blk-mq: Exit queue on alloc failure
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
aedcd72f 23#include <linux/crash_dump.h>
320ae51f
JA
24
25#include <trace/events/block.h>
26
27#include <linux/blk-mq.h>
28#include "blk.h"
29#include "blk-mq.h"
30#include "blk-mq-tag.h"
31
32static DEFINE_MUTEX(all_q_mutex);
33static LIST_HEAD(all_q_list);
34
35static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
320ae51f
JA
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
42 unsigned int i;
43
1429d7c9
JA
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
320ae51f
JA
46 return true;
47
48 return false;
49}
50
1429d7c9
JA
51static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53{
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55}
56
57#define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
320ae51f
JA
60/*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65{
1429d7c9
JA
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70}
71
72static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74{
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
78}
79
320ae51f
JA
80static int blk_mq_queue_enter(struct request_queue *q)
81{
add703fd
TH
82 while (true) {
83 int ret;
320ae51f 84
add703fd
TH
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
320ae51f 87
add703fd
TH
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
320ae51f
JA
95}
96
97static void blk_mq_queue_exit(struct request_queue *q)
98{
add703fd
TH
99 percpu_ref_put(&q->mq_usage_counter);
100}
101
102static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103{
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
108}
109
f3af020b 110static void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 111{
cddd5d17
TH
112 bool freeze;
113
72d6f02a 114 spin_lock_irq(q->queue_lock);
cddd5d17 115 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
116 spin_unlock_irq(q->queue_lock);
117
cddd5d17 118 if (freeze) {
9eca8046 119 percpu_ref_kill(&q->mq_usage_counter);
cddd5d17
TH
120 blk_mq_run_queues(q, false);
121 }
f3af020b
TH
122}
123
124static void blk_mq_freeze_queue_wait(struct request_queue *q)
125{
add703fd 126 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
127}
128
f3af020b
TH
129/*
130 * Guarantee no request is in use, so we can change any data structure of
131 * the queue afterward.
132 */
133void blk_mq_freeze_queue(struct request_queue *q)
134{
135 blk_mq_freeze_queue_start(q);
136 blk_mq_freeze_queue_wait(q);
137}
138
320ae51f
JA
139static void blk_mq_unfreeze_queue(struct request_queue *q)
140{
cddd5d17 141 bool wake;
320ae51f
JA
142
143 spin_lock_irq(q->queue_lock);
780db207
TH
144 wake = !--q->mq_freeze_depth;
145 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 146 spin_unlock_irq(q->queue_lock);
add703fd
TH
147 if (wake) {
148 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 149 wake_up_all(&q->mq_freeze_wq);
add703fd 150 }
320ae51f
JA
151}
152
153bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
154{
155 return blk_mq_has_free_tags(hctx->tags);
156}
157EXPORT_SYMBOL(blk_mq_can_queue);
158
94eddfbe
JA
159static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
160 struct request *rq, unsigned int rw_flags)
320ae51f 161{
94eddfbe
JA
162 if (blk_queue_io_stat(q))
163 rw_flags |= REQ_IO_STAT;
164
af76e555
CH
165 INIT_LIST_HEAD(&rq->queuelist);
166 /* csd/requeue_work/fifo_time is initialized before use */
167 rq->q = q;
320ae51f 168 rq->mq_ctx = ctx;
0d2602ca 169 rq->cmd_flags |= rw_flags;
af76e555
CH
170 /* do not touch atomic flags, it needs atomic ops against the timer */
171 rq->cpu = -1;
af76e555
CH
172 INIT_HLIST_NODE(&rq->hash);
173 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
174 rq->rq_disk = NULL;
175 rq->part = NULL;
3ee32372 176 rq->start_time = jiffies;
af76e555
CH
177#ifdef CONFIG_BLK_CGROUP
178 rq->rl = NULL;
0fec08b4 179 set_start_time_ns(rq);
af76e555
CH
180 rq->io_start_time_ns = 0;
181#endif
182 rq->nr_phys_segments = 0;
183#if defined(CONFIG_BLK_DEV_INTEGRITY)
184 rq->nr_integrity_segments = 0;
185#endif
af76e555
CH
186 rq->special = NULL;
187 /* tag was already set */
188 rq->errors = 0;
af76e555 189
6f4a1626
TB
190 rq->cmd = rq->__cmd;
191
af76e555
CH
192 rq->extra_len = 0;
193 rq->sense_len = 0;
194 rq->resid_len = 0;
195 rq->sense = NULL;
196
af76e555 197 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
198 rq->timeout = 0;
199
af76e555
CH
200 rq->end_io = NULL;
201 rq->end_io_data = NULL;
202 rq->next_rq = NULL;
203
320ae51f
JA
204 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
205}
206
5dee8577 207static struct request *
cb96a42c 208__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
209{
210 struct request *rq;
211 unsigned int tag;
212
cb96a42c 213 tag = blk_mq_get_tag(data);
5dee8577 214 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 215 rq = data->hctx->tags->rqs[tag];
5dee8577 216
cb96a42c 217 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 218 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 219 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
220 }
221
222 rq->tag = tag;
cb96a42c 223 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
224 return rq;
225 }
226
227 return NULL;
228}
229
4ce01dd1
CH
230struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
231 bool reserved)
320ae51f 232{
d852564f
CH
233 struct blk_mq_ctx *ctx;
234 struct blk_mq_hw_ctx *hctx;
320ae51f 235 struct request *rq;
cb96a42c 236 struct blk_mq_alloc_data alloc_data;
a492f075 237 int ret;
320ae51f 238
a492f075
JL
239 ret = blk_mq_queue_enter(q);
240 if (ret)
241 return ERR_PTR(ret);
320ae51f 242
d852564f
CH
243 ctx = blk_mq_get_ctx(q);
244 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
245 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
246 reserved, ctx, hctx);
d852564f 247
cb96a42c 248 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
249 if (!rq && (gfp & __GFP_WAIT)) {
250 __blk_mq_run_hw_queue(hctx);
251 blk_mq_put_ctx(ctx);
252
253 ctx = blk_mq_get_ctx(q);
254 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
255 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
256 hctx);
257 rq = __blk_mq_alloc_request(&alloc_data, rw);
258 ctx = alloc_data.ctx;
d852564f
CH
259 }
260 blk_mq_put_ctx(ctx);
c76541a9
KB
261 if (!rq) {
262 blk_mq_queue_exit(q);
a492f075 263 return ERR_PTR(-EWOULDBLOCK);
c76541a9 264 }
320ae51f
JA
265 return rq;
266}
4bb659b1 267EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 268
320ae51f
JA
269static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
270 struct blk_mq_ctx *ctx, struct request *rq)
271{
272 const int tag = rq->tag;
273 struct request_queue *q = rq->q;
274
0d2602ca
JA
275 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
276 atomic_dec(&hctx->nr_active);
683d0e12 277 rq->cmd_flags = 0;
0d2602ca 278
af76e555 279 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 280 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
281 blk_mq_queue_exit(q);
282}
283
7c7f2f2b 284void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
285{
286 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
287
288 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 289 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
290
291}
292EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
293
294void blk_mq_free_request(struct request *rq)
295{
296 struct blk_mq_hw_ctx *hctx;
297 struct request_queue *q = rq->q;
298
299 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
300 blk_mq_free_hctx_request(hctx, rq);
320ae51f 301}
1a3b595a 302EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 303
c8a446ad 304inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 305{
0d11e6ac
ML
306 blk_account_io_done(rq);
307
91b63639 308 if (rq->end_io) {
320ae51f 309 rq->end_io(rq, error);
91b63639
CH
310 } else {
311 if (unlikely(blk_bidi_rq(rq)))
312 blk_mq_free_request(rq->next_rq);
320ae51f 313 blk_mq_free_request(rq);
91b63639 314 }
320ae51f 315}
c8a446ad 316EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 317
c8a446ad 318void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
319{
320 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
321 BUG();
c8a446ad 322 __blk_mq_end_request(rq, error);
63151a44 323}
c8a446ad 324EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 325
30a91cb4 326static void __blk_mq_complete_request_remote(void *data)
320ae51f 327{
3d6efbf6 328 struct request *rq = data;
320ae51f 329
30a91cb4 330 rq->q->softirq_done_fn(rq);
320ae51f 331}
320ae51f 332
ed851860 333static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
334{
335 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 336 bool shared = false;
320ae51f
JA
337 int cpu;
338
38535201 339 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
340 rq->q->softirq_done_fn(rq);
341 return;
342 }
320ae51f
JA
343
344 cpu = get_cpu();
38535201
CH
345 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
346 shared = cpus_share_cache(cpu, ctx->cpu);
347
348 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 349 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
350 rq->csd.info = rq;
351 rq->csd.flags = 0;
c46fff2a 352 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 353 } else {
30a91cb4 354 rq->q->softirq_done_fn(rq);
3d6efbf6 355 }
320ae51f
JA
356 put_cpu();
357}
30a91cb4 358
ed851860
JA
359void __blk_mq_complete_request(struct request *rq)
360{
361 struct request_queue *q = rq->q;
362
363 if (!q->softirq_done_fn)
c8a446ad 364 blk_mq_end_request(rq, rq->errors);
ed851860
JA
365 else
366 blk_mq_ipi_complete_request(rq);
367}
368
30a91cb4
CH
369/**
370 * blk_mq_complete_request - end I/O on a request
371 * @rq: the request being processed
372 *
373 * Description:
374 * Ends all I/O on a request. It does not handle partial completions.
375 * The actual completion happens out-of-order, through a IPI handler.
376 **/
377void blk_mq_complete_request(struct request *rq)
378{
95f09684
JA
379 struct request_queue *q = rq->q;
380
381 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 382 return;
ed851860
JA
383 if (!blk_mark_rq_complete(rq))
384 __blk_mq_complete_request(rq);
30a91cb4
CH
385}
386EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 387
e2490073 388void blk_mq_start_request(struct request *rq)
320ae51f
JA
389{
390 struct request_queue *q = rq->q;
391
392 trace_block_rq_issue(q, rq);
393
742ee69b 394 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
395 if (unlikely(blk_bidi_rq(rq)))
396 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 397
2b8393b4 398 blk_add_timer(rq);
87ee7b11 399
538b7534
JA
400 /*
401 * Ensure that ->deadline is visible before set the started
402 * flag and clear the completed flag.
403 */
404 smp_mb__before_atomic();
405
87ee7b11
JA
406 /*
407 * Mark us as started and clear complete. Complete might have been
408 * set if requeue raced with timeout, which then marked it as
409 * complete. So be sure to clear complete again when we start
410 * the request, otherwise we'll ignore the completion event.
411 */
4b570521
JA
412 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
413 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
414 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
415 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
416
417 if (q->dma_drain_size && blk_rq_bytes(rq)) {
418 /*
419 * Make sure space for the drain appears. We know we can do
420 * this because max_hw_segments has been adjusted to be one
421 * fewer than the device can handle.
422 */
423 rq->nr_phys_segments++;
424 }
320ae51f 425}
e2490073 426EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 427
ed0791b2 428static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
429{
430 struct request_queue *q = rq->q;
431
432 trace_block_rq_requeue(q, rq);
49f5baa5 433
e2490073
CH
434 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
435 if (q->dma_drain_size && blk_rq_bytes(rq))
436 rq->nr_phys_segments--;
437 }
320ae51f
JA
438}
439
ed0791b2
CH
440void blk_mq_requeue_request(struct request *rq)
441{
ed0791b2 442 __blk_mq_requeue_request(rq);
ed0791b2 443
ed0791b2 444 BUG_ON(blk_queued_rq(rq));
6fca6a61 445 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
446}
447EXPORT_SYMBOL(blk_mq_requeue_request);
448
6fca6a61
CH
449static void blk_mq_requeue_work(struct work_struct *work)
450{
451 struct request_queue *q =
452 container_of(work, struct request_queue, requeue_work);
453 LIST_HEAD(rq_list);
454 struct request *rq, *next;
455 unsigned long flags;
456
457 spin_lock_irqsave(&q->requeue_lock, flags);
458 list_splice_init(&q->requeue_list, &rq_list);
459 spin_unlock_irqrestore(&q->requeue_lock, flags);
460
461 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
462 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
463 continue;
464
465 rq->cmd_flags &= ~REQ_SOFTBARRIER;
466 list_del_init(&rq->queuelist);
467 blk_mq_insert_request(rq, true, false, false);
468 }
469
470 while (!list_empty(&rq_list)) {
471 rq = list_entry(rq_list.next, struct request, queuelist);
472 list_del_init(&rq->queuelist);
473 blk_mq_insert_request(rq, false, false, false);
474 }
475
8b957415
JA
476 /*
477 * Use the start variant of queue running here, so that running
478 * the requeue work will kick stopped queues.
479 */
480 blk_mq_start_hw_queues(q);
6fca6a61
CH
481}
482
483void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
484{
485 struct request_queue *q = rq->q;
486 unsigned long flags;
487
488 /*
489 * We abuse this flag that is otherwise used by the I/O scheduler to
490 * request head insertation from the workqueue.
491 */
492 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
493
494 spin_lock_irqsave(&q->requeue_lock, flags);
495 if (at_head) {
496 rq->cmd_flags |= REQ_SOFTBARRIER;
497 list_add(&rq->queuelist, &q->requeue_list);
498 } else {
499 list_add_tail(&rq->queuelist, &q->requeue_list);
500 }
501 spin_unlock_irqrestore(&q->requeue_lock, flags);
502}
503EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
504
505void blk_mq_kick_requeue_list(struct request_queue *q)
506{
507 kblockd_schedule_work(&q->requeue_work);
508}
509EXPORT_SYMBOL(blk_mq_kick_requeue_list);
510
7c94e1c1
ML
511static inline bool is_flush_request(struct request *rq,
512 struct blk_flush_queue *fq, unsigned int tag)
24d2f903 513{
0e62f51f 514 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
7c94e1c1 515 fq->flush_rq->tag == tag);
0e62f51f
JA
516}
517
518struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
519{
520 struct request *rq = tags->rqs[tag];
e97c293c
ML
521 /* mq_ctx of flush rq is always cloned from the corresponding req */
522 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
22302375 523
7c94e1c1 524 if (!is_flush_request(rq, fq, tag))
0e62f51f 525 return rq;
22302375 526
7c94e1c1 527 return fq->flush_rq;
24d2f903
CH
528}
529EXPORT_SYMBOL(blk_mq_tag_to_rq);
530
320ae51f 531struct blk_mq_timeout_data {
46f92d42
CH
532 unsigned long next;
533 unsigned int next_set;
320ae51f
JA
534};
535
90415837 536void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 537{
46f92d42
CH
538 struct blk_mq_ops *ops = req->q->mq_ops;
539 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
540
541 /*
542 * We know that complete is set at this point. If STARTED isn't set
543 * anymore, then the request isn't active and the "timeout" should
544 * just be ignored. This can happen due to the bitflag ordering.
545 * Timeout first checks if STARTED is set, and if it is, assumes
546 * the request is active. But if we race with completion, then
547 * we both flags will get cleared. So check here again, and ignore
548 * a timeout event with a request that isn't active.
549 */
46f92d42
CH
550 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
551 return;
87ee7b11 552
46f92d42 553 if (ops->timeout)
0152fb6b 554 ret = ops->timeout(req, reserved);
46f92d42
CH
555
556 switch (ret) {
557 case BLK_EH_HANDLED:
558 __blk_mq_complete_request(req);
559 break;
560 case BLK_EH_RESET_TIMER:
561 blk_add_timer(req);
562 blk_clear_rq_complete(req);
563 break;
564 case BLK_EH_NOT_HANDLED:
565 break;
566 default:
567 printk(KERN_ERR "block: bad eh return: %d\n", ret);
568 break;
569 }
87ee7b11 570}
81481eb4 571
81481eb4
CH
572static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
573 struct request *rq, void *priv, bool reserved)
574{
575 struct blk_mq_timeout_data *data = priv;
87ee7b11 576
46f92d42
CH
577 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
578 return;
87ee7b11 579
46f92d42
CH
580 if (time_after_eq(jiffies, rq->deadline)) {
581 if (!blk_mark_rq_complete(rq))
0152fb6b 582 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
583 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
584 data->next = rq->deadline;
585 data->next_set = 1;
586 }
87ee7b11
JA
587}
588
81481eb4 589static void blk_mq_rq_timer(unsigned long priv)
320ae51f 590{
81481eb4
CH
591 struct request_queue *q = (struct request_queue *)priv;
592 struct blk_mq_timeout_data data = {
593 .next = 0,
594 .next_set = 0,
595 };
320ae51f 596 struct blk_mq_hw_ctx *hctx;
81481eb4 597 int i;
320ae51f 598
484b4061
JA
599 queue_for_each_hw_ctx(q, hctx, i) {
600 /*
601 * If not software queues are currently mapped to this
602 * hardware queue, there's nothing to check
603 */
19c66e59 604 if (!blk_mq_hw_queue_mapped(hctx))
484b4061
JA
605 continue;
606
81481eb4 607 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
484b4061 608 }
320ae51f 609
81481eb4
CH
610 if (data.next_set) {
611 data.next = blk_rq_timeout(round_jiffies_up(data.next));
612 mod_timer(&q->timeout, data.next);
0d2602ca
JA
613 } else {
614 queue_for_each_hw_ctx(q, hctx, i)
615 blk_mq_tag_idle(hctx);
616 }
320ae51f
JA
617}
618
619/*
620 * Reverse check our software queue for entries that we could potentially
621 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
622 * too much time checking for merges.
623 */
624static bool blk_mq_attempt_merge(struct request_queue *q,
625 struct blk_mq_ctx *ctx, struct bio *bio)
626{
627 struct request *rq;
628 int checked = 8;
629
630 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
631 int el_ret;
632
633 if (!checked--)
634 break;
635
636 if (!blk_rq_merge_ok(rq, bio))
637 continue;
638
639 el_ret = blk_try_merge(rq, bio);
640 if (el_ret == ELEVATOR_BACK_MERGE) {
641 if (bio_attempt_back_merge(q, rq, bio)) {
642 ctx->rq_merged++;
643 return true;
644 }
645 break;
646 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
647 if (bio_attempt_front_merge(q, rq, bio)) {
648 ctx->rq_merged++;
649 return true;
650 }
651 break;
652 }
653 }
654
655 return false;
656}
657
1429d7c9
JA
658/*
659 * Process software queues that have been marked busy, splicing them
660 * to the for-dispatch
661 */
662static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
663{
664 struct blk_mq_ctx *ctx;
665 int i;
666
667 for (i = 0; i < hctx->ctx_map.map_size; i++) {
668 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
669 unsigned int off, bit;
670
671 if (!bm->word)
672 continue;
673
674 bit = 0;
675 off = i * hctx->ctx_map.bits_per_word;
676 do {
677 bit = find_next_bit(&bm->word, bm->depth, bit);
678 if (bit >= bm->depth)
679 break;
680
681 ctx = hctx->ctxs[bit + off];
682 clear_bit(bit, &bm->word);
683 spin_lock(&ctx->lock);
684 list_splice_tail_init(&ctx->rq_list, list);
685 spin_unlock(&ctx->lock);
686
687 bit++;
688 } while (1);
689 }
690}
691
320ae51f
JA
692/*
693 * Run this hardware queue, pulling any software queues mapped to it in.
694 * Note that this function currently has various problems around ordering
695 * of IO. In particular, we'd like FIFO behaviour on handling existing
696 * items on the hctx->dispatch list. Ignore that for now.
697 */
698static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
699{
700 struct request_queue *q = hctx->queue;
320ae51f
JA
701 struct request *rq;
702 LIST_HEAD(rq_list);
74c45052
JA
703 LIST_HEAD(driver_list);
704 struct list_head *dptr;
1429d7c9 705 int queued;
320ae51f 706
fd1270d5 707 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 708
5d12f905 709 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
710 return;
711
712 hctx->run++;
713
714 /*
715 * Touch any software queue that has pending entries.
716 */
1429d7c9 717 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
718
719 /*
720 * If we have previous entries on our dispatch list, grab them
721 * and stuff them at the front for more fair dispatch.
722 */
723 if (!list_empty_careful(&hctx->dispatch)) {
724 spin_lock(&hctx->lock);
725 if (!list_empty(&hctx->dispatch))
726 list_splice_init(&hctx->dispatch, &rq_list);
727 spin_unlock(&hctx->lock);
728 }
729
74c45052
JA
730 /*
731 * Start off with dptr being NULL, so we start the first request
732 * immediately, even if we have more pending.
733 */
734 dptr = NULL;
735
320ae51f
JA
736 /*
737 * Now process all the entries, sending them to the driver.
738 */
1429d7c9 739 queued = 0;
320ae51f 740 while (!list_empty(&rq_list)) {
74c45052 741 struct blk_mq_queue_data bd;
320ae51f
JA
742 int ret;
743
744 rq = list_first_entry(&rq_list, struct request, queuelist);
745 list_del_init(&rq->queuelist);
320ae51f 746
74c45052
JA
747 bd.rq = rq;
748 bd.list = dptr;
749 bd.last = list_empty(&rq_list);
750
751 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
752 switch (ret) {
753 case BLK_MQ_RQ_QUEUE_OK:
754 queued++;
755 continue;
756 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 757 list_add(&rq->queuelist, &rq_list);
ed0791b2 758 __blk_mq_requeue_request(rq);
320ae51f
JA
759 break;
760 default:
761 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 762 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 763 rq->errors = -EIO;
c8a446ad 764 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
765 break;
766 }
767
768 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
769 break;
74c45052
JA
770
771 /*
772 * We've done the first request. If we have more than 1
773 * left in the list, set dptr to defer issue.
774 */
775 if (!dptr && rq_list.next != rq_list.prev)
776 dptr = &driver_list;
320ae51f
JA
777 }
778
779 if (!queued)
780 hctx->dispatched[0]++;
781 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
782 hctx->dispatched[ilog2(queued) + 1]++;
783
784 /*
785 * Any items that need requeuing? Stuff them into hctx->dispatch,
786 * that is where we will continue on next queue run.
787 */
788 if (!list_empty(&rq_list)) {
789 spin_lock(&hctx->lock);
790 list_splice(&rq_list, &hctx->dispatch);
791 spin_unlock(&hctx->lock);
792 }
793}
794
506e931f
JA
795/*
796 * It'd be great if the workqueue API had a way to pass
797 * in a mask and had some smarts for more clever placement.
798 * For now we just round-robin here, switching for every
799 * BLK_MQ_CPU_WORK_BATCH queued items.
800 */
801static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
802{
b657d7e6
CH
803 if (hctx->queue->nr_hw_queues == 1)
804 return WORK_CPU_UNBOUND;
506e931f
JA
805
806 if (--hctx->next_cpu_batch <= 0) {
b657d7e6 807 int cpu = hctx->next_cpu, next_cpu;
506e931f
JA
808
809 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
810 if (next_cpu >= nr_cpu_ids)
811 next_cpu = cpumask_first(hctx->cpumask);
812
813 hctx->next_cpu = next_cpu;
814 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
b657d7e6
CH
815
816 return cpu;
506e931f
JA
817 }
818
b657d7e6 819 return hctx->next_cpu;
506e931f
JA
820}
821
320ae51f
JA
822void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
823{
19c66e59
ML
824 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
825 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
826 return;
827
398205b8 828 if (!async) {
2a90d4aa
PB
829 int cpu = get_cpu();
830 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 831 __blk_mq_run_hw_queue(hctx);
2a90d4aa 832 put_cpu();
398205b8
PB
833 return;
834 }
e4043dcf 835
2a90d4aa 836 put_cpu();
e4043dcf 837 }
398205b8 838
b657d7e6
CH
839 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
840 &hctx->run_work, 0);
320ae51f
JA
841}
842
843void blk_mq_run_queues(struct request_queue *q, bool async)
844{
845 struct blk_mq_hw_ctx *hctx;
846 int i;
847
848 queue_for_each_hw_ctx(q, hctx, i) {
849 if ((!blk_mq_hctx_has_pending(hctx) &&
850 list_empty_careful(&hctx->dispatch)) ||
5d12f905 851 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
852 continue;
853
854 blk_mq_run_hw_queue(hctx, async);
855 }
856}
857EXPORT_SYMBOL(blk_mq_run_queues);
858
859void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
860{
70f4db63
CH
861 cancel_delayed_work(&hctx->run_work);
862 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
863 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
864}
865EXPORT_SYMBOL(blk_mq_stop_hw_queue);
866
280d45f6
CH
867void blk_mq_stop_hw_queues(struct request_queue *q)
868{
869 struct blk_mq_hw_ctx *hctx;
870 int i;
871
872 queue_for_each_hw_ctx(q, hctx, i)
873 blk_mq_stop_hw_queue(hctx);
874}
875EXPORT_SYMBOL(blk_mq_stop_hw_queues);
876
320ae51f
JA
877void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
878{
879 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 880
0ffbce80 881 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
882}
883EXPORT_SYMBOL(blk_mq_start_hw_queue);
884
2f268556
CH
885void blk_mq_start_hw_queues(struct request_queue *q)
886{
887 struct blk_mq_hw_ctx *hctx;
888 int i;
889
890 queue_for_each_hw_ctx(q, hctx, i)
891 blk_mq_start_hw_queue(hctx);
892}
893EXPORT_SYMBOL(blk_mq_start_hw_queues);
894
895
1b4a3258 896void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
897{
898 struct blk_mq_hw_ctx *hctx;
899 int i;
900
901 queue_for_each_hw_ctx(q, hctx, i) {
902 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
903 continue;
904
905 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 906 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
907 }
908}
909EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
910
70f4db63 911static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
912{
913 struct blk_mq_hw_ctx *hctx;
914
70f4db63 915 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 916
320ae51f
JA
917 __blk_mq_run_hw_queue(hctx);
918}
919
70f4db63
CH
920static void blk_mq_delay_work_fn(struct work_struct *work)
921{
922 struct blk_mq_hw_ctx *hctx;
923
924 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
925
926 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
927 __blk_mq_run_hw_queue(hctx);
928}
929
930void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
931{
19c66e59
ML
932 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
933 return;
70f4db63 934
b657d7e6
CH
935 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
936 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
937}
938EXPORT_SYMBOL(blk_mq_delay_queue);
939
320ae51f 940static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 941 struct request *rq, bool at_head)
320ae51f
JA
942{
943 struct blk_mq_ctx *ctx = rq->mq_ctx;
944
01b983c9
JA
945 trace_block_rq_insert(hctx->queue, rq);
946
72a0a36e
CH
947 if (at_head)
948 list_add(&rq->queuelist, &ctx->rq_list);
949 else
950 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 951
320ae51f 952 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
953}
954
eeabc850
CH
955void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
956 bool async)
320ae51f 957{
eeabc850 958 struct request_queue *q = rq->q;
320ae51f 959 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
960 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
961
962 current_ctx = blk_mq_get_ctx(q);
963 if (!cpu_online(ctx->cpu))
964 rq->mq_ctx = ctx = current_ctx;
320ae51f 965
320ae51f
JA
966 hctx = q->mq_ops->map_queue(q, ctx->cpu);
967
a57a178a
CH
968 spin_lock(&ctx->lock);
969 __blk_mq_insert_request(hctx, rq, at_head);
970 spin_unlock(&ctx->lock);
320ae51f 971
320ae51f
JA
972 if (run_queue)
973 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
974
975 blk_mq_put_ctx(current_ctx);
320ae51f
JA
976}
977
978static void blk_mq_insert_requests(struct request_queue *q,
979 struct blk_mq_ctx *ctx,
980 struct list_head *list,
981 int depth,
982 bool from_schedule)
983
984{
985 struct blk_mq_hw_ctx *hctx;
986 struct blk_mq_ctx *current_ctx;
987
988 trace_block_unplug(q, depth, !from_schedule);
989
990 current_ctx = blk_mq_get_ctx(q);
991
992 if (!cpu_online(ctx->cpu))
993 ctx = current_ctx;
994 hctx = q->mq_ops->map_queue(q, ctx->cpu);
995
996 /*
997 * preemption doesn't flush plug list, so it's possible ctx->cpu is
998 * offline now
999 */
1000 spin_lock(&ctx->lock);
1001 while (!list_empty(list)) {
1002 struct request *rq;
1003
1004 rq = list_first_entry(list, struct request, queuelist);
1005 list_del_init(&rq->queuelist);
1006 rq->mq_ctx = ctx;
72a0a36e 1007 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1008 }
1009 spin_unlock(&ctx->lock);
1010
320ae51f 1011 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1012 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1013}
1014
1015static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1016{
1017 struct request *rqa = container_of(a, struct request, queuelist);
1018 struct request *rqb = container_of(b, struct request, queuelist);
1019
1020 return !(rqa->mq_ctx < rqb->mq_ctx ||
1021 (rqa->mq_ctx == rqb->mq_ctx &&
1022 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1023}
1024
1025void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1026{
1027 struct blk_mq_ctx *this_ctx;
1028 struct request_queue *this_q;
1029 struct request *rq;
1030 LIST_HEAD(list);
1031 LIST_HEAD(ctx_list);
1032 unsigned int depth;
1033
1034 list_splice_init(&plug->mq_list, &list);
1035
1036 list_sort(NULL, &list, plug_ctx_cmp);
1037
1038 this_q = NULL;
1039 this_ctx = NULL;
1040 depth = 0;
1041
1042 while (!list_empty(&list)) {
1043 rq = list_entry_rq(list.next);
1044 list_del_init(&rq->queuelist);
1045 BUG_ON(!rq->q);
1046 if (rq->mq_ctx != this_ctx) {
1047 if (this_ctx) {
1048 blk_mq_insert_requests(this_q, this_ctx,
1049 &ctx_list, depth,
1050 from_schedule);
1051 }
1052
1053 this_ctx = rq->mq_ctx;
1054 this_q = rq->q;
1055 depth = 0;
1056 }
1057
1058 depth++;
1059 list_add_tail(&rq->queuelist, &ctx_list);
1060 }
1061
1062 /*
1063 * If 'this_ctx' is set, we know we have entries to complete
1064 * on 'ctx_list'. Do those.
1065 */
1066 if (this_ctx) {
1067 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1068 from_schedule);
1069 }
1070}
1071
1072static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1073{
1074 init_request_from_bio(rq, bio);
4b570521 1075
3ee32372 1076 if (blk_do_io_stat(rq))
4b570521 1077 blk_account_io_start(rq, 1);
320ae51f
JA
1078}
1079
274a5843
JA
1080static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1081{
1082 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1083 !blk_queue_nomerges(hctx->queue);
1084}
1085
07068d5b
JA
1086static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1087 struct blk_mq_ctx *ctx,
1088 struct request *rq, struct bio *bio)
320ae51f 1089{
274a5843 1090 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1091 blk_mq_bio_to_request(rq, bio);
1092 spin_lock(&ctx->lock);
1093insert_rq:
1094 __blk_mq_insert_request(hctx, rq, false);
1095 spin_unlock(&ctx->lock);
1096 return false;
1097 } else {
274a5843
JA
1098 struct request_queue *q = hctx->queue;
1099
07068d5b
JA
1100 spin_lock(&ctx->lock);
1101 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1102 blk_mq_bio_to_request(rq, bio);
1103 goto insert_rq;
1104 }
320ae51f 1105
07068d5b
JA
1106 spin_unlock(&ctx->lock);
1107 __blk_mq_free_request(hctx, ctx, rq);
1108 return true;
14ec77f3 1109 }
07068d5b 1110}
14ec77f3 1111
07068d5b
JA
1112struct blk_map_ctx {
1113 struct blk_mq_hw_ctx *hctx;
1114 struct blk_mq_ctx *ctx;
1115};
1116
1117static struct request *blk_mq_map_request(struct request_queue *q,
1118 struct bio *bio,
1119 struct blk_map_ctx *data)
1120{
1121 struct blk_mq_hw_ctx *hctx;
1122 struct blk_mq_ctx *ctx;
1123 struct request *rq;
1124 int rw = bio_data_dir(bio);
cb96a42c 1125 struct blk_mq_alloc_data alloc_data;
320ae51f 1126
07068d5b 1127 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1128 bio_endio(bio, -EIO);
07068d5b 1129 return NULL;
320ae51f
JA
1130 }
1131
1132 ctx = blk_mq_get_ctx(q);
1133 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1134
07068d5b 1135 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1136 rw |= REQ_SYNC;
07068d5b 1137
320ae51f 1138 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1139 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1140 hctx);
1141 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1142 if (unlikely(!rq)) {
793597a6 1143 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1144 blk_mq_put_ctx(ctx);
1145 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1146
1147 ctx = blk_mq_get_ctx(q);
320ae51f 1148 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1149 blk_mq_set_alloc_data(&alloc_data, q,
1150 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1151 rq = __blk_mq_alloc_request(&alloc_data, rw);
1152 ctx = alloc_data.ctx;
1153 hctx = alloc_data.hctx;
320ae51f
JA
1154 }
1155
1156 hctx->queued++;
07068d5b
JA
1157 data->hctx = hctx;
1158 data->ctx = ctx;
1159 return rq;
1160}
1161
1162/*
1163 * Multiple hardware queue variant. This will not use per-process plugs,
1164 * but will attempt to bypass the hctx queueing if we can go straight to
1165 * hardware for SYNC IO.
1166 */
1167static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1168{
1169 const int is_sync = rw_is_sync(bio->bi_rw);
1170 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1171 struct blk_map_ctx data;
1172 struct request *rq;
1173
1174 blk_queue_bounce(q, &bio);
1175
1176 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1177 bio_endio(bio, -EIO);
1178 return;
1179 }
1180
1181 rq = blk_mq_map_request(q, bio, &data);
1182 if (unlikely(!rq))
1183 return;
1184
1185 if (unlikely(is_flush_fua)) {
1186 blk_mq_bio_to_request(rq, bio);
1187 blk_insert_flush(rq);
1188 goto run_queue;
1189 }
1190
e167dfb5
JA
1191 /*
1192 * If the driver supports defer issued based on 'last', then
1193 * queue it up like normal since we can potentially save some
1194 * CPU this way.
1195 */
1196 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
74c45052
JA
1197 struct blk_mq_queue_data bd = {
1198 .rq = rq,
1199 .list = NULL,
1200 .last = 1
1201 };
07068d5b
JA
1202 int ret;
1203
1204 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1205
1206 /*
1207 * For OK queue, we are done. For error, kill it. Any other
1208 * error (busy), just add it to our list as we previously
1209 * would have done
1210 */
74c45052 1211 ret = q->mq_ops->queue_rq(data.hctx, &bd);
07068d5b
JA
1212 if (ret == BLK_MQ_RQ_QUEUE_OK)
1213 goto done;
1214 else {
1215 __blk_mq_requeue_request(rq);
1216
1217 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1218 rq->errors = -EIO;
c8a446ad 1219 blk_mq_end_request(rq, rq->errors);
07068d5b
JA
1220 goto done;
1221 }
1222 }
1223 }
1224
1225 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1226 /*
1227 * For a SYNC request, send it to the hardware immediately. For
1228 * an ASYNC request, just ensure that we run it later on. The
1229 * latter allows for merging opportunities and more efficient
1230 * dispatching.
1231 */
1232run_queue:
1233 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1234 }
1235done:
1236 blk_mq_put_ctx(data.ctx);
1237}
1238
1239/*
1240 * Single hardware queue variant. This will attempt to use any per-process
1241 * plug for merging and IO deferral.
1242 */
1243static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1244{
1245 const int is_sync = rw_is_sync(bio->bi_rw);
1246 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1247 unsigned int use_plug, request_count = 0;
1248 struct blk_map_ctx data;
1249 struct request *rq;
1250
1251 /*
1252 * If we have multiple hardware queues, just go directly to
1253 * one of those for sync IO.
1254 */
1255 use_plug = !is_flush_fua && !is_sync;
1256
1257 blk_queue_bounce(q, &bio);
1258
1259 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1260 bio_endio(bio, -EIO);
1261 return;
1262 }
1263
1264 if (use_plug && !blk_queue_nomerges(q) &&
1265 blk_attempt_plug_merge(q, bio, &request_count))
1266 return;
1267
1268 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1269 if (unlikely(!rq))
1270 return;
320ae51f
JA
1271
1272 if (unlikely(is_flush_fua)) {
1273 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1274 blk_insert_flush(rq);
1275 goto run_queue;
1276 }
1277
1278 /*
1279 * A task plug currently exists. Since this is completely lockless,
1280 * utilize that to temporarily store requests until the task is
1281 * either done or scheduled away.
1282 */
1283 if (use_plug) {
1284 struct blk_plug *plug = current->plug;
1285
1286 if (plug) {
1287 blk_mq_bio_to_request(rq, bio);
92f399c7 1288 if (list_empty(&plug->mq_list))
320ae51f
JA
1289 trace_block_plug(q);
1290 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1291 blk_flush_plug_list(plug, false);
1292 trace_block_plug(q);
1293 }
1294 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1295 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1296 return;
1297 }
1298 }
1299
07068d5b
JA
1300 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1301 /*
1302 * For a SYNC request, send it to the hardware immediately. For
1303 * an ASYNC request, just ensure that we run it later on. The
1304 * latter allows for merging opportunities and more efficient
1305 * dispatching.
1306 */
1307run_queue:
1308 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1309 }
1310
07068d5b 1311 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1312}
1313
1314/*
1315 * Default mapping to a software queue, since we use one per CPU.
1316 */
1317struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1318{
1319 return q->queue_hw_ctx[q->mq_map[cpu]];
1320}
1321EXPORT_SYMBOL(blk_mq_map_queue);
1322
24d2f903
CH
1323static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1324 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1325{
e9b267d9 1326 struct page *page;
320ae51f 1327
24d2f903 1328 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1329 int i;
320ae51f 1330
24d2f903
CH
1331 for (i = 0; i < tags->nr_tags; i++) {
1332 if (!tags->rqs[i])
e9b267d9 1333 continue;
24d2f903
CH
1334 set->ops->exit_request(set->driver_data, tags->rqs[i],
1335 hctx_idx, i);
a5164405 1336 tags->rqs[i] = NULL;
e9b267d9 1337 }
320ae51f 1338 }
320ae51f 1339
24d2f903
CH
1340 while (!list_empty(&tags->page_list)) {
1341 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1342 list_del_init(&page->lru);
320ae51f
JA
1343 __free_pages(page, page->private);
1344 }
1345
24d2f903 1346 kfree(tags->rqs);
320ae51f 1347
24d2f903 1348 blk_mq_free_tags(tags);
320ae51f
JA
1349}
1350
1351static size_t order_to_size(unsigned int order)
1352{
4ca08500 1353 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1354}
1355
24d2f903
CH
1356static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1357 unsigned int hctx_idx)
320ae51f 1358{
24d2f903 1359 struct blk_mq_tags *tags;
320ae51f
JA
1360 unsigned int i, j, entries_per_page, max_order = 4;
1361 size_t rq_size, left;
1362
24d2f903
CH
1363 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1364 set->numa_node);
1365 if (!tags)
1366 return NULL;
320ae51f 1367
24d2f903
CH
1368 INIT_LIST_HEAD(&tags->page_list);
1369
a5164405
JA
1370 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1371 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1372 set->numa_node);
24d2f903
CH
1373 if (!tags->rqs) {
1374 blk_mq_free_tags(tags);
1375 return NULL;
1376 }
320ae51f
JA
1377
1378 /*
1379 * rq_size is the size of the request plus driver payload, rounded
1380 * to the cacheline size
1381 */
24d2f903 1382 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1383 cache_line_size());
24d2f903 1384 left = rq_size * set->queue_depth;
320ae51f 1385
24d2f903 1386 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1387 int this_order = max_order;
1388 struct page *page;
1389 int to_do;
1390 void *p;
1391
1392 while (left < order_to_size(this_order - 1) && this_order)
1393 this_order--;
1394
1395 do {
a5164405
JA
1396 page = alloc_pages_node(set->numa_node,
1397 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1398 this_order);
320ae51f
JA
1399 if (page)
1400 break;
1401 if (!this_order--)
1402 break;
1403 if (order_to_size(this_order) < rq_size)
1404 break;
1405 } while (1);
1406
1407 if (!page)
24d2f903 1408 goto fail;
320ae51f
JA
1409
1410 page->private = this_order;
24d2f903 1411 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1412
1413 p = page_address(page);
1414 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1415 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1416 left -= to_do * rq_size;
1417 for (j = 0; j < to_do; j++) {
24d2f903 1418 tags->rqs[i] = p;
683d0e12
DH
1419 tags->rqs[i]->atomic_flags = 0;
1420 tags->rqs[i]->cmd_flags = 0;
24d2f903
CH
1421 if (set->ops->init_request) {
1422 if (set->ops->init_request(set->driver_data,
1423 tags->rqs[i], hctx_idx, i,
a5164405
JA
1424 set->numa_node)) {
1425 tags->rqs[i] = NULL;
24d2f903 1426 goto fail;
a5164405 1427 }
e9b267d9
CH
1428 }
1429
320ae51f
JA
1430 p += rq_size;
1431 i++;
1432 }
1433 }
1434
24d2f903 1435 return tags;
320ae51f 1436
24d2f903 1437fail:
24d2f903
CH
1438 blk_mq_free_rq_map(set, tags, hctx_idx);
1439 return NULL;
320ae51f
JA
1440}
1441
1429d7c9
JA
1442static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1443{
1444 kfree(bitmap->map);
1445}
1446
1447static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1448{
1449 unsigned int bpw = 8, total, num_maps, i;
1450
1451 bitmap->bits_per_word = bpw;
1452
1453 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1454 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1455 GFP_KERNEL, node);
1456 if (!bitmap->map)
1457 return -ENOMEM;
1458
1459 bitmap->map_size = num_maps;
1460
1461 total = nr_cpu_ids;
1462 for (i = 0; i < num_maps; i++) {
1463 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1464 total -= bitmap->map[i].depth;
1465 }
1466
1467 return 0;
1468}
1469
484b4061
JA
1470static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1471{
1472 struct request_queue *q = hctx->queue;
1473 struct blk_mq_ctx *ctx;
1474 LIST_HEAD(tmp);
1475
1476 /*
1477 * Move ctx entries to new CPU, if this one is going away.
1478 */
1479 ctx = __blk_mq_get_ctx(q, cpu);
1480
1481 spin_lock(&ctx->lock);
1482 if (!list_empty(&ctx->rq_list)) {
1483 list_splice_init(&ctx->rq_list, &tmp);
1484 blk_mq_hctx_clear_pending(hctx, ctx);
1485 }
1486 spin_unlock(&ctx->lock);
1487
1488 if (list_empty(&tmp))
1489 return NOTIFY_OK;
1490
1491 ctx = blk_mq_get_ctx(q);
1492 spin_lock(&ctx->lock);
1493
1494 while (!list_empty(&tmp)) {
1495 struct request *rq;
1496
1497 rq = list_first_entry(&tmp, struct request, queuelist);
1498 rq->mq_ctx = ctx;
1499 list_move_tail(&rq->queuelist, &ctx->rq_list);
1500 }
1501
1502 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1503 blk_mq_hctx_mark_pending(hctx, ctx);
1504
1505 spin_unlock(&ctx->lock);
1506
1507 blk_mq_run_hw_queue(hctx, true);
1508 blk_mq_put_ctx(ctx);
1509 return NOTIFY_OK;
1510}
1511
1512static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1513{
1514 struct request_queue *q = hctx->queue;
1515 struct blk_mq_tag_set *set = q->tag_set;
1516
1517 if (set->tags[hctx->queue_num])
1518 return NOTIFY_OK;
1519
1520 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1521 if (!set->tags[hctx->queue_num])
1522 return NOTIFY_STOP;
1523
1524 hctx->tags = set->tags[hctx->queue_num];
1525 return NOTIFY_OK;
1526}
1527
1528static int blk_mq_hctx_notify(void *data, unsigned long action,
1529 unsigned int cpu)
1530{
1531 struct blk_mq_hw_ctx *hctx = data;
1532
1533 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1534 return blk_mq_hctx_cpu_offline(hctx, cpu);
1535 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1536 return blk_mq_hctx_cpu_online(hctx, cpu);
1537
1538 return NOTIFY_OK;
1539}
1540
08e98fc6
ML
1541static void blk_mq_exit_hctx(struct request_queue *q,
1542 struct blk_mq_tag_set *set,
1543 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1544{
f70ced09
ML
1545 unsigned flush_start_tag = set->queue_depth;
1546
08e98fc6
ML
1547 blk_mq_tag_idle(hctx);
1548
f70ced09
ML
1549 if (set->ops->exit_request)
1550 set->ops->exit_request(set->driver_data,
1551 hctx->fq->flush_rq, hctx_idx,
1552 flush_start_tag + hctx_idx);
1553
08e98fc6
ML
1554 if (set->ops->exit_hctx)
1555 set->ops->exit_hctx(hctx, hctx_idx);
1556
1557 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1558 blk_free_flush_queue(hctx->fq);
08e98fc6
ML
1559 kfree(hctx->ctxs);
1560 blk_mq_free_bitmap(&hctx->ctx_map);
1561}
1562
624dbe47
ML
1563static void blk_mq_exit_hw_queues(struct request_queue *q,
1564 struct blk_mq_tag_set *set, int nr_queue)
1565{
1566 struct blk_mq_hw_ctx *hctx;
1567 unsigned int i;
1568
1569 queue_for_each_hw_ctx(q, hctx, i) {
1570 if (i == nr_queue)
1571 break;
08e98fc6 1572 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1573 }
624dbe47
ML
1574}
1575
1576static void blk_mq_free_hw_queues(struct request_queue *q,
1577 struct blk_mq_tag_set *set)
1578{
1579 struct blk_mq_hw_ctx *hctx;
1580 unsigned int i;
1581
1582 queue_for_each_hw_ctx(q, hctx, i) {
1583 free_cpumask_var(hctx->cpumask);
cdef54dd 1584 kfree(hctx);
624dbe47
ML
1585 }
1586}
1587
08e98fc6
ML
1588static int blk_mq_init_hctx(struct request_queue *q,
1589 struct blk_mq_tag_set *set,
1590 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1591{
08e98fc6 1592 int node;
f70ced09 1593 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1594
1595 node = hctx->numa_node;
1596 if (node == NUMA_NO_NODE)
1597 node = hctx->numa_node = set->numa_node;
1598
1599 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1600 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1601 spin_lock_init(&hctx->lock);
1602 INIT_LIST_HEAD(&hctx->dispatch);
1603 hctx->queue = q;
1604 hctx->queue_num = hctx_idx;
1605 hctx->flags = set->flags;
1606 hctx->cmd_size = set->cmd_size;
1607
1608 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1609 blk_mq_hctx_notify, hctx);
1610 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1611
1612 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1613
1614 /*
08e98fc6
ML
1615 * Allocate space for all possible cpus to avoid allocation at
1616 * runtime
320ae51f 1617 */
08e98fc6
ML
1618 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1619 GFP_KERNEL, node);
1620 if (!hctx->ctxs)
1621 goto unregister_cpu_notifier;
320ae51f 1622
08e98fc6
ML
1623 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1624 goto free_ctxs;
320ae51f 1625
08e98fc6 1626 hctx->nr_ctx = 0;
320ae51f 1627
08e98fc6
ML
1628 if (set->ops->init_hctx &&
1629 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1630 goto free_bitmap;
320ae51f 1631
f70ced09
ML
1632 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1633 if (!hctx->fq)
1634 goto exit_hctx;
320ae51f 1635
f70ced09
ML
1636 if (set->ops->init_request &&
1637 set->ops->init_request(set->driver_data,
1638 hctx->fq->flush_rq, hctx_idx,
1639 flush_start_tag + hctx_idx, node))
1640 goto free_fq;
320ae51f 1641
08e98fc6 1642 return 0;
320ae51f 1643
f70ced09
ML
1644 free_fq:
1645 kfree(hctx->fq);
1646 exit_hctx:
1647 if (set->ops->exit_hctx)
1648 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6
ML
1649 free_bitmap:
1650 blk_mq_free_bitmap(&hctx->ctx_map);
1651 free_ctxs:
1652 kfree(hctx->ctxs);
1653 unregister_cpu_notifier:
1654 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1655
08e98fc6
ML
1656 return -1;
1657}
320ae51f 1658
08e98fc6
ML
1659static int blk_mq_init_hw_queues(struct request_queue *q,
1660 struct blk_mq_tag_set *set)
1661{
1662 struct blk_mq_hw_ctx *hctx;
1663 unsigned int i;
320ae51f 1664
08e98fc6
ML
1665 /*
1666 * Initialize hardware queues
1667 */
1668 queue_for_each_hw_ctx(q, hctx, i) {
1669 if (blk_mq_init_hctx(q, set, hctx, i))
320ae51f
JA
1670 break;
1671 }
1672
1673 if (i == q->nr_hw_queues)
1674 return 0;
1675
1676 /*
1677 * Init failed
1678 */
624dbe47 1679 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1680
1681 return 1;
1682}
1683
1684static void blk_mq_init_cpu_queues(struct request_queue *q,
1685 unsigned int nr_hw_queues)
1686{
1687 unsigned int i;
1688
1689 for_each_possible_cpu(i) {
1690 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1691 struct blk_mq_hw_ctx *hctx;
1692
1693 memset(__ctx, 0, sizeof(*__ctx));
1694 __ctx->cpu = i;
1695 spin_lock_init(&__ctx->lock);
1696 INIT_LIST_HEAD(&__ctx->rq_list);
1697 __ctx->queue = q;
1698
1699 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1700 if (!cpu_online(i))
1701 continue;
1702
e4043dcf
JA
1703 hctx = q->mq_ops->map_queue(q, i);
1704 cpumask_set_cpu(i, hctx->cpumask);
1705 hctx->nr_ctx++;
1706
320ae51f
JA
1707 /*
1708 * Set local node, IFF we have more than one hw queue. If
1709 * not, we remain on the home node of the device
1710 */
1711 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1712 hctx->numa_node = cpu_to_node(i);
1713 }
1714}
1715
1716static void blk_mq_map_swqueue(struct request_queue *q)
1717{
1718 unsigned int i;
1719 struct blk_mq_hw_ctx *hctx;
1720 struct blk_mq_ctx *ctx;
1721
1722 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1723 cpumask_clear(hctx->cpumask);
320ae51f
JA
1724 hctx->nr_ctx = 0;
1725 }
1726
1727 /*
1728 * Map software to hardware queues
1729 */
1730 queue_for_each_ctx(q, ctx, i) {
1731 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1732 if (!cpu_online(i))
1733 continue;
1734
320ae51f 1735 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1736 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1737 ctx->index_hw = hctx->nr_ctx;
1738 hctx->ctxs[hctx->nr_ctx++] = ctx;
1739 }
506e931f
JA
1740
1741 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1742 /*
a68aafa5
JA
1743 * If no software queues are mapped to this hardware queue,
1744 * disable it and free the request entries.
484b4061
JA
1745 */
1746 if (!hctx->nr_ctx) {
1747 struct blk_mq_tag_set *set = q->tag_set;
1748
1749 if (set->tags[i]) {
1750 blk_mq_free_rq_map(set, set->tags[i], i);
1751 set->tags[i] = NULL;
1752 hctx->tags = NULL;
1753 }
1754 continue;
1755 }
1756
1757 /*
1758 * Initialize batch roundrobin counts
1759 */
506e931f
JA
1760 hctx->next_cpu = cpumask_first(hctx->cpumask);
1761 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1762 }
320ae51f
JA
1763}
1764
0d2602ca
JA
1765static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1766{
1767 struct blk_mq_hw_ctx *hctx;
1768 struct request_queue *q;
1769 bool shared;
1770 int i;
1771
1772 if (set->tag_list.next == set->tag_list.prev)
1773 shared = false;
1774 else
1775 shared = true;
1776
1777 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1778 blk_mq_freeze_queue(q);
1779
1780 queue_for_each_hw_ctx(q, hctx, i) {
1781 if (shared)
1782 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1783 else
1784 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1785 }
1786 blk_mq_unfreeze_queue(q);
1787 }
1788}
1789
1790static void blk_mq_del_queue_tag_set(struct request_queue *q)
1791{
1792 struct blk_mq_tag_set *set = q->tag_set;
1793
0d2602ca
JA
1794 mutex_lock(&set->tag_list_lock);
1795 list_del_init(&q->tag_set_list);
1796 blk_mq_update_tag_set_depth(set);
1797 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1798}
1799
1800static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1801 struct request_queue *q)
1802{
1803 q->tag_set = set;
1804
1805 mutex_lock(&set->tag_list_lock);
1806 list_add_tail(&q->tag_set_list, &set->tag_list);
1807 blk_mq_update_tag_set_depth(set);
1808 mutex_unlock(&set->tag_list_lock);
1809}
1810
24d2f903 1811struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1812{
1813 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1814 struct blk_mq_ctx __percpu *ctx;
320ae51f 1815 struct request_queue *q;
f14bbe77 1816 unsigned int *map;
320ae51f
JA
1817 int i;
1818
320ae51f
JA
1819 ctx = alloc_percpu(struct blk_mq_ctx);
1820 if (!ctx)
1821 return ERR_PTR(-ENOMEM);
1822
24d2f903
CH
1823 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1824 set->numa_node);
320ae51f
JA
1825
1826 if (!hctxs)
1827 goto err_percpu;
1828
f14bbe77
JA
1829 map = blk_mq_make_queue_map(set);
1830 if (!map)
1831 goto err_map;
1832
24d2f903 1833 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1834 int node = blk_mq_hw_queue_to_node(map, i);
1835
cdef54dd
CH
1836 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1837 GFP_KERNEL, node);
320ae51f
JA
1838 if (!hctxs[i])
1839 goto err_hctxs;
1840
a86073e4
JA
1841 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1842 node))
e4043dcf
JA
1843 goto err_hctxs;
1844
0d2602ca 1845 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1846 hctxs[i]->numa_node = node;
320ae51f
JA
1847 hctxs[i]->queue_num = i;
1848 }
1849
24d2f903 1850 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1851 if (!q)
1852 goto err_hctxs;
1853
17497acb
TH
1854 /*
1855 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1856 * See blk_register_queue() for details.
1857 */
a34375ef 1858 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
17497acb 1859 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
3d2936f4
ML
1860 goto err_map;
1861
320ae51f
JA
1862 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1863 blk_queue_rq_timeout(q, 30000);
1864
1865 q->nr_queues = nr_cpu_ids;
24d2f903 1866 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1867 q->mq_map = map;
320ae51f
JA
1868
1869 q->queue_ctx = ctx;
1870 q->queue_hw_ctx = hctxs;
1871
24d2f903 1872 q->mq_ops = set->ops;
94eddfbe 1873 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1874
05f1dd53
JA
1875 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1876 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1877
1be036e9
CH
1878 q->sg_reserved_size = INT_MAX;
1879
6fca6a61
CH
1880 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1881 INIT_LIST_HEAD(&q->requeue_list);
1882 spin_lock_init(&q->requeue_lock);
1883
07068d5b
JA
1884 if (q->nr_hw_queues > 1)
1885 blk_queue_make_request(q, blk_mq_make_request);
1886 else
1887 blk_queue_make_request(q, blk_sq_make_request);
1888
24d2f903
CH
1889 if (set->timeout)
1890 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1891
eba71768
JA
1892 /*
1893 * Do this after blk_queue_make_request() overrides it...
1894 */
1895 q->nr_requests = set->queue_depth;
1896
24d2f903
CH
1897 if (set->ops->complete)
1898 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1899
24d2f903 1900 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1901
24d2f903 1902 if (blk_mq_init_hw_queues(q, set))
1bcb1ead 1903 goto err_hw;
18741986 1904
320ae51f
JA
1905 mutex_lock(&all_q_mutex);
1906 list_add_tail(&q->all_q_node, &all_q_list);
1907 mutex_unlock(&all_q_mutex);
1908
0d2602ca
JA
1909 blk_mq_add_queue_tag_set(set, q);
1910
484b4061
JA
1911 blk_mq_map_swqueue(q);
1912
320ae51f 1913 return q;
18741986 1914
320ae51f 1915err_hw:
320ae51f
JA
1916 blk_cleanup_queue(q);
1917err_hctxs:
f14bbe77 1918 kfree(map);
24d2f903 1919 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1920 if (!hctxs[i])
1921 break;
e4043dcf 1922 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1923 kfree(hctxs[i]);
320ae51f 1924 }
f14bbe77 1925err_map:
320ae51f
JA
1926 kfree(hctxs);
1927err_percpu:
1928 free_percpu(ctx);
1929 return ERR_PTR(-ENOMEM);
1930}
1931EXPORT_SYMBOL(blk_mq_init_queue);
1932
1933void blk_mq_free_queue(struct request_queue *q)
1934{
624dbe47 1935 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1936
0d2602ca
JA
1937 blk_mq_del_queue_tag_set(q);
1938
624dbe47
ML
1939 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1940 blk_mq_free_hw_queues(q, set);
320ae51f 1941
add703fd 1942 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1943
320ae51f
JA
1944 free_percpu(q->queue_ctx);
1945 kfree(q->queue_hw_ctx);
1946 kfree(q->mq_map);
1947
1948 q->queue_ctx = NULL;
1949 q->queue_hw_ctx = NULL;
1950 q->mq_map = NULL;
1951
1952 mutex_lock(&all_q_mutex);
1953 list_del_init(&q->all_q_node);
1954 mutex_unlock(&all_q_mutex);
1955}
320ae51f
JA
1956
1957/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1958static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 1959{
f3af020b 1960 WARN_ON_ONCE(!q->mq_freeze_depth);
320ae51f 1961
67aec14c
JA
1962 blk_mq_sysfs_unregister(q);
1963
320ae51f
JA
1964 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1965
1966 /*
1967 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1968 * we should change hctx numa_node according to new topology (this
1969 * involves free and re-allocate memory, worthy doing?)
1970 */
1971
1972 blk_mq_map_swqueue(q);
1973
67aec14c 1974 blk_mq_sysfs_register(q);
320ae51f
JA
1975}
1976
f618ef7c
PG
1977static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1978 unsigned long action, void *hcpu)
320ae51f
JA
1979{
1980 struct request_queue *q;
1981
1982 /*
9fccfed8
JA
1983 * Before new mappings are established, hotadded cpu might already
1984 * start handling requests. This doesn't break anything as we map
1985 * offline CPUs to first hardware queue. We will re-init the queue
1986 * below to get optimal settings.
320ae51f
JA
1987 */
1988 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1989 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1990 return NOTIFY_OK;
1991
1992 mutex_lock(&all_q_mutex);
f3af020b
TH
1993
1994 /*
1995 * We need to freeze and reinit all existing queues. Freezing
1996 * involves synchronous wait for an RCU grace period and doing it
1997 * one by one may take a long time. Start freezing all queues in
1998 * one swoop and then wait for the completions so that freezing can
1999 * take place in parallel.
2000 */
2001 list_for_each_entry(q, &all_q_list, all_q_node)
2002 blk_mq_freeze_queue_start(q);
2003 list_for_each_entry(q, &all_q_list, all_q_node)
2004 blk_mq_freeze_queue_wait(q);
2005
320ae51f
JA
2006 list_for_each_entry(q, &all_q_list, all_q_node)
2007 blk_mq_queue_reinit(q);
f3af020b
TH
2008
2009 list_for_each_entry(q, &all_q_list, all_q_node)
2010 blk_mq_unfreeze_queue(q);
2011
320ae51f
JA
2012 mutex_unlock(&all_q_mutex);
2013 return NOTIFY_OK;
2014}
2015
a5164405
JA
2016static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2017{
2018 int i;
2019
2020 for (i = 0; i < set->nr_hw_queues; i++) {
2021 set->tags[i] = blk_mq_init_rq_map(set, i);
2022 if (!set->tags[i])
2023 goto out_unwind;
2024 }
2025
2026 return 0;
2027
2028out_unwind:
2029 while (--i >= 0)
2030 blk_mq_free_rq_map(set, set->tags[i], i);
2031
a5164405
JA
2032 return -ENOMEM;
2033}
2034
2035/*
2036 * Allocate the request maps associated with this tag_set. Note that this
2037 * may reduce the depth asked for, if memory is tight. set->queue_depth
2038 * will be updated to reflect the allocated depth.
2039 */
2040static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2041{
2042 unsigned int depth;
2043 int err;
2044
2045 depth = set->queue_depth;
2046 do {
2047 err = __blk_mq_alloc_rq_maps(set);
2048 if (!err)
2049 break;
2050
2051 set->queue_depth >>= 1;
2052 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2053 err = -ENOMEM;
2054 break;
2055 }
2056 } while (set->queue_depth);
2057
2058 if (!set->queue_depth || err) {
2059 pr_err("blk-mq: failed to allocate request map\n");
2060 return -ENOMEM;
2061 }
2062
2063 if (depth != set->queue_depth)
2064 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2065 depth, set->queue_depth);
2066
2067 return 0;
2068}
2069
a4391c64
JA
2070/*
2071 * Alloc a tag set to be associated with one or more request queues.
2072 * May fail with EINVAL for various error conditions. May adjust the
2073 * requested depth down, if if it too large. In that case, the set
2074 * value will be stored in set->queue_depth.
2075 */
24d2f903
CH
2076int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2077{
205fb5f5
BVA
2078 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2079
24d2f903
CH
2080 if (!set->nr_hw_queues)
2081 return -EINVAL;
a4391c64 2082 if (!set->queue_depth)
24d2f903
CH
2083 return -EINVAL;
2084 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2085 return -EINVAL;
2086
cdef54dd 2087 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2088 return -EINVAL;
2089
a4391c64
JA
2090 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2091 pr_info("blk-mq: reduced tag depth to %u\n",
2092 BLK_MQ_MAX_DEPTH);
2093 set->queue_depth = BLK_MQ_MAX_DEPTH;
2094 }
24d2f903 2095
6637fadf
SL
2096 /*
2097 * If a crashdump is active, then we are potentially in a very
2098 * memory constrained environment. Limit us to 1 queue and
2099 * 64 tags to prevent using too much memory.
2100 */
2101 if (is_kdump_kernel()) {
2102 set->nr_hw_queues = 1;
2103 set->queue_depth = min(64U, set->queue_depth);
2104 }
2105
48479005
ML
2106 set->tags = kmalloc_node(set->nr_hw_queues *
2107 sizeof(struct blk_mq_tags *),
24d2f903
CH
2108 GFP_KERNEL, set->numa_node);
2109 if (!set->tags)
a5164405 2110 return -ENOMEM;
24d2f903 2111
a5164405
JA
2112 if (blk_mq_alloc_rq_maps(set))
2113 goto enomem;
24d2f903 2114
0d2602ca
JA
2115 mutex_init(&set->tag_list_lock);
2116 INIT_LIST_HEAD(&set->tag_list);
2117
24d2f903 2118 return 0;
a5164405 2119enomem:
5676e7b6
RE
2120 kfree(set->tags);
2121 set->tags = NULL;
24d2f903
CH
2122 return -ENOMEM;
2123}
2124EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2125
2126void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2127{
2128 int i;
2129
484b4061
JA
2130 for (i = 0; i < set->nr_hw_queues; i++) {
2131 if (set->tags[i])
2132 blk_mq_free_rq_map(set, set->tags[i], i);
2133 }
2134
981bd189 2135 kfree(set->tags);
5676e7b6 2136 set->tags = NULL;
24d2f903
CH
2137}
2138EXPORT_SYMBOL(blk_mq_free_tag_set);
2139
e3a2b3f9
JA
2140int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2141{
2142 struct blk_mq_tag_set *set = q->tag_set;
2143 struct blk_mq_hw_ctx *hctx;
2144 int i, ret;
2145
2146 if (!set || nr > set->queue_depth)
2147 return -EINVAL;
2148
2149 ret = 0;
2150 queue_for_each_hw_ctx(q, hctx, i) {
2151 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2152 if (ret)
2153 break;
2154 }
2155
2156 if (!ret)
2157 q->nr_requests = nr;
2158
2159 return ret;
2160}
2161
676141e4
JA
2162void blk_mq_disable_hotplug(void)
2163{
2164 mutex_lock(&all_q_mutex);
2165}
2166
2167void blk_mq_enable_hotplug(void)
2168{
2169 mutex_unlock(&all_q_mutex);
2170}
2171
320ae51f
JA
2172static int __init blk_mq_init(void)
2173{
320ae51f
JA
2174 blk_mq_cpu_init();
2175
add703fd 2176 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2177
2178 return 0;
2179}
2180subsys_initcall(blk_mq_init);