2396 if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
2397 bio = bio_map_user(q, NULL, uaddr, len, reading);
2398 else
2399 bio = bio_copy_user(q, uaddr, len, reading);
2400
2985259b 2401 if (IS_ERR(bio))
0e75f906 2402 return PTR_ERR(bio);
0e75f906
MC
2403
2404 orig_bio = bio;
2405 blk_queue_bounce(q, &bio);
2985259b 2406
0e75f906
MC
2407 /*
2408 * We link the bounce buffer in and could have to traverse it
2409 * later so we have to get a ref to prevent it from being freed
2410 */
2411 bio_get(bio);
2412
3001ca77
N
2413 ret = blk_rq_append_bio(q, rq, bio);
2414 if (!ret)
2415 return bio->bi_size;
0e75f906 2416
0e75f906 2417 /* if it was boucned we must call the end io function */
6712ecf8 2418 bio_endio(bio, 0);
0e75f906
MC
2419 __blk_rq_unmap_user(orig_bio);
2420 bio_put(bio);
2421 return ret;
2422}
2423
1da177e4
LT
2424/**
2425 * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
2426 * @q: request queue where request should be inserted
73747aed 2427 * @rq: request structure to fill
1da177e4
LT
2428 * @ubuf: the user buffer
2429 * @len: length of user data
2430 *
2431 * Description:
2432 * Data will be mapped directly for zero copy io, if possible. Otherwise
2433 * a kernel bounce buffer is used.
2434 *
2435 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2436 * still in process context.
2437 *
2438 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2439 * before being submitted to the device, as pages mapped may be out of
2440 * reach. It's the callers responsibility to make sure this happens. The
2441 * original bio must be passed back in to blk_rq_unmap_user() for proper
2442 * unmapping.
2443 */
165125e1
JA
2444int blk_rq_map_user(struct request_queue *q, struct request *rq,
2445 void __user *ubuf, unsigned long len)
1da177e4 2446{
0e75f906 2447 unsigned long bytes_read = 0;
8e5cfc45 2448 struct bio *bio = NULL;
0e75f906 2449 int ret;
1da177e4 2450
defd94b7 2451 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2452 return -EINVAL;
2453 if (!len || !ubuf)
2454 return -EINVAL;
1da177e4 2455
0e75f906
MC
2456 while (bytes_read != len) {
2457 unsigned long map_len, end, start;
1da177e4 2458
0e75f906
MC
2459 map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
2460 end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
2461 >> PAGE_SHIFT;
2462 start = (unsigned long)ubuf >> PAGE_SHIFT;
1da177e4 2463
0e75f906
MC
2464 /*
2465 * A bad offset could cause us to require BIO_MAX_PAGES + 1
2466 * pages. If this happens we just lower the requested
2467 * mapping len by a page so that we can fit
2468 */
2469 if (end - start > BIO_MAX_PAGES)
2470 map_len -= PAGE_SIZE;
1da177e4 2471
0e75f906
MC
2472 ret = __blk_rq_map_user(q, rq, ubuf, map_len);
2473 if (ret < 0)
2474 goto unmap_rq;
8e5cfc45
JA
2475 if (!bio)
2476 bio = rq->bio;
0e75f906
MC
2477 bytes_read += ret;
2478 ubuf += ret;
1da177e4
LT
2479 }
2480
0e75f906
MC
2481 rq->buffer = rq->data = NULL;
2482 return 0;
2483unmap_rq:
8e5cfc45 2484 blk_rq_unmap_user(bio);
0e75f906 2485 return ret;
1da177e4
LT
2486}
2487
2488EXPORT_SYMBOL(blk_rq_map_user);
2489
f1970baf
JB
2490/**
2491 * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
2492 * @q: request queue where request should be inserted
2493 * @rq: request to map data to
2494 * @iov: pointer to the iovec
2495 * @iov_count: number of elements in the iovec
af9997e4 2496 * @len: I/O byte count
f1970baf
JB
2497 *
2498 * Description:
2499 * Data will be mapped directly for zero copy io, if possible. Otherwise
2500 * a kernel bounce buffer is used.
2501 *
2502 * A matching blk_rq_unmap_user() must be issued at the end of io, while
2503 * still in process context.
2504 *
2505 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
2506 * before being submitted to the device, as pages mapped may be out of
2507 * reach. It's the callers responsibility to make sure this happens. The
2508 * original bio must be passed back in to blk_rq_unmap_user() for proper
2509 * unmapping.
2510 */
165125e1 2511int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
0e75f906 2512 struct sg_iovec *iov, int iov_count, unsigned int len)
f1970baf
JB
2513{
2514 struct bio *bio;
2515
2516 if (!iov || iov_count <= 0)
2517 return -EINVAL;
2518
2519 /* we don't allow misaligned data like bio_map_user() does. If the
2520 * user is using sg, they're expected to know the alignment constraints
2521 * and respect them accordingly */
2522 bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
2523 if (IS_ERR(bio))
2524 return PTR_ERR(bio);
2525
0e75f906 2526 if (bio->bi_size != len) {
6712ecf8 2527 bio_endio(bio, 0);
0e75f906
MC
2528 bio_unmap_user(bio);
2529 return -EINVAL;
2530 }
2531
2532 bio_get(bio);
f1970baf
JB
2533 blk_rq_bio_prep(q, rq, bio);
2534 rq->buffer = rq->data = NULL;
f1970baf
JB
2535 return 0;
2536}
2537
2538EXPORT_SYMBOL(blk_rq_map_user_iov);
2539
1da177e4
LT
2540/**
2541 * blk_rq_unmap_user - unmap a request with user data
8e5cfc45 2542 * @bio: start of bio list
1da177e4
LT
2543 *
2544 * Description:
8e5cfc45
JA
2545 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
2546 * supply the original rq->bio from the blk_rq_map_user() return, since
2547 * the io completion may have changed rq->bio.
1da177e4 2548 */
8e5cfc45 2549int blk_rq_unmap_user(struct bio *bio)
1da177e4 2550{
8e5cfc45 2551 struct bio *mapped_bio;
48785bb9 2552 int ret = 0, ret2;
1da177e4 2553
8e5cfc45
JA
2554 while (bio) {
2555 mapped_bio = bio;
2556 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
0e75f906 2557 mapped_bio = bio->bi_private;
1da177e4 2558
48785bb9
JA
2559 ret2 = __blk_rq_unmap_user(mapped_bio);
2560 if (ret2 && !ret)
2561 ret = ret2;
2562
8e5cfc45
JA
2563 mapped_bio = bio;
2564 bio = bio->bi_next;
2565 bio_put(mapped_bio);
0e75f906 2566 }
48785bb9
JA
2567
2568 return ret;
1da177e4
LT
2569}
2570
2571EXPORT_SYMBOL(blk_rq_unmap_user);
2572
df46b9a4
MC
2573/**
2574 * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
2575 * @q: request queue where request should be inserted
73747aed 2576 * @rq: request to fill
df46b9a4
MC
2577 * @kbuf: the kernel buffer
2578 * @len: length of user data
73747aed 2579 * @gfp_mask: memory allocation flags
df46b9a4 2580 */
165125e1 2581int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
8267e268 2582 unsigned int len, gfp_t gfp_mask)
df46b9a4 2583{
df46b9a4
MC
2584 struct bio *bio;
2585
defd94b7 2586 if (len > (q->max_hw_sectors << 9))
dd1cab95
JA
2587 return -EINVAL;
2588 if (!len || !kbuf)
2589 return -EINVAL;
df46b9a4
MC
2590
2591 bio = bio_map_kern(q, kbuf, len, gfp_mask);
dd1cab95
JA
2592 if (IS_ERR(bio))
2593 return PTR_ERR(bio);
df46b9a4 2594
dd1cab95
JA
2595 if (rq_data_dir(rq) == WRITE)
2596 bio->bi_rw |= (1 << BIO_RW);
df46b9a4 2597
dd1cab95 2598 blk_rq_bio_prep(q, rq, bio);
821de3a2 2599 blk_queue_bounce(q, &rq->bio);
dd1cab95 2600 rq->buffer = rq->data = NULL;
dd1cab95 2601 return 0;
df46b9a4
MC
2602}
2603
2604EXPORT_SYMBOL(blk_rq_map_kern);
2605
73747aed
CH
2606/**
2607 * blk_execute_rq_nowait - insert a request into queue for execution
2608 * @q: queue to insert the request in
2609 * @bd_disk: matching gendisk
2610 * @rq: request to insert
2611 * @at_head: insert request at head or tail of queue
2612 * @done: I/O completion handler
2613 *
2614 * Description:
2615 * Insert a fully prepared request at the back of the io scheduler queue
2616 * for execution. Don't wait for completion.
2617 */
165125e1 2618void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
f1970baf 2619 struct request *rq, int at_head,
8ffdc655 2620 rq_end_io_fn *done)
f1970baf
JB
2621{
2622 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
2623
2624 rq->rq_disk = bd_disk;
4aff5e23 2625 rq->cmd_flags |= REQ_NOMERGE;
f1970baf 2626 rq->end_io = done;
4c5d0bbd
AM
2627 WARN_ON(irqs_disabled());
2628 spin_lock_irq(q->queue_lock);
2629 __elv_add_request(q, rq, where, 1);
2630 __generic_unplug_device(q);
2631 spin_unlock_irq(q->queue_lock);
f1970baf 2632}
6e39b69e
MC
2633EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
2634
1da177e4
LT
2635/**
2636 * blk_execute_rq - insert a request into queue for execution
2637 * @q: queue to insert the request in
2638 * @bd_disk: matching gendisk
2639 * @rq: request to insert
994ca9a1 2640 * @at_head: insert request at head or tail of queue
1da177e4
LT
2641 *
2642 * Description:
2643 * Insert a fully prepared request at the back of the io scheduler queue
73747aed 2644 * for execution and wait for completion.
1da177e4 2645 */
165125e1 2646int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
994ca9a1 2647 struct request *rq, int at_head)
1da177e4 2648{
60be6b9a 2649 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
2650 char sense[SCSI_SENSE_BUFFERSIZE];
2651 int err = 0;
2652
1da177e4
LT
2653 /*
2654 * we need an extra reference to the request, so we can look at
2655 * it after io completion
2656 */
2657 rq->ref_count++;
2658
2659 if (!rq->sense) {
2660 memset(sense, 0, sizeof(sense));
2661 rq->sense = sense;
2662 rq->sense_len = 0;
2663 }
2664
c00895ab 2665 rq->end_io_data = &wait;
994ca9a1 2666 blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
1da177e4 2667 wait_for_completion(&wait);
1da177e4
LT
2668
2669 if (rq->errors)
2670 err = -EIO;
2671
2672 return err;
2673}
2674
2675EXPORT_SYMBOL(blk_execute_rq);
2676
fd5d8062
JA
2677static void bio_end_empty_barrier(struct bio *bio, int err)
2678{
2679 if (err)
2680 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2681
2682 complete(bio->bi_private);
2683}
2684
1da177e4
LT
2685/**
2686 * blkdev_issue_flush - queue a flush
2687 * @bdev: blockdev to issue flush for
2688 * @error_sector: error sector
2689 *
2690 * Description:
2691 * Issue a flush for the block device in question. Caller can supply
2692 * room for storing the error offset in case of a flush error, if they
2693 * wish to. Caller must run wait_for_completion() on its own.
2694 */
2695int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
2696{
fd5d8062 2697 DECLARE_COMPLETION_ONSTACK(wait);
165125e1 2698 struct request_queue *q;
fd5d8062
JA
2699 struct bio *bio;
2700 int ret;
1da177e4
LT
2701
2702 if (bdev->bd_disk == NULL)
2703 return -ENXIO;
2704
2705 q = bdev_get_queue(bdev);
2706 if (!q)
2707 return -ENXIO;
1da177e4 2708
fd5d8062
JA
2709 bio = bio_alloc(GFP_KERNEL, 0);
2710 if (!bio)
2711 return -ENOMEM;
2712
2713 bio->bi_end_io = bio_end_empty_barrier;
2714 bio->bi_private = &wait;
2715 bio->bi_bdev = bdev;
2716 submit_bio(1 << BIO_RW_BARRIER, bio);
2717
2718 wait_for_completion(&wait);
2719
2720 /*
2721 * The driver must store the error location in ->bi_sector, if
2722 * it supports it. For non-stacked drivers, this should be copied
2723 * from rq->sector.
2724 */
2725 if (error_sector)
2726 *error_sector = bio->bi_sector;
2727
2728 ret = 0;
2729 if (!bio_flagged(bio, BIO_UPTODATE))
2730 ret = -EIO;
2731
2732 bio_put(bio);
2733 return ret;
1da177e4
LT
2734}
2735
2736EXPORT_SYMBOL(blkdev_issue_flush);
2737
b238b3d4 2738static void drive_stat_acct(struct request *rq, int new_io)
1da177e4
LT
2739{
2740 int rw = rq_data_dir(rq);
2741
2742 if (!blk_fs_request(rq) || !rq->rq_disk)
2743 return;
2744
d72d904a 2745 if (!new_io) {
a362357b 2746 __disk_stat_inc(rq->rq_disk, merges[rw]);
d72d904a 2747 } else {
1da177e4
LT
2748 disk_round_stats(rq->rq_disk);
2749 rq->rq_disk->in_flight++;
2750 }
2751}
2752
2753/*
2754 * add-request adds a request to the linked list.
2755 * queue lock is held and interrupts disabled, as we muck with the
2756 * request queue list.
2757 */
165125e1 2758static inline void add_request(struct request_queue * q, struct request * req)
1da177e4 2759{
b238b3d4 2760 drive_stat_acct(req, 1);
1da177e4 2761
1da177e4
LT
2762 /*
2763 * elevator indicated where it wants this request to be
2764 * inserted at elevator_merge time
2765 */
2766 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
2767}
2768
2769/*
2770 * disk_round_stats() - Round off the performance stats on a struct
2771 * disk_stats.
2772 *
2773 * The average IO queue length and utilisation statistics are maintained
2774 * by observing the current state of the queue length and the amount of
2775 * time it has been in this state for.
2776 *
2777 * Normally, that accounting is done on IO completion, but that can result
2778 * in more than a second's worth of IO being accounted for within any one
2779 * second, leading to >100% utilisation. To deal with that, we call this
2780 * function to do a round-off before returning the results when reading
2781 * /proc/diskstats. This accounts immediately for all queue usage up to
2782 * the current jiffies and restarts the counters again.
2783 */
2784void disk_round_stats(struct gendisk *disk)
2785{
2786 unsigned long now = jiffies;
2787
b2982649
CK
2788 if (now == disk->stamp)
2789 return;
1da177e4 2790
20e5c81f
CK
2791 if (disk->in_flight) {
2792 __disk_stat_add(disk, time_in_queue,
2793 disk->in_flight * (now - disk->stamp));
2794 __disk_stat_add(disk, io_ticks, (now - disk->stamp));
2795 }
1da177e4 2796 disk->stamp = now;
1da177e4
LT
2797}
2798
3eaf840e
JNN
2799EXPORT_SYMBOL_GPL(disk_round_stats);
2800
1da177e4
LT
2801/*
2802 * queue lock must be held
2803 */
165125e1 2804void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 2805{
1da177e4
LT
2806 if (unlikely(!q))
2807 return;
2808 if (unlikely(--req->ref_count))
2809 return;
2810
8922e16c
TH
2811 elv_completed_request(q, req);
2812
1da177e4
LT
2813 /*
2814 * Request may not have originated from ll_rw_blk. if not,
2815 * it didn't come out of our reserved rq pools
2816 */
49171e5c 2817 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 2818 int rw = rq_data_dir(req);
4aff5e23 2819 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 2820
1da177e4 2821 BUG_ON(!list_empty(&req->queuelist));
9817064b 2822 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
2823
2824 blk_free_request(q, req);
cb98fc8b 2825 freed_request(q, rw, priv);
1da177e4
LT
2826 }
2827}
2828
6e39b69e
MC
2829EXPORT_SYMBOL_GPL(__blk_put_request);
2830
1da177e4
LT
2831void blk_put_request(struct request *req)
2832{
8922e16c 2833 unsigned long flags;
165125e1 2834 struct request_queue *q = req->q;
8922e16c 2835
1da177e4 2836 /*
8922e16c
TH
2837 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
2838 * following if (q) test.
1da177e4 2839 */
8922e16c 2840 if (q) {
1da177e4
LT
2841 spin_lock_irqsave(q->queue_lock, flags);
2842 __blk_put_request(q, req);
2843 spin_unlock_irqrestore(q->queue_lock, flags);
2844 }
2845}
2846
2847EXPORT_SYMBOL(blk_put_request);
2848
2849/**
2850 * blk_end_sync_rq - executes a completion event on a request
2851 * @rq: request to complete
fddfdeaf 2852 * @error: end io status of the request
1da177e4 2853 */
8ffdc655 2854void blk_end_sync_rq(struct request *rq, int error)
1da177e4 2855{
c00895ab 2856 struct completion *waiting = rq->end_io_data;
1da177e4 2857
c00895ab 2858 rq->end_io_data = NULL;
1da177e4
LT
2859 __blk_put_request(rq->q, rq);
2860
2861 /*
2862 * complete last, if this is a stack request the process (and thus
2863 * the rq pointer) could be invalid right after this complete()
2864 */
2865 complete(waiting);
2866}
2867EXPORT_SYMBOL(blk_end_sync_rq);
2868
1da177e4
LT
2869/*
2870 * Has to be called with the request spinlock acquired
2871 */
165125e1 2872static int attempt_merge(struct request_queue *q, struct request *req,
1da177e4
LT
2873 struct request *next)
2874{
2875 if (!rq_mergeable(req) || !rq_mergeable(next))
2876 return 0;
2877
2878 /*
d6e05edc 2879 * not contiguous
1da177e4
LT
2880 */
2881 if (req->sector + req->nr_sectors != next->sector)
2882 return 0;
2883
2884 if (rq_data_dir(req) != rq_data_dir(next)
2885 || req->rq_disk != next->rq_disk
c00895ab 2886 || next->special)
1da177e4
LT
2887 return 0;
2888
2889 /*
2890 * If we are allowed to merge, then append bio list
2891 * from next to rq and release next. merge_requests_fn
2892 * will have updated segment counts, update sector
2893 * counts here.
2894 */
1aa4f24f 2895 if (!ll_merge_requests_fn(q, req, next))
1da177e4
LT
2896 return 0;
2897
2898 /*
2899 * At this point we have either done a back merge
2900 * or front merge. We need the smaller start_time of
2901 * the merged requests to be the current request
2902 * for accounting purposes.
2903 */
2904 if (time_after(req->start_time, next->start_time))
2905 req->start_time = next->start_time;
2906
2907 req->biotail->bi_next = next->bio;
2908 req->biotail = next->biotail;
2909
2910 req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
2911
2912 elv_merge_requests(q, req, next);
2913
2914 if (req->rq_disk) {
2915 disk_round_stats(req->rq_disk);
2916 req->rq_disk->in_flight--;
2917 }
2918
22e2c507
JA
2919 req->ioprio = ioprio_best(req->ioprio, next->ioprio);
2920
1da177e4
LT
2921 __blk_put_request(q, next);
2922 return 1;
2923}
2924
165125e1
JA
2925static inline int attempt_back_merge(struct request_queue *q,
2926 struct request *rq)
1da177e4
LT
2927{
2928 struct request *next = elv_latter_request(q, rq);
2929
2930 if (next)
2931 return attempt_merge(q, rq, next);
2932
2933 return 0;
2934}
2935
165125e1
JA
2936static inline int attempt_front_merge(struct request_queue *q,
2937 struct request *rq)
1da177e4
LT
2938{
2939 struct request *prev = elv_former_request(q, rq);
2940
2941 if (prev)
2942 return attempt_merge(q, prev, rq);
2943
2944 return 0;
2945}
2946
52d9e675
TH
2947static void init_request_from_bio(struct request *req, struct bio *bio)
2948{
4aff5e23 2949 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
2950
2951 /*
2952 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
2953 */
2954 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 2955 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
2956
2957 /*
2958 * REQ_BARRIER implies no merging, but lets make it explicit
2959 */
2960 if (unlikely(bio_barrier(bio)))
4aff5e23 2961 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 2962
b31dc66a 2963 if (bio_sync(bio))
4aff5e23 2964 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
2965 if (bio_rw_meta(bio))
2966 req->cmd_flags |= REQ_RW_META;
b31dc66a 2967
52d9e675
TH
2968 req->errors = 0;
2969 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 2970 req->ioprio = bio_prio(bio);
52d9e675 2971 req->start_time = jiffies;
bc1c56fd 2972 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
2973}
2974
165125e1 2975static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 2976{
450991bc 2977 struct request *req;
51da90fc
JA
2978 int el_ret, nr_sectors, barrier, err;
2979 const unsigned short prio = bio_prio(bio);
2980 const int sync = bio_sync(bio);
7749a8d4 2981 int rw_flags;
1da177e4 2982
1da177e4 2983 nr_sectors = bio_sectors(bio);
1da177e4
LT
2984
2985 /*
2986 * low level driver can indicate that it wants pages above a
2987 * certain limit bounced to low memory (ie for highmem, or even
2988 * ISA dma in theory)
2989 */
2990 blk_queue_bounce(q, &bio);
2991
1da177e4 2992 barrier = bio_barrier(bio);
797e7dbb 2993 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
2994 err = -EOPNOTSUPP;
2995 goto end_io;
2996 }
2997
1da177e4
LT
2998 spin_lock_irq(q->queue_lock);
2999
450991bc 3000 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
3001 goto get_rq;
3002
3003 el_ret = elv_merge(q, &req, bio);
3004 switch (el_ret) {
3005 case ELEVATOR_BACK_MERGE:
3006 BUG_ON(!rq_mergeable(req));
3007
1aa4f24f 3008 if (!ll_back_merge_fn(q, req, bio))
1da177e4
LT
3009 break;
3010
2056a782
JA
3011 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
3012
1da177e4
LT
3013 req->biotail->bi_next = bio;
3014 req->biotail = bio;
3015 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3016 req->ioprio = ioprio_best(req->ioprio, prio);
b238b3d4 3017 drive_stat_acct(req, 0);
1da177e4 3018 if (!attempt_back_merge(q, req))
2e662b65 3019 elv_merged_request(q, req, el_ret);
1da177e4
LT
3020 goto out;
3021
3022 case ELEVATOR_FRONT_MERGE:
3023 BUG_ON(!rq_mergeable(req));
3024
1aa4f24f 3025 if (!ll_front_merge_fn(q, req, bio))
1da177e4
LT
3026 break;
3027
2056a782
JA
3028 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
3029
1da177e4
LT
3030 bio->bi_next = req->bio;
3031 req->bio = bio;
3032
3033 /*
3034 * may not be valid. if the low level driver said
3035 * it didn't need a bounce buffer then it better
3036 * not touch req->buffer either...
3037 */
3038 req->buffer = bio_data(bio);
51da90fc
JA
3039 req->current_nr_sectors = bio_cur_sectors(bio);
3040 req->hard_cur_sectors = req->current_nr_sectors;
3041 req->sector = req->hard_sector = bio->bi_sector;
1da177e4 3042 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
22e2c507 3043 req->ioprio = ioprio_best(req->ioprio, prio);
b238b3d4 3044 drive_stat_acct(req, 0);
1da177e4 3045 if (!attempt_front_merge(q, req))
2e662b65 3046 elv_merged_request(q, req, el_ret);
1da177e4
LT
3047 goto out;
3048
450991bc 3049 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1da177e4 3050 default:
450991bc 3051 ;
1da177e4
LT
3052 }
3053
450991bc 3054get_rq:
7749a8d4
JA
3055 /*
3056 * This sync check and mask will be re-done in init_request_from_bio(),
3057 * but we need to set it earlier to expose the sync flag to the
3058 * rq allocator and io schedulers.
3059 */
3060 rw_flags = bio_data_dir(bio);
3061 if (sync)
3062 rw_flags |= REQ_RW_SYNC;
3063
1da177e4 3064 /*
450991bc 3065 * Grab a free request. This is might sleep but can not fail.
d6344532 3066 * Returns with the queue unlocked.
450991bc 3067 */
7749a8d4 3068 req = get_request_wait(q, rw_flags, bio);
d6344532 3069
450991bc
NP
3070 /*
3071 * After dropping the lock and possibly sleeping here, our request
3072 * may now be mergeable after it had proven unmergeable (above).
3073 * We don't worry about that case for efficiency. It won't happen
3074 * often, and the elevators are able to handle it.
1da177e4 3075 */
52d9e675 3076 init_request_from_bio(req, bio);
1da177e4 3077
450991bc
NP
3078 spin_lock_irq(q->queue_lock);
3079 if (elv_queue_empty(q))
3080 blk_plug_device(q);
1da177e4
LT
3081 add_request(q, req);
3082out:
4a534f93 3083 if (sync)
1da177e4
LT
3084 __generic_unplug_device(q);
3085
3086 spin_unlock_irq(q->queue_lock);
3087 return 0;
3088
3089end_io:
6712ecf8 3090 bio_endio(bio, err);
1da177e4
LT
3091 return 0;
3092}
3093
3094/*
3095 * If bio->bi_dev is a partition, remap the location
3096 */
3097static inline void blk_partition_remap(struct bio *bio)
3098{
3099 struct block_device *bdev = bio->bi_bdev;
3100
bf2de6f5 3101 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4 3102 struct hd_struct *p = bdev->bd_part;
a362357b
JA
3103 const int rw = bio_data_dir(bio);
3104
3105 p->sectors[rw] += bio_sectors(bio);
3106 p->ios[rw]++;
1da177e4 3107
1da177e4
LT
3108 bio->bi_sector += p->start_sect;
3109 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
3110
3111 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
3112 bdev->bd_dev, bio->bi_sector,
3113 bio->bi_sector - p->start_sect);
1da177e4
LT
3114 }
3115}
3116
1da177e4
LT
3117static void handle_bad_sector(struct bio *bio)
3118{
3119 char b[BDEVNAME_SIZE];
3120
3121 printk(KERN_INFO "attempt to access beyond end of device\n");
3122 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
3123 bdevname(bio->bi_bdev, b),
3124 bio->bi_rw,
3125 (unsigned long long)bio->bi_sector + bio_sectors(bio),
3126 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
3127
3128 set_bit(BIO_EOF, &bio->bi_flags);
3129}
3130
c17bb495
AM
3131#ifdef CONFIG_FAIL_MAKE_REQUEST
3132
3133static DECLARE_FAULT_ATTR(fail_make_request);
3134
3135static int __init setup_fail_make_request(char *str)
3136{
3137 return setup_fault_attr(&fail_make_request, str);
3138}
3139__setup("fail_make_request=", setup_fail_make_request);
3140
3141static int should_fail_request(struct bio *bio)
3142{
3143 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
3144 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
3145 return should_fail(&fail_make_request, bio->bi_size);
3146
3147 return 0;
3148}
3149
3150static int __init fail_make_request_debugfs(void)
3151{
3152 return init_fault_attr_dentries(&fail_make_request,
3153 "fail_make_request");
3154}
3155
3156late_initcall(fail_make_request_debugfs);
3157
3158#else /* CONFIG_FAIL_MAKE_REQUEST */
3159
3160static inline int should_fail_request(struct bio *bio)
3161{
3162 return 0;
3163}
3164
3165#endif /* CONFIG_FAIL_MAKE_REQUEST */
3166
c07e2b41
JA
3167/*
3168 * Check whether this bio extends beyond the end of the device.
3169 */
3170static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
3171{
3172 sector_t maxsector;
3173
3174 if (!nr_sectors)
3175 return 0;
3176
3177 /* Test device or partition size, when known. */
3178 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
3179 if (maxsector) {
3180 sector_t sector = bio->bi_sector;
3181
3182 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
3183 /*
3184 * This may well happen - the kernel calls bread()
3185 * without checking the size of the device, e.g., when
3186 * mounting a device.
3187 */
3188 handle_bad_sector(bio);
3189 return 1;
3190 }
3191 }
3192
3193 return 0;
3194}
3195
1da177e4
LT
3196/**
3197 * generic_make_request: hand a buffer to its device driver for I/O
3198 * @bio: The bio describing the location in memory and on the device.
3199 *
3200 * generic_make_request() is used to make I/O requests of block
3201 * devices. It is passed a &struct bio, which describes the I/O that needs
3202 * to be done.
3203 *
3204 * generic_make_request() does not return any status. The
3205 * success/failure status of the request, along with notification of
3206 * completion, is delivered asynchronously through the bio->bi_end_io
3207 * function described (one day) else where.
3208 *
3209 * The caller of generic_make_request must make sure that bi_io_vec
3210 * are set to describe the memory buffer, and that bi_dev and bi_sector are
3211 * set to describe the device address, and the
3212 * bi_end_io and optionally bi_private are set to describe how
3213 * completion notification should be signaled.
3214 *
3215 * generic_make_request and the drivers it calls may use bi_next if this
3216 * bio happens to be merged with someone else, and may change bi_dev and
3217 * bi_sector for remaps as it sees fit. So the values of these fields
3218 * should NOT be depended on after the call to generic_make_request.
3219 */
d89d8796 3220static inline void __generic_make_request(struct bio *bio)
1da177e4 3221{
165125e1 3222 struct request_queue *q;
5ddfe969 3223 sector_t old_sector;
1da177e4 3224 int ret, nr_sectors = bio_sectors(bio);
2056a782 3225 dev_t old_dev;
1da177e4
LT
3226
3227 might_sleep();
1da177e4 3228
c07e2b41
JA
3229 if (bio_check_eod(bio, nr_sectors))
3230 goto end_io;
1da177e4
LT
3231
3232 /*
3233 * Resolve the mapping until finished. (drivers are
3234 * still free to implement/resolve their own stacking
3235 * by explicitly returning 0)
3236 *
3237 * NOTE: we don't repeat the blk_size check for each new device.
3238 * Stacking drivers are expected to know what they are doing.
3239 */
5ddfe969 3240 old_sector = -1;
2056a782 3241 old_dev = 0;
1da177e4
LT
3242 do {
3243 char b[BDEVNAME_SIZE];
3244
3245 q = bdev_get_queue(bio->bi_bdev);
3246 if (!q) {
3247 printk(KERN_ERR
3248 "generic_make_request: Trying to access "
3249 "nonexistent block-device %s (%Lu)\n",
3250 bdevname(bio->bi_bdev, b),
3251 (long long) bio->bi_sector);
3252end_io:
6712ecf8 3253 bio_endio(bio, -EIO);
1da177e4
LT
3254 break;
3255 }
3256
4fa253f3 3257 if (unlikely(nr_sectors > q->max_hw_sectors)) {
1da177e4
LT
3258 printk("bio too big device %s (%u > %u)\n",
3259 bdevname(bio->bi_bdev, b),
3260 bio_sectors(bio),
3261 q->max_hw_sectors);
3262 goto end_io;
3263 }
3264
fde6ad22 3265 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
3266 goto end_io;
3267
c17bb495
AM
3268 if (should_fail_request(bio))
3269 goto end_io;
3270
1da177e4
LT
3271 /*
3272 * If this device has partitions, remap block n
3273 * of partition p to block n+start(p) of the disk.
3274 */
3275 blk_partition_remap(bio);
3276
5ddfe969 3277 if (old_sector != -1)
4fa253f3 3278 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 3279 old_sector);
2056a782
JA
3280
3281 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
3282
5ddfe969 3283 old_sector = bio->bi_sector;
2056a782
JA
3284 old_dev = bio->bi_bdev->bd_dev;
3285
c07e2b41
JA
3286 if (bio_check_eod(bio, nr_sectors))
3287 goto end_io;
5ddfe969 3288
1da177e4
LT
3289 ret = q->make_request_fn(q, bio);
3290 } while (ret);
3291}
3292
d89d8796
NB
3293/*
3294 * We only want one ->make_request_fn to be active at a time,
3295 * else stack usage with stacked devices could be a problem.
3296 * So use current->bio_{list,tail} to keep a list of requests
3297 * submited by a make_request_fn function.
3298 * current->bio_tail is also used as a flag to say if
3299 * generic_make_request is currently active in this task or not.
3300 * If it is NULL, then no make_request is active. If it is non-NULL,
3301 * then a make_request is active, and new requests should be added
3302 * at the tail
3303 */
3304void generic_make_request(struct bio *bio)
3305{
3306 if (current->bio_tail) {
3307 /* make_request is active */
3308 *(current->bio_tail) = bio;
3309 bio->bi_next = NULL;
3310 current->bio_tail = &bio->bi_next;
3311 return;
3312 }
3313 /* following loop may be a bit non-obvious, and so deserves some
3314 * explanation.
3315 * Before entering the loop, bio->bi_next is NULL (as all callers
3316 * ensure that) so we have a list with a single bio.
3317 * We pretend that we have just taken it off a longer list, so
3318 * we assign bio_list to the next (which is NULL) and bio_tail
3319 * to &bio_list, thus initialising the bio_list of new bios to be
3320 * added. __generic_make_request may indeed add some more bios
3321 * through a recursive call to generic_make_request. If it
3322 * did, we find a non-NULL value in bio_list and re-enter the loop
3323 * from the top. In this case we really did just take the bio
3324 * of the top of the list (no pretending) and so fixup bio_list and
3325 * bio_tail or bi_next, and call into __generic_make_request again.
3326 *
3327 * The loop was structured like this to make only one call to
3328 * __generic_make_request (which is important as it is large and
3329 * inlined) and to keep the structure simple.
3330 */
3331 BUG_ON(bio->bi_next);
3332 do {
3333 current->bio_list = bio->bi_next;
3334 if (bio->bi_next == NULL)
3335 current->bio_tail = &current->bio_list;
3336 else
3337 bio->bi_next = NULL;
3338 __generic_make_request(bio);
3339 bio = current->bio_list;
3340 } while (bio);
3341 current->bio_tail = NULL; /* deactivate */
3342}
3343
1da177e4
LT
3344EXPORT_SYMBOL(generic_make_request);
3345
3346/**
3347 * submit_bio: submit a bio to the block device layer for I/O
3348 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
3349 * @bio: The &struct bio which describes the I/O
3350 *
3351 * submit_bio() is very similar in purpose to generic_make_request(), and
3352 * uses that function to do most of the work. Both are fairly rough
3353 * interfaces, @bio must be presetup and ready for I/O.
3354 *
3355 */
3356void submit_bio(int rw, struct bio *bio)
3357{
3358 int count = bio_sectors(bio);
3359
22e2c507 3360 bio->bi_rw |= rw;
1da177e4 3361
bf2de6f5
JA
3362 /*
3363 * If it's a regular read/write or a barrier with data attached,
3364 * go through the normal accounting stuff before submission.
3365 */
3366 if (!bio_empty_barrier(bio)) {
3367
3368 BIO_BUG_ON(!bio->bi_size);
3369 BIO_BUG_ON(!bio->bi_io_vec);
3370
3371 if (rw & WRITE) {
3372 count_vm_events(PGPGOUT, count);
3373 } else {
3374 task_io_account_read(bio->bi_size);
3375 count_vm_events(PGPGIN, count);
3376 }
3377
3378 if (unlikely(block_dump)) {
3379 char b[BDEVNAME_SIZE];
3380 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 3381 current->comm, task_pid_nr(current),
bf2de6f5
JA
3382 (rw & WRITE) ? "WRITE" : "READ",
3383 (unsigned long long)bio->bi_sector,
3384 bdevname(bio->bi_bdev,b));
3385 }
1da177e4
LT
3386 }
3387
3388 generic_make_request(bio);
3389}
3390
3391EXPORT_SYMBOL(submit_bio);
3392
93d17d3d 3393static void blk_recalc_rq_sectors(struct request *rq, int nsect)
1da177e4
LT
3394{
3395 if (blk_fs_request(rq)) {
3396 rq->hard_sector += nsect;
3397 rq->hard_nr_sectors -= nsect;
3398
3399 /*
3400 * Move the I/O submission pointers ahead if required.
3401 */
3402 if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
3403 (rq->sector <= rq->hard_sector)) {
3404 rq->sector = rq->hard_sector;
3405 rq->nr_sectors = rq->hard_nr_sectors;
3406 rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
3407 rq->current_nr_sectors = rq->hard_cur_sectors;
3408 rq->buffer = bio_data(rq->bio);
3409 }
3410
3411 /*
3412 * if total number of sectors is less than the first segment
3413 * size, something has gone terribly wrong
3414 */
3415 if (rq->nr_sectors < rq->current_nr_sectors) {
3416 printk("blk: request botched\n");
3417 rq->nr_sectors = rq->current_nr_sectors;
3418 }
3419 }
3420}
3421
3422static int __end_that_request_first(struct request *req, int uptodate,
3423 int nr_bytes)
3424{
3425 int total_bytes, bio_nbytes, error, next_idx = 0;
3426 struct bio *bio;
3427
2056a782
JA
3428 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
3429
1da177e4
LT
3430 /*
3431 * extend uptodate bool to allow < 0 value to be direct io error
3432 */
3433 error = 0;
3434 if (end_io_error(uptodate))
3435 error = !uptodate ? -EIO : uptodate;
3436
3437 /*
3438 * for a REQ_BLOCK_PC request, we want to carry any eventual
3439 * sense key with us all the way through
3440 */
3441 if (!blk_pc_request(req))
3442 req->errors = 0;
3443
3444 if (!uptodate) {
4aff5e23 3445 if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
1da177e4
LT
3446 printk("end_request: I/O error, dev %s, sector %llu\n",
3447 req->rq_disk ? req->rq_disk->disk_name : "?",
3448 (unsigned long long)req->sector);
3449 }
3450
d72d904a 3451 if (blk_fs_request(req) && req->rq_disk) {
a362357b
JA
3452 const int rw = rq_data_dir(req);
3453
53e86061 3454 disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
d72d904a
JA
3455 }
3456
1da177e4
LT
3457 total_bytes = bio_nbytes = 0;
3458 while ((bio = req->bio) != NULL) {
3459 int nbytes;
3460
bf2de6f5
JA
3461 /*
3462 * For an empty barrier request, the low level driver must
3463 * store a potential error location in ->sector. We pass
3464 * that back up in ->bi_sector.
3465 */
3466 if (blk_empty_barrier(req))
3467 bio->bi_sector = req->sector;
3468
1da177e4
LT
3469 if (nr_bytes >= bio->bi_size) {
3470 req->bio = bio->bi_next;
3471 nbytes = bio->bi_size;
5bb23a68 3472 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
3473 next_idx = 0;
3474 bio_nbytes = 0;
3475 } else {
3476 int idx = bio->bi_idx + next_idx;
3477
3478 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
3479 blk_dump_rq_flags(req, "__end_that");
3480 printk("%s: bio idx %d >= vcnt %d\n",
3481 __FUNCTION__,
3482 bio->bi_idx, bio->bi_vcnt);
3483 break;
3484 }
3485
3486 nbytes = bio_iovec_idx(bio, idx)->bv_len;
3487 BIO_BUG_ON(nbytes > bio->bi_size);
3488
3489 /*
3490 * not a complete bvec done
3491 */
3492 if (unlikely(nbytes > nr_bytes)) {
3493 bio_nbytes += nr_bytes;
3494 total_bytes += nr_bytes;
3495 break;
3496 }
3497
3498 /*
3499 * advance to the next vector
3500 */
3501 next_idx++;
3502 bio_nbytes += nbytes;
3503 }
3504
3505 total_bytes += nbytes;
3506 nr_bytes -= nbytes;
3507
3508 if ((bio = req->bio)) {
3509 /*
3510 * end more in this run, or just return 'not-done'
3511 */
3512 if (unlikely(nr_bytes <= 0))
3513 break;
3514 }
3515 }
3516
3517 /*
3518 * completely done
3519 */
3520 if (!req->bio)
3521 return 0;
3522
3523 /*
3524 * if the request wasn't completed, update state
3525 */
3526 if (bio_nbytes) {
5bb23a68 3527 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
3528 bio->bi_idx += next_idx;
3529 bio_iovec(bio)->bv_offset += nr_bytes;
3530 bio_iovec(bio)->bv_len -= nr_bytes;
3531 }
3532
3533 blk_recalc_rq_sectors(req, total_bytes >> 9);
3534 blk_recalc_rq_segments(req);
3535 return 1;
3536}
3537
3538/**
3539 * end_that_request_first - end I/O on a request
3540 * @req: the request being processed
3541 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3542 * @nr_sectors: number of sectors to end I/O on
3543 *
3544 * Description:
3545 * Ends I/O on a number of sectors attached to @req, and sets it up
3546 * for the next range of segments (if any) in the cluster.
3547 *
3548 * Return:
3549 * 0 - we are done with this request, call end_that_request_last()
3550 * 1 - still buffers pending for this request
3551 **/
3552int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
3553{
3554 return __end_that_request_first(req, uptodate, nr_sectors << 9);
3555}
3556
3557EXPORT_SYMBOL(end_that_request_first);
3558
3559/**
3560 * end_that_request_chunk - end I/O on a request
3561 * @req: the request being processed
3562 * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
3563 * @nr_bytes: number of bytes to complete
3564 *
3565 * Description:
3566 * Ends I/O on a number of bytes attached to @req, and sets it up
3567 * for the next range of segments (if any). Like end_that_request_first(),
3568 * but deals with bytes instead of sectors.
3569 *
3570 * Return:
3571 * 0 - we are done with this request, call end_that_request_last()
3572 * 1 - still buffers pending for this request
3573 **/
3574int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
3575{
3576 return __end_that_request_first(req, uptodate, nr_bytes);
3577}
3578
3579EXPORT_SYMBOL(end_that_request_chunk);
3580
ff856bad
JA
3581/*
3582 * splice the completion data to a local structure and hand off to
3583 * process_completion_queue() to complete the requests
3584 */
3585static void blk_done_softirq(struct softirq_action *h)
3586{
626ab0e6 3587 struct list_head *cpu_list, local_list;
ff856bad
JA
3588
3589 local_irq_disable();
3590 cpu_list = &__get_cpu_var(blk_cpu_done);
626ab0e6 3591 list_replace_init(cpu_list, &local_list);
ff856bad
JA
3592 local_irq_enable();
3593
3594 while (!list_empty(&local_list)) {
3595 struct request *rq = list_entry(local_list.next, struct request, donelist);
3596
3597 list_del_init(&rq->donelist);
3598 rq->q->softirq_done_fn(rq);
3599 }
3600}
3601
db47d475 3602static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
ff856bad
JA
3603 void *hcpu)
3604{
3605 /*
3606 * If a CPU goes away, splice its entries to the current CPU
3607 * and trigger a run of the softirq
3608 */
8bb78442 3609 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
ff856bad
JA
3610 int cpu = (unsigned long) hcpu;
3611
3612 local_irq_disable();
3613 list_splice_init(&per_cpu(blk_cpu_done, cpu),
3614 &__get_cpu_var(blk_cpu_done));
3615 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3616 local_irq_enable();
3617 }
3618
3619 return NOTIFY_OK;
3620}
3621
3622
db47d475 3623static struct notifier_block blk_cpu_notifier __cpuinitdata = {
ff856bad
JA
3624 .notifier_call = blk_cpu_notify,
3625};
3626
ff856bad
JA
3627/**
3628 * blk_complete_request - end I/O on a request
3629 * @req: the request being processed
3630 *
3631 * Description:
3632 * Ends all I/O on a request. It does not handle partial completions,
d6e05edc 3633 * unless the driver actually implements this in its completion callback
4fa253f3 3634 * through requeueing. The actual completion happens out-of-order,
ff856bad
JA
3635 * through a softirq handler. The user must have registered a completion
3636 * callback through blk_queue_softirq_done().
3637 **/
3638
3639void blk_complete_request(struct request *req)
3640{
3641 struct list_head *cpu_list;
3642 unsigned long flags;
3643
3644 BUG_ON(!req->q->softirq_done_fn);
3645
3646 local_irq_save(flags);
3647
3648 cpu_list = &__get_cpu_var(blk_cpu_done);
3649 list_add_tail(&req->donelist, cpu_list);
3650 raise_softirq_irqoff(BLOCK_SOFTIRQ);
3651
3652 local_irq_restore(flags);
3653}
3654
3655EXPORT_SYMBOL(blk_complete_request);
3656
1da177e4
LT
3657/*
3658 * queue lock must be held
3659 */
8ffdc655 3660void end_that_request_last(struct request *req, int uptodate)
1da177e4
LT
3661{
3662 struct gendisk *disk = req->rq_disk;
8ffdc655
TH
3663 int error;
3664
3665 /*
3666 * extend uptodate bool to allow < 0 value to be direct io error
3667 */
3668 error = 0;
3669 if (end_io_error(uptodate))
3670 error = !uptodate ? -EIO : uptodate;
1da177e4
LT
3671
3672 if (unlikely(laptop_mode) && blk_fs_request(req))
3673 laptop_io_completion();
3674
fd0ff8aa
JA
3675 /*
3676 * Account IO completion. bar_rq isn't accounted as a normal
3677 * IO on queueing nor completion. Accounting the containing
3678 * request is enough.
3679 */
3680 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 3681 unsigned long duration = jiffies - req->start_time;
a362357b
JA
3682 const int rw = rq_data_dir(req);
3683
3684 __disk_stat_inc(disk, ios[rw]);
3685 __disk_stat_add(disk, ticks[rw], duration);
1da177e4
LT
3686 disk_round_stats(disk);
3687 disk->in_flight--;
3688 }
3689 if (req->end_io)
8ffdc655 3690 req->end_io(req, error);
1da177e4
LT
3691 else
3692 __blk_put_request(req->q, req);
3693}
3694
3695EXPORT_SYMBOL(end_that_request_last);
3696
a0cd1285
JA
3697static inline void __end_request(struct request *rq, int uptodate,
3698 unsigned int nr_bytes, int dequeue)
1da177e4 3699{
a0cd1285
JA
3700 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
3701 if (dequeue)
3702 blkdev_dequeue_request(rq);
3703 add_disk_randomness(rq->rq_disk);
3704 end_that_request_last(rq, uptodate);
1da177e4
LT
3705 }
3706}
3707
a0cd1285
JA
3708static unsigned int rq_byte_size(struct request *rq)
3709{
3710 if (blk_fs_request(rq))
3711 return rq->hard_nr_sectors << 9;
3712
3713 return rq->data_len;
3714}
3715
3716/**
3717 * end_queued_request - end all I/O on a queued request
3718 * @rq: the request being processed
3719 * @uptodate: error value or 0/1 uptodate flag
3720 *
3721 * Description:
3722 * Ends all I/O on a request, and removes it from the block layer queues.
3723 * Not suitable for normal IO completion, unless the driver still has
3724 * the request attached to the block layer.
3725 *
3726 **/
3727void end_queued_request(struct request *rq, int uptodate)
3728{
3729 __end_request(rq, uptodate, rq_byte_size(rq), 1);
3730}
3731EXPORT_SYMBOL(end_queued_request);
3732
3733/**
3734 * end_dequeued_request - end all I/O on a dequeued request
3735 * @rq: the request being processed
3736 * @uptodate: error value or 0/1 uptodate flag
3737 *
3738 * Description:
3739 * Ends all I/O on a request. The request must already have been
3740 * dequeued using blkdev_dequeue_request(), as is normally the case
3741 * for most drivers.
3742 *
3743 **/
3744void end_dequeued_request(struct request *rq, int uptodate)
3745{
3746 __end_request(rq, uptodate, rq_byte_size(rq), 0);
3747}
3748EXPORT_SYMBOL(end_dequeued_request);
3749
3750
3751/**
3752 * end_request - end I/O on the current segment of the request
8f731f7d 3753 * @req: the request being processed
a0cd1285
JA
3754 * @uptodate: error value or 0/1 uptodate flag
3755 *
3756 * Description:
3757 * Ends I/O on the current segment of a request. If that is the only
3758 * remaining segment, the request is also completed and freed.
3759 *
3760 * This is a remnant of how older block drivers handled IO completions.
3761 * Modern drivers typically end IO on the full request in one go, unless
3762 * they have a residual value to account for. For that case this function
3763 * isn't really useful, unless the residual just happens to be the
3764 * full current segment. In other words, don't use this function in new
3765 * code. Either use end_request_completely(), or the
3766 * end_that_request_chunk() (along with end_that_request_last()) for
3767 * partial completions.
3768 *
3769 **/
3770void end_request(struct request *req, int uptodate)
3771{
3772 __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
3773}
1da177e4
LT
3774EXPORT_SYMBOL(end_request);
3775
66846572
N
3776static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3777 struct bio *bio)
1da177e4 3778{
4aff5e23
JA
3779 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
3780 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4
LT
3781
3782 rq->nr_phys_segments = bio_phys_segments(q, bio);
3783 rq->nr_hw_segments = bio_hw_segments(q, bio);
3784 rq->current_nr_sectors = bio_cur_sectors(bio);
3785 rq->hard_cur_sectors = rq->current_nr_sectors;
3786 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
3787 rq->buffer = bio_data(bio);
0e75f906 3788 rq->data_len = bio->bi_size;
1da177e4
LT
3789
3790 rq->bio = rq->biotail = bio;
1da177e4 3791
66846572
N
3792 if (bio->bi_bdev)
3793 rq->rq_disk = bio->bi_bdev->bd_disk;
3794}
1da177e4
LT
3795
3796int kblockd_schedule_work(struct work_struct *work)
3797{
3798 return queue_work(kblockd_workqueue, work);
3799}
3800
3801EXPORT_SYMBOL(kblockd_schedule_work);
3802
19a75d83 3803void kblockd_flush_work(struct work_struct *work)
1da177e4 3804{
28e53bdd 3805 cancel_work_sync(work);
1da177e4 3806}
19a75d83 3807EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
3808
3809int __init blk_dev_init(void)
3810{
ff856bad
JA
3811 int i;
3812
1da177e4
LT
3813 kblockd_workqueue = create_workqueue("kblockd");
3814 if (!kblockd_workqueue)
3815 panic("Failed to create kblockd\n");
3816
3817 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3818 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4
LT
3819
3820 requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3821 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4
LT
3822
3823 iocontext_cachep = kmem_cache_create("blkdev_ioc",
20c2df83 3824 sizeof(struct io_context), 0, SLAB_PANIC, NULL);
1da177e4 3825
0a945022 3826 for_each_possible_cpu(i)
ff856bad
JA
3827 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3828
3829 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
5a67e4c5 3830 register_hotcpu_notifier(&blk_cpu_notifier);
ff856bad 3831
f772b3d9
VT
3832 blk_max_low_pfn = max_low_pfn - 1;
3833 blk_max_pfn = max_pfn - 1;
1da177e4
LT
3834
3835 return 0;
3836}
3837
3838/*
3839 * IO Context helper functions
3840 */
3841void put_io_context(struct io_context *ioc)
3842{
3843 if (ioc == NULL)
3844 return;
3845
3846 BUG_ON(atomic_read(&ioc->refcount) == 0);
3847
3848 if (atomic_dec_and_test(&ioc->refcount)) {
e2d74ac0
JA
3849 struct cfq_io_context *cic;
3850
334e94de 3851 rcu_read_lock();
1da177e4
LT
3852 if (ioc->aic && ioc->aic->dtor)
3853 ioc->aic->dtor(ioc->aic);
e2d74ac0 3854 if (ioc->cic_root.rb_node != NULL) {
7143dd4b
JA
3855 struct rb_node *n = rb_first(&ioc->cic_root);
3856
3857 cic = rb_entry(n, struct cfq_io_context, rb_node);
e2d74ac0
JA
3858 cic->dtor(ioc);
3859 }
334e94de 3860 rcu_read_unlock();
1da177e4
LT
3861
3862 kmem_cache_free(iocontext_cachep, ioc);
3863 }
3864}
3865EXPORT_SYMBOL(put_io_context);
3866
3867/* Called by the exitting task */
3868void exit_io_context(void)
3869{
1da177e4 3870 struct io_context *ioc;
e2d74ac0 3871 struct cfq_io_context *cic;
1da177e4 3872
22e2c507 3873 task_lock(current);
1da177e4
LT
3874 ioc = current->io_context;
3875 current->io_context = NULL;
22e2c507 3876 task_unlock(current);
1da177e4 3877
25034d7a 3878 ioc->task = NULL;
1da177e4
LT
3879 if (ioc->aic && ioc->aic->exit)
3880 ioc->aic->exit(ioc->aic);
e2d74ac0
JA
3881 if (ioc->cic_root.rb_node != NULL) {
3882 cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
3883 cic->exit(ioc);
3884 }
25034d7a 3885
1da177e4
LT
3886 put_io_context(ioc);
3887}
3888
3889/*
3890 * If the current task has no IO context then create one and initialise it.
fb3cc432 3891 * Otherwise, return its existing IO context.
1da177e4 3892 *
fb3cc432
NP
3893 * This returned IO context doesn't have a specifically elevated refcount,
3894 * but since the current task itself holds a reference, the context can be
3895 * used in general code, so long as it stays within `current` context.
1da177e4 3896 */
b5deef90 3897static struct io_context *current_io_context(gfp_t gfp_flags, int node)
1da177e4
LT
3898{
3899 struct task_struct *tsk = current;
1da177e4
LT
3900 struct io_context *ret;
3901
1da177e4 3902 ret = tsk->io_context;
fb3cc432
NP
3903 if (likely(ret))
3904 return ret;
1da177e4 3905
b5deef90 3906 ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
1da177e4
LT
3907 if (ret) {
3908 atomic_set(&ret->refcount, 1);
22e2c507 3909 ret->task = current;
fc46379d 3910 ret->ioprio_changed = 0;
1da177e4
LT
3911 ret->last_waited = jiffies; /* doesn't matter... */
3912 ret->nr_batch_requests = 0; /* because this is 0 */
3913 ret->aic = NULL;
e2d74ac0 3914 ret->cic_root.rb_node = NULL;
4e521c27 3915 ret->ioc_data = NULL;
9f83e45e
ON
3916 /* make sure set_task_ioprio() sees the settings above */
3917 smp_wmb();
fb3cc432
NP
3918 tsk->io_context = ret;
3919 }
1da177e4 3920
fb3cc432
NP
3921 return ret;
3922}
1da177e4 3923
fb3cc432
NP
3924/*
3925 * If the current task has no IO context then create one and initialise it.
3926 * If it does have a context, take a ref on it.
3927 *
3928 * This is always called in the context of the task which submitted the I/O.
3929 */
b5deef90 3930struct io_context *get_io_context(gfp_t gfp_flags, int node)
fb3cc432
NP
3931{
3932 struct io_context *ret;
b5deef90 3933 ret = current_io_context(gfp_flags, node);
fb3cc432 3934 if (likely(ret))
1da177e4 3935 atomic_inc(&ret->refcount);
1da177e4
LT
3936 return ret;
3937}
3938EXPORT_SYMBOL(get_io_context);
3939
3940void copy_io_context(struct io_context **pdst, struct io_context **psrc)
3941{
3942 struct io_context *src = *psrc;
3943 struct io_context *dst = *pdst;
3944
3945 if (src) {
3946 BUG_ON(atomic_read(&src->refcount) == 0);
3947 atomic_inc(&src->refcount);
3948 put_io_context(dst);
3949 *pdst = src;
3950 }
3951}
3952EXPORT_SYMBOL(copy_io_context);
3953
3954void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
3955{
3956 struct io_context *temp;
3957 temp = *ioc1;
3958 *ioc1 = *ioc2;
3959 *ioc2 = temp;
3960}
3961EXPORT_SYMBOL(swap_io_context);
3962
3963/*
3964 * sysfs parts below
3965 */
3966struct queue_sysfs_entry {
3967 struct attribute attr;
3968 ssize_t (*show)(struct request_queue *, char *);
3969 ssize_t (*store)(struct request_queue *, const char *, size_t);
3970};
3971
3972static ssize_t
3973queue_var_show(unsigned int var, char *page)
3974{
3975 return sprintf(page, "%d\n", var);
3976}
3977
3978static ssize_t
3979queue_var_store(unsigned long *var, const char *page, size_t count)
3980{
3981 char *p = (char *) page;
3982
3983 *var = simple_strtoul(p, &p, 10);
3984 return count;
3985}
3986
3987static ssize_t queue_requests_show(struct request_queue *q, char *page)
3988{
3989 return queue_var_show(q->nr_requests, (page));
3990}
3991
3992static ssize_t
3993queue_requests_store(struct request_queue *q, const char *page, size_t count)
3994{
3995 struct request_list *rl = &q->rq;
c981ff9f
AV
3996 unsigned long nr;
3997 int ret = queue_var_store(&nr, page, count);
3998 if (nr < BLKDEV_MIN_RQ)
3999 nr = BLKDEV_MIN_RQ;
1da177e4 4000
c981ff9f
AV
4001 spin_lock_irq(q->queue_lock);
4002 q->nr_requests = nr;
1da177e4
LT
4003 blk_queue_congestion_threshold(q);
4004
4005 if (rl->count[READ] >= queue_congestion_on_threshold(q))
79e2de4b 4006 blk_set_queue_congested(q, READ);
1da177e4 4007 else if (rl->count[READ] < queue_congestion_off_threshold(q))
79e2de4b 4008 blk_clear_queue_congested(q, READ);
1da177e4
LT
4009
4010 if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
79e2de4b 4011 blk_set_queue_congested(q, WRITE);
1da177e4 4012 else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
79e2de4b 4013 blk_clear_queue_congested(q, WRITE);
1da177e4
LT
4014
4015 if (rl->count[READ] >= q->nr_requests) {
4016 blk_set_queue_full(q, READ);
4017 } else if (rl->count[READ]+1 <= q->nr_requests) {
4018 blk_clear_queue_full(q, READ);
4019 wake_up(&rl->wait[READ]);
4020 }
4021
4022 if (rl->count[WRITE] >= q->nr_requests) {
4023 blk_set_queue_full(q, WRITE);
4024 } else if (rl->count[WRITE]+1 <= q->nr_requests) {
4025 blk_clear_queue_full(q, WRITE);
4026 wake_up(&rl->wait[WRITE]);
4027 }
c981ff9f 4028 spin_unlock_irq(q->queue_lock);
1da177e4
LT
4029 return ret;
4030}
4031
4032static ssize_t queue_ra_show(struct request_queue *q, char *page)
4033{
4034 int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
4035
4036 return queue_var_show(ra_kb, (page));
4037}
4038
4039static ssize_t
4040queue_ra_store(struct request_queue *q, const char *page, size_t count)
4041{
4042 unsigned long ra_kb;
4043 ssize_t ret = queue_var_store(&ra_kb, page, count);
4044
4045 spin_lock_irq(q->queue_lock);
1da177e4
LT
4046 q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
4047 spin_unlock_irq(q->queue_lock);
4048
4049 return ret;
4050}
4051
4052static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
4053{
4054 int max_sectors_kb = q->max_sectors >> 1;
4055
4056 return queue_var_show(max_sectors_kb, (page));
4057}
4058
4059static ssize_t
4060queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
4061{
4062 unsigned long max_sectors_kb,
4063 max_hw_sectors_kb = q->max_hw_sectors >> 1,
4064 page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
4065 ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
1da177e4
LT
4066
4067 if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
4068 return -EINVAL;
4069 /*
4070 * Take the queue lock to update the readahead and max_sectors
4071 * values synchronously:
4072 */
4073 spin_lock_irq(q->queue_lock);
1da177e4
LT
4074 q->max_sectors = max_sectors_kb << 1;
4075 spin_unlock_irq(q->queue_lock);
4076
4077 return ret;
4078}
4079
4080static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
4081{
4082 int max_hw_sectors_kb = q->max_hw_sectors >> 1;
4083
4084 return queue_var_show(max_hw_sectors_kb, (page));
4085}
4086
563063a8
JA
4087static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
4088{
4089 return queue_var_show(q->max_phys_segments, page);
4090}
4091
4092static ssize_t queue_max_segments_store(struct request_queue *q,
4093 const char *page, size_t count)
4094{
4095 unsigned long segments;
4096 ssize_t ret = queue_var_store(&segments, page, count);
1da177e4 4097
563063a8
JA
4098 spin_lock_irq(q->queue_lock);
4099 q->max_phys_segments = segments;
4100 spin_unlock_irq(q->queue_lock);
1da177e4 4101
563063a8
JA
4102 return ret;
4103}
1da177e4
LT
4104static struct queue_sysfs_entry queue_requests_entry = {
4105 .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
4106 .show = queue_requests_show,
4107 .store = queue_requests_store,
4108};
4109
4110static struct queue_sysfs_entry queue_ra_entry = {
4111 .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
4112 .show = queue_ra_show,
4113 .store = queue_ra_store,
4114};
4115
4116static struct queue_sysfs_entry queue_max_sectors_entry = {
4117 .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
4118 .show = queue_max_sectors_show,
4119 .store = queue_max_sectors_store,
4120};
4121
4122static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
4123 .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
4124 .show = queue_max_hw_sectors_show,
4125};
4126
563063a8
JA
4127static struct queue_sysfs_entry queue_max_segments_entry = {
4128 .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
4129 .show = queue_max_segments_show,
4130 .store = queue_max_segments_store,
4131};
4132
1da177e4
LT
4133static struct queue_sysfs_entry queue_iosched_entry = {
4134 .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
4135 .show = elv_iosched_show,
4136 .store = elv_iosched_store,
4137};
4138
4139static struct attribute *default_attrs[] = {
4140 &queue_requests_entry.attr,
4141 &queue_ra_entry.attr,
4142 &queue_max_hw_sectors_entry.attr,
4143 &queue_max_sectors_entry.attr,
563063a8 4144 &queue_max_segments_entry.attr,
1da177e4
LT
4145 &queue_iosched_entry.attr,
4146 NULL,
4147};
4148
4149#define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
4150
4151static ssize_t
4152queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4153{
4154 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1
JA
4155 struct request_queue *q =
4156 container_of(kobj, struct request_queue, kobj);
483f4afc 4157 ssize_t res;
1da177e4 4158
1da177e4 4159 if (!entry->show)
6c1852a0 4160 return -EIO;
483f4afc
AV
4161 mutex_lock(&q->sysfs_lock);
4162 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4163 mutex_unlock(&q->sysfs_lock);
4164 return -ENOENT;
4165 }
4166 res = entry->show(q, page);
4167 mutex_unlock(&q->sysfs_lock);
4168 return res;
1da177e4
LT
4169}
4170
4171static ssize_t
4172queue_attr_store(struct kobject *kobj, struct attribute *attr,
4173 const char *page, size_t length)
4174{
4175 struct queue_sysfs_entry *entry = to_queue(attr);
165125e1 4176 struct request_queue *q = container_of(kobj, struct request_queue, kobj);
483f4afc
AV
4177
4178 ssize_t res;
1da177e4 4179
1da177e4 4180 if (!entry->store)
6c1852a0 4181 return -EIO;
483f4afc
AV
4182 mutex_lock(&q->sysfs_lock);
4183 if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
4184 mutex_unlock(&q->sysfs_lock);
4185 return -ENOENT;
4186 }
4187 res = entry->store(q, page, length);
4188 mutex_unlock(&q->sysfs_lock);
4189 return res;
1da177e4
LT
4190}
4191
4192static struct sysfs_ops queue_sysfs_ops = {
4193 .show = queue_attr_show,
4194 .store = queue_attr_store,
4195};
4196
93d17d3d 4197static struct kobj_type queue_ktype = {
1da177e4
LT
4198 .sysfs_ops = &queue_sysfs_ops,
4199 .default_attrs = default_attrs,
483f4afc 4200 .release = blk_release_queue,
1da177e4
LT
4201};
4202
4203int blk_register_queue(struct gendisk *disk)
4204{
4205 int ret;
4206
165125e1 4207 struct request_queue *q = disk->queue;
1da177e4
LT
4208
4209 if (!q || !q->request_fn)
4210 return -ENXIO;
4211
4212 q->kobj.parent = kobject_get(&disk->kobj);
1da177e4 4213
483f4afc 4214 ret = kobject_add(&q->kobj);
1da177e4
LT
4215 if (ret < 0)
4216 return ret;
4217
483f4afc
AV
4218 kobject_uevent(&q->kobj, KOBJ_ADD);
4219
1da177e4
LT
4220 ret = elv_register_queue(q);
4221 if (ret) {
483f4afc
AV
4222 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4223 kobject_del(&q->kobj);
1da177e4
LT
4224 return ret;
4225 }
4226
4227 return 0;
4228}
4229
4230void blk_unregister_queue(struct gendisk *disk)
4231{
165125e1 4232 struct request_queue *q = disk->queue;
1da177e4
LT
4233
4234 if (q && q->request_fn) {
4235 elv_unregister_queue(q);
4236
483f4afc
AV
4237 kobject_uevent(&q->kobj, KOBJ_REMOVE);
4238 kobject_del(&q->kobj);
1da177e4
LT
4239 kobject_put(&disk->kobj);
4240 }
4241}