blk-mq: decouble blk-mq freezing from generic bypassing
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/mm.h>
13#include <linux/init.h>
14#include <linux/slab.h>
15#include <linux/workqueue.h>
16#include <linux/smp.h>
17#include <linux/llist.h>
18#include <linux/list_sort.h>
19#include <linux/cpu.h>
20#include <linux/cache.h>
21#include <linux/sched/sysctl.h>
22#include <linux/delay.h>
23
24#include <trace/events/block.h>
25
26#include <linux/blk-mq.h>
27#include "blk.h"
28#include "blk-mq.h"
29#include "blk-mq-tag.h"
30
31static DEFINE_MUTEX(all_q_mutex);
32static LIST_HEAD(all_q_list);
33
34static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
35
320ae51f
JA
36/*
37 * Check if any of the ctx's have pending work in this hardware queue
38 */
39static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
40{
41 unsigned int i;
42
1429d7c9
JA
43 for (i = 0; i < hctx->ctx_map.map_size; i++)
44 if (hctx->ctx_map.map[i].word)
320ae51f
JA
45 return true;
46
47 return false;
48}
49
1429d7c9
JA
50static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
52{
53 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
54}
55
56#define CTX_TO_BIT(hctx, ctx) \
57 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
58
320ae51f
JA
59/*
60 * Mark this ctx as having pending work in this hardware queue
61 */
62static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
63 struct blk_mq_ctx *ctx)
64{
1429d7c9
JA
65 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
66
67 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
68 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
69}
70
71static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
72 struct blk_mq_ctx *ctx)
73{
74 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
75
76 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
77}
78
320ae51f
JA
79static int blk_mq_queue_enter(struct request_queue *q)
80{
81 int ret;
82
83 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
531ed626 84 smp_mb();
3b632cf0
KB
85
86 /* we have problems freezing the queue if it's initializing */
780db207 87 if (!q->mq_freeze_depth)
320ae51f
JA
88 return 0;
89
90 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
91
92 spin_lock_irq(q->queue_lock);
93 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
780db207 94 !q->mq_freeze_depth || blk_queue_dying(q),
43a5e4e2 95 *q->queue_lock);
320ae51f 96 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 97 if (!ret && !blk_queue_dying(q))
320ae51f 98 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
99 else if (blk_queue_dying(q))
100 ret = -ENODEV;
320ae51f
JA
101 spin_unlock_irq(q->queue_lock);
102
103 return ret;
104}
105
106static void blk_mq_queue_exit(struct request_queue *q)
107{
108 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
109}
110
95ed0681 111void blk_mq_drain_queue(struct request_queue *q)
43a5e4e2
ML
112{
113 while (true) {
114 s64 count;
115
116 spin_lock_irq(q->queue_lock);
117 count = percpu_counter_sum(&q->mq_usage_counter);
118 spin_unlock_irq(q->queue_lock);
119
120 if (count == 0)
121 break;
8f5280f4 122 blk_mq_start_hw_queues(q);
43a5e4e2
ML
123 msleep(10);
124 }
125}
126
320ae51f
JA
127/*
128 * Guarantee no request is in use, so we can change any data structure of
129 * the queue afterward.
130 */
780db207 131void blk_mq_freeze_queue(struct request_queue *q)
320ae51f 132{
320ae51f 133 spin_lock_irq(q->queue_lock);
780db207 134 q->mq_freeze_depth++;
320ae51f
JA
135 spin_unlock_irq(q->queue_lock);
136
776687bc 137 blk_mq_drain_queue(q);
320ae51f
JA
138}
139
140static void blk_mq_unfreeze_queue(struct request_queue *q)
141{
142 bool wake = false;
143
144 spin_lock_irq(q->queue_lock);
780db207
TH
145 wake = !--q->mq_freeze_depth;
146 WARN_ON_ONCE(q->mq_freeze_depth < 0);
320ae51f
JA
147 spin_unlock_irq(q->queue_lock);
148 if (wake)
149 wake_up_all(&q->mq_freeze_wq);
150}
151
152bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
153{
154 return blk_mq_has_free_tags(hctx->tags);
155}
156EXPORT_SYMBOL(blk_mq_can_queue);
157
94eddfbe
JA
158static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
159 struct request *rq, unsigned int rw_flags)
320ae51f 160{
94eddfbe
JA
161 if (blk_queue_io_stat(q))
162 rw_flags |= REQ_IO_STAT;
163
af76e555
CH
164 INIT_LIST_HEAD(&rq->queuelist);
165 /* csd/requeue_work/fifo_time is initialized before use */
166 rq->q = q;
320ae51f 167 rq->mq_ctx = ctx;
0d2602ca 168 rq->cmd_flags |= rw_flags;
af76e555
CH
169 /* do not touch atomic flags, it needs atomic ops against the timer */
170 rq->cpu = -1;
af76e555
CH
171 INIT_HLIST_NODE(&rq->hash);
172 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
173 rq->rq_disk = NULL;
174 rq->part = NULL;
3ee32372 175 rq->start_time = jiffies;
af76e555
CH
176#ifdef CONFIG_BLK_CGROUP
177 rq->rl = NULL;
0fec08b4 178 set_start_time_ns(rq);
af76e555
CH
179 rq->io_start_time_ns = 0;
180#endif
181 rq->nr_phys_segments = 0;
182#if defined(CONFIG_BLK_DEV_INTEGRITY)
183 rq->nr_integrity_segments = 0;
184#endif
af76e555
CH
185 rq->special = NULL;
186 /* tag was already set */
187 rq->errors = 0;
af76e555
CH
188
189 rq->extra_len = 0;
190 rq->sense_len = 0;
191 rq->resid_len = 0;
192 rq->sense = NULL;
193
af76e555 194 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
195 rq->timeout = 0;
196
af76e555
CH
197 rq->end_io = NULL;
198 rq->end_io_data = NULL;
199 rq->next_rq = NULL;
200
320ae51f
JA
201 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
202}
203
5dee8577 204static struct request *
cb96a42c 205__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
206{
207 struct request *rq;
208 unsigned int tag;
209
cb96a42c 210 tag = blk_mq_get_tag(data);
5dee8577 211 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 212 rq = data->hctx->tags->rqs[tag];
5dee8577
CH
213
214 rq->cmd_flags = 0;
cb96a42c 215 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 216 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 217 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
218 }
219
220 rq->tag = tag;
cb96a42c 221 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
222 return rq;
223 }
224
225 return NULL;
226}
227
4ce01dd1
CH
228struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
229 bool reserved)
320ae51f 230{
d852564f
CH
231 struct blk_mq_ctx *ctx;
232 struct blk_mq_hw_ctx *hctx;
320ae51f 233 struct request *rq;
cb96a42c 234 struct blk_mq_alloc_data alloc_data;
320ae51f
JA
235
236 if (blk_mq_queue_enter(q))
237 return NULL;
238
d852564f
CH
239 ctx = blk_mq_get_ctx(q);
240 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
241 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
242 reserved, ctx, hctx);
d852564f 243
cb96a42c 244 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
245 if (!rq && (gfp & __GFP_WAIT)) {
246 __blk_mq_run_hw_queue(hctx);
247 blk_mq_put_ctx(ctx);
248
249 ctx = blk_mq_get_ctx(q);
250 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
251 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
252 hctx);
253 rq = __blk_mq_alloc_request(&alloc_data, rw);
254 ctx = alloc_data.ctx;
d852564f
CH
255 }
256 blk_mq_put_ctx(ctx);
320ae51f
JA
257 return rq;
258}
4bb659b1 259EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 260
320ae51f
JA
261static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
262 struct blk_mq_ctx *ctx, struct request *rq)
263{
264 const int tag = rq->tag;
265 struct request_queue *q = rq->q;
266
0d2602ca
JA
267 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
268 atomic_dec(&hctx->nr_active);
269
af76e555 270 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 271 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
320ae51f
JA
272 blk_mq_queue_exit(q);
273}
274
275void blk_mq_free_request(struct request *rq)
276{
277 struct blk_mq_ctx *ctx = rq->mq_ctx;
278 struct blk_mq_hw_ctx *hctx;
279 struct request_queue *q = rq->q;
280
281 ctx->rq_completed[rq_is_sync(rq)]++;
282
283 hctx = q->mq_ops->map_queue(q, ctx->cpu);
284 __blk_mq_free_request(hctx, ctx, rq);
285}
286
8727af4b
CH
287/*
288 * Clone all relevant state from a request that has been put on hold in
289 * the flush state machine into the preallocated flush request that hangs
290 * off the request queue.
291 *
292 * For a driver the flush request should be invisible, that's why we are
293 * impersonating the original request here.
294 */
295void blk_mq_clone_flush_request(struct request *flush_rq,
296 struct request *orig_rq)
297{
298 struct blk_mq_hw_ctx *hctx =
299 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
300
301 flush_rq->mq_ctx = orig_rq->mq_ctx;
302 flush_rq->tag = orig_rq->tag;
303 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
304 hctx->cmd_size);
305}
306
63151a44 307inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 308{
0d11e6ac
ML
309 blk_account_io_done(rq);
310
91b63639 311 if (rq->end_io) {
320ae51f 312 rq->end_io(rq, error);
91b63639
CH
313 } else {
314 if (unlikely(blk_bidi_rq(rq)))
315 blk_mq_free_request(rq->next_rq);
320ae51f 316 blk_mq_free_request(rq);
91b63639 317 }
320ae51f 318}
63151a44
CH
319EXPORT_SYMBOL(__blk_mq_end_io);
320
321void blk_mq_end_io(struct request *rq, int error)
322{
323 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
324 BUG();
325 __blk_mq_end_io(rq, error);
326}
327EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 328
30a91cb4 329static void __blk_mq_complete_request_remote(void *data)
320ae51f 330{
3d6efbf6 331 struct request *rq = data;
320ae51f 332
30a91cb4 333 rq->q->softirq_done_fn(rq);
320ae51f 334}
320ae51f 335
ed851860 336static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
337{
338 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 339 bool shared = false;
320ae51f
JA
340 int cpu;
341
38535201 342 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
343 rq->q->softirq_done_fn(rq);
344 return;
345 }
320ae51f
JA
346
347 cpu = get_cpu();
38535201
CH
348 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
349 shared = cpus_share_cache(cpu, ctx->cpu);
350
351 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 352 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
353 rq->csd.info = rq;
354 rq->csd.flags = 0;
c46fff2a 355 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 356 } else {
30a91cb4 357 rq->q->softirq_done_fn(rq);
3d6efbf6 358 }
320ae51f
JA
359 put_cpu();
360}
30a91cb4 361
ed851860
JA
362void __blk_mq_complete_request(struct request *rq)
363{
364 struct request_queue *q = rq->q;
365
366 if (!q->softirq_done_fn)
367 blk_mq_end_io(rq, rq->errors);
368 else
369 blk_mq_ipi_complete_request(rq);
370}
371
30a91cb4
CH
372/**
373 * blk_mq_complete_request - end I/O on a request
374 * @rq: the request being processed
375 *
376 * Description:
377 * Ends all I/O on a request. It does not handle partial completions.
378 * The actual completion happens out-of-order, through a IPI handler.
379 **/
380void blk_mq_complete_request(struct request *rq)
381{
95f09684
JA
382 struct request_queue *q = rq->q;
383
384 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 385 return;
ed851860
JA
386 if (!blk_mark_rq_complete(rq))
387 __blk_mq_complete_request(rq);
30a91cb4
CH
388}
389EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 390
49f5baa5 391static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
392{
393 struct request_queue *q = rq->q;
394
395 trace_block_rq_issue(q, rq);
396
742ee69b 397 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
398 if (unlikely(blk_bidi_rq(rq)))
399 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 400
2b8393b4 401 blk_add_timer(rq);
87ee7b11
JA
402
403 /*
404 * Mark us as started and clear complete. Complete might have been
405 * set if requeue raced with timeout, which then marked it as
406 * complete. So be sure to clear complete again when we start
407 * the request, otherwise we'll ignore the completion event.
408 */
4b570521
JA
409 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
410 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
411 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
412 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
413
414 if (q->dma_drain_size && blk_rq_bytes(rq)) {
415 /*
416 * Make sure space for the drain appears. We know we can do
417 * this because max_hw_segments has been adjusted to be one
418 * fewer than the device can handle.
419 */
420 rq->nr_phys_segments++;
421 }
422
423 /*
424 * Flag the last request in the series so that drivers know when IO
425 * should be kicked off, if they don't do it on a per-request basis.
426 *
427 * Note: the flag isn't the only condition drivers should do kick off.
428 * If drive is busy, the last request might not have the bit set.
429 */
430 if (last)
431 rq->cmd_flags |= REQ_END;
320ae51f
JA
432}
433
ed0791b2 434static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
435{
436 struct request_queue *q = rq->q;
437
438 trace_block_rq_requeue(q, rq);
439 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
440
441 rq->cmd_flags &= ~REQ_END;
442
443 if (q->dma_drain_size && blk_rq_bytes(rq))
444 rq->nr_phys_segments--;
320ae51f
JA
445}
446
ed0791b2
CH
447void blk_mq_requeue_request(struct request *rq)
448{
ed0791b2
CH
449 __blk_mq_requeue_request(rq);
450 blk_clear_rq_complete(rq);
451
ed0791b2 452 BUG_ON(blk_queued_rq(rq));
6fca6a61 453 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
454}
455EXPORT_SYMBOL(blk_mq_requeue_request);
456
6fca6a61
CH
457static void blk_mq_requeue_work(struct work_struct *work)
458{
459 struct request_queue *q =
460 container_of(work, struct request_queue, requeue_work);
461 LIST_HEAD(rq_list);
462 struct request *rq, *next;
463 unsigned long flags;
464
465 spin_lock_irqsave(&q->requeue_lock, flags);
466 list_splice_init(&q->requeue_list, &rq_list);
467 spin_unlock_irqrestore(&q->requeue_lock, flags);
468
469 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
470 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
471 continue;
472
473 rq->cmd_flags &= ~REQ_SOFTBARRIER;
474 list_del_init(&rq->queuelist);
475 blk_mq_insert_request(rq, true, false, false);
476 }
477
478 while (!list_empty(&rq_list)) {
479 rq = list_entry(rq_list.next, struct request, queuelist);
480 list_del_init(&rq->queuelist);
481 blk_mq_insert_request(rq, false, false, false);
482 }
483
484 blk_mq_run_queues(q, false);
485}
486
487void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
488{
489 struct request_queue *q = rq->q;
490 unsigned long flags;
491
492 /*
493 * We abuse this flag that is otherwise used by the I/O scheduler to
494 * request head insertation from the workqueue.
495 */
496 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
497
498 spin_lock_irqsave(&q->requeue_lock, flags);
499 if (at_head) {
500 rq->cmd_flags |= REQ_SOFTBARRIER;
501 list_add(&rq->queuelist, &q->requeue_list);
502 } else {
503 list_add_tail(&rq->queuelist, &q->requeue_list);
504 }
505 spin_unlock_irqrestore(&q->requeue_lock, flags);
506}
507EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
508
509void blk_mq_kick_requeue_list(struct request_queue *q)
510{
511 kblockd_schedule_work(&q->requeue_work);
512}
513EXPORT_SYMBOL(blk_mq_kick_requeue_list);
514
0e62f51f 515static inline bool is_flush_request(struct request *rq, unsigned int tag)
24d2f903 516{
0e62f51f
JA
517 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
518 rq->q->flush_rq->tag == tag);
519}
520
521struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
522{
523 struct request *rq = tags->rqs[tag];
22302375 524
0e62f51f
JA
525 if (!is_flush_request(rq, tag))
526 return rq;
22302375 527
0e62f51f 528 return rq->q->flush_rq;
24d2f903
CH
529}
530EXPORT_SYMBOL(blk_mq_tag_to_rq);
531
320ae51f
JA
532struct blk_mq_timeout_data {
533 struct blk_mq_hw_ctx *hctx;
534 unsigned long *next;
535 unsigned int *next_set;
536};
537
538static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
539{
540 struct blk_mq_timeout_data *data = __data;
541 struct blk_mq_hw_ctx *hctx = data->hctx;
542 unsigned int tag;
543
544 /* It may not be in flight yet (this is where
545 * the REQ_ATOMIC_STARTED flag comes in). The requests are
546 * statically allocated, so we know it's always safe to access the
547 * memory associated with a bit offset into ->rqs[].
548 */
549 tag = 0;
550 do {
551 struct request *rq;
552
24d2f903
CH
553 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
554 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
555 break;
556
0e62f51f 557 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
24d2f903
CH
558 if (rq->q != hctx->queue)
559 continue;
320ae51f
JA
560 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
561 continue;
562
563 blk_rq_check_expired(rq, data->next, data->next_set);
564 } while (1);
565}
566
567static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
568 unsigned long *next,
569 unsigned int *next_set)
570{
571 struct blk_mq_timeout_data data = {
572 .hctx = hctx,
573 .next = next,
574 .next_set = next_set,
575 };
576
577 /*
578 * Ask the tagging code to iterate busy requests, so we can
579 * check them for timeout.
580 */
581 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
582}
583
87ee7b11
JA
584static enum blk_eh_timer_return blk_mq_rq_timed_out(struct request *rq)
585{
586 struct request_queue *q = rq->q;
587
588 /*
589 * We know that complete is set at this point. If STARTED isn't set
590 * anymore, then the request isn't active and the "timeout" should
591 * just be ignored. This can happen due to the bitflag ordering.
592 * Timeout first checks if STARTED is set, and if it is, assumes
593 * the request is active. But if we race with completion, then
594 * we both flags will get cleared. So check here again, and ignore
595 * a timeout event with a request that isn't active.
596 */
597 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
598 return BLK_EH_NOT_HANDLED;
599
600 if (!q->mq_ops->timeout)
601 return BLK_EH_RESET_TIMER;
602
603 return q->mq_ops->timeout(rq);
604}
605
320ae51f
JA
606static void blk_mq_rq_timer(unsigned long data)
607{
608 struct request_queue *q = (struct request_queue *) data;
609 struct blk_mq_hw_ctx *hctx;
610 unsigned long next = 0;
611 int i, next_set = 0;
612
484b4061
JA
613 queue_for_each_hw_ctx(q, hctx, i) {
614 /*
615 * If not software queues are currently mapped to this
616 * hardware queue, there's nothing to check
617 */
618 if (!hctx->nr_ctx || !hctx->tags)
619 continue;
620
320ae51f 621 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
484b4061 622 }
320ae51f 623
0d2602ca
JA
624 if (next_set) {
625 next = blk_rq_timeout(round_jiffies_up(next));
626 mod_timer(&q->timeout, next);
627 } else {
628 queue_for_each_hw_ctx(q, hctx, i)
629 blk_mq_tag_idle(hctx);
630 }
320ae51f
JA
631}
632
633/*
634 * Reverse check our software queue for entries that we could potentially
635 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
636 * too much time checking for merges.
637 */
638static bool blk_mq_attempt_merge(struct request_queue *q,
639 struct blk_mq_ctx *ctx, struct bio *bio)
640{
641 struct request *rq;
642 int checked = 8;
643
644 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
645 int el_ret;
646
647 if (!checked--)
648 break;
649
650 if (!blk_rq_merge_ok(rq, bio))
651 continue;
652
653 el_ret = blk_try_merge(rq, bio);
654 if (el_ret == ELEVATOR_BACK_MERGE) {
655 if (bio_attempt_back_merge(q, rq, bio)) {
656 ctx->rq_merged++;
657 return true;
658 }
659 break;
660 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
661 if (bio_attempt_front_merge(q, rq, bio)) {
662 ctx->rq_merged++;
663 return true;
664 }
665 break;
666 }
667 }
668
669 return false;
670}
671
1429d7c9
JA
672/*
673 * Process software queues that have been marked busy, splicing them
674 * to the for-dispatch
675 */
676static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
677{
678 struct blk_mq_ctx *ctx;
679 int i;
680
681 for (i = 0; i < hctx->ctx_map.map_size; i++) {
682 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
683 unsigned int off, bit;
684
685 if (!bm->word)
686 continue;
687
688 bit = 0;
689 off = i * hctx->ctx_map.bits_per_word;
690 do {
691 bit = find_next_bit(&bm->word, bm->depth, bit);
692 if (bit >= bm->depth)
693 break;
694
695 ctx = hctx->ctxs[bit + off];
696 clear_bit(bit, &bm->word);
697 spin_lock(&ctx->lock);
698 list_splice_tail_init(&ctx->rq_list, list);
699 spin_unlock(&ctx->lock);
700
701 bit++;
702 } while (1);
703 }
704}
705
320ae51f
JA
706/*
707 * Run this hardware queue, pulling any software queues mapped to it in.
708 * Note that this function currently has various problems around ordering
709 * of IO. In particular, we'd like FIFO behaviour on handling existing
710 * items on the hctx->dispatch list. Ignore that for now.
711 */
712static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
713{
714 struct request_queue *q = hctx->queue;
320ae51f
JA
715 struct request *rq;
716 LIST_HEAD(rq_list);
1429d7c9 717 int queued;
320ae51f 718
fd1270d5 719 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 720
5d12f905 721 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
722 return;
723
724 hctx->run++;
725
726 /*
727 * Touch any software queue that has pending entries.
728 */
1429d7c9 729 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
730
731 /*
732 * If we have previous entries on our dispatch list, grab them
733 * and stuff them at the front for more fair dispatch.
734 */
735 if (!list_empty_careful(&hctx->dispatch)) {
736 spin_lock(&hctx->lock);
737 if (!list_empty(&hctx->dispatch))
738 list_splice_init(&hctx->dispatch, &rq_list);
739 spin_unlock(&hctx->lock);
740 }
741
320ae51f
JA
742 /*
743 * Now process all the entries, sending them to the driver.
744 */
1429d7c9 745 queued = 0;
320ae51f
JA
746 while (!list_empty(&rq_list)) {
747 int ret;
748
749 rq = list_first_entry(&rq_list, struct request, queuelist);
750 list_del_init(&rq->queuelist);
320ae51f 751
49f5baa5 752 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
753
754 ret = q->mq_ops->queue_rq(hctx, rq);
755 switch (ret) {
756 case BLK_MQ_RQ_QUEUE_OK:
757 queued++;
758 continue;
759 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 760 list_add(&rq->queuelist, &rq_list);
ed0791b2 761 __blk_mq_requeue_request(rq);
320ae51f
JA
762 break;
763 default:
764 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 765 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 766 rq->errors = -EIO;
320ae51f
JA
767 blk_mq_end_io(rq, rq->errors);
768 break;
769 }
770
771 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
772 break;
773 }
774
775 if (!queued)
776 hctx->dispatched[0]++;
777 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
778 hctx->dispatched[ilog2(queued) + 1]++;
779
780 /*
781 * Any items that need requeuing? Stuff them into hctx->dispatch,
782 * that is where we will continue on next queue run.
783 */
784 if (!list_empty(&rq_list)) {
785 spin_lock(&hctx->lock);
786 list_splice(&rq_list, &hctx->dispatch);
787 spin_unlock(&hctx->lock);
788 }
789}
790
506e931f
JA
791/*
792 * It'd be great if the workqueue API had a way to pass
793 * in a mask and had some smarts for more clever placement.
794 * For now we just round-robin here, switching for every
795 * BLK_MQ_CPU_WORK_BATCH queued items.
796 */
797static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
798{
799 int cpu = hctx->next_cpu;
800
801 if (--hctx->next_cpu_batch <= 0) {
802 int next_cpu;
803
804 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
805 if (next_cpu >= nr_cpu_ids)
806 next_cpu = cpumask_first(hctx->cpumask);
807
808 hctx->next_cpu = next_cpu;
809 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
810 }
811
812 return cpu;
813}
814
320ae51f
JA
815void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
816{
5d12f905 817 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
818 return;
819
e4043dcf 820 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 821 __blk_mq_run_hw_queue(hctx);
e4043dcf 822 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 823 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
824 else {
825 unsigned int cpu;
826
506e931f 827 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63 828 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 829 }
320ae51f
JA
830}
831
832void blk_mq_run_queues(struct request_queue *q, bool async)
833{
834 struct blk_mq_hw_ctx *hctx;
835 int i;
836
837 queue_for_each_hw_ctx(q, hctx, i) {
838 if ((!blk_mq_hctx_has_pending(hctx) &&
839 list_empty_careful(&hctx->dispatch)) ||
5d12f905 840 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
841 continue;
842
e4043dcf 843 preempt_disable();
320ae51f 844 blk_mq_run_hw_queue(hctx, async);
e4043dcf 845 preempt_enable();
320ae51f
JA
846 }
847}
848EXPORT_SYMBOL(blk_mq_run_queues);
849
850void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
851{
70f4db63
CH
852 cancel_delayed_work(&hctx->run_work);
853 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
854 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
855}
856EXPORT_SYMBOL(blk_mq_stop_hw_queue);
857
280d45f6
CH
858void blk_mq_stop_hw_queues(struct request_queue *q)
859{
860 struct blk_mq_hw_ctx *hctx;
861 int i;
862
863 queue_for_each_hw_ctx(q, hctx, i)
864 blk_mq_stop_hw_queue(hctx);
865}
866EXPORT_SYMBOL(blk_mq_stop_hw_queues);
867
320ae51f
JA
868void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
869{
870 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
871
872 preempt_disable();
0ffbce80 873 blk_mq_run_hw_queue(hctx, false);
e4043dcf 874 preempt_enable();
320ae51f
JA
875}
876EXPORT_SYMBOL(blk_mq_start_hw_queue);
877
2f268556
CH
878void blk_mq_start_hw_queues(struct request_queue *q)
879{
880 struct blk_mq_hw_ctx *hctx;
881 int i;
882
883 queue_for_each_hw_ctx(q, hctx, i)
884 blk_mq_start_hw_queue(hctx);
885}
886EXPORT_SYMBOL(blk_mq_start_hw_queues);
887
888
1b4a3258 889void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
890{
891 struct blk_mq_hw_ctx *hctx;
892 int i;
893
894 queue_for_each_hw_ctx(q, hctx, i) {
895 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
896 continue;
897
898 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 899 preempt_disable();
1b4a3258 900 blk_mq_run_hw_queue(hctx, async);
e4043dcf 901 preempt_enable();
320ae51f
JA
902 }
903}
904EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
905
70f4db63 906static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
907{
908 struct blk_mq_hw_ctx *hctx;
909
70f4db63 910 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 911
320ae51f
JA
912 __blk_mq_run_hw_queue(hctx);
913}
914
70f4db63
CH
915static void blk_mq_delay_work_fn(struct work_struct *work)
916{
917 struct blk_mq_hw_ctx *hctx;
918
919 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
920
921 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
922 __blk_mq_run_hw_queue(hctx);
923}
924
925void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
926{
927 unsigned long tmo = msecs_to_jiffies(msecs);
928
929 if (hctx->queue->nr_hw_queues == 1)
930 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
931 else {
932 unsigned int cpu;
933
506e931f 934 cpu = blk_mq_hctx_next_cpu(hctx);
70f4db63
CH
935 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
936 }
937}
938EXPORT_SYMBOL(blk_mq_delay_queue);
939
320ae51f 940static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 941 struct request *rq, bool at_head)
320ae51f
JA
942{
943 struct blk_mq_ctx *ctx = rq->mq_ctx;
944
01b983c9
JA
945 trace_block_rq_insert(hctx->queue, rq);
946
72a0a36e
CH
947 if (at_head)
948 list_add(&rq->queuelist, &ctx->rq_list);
949 else
950 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 951
320ae51f 952 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
953}
954
eeabc850
CH
955void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
956 bool async)
320ae51f 957{
eeabc850 958 struct request_queue *q = rq->q;
320ae51f 959 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
960 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
961
962 current_ctx = blk_mq_get_ctx(q);
963 if (!cpu_online(ctx->cpu))
964 rq->mq_ctx = ctx = current_ctx;
320ae51f 965
320ae51f
JA
966 hctx = q->mq_ops->map_queue(q, ctx->cpu);
967
eeabc850
CH
968 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
969 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
970 blk_insert_flush(rq);
971 } else {
320ae51f 972 spin_lock(&ctx->lock);
72a0a36e 973 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 974 spin_unlock(&ctx->lock);
320ae51f
JA
975 }
976
320ae51f
JA
977 if (run_queue)
978 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
979
980 blk_mq_put_ctx(current_ctx);
320ae51f
JA
981}
982
983static void blk_mq_insert_requests(struct request_queue *q,
984 struct blk_mq_ctx *ctx,
985 struct list_head *list,
986 int depth,
987 bool from_schedule)
988
989{
990 struct blk_mq_hw_ctx *hctx;
991 struct blk_mq_ctx *current_ctx;
992
993 trace_block_unplug(q, depth, !from_schedule);
994
995 current_ctx = blk_mq_get_ctx(q);
996
997 if (!cpu_online(ctx->cpu))
998 ctx = current_ctx;
999 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1000
1001 /*
1002 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1003 * offline now
1004 */
1005 spin_lock(&ctx->lock);
1006 while (!list_empty(list)) {
1007 struct request *rq;
1008
1009 rq = list_first_entry(list, struct request, queuelist);
1010 list_del_init(&rq->queuelist);
1011 rq->mq_ctx = ctx;
72a0a36e 1012 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1013 }
1014 spin_unlock(&ctx->lock);
1015
320ae51f 1016 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1017 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1018}
1019
1020static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1021{
1022 struct request *rqa = container_of(a, struct request, queuelist);
1023 struct request *rqb = container_of(b, struct request, queuelist);
1024
1025 return !(rqa->mq_ctx < rqb->mq_ctx ||
1026 (rqa->mq_ctx == rqb->mq_ctx &&
1027 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1028}
1029
1030void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1031{
1032 struct blk_mq_ctx *this_ctx;
1033 struct request_queue *this_q;
1034 struct request *rq;
1035 LIST_HEAD(list);
1036 LIST_HEAD(ctx_list);
1037 unsigned int depth;
1038
1039 list_splice_init(&plug->mq_list, &list);
1040
1041 list_sort(NULL, &list, plug_ctx_cmp);
1042
1043 this_q = NULL;
1044 this_ctx = NULL;
1045 depth = 0;
1046
1047 while (!list_empty(&list)) {
1048 rq = list_entry_rq(list.next);
1049 list_del_init(&rq->queuelist);
1050 BUG_ON(!rq->q);
1051 if (rq->mq_ctx != this_ctx) {
1052 if (this_ctx) {
1053 blk_mq_insert_requests(this_q, this_ctx,
1054 &ctx_list, depth,
1055 from_schedule);
1056 }
1057
1058 this_ctx = rq->mq_ctx;
1059 this_q = rq->q;
1060 depth = 0;
1061 }
1062
1063 depth++;
1064 list_add_tail(&rq->queuelist, &ctx_list);
1065 }
1066
1067 /*
1068 * If 'this_ctx' is set, we know we have entries to complete
1069 * on 'ctx_list'. Do those.
1070 */
1071 if (this_ctx) {
1072 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1073 from_schedule);
1074 }
1075}
1076
1077static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1078{
1079 init_request_from_bio(rq, bio);
4b570521 1080
3ee32372 1081 if (blk_do_io_stat(rq))
4b570521 1082 blk_account_io_start(rq, 1);
320ae51f
JA
1083}
1084
07068d5b
JA
1085static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1086 struct blk_mq_ctx *ctx,
1087 struct request *rq, struct bio *bio)
320ae51f 1088{
07068d5b 1089 struct request_queue *q = hctx->queue;
320ae51f 1090
07068d5b
JA
1091 if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
1092 blk_mq_bio_to_request(rq, bio);
1093 spin_lock(&ctx->lock);
1094insert_rq:
1095 __blk_mq_insert_request(hctx, rq, false);
1096 spin_unlock(&ctx->lock);
1097 return false;
1098 } else {
1099 spin_lock(&ctx->lock);
1100 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1101 blk_mq_bio_to_request(rq, bio);
1102 goto insert_rq;
1103 }
320ae51f 1104
07068d5b
JA
1105 spin_unlock(&ctx->lock);
1106 __blk_mq_free_request(hctx, ctx, rq);
1107 return true;
14ec77f3 1108 }
07068d5b 1109}
14ec77f3 1110
07068d5b
JA
1111struct blk_map_ctx {
1112 struct blk_mq_hw_ctx *hctx;
1113 struct blk_mq_ctx *ctx;
1114};
1115
1116static struct request *blk_mq_map_request(struct request_queue *q,
1117 struct bio *bio,
1118 struct blk_map_ctx *data)
1119{
1120 struct blk_mq_hw_ctx *hctx;
1121 struct blk_mq_ctx *ctx;
1122 struct request *rq;
1123 int rw = bio_data_dir(bio);
cb96a42c 1124 struct blk_mq_alloc_data alloc_data;
320ae51f 1125
07068d5b 1126 if (unlikely(blk_mq_queue_enter(q))) {
320ae51f 1127 bio_endio(bio, -EIO);
07068d5b 1128 return NULL;
320ae51f
JA
1129 }
1130
1131 ctx = blk_mq_get_ctx(q);
1132 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1133
07068d5b 1134 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1135 rw |= REQ_SYNC;
07068d5b 1136
320ae51f 1137 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1138 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1139 hctx);
1140 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1141 if (unlikely(!rq)) {
793597a6 1142 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1143 blk_mq_put_ctx(ctx);
1144 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1145
1146 ctx = blk_mq_get_ctx(q);
320ae51f 1147 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1148 blk_mq_set_alloc_data(&alloc_data, q,
1149 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1150 rq = __blk_mq_alloc_request(&alloc_data, rw);
1151 ctx = alloc_data.ctx;
1152 hctx = alloc_data.hctx;
320ae51f
JA
1153 }
1154
1155 hctx->queued++;
07068d5b
JA
1156 data->hctx = hctx;
1157 data->ctx = ctx;
1158 return rq;
1159}
1160
1161/*
1162 * Multiple hardware queue variant. This will not use per-process plugs,
1163 * but will attempt to bypass the hctx queueing if we can go straight to
1164 * hardware for SYNC IO.
1165 */
1166static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1167{
1168 const int is_sync = rw_is_sync(bio->bi_rw);
1169 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1170 struct blk_map_ctx data;
1171 struct request *rq;
1172
1173 blk_queue_bounce(q, &bio);
1174
1175 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1176 bio_endio(bio, -EIO);
1177 return;
1178 }
1179
1180 rq = blk_mq_map_request(q, bio, &data);
1181 if (unlikely(!rq))
1182 return;
1183
1184 if (unlikely(is_flush_fua)) {
1185 blk_mq_bio_to_request(rq, bio);
1186 blk_insert_flush(rq);
1187 goto run_queue;
1188 }
1189
1190 if (is_sync) {
1191 int ret;
1192
1193 blk_mq_bio_to_request(rq, bio);
1194 blk_mq_start_request(rq, true);
1195
1196 /*
1197 * For OK queue, we are done. For error, kill it. Any other
1198 * error (busy), just add it to our list as we previously
1199 * would have done
1200 */
1201 ret = q->mq_ops->queue_rq(data.hctx, rq);
1202 if (ret == BLK_MQ_RQ_QUEUE_OK)
1203 goto done;
1204 else {
1205 __blk_mq_requeue_request(rq);
1206
1207 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1208 rq->errors = -EIO;
1209 blk_mq_end_io(rq, rq->errors);
1210 goto done;
1211 }
1212 }
1213 }
1214
1215 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1216 /*
1217 * For a SYNC request, send it to the hardware immediately. For
1218 * an ASYNC request, just ensure that we run it later on. The
1219 * latter allows for merging opportunities and more efficient
1220 * dispatching.
1221 */
1222run_queue:
1223 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1224 }
1225done:
1226 blk_mq_put_ctx(data.ctx);
1227}
1228
1229/*
1230 * Single hardware queue variant. This will attempt to use any per-process
1231 * plug for merging and IO deferral.
1232 */
1233static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1234{
1235 const int is_sync = rw_is_sync(bio->bi_rw);
1236 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1237 unsigned int use_plug, request_count = 0;
1238 struct blk_map_ctx data;
1239 struct request *rq;
1240
1241 /*
1242 * If we have multiple hardware queues, just go directly to
1243 * one of those for sync IO.
1244 */
1245 use_plug = !is_flush_fua && !is_sync;
1246
1247 blk_queue_bounce(q, &bio);
1248
1249 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1250 bio_endio(bio, -EIO);
1251 return;
1252 }
1253
1254 if (use_plug && !blk_queue_nomerges(q) &&
1255 blk_attempt_plug_merge(q, bio, &request_count))
1256 return;
1257
1258 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1259 if (unlikely(!rq))
1260 return;
320ae51f
JA
1261
1262 if (unlikely(is_flush_fua)) {
1263 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1264 blk_insert_flush(rq);
1265 goto run_queue;
1266 }
1267
1268 /*
1269 * A task plug currently exists. Since this is completely lockless,
1270 * utilize that to temporarily store requests until the task is
1271 * either done or scheduled away.
1272 */
1273 if (use_plug) {
1274 struct blk_plug *plug = current->plug;
1275
1276 if (plug) {
1277 blk_mq_bio_to_request(rq, bio);
92f399c7 1278 if (list_empty(&plug->mq_list))
320ae51f
JA
1279 trace_block_plug(q);
1280 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1281 blk_flush_plug_list(plug, false);
1282 trace_block_plug(q);
1283 }
1284 list_add_tail(&rq->queuelist, &plug->mq_list);
07068d5b 1285 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1286 return;
1287 }
1288 }
1289
07068d5b
JA
1290 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1291 /*
1292 * For a SYNC request, send it to the hardware immediately. For
1293 * an ASYNC request, just ensure that we run it later on. The
1294 * latter allows for merging opportunities and more efficient
1295 * dispatching.
1296 */
1297run_queue:
1298 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1299 }
1300
07068d5b 1301 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1302}
1303
1304/*
1305 * Default mapping to a software queue, since we use one per CPU.
1306 */
1307struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1308{
1309 return q->queue_hw_ctx[q->mq_map[cpu]];
1310}
1311EXPORT_SYMBOL(blk_mq_map_queue);
1312
24d2f903
CH
1313static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1314 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1315{
e9b267d9 1316 struct page *page;
320ae51f 1317
24d2f903 1318 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1319 int i;
320ae51f 1320
24d2f903
CH
1321 for (i = 0; i < tags->nr_tags; i++) {
1322 if (!tags->rqs[i])
e9b267d9 1323 continue;
24d2f903
CH
1324 set->ops->exit_request(set->driver_data, tags->rqs[i],
1325 hctx_idx, i);
e9b267d9 1326 }
320ae51f 1327 }
320ae51f 1328
24d2f903
CH
1329 while (!list_empty(&tags->page_list)) {
1330 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1331 list_del_init(&page->lru);
320ae51f
JA
1332 __free_pages(page, page->private);
1333 }
1334
24d2f903 1335 kfree(tags->rqs);
320ae51f 1336
24d2f903 1337 blk_mq_free_tags(tags);
320ae51f
JA
1338}
1339
1340static size_t order_to_size(unsigned int order)
1341{
4ca08500 1342 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1343}
1344
24d2f903
CH
1345static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1346 unsigned int hctx_idx)
320ae51f 1347{
24d2f903 1348 struct blk_mq_tags *tags;
320ae51f
JA
1349 unsigned int i, j, entries_per_page, max_order = 4;
1350 size_t rq_size, left;
1351
24d2f903
CH
1352 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1353 set->numa_node);
1354 if (!tags)
1355 return NULL;
320ae51f 1356
24d2f903
CH
1357 INIT_LIST_HEAD(&tags->page_list);
1358
1359 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1360 GFP_KERNEL, set->numa_node);
1361 if (!tags->rqs) {
1362 blk_mq_free_tags(tags);
1363 return NULL;
1364 }
320ae51f
JA
1365
1366 /*
1367 * rq_size is the size of the request plus driver payload, rounded
1368 * to the cacheline size
1369 */
24d2f903 1370 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1371 cache_line_size());
24d2f903 1372 left = rq_size * set->queue_depth;
320ae51f 1373
24d2f903 1374 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1375 int this_order = max_order;
1376 struct page *page;
1377 int to_do;
1378 void *p;
1379
1380 while (left < order_to_size(this_order - 1) && this_order)
1381 this_order--;
1382
1383 do {
24d2f903
CH
1384 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1385 this_order);
320ae51f
JA
1386 if (page)
1387 break;
1388 if (!this_order--)
1389 break;
1390 if (order_to_size(this_order) < rq_size)
1391 break;
1392 } while (1);
1393
1394 if (!page)
24d2f903 1395 goto fail;
320ae51f
JA
1396
1397 page->private = this_order;
24d2f903 1398 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1399
1400 p = page_address(page);
1401 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1402 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1403 left -= to_do * rq_size;
1404 for (j = 0; j < to_do; j++) {
24d2f903
CH
1405 tags->rqs[i] = p;
1406 if (set->ops->init_request) {
1407 if (set->ops->init_request(set->driver_data,
1408 tags->rqs[i], hctx_idx, i,
1409 set->numa_node))
1410 goto fail;
e9b267d9
CH
1411 }
1412
320ae51f
JA
1413 p += rq_size;
1414 i++;
1415 }
1416 }
1417
24d2f903 1418 return tags;
320ae51f 1419
24d2f903
CH
1420fail:
1421 pr_warn("%s: failed to allocate requests\n", __func__);
1422 blk_mq_free_rq_map(set, tags, hctx_idx);
1423 return NULL;
320ae51f
JA
1424}
1425
1429d7c9
JA
1426static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1427{
1428 kfree(bitmap->map);
1429}
1430
1431static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1432{
1433 unsigned int bpw = 8, total, num_maps, i;
1434
1435 bitmap->bits_per_word = bpw;
1436
1437 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1438 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1439 GFP_KERNEL, node);
1440 if (!bitmap->map)
1441 return -ENOMEM;
1442
1443 bitmap->map_size = num_maps;
1444
1445 total = nr_cpu_ids;
1446 for (i = 0; i < num_maps; i++) {
1447 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1448 total -= bitmap->map[i].depth;
1449 }
1450
1451 return 0;
1452}
1453
484b4061
JA
1454static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1455{
1456 struct request_queue *q = hctx->queue;
1457 struct blk_mq_ctx *ctx;
1458 LIST_HEAD(tmp);
1459
1460 /*
1461 * Move ctx entries to new CPU, if this one is going away.
1462 */
1463 ctx = __blk_mq_get_ctx(q, cpu);
1464
1465 spin_lock(&ctx->lock);
1466 if (!list_empty(&ctx->rq_list)) {
1467 list_splice_init(&ctx->rq_list, &tmp);
1468 blk_mq_hctx_clear_pending(hctx, ctx);
1469 }
1470 spin_unlock(&ctx->lock);
1471
1472 if (list_empty(&tmp))
1473 return NOTIFY_OK;
1474
1475 ctx = blk_mq_get_ctx(q);
1476 spin_lock(&ctx->lock);
1477
1478 while (!list_empty(&tmp)) {
1479 struct request *rq;
1480
1481 rq = list_first_entry(&tmp, struct request, queuelist);
1482 rq->mq_ctx = ctx;
1483 list_move_tail(&rq->queuelist, &ctx->rq_list);
1484 }
1485
1486 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1487 blk_mq_hctx_mark_pending(hctx, ctx);
1488
1489 spin_unlock(&ctx->lock);
1490
1491 blk_mq_run_hw_queue(hctx, true);
1492 blk_mq_put_ctx(ctx);
1493 return NOTIFY_OK;
1494}
1495
1496static int blk_mq_hctx_cpu_online(struct blk_mq_hw_ctx *hctx, int cpu)
1497{
1498 struct request_queue *q = hctx->queue;
1499 struct blk_mq_tag_set *set = q->tag_set;
1500
1501 if (set->tags[hctx->queue_num])
1502 return NOTIFY_OK;
1503
1504 set->tags[hctx->queue_num] = blk_mq_init_rq_map(set, hctx->queue_num);
1505 if (!set->tags[hctx->queue_num])
1506 return NOTIFY_STOP;
1507
1508 hctx->tags = set->tags[hctx->queue_num];
1509 return NOTIFY_OK;
1510}
1511
1512static int blk_mq_hctx_notify(void *data, unsigned long action,
1513 unsigned int cpu)
1514{
1515 struct blk_mq_hw_ctx *hctx = data;
1516
1517 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1518 return blk_mq_hctx_cpu_offline(hctx, cpu);
1519 else if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN)
1520 return blk_mq_hctx_cpu_online(hctx, cpu);
1521
1522 return NOTIFY_OK;
1523}
1524
624dbe47
ML
1525static void blk_mq_exit_hw_queues(struct request_queue *q,
1526 struct blk_mq_tag_set *set, int nr_queue)
1527{
1528 struct blk_mq_hw_ctx *hctx;
1529 unsigned int i;
1530
1531 queue_for_each_hw_ctx(q, hctx, i) {
1532 if (i == nr_queue)
1533 break;
1534
f899fed4
JA
1535 blk_mq_tag_idle(hctx);
1536
624dbe47
ML
1537 if (set->ops->exit_hctx)
1538 set->ops->exit_hctx(hctx, i);
1539
1540 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1541 kfree(hctx->ctxs);
1542 blk_mq_free_bitmap(&hctx->ctx_map);
1543 }
1544
1545}
1546
1547static void blk_mq_free_hw_queues(struct request_queue *q,
1548 struct blk_mq_tag_set *set)
1549{
1550 struct blk_mq_hw_ctx *hctx;
1551 unsigned int i;
1552
1553 queue_for_each_hw_ctx(q, hctx, i) {
1554 free_cpumask_var(hctx->cpumask);
cdef54dd 1555 kfree(hctx);
624dbe47
ML
1556 }
1557}
1558
320ae51f 1559static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1560 struct blk_mq_tag_set *set)
320ae51f
JA
1561{
1562 struct blk_mq_hw_ctx *hctx;
624dbe47 1563 unsigned int i;
320ae51f
JA
1564
1565 /*
1566 * Initialize hardware queues
1567 */
1568 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1569 int node;
1570
1571 node = hctx->numa_node;
1572 if (node == NUMA_NO_NODE)
24d2f903 1573 node = hctx->numa_node = set->numa_node;
320ae51f 1574
70f4db63
CH
1575 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1576 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1577 spin_lock_init(&hctx->lock);
1578 INIT_LIST_HEAD(&hctx->dispatch);
1579 hctx->queue = q;
1580 hctx->queue_num = i;
24d2f903
CH
1581 hctx->flags = set->flags;
1582 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1583
1584 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1585 blk_mq_hctx_notify, hctx);
1586 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1587
24d2f903 1588 hctx->tags = set->tags[i];
320ae51f
JA
1589
1590 /*
1591 * Allocate space for all possible cpus to avoid allocation in
1592 * runtime
1593 */
1594 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1595 GFP_KERNEL, node);
1596 if (!hctx->ctxs)
1597 break;
1598
1429d7c9 1599 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
320ae51f
JA
1600 break;
1601
320ae51f
JA
1602 hctx->nr_ctx = 0;
1603
24d2f903
CH
1604 if (set->ops->init_hctx &&
1605 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1606 break;
1607 }
1608
1609 if (i == q->nr_hw_queues)
1610 return 0;
1611
1612 /*
1613 * Init failed
1614 */
624dbe47 1615 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1616
1617 return 1;
1618}
1619
1620static void blk_mq_init_cpu_queues(struct request_queue *q,
1621 unsigned int nr_hw_queues)
1622{
1623 unsigned int i;
1624
1625 for_each_possible_cpu(i) {
1626 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1627 struct blk_mq_hw_ctx *hctx;
1628
1629 memset(__ctx, 0, sizeof(*__ctx));
1630 __ctx->cpu = i;
1631 spin_lock_init(&__ctx->lock);
1632 INIT_LIST_HEAD(&__ctx->rq_list);
1633 __ctx->queue = q;
1634
1635 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1636 if (!cpu_online(i))
1637 continue;
1638
e4043dcf
JA
1639 hctx = q->mq_ops->map_queue(q, i);
1640 cpumask_set_cpu(i, hctx->cpumask);
1641 hctx->nr_ctx++;
1642
320ae51f
JA
1643 /*
1644 * Set local node, IFF we have more than one hw queue. If
1645 * not, we remain on the home node of the device
1646 */
1647 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1648 hctx->numa_node = cpu_to_node(i);
1649 }
1650}
1651
1652static void blk_mq_map_swqueue(struct request_queue *q)
1653{
1654 unsigned int i;
1655 struct blk_mq_hw_ctx *hctx;
1656 struct blk_mq_ctx *ctx;
1657
1658 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1659 cpumask_clear(hctx->cpumask);
320ae51f
JA
1660 hctx->nr_ctx = 0;
1661 }
1662
1663 /*
1664 * Map software to hardware queues
1665 */
1666 queue_for_each_ctx(q, ctx, i) {
1667 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1668 if (!cpu_online(i))
1669 continue;
1670
320ae51f 1671 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1672 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1673 ctx->index_hw = hctx->nr_ctx;
1674 hctx->ctxs[hctx->nr_ctx++] = ctx;
1675 }
506e931f
JA
1676
1677 queue_for_each_hw_ctx(q, hctx, i) {
484b4061
JA
1678 /*
1679 * If not software queues are mapped to this hardware queue,
1680 * disable it and free the request entries
1681 */
1682 if (!hctx->nr_ctx) {
1683 struct blk_mq_tag_set *set = q->tag_set;
1684
1685 if (set->tags[i]) {
1686 blk_mq_free_rq_map(set, set->tags[i], i);
1687 set->tags[i] = NULL;
1688 hctx->tags = NULL;
1689 }
1690 continue;
1691 }
1692
1693 /*
1694 * Initialize batch roundrobin counts
1695 */
506e931f
JA
1696 hctx->next_cpu = cpumask_first(hctx->cpumask);
1697 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1698 }
320ae51f
JA
1699}
1700
0d2602ca
JA
1701static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1702{
1703 struct blk_mq_hw_ctx *hctx;
1704 struct request_queue *q;
1705 bool shared;
1706 int i;
1707
1708 if (set->tag_list.next == set->tag_list.prev)
1709 shared = false;
1710 else
1711 shared = true;
1712
1713 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1714 blk_mq_freeze_queue(q);
1715
1716 queue_for_each_hw_ctx(q, hctx, i) {
1717 if (shared)
1718 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1719 else
1720 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1721 }
1722 blk_mq_unfreeze_queue(q);
1723 }
1724}
1725
1726static void blk_mq_del_queue_tag_set(struct request_queue *q)
1727{
1728 struct blk_mq_tag_set *set = q->tag_set;
1729
1730 blk_mq_freeze_queue(q);
1731
1732 mutex_lock(&set->tag_list_lock);
1733 list_del_init(&q->tag_set_list);
1734 blk_mq_update_tag_set_depth(set);
1735 mutex_unlock(&set->tag_list_lock);
1736
1737 blk_mq_unfreeze_queue(q);
1738}
1739
1740static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1741 struct request_queue *q)
1742{
1743 q->tag_set = set;
1744
1745 mutex_lock(&set->tag_list_lock);
1746 list_add_tail(&q->tag_set_list, &set->tag_list);
1747 blk_mq_update_tag_set_depth(set);
1748 mutex_unlock(&set->tag_list_lock);
1749}
1750
24d2f903 1751struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1752{
1753 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1754 struct blk_mq_ctx __percpu *ctx;
320ae51f 1755 struct request_queue *q;
f14bbe77 1756 unsigned int *map;
320ae51f
JA
1757 int i;
1758
320ae51f
JA
1759 ctx = alloc_percpu(struct blk_mq_ctx);
1760 if (!ctx)
1761 return ERR_PTR(-ENOMEM);
1762
24d2f903
CH
1763 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1764 set->numa_node);
320ae51f
JA
1765
1766 if (!hctxs)
1767 goto err_percpu;
1768
f14bbe77
JA
1769 map = blk_mq_make_queue_map(set);
1770 if (!map)
1771 goto err_map;
1772
24d2f903 1773 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1774 int node = blk_mq_hw_queue_to_node(map, i);
1775
cdef54dd
CH
1776 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1777 GFP_KERNEL, node);
320ae51f
JA
1778 if (!hctxs[i])
1779 goto err_hctxs;
1780
e4043dcf
JA
1781 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1782 goto err_hctxs;
1783
0d2602ca 1784 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1785 hctxs[i]->numa_node = node;
320ae51f
JA
1786 hctxs[i]->queue_num = i;
1787 }
1788
24d2f903 1789 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1790 if (!q)
1791 goto err_hctxs;
1792
3d2936f4
ML
1793 if (percpu_counter_init(&q->mq_usage_counter, 0))
1794 goto err_map;
1795
320ae51f
JA
1796 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1797 blk_queue_rq_timeout(q, 30000);
1798
1799 q->nr_queues = nr_cpu_ids;
24d2f903 1800 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1801 q->mq_map = map;
320ae51f
JA
1802
1803 q->queue_ctx = ctx;
1804 q->queue_hw_ctx = hctxs;
1805
24d2f903 1806 q->mq_ops = set->ops;
94eddfbe 1807 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1808
05f1dd53
JA
1809 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1810 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1811
1be036e9
CH
1812 q->sg_reserved_size = INT_MAX;
1813
6fca6a61
CH
1814 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1815 INIT_LIST_HEAD(&q->requeue_list);
1816 spin_lock_init(&q->requeue_lock);
1817
07068d5b
JA
1818 if (q->nr_hw_queues > 1)
1819 blk_queue_make_request(q, blk_mq_make_request);
1820 else
1821 blk_queue_make_request(q, blk_sq_make_request);
1822
87ee7b11 1823 blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
24d2f903
CH
1824 if (set->timeout)
1825 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1826
eba71768
JA
1827 /*
1828 * Do this after blk_queue_make_request() overrides it...
1829 */
1830 q->nr_requests = set->queue_depth;
1831
24d2f903
CH
1832 if (set->ops->complete)
1833 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1834
320ae51f 1835 blk_mq_init_flush(q);
24d2f903 1836 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1837
24d2f903
CH
1838 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1839 set->cmd_size, cache_line_size()),
1840 GFP_KERNEL);
18741986 1841 if (!q->flush_rq)
320ae51f
JA
1842 goto err_hw;
1843
24d2f903 1844 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1845 goto err_flush_rq;
1846
320ae51f
JA
1847 mutex_lock(&all_q_mutex);
1848 list_add_tail(&q->all_q_node, &all_q_list);
1849 mutex_unlock(&all_q_mutex);
1850
0d2602ca
JA
1851 blk_mq_add_queue_tag_set(set, q);
1852
484b4061
JA
1853 blk_mq_map_swqueue(q);
1854
320ae51f 1855 return q;
18741986
CH
1856
1857err_flush_rq:
1858 kfree(q->flush_rq);
320ae51f 1859err_hw:
320ae51f
JA
1860 blk_cleanup_queue(q);
1861err_hctxs:
f14bbe77 1862 kfree(map);
24d2f903 1863 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1864 if (!hctxs[i])
1865 break;
e4043dcf 1866 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 1867 kfree(hctxs[i]);
320ae51f 1868 }
f14bbe77 1869err_map:
320ae51f
JA
1870 kfree(hctxs);
1871err_percpu:
1872 free_percpu(ctx);
1873 return ERR_PTR(-ENOMEM);
1874}
1875EXPORT_SYMBOL(blk_mq_init_queue);
1876
1877void blk_mq_free_queue(struct request_queue *q)
1878{
624dbe47 1879 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1880
0d2602ca
JA
1881 blk_mq_del_queue_tag_set(q);
1882
624dbe47
ML
1883 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
1884 blk_mq_free_hw_queues(q, set);
320ae51f 1885
3d2936f4
ML
1886 percpu_counter_destroy(&q->mq_usage_counter);
1887
320ae51f
JA
1888 free_percpu(q->queue_ctx);
1889 kfree(q->queue_hw_ctx);
1890 kfree(q->mq_map);
1891
1892 q->queue_ctx = NULL;
1893 q->queue_hw_ctx = NULL;
1894 q->mq_map = NULL;
1895
1896 mutex_lock(&all_q_mutex);
1897 list_del_init(&q->all_q_node);
1898 mutex_unlock(&all_q_mutex);
1899}
320ae51f
JA
1900
1901/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1902static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1903{
1904 blk_mq_freeze_queue(q);
1905
67aec14c
JA
1906 blk_mq_sysfs_unregister(q);
1907
320ae51f
JA
1908 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1909
1910 /*
1911 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1912 * we should change hctx numa_node according to new topology (this
1913 * involves free and re-allocate memory, worthy doing?)
1914 */
1915
1916 blk_mq_map_swqueue(q);
1917
67aec14c
JA
1918 blk_mq_sysfs_register(q);
1919
320ae51f
JA
1920 blk_mq_unfreeze_queue(q);
1921}
1922
f618ef7c
PG
1923static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1924 unsigned long action, void *hcpu)
320ae51f
JA
1925{
1926 struct request_queue *q;
1927
1928 /*
9fccfed8
JA
1929 * Before new mappings are established, hotadded cpu might already
1930 * start handling requests. This doesn't break anything as we map
1931 * offline CPUs to first hardware queue. We will re-init the queue
1932 * below to get optimal settings.
320ae51f
JA
1933 */
1934 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1935 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1936 return NOTIFY_OK;
1937
1938 mutex_lock(&all_q_mutex);
1939 list_for_each_entry(q, &all_q_list, all_q_node)
1940 blk_mq_queue_reinit(q);
1941 mutex_unlock(&all_q_mutex);
1942 return NOTIFY_OK;
1943}
1944
a4391c64
JA
1945/*
1946 * Alloc a tag set to be associated with one or more request queues.
1947 * May fail with EINVAL for various error conditions. May adjust the
1948 * requested depth down, if if it too large. In that case, the set
1949 * value will be stored in set->queue_depth.
1950 */
24d2f903
CH
1951int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1952{
1953 int i;
1954
1955 if (!set->nr_hw_queues)
1956 return -EINVAL;
a4391c64 1957 if (!set->queue_depth)
24d2f903
CH
1958 return -EINVAL;
1959 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1960 return -EINVAL;
1961
cdef54dd 1962 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
1963 return -EINVAL;
1964
a4391c64
JA
1965 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
1966 pr_info("blk-mq: reduced tag depth to %u\n",
1967 BLK_MQ_MAX_DEPTH);
1968 set->queue_depth = BLK_MQ_MAX_DEPTH;
1969 }
24d2f903 1970
48479005
ML
1971 set->tags = kmalloc_node(set->nr_hw_queues *
1972 sizeof(struct blk_mq_tags *),
24d2f903
CH
1973 GFP_KERNEL, set->numa_node);
1974 if (!set->tags)
1975 goto out;
1976
1977 for (i = 0; i < set->nr_hw_queues; i++) {
1978 set->tags[i] = blk_mq_init_rq_map(set, i);
1979 if (!set->tags[i])
1980 goto out_unwind;
1981 }
1982
0d2602ca
JA
1983 mutex_init(&set->tag_list_lock);
1984 INIT_LIST_HEAD(&set->tag_list);
1985
24d2f903
CH
1986 return 0;
1987
1988out_unwind:
1989 while (--i >= 0)
1990 blk_mq_free_rq_map(set, set->tags[i], i);
1991out:
1992 return -ENOMEM;
1993}
1994EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1995
1996void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1997{
1998 int i;
1999
484b4061
JA
2000 for (i = 0; i < set->nr_hw_queues; i++) {
2001 if (set->tags[i])
2002 blk_mq_free_rq_map(set, set->tags[i], i);
2003 }
2004
981bd189 2005 kfree(set->tags);
24d2f903
CH
2006}
2007EXPORT_SYMBOL(blk_mq_free_tag_set);
2008
e3a2b3f9
JA
2009int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2010{
2011 struct blk_mq_tag_set *set = q->tag_set;
2012 struct blk_mq_hw_ctx *hctx;
2013 int i, ret;
2014
2015 if (!set || nr > set->queue_depth)
2016 return -EINVAL;
2017
2018 ret = 0;
2019 queue_for_each_hw_ctx(q, hctx, i) {
2020 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2021 if (ret)
2022 break;
2023 }
2024
2025 if (!ret)
2026 q->nr_requests = nr;
2027
2028 return ret;
2029}
2030
676141e4
JA
2031void blk_mq_disable_hotplug(void)
2032{
2033 mutex_lock(&all_q_mutex);
2034}
2035
2036void blk_mq_enable_hotplug(void)
2037{
2038 mutex_unlock(&all_q_mutex);
2039}
2040
320ae51f
JA
2041static int __init blk_mq_init(void)
2042{
320ae51f
JA
2043 blk_mq_cpu_init();
2044
2045 /* Must be called after percpu_counter_hotcpu_callback() */
2046 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
2047
2048 return 0;
2049}
2050subsys_initcall(blk_mq_init);