blk-mq: Export if requests were started
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
aedcd72f 23#include <linux/crash_dump.h>
320ae51f
JA
24
25#include <trace/events/block.h>
26
27#include <linux/blk-mq.h>
28#include "blk.h"
29#include "blk-mq.h"
30#include "blk-mq-tag.h"
31
32static DEFINE_MUTEX(all_q_mutex);
33static LIST_HEAD(all_q_list);
34
35static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36
320ae51f
JA
37/*
38 * Check if any of the ctx's have pending work in this hardware queue
39 */
40static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
41{
42 unsigned int i;
43
1429d7c9
JA
44 for (i = 0; i < hctx->ctx_map.map_size; i++)
45 if (hctx->ctx_map.map[i].word)
320ae51f
JA
46 return true;
47
48 return false;
49}
50
1429d7c9
JA
51static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
53{
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
55}
56
57#define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
59
320ae51f
JA
60/*
61 * Mark this ctx as having pending work in this hardware queue
62 */
63static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
65{
1429d7c9
JA
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
67
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
70}
71
72static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
74{
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
76
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
78}
79
320ae51f
JA
80static int blk_mq_queue_enter(struct request_queue *q)
81{
add703fd
TH
82 while (true) {
83 int ret;
320ae51f 84
add703fd
TH
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
320ae51f 87
add703fd
TH
88 ret = wait_event_interruptible(q->mq_freeze_wq,
89 !q->mq_freeze_depth || blk_queue_dying(q));
90 if (blk_queue_dying(q))
91 return -ENODEV;
92 if (ret)
93 return ret;
94 }
320ae51f
JA
95}
96
97static void blk_mq_queue_exit(struct request_queue *q)
98{
add703fd
TH
99 percpu_ref_put(&q->mq_usage_counter);
100}
101
102static void blk_mq_usage_counter_release(struct percpu_ref *ref)
103{
104 struct request_queue *q =
105 container_of(ref, struct request_queue, mq_usage_counter);
106
107 wake_up_all(&q->mq_freeze_wq);
320ae51f
JA
108}
109
b4c6a028 110void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 111{
cddd5d17
TH
112 bool freeze;
113
72d6f02a 114 spin_lock_irq(q->queue_lock);
cddd5d17 115 freeze = !q->mq_freeze_depth++;
72d6f02a
TH
116 spin_unlock_irq(q->queue_lock);
117
cddd5d17 118 if (freeze) {
9eca8046 119 percpu_ref_kill(&q->mq_usage_counter);
cddd5d17
TH
120 blk_mq_run_queues(q, false);
121 }
f3af020b 122}
b4c6a028 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
124
125static void blk_mq_freeze_queue_wait(struct request_queue *q)
126{
add703fd 127 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
43a5e4e2
ML
128}
129
f3af020b
TH
130/*
131 * Guarantee no request is in use, so we can change any data structure of
132 * the queue afterward.
133 */
134void blk_mq_freeze_queue(struct request_queue *q)
135{
136 blk_mq_freeze_queue_start(q);
137 blk_mq_freeze_queue_wait(q);
138}
139
b4c6a028 140void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 141{
cddd5d17 142 bool wake;
320ae51f
JA
143
144 spin_lock_irq(q->queue_lock);
780db207
TH
145 wake = !--q->mq_freeze_depth;
146 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f 147 spin_unlock_irq(q->queue_lock);
add703fd
TH
148 if (wake) {
149 percpu_ref_reinit(&q->mq_usage_counter);
320ae51f 150 wake_up_all(&q->mq_freeze_wq);
add703fd 151 }
320ae51f 152}
b4c6a028 153EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 154
aed3ea94
JA
155void blk_mq_wake_waiters(struct request_queue *q)
156{
157 struct blk_mq_hw_ctx *hctx;
158 unsigned int i;
159
160 queue_for_each_hw_ctx(q, hctx, i)
161 if (blk_mq_hw_queue_mapped(hctx))
162 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
163
164 /*
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
168 */
169 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
170}
171
320ae51f
JA
172bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
173{
174 return blk_mq_has_free_tags(hctx->tags);
175}
176EXPORT_SYMBOL(blk_mq_can_queue);
177
94eddfbe
JA
178static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 struct request *rq, unsigned int rw_flags)
320ae51f 180{
94eddfbe
JA
181 if (blk_queue_io_stat(q))
182 rw_flags |= REQ_IO_STAT;
183
af76e555
CH
184 INIT_LIST_HEAD(&rq->queuelist);
185 /* csd/requeue_work/fifo_time is initialized before use */
186 rq->q = q;
320ae51f 187 rq->mq_ctx = ctx;
0d2602ca 188 rq->cmd_flags |= rw_flags;
af76e555
CH
189 /* do not touch atomic flags, it needs atomic ops against the timer */
190 rq->cpu = -1;
af76e555
CH
191 INIT_HLIST_NODE(&rq->hash);
192 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
193 rq->rq_disk = NULL;
194 rq->part = NULL;
3ee32372 195 rq->start_time = jiffies;
af76e555
CH
196#ifdef CONFIG_BLK_CGROUP
197 rq->rl = NULL;
0fec08b4 198 set_start_time_ns(rq);
af76e555
CH
199 rq->io_start_time_ns = 0;
200#endif
201 rq->nr_phys_segments = 0;
202#if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq->nr_integrity_segments = 0;
204#endif
af76e555
CH
205 rq->special = NULL;
206 /* tag was already set */
207 rq->errors = 0;
af76e555 208
6f4a1626
TB
209 rq->cmd = rq->__cmd;
210
af76e555
CH
211 rq->extra_len = 0;
212 rq->sense_len = 0;
213 rq->resid_len = 0;
214 rq->sense = NULL;
215
af76e555 216 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
217 rq->timeout = 0;
218
af76e555
CH
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
222
320ae51f
JA
223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
224}
225
5dee8577 226static struct request *
cb96a42c 227__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
228{
229 struct request *rq;
230 unsigned int tag;
231
cb96a42c 232 tag = blk_mq_get_tag(data);
5dee8577 233 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 234 rq = data->hctx->tags->rqs[tag];
5dee8577 235
cb96a42c 236 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 237 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 238 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
239 }
240
241 rq->tag = tag;
cb96a42c 242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
243 return rq;
244 }
245
246 return NULL;
247}
248
4ce01dd1
CH
249struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 bool reserved)
320ae51f 251{
d852564f
CH
252 struct blk_mq_ctx *ctx;
253 struct blk_mq_hw_ctx *hctx;
320ae51f 254 struct request *rq;
cb96a42c 255 struct blk_mq_alloc_data alloc_data;
a492f075 256 int ret;
320ae51f 257
a492f075
JL
258 ret = blk_mq_queue_enter(q);
259 if (ret)
260 return ERR_PTR(ret);
320ae51f 261
d852564f
CH
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 reserved, ctx, hctx);
d852564f 266
cb96a42c 267 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
268 if (!rq && (gfp & __GFP_WAIT)) {
269 __blk_mq_run_hw_queue(hctx);
270 blk_mq_put_ctx(ctx);
271
272 ctx = blk_mq_get_ctx(q);
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 hctx);
276 rq = __blk_mq_alloc_request(&alloc_data, rw);
277 ctx = alloc_data.ctx;
d852564f
CH
278 }
279 blk_mq_put_ctx(ctx);
c76541a9
KB
280 if (!rq) {
281 blk_mq_queue_exit(q);
a492f075 282 return ERR_PTR(-EWOULDBLOCK);
c76541a9 283 }
320ae51f
JA
284 return rq;
285}
4bb659b1 286EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 287
320ae51f
JA
288static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 struct blk_mq_ctx *ctx, struct request *rq)
290{
291 const int tag = rq->tag;
292 struct request_queue *q = rq->q;
293
0d2602ca
JA
294 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 atomic_dec(&hctx->nr_active);
683d0e12 296 rq->cmd_flags = 0;
0d2602ca 297
af76e555 298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 299 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
300 blk_mq_queue_exit(q);
301}
302
7c7f2f2b 303void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
304{
305 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
306
307 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 308 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
309
310}
311EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
312
313void blk_mq_free_request(struct request *rq)
314{
315 struct blk_mq_hw_ctx *hctx;
316 struct request_queue *q = rq->q;
317
318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 blk_mq_free_hctx_request(hctx, rq);
320ae51f 320}
1a3b595a 321EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 322
c8a446ad 323inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 324{
0d11e6ac
ML
325 blk_account_io_done(rq);
326
91b63639 327 if (rq->end_io) {
320ae51f 328 rq->end_io(rq, error);
91b63639
CH
329 } else {
330 if (unlikely(blk_bidi_rq(rq)))
331 blk_mq_free_request(rq->next_rq);
320ae51f 332 blk_mq_free_request(rq);
91b63639 333 }
320ae51f 334}
c8a446ad 335EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 336
c8a446ad 337void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
338{
339 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 BUG();
c8a446ad 341 __blk_mq_end_request(rq, error);
63151a44 342}
c8a446ad 343EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 344
30a91cb4 345static void __blk_mq_complete_request_remote(void *data)
320ae51f 346{
3d6efbf6 347 struct request *rq = data;
320ae51f 348
30a91cb4 349 rq->q->softirq_done_fn(rq);
320ae51f 350}
320ae51f 351
ed851860 352static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
353{
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 355 bool shared = false;
320ae51f
JA
356 int cpu;
357
38535201 358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
359 rq->q->softirq_done_fn(rq);
360 return;
361 }
320ae51f
JA
362
363 cpu = get_cpu();
38535201
CH
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 shared = cpus_share_cache(cpu, ctx->cpu);
366
367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 368 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
369 rq->csd.info = rq;
370 rq->csd.flags = 0;
c46fff2a 371 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 372 } else {
30a91cb4 373 rq->q->softirq_done_fn(rq);
3d6efbf6 374 }
320ae51f
JA
375 put_cpu();
376}
30a91cb4 377
ed851860
JA
378void __blk_mq_complete_request(struct request *rq)
379{
380 struct request_queue *q = rq->q;
381
382 if (!q->softirq_done_fn)
c8a446ad 383 blk_mq_end_request(rq, rq->errors);
ed851860
JA
384 else
385 blk_mq_ipi_complete_request(rq);
386}
387
30a91cb4
CH
388/**
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
391 *
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
395 **/
396void blk_mq_complete_request(struct request *rq)
397{
95f09684
JA
398 struct request_queue *q = rq->q;
399
400 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 401 return;
ed851860
JA
402 if (!blk_mark_rq_complete(rq))
403 __blk_mq_complete_request(rq);
30a91cb4
CH
404}
405EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 406
973c0191
KB
407int blk_mq_request_started(struct request *rq)
408{
409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
410}
411EXPORT_SYMBOL_GPL(blk_mq_request_started);
412
e2490073 413void blk_mq_start_request(struct request *rq)
320ae51f
JA
414{
415 struct request_queue *q = rq->q;
416
417 trace_block_rq_issue(q, rq);
418
742ee69b 419 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
420 if (unlikely(blk_bidi_rq(rq)))
421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 422
2b8393b4 423 blk_add_timer(rq);
87ee7b11 424
538b7534
JA
425 /*
426 * Ensure that ->deadline is visible before set the started
427 * flag and clear the completed flag.
428 */
429 smp_mb__before_atomic();
430
87ee7b11
JA
431 /*
432 * Mark us as started and clear complete. Complete might have been
433 * set if requeue raced with timeout, which then marked it as
434 * complete. So be sure to clear complete again when we start
435 * the request, otherwise we'll ignore the completion event.
436 */
4b570521
JA
437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
441
442 if (q->dma_drain_size && blk_rq_bytes(rq)) {
443 /*
444 * Make sure space for the drain appears. We know we can do
445 * this because max_hw_segments has been adjusted to be one
446 * fewer than the device can handle.
447 */
448 rq->nr_phys_segments++;
449 }
320ae51f 450}
e2490073 451EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 452
ed0791b2 453static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
454{
455 struct request_queue *q = rq->q;
456
457 trace_block_rq_requeue(q, rq);
49f5baa5 458
e2490073
CH
459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 if (q->dma_drain_size && blk_rq_bytes(rq))
461 rq->nr_phys_segments--;
462 }
320ae51f
JA
463}
464
ed0791b2
CH
465void blk_mq_requeue_request(struct request *rq)
466{
ed0791b2 467 __blk_mq_requeue_request(rq);
ed0791b2 468
ed0791b2 469 BUG_ON(blk_queued_rq(rq));
6fca6a61 470 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
471}
472EXPORT_SYMBOL(blk_mq_requeue_request);
473
6fca6a61
CH
474static void blk_mq_requeue_work(struct work_struct *work)
475{
476 struct request_queue *q =
477 container_of(work, struct request_queue, requeue_work);
478 LIST_HEAD(rq_list);
479 struct request *rq, *next;
480 unsigned long flags;
481
482 spin_lock_irqsave(&q->requeue_lock, flags);
483 list_splice_init(&q->requeue_list, &rq_list);
484 spin_unlock_irqrestore(&q->requeue_lock, flags);
485
486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 continue;
489
490 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 list_del_init(&rq->queuelist);
492 blk_mq_insert_request(rq, true, false, false);
493 }
494
495 while (!list_empty(&rq_list)) {
496 rq = list_entry(rq_list.next, struct request, queuelist);
497 list_del_init(&rq->queuelist);
498 blk_mq_insert_request(rq, false, false, false);
499 }
500
8b957415
JA
501 /*
502 * Use the start variant of queue running here, so that running
503 * the requeue work will kick stopped queues.
504 */
505 blk_mq_start_hw_queues(q);
6fca6a61
CH
506}
507
508void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
509{
510 struct request_queue *q = rq->q;
511 unsigned long flags;
512
513 /*
514 * We abuse this flag that is otherwise used by the I/O scheduler to
515 * request head insertation from the workqueue.
516 */
517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
518
519 spin_lock_irqsave(&q->requeue_lock, flags);
520 if (at_head) {
521 rq->cmd_flags |= REQ_SOFTBARRIER;
522 list_add(&rq->queuelist, &q->requeue_list);
523 } else {
524 list_add_tail(&rq->queuelist, &q->requeue_list);
525 }
526 spin_unlock_irqrestore(&q->requeue_lock, flags);
527}
528EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
529
530void blk_mq_kick_requeue_list(struct request_queue *q)
531{
532 kblockd_schedule_work(&q->requeue_work);
533}
534EXPORT_SYMBOL(blk_mq_kick_requeue_list);
535
7c94e1c1
ML
536static inline bool is_flush_request(struct request *rq,
537 struct blk_flush_queue *fq, unsigned int tag)
24d2f903 538{
0e62f51f 539 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
7c94e1c1 540 fq->flush_rq->tag == tag);
0e62f51f
JA
541}
542
543struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
544{
545 struct request *rq = tags->rqs[tag];
e97c293c
ML
546 /* mq_ctx of flush rq is always cloned from the corresponding req */
547 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
22302375 548
7c94e1c1 549 if (!is_flush_request(rq, fq, tag))
0e62f51f 550 return rq;
22302375 551
7c94e1c1 552 return fq->flush_rq;
24d2f903
CH
553}
554EXPORT_SYMBOL(blk_mq_tag_to_rq);
555
320ae51f 556struct blk_mq_timeout_data {
46f92d42
CH
557 unsigned long next;
558 unsigned int next_set;
320ae51f
JA
559};
560
90415837 561void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 562{
46f92d42
CH
563 struct blk_mq_ops *ops = req->q->mq_ops;
564 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
565
566 /*
567 * We know that complete is set at this point. If STARTED isn't set
568 * anymore, then the request isn't active and the "timeout" should
569 * just be ignored. This can happen due to the bitflag ordering.
570 * Timeout first checks if STARTED is set, and if it is, assumes
571 * the request is active. But if we race with completion, then
572 * we both flags will get cleared. So check here again, and ignore
573 * a timeout event with a request that isn't active.
574 */
46f92d42
CH
575 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
576 return;
87ee7b11 577
46f92d42 578 if (ops->timeout)
0152fb6b 579 ret = ops->timeout(req, reserved);
46f92d42
CH
580
581 switch (ret) {
582 case BLK_EH_HANDLED:
583 __blk_mq_complete_request(req);
584 break;
585 case BLK_EH_RESET_TIMER:
586 blk_add_timer(req);
587 blk_clear_rq_complete(req);
588 break;
589 case BLK_EH_NOT_HANDLED:
590 break;
591 default:
592 printk(KERN_ERR "block: bad eh return: %d\n", ret);
593 break;
594 }
87ee7b11 595}
81481eb4 596
81481eb4
CH
597static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
598 struct request *rq, void *priv, bool reserved)
599{
600 struct blk_mq_timeout_data *data = priv;
87ee7b11 601
46f92d42
CH
602 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
603 return;
87ee7b11 604
46f92d42
CH
605 if (time_after_eq(jiffies, rq->deadline)) {
606 if (!blk_mark_rq_complete(rq))
0152fb6b 607 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
608 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
609 data->next = rq->deadline;
610 data->next_set = 1;
611 }
87ee7b11
JA
612}
613
81481eb4 614static void blk_mq_rq_timer(unsigned long priv)
320ae51f 615{
81481eb4
CH
616 struct request_queue *q = (struct request_queue *)priv;
617 struct blk_mq_timeout_data data = {
618 .next = 0,
619 .next_set = 0,
620 };
320ae51f 621 struct blk_mq_hw_ctx *hctx;
81481eb4 622 int i;
320ae51f 623
484b4061
JA
624 queue_for_each_hw_ctx(q, hctx, i) {
625 /*
626 * If not software queues are currently mapped to this
627 * hardware queue, there's nothing to check
628 */
19c66e59 629 if (!blk_mq_hw_queue_mapped(hctx))
484b4061
JA
630 continue;
631
81481eb4 632 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
484b4061 633 }
320ae51f 634
81481eb4
CH
635 if (data.next_set) {
636 data.next = blk_rq_timeout(round_jiffies_up(data.next));
637 mod_timer(&q->timeout, data.next);
0d2602ca
JA
638 } else {
639 queue_for_each_hw_ctx(q, hctx, i)
640 blk_mq_tag_idle(hctx);
641 }
320ae51f
JA
642}
643
644/*
645 * Reverse check our software queue for entries that we could potentially
646 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
647 * too much time checking for merges.
648 */
649static bool blk_mq_attempt_merge(struct request_queue *q,
650 struct blk_mq_ctx *ctx, struct bio *bio)
651{
652 struct request *rq;
653 int checked = 8;
654
655 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
656 int el_ret;
657
658 if (!checked--)
659 break;
660
661 if (!blk_rq_merge_ok(rq, bio))
662 continue;
663
664 el_ret = blk_try_merge(rq, bio);
665 if (el_ret == ELEVATOR_BACK_MERGE) {
666 if (bio_attempt_back_merge(q, rq, bio)) {
667 ctx->rq_merged++;
668 return true;
669 }
670 break;
671 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
672 if (bio_attempt_front_merge(q, rq, bio)) {
673 ctx->rq_merged++;
674 return true;
675 }
676 break;
677 }
678 }
679
680 return false;
681}
682
1429d7c9
JA
683/*
684 * Process software queues that have been marked busy, splicing them
685 * to the for-dispatch
686 */
687static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
688{
689 struct blk_mq_ctx *ctx;
690 int i;
691
692 for (i = 0; i < hctx->ctx_map.map_size; i++) {
693 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
694 unsigned int off, bit;
695
696 if (!bm->word)
697 continue;
698
699 bit = 0;
700 off = i * hctx->ctx_map.bits_per_word;
701 do {
702 bit = find_next_bit(&bm->word, bm->depth, bit);
703 if (bit >= bm->depth)
704 break;
705
706 ctx = hctx->ctxs[bit + off];
707 clear_bit(bit, &bm->word);
708 spin_lock(&ctx->lock);
709 list_splice_tail_init(&ctx->rq_list, list);
710 spin_unlock(&ctx->lock);
711
712 bit++;
713 } while (1);
714 }
715}
716
320ae51f
JA
717/*
718 * Run this hardware queue, pulling any software queues mapped to it in.
719 * Note that this function currently has various problems around ordering
720 * of IO. In particular, we'd like FIFO behaviour on handling existing
721 * items on the hctx->dispatch list. Ignore that for now.
722 */
723static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
724{
725 struct request_queue *q = hctx->queue;
320ae51f
JA
726 struct request *rq;
727 LIST_HEAD(rq_list);
74c45052
JA
728 LIST_HEAD(driver_list);
729 struct list_head *dptr;
1429d7c9 730 int queued;
320ae51f 731
fd1270d5 732 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 733
5d12f905 734 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
735 return;
736
737 hctx->run++;
738
739 /*
740 * Touch any software queue that has pending entries.
741 */
1429d7c9 742 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
743
744 /*
745 * If we have previous entries on our dispatch list, grab them
746 * and stuff them at the front for more fair dispatch.
747 */
748 if (!list_empty_careful(&hctx->dispatch)) {
749 spin_lock(&hctx->lock);
750 if (!list_empty(&hctx->dispatch))
751 list_splice_init(&hctx->dispatch, &rq_list);
752 spin_unlock(&hctx->lock);
753 }
754
74c45052
JA
755 /*
756 * Start off with dptr being NULL, so we start the first request
757 * immediately, even if we have more pending.
758 */
759 dptr = NULL;
760
320ae51f
JA
761 /*
762 * Now process all the entries, sending them to the driver.
763 */
1429d7c9 764 queued = 0;
320ae51f 765 while (!list_empty(&rq_list)) {
74c45052 766 struct blk_mq_queue_data bd;
320ae51f
JA
767 int ret;
768
769 rq = list_first_entry(&rq_list, struct request, queuelist);
770 list_del_init(&rq->queuelist);
320ae51f 771
74c45052
JA
772 bd.rq = rq;
773 bd.list = dptr;
774 bd.last = list_empty(&rq_list);
775
776 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
777 switch (ret) {
778 case BLK_MQ_RQ_QUEUE_OK:
779 queued++;
780 continue;
781 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 782 list_add(&rq->queuelist, &rq_list);
ed0791b2 783 __blk_mq_requeue_request(rq);
320ae51f
JA
784 break;
785 default:
786 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 787 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 788 rq->errors = -EIO;
c8a446ad 789 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
790 break;
791 }
792
793 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
794 break;
74c45052
JA
795
796 /*
797 * We've done the first request. If we have more than 1
798 * left in the list, set dptr to defer issue.
799 */
800 if (!dptr && rq_list.next != rq_list.prev)
801 dptr = &driver_list;
320ae51f
JA
802 }
803
804 if (!queued)
805 hctx->dispatched[0]++;
806 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
807 hctx->dispatched[ilog2(queued) + 1]++;
808
809 /*
810 * Any items that need requeuing? Stuff them into hctx->dispatch,
811 * that is where we will continue on next queue run.
812 */
813 if (!list_empty(&rq_list)) {
814 spin_lock(&hctx->lock);
815 list_splice(&rq_list, &hctx->dispatch);
816 spin_unlock(&hctx->lock);
817 }
818}
819
506e931f
JA
820/*
821 * It'd be great if the workqueue API had a way to pass
822 * in a mask and had some smarts for more clever placement.
823 * For now we just round-robin here, switching for every
824 * BLK_MQ_CPU_WORK_BATCH queued items.
825 */
826static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
827{
b657d7e6
CH
828 if (hctx->queue->nr_hw_queues == 1)
829 return WORK_CPU_UNBOUND;
506e931f
JA
830
831 if (--hctx->next_cpu_batch <= 0) {
b657d7e6 832 int cpu = hctx->next_cpu, next_cpu;
506e931f
JA
833
834 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
835 if (next_cpu >= nr_cpu_ids)
836 next_cpu = cpumask_first(hctx->cpumask);
837
838 hctx->next_cpu = next_cpu;
839 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
b657d7e6
CH
840
841 return cpu;
506e931f
JA
842 }
843
b657d7e6 844 return hctx->next_cpu;
506e931f
JA
845}
846
320ae51f
JA
847void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
848{
19c66e59
ML
849 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
850 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
851 return;
852
398205b8 853 if (!async) {
2a90d4aa
PB
854 int cpu = get_cpu();
855 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 856 __blk_mq_run_hw_queue(hctx);
2a90d4aa 857 put_cpu();
398205b8
PB
858 return;
859 }
e4043dcf 860
2a90d4aa 861 put_cpu();
e4043dcf 862 }
398205b8 863
b657d7e6
CH
864 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
865 &hctx->run_work, 0);
320ae51f
JA
866}
867
868void blk_mq_run_queues(struct request_queue *q, bool async)
869{
870 struct blk_mq_hw_ctx *hctx;
871 int i;
872
873 queue_for_each_hw_ctx(q, hctx, i) {
874 if ((!blk_mq_hctx_has_pending(hctx) &&
875 list_empty_careful(&hctx->dispatch)) ||
5d12f905 876 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
877 continue;
878
879 blk_mq_run_hw_queue(hctx, async);
880 }
881}
882EXPORT_SYMBOL(blk_mq_run_queues);
883
884void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
885{
70f4db63
CH
886 cancel_delayed_work(&hctx->run_work);
887 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
888 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
889}
890EXPORT_SYMBOL(blk_mq_stop_hw_queue);
891
280d45f6
CH
892void blk_mq_stop_hw_queues(struct request_queue *q)
893{
894 struct blk_mq_hw_ctx *hctx;
895 int i;
896
897 queue_for_each_hw_ctx(q, hctx, i)
898 blk_mq_stop_hw_queue(hctx);
899}
900EXPORT_SYMBOL(blk_mq_stop_hw_queues);
901
320ae51f
JA
902void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
903{
904 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 905
0ffbce80 906 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
907}
908EXPORT_SYMBOL(blk_mq_start_hw_queue);
909
2f268556
CH
910void blk_mq_start_hw_queues(struct request_queue *q)
911{
912 struct blk_mq_hw_ctx *hctx;
913 int i;
914
915 queue_for_each_hw_ctx(q, hctx, i)
916 blk_mq_start_hw_queue(hctx);
917}
918EXPORT_SYMBOL(blk_mq_start_hw_queues);
919
920
1b4a3258 921void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
922{
923 struct blk_mq_hw_ctx *hctx;
924 int i;
925
926 queue_for_each_hw_ctx(q, hctx, i) {
927 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
928 continue;
929
930 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 931 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
932 }
933}
934EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
935
70f4db63 936static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
937{
938 struct blk_mq_hw_ctx *hctx;
939
70f4db63 940 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 941
320ae51f
JA
942 __blk_mq_run_hw_queue(hctx);
943}
944
70f4db63
CH
945static void blk_mq_delay_work_fn(struct work_struct *work)
946{
947 struct blk_mq_hw_ctx *hctx;
948
949 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
950
951 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
952 __blk_mq_run_hw_queue(hctx);
953}
954
955void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
956{
19c66e59
ML
957 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
958 return;
70f4db63 959
b657d7e6
CH
960 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
961 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
962}
963EXPORT_SYMBOL(blk_mq_delay_queue);
964
320ae51f 965static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 966 struct request *rq, bool at_head)
320ae51f
JA
967{
968 struct blk_mq_ctx *ctx = rq->mq_ctx;
969
01b983c9
JA
970 trace_block_rq_insert(hctx->queue, rq);
971
72a0a36e
CH
972 if (at_head)
973 list_add(&rq->queuelist, &ctx->rq_list);
974 else
975 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 976
320ae51f 977 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
978}
979
eeabc850
CH
980void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
981 bool async)
320ae51f 982{
eeabc850 983 struct request_queue *q = rq->q;
320ae51f 984 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
985 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
986
987 current_ctx = blk_mq_get_ctx(q);
988 if (!cpu_online(ctx->cpu))
989 rq->mq_ctx = ctx = current_ctx;
320ae51f 990
320ae51f
JA
991 hctx = q->mq_ops->map_queue(q, ctx->cpu);
992
a57a178a
CH
993 spin_lock(&ctx->lock);
994 __blk_mq_insert_request(hctx, rq, at_head);
995 spin_unlock(&ctx->lock);
320ae51f 996
320ae51f
JA
997 if (run_queue)
998 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
999
1000 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1001}
1002
1003static void blk_mq_insert_requests(struct request_queue *q,
1004 struct blk_mq_ctx *ctx,
1005 struct list_head *list,
1006 int depth,
1007 bool from_schedule)
1008
1009{
1010 struct blk_mq_hw_ctx *hctx;
1011 struct blk_mq_ctx *current_ctx;
1012
1013 trace_block_unplug(q, depth, !from_schedule);
1014
1015 current_ctx = blk_mq_get_ctx(q);
1016
1017 if (!cpu_online(ctx->cpu))
1018 ctx = current_ctx;
1019 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1020
1021 /*
1022 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1023 * offline now
1024 */
1025 spin_lock(&ctx->lock);
1026 while (!list_empty(list)) {
1027 struct request *rq;
1028
1029 rq = list_first_entry(list, struct request, queuelist);
1030 list_del_init(&rq->queuelist);
1031 rq->mq_ctx = ctx;
72a0a36e 1032 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1033 }
1034 spin_unlock(&ctx->lock);
1035
320ae51f 1036 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1037 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1038}
1039
1040static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1041{
1042 struct request *rqa = container_of(a, struct request, queuelist);
1043 struct request *rqb = container_of(b, struct request, queuelist);
1044
1045 return !(rqa->mq_ctx < rqb->mq_ctx ||
1046 (rqa->mq_ctx == rqb->mq_ctx &&
1047 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1048}
1049
1050void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1051{
1052 struct blk_mq_ctx *this_ctx;
1053 struct request_queue *this_q;
1054 struct request *rq;
1055 LIST_HEAD(list);
1056 LIST_HEAD(ctx_list);
1057 unsigned int depth;
1058
1059 list_splice_init(&plug->mq_list, &list);
1060
1061 list_sort(NULL, &list, plug_ctx_cmp);
1062
1063 this_q = NULL;
1064 this_ctx = NULL;
1065 depth = 0;
1066
1067 while (!list_empty(&list)) {
1068 rq = list_entry_rq(list.next);
1069 list_del_init(&rq->queuelist);
1070 BUG_ON(!rq->q);
1071 if (rq->mq_ctx != this_ctx) {
1072 if (this_ctx) {
1073 blk_mq_insert_requests(this_q, this_ctx,
1074 &ctx_list, depth,
1075 from_schedule);
1076 }
1077
1078 this_ctx = rq->mq_ctx;
1079 this_q = rq->q;
1080 depth = 0;
1081 }
1082
1083 depth++;
1084 list_add_tail(&rq->queuelist, &ctx_list);
1085 }
1086
1087 /*
1088 * If 'this_ctx' is set, we know we have entries to complete
1089 * on 'ctx_list'. Do those.
1090 */
1091 if (this_ctx) {
1092 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1093 from_schedule);
1094 }
1095}
1096
1097static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1098{
1099 init_request_from_bio(rq, bio);
4b570521 1100
3ee32372 1101 if (blk_do_io_stat(rq))
4b570521 1102 blk_account_io_start(rq, 1);
320ae51f
JA
1103}
1104
274a5843
JA
1105static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1106{
1107 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1108 !blk_queue_nomerges(hctx->queue);
1109}
1110
07068d5b
JA
1111static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1112 struct blk_mq_ctx *ctx,
1113 struct request *rq, struct bio *bio)
320ae51f 1114{
274a5843 1115 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1116 blk_mq_bio_to_request(rq, bio);
1117 spin_lock(&ctx->lock);
1118insert_rq:
1119 __blk_mq_insert_request(hctx, rq, false);
1120 spin_unlock(&ctx->lock);
1121 return false;
1122 } else {
274a5843
JA
1123 struct request_queue *q = hctx->queue;
1124
07068d5b
JA
1125 spin_lock(&ctx->lock);
1126 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1127 blk_mq_bio_to_request(rq, bio);
1128 goto insert_rq;
1129 }
320ae51f 1130
07068d5b
JA
1131 spin_unlock(&ctx->lock);
1132 __blk_mq_free_request(hctx, ctx, rq);
1133 return true;
14ec77f3 1134 }
07068d5b 1135}
14ec77f3 1136
07068d5b
JA
1137struct blk_map_ctx {
1138 struct blk_mq_hw_ctx *hctx;
1139 struct blk_mq_ctx *ctx;
1140};
1141
1142static struct request *blk_mq_map_request(struct request_queue *q,
1143 struct bio *bio,
1144 struct blk_map_ctx *data)
1145{
1146 struct blk_mq_hw_ctx *hctx;
1147 struct blk_mq_ctx *ctx;
1148 struct request *rq;
1149 int rw = bio_data_dir(bio);
cb96a42c 1150 struct blk_mq_alloc_data alloc_data;
320ae51f 1151
07068d5b 1152 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1153 bio_endio(bio, -EIO);
07068d5b 1154 return NULL;
320ae51f
JA
1155 }
1156
1157 ctx = blk_mq_get_ctx(q);
1158 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1159
07068d5b 1160 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1161 rw |= REQ_SYNC;
07068d5b 1162
320ae51f 1163 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1164 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1165 hctx);
1166 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1167 if (unlikely(!rq)) {
793597a6 1168 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1169 blk_mq_put_ctx(ctx);
1170 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1171
1172 ctx = blk_mq_get_ctx(q);
320ae51f 1173 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1174 blk_mq_set_alloc_data(&alloc_data, q,
1175 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1176 rq = __blk_mq_alloc_request(&alloc_data, rw);
1177 ctx = alloc_data.ctx;
1178 hctx = alloc_data.hctx;
320ae51f
JA
1179 }
1180
1181 hctx->queued++;
07068d5b
JA
1182 data->hctx = hctx;
1183 data->ctx = ctx;
1184 return rq;
1185}
1186
1187/*
1188 * Multiple hardware queue variant. This will not use per-process plugs,
1189 * but will attempt to bypass the hctx queueing if we can go straight to
1190 * hardware for SYNC IO.
1191 */
1192static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1193{
1194 const int is_sync = rw_is_sync(bio->bi_rw);
1195 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1196 struct blk_map_ctx data;
1197 struct request *rq;
1198
1199 blk_queue_bounce(q, &bio);
1200
1201 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1202 bio_endio(bio, -EIO);
1203 return;
1204 }
1205
1206 rq = blk_mq_map_request(q, bio, &data);
1207 if (unlikely(!rq))
1208 return;
1209
1210 if (unlikely(is_flush_fua)) {
1211 blk_mq_bio_to_request(rq, bio);
1212 blk_insert_flush(rq);
1213 goto run_queue;
1214 }
1215
e167dfb5
JA
1216 /*
1217 * If the driver supports defer issued based on 'last', then
1218 * queue it up like normal since we can potentially save some
1219 * CPU this way.
1220 */
1221 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
74c45052
JA
1222 struct blk_mq_queue_data bd = {
1223 .rq = rq,
1224 .list = NULL,
1225 .last = 1
1226 };
07068d5b
JA
1227 int ret;
1228
1229 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1230
1231 /*
1232 * For OK queue, we are done. For error, kill it. Any other
1233 * error (busy), just add it to our list as we previously
1234 * would have done
1235 */
74c45052 1236 ret = q->mq_ops->queue_rq(data.hctx, &bd);
07068d5b
JA
1237 if (ret == BLK_MQ_RQ_QUEUE_OK)
1238 goto done;
1239 else {
1240 __blk_mq_requeue_request(rq);
1241
1242 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1243 rq->errors = -EIO;
c8a446ad 1244 blk_mq_end_request(rq, rq->errors);
07068d5b
JA
1245 goto done;
1246 }
1247 }
1248 }
1249
1250 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1251 /*
1252 * For a SYNC request, send it to the hardware immediately. For
1253 * an ASYNC request, just ensure that we run it later on. The
1254 * latter allows for merging opportunities and more efficient
1255 * dispatching.
1256 */
1257run_queue:
1258 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1259 }
1260done:
1261 blk_mq_put_ctx(data.ctx);
1262}
1263
1264/*
1265 * Single hardware queue variant. This will attempt to use any per-process
1266 * plug for merging and IO deferral.
1267 */
1268static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1269{
1270 const int is_sync = rw_is_sync(bio->bi_rw);
1271 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1272 unsigned int use_plug, request_count = 0;
1273 struct blk_map_ctx data;
1274 struct request *rq;
1275
1276 /*
1277 * If we have multiple hardware queues, just go directly to
1278 * one of those for sync IO.
1279 */
1280 use_plug = !is_flush_fua && !is_sync;
1281
1282 blk_queue_bounce(q, &bio);
1283
1284 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1285 bio_endio(bio, -EIO);
1286 return;
1287 }
1288
1289 if (use_plug && !blk_queue_nomerges(q) &&
1290 blk_attempt_plug_merge(q, bio, &request_count))
1291 return;
1292
1293 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1294 if (unlikely(!rq))
1295 return;
320ae51f
JA
1296
1297 if (unlikely(is_flush_fua)) {
1298 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1299 blk_insert_flush(rq);
1300 goto run_queue;
1301 }
1302
1303 /*
1304 * A task plug currently exists. Since this is completely lockless,
1305 * utilize that to temporarily store requests until the task is
1306 * either done or scheduled away.
1307 */
1308 if (use_plug) {
1309 struct blk_plug *plug = current->plug;
1310
1311 if (plug) {
1312 blk_mq_bio_to_request(rq, bio);
92f399c7 1313 if (list_empty(&plug->mq_list))
320ae51f
JA
1314 trace_block_plug(q);
1315 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1316 blk_flush_plug_list(plug, false);
1317 trace_block_plug(q);
1318 }
1319 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1320 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1321 return;
1322 }
1323 }
1324
07068d5b
JA
1325 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1326 /*
1327 * For a SYNC request, send it to the hardware immediately. For
1328 * an ASYNC request, just ensure that we run it later on. The
1329 * latter allows for merging opportunities and more efficient
1330 * dispatching.
1331 */
1332run_queue:
1333 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1334 }
1335
07068d5b 1336 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1337}
1338
1339/*
1340 * Default mapping to a software queue, since we use one per CPU.
1341 */
1342struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1343{
1344 return q->queue_hw_ctx[q->mq_map[cpu]];
1345}
1346EXPORT_SYMBOL(blk_mq_map_queue);
1347
24d2f903
CH
1348static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1349 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1350{
e9b267d9 1351 struct page *page;
320ae51f 1352
24d2f903 1353 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1354 int i;
320ae51f 1355
24d2f903
CH
1356 for (i = 0; i < tags->nr_tags; i++) {
1357 if (!tags->rqs[i])
e9b267d9 1358 continue;
24d2f903
CH
1359 set->ops->exit_request(set->driver_data, tags->rqs[i],
1360 hctx_idx, i);
a5164405 1361 tags->rqs[i] = NULL;
e9b267d9 1362 }
320ae51f 1363 }
320ae51f 1364
24d2f903
CH
1365 while (!list_empty(&tags->page_list)) {
1366 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1367 list_del_init(&page->lru);
320ae51f
JA
1368 __free_pages(page, page->private);
1369 }
1370
24d2f903 1371 kfree(tags->rqs);
320ae51f 1372
24d2f903 1373 blk_mq_free_tags(tags);
320ae51f
JA
1374}
1375
1376static size_t order_to_size(unsigned int order)
1377{
4ca08500 1378 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1379}
1380
24d2f903
CH
1381static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1382 unsigned int hctx_idx)
320ae51f 1383{
24d2f903 1384 struct blk_mq_tags *tags;
320ae51f
JA
1385 unsigned int i, j, entries_per_page, max_order = 4;
1386 size_t rq_size, left;
1387
24d2f903
CH
1388 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1389 set->numa_node);
1390 if (!tags)
1391 return NULL;
320ae51f 1392
24d2f903
CH
1393 INIT_LIST_HEAD(&tags->page_list);
1394
a5164405
JA
1395 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1396 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1397 set->numa_node);
24d2f903
CH
1398 if (!tags->rqs) {
1399 blk_mq_free_tags(tags);
1400 return NULL;
1401 }
320ae51f
JA
1402
1403 /*
1404 * rq_size is the size of the request plus driver payload, rounded
1405 * to the cacheline size
1406 */
24d2f903 1407 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1408 cache_line_size());
24d2f903 1409 left = rq_size * set->queue_depth;
320ae51f 1410
24d2f903 1411 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1412 int this_order = max_order;
1413 struct page *page;
1414 int to_do;
1415 void *p;
1416
1417 while (left < order_to_size(this_order - 1) && this_order)
1418 this_order--;
1419
1420 do {
a5164405
JA
1421 page = alloc_pages_node(set->numa_node,
1422 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1423 this_order);
320ae51f
JA
1424 if (page)
1425 break;
1426 if (!this_order--)
1427 break;
1428 if (order_to_size(this_order) < rq_size)
1429 break;
1430 } while (1);
1431
1432 if (!page)
24d2f903 1433 goto fail;
320ae51f
JA
1434
1435 page->private = this_order;
24d2f903 1436 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1437
1438 p = page_address(page);
1439 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1440 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1441 left -= to_do * rq_size;
1442 for (j = 0; j < to_do; j++) {
24d2f903 1443 tags->rqs[i] = p;
683d0e12
DH
1444 tags->rqs[i]->atomic_flags = 0;
1445 tags->rqs[i]->cmd_flags = 0;
24d2f903
CH
1446 if (set->ops->init_request) {
1447 if (set->ops->init_request(set->driver_data,
1448 tags->rqs[i], hctx_idx, i,
a5164405
JA
1449 set->numa_node)) {
1450 tags->rqs[i] = NULL;
24d2f903 1451 goto fail;
a5164405 1452 }
e9b267d9
CH
1453 }
1454
320ae51f
JA
1455 p += rq_size;
1456 i++;
1457 }
1458 }
1459
24d2f903 1460 return tags;
320ae51f 1461
24d2f903 1462fail:
24d2f903
CH
1463 blk_mq_free_rq_map(set, tags, hctx_idx);
1464 return NULL;
320ae51f
JA
1465}
1466
1429d7c9
JA
1467static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1468{
1469 kfree(bitmap->map);
1470}
1471
1472static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1473{
1474 unsigned int bpw = 8, total, num_maps, i;
1475
1476 bitmap->bits_per_word = bpw;
1477
1478 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1479 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1480 GFP_KERNEL, node);
1481 if (!bitmap->map)
1482 return -ENOMEM;
1483
1484 bitmap->map_size = num_maps;
1485
1486 total = nr_cpu_ids;
1487 for (i = 0; i < num_maps; i++) {
1488 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1489 total -= bitmap->map[i].depth;
1490 }
1491
1492 return 0;
1493}
1494
484b4061
JA
1495static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1496{
1497 struct request_queue *q = hctx->queue;
1498 struct blk_mq_ctx *ctx;
1499 LIST_HEAD(tmp);
1500
1501 /*
1502 * Move ctx entries to new CPU, if this one is going away.
1503 */
1504 ctx = __blk_mq_get_ctx(q, cpu);
1505
1506 spin_lock(&ctx->lock);
1507 if (!list_empty(&ctx->rq_list)) {
1508 list_splice_init(&ctx->rq_list, &tmp);
1509 blk_mq_hctx_clear_pending(hctx, ctx);
1510 }
1511 spin_unlock(&ctx->lock);
1512
1513 if (list_empty(&tmp))
1514 return NOTIFY_OK;
1515
1516 ctx = blk_mq_get_ctx(q);
1517 spin_lock(&ctx->lock);
1518
1519 while (!list_empty(&tmp)) {
1520 struct request *rq;
1521
1522 rq = list_first_entry(&tmp, struct request, queuelist);
1523 rq->mq_ctx = ctx;
1524 list_move_tail(&rq->queuelist, &ctx->rq_list);
1525 }
1526
1527 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1528 blk_mq_hctx_mark_pending(hctx, ctx);
1529
1530 spin_unlock(&ctx->lock);
1531
1532 blk_mq_run_hw_queue(hctx, true);
1533 blk_mq_put_ctx(ctx);
1534 return NOTIFY_OK;
1535}
1536
1537static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1538{
1539 struct request_queue *q = hctx->queue;
1540 struct blk_mq_tag_set *set = q->tag_set;
1541
1542 if (set->tags[hctx->queue_num])
1543 return NOTIFY_OK;
1544
1545 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1546 if (!set->tags[hctx->queue_num])
1547 return NOTIFY_STOP;
1548
1549 hctx->tags = set->tags[hctx->queue_num];
1550 return NOTIFY_OK;
1551}
1552
1553static int blk_mq_hctx_notify(void *data, unsigned long action,
1554 unsigned int cpu)
1555{
1556 struct blk_mq_hw_ctx *hctx = data;
1557
1558 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1559 return blk_mq_hctx_cpu_offline(hctx, cpu);
1560 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1561 return blk_mq_hctx_cpu_online(hctx, cpu);
1562
1563 return NOTIFY_OK;
1564}
1565
08e98fc6
ML
1566static void blk_mq_exit_hctx(struct request_queue *q,
1567 struct blk_mq_tag_set *set,
1568 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1569{
f70ced09
ML
1570 unsigned flush_start_tag = set->queue_depth;
1571
08e98fc6
ML
1572 blk_mq_tag_idle(hctx);
1573
f70ced09
ML
1574 if (set->ops->exit_request)
1575 set->ops->exit_request(set->driver_data,
1576 hctx->fq->flush_rq, hctx_idx,
1577 flush_start_tag + hctx_idx);
1578
08e98fc6
ML
1579 if (set->ops->exit_hctx)
1580 set->ops->exit_hctx(hctx, hctx_idx);
1581
1582 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1583 blk_free_flush_queue(hctx->fq);
08e98fc6
ML
1584 kfree(hctx->ctxs);
1585 blk_mq_free_bitmap(&hctx->ctx_map);
1586}
1587
624dbe47
ML
1588static void blk_mq_exit_hw_queues(struct request_queue *q,
1589 struct blk_mq_tag_set *set, int nr_queue)
1590{
1591 struct blk_mq_hw_ctx *hctx;
1592 unsigned int i;
1593
1594 queue_for_each_hw_ctx(q, hctx, i) {
1595 if (i == nr_queue)
1596 break;
08e98fc6 1597 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1598 }
624dbe47
ML
1599}
1600
1601static void blk_mq_free_hw_queues(struct request_queue *q,
1602 struct blk_mq_tag_set *set)
1603{
1604 struct blk_mq_hw_ctx *hctx;
1605 unsigned int i;
1606
1607 queue_for_each_hw_ctx(q, hctx, i) {
1608 free_cpumask_var(hctx->cpumask);
cdef54dd 1609 kfree(hctx);
624dbe47
ML
1610 }
1611}
1612
08e98fc6
ML
1613static int blk_mq_init_hctx(struct request_queue *q,
1614 struct blk_mq_tag_set *set,
1615 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1616{
08e98fc6 1617 int node;
f70ced09 1618 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1619
1620 node = hctx->numa_node;
1621 if (node == NUMA_NO_NODE)
1622 node = hctx->numa_node = set->numa_node;
1623
1624 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1625 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1626 spin_lock_init(&hctx->lock);
1627 INIT_LIST_HEAD(&hctx->dispatch);
1628 hctx->queue = q;
1629 hctx->queue_num = hctx_idx;
1630 hctx->flags = set->flags;
08e98fc6
ML
1631
1632 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1633 blk_mq_hctx_notify, hctx);
1634 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1635
1636 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1637
1638 /*
08e98fc6
ML
1639 * Allocate space for all possible cpus to avoid allocation at
1640 * runtime
320ae51f 1641 */
08e98fc6
ML
1642 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1643 GFP_KERNEL, node);
1644 if (!hctx->ctxs)
1645 goto unregister_cpu_notifier;
320ae51f 1646
08e98fc6
ML
1647 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1648 goto free_ctxs;
320ae51f 1649
08e98fc6 1650 hctx->nr_ctx = 0;
320ae51f 1651
08e98fc6
ML
1652 if (set->ops->init_hctx &&
1653 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1654 goto free_bitmap;
320ae51f 1655
f70ced09
ML
1656 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1657 if (!hctx->fq)
1658 goto exit_hctx;
320ae51f 1659
f70ced09
ML
1660 if (set->ops->init_request &&
1661 set->ops->init_request(set->driver_data,
1662 hctx->fq->flush_rq, hctx_idx,
1663 flush_start_tag + hctx_idx, node))
1664 goto free_fq;
320ae51f 1665
08e98fc6 1666 return 0;
320ae51f 1667
f70ced09
ML
1668 free_fq:
1669 kfree(hctx->fq);
1670 exit_hctx:
1671 if (set->ops->exit_hctx)
1672 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6
ML
1673 free_bitmap:
1674 blk_mq_free_bitmap(&hctx->ctx_map);
1675 free_ctxs:
1676 kfree(hctx->ctxs);
1677 unregister_cpu_notifier:
1678 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1679
08e98fc6
ML
1680 return -1;
1681}
320ae51f 1682
08e98fc6
ML
1683static int blk_mq_init_hw_queues(struct request_queue *q,
1684 struct blk_mq_tag_set *set)
1685{
1686 struct blk_mq_hw_ctx *hctx;
1687 unsigned int i;
320ae51f 1688
08e98fc6
ML
1689 /*
1690 * Initialize hardware queues
1691 */
1692 queue_for_each_hw_ctx(q, hctx, i) {
1693 if (blk_mq_init_hctx(q, set, hctx, i))
320ae51f
JA
1694 break;
1695 }
1696
1697 if (i == q->nr_hw_queues)
1698 return 0;
1699
1700 /*
1701 * Init failed
1702 */
624dbe47 1703 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1704
1705 return 1;
1706}
1707
1708static void blk_mq_init_cpu_queues(struct request_queue *q,
1709 unsigned int nr_hw_queues)
1710{
1711 unsigned int i;
1712
1713 for_each_possible_cpu(i) {
1714 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1715 struct blk_mq_hw_ctx *hctx;
1716
1717 memset(__ctx, 0, sizeof(*__ctx));
1718 __ctx->cpu = i;
1719 spin_lock_init(&__ctx->lock);
1720 INIT_LIST_HEAD(&__ctx->rq_list);
1721 __ctx->queue = q;
1722
1723 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1724 if (!cpu_online(i))
1725 continue;
1726
e4043dcf
JA
1727 hctx = q->mq_ops->map_queue(q, i);
1728 cpumask_set_cpu(i, hctx->cpumask);
1729 hctx->nr_ctx++;
1730
320ae51f
JA
1731 /*
1732 * Set local node, IFF we have more than one hw queue. If
1733 * not, we remain on the home node of the device
1734 */
1735 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1736 hctx->numa_node = cpu_to_node(i);
1737 }
1738}
1739
1740static void blk_mq_map_swqueue(struct request_queue *q)
1741{
1742 unsigned int i;
1743 struct blk_mq_hw_ctx *hctx;
1744 struct blk_mq_ctx *ctx;
1745
1746 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1747 cpumask_clear(hctx->cpumask);
320ae51f
JA
1748 hctx->nr_ctx = 0;
1749 }
1750
1751 /*
1752 * Map software to hardware queues
1753 */
1754 queue_for_each_ctx(q, ctx, i) {
1755 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1756 if (!cpu_online(i))
1757 continue;
1758
320ae51f 1759 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1760 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1761 ctx->index_hw = hctx->nr_ctx;
1762 hctx->ctxs[hctx->nr_ctx++] = ctx;
1763 }
506e931f
JA
1764
1765 queue_for_each_hw_ctx(q, hctx, i) {
484b4061 1766 /*
a68aafa5
JA
1767 * If no software queues are mapped to this hardware queue,
1768 * disable it and free the request entries.
484b4061
JA
1769 */
1770 if (!hctx->nr_ctx) {
1771 struct blk_mq_tag_set *set = q->tag_set;
1772
1773 if (set->tags[i]) {
1774 blk_mq_free_rq_map(set, set->tags[i], i);
1775 set->tags[i] = NULL;
1776 hctx->tags = NULL;
1777 }
1778 continue;
1779 }
1780
1781 /*
1782 * Initialize batch roundrobin counts
1783 */
506e931f
JA
1784 hctx->next_cpu = cpumask_first(hctx->cpumask);
1785 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1786 }
320ae51f
JA
1787}
1788
0d2602ca
JA
1789static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1790{
1791 struct blk_mq_hw_ctx *hctx;
1792 struct request_queue *q;
1793 bool shared;
1794 int i;
1795
1796 if (set->tag_list.next == set->tag_list.prev)
1797 shared = false;
1798 else
1799 shared = true;
1800
1801 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1802 blk_mq_freeze_queue(q);
1803
1804 queue_for_each_hw_ctx(q, hctx, i) {
1805 if (shared)
1806 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1807 else
1808 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1809 }
1810 blk_mq_unfreeze_queue(q);
1811 }
1812}
1813
1814static void blk_mq_del_queue_tag_set(struct request_queue *q)
1815{
1816 struct blk_mq_tag_set *set = q->tag_set;
1817
0d2602ca
JA
1818 mutex_lock(&set->tag_list_lock);
1819 list_del_init(&q->tag_set_list);
1820 blk_mq_update_tag_set_depth(set);
1821 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1822}
1823
1824static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1825 struct request_queue *q)
1826{
1827 q->tag_set = set;
1828
1829 mutex_lock(&set->tag_list_lock);
1830 list_add_tail(&q->tag_set_list, &set->tag_list);
1831 blk_mq_update_tag_set_depth(set);
1832 mutex_unlock(&set->tag_list_lock);
1833}
1834
24d2f903 1835struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1836{
1837 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1838 struct blk_mq_ctx __percpu *ctx;
320ae51f 1839 struct request_queue *q;
f14bbe77 1840 unsigned int *map;
320ae51f
JA
1841 int i;
1842
320ae51f
JA
1843 ctx = alloc_percpu(struct blk_mq_ctx);
1844 if (!ctx)
1845 return ERR_PTR(-ENOMEM);
1846
24d2f903
CH
1847 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1848 set->numa_node);
320ae51f
JA
1849
1850 if (!hctxs)
1851 goto err_percpu;
1852
f14bbe77
JA
1853 map = blk_mq_make_queue_map(set);
1854 if (!map)
1855 goto err_map;
1856
24d2f903 1857 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1858 int node = blk_mq_hw_queue_to_node(map, i);
1859
cdef54dd
CH
1860 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1861 GFP_KERNEL, node);
320ae51f
JA
1862 if (!hctxs[i])
1863 goto err_hctxs;
1864
a86073e4
JA
1865 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1866 node))
e4043dcf
JA
1867 goto err_hctxs;
1868
0d2602ca 1869 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1870 hctxs[i]->numa_node = node;
320ae51f
JA
1871 hctxs[i]->queue_num = i;
1872 }
1873
24d2f903 1874 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1875 if (!q)
1876 goto err_hctxs;
1877
17497acb
TH
1878 /*
1879 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1880 * See blk_register_queue() for details.
1881 */
a34375ef 1882 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
17497acb 1883 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
3d2936f4
ML
1884 goto err_map;
1885
320ae51f
JA
1886 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1887 blk_queue_rq_timeout(q, 30000);
1888
1889 q->nr_queues = nr_cpu_ids;
24d2f903 1890 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1891 q->mq_map = map;
320ae51f
JA
1892
1893 q->queue_ctx = ctx;
1894 q->queue_hw_ctx = hctxs;
1895
24d2f903 1896 q->mq_ops = set->ops;
94eddfbe 1897 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1898
05f1dd53
JA
1899 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1900 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1901
1be036e9
CH
1902 q->sg_reserved_size = INT_MAX;
1903
6fca6a61
CH
1904 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1905 INIT_LIST_HEAD(&q->requeue_list);
1906 spin_lock_init(&q->requeue_lock);
1907
07068d5b
JA
1908 if (q->nr_hw_queues > 1)
1909 blk_queue_make_request(q, blk_mq_make_request);
1910 else
1911 blk_queue_make_request(q, blk_sq_make_request);
1912
24d2f903
CH
1913 if (set->timeout)
1914 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1915
eba71768
JA
1916 /*
1917 * Do this after blk_queue_make_request() overrides it...
1918 */
1919 q->nr_requests = set->queue_depth;
1920
24d2f903
CH
1921 if (set->ops->complete)
1922 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1923
24d2f903 1924 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1925
24d2f903 1926 if (blk_mq_init_hw_queues(q, set))
1bcb1ead 1927 goto err_hw;
18741986 1928
320ae51f
JA
1929 mutex_lock(&all_q_mutex);
1930 list_add_tail(&q->all_q_node, &all_q_list);
1931 mutex_unlock(&all_q_mutex);
1932
0d2602ca
JA
1933 blk_mq_add_queue_tag_set(set, q);
1934
484b4061
JA
1935 blk_mq_map_swqueue(q);
1936
320ae51f 1937 return q;
18741986 1938
320ae51f 1939err_hw:
320ae51f
JA
1940 blk_cleanup_queue(q);
1941err_hctxs:
f14bbe77 1942 kfree(map);
24d2f903 1943 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1944 if (!hctxs[i])
1945 break;
e4043dcf 1946 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1947 kfree(hctxs[i]);
320ae51f 1948 }
f14bbe77 1949err_map:
320ae51f
JA
1950 kfree(hctxs);
1951err_percpu:
1952 free_percpu(ctx);
1953 return ERR_PTR(-ENOMEM);
1954}
1955EXPORT_SYMBOL(blk_mq_init_queue);
1956
1957void blk_mq_free_queue(struct request_queue *q)
1958{
624dbe47 1959 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1960
0d2602ca
JA
1961 blk_mq_del_queue_tag_set(q);
1962
624dbe47
ML
1963 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1964 blk_mq_free_hw_queues(q, set);
320ae51f 1965
add703fd 1966 percpu_ref_exit(&q->mq_usage_counter);
3d2936f4 1967
320ae51f
JA
1968 free_percpu(q->queue_ctx);
1969 kfree(q->queue_hw_ctx);
1970 kfree(q->mq_map);
1971
1972 q->queue_ctx = NULL;
1973 q->queue_hw_ctx = NULL;
1974 q->mq_map = NULL;
1975
1976 mutex_lock(&all_q_mutex);
1977 list_del_init(&q->all_q_node);
1978 mutex_unlock(&all_q_mutex);
1979}
320ae51f
JA
1980
1981/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1982static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f 1983{
f3af020b 1984 WARN_ON_ONCE(!q->mq_freeze_depth);
320ae51f 1985
67aec14c
JA
1986 blk_mq_sysfs_unregister(q);
1987
320ae51f
JA
1988 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1989
1990 /*
1991 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1992 * we should change hctx numa_node according to new topology (this
1993 * involves free and re-allocate memory, worthy doing?)
1994 */
1995
1996 blk_mq_map_swqueue(q);
1997
67aec14c 1998 blk_mq_sysfs_register(q);
320ae51f
JA
1999}
2000
f618ef7c
PG
2001static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2002 unsigned long action, void *hcpu)
320ae51f
JA
2003{
2004 struct request_queue *q;
2005
2006 /*
9fccfed8
JA
2007 * Before new mappings are established, hotadded cpu might already
2008 * start handling requests. This doesn't break anything as we map
2009 * offline CPUs to first hardware queue. We will re-init the queue
2010 * below to get optimal settings.
320ae51f
JA
2011 */
2012 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2013 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2014 return NOTIFY_OK;
2015
2016 mutex_lock(&all_q_mutex);
f3af020b
TH
2017
2018 /*
2019 * We need to freeze and reinit all existing queues. Freezing
2020 * involves synchronous wait for an RCU grace period and doing it
2021 * one by one may take a long time. Start freezing all queues in
2022 * one swoop and then wait for the completions so that freezing can
2023 * take place in parallel.
2024 */
2025 list_for_each_entry(q, &all_q_list, all_q_node)
2026 blk_mq_freeze_queue_start(q);
2027 list_for_each_entry(q, &all_q_list, all_q_node)
2028 blk_mq_freeze_queue_wait(q);
2029
320ae51f
JA
2030 list_for_each_entry(q, &all_q_list, all_q_node)
2031 blk_mq_queue_reinit(q);
f3af020b
TH
2032
2033 list_for_each_entry(q, &all_q_list, all_q_node)
2034 blk_mq_unfreeze_queue(q);
2035
320ae51f
JA
2036 mutex_unlock(&all_q_mutex);
2037 return NOTIFY_OK;
2038}
2039
a5164405
JA
2040static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2041{
2042 int i;
2043
2044 for (i = 0; i < set->nr_hw_queues; i++) {
2045 set->tags[i] = blk_mq_init_rq_map(set, i);
2046 if (!set->tags[i])
2047 goto out_unwind;
2048 }
2049
2050 return 0;
2051
2052out_unwind:
2053 while (--i >= 0)
2054 blk_mq_free_rq_map(set, set->tags[i], i);
2055
a5164405
JA
2056 return -ENOMEM;
2057}
2058
2059/*
2060 * Allocate the request maps associated with this tag_set. Note that this
2061 * may reduce the depth asked for, if memory is tight. set->queue_depth
2062 * will be updated to reflect the allocated depth.
2063 */
2064static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2065{
2066 unsigned int depth;
2067 int err;
2068
2069 depth = set->queue_depth;
2070 do {
2071 err = __blk_mq_alloc_rq_maps(set);
2072 if (!err)
2073 break;
2074
2075 set->queue_depth >>= 1;
2076 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2077 err = -ENOMEM;
2078 break;
2079 }
2080 } while (set->queue_depth);
2081
2082 if (!set->queue_depth || err) {
2083 pr_err("blk-mq: failed to allocate request map\n");
2084 return -ENOMEM;
2085 }
2086
2087 if (depth != set->queue_depth)
2088 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2089 depth, set->queue_depth);
2090
2091 return 0;
2092}
2093
a4391c64
JA
2094/*
2095 * Alloc a tag set to be associated with one or more request queues.
2096 * May fail with EINVAL for various error conditions. May adjust the
2097 * requested depth down, if if it too large. In that case, the set
2098 * value will be stored in set->queue_depth.
2099 */
24d2f903
CH
2100int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2101{
205fb5f5
BVA
2102 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2103
24d2f903
CH
2104 if (!set->nr_hw_queues)
2105 return -EINVAL;
a4391c64 2106 if (!set->queue_depth)
24d2f903
CH
2107 return -EINVAL;
2108 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2109 return -EINVAL;
2110
cdef54dd 2111 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2112 return -EINVAL;
2113
a4391c64
JA
2114 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2115 pr_info("blk-mq: reduced tag depth to %u\n",
2116 BLK_MQ_MAX_DEPTH);
2117 set->queue_depth = BLK_MQ_MAX_DEPTH;
2118 }
24d2f903 2119
6637fadf
SL
2120 /*
2121 * If a crashdump is active, then we are potentially in a very
2122 * memory constrained environment. Limit us to 1 queue and
2123 * 64 tags to prevent using too much memory.
2124 */
2125 if (is_kdump_kernel()) {
2126 set->nr_hw_queues = 1;
2127 set->queue_depth = min(64U, set->queue_depth);
2128 }
2129
48479005
ML
2130 set->tags = kmalloc_node(set->nr_hw_queues *
2131 sizeof(struct blk_mq_tags *),
24d2f903
CH
2132 GFP_KERNEL, set->numa_node);
2133 if (!set->tags)
a5164405 2134 return -ENOMEM;
24d2f903 2135
a5164405
JA
2136 if (blk_mq_alloc_rq_maps(set))
2137 goto enomem;
24d2f903 2138
0d2602ca
JA
2139 mutex_init(&set->tag_list_lock);
2140 INIT_LIST_HEAD(&set->tag_list);
2141
24d2f903 2142 return 0;
a5164405 2143enomem:
5676e7b6
RE
2144 kfree(set->tags);
2145 set->tags = NULL;
24d2f903
CH
2146 return -ENOMEM;
2147}
2148EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2149
2150void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2151{
2152 int i;
2153
484b4061
JA
2154 for (i = 0; i < set->nr_hw_queues; i++) {
2155 if (set->tags[i])
2156 blk_mq_free_rq_map(set, set->tags[i], i);
2157 }
2158
981bd189 2159 kfree(set->tags);
5676e7b6 2160 set->tags = NULL;
24d2f903
CH
2161}
2162EXPORT_SYMBOL(blk_mq_free_tag_set);
2163
e3a2b3f9
JA
2164int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2165{
2166 struct blk_mq_tag_set *set = q->tag_set;
2167 struct blk_mq_hw_ctx *hctx;
2168 int i, ret;
2169
2170 if (!set || nr > set->queue_depth)
2171 return -EINVAL;
2172
2173 ret = 0;
2174 queue_for_each_hw_ctx(q, hctx, i) {
2175 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2176 if (ret)
2177 break;
2178 }
2179
2180 if (!ret)
2181 q->nr_requests = nr;
2182
2183 return ret;
2184}
2185
676141e4
JA
2186void blk_mq_disable_hotplug(void)
2187{
2188 mutex_lock(&all_q_mutex);
2189}
2190
2191void blk_mq_enable_hotplug(void)
2192{
2193 mutex_unlock(&all_q_mutex);
2194}
2195
320ae51f
JA
2196static int __init blk_mq_init(void)
2197{
320ae51f
JA
2198 blk_mq_cpu_init();
2199
add703fd 2200 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2201
2202 return 0;
2203}
2204subsys_initcall(blk_mq_init);