blk-mq: fix race with timeouts and requeue events
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64}
65
66/*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71{
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74}
75
081241e5
CH
76static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
77 gfp_t gfp, bool reserved)
320ae51f
JA
78{
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
24d2f903 84 rq = hctx->tags->rqs[tag];
70ab0b2d 85 blk_rq_init(hctx->queue, rq);
320ae51f
JA
86 rq->tag = tag;
87
88 return rq;
89 }
90
91 return NULL;
92}
93
94static int blk_mq_queue_enter(struct request_queue *q)
95{
96 int ret;
97
98 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
99 smp_wmb();
100 /* we have problems to freeze the queue if it's initializing */
101 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
102 return 0;
103
104 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
105
106 spin_lock_irq(q->queue_lock);
107 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
108 !blk_queue_bypass(q) || blk_queue_dying(q),
109 *q->queue_lock);
320ae51f 110 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 111 if (!ret && !blk_queue_dying(q))
320ae51f 112 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
113 else if (blk_queue_dying(q))
114 ret = -ENODEV;
320ae51f
JA
115 spin_unlock_irq(q->queue_lock);
116
117 return ret;
118}
119
120static void blk_mq_queue_exit(struct request_queue *q)
121{
122 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
123}
124
43a5e4e2
ML
125static void __blk_mq_drain_queue(struct request_queue *q)
126{
127 while (true) {
128 s64 count;
129
130 spin_lock_irq(q->queue_lock);
131 count = percpu_counter_sum(&q->mq_usage_counter);
132 spin_unlock_irq(q->queue_lock);
133
134 if (count == 0)
135 break;
136 blk_mq_run_queues(q, false);
137 msleep(10);
138 }
139}
140
320ae51f
JA
141/*
142 * Guarantee no request is in use, so we can change any data structure of
143 * the queue afterward.
144 */
145static void blk_mq_freeze_queue(struct request_queue *q)
146{
147 bool drain;
148
149 spin_lock_irq(q->queue_lock);
150 drain = !q->bypass_depth++;
151 queue_flag_set(QUEUE_FLAG_BYPASS, q);
152 spin_unlock_irq(q->queue_lock);
153
43a5e4e2
ML
154 if (drain)
155 __blk_mq_drain_queue(q);
156}
320ae51f 157
43a5e4e2
ML
158void blk_mq_drain_queue(struct request_queue *q)
159{
160 __blk_mq_drain_queue(q);
320ae51f
JA
161}
162
163static void blk_mq_unfreeze_queue(struct request_queue *q)
164{
165 bool wake = false;
166
167 spin_lock_irq(q->queue_lock);
168 if (!--q->bypass_depth) {
169 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
170 wake = true;
171 }
172 WARN_ON_ONCE(q->bypass_depth < 0);
173 spin_unlock_irq(q->queue_lock);
174 if (wake)
175 wake_up_all(&q->mq_freeze_wq);
176}
177
178bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
179{
180 return blk_mq_has_free_tags(hctx->tags);
181}
182EXPORT_SYMBOL(blk_mq_can_queue);
183
94eddfbe
JA
184static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
185 struct request *rq, unsigned int rw_flags)
320ae51f 186{
94eddfbe
JA
187 if (blk_queue_io_stat(q))
188 rw_flags |= REQ_IO_STAT;
189
320ae51f
JA
190 rq->mq_ctx = ctx;
191 rq->cmd_flags = rw_flags;
0fec08b4
ML
192 rq->start_time = jiffies;
193 set_start_time_ns(rq);
320ae51f
JA
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195}
196
320ae51f
JA
197static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
198 int rw, gfp_t gfp,
199 bool reserved)
200{
201 struct request *rq;
202
203 do {
204 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
205 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
206
18741986 207 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
320ae51f 208 if (rq) {
94eddfbe 209 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 210 break;
959a35f1 211 }
320ae51f 212
e4043dcf
JA
213 if (gfp & __GFP_WAIT) {
214 __blk_mq_run_hw_queue(hctx);
215 blk_mq_put_ctx(ctx);
216 } else {
217 blk_mq_put_ctx(ctx);
959a35f1 218 break;
e4043dcf 219 }
959a35f1 220
320ae51f
JA
221 blk_mq_wait_for_tags(hctx->tags);
222 } while (1);
223
224 return rq;
225}
226
18741986 227struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
320ae51f
JA
228{
229 struct request *rq;
230
231 if (blk_mq_queue_enter(q))
232 return NULL;
233
18741986 234 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
959a35f1
JM
235 if (rq)
236 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
237 return rq;
238}
239
240struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
241 gfp_t gfp)
242{
243 struct request *rq;
244
245 if (blk_mq_queue_enter(q))
246 return NULL;
247
248 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
249 if (rq)
250 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
251 return rq;
252}
253EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
254
320ae51f
JA
255static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
256 struct blk_mq_ctx *ctx, struct request *rq)
257{
258 const int tag = rq->tag;
259 struct request_queue *q = rq->q;
260
320ae51f 261 blk_mq_put_tag(hctx->tags, tag);
320ae51f
JA
262 blk_mq_queue_exit(q);
263}
264
265void blk_mq_free_request(struct request *rq)
266{
267 struct blk_mq_ctx *ctx = rq->mq_ctx;
268 struct blk_mq_hw_ctx *hctx;
269 struct request_queue *q = rq->q;
270
271 ctx->rq_completed[rq_is_sync(rq)]++;
272
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 __blk_mq_free_request(hctx, ctx, rq);
275}
276
8727af4b
CH
277/*
278 * Clone all relevant state from a request that has been put on hold in
279 * the flush state machine into the preallocated flush request that hangs
280 * off the request queue.
281 *
282 * For a driver the flush request should be invisible, that's why we are
283 * impersonating the original request here.
284 */
285void blk_mq_clone_flush_request(struct request *flush_rq,
286 struct request *orig_rq)
287{
288 struct blk_mq_hw_ctx *hctx =
289 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
290
291 flush_rq->mq_ctx = orig_rq->mq_ctx;
292 flush_rq->tag = orig_rq->tag;
293 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
294 hctx->cmd_size);
295}
296
63151a44 297inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 298{
0d11e6ac
ML
299 blk_account_io_done(rq);
300
91b63639 301 if (rq->end_io) {
320ae51f 302 rq->end_io(rq, error);
91b63639
CH
303 } else {
304 if (unlikely(blk_bidi_rq(rq)))
305 blk_mq_free_request(rq->next_rq);
320ae51f 306 blk_mq_free_request(rq);
91b63639 307 }
320ae51f 308}
63151a44
CH
309EXPORT_SYMBOL(__blk_mq_end_io);
310
311void blk_mq_end_io(struct request *rq, int error)
312{
313 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
314 BUG();
315 __blk_mq_end_io(rq, error);
316}
317EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 318
30a91cb4 319static void __blk_mq_complete_request_remote(void *data)
320ae51f 320{
3d6efbf6 321 struct request *rq = data;
320ae51f 322
30a91cb4 323 rq->q->softirq_done_fn(rq);
320ae51f 324}
320ae51f 325
30a91cb4 326void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
327{
328 struct blk_mq_ctx *ctx = rq->mq_ctx;
329 int cpu;
330
30a91cb4
CH
331 if (!ctx->ipi_redirect) {
332 rq->q->softirq_done_fn(rq);
333 return;
334 }
320ae51f
JA
335
336 cpu = get_cpu();
3d6efbf6 337 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
30a91cb4 338 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
339 rq->csd.info = rq;
340 rq->csd.flags = 0;
c46fff2a 341 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 342 } else {
30a91cb4 343 rq->q->softirq_done_fn(rq);
3d6efbf6 344 }
320ae51f
JA
345 put_cpu();
346}
30a91cb4
CH
347
348/**
349 * blk_mq_complete_request - end I/O on a request
350 * @rq: the request being processed
351 *
352 * Description:
353 * Ends all I/O on a request. It does not handle partial completions.
354 * The actual completion happens out-of-order, through a IPI handler.
355 **/
356void blk_mq_complete_request(struct request *rq)
357{
358 if (unlikely(blk_should_fake_timeout(rq->q)))
359 return;
360 if (!blk_mark_rq_complete(rq))
361 __blk_mq_complete_request(rq);
362}
363EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 364
49f5baa5 365static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
366{
367 struct request_queue *q = rq->q;
368
369 trace_block_rq_issue(q, rq);
370
742ee69b 371 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
372 if (unlikely(blk_bidi_rq(rq)))
373 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 374
320ae51f
JA
375 /*
376 * Just mark start time and set the started bit. Due to memory
377 * ordering, we know we'll see the correct deadline as long as
378 * REQ_ATOMIC_STARTED is seen.
379 */
380 rq->deadline = jiffies + q->rq_timeout;
87ee7b11
JA
381
382 /*
383 * Mark us as started and clear complete. Complete might have been
384 * set if requeue raced with timeout, which then marked it as
385 * complete. So be sure to clear complete again when we start
386 * the request, otherwise we'll ignore the completion event.
387 */
320ae51f 388 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
87ee7b11 389 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
390
391 if (q->dma_drain_size && blk_rq_bytes(rq)) {
392 /*
393 * Make sure space for the drain appears. We know we can do
394 * this because max_hw_segments has been adjusted to be one
395 * fewer than the device can handle.
396 */
397 rq->nr_phys_segments++;
398 }
399
400 /*
401 * Flag the last request in the series so that drivers know when IO
402 * should be kicked off, if they don't do it on a per-request basis.
403 *
404 * Note: the flag isn't the only condition drivers should do kick off.
405 * If drive is busy, the last request might not have the bit set.
406 */
407 if (last)
408 rq->cmd_flags |= REQ_END;
320ae51f
JA
409}
410
ed0791b2 411static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
412{
413 struct request_queue *q = rq->q;
414
415 trace_block_rq_requeue(q, rq);
416 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
417
418 rq->cmd_flags &= ~REQ_END;
419
420 if (q->dma_drain_size && blk_rq_bytes(rq))
421 rq->nr_phys_segments--;
320ae51f
JA
422}
423
ed0791b2
CH
424void blk_mq_requeue_request(struct request *rq)
425{
426 struct request_queue *q = rq->q;
427
428 __blk_mq_requeue_request(rq);
429 blk_clear_rq_complete(rq);
430
431 trace_block_rq_requeue(q, rq);
432
433 BUG_ON(blk_queued_rq(rq));
434 blk_mq_insert_request(rq, true, true, false);
435}
436EXPORT_SYMBOL(blk_mq_requeue_request);
437
24d2f903
CH
438struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
439{
440 return tags->rqs[tag];
441}
442EXPORT_SYMBOL(blk_mq_tag_to_rq);
443
320ae51f
JA
444struct blk_mq_timeout_data {
445 struct blk_mq_hw_ctx *hctx;
446 unsigned long *next;
447 unsigned int *next_set;
448};
449
450static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
451{
452 struct blk_mq_timeout_data *data = __data;
453 struct blk_mq_hw_ctx *hctx = data->hctx;
454 unsigned int tag;
455
456 /* It may not be in flight yet (this is where
457 * the REQ_ATOMIC_STARTED flag comes in). The requests are
458 * statically allocated, so we know it's always safe to access the
459 * memory associated with a bit offset into ->rqs[].
460 */
461 tag = 0;
462 do {
463 struct request *rq;
464
24d2f903
CH
465 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
466 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
467 break;
468
24d2f903
CH
469 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
470 if (rq->q != hctx->queue)
471 continue;
320ae51f
JA
472 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
473 continue;
474
475 blk_rq_check_expired(rq, data->next, data->next_set);
476 } while (1);
477}
478
479static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
480 unsigned long *next,
481 unsigned int *next_set)
482{
483 struct blk_mq_timeout_data data = {
484 .hctx = hctx,
485 .next = next,
486 .next_set = next_set,
487 };
488
489 /*
490 * Ask the tagging code to iterate busy requests, so we can
491 * check them for timeout.
492 */
493 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
494}
495
87ee7b11
JA
496static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
497{
498 struct request_queue *q = rq->q;
499
500 /*
501 * We know that complete is set at this point. If STARTED isn't set
502 * anymore, then the request isn't active and the "timeout" should
503 * just be ignored. This can happen due to the bitflag ordering.
504 * Timeout first checks if STARTED is set, and if it is, assumes
505 * the request is active. But if we race with completion, then
506 * we both flags will get cleared. So check here again, and ignore
507 * a timeout event with a request that isn't active.
508 */
509 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
510 return BLK_EH_NOT_HANDLED;
511
512 if (!q->mq_ops->timeout)
513 return BLK_EH_RESET_TIMER;
514
515 return q->mq_ops->timeout(rq);
516}
517
320ae51f
JA
518static void blk_mq_rq_timer(unsigned long data)
519{
520 struct request_queue *q = (struct request_queue *) data;
521 struct blk_mq_hw_ctx *hctx;
522 unsigned long next = 0;
523 int i, next_set = 0;
524
525 queue_for_each_hw_ctx(q, hctx, i)
526 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
527
528 if (next_set)
529 mod_timer(&q->timeout, round_jiffies_up(next));
530}
531
532/*
533 * Reverse check our software queue for entries that we could potentially
534 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
535 * too much time checking for merges.
536 */
537static bool blk_mq_attempt_merge(struct request_queue *q,
538 struct blk_mq_ctx *ctx, struct bio *bio)
539{
540 struct request *rq;
541 int checked = 8;
542
543 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
544 int el_ret;
545
546 if (!checked--)
547 break;
548
549 if (!blk_rq_merge_ok(rq, bio))
550 continue;
551
552 el_ret = blk_try_merge(rq, bio);
553 if (el_ret == ELEVATOR_BACK_MERGE) {
554 if (bio_attempt_back_merge(q, rq, bio)) {
555 ctx->rq_merged++;
556 return true;
557 }
558 break;
559 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
560 if (bio_attempt_front_merge(q, rq, bio)) {
561 ctx->rq_merged++;
562 return true;
563 }
564 break;
565 }
566 }
567
568 return false;
569}
570
320ae51f
JA
571/*
572 * Run this hardware queue, pulling any software queues mapped to it in.
573 * Note that this function currently has various problems around ordering
574 * of IO. In particular, we'd like FIFO behaviour on handling existing
575 * items on the hctx->dispatch list. Ignore that for now.
576 */
577static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
578{
579 struct request_queue *q = hctx->queue;
580 struct blk_mq_ctx *ctx;
581 struct request *rq;
582 LIST_HEAD(rq_list);
583 int bit, queued;
584
fd1270d5 585 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 586
5d12f905 587 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
588 return;
589
590 hctx->run++;
591
592 /*
593 * Touch any software queue that has pending entries.
594 */
595 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
596 clear_bit(bit, hctx->ctx_map);
597 ctx = hctx->ctxs[bit];
598 BUG_ON(bit != ctx->index_hw);
599
600 spin_lock(&ctx->lock);
601 list_splice_tail_init(&ctx->rq_list, &rq_list);
602 spin_unlock(&ctx->lock);
603 }
604
605 /*
606 * If we have previous entries on our dispatch list, grab them
607 * and stuff them at the front for more fair dispatch.
608 */
609 if (!list_empty_careful(&hctx->dispatch)) {
610 spin_lock(&hctx->lock);
611 if (!list_empty(&hctx->dispatch))
612 list_splice_init(&hctx->dispatch, &rq_list);
613 spin_unlock(&hctx->lock);
614 }
615
616 /*
617 * Delete and return all entries from our dispatch list
618 */
619 queued = 0;
620
621 /*
622 * Now process all the entries, sending them to the driver.
623 */
624 while (!list_empty(&rq_list)) {
625 int ret;
626
627 rq = list_first_entry(&rq_list, struct request, queuelist);
628 list_del_init(&rq->queuelist);
320ae51f 629
49f5baa5 630 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
631
632 ret = q->mq_ops->queue_rq(hctx, rq);
633 switch (ret) {
634 case BLK_MQ_RQ_QUEUE_OK:
635 queued++;
636 continue;
637 case BLK_MQ_RQ_QUEUE_BUSY:
638 /*
639 * FIXME: we should have a mechanism to stop the queue
640 * like blk_stop_queue, otherwise we will waste cpu
641 * time
642 */
643 list_add(&rq->queuelist, &rq_list);
ed0791b2 644 __blk_mq_requeue_request(rq);
320ae51f
JA
645 break;
646 default:
647 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 648 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 649 rq->errors = -EIO;
320ae51f
JA
650 blk_mq_end_io(rq, rq->errors);
651 break;
652 }
653
654 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
655 break;
656 }
657
658 if (!queued)
659 hctx->dispatched[0]++;
660 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
661 hctx->dispatched[ilog2(queued) + 1]++;
662
663 /*
664 * Any items that need requeuing? Stuff them into hctx->dispatch,
665 * that is where we will continue on next queue run.
666 */
667 if (!list_empty(&rq_list)) {
668 spin_lock(&hctx->lock);
669 list_splice(&rq_list, &hctx->dispatch);
670 spin_unlock(&hctx->lock);
671 }
672}
673
674void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
675{
5d12f905 676 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
677 return;
678
e4043dcf 679 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 680 __blk_mq_run_hw_queue(hctx);
e4043dcf 681 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 682 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
683 else {
684 unsigned int cpu;
685
686 /*
687 * It'd be great if the workqueue API had a way to pass
688 * in a mask and had some smarts for more clever placement
689 * than the first CPU. Or we could round-robin here. For now,
690 * just queue on the first CPU.
691 */
692 cpu = cpumask_first(hctx->cpumask);
70f4db63 693 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 694 }
320ae51f
JA
695}
696
697void blk_mq_run_queues(struct request_queue *q, bool async)
698{
699 struct blk_mq_hw_ctx *hctx;
700 int i;
701
702 queue_for_each_hw_ctx(q, hctx, i) {
703 if ((!blk_mq_hctx_has_pending(hctx) &&
704 list_empty_careful(&hctx->dispatch)) ||
5d12f905 705 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
706 continue;
707
e4043dcf 708 preempt_disable();
320ae51f 709 blk_mq_run_hw_queue(hctx, async);
e4043dcf 710 preempt_enable();
320ae51f
JA
711 }
712}
713EXPORT_SYMBOL(blk_mq_run_queues);
714
715void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
716{
70f4db63
CH
717 cancel_delayed_work(&hctx->run_work);
718 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
719 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
720}
721EXPORT_SYMBOL(blk_mq_stop_hw_queue);
722
280d45f6
CH
723void blk_mq_stop_hw_queues(struct request_queue *q)
724{
725 struct blk_mq_hw_ctx *hctx;
726 int i;
727
728 queue_for_each_hw_ctx(q, hctx, i)
729 blk_mq_stop_hw_queue(hctx);
730}
731EXPORT_SYMBOL(blk_mq_stop_hw_queues);
732
320ae51f
JA
733void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
734{
735 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
736
737 preempt_disable();
320ae51f 738 __blk_mq_run_hw_queue(hctx);
e4043dcf 739 preempt_enable();
320ae51f
JA
740}
741EXPORT_SYMBOL(blk_mq_start_hw_queue);
742
2f268556
CH
743void blk_mq_start_hw_queues(struct request_queue *q)
744{
745 struct blk_mq_hw_ctx *hctx;
746 int i;
747
748 queue_for_each_hw_ctx(q, hctx, i)
749 blk_mq_start_hw_queue(hctx);
750}
751EXPORT_SYMBOL(blk_mq_start_hw_queues);
752
753
1b4a3258 754void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
755{
756 struct blk_mq_hw_ctx *hctx;
757 int i;
758
759 queue_for_each_hw_ctx(q, hctx, i) {
760 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
761 continue;
762
763 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 764 preempt_disable();
1b4a3258 765 blk_mq_run_hw_queue(hctx, async);
e4043dcf 766 preempt_enable();
320ae51f
JA
767 }
768}
769EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
770
70f4db63 771static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
772{
773 struct blk_mq_hw_ctx *hctx;
774
70f4db63 775 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 776
320ae51f
JA
777 __blk_mq_run_hw_queue(hctx);
778}
779
70f4db63
CH
780static void blk_mq_delay_work_fn(struct work_struct *work)
781{
782 struct blk_mq_hw_ctx *hctx;
783
784 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
785
786 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
787 __blk_mq_run_hw_queue(hctx);
788}
789
790void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
791{
792 unsigned long tmo = msecs_to_jiffies(msecs);
793
794 if (hctx->queue->nr_hw_queues == 1)
795 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
796 else {
797 unsigned int cpu;
798
799 /*
800 * It'd be great if the workqueue API had a way to pass
801 * in a mask and had some smarts for more clever placement
802 * than the first CPU. Or we could round-robin here. For now,
803 * just queue on the first CPU.
804 */
805 cpu = cpumask_first(hctx->cpumask);
806 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
807 }
808}
809EXPORT_SYMBOL(blk_mq_delay_queue);
810
320ae51f 811static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 812 struct request *rq, bool at_head)
320ae51f
JA
813{
814 struct blk_mq_ctx *ctx = rq->mq_ctx;
815
01b983c9
JA
816 trace_block_rq_insert(hctx->queue, rq);
817
72a0a36e
CH
818 if (at_head)
819 list_add(&rq->queuelist, &ctx->rq_list);
820 else
821 list_add_tail(&rq->queuelist, &ctx->rq_list);
320ae51f
JA
822 blk_mq_hctx_mark_pending(hctx, ctx);
823
824 /*
825 * We do this early, to ensure we are on the right CPU.
826 */
87ee7b11 827 blk_add_timer(rq);
320ae51f
JA
828}
829
eeabc850
CH
830void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
831 bool async)
320ae51f 832{
eeabc850 833 struct request_queue *q = rq->q;
320ae51f 834 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
835 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
836
837 current_ctx = blk_mq_get_ctx(q);
838 if (!cpu_online(ctx->cpu))
839 rq->mq_ctx = ctx = current_ctx;
320ae51f 840
320ae51f
JA
841 hctx = q->mq_ops->map_queue(q, ctx->cpu);
842
eeabc850
CH
843 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
844 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
845 blk_insert_flush(rq);
846 } else {
320ae51f 847 spin_lock(&ctx->lock);
72a0a36e 848 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 849 spin_unlock(&ctx->lock);
320ae51f
JA
850 }
851
320ae51f
JA
852 if (run_queue)
853 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
854
855 blk_mq_put_ctx(current_ctx);
320ae51f
JA
856}
857
858static void blk_mq_insert_requests(struct request_queue *q,
859 struct blk_mq_ctx *ctx,
860 struct list_head *list,
861 int depth,
862 bool from_schedule)
863
864{
865 struct blk_mq_hw_ctx *hctx;
866 struct blk_mq_ctx *current_ctx;
867
868 trace_block_unplug(q, depth, !from_schedule);
869
870 current_ctx = blk_mq_get_ctx(q);
871
872 if (!cpu_online(ctx->cpu))
873 ctx = current_ctx;
874 hctx = q->mq_ops->map_queue(q, ctx->cpu);
875
876 /*
877 * preemption doesn't flush plug list, so it's possible ctx->cpu is
878 * offline now
879 */
880 spin_lock(&ctx->lock);
881 while (!list_empty(list)) {
882 struct request *rq;
883
884 rq = list_first_entry(list, struct request, queuelist);
885 list_del_init(&rq->queuelist);
886 rq->mq_ctx = ctx;
72a0a36e 887 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
888 }
889 spin_unlock(&ctx->lock);
890
320ae51f 891 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 892 blk_mq_put_ctx(current_ctx);
320ae51f
JA
893}
894
895static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
896{
897 struct request *rqa = container_of(a, struct request, queuelist);
898 struct request *rqb = container_of(b, struct request, queuelist);
899
900 return !(rqa->mq_ctx < rqb->mq_ctx ||
901 (rqa->mq_ctx == rqb->mq_ctx &&
902 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
903}
904
905void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
906{
907 struct blk_mq_ctx *this_ctx;
908 struct request_queue *this_q;
909 struct request *rq;
910 LIST_HEAD(list);
911 LIST_HEAD(ctx_list);
912 unsigned int depth;
913
914 list_splice_init(&plug->mq_list, &list);
915
916 list_sort(NULL, &list, plug_ctx_cmp);
917
918 this_q = NULL;
919 this_ctx = NULL;
920 depth = 0;
921
922 while (!list_empty(&list)) {
923 rq = list_entry_rq(list.next);
924 list_del_init(&rq->queuelist);
925 BUG_ON(!rq->q);
926 if (rq->mq_ctx != this_ctx) {
927 if (this_ctx) {
928 blk_mq_insert_requests(this_q, this_ctx,
929 &ctx_list, depth,
930 from_schedule);
931 }
932
933 this_ctx = rq->mq_ctx;
934 this_q = rq->q;
935 depth = 0;
936 }
937
938 depth++;
939 list_add_tail(&rq->queuelist, &ctx_list);
940 }
941
942 /*
943 * If 'this_ctx' is set, we know we have entries to complete
944 * on 'ctx_list'. Do those.
945 */
946 if (this_ctx) {
947 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
948 from_schedule);
949 }
950}
951
952static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
953{
954 init_request_from_bio(rq, bio);
955 blk_account_io_start(rq, 1);
956}
957
958static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
959{
960 struct blk_mq_hw_ctx *hctx;
961 struct blk_mq_ctx *ctx;
962 const int is_sync = rw_is_sync(bio->bi_rw);
963 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
964 int rw = bio_data_dir(bio);
965 struct request *rq;
966 unsigned int use_plug, request_count = 0;
967
968 /*
969 * If we have multiple hardware queues, just go directly to
970 * one of those for sync IO.
971 */
972 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
973
974 blk_queue_bounce(q, &bio);
975
14ec77f3
NB
976 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
977 bio_endio(bio, -EIO);
978 return;
979 }
980
320ae51f
JA
981 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
982 return;
983
984 if (blk_mq_queue_enter(q)) {
985 bio_endio(bio, -EIO);
986 return;
987 }
988
989 ctx = blk_mq_get_ctx(q);
990 hctx = q->mq_ops->map_queue(q, ctx->cpu);
991
27fbf4e8
SL
992 if (is_sync)
993 rw |= REQ_SYNC;
320ae51f 994 trace_block_getrq(q, bio, rw);
18741986 995 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
320ae51f 996 if (likely(rq))
18741986 997 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f
JA
998 else {
999 blk_mq_put_ctx(ctx);
1000 trace_block_sleeprq(q, bio, rw);
18741986
CH
1001 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
1002 false);
320ae51f
JA
1003 ctx = rq->mq_ctx;
1004 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1005 }
1006
1007 hctx->queued++;
1008
1009 if (unlikely(is_flush_fua)) {
1010 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1011 blk_insert_flush(rq);
1012 goto run_queue;
1013 }
1014
1015 /*
1016 * A task plug currently exists. Since this is completely lockless,
1017 * utilize that to temporarily store requests until the task is
1018 * either done or scheduled away.
1019 */
1020 if (use_plug) {
1021 struct blk_plug *plug = current->plug;
1022
1023 if (plug) {
1024 blk_mq_bio_to_request(rq, bio);
92f399c7 1025 if (list_empty(&plug->mq_list))
320ae51f
JA
1026 trace_block_plug(q);
1027 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1028 blk_flush_plug_list(plug, false);
1029 trace_block_plug(q);
1030 }
1031 list_add_tail(&rq->queuelist, &plug->mq_list);
1032 blk_mq_put_ctx(ctx);
1033 return;
1034 }
1035 }
1036
1037 spin_lock(&ctx->lock);
1038
1039 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1040 blk_mq_attempt_merge(q, ctx, bio))
1041 __blk_mq_free_request(hctx, ctx, rq);
1042 else {
1043 blk_mq_bio_to_request(rq, bio);
72a0a36e 1044 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1045 }
1046
1047 spin_unlock(&ctx->lock);
320ae51f
JA
1048
1049 /*
1050 * For a SYNC request, send it to the hardware immediately. For an
1051 * ASYNC request, just ensure that we run it later on. The latter
1052 * allows for merging opportunities and more efficient dispatching.
1053 */
1054run_queue:
1055 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
e4043dcf 1056 blk_mq_put_ctx(ctx);
320ae51f
JA
1057}
1058
1059/*
1060 * Default mapping to a software queue, since we use one per CPU.
1061 */
1062struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1063{
1064 return q->queue_hw_ctx[q->mq_map[cpu]];
1065}
1066EXPORT_SYMBOL(blk_mq_map_queue);
1067
24d2f903 1068struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
320ae51f
JA
1069 unsigned int hctx_index)
1070{
1071 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
24d2f903 1072 GFP_KERNEL | __GFP_ZERO, set->numa_node);
320ae51f
JA
1073}
1074EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1075
1076void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1077 unsigned int hctx_index)
1078{
1079 kfree(hctx);
1080}
1081EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1082
1083static void blk_mq_hctx_notify(void *data, unsigned long action,
1084 unsigned int cpu)
1085{
1086 struct blk_mq_hw_ctx *hctx = data;
bccb5f7c 1087 struct request_queue *q = hctx->queue;
320ae51f
JA
1088 struct blk_mq_ctx *ctx;
1089 LIST_HEAD(tmp);
1090
1091 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1092 return;
1093
1094 /*
1095 * Move ctx entries to new CPU, if this one is going away.
1096 */
bccb5f7c 1097 ctx = __blk_mq_get_ctx(q, cpu);
320ae51f
JA
1098
1099 spin_lock(&ctx->lock);
1100 if (!list_empty(&ctx->rq_list)) {
1101 list_splice_init(&ctx->rq_list, &tmp);
1102 clear_bit(ctx->index_hw, hctx->ctx_map);
1103 }
1104 spin_unlock(&ctx->lock);
1105
1106 if (list_empty(&tmp))
1107 return;
1108
bccb5f7c 1109 ctx = blk_mq_get_ctx(q);
320ae51f
JA
1110 spin_lock(&ctx->lock);
1111
1112 while (!list_empty(&tmp)) {
1113 struct request *rq;
1114
1115 rq = list_first_entry(&tmp, struct request, queuelist);
1116 rq->mq_ctx = ctx;
1117 list_move_tail(&rq->queuelist, &ctx->rq_list);
1118 }
1119
bccb5f7c 1120 hctx = q->mq_ops->map_queue(q, ctx->cpu);
320ae51f
JA
1121 blk_mq_hctx_mark_pending(hctx, ctx);
1122
1123 spin_unlock(&ctx->lock);
bccb5f7c
JA
1124
1125 blk_mq_run_hw_queue(hctx, true);
e4043dcf 1126 blk_mq_put_ctx(ctx);
320ae51f
JA
1127}
1128
24d2f903
CH
1129static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1130 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1131{
e9b267d9 1132 struct page *page;
320ae51f 1133
24d2f903 1134 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1135 int i;
320ae51f 1136
24d2f903
CH
1137 for (i = 0; i < tags->nr_tags; i++) {
1138 if (!tags->rqs[i])
e9b267d9 1139 continue;
24d2f903
CH
1140 set->ops->exit_request(set->driver_data, tags->rqs[i],
1141 hctx_idx, i);
e9b267d9 1142 }
320ae51f 1143 }
320ae51f 1144
24d2f903
CH
1145 while (!list_empty(&tags->page_list)) {
1146 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1147 list_del_init(&page->lru);
320ae51f
JA
1148 __free_pages(page, page->private);
1149 }
1150
24d2f903 1151 kfree(tags->rqs);
320ae51f 1152
24d2f903 1153 blk_mq_free_tags(tags);
320ae51f
JA
1154}
1155
1156static size_t order_to_size(unsigned int order)
1157{
4ca08500 1158 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1159}
1160
24d2f903
CH
1161static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1162 unsigned int hctx_idx)
320ae51f 1163{
24d2f903 1164 struct blk_mq_tags *tags;
320ae51f
JA
1165 unsigned int i, j, entries_per_page, max_order = 4;
1166 size_t rq_size, left;
1167
24d2f903
CH
1168 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1169 set->numa_node);
1170 if (!tags)
1171 return NULL;
320ae51f 1172
24d2f903
CH
1173 INIT_LIST_HEAD(&tags->page_list);
1174
1175 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1176 GFP_KERNEL, set->numa_node);
1177 if (!tags->rqs) {
1178 blk_mq_free_tags(tags);
1179 return NULL;
1180 }
320ae51f
JA
1181
1182 /*
1183 * rq_size is the size of the request plus driver payload, rounded
1184 * to the cacheline size
1185 */
24d2f903 1186 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1187 cache_line_size());
24d2f903 1188 left = rq_size * set->queue_depth;
320ae51f 1189
24d2f903 1190 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1191 int this_order = max_order;
1192 struct page *page;
1193 int to_do;
1194 void *p;
1195
1196 while (left < order_to_size(this_order - 1) && this_order)
1197 this_order--;
1198
1199 do {
24d2f903
CH
1200 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1201 this_order);
320ae51f
JA
1202 if (page)
1203 break;
1204 if (!this_order--)
1205 break;
1206 if (order_to_size(this_order) < rq_size)
1207 break;
1208 } while (1);
1209
1210 if (!page)
24d2f903 1211 goto fail;
320ae51f
JA
1212
1213 page->private = this_order;
24d2f903 1214 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1215
1216 p = page_address(page);
1217 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1218 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1219 left -= to_do * rq_size;
1220 for (j = 0; j < to_do; j++) {
24d2f903
CH
1221 tags->rqs[i] = p;
1222 if (set->ops->init_request) {
1223 if (set->ops->init_request(set->driver_data,
1224 tags->rqs[i], hctx_idx, i,
1225 set->numa_node))
1226 goto fail;
e9b267d9
CH
1227 }
1228
320ae51f
JA
1229 p += rq_size;
1230 i++;
1231 }
1232 }
1233
24d2f903 1234 return tags;
320ae51f 1235
24d2f903
CH
1236fail:
1237 pr_warn("%s: failed to allocate requests\n", __func__);
1238 blk_mq_free_rq_map(set, tags, hctx_idx);
1239 return NULL;
320ae51f
JA
1240}
1241
1242static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1243 struct blk_mq_tag_set *set)
320ae51f
JA
1244{
1245 struct blk_mq_hw_ctx *hctx;
1246 unsigned int i, j;
1247
1248 /*
1249 * Initialize hardware queues
1250 */
1251 queue_for_each_hw_ctx(q, hctx, i) {
1252 unsigned int num_maps;
1253 int node;
1254
1255 node = hctx->numa_node;
1256 if (node == NUMA_NO_NODE)
24d2f903 1257 node = hctx->numa_node = set->numa_node;
320ae51f 1258
70f4db63
CH
1259 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1260 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1261 spin_lock_init(&hctx->lock);
1262 INIT_LIST_HEAD(&hctx->dispatch);
1263 hctx->queue = q;
1264 hctx->queue_num = i;
24d2f903
CH
1265 hctx->flags = set->flags;
1266 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1267
1268 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1269 blk_mq_hctx_notify, hctx);
1270 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1271
24d2f903 1272 hctx->tags = set->tags[i];
320ae51f
JA
1273
1274 /*
1275 * Allocate space for all possible cpus to avoid allocation in
1276 * runtime
1277 */
1278 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1279 GFP_KERNEL, node);
1280 if (!hctx->ctxs)
1281 break;
1282
1283 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1284 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1285 GFP_KERNEL, node);
1286 if (!hctx->ctx_map)
1287 break;
1288
1289 hctx->nr_ctx_map = num_maps;
1290 hctx->nr_ctx = 0;
1291
24d2f903
CH
1292 if (set->ops->init_hctx &&
1293 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1294 break;
1295 }
1296
1297 if (i == q->nr_hw_queues)
1298 return 0;
1299
1300 /*
1301 * Init failed
1302 */
1303 queue_for_each_hw_ctx(q, hctx, j) {
1304 if (i == j)
1305 break;
1306
24d2f903
CH
1307 if (set->ops->exit_hctx)
1308 set->ops->exit_hctx(hctx, j);
320ae51f
JA
1309
1310 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1311 kfree(hctx->ctxs);
11471e0d 1312 kfree(hctx->ctx_map);
320ae51f
JA
1313 }
1314
1315 return 1;
1316}
1317
1318static void blk_mq_init_cpu_queues(struct request_queue *q,
1319 unsigned int nr_hw_queues)
1320{
1321 unsigned int i;
1322
1323 for_each_possible_cpu(i) {
1324 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1325 struct blk_mq_hw_ctx *hctx;
1326
1327 memset(__ctx, 0, sizeof(*__ctx));
1328 __ctx->cpu = i;
1329 spin_lock_init(&__ctx->lock);
1330 INIT_LIST_HEAD(&__ctx->rq_list);
1331 __ctx->queue = q;
1332
1333 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1334 if (!cpu_online(i))
1335 continue;
1336
e4043dcf
JA
1337 hctx = q->mq_ops->map_queue(q, i);
1338 cpumask_set_cpu(i, hctx->cpumask);
1339 hctx->nr_ctx++;
1340
320ae51f
JA
1341 /*
1342 * Set local node, IFF we have more than one hw queue. If
1343 * not, we remain on the home node of the device
1344 */
1345 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1346 hctx->numa_node = cpu_to_node(i);
1347 }
1348}
1349
1350static void blk_mq_map_swqueue(struct request_queue *q)
1351{
1352 unsigned int i;
1353 struct blk_mq_hw_ctx *hctx;
1354 struct blk_mq_ctx *ctx;
1355
1356 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1357 cpumask_clear(hctx->cpumask);
320ae51f
JA
1358 hctx->nr_ctx = 0;
1359 }
1360
1361 /*
1362 * Map software to hardware queues
1363 */
1364 queue_for_each_ctx(q, ctx, i) {
1365 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1366 if (!cpu_online(i))
1367 continue;
1368
320ae51f 1369 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1370 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1371 ctx->index_hw = hctx->nr_ctx;
1372 hctx->ctxs[hctx->nr_ctx++] = ctx;
1373 }
1374}
1375
24d2f903 1376struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1377{
1378 struct blk_mq_hw_ctx **hctxs;
1379 struct blk_mq_ctx *ctx;
1380 struct request_queue *q;
1381 int i;
1382
320ae51f
JA
1383 ctx = alloc_percpu(struct blk_mq_ctx);
1384 if (!ctx)
1385 return ERR_PTR(-ENOMEM);
1386
24d2f903
CH
1387 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1388 set->numa_node);
320ae51f
JA
1389
1390 if (!hctxs)
1391 goto err_percpu;
1392
24d2f903
CH
1393 for (i = 0; i < set->nr_hw_queues; i++) {
1394 hctxs[i] = set->ops->alloc_hctx(set, i);
320ae51f
JA
1395 if (!hctxs[i])
1396 goto err_hctxs;
1397
e4043dcf
JA
1398 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1399 goto err_hctxs;
1400
320ae51f
JA
1401 hctxs[i]->numa_node = NUMA_NO_NODE;
1402 hctxs[i]->queue_num = i;
1403 }
1404
24d2f903 1405 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1406 if (!q)
1407 goto err_hctxs;
1408
24d2f903 1409 q->mq_map = blk_mq_make_queue_map(set);
320ae51f
JA
1410 if (!q->mq_map)
1411 goto err_map;
1412
1413 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1414 blk_queue_rq_timeout(q, 30000);
1415
1416 q->nr_queues = nr_cpu_ids;
24d2f903 1417 q->nr_hw_queues = set->nr_hw_queues;
320ae51f
JA
1418
1419 q->queue_ctx = ctx;
1420 q->queue_hw_ctx = hctxs;
1421
24d2f903 1422 q->mq_ops = set->ops;
94eddfbe 1423 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1424
1be036e9
CH
1425 q->sg_reserved_size = INT_MAX;
1426
320ae51f 1427 blk_queue_make_request(q, blk_mq_make_request);
87ee7b11 1428 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1429 if (set->timeout)
1430 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1431
24d2f903
CH
1432 if (set->ops->complete)
1433 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1434
320ae51f 1435 blk_mq_init_flush(q);
24d2f903 1436 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1437
24d2f903
CH
1438 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1439 set->cmd_size, cache_line_size()),
1440 GFP_KERNEL);
18741986 1441 if (!q->flush_rq)
320ae51f
JA
1442 goto err_hw;
1443
24d2f903 1444 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1445 goto err_flush_rq;
1446
320ae51f
JA
1447 blk_mq_map_swqueue(q);
1448
1449 mutex_lock(&all_q_mutex);
1450 list_add_tail(&q->all_q_node, &all_q_list);
1451 mutex_unlock(&all_q_mutex);
1452
1453 return q;
18741986
CH
1454
1455err_flush_rq:
1456 kfree(q->flush_rq);
320ae51f
JA
1457err_hw:
1458 kfree(q->mq_map);
1459err_map:
1460 blk_cleanup_queue(q);
1461err_hctxs:
24d2f903 1462 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1463 if (!hctxs[i])
1464 break;
e4043dcf 1465 free_cpumask_var(hctxs[i]->cpumask);
24d2f903 1466 set->ops->free_hctx(hctxs[i], i);
320ae51f
JA
1467 }
1468 kfree(hctxs);
1469err_percpu:
1470 free_percpu(ctx);
1471 return ERR_PTR(-ENOMEM);
1472}
1473EXPORT_SYMBOL(blk_mq_init_queue);
1474
1475void blk_mq_free_queue(struct request_queue *q)
1476{
1477 struct blk_mq_hw_ctx *hctx;
1478 int i;
1479
1480 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1481 kfree(hctx->ctx_map);
1482 kfree(hctx->ctxs);
320ae51f
JA
1483 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1484 if (q->mq_ops->exit_hctx)
1485 q->mq_ops->exit_hctx(hctx, i);
e4043dcf 1486 free_cpumask_var(hctx->cpumask);
320ae51f
JA
1487 q->mq_ops->free_hctx(hctx, i);
1488 }
1489
1490 free_percpu(q->queue_ctx);
1491 kfree(q->queue_hw_ctx);
1492 kfree(q->mq_map);
1493
1494 q->queue_ctx = NULL;
1495 q->queue_hw_ctx = NULL;
1496 q->mq_map = NULL;
1497
1498 mutex_lock(&all_q_mutex);
1499 list_del_init(&q->all_q_node);
1500 mutex_unlock(&all_q_mutex);
1501}
320ae51f
JA
1502
1503/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1504static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1505{
1506 blk_mq_freeze_queue(q);
1507
1508 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1509
1510 /*
1511 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1512 * we should change hctx numa_node according to new topology (this
1513 * involves free and re-allocate memory, worthy doing?)
1514 */
1515
1516 blk_mq_map_swqueue(q);
1517
1518 blk_mq_unfreeze_queue(q);
1519}
1520
f618ef7c
PG
1521static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1522 unsigned long action, void *hcpu)
320ae51f
JA
1523{
1524 struct request_queue *q;
1525
1526 /*
1527 * Before new mapping is established, hotadded cpu might already start
1528 * handling requests. This doesn't break anything as we map offline
1529 * CPUs to first hardware queue. We will re-init queue below to get
1530 * optimal settings.
1531 */
1532 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1533 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1534 return NOTIFY_OK;
1535
1536 mutex_lock(&all_q_mutex);
1537 list_for_each_entry(q, &all_q_list, all_q_node)
1538 blk_mq_queue_reinit(q);
1539 mutex_unlock(&all_q_mutex);
1540 return NOTIFY_OK;
1541}
1542
24d2f903
CH
1543int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1544{
1545 int i;
1546
1547 if (!set->nr_hw_queues)
1548 return -EINVAL;
1549 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1550 return -EINVAL;
1551 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1552 return -EINVAL;
1553
1554 if (!set->nr_hw_queues ||
1555 !set->ops->queue_rq || !set->ops->map_queue ||
1556 !set->ops->alloc_hctx || !set->ops->free_hctx)
1557 return -EINVAL;
1558
1559
48479005
ML
1560 set->tags = kmalloc_node(set->nr_hw_queues *
1561 sizeof(struct blk_mq_tags *),
24d2f903
CH
1562 GFP_KERNEL, set->numa_node);
1563 if (!set->tags)
1564 goto out;
1565
1566 for (i = 0; i < set->nr_hw_queues; i++) {
1567 set->tags[i] = blk_mq_init_rq_map(set, i);
1568 if (!set->tags[i])
1569 goto out_unwind;
1570 }
1571
1572 return 0;
1573
1574out_unwind:
1575 while (--i >= 0)
1576 blk_mq_free_rq_map(set, set->tags[i], i);
1577out:
1578 return -ENOMEM;
1579}
1580EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1581
1582void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1583{
1584 int i;
1585
1586 for (i = 0; i < set->nr_hw_queues; i++)
1587 blk_mq_free_rq_map(set, set->tags[i], i);
981bd189 1588 kfree(set->tags);
24d2f903
CH
1589}
1590EXPORT_SYMBOL(blk_mq_free_tag_set);
1591
676141e4
JA
1592void blk_mq_disable_hotplug(void)
1593{
1594 mutex_lock(&all_q_mutex);
1595}
1596
1597void blk_mq_enable_hotplug(void)
1598{
1599 mutex_unlock(&all_q_mutex);
1600}
1601
320ae51f
JA
1602static int __init blk_mq_init(void)
1603{
320ae51f
JA
1604 blk_mq_cpu_init();
1605
1606 /* Must be called after percpu_counter_hotcpu_callback() */
1607 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1608
1609 return 0;
1610}
1611subsys_initcall(blk_mq_init);