blk-mq: fix allocation of set->tags
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64}
65
66/*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71{
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74}
75
081241e5
CH
76static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
77 gfp_t gfp, bool reserved)
320ae51f
JA
78{
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
24d2f903 84 rq = hctx->tags->rqs[tag];
ed44832d 85 blk_rq_init(hctx->queue, rq);
320ae51f
JA
86 rq->tag = tag;
87
88 return rq;
89 }
90
91 return NULL;
92}
93
94static int blk_mq_queue_enter(struct request_queue *q)
95{
96 int ret;
97
98 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
99 smp_wmb();
100 /* we have problems to freeze the queue if it's initializing */
101 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
102 return 0;
103
104 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
105
106 spin_lock_irq(q->queue_lock);
107 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
108 !blk_queue_bypass(q) || blk_queue_dying(q),
109 *q->queue_lock);
320ae51f 110 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 111 if (!ret && !blk_queue_dying(q))
320ae51f 112 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
113 else if (blk_queue_dying(q))
114 ret = -ENODEV;
320ae51f
JA
115 spin_unlock_irq(q->queue_lock);
116
117 return ret;
118}
119
120static void blk_mq_queue_exit(struct request_queue *q)
121{
122 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
123}
124
43a5e4e2
ML
125static void __blk_mq_drain_queue(struct request_queue *q)
126{
127 while (true) {
128 s64 count;
129
130 spin_lock_irq(q->queue_lock);
131 count = percpu_counter_sum(&q->mq_usage_counter);
132 spin_unlock_irq(q->queue_lock);
133
134 if (count == 0)
135 break;
136 blk_mq_run_queues(q, false);
137 msleep(10);
138 }
139}
140
320ae51f
JA
141/*
142 * Guarantee no request is in use, so we can change any data structure of
143 * the queue afterward.
144 */
145static void blk_mq_freeze_queue(struct request_queue *q)
146{
147 bool drain;
148
149 spin_lock_irq(q->queue_lock);
150 drain = !q->bypass_depth++;
151 queue_flag_set(QUEUE_FLAG_BYPASS, q);
152 spin_unlock_irq(q->queue_lock);
153
43a5e4e2
ML
154 if (drain)
155 __blk_mq_drain_queue(q);
156}
320ae51f 157
43a5e4e2
ML
158void blk_mq_drain_queue(struct request_queue *q)
159{
160 __blk_mq_drain_queue(q);
320ae51f
JA
161}
162
163static void blk_mq_unfreeze_queue(struct request_queue *q)
164{
165 bool wake = false;
166
167 spin_lock_irq(q->queue_lock);
168 if (!--q->bypass_depth) {
169 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
170 wake = true;
171 }
172 WARN_ON_ONCE(q->bypass_depth < 0);
173 spin_unlock_irq(q->queue_lock);
174 if (wake)
175 wake_up_all(&q->mq_freeze_wq);
176}
177
178bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
179{
180 return blk_mq_has_free_tags(hctx->tags);
181}
182EXPORT_SYMBOL(blk_mq_can_queue);
183
94eddfbe
JA
184static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
185 struct request *rq, unsigned int rw_flags)
320ae51f 186{
94eddfbe
JA
187 if (blk_queue_io_stat(q))
188 rw_flags |= REQ_IO_STAT;
189
320ae51f
JA
190 rq->mq_ctx = ctx;
191 rq->cmd_flags = rw_flags;
0fec08b4
ML
192 rq->start_time = jiffies;
193 set_start_time_ns(rq);
320ae51f
JA
194 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
195}
196
320ae51f
JA
197static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
198 int rw, gfp_t gfp,
199 bool reserved)
200{
201 struct request *rq;
202
203 do {
204 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
205 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
206
18741986 207 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
320ae51f 208 if (rq) {
94eddfbe 209 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 210 break;
959a35f1 211 }
320ae51f 212
e4043dcf
JA
213 if (gfp & __GFP_WAIT) {
214 __blk_mq_run_hw_queue(hctx);
215 blk_mq_put_ctx(ctx);
216 } else {
217 blk_mq_put_ctx(ctx);
959a35f1 218 break;
e4043dcf 219 }
959a35f1 220
320ae51f
JA
221 blk_mq_wait_for_tags(hctx->tags);
222 } while (1);
223
224 return rq;
225}
226
18741986 227struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
320ae51f
JA
228{
229 struct request *rq;
230
231 if (blk_mq_queue_enter(q))
232 return NULL;
233
18741986 234 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
959a35f1
JM
235 if (rq)
236 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
237 return rq;
238}
239
240struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
241 gfp_t gfp)
242{
243 struct request *rq;
244
245 if (blk_mq_queue_enter(q))
246 return NULL;
247
248 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
249 if (rq)
250 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
251 return rq;
252}
253EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
254
320ae51f
JA
255static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
256 struct blk_mq_ctx *ctx, struct request *rq)
257{
258 const int tag = rq->tag;
259 struct request_queue *q = rq->q;
260
320ae51f 261 blk_mq_put_tag(hctx->tags, tag);
320ae51f
JA
262 blk_mq_queue_exit(q);
263}
264
265void blk_mq_free_request(struct request *rq)
266{
267 struct blk_mq_ctx *ctx = rq->mq_ctx;
268 struct blk_mq_hw_ctx *hctx;
269 struct request_queue *q = rq->q;
270
271 ctx->rq_completed[rq_is_sync(rq)]++;
272
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 __blk_mq_free_request(hctx, ctx, rq);
275}
276
8727af4b
CH
277/*
278 * Clone all relevant state from a request that has been put on hold in
279 * the flush state machine into the preallocated flush request that hangs
280 * off the request queue.
281 *
282 * For a driver the flush request should be invisible, that's why we are
283 * impersonating the original request here.
284 */
285void blk_mq_clone_flush_request(struct request *flush_rq,
286 struct request *orig_rq)
287{
288 struct blk_mq_hw_ctx *hctx =
289 orig_rq->q->mq_ops->map_queue(orig_rq->q, orig_rq->mq_ctx->cpu);
290
291 flush_rq->mq_ctx = orig_rq->mq_ctx;
292 flush_rq->tag = orig_rq->tag;
293 memcpy(blk_mq_rq_to_pdu(flush_rq), blk_mq_rq_to_pdu(orig_rq),
294 hctx->cmd_size);
295}
296
63151a44 297inline void __blk_mq_end_io(struct request *rq, int error)
320ae51f 298{
0d11e6ac
ML
299 blk_account_io_done(rq);
300
91b63639 301 if (rq->end_io) {
320ae51f 302 rq->end_io(rq, error);
91b63639
CH
303 } else {
304 if (unlikely(blk_bidi_rq(rq)))
305 blk_mq_free_request(rq->next_rq);
320ae51f 306 blk_mq_free_request(rq);
91b63639 307 }
320ae51f 308}
63151a44
CH
309EXPORT_SYMBOL(__blk_mq_end_io);
310
311void blk_mq_end_io(struct request *rq, int error)
312{
313 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
314 BUG();
315 __blk_mq_end_io(rq, error);
316}
317EXPORT_SYMBOL(blk_mq_end_io);
320ae51f 318
30a91cb4 319static void __blk_mq_complete_request_remote(void *data)
320ae51f 320{
3d6efbf6 321 struct request *rq = data;
320ae51f 322
30a91cb4 323 rq->q->softirq_done_fn(rq);
320ae51f 324}
320ae51f 325
30a91cb4 326void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
327{
328 struct blk_mq_ctx *ctx = rq->mq_ctx;
329 int cpu;
330
30a91cb4
CH
331 if (!ctx->ipi_redirect) {
332 rq->q->softirq_done_fn(rq);
333 return;
334 }
320ae51f
JA
335
336 cpu = get_cpu();
3d6efbf6 337 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
30a91cb4 338 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
339 rq->csd.info = rq;
340 rq->csd.flags = 0;
c46fff2a 341 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 342 } else {
30a91cb4 343 rq->q->softirq_done_fn(rq);
3d6efbf6 344 }
320ae51f
JA
345 put_cpu();
346}
30a91cb4
CH
347
348/**
349 * blk_mq_complete_request - end I/O on a request
350 * @rq: the request being processed
351 *
352 * Description:
353 * Ends all I/O on a request. It does not handle partial completions.
354 * The actual completion happens out-of-order, through a IPI handler.
355 **/
356void blk_mq_complete_request(struct request *rq)
357{
358 if (unlikely(blk_should_fake_timeout(rq->q)))
359 return;
360 if (!blk_mark_rq_complete(rq))
361 __blk_mq_complete_request(rq);
362}
363EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 364
49f5baa5 365static void blk_mq_start_request(struct request *rq, bool last)
320ae51f
JA
366{
367 struct request_queue *q = rq->q;
368
369 trace_block_rq_issue(q, rq);
370
742ee69b 371 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
372 if (unlikely(blk_bidi_rq(rq)))
373 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 374
320ae51f
JA
375 /*
376 * Just mark start time and set the started bit. Due to memory
377 * ordering, we know we'll see the correct deadline as long as
378 * REQ_ATOMIC_STARTED is seen.
379 */
380 rq->deadline = jiffies + q->rq_timeout;
381 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
382
383 if (q->dma_drain_size && blk_rq_bytes(rq)) {
384 /*
385 * Make sure space for the drain appears. We know we can do
386 * this because max_hw_segments has been adjusted to be one
387 * fewer than the device can handle.
388 */
389 rq->nr_phys_segments++;
390 }
391
392 /*
393 * Flag the last request in the series so that drivers know when IO
394 * should be kicked off, if they don't do it on a per-request basis.
395 *
396 * Note: the flag isn't the only condition drivers should do kick off.
397 * If drive is busy, the last request might not have the bit set.
398 */
399 if (last)
400 rq->cmd_flags |= REQ_END;
320ae51f
JA
401}
402
ed0791b2 403static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
404{
405 struct request_queue *q = rq->q;
406
407 trace_block_rq_requeue(q, rq);
408 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
49f5baa5
CH
409
410 rq->cmd_flags &= ~REQ_END;
411
412 if (q->dma_drain_size && blk_rq_bytes(rq))
413 rq->nr_phys_segments--;
320ae51f
JA
414}
415
ed0791b2
CH
416void blk_mq_requeue_request(struct request *rq)
417{
418 struct request_queue *q = rq->q;
419
420 __blk_mq_requeue_request(rq);
421 blk_clear_rq_complete(rq);
422
423 trace_block_rq_requeue(q, rq);
424
425 BUG_ON(blk_queued_rq(rq));
426 blk_mq_insert_request(rq, true, true, false);
427}
428EXPORT_SYMBOL(blk_mq_requeue_request);
429
24d2f903
CH
430struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
431{
432 return tags->rqs[tag];
433}
434EXPORT_SYMBOL(blk_mq_tag_to_rq);
435
320ae51f
JA
436struct blk_mq_timeout_data {
437 struct blk_mq_hw_ctx *hctx;
438 unsigned long *next;
439 unsigned int *next_set;
440};
441
442static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
443{
444 struct blk_mq_timeout_data *data = __data;
445 struct blk_mq_hw_ctx *hctx = data->hctx;
446 unsigned int tag;
447
448 /* It may not be in flight yet (this is where
449 * the REQ_ATOMIC_STARTED flag comes in). The requests are
450 * statically allocated, so we know it's always safe to access the
451 * memory associated with a bit offset into ->rqs[].
452 */
453 tag = 0;
454 do {
455 struct request *rq;
456
24d2f903
CH
457 tag = find_next_zero_bit(free_tags, hctx->tags->nr_tags, tag);
458 if (tag >= hctx->tags->nr_tags)
320ae51f
JA
459 break;
460
24d2f903
CH
461 rq = blk_mq_tag_to_rq(hctx->tags, tag++);
462 if (rq->q != hctx->queue)
463 continue;
320ae51f
JA
464 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
465 continue;
466
467 blk_rq_check_expired(rq, data->next, data->next_set);
468 } while (1);
469}
470
471static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
472 unsigned long *next,
473 unsigned int *next_set)
474{
475 struct blk_mq_timeout_data data = {
476 .hctx = hctx,
477 .next = next,
478 .next_set = next_set,
479 };
480
481 /*
482 * Ask the tagging code to iterate busy requests, so we can
483 * check them for timeout.
484 */
485 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
486}
487
488static void blk_mq_rq_timer(unsigned long data)
489{
490 struct request_queue *q = (struct request_queue *) data;
491 struct blk_mq_hw_ctx *hctx;
492 unsigned long next = 0;
493 int i, next_set = 0;
494
495 queue_for_each_hw_ctx(q, hctx, i)
496 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
497
498 if (next_set)
499 mod_timer(&q->timeout, round_jiffies_up(next));
500}
501
502/*
503 * Reverse check our software queue for entries that we could potentially
504 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
505 * too much time checking for merges.
506 */
507static bool blk_mq_attempt_merge(struct request_queue *q,
508 struct blk_mq_ctx *ctx, struct bio *bio)
509{
510 struct request *rq;
511 int checked = 8;
512
513 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
514 int el_ret;
515
516 if (!checked--)
517 break;
518
519 if (!blk_rq_merge_ok(rq, bio))
520 continue;
521
522 el_ret = blk_try_merge(rq, bio);
523 if (el_ret == ELEVATOR_BACK_MERGE) {
524 if (bio_attempt_back_merge(q, rq, bio)) {
525 ctx->rq_merged++;
526 return true;
527 }
528 break;
529 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
530 if (bio_attempt_front_merge(q, rq, bio)) {
531 ctx->rq_merged++;
532 return true;
533 }
534 break;
535 }
536 }
537
538 return false;
539}
540
541void blk_mq_add_timer(struct request *rq)
542{
543 __blk_add_timer(rq, NULL);
544}
545
546/*
547 * Run this hardware queue, pulling any software queues mapped to it in.
548 * Note that this function currently has various problems around ordering
549 * of IO. In particular, we'd like FIFO behaviour on handling existing
550 * items on the hctx->dispatch list. Ignore that for now.
551 */
552static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
553{
554 struct request_queue *q = hctx->queue;
555 struct blk_mq_ctx *ctx;
556 struct request *rq;
557 LIST_HEAD(rq_list);
558 int bit, queued;
559
fd1270d5 560 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 561
5d12f905 562 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
563 return;
564
565 hctx->run++;
566
567 /*
568 * Touch any software queue that has pending entries.
569 */
570 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
571 clear_bit(bit, hctx->ctx_map);
572 ctx = hctx->ctxs[bit];
573 BUG_ON(bit != ctx->index_hw);
574
575 spin_lock(&ctx->lock);
576 list_splice_tail_init(&ctx->rq_list, &rq_list);
577 spin_unlock(&ctx->lock);
578 }
579
580 /*
581 * If we have previous entries on our dispatch list, grab them
582 * and stuff them at the front for more fair dispatch.
583 */
584 if (!list_empty_careful(&hctx->dispatch)) {
585 spin_lock(&hctx->lock);
586 if (!list_empty(&hctx->dispatch))
587 list_splice_init(&hctx->dispatch, &rq_list);
588 spin_unlock(&hctx->lock);
589 }
590
591 /*
592 * Delete and return all entries from our dispatch list
593 */
594 queued = 0;
595
596 /*
597 * Now process all the entries, sending them to the driver.
598 */
599 while (!list_empty(&rq_list)) {
600 int ret;
601
602 rq = list_first_entry(&rq_list, struct request, queuelist);
603 list_del_init(&rq->queuelist);
320ae51f 604
49f5baa5 605 blk_mq_start_request(rq, list_empty(&rq_list));
320ae51f
JA
606
607 ret = q->mq_ops->queue_rq(hctx, rq);
608 switch (ret) {
609 case BLK_MQ_RQ_QUEUE_OK:
610 queued++;
611 continue;
612 case BLK_MQ_RQ_QUEUE_BUSY:
613 /*
614 * FIXME: we should have a mechanism to stop the queue
615 * like blk_stop_queue, otherwise we will waste cpu
616 * time
617 */
618 list_add(&rq->queuelist, &rq_list);
ed0791b2 619 __blk_mq_requeue_request(rq);
320ae51f
JA
620 break;
621 default:
622 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 623 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 624 rq->errors = -EIO;
320ae51f
JA
625 blk_mq_end_io(rq, rq->errors);
626 break;
627 }
628
629 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
630 break;
631 }
632
633 if (!queued)
634 hctx->dispatched[0]++;
635 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
636 hctx->dispatched[ilog2(queued) + 1]++;
637
638 /*
639 * Any items that need requeuing? Stuff them into hctx->dispatch,
640 * that is where we will continue on next queue run.
641 */
642 if (!list_empty(&rq_list)) {
643 spin_lock(&hctx->lock);
644 list_splice(&rq_list, &hctx->dispatch);
645 spin_unlock(&hctx->lock);
646 }
647}
648
649void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
650{
5d12f905 651 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
652 return;
653
e4043dcf 654 if (!async && cpumask_test_cpu(smp_processor_id(), hctx->cpumask))
320ae51f 655 __blk_mq_run_hw_queue(hctx);
e4043dcf 656 else if (hctx->queue->nr_hw_queues == 1)
70f4db63 657 kblockd_schedule_delayed_work(&hctx->run_work, 0);
e4043dcf
JA
658 else {
659 unsigned int cpu;
660
661 /*
662 * It'd be great if the workqueue API had a way to pass
663 * in a mask and had some smarts for more clever placement
664 * than the first CPU. Or we could round-robin here. For now,
665 * just queue on the first CPU.
666 */
667 cpu = cpumask_first(hctx->cpumask);
70f4db63 668 kblockd_schedule_delayed_work_on(cpu, &hctx->run_work, 0);
e4043dcf 669 }
320ae51f
JA
670}
671
672void blk_mq_run_queues(struct request_queue *q, bool async)
673{
674 struct blk_mq_hw_ctx *hctx;
675 int i;
676
677 queue_for_each_hw_ctx(q, hctx, i) {
678 if ((!blk_mq_hctx_has_pending(hctx) &&
679 list_empty_careful(&hctx->dispatch)) ||
5d12f905 680 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
681 continue;
682
e4043dcf 683 preempt_disable();
320ae51f 684 blk_mq_run_hw_queue(hctx, async);
e4043dcf 685 preempt_enable();
320ae51f
JA
686 }
687}
688EXPORT_SYMBOL(blk_mq_run_queues);
689
690void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
691{
70f4db63
CH
692 cancel_delayed_work(&hctx->run_work);
693 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
694 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
695}
696EXPORT_SYMBOL(blk_mq_stop_hw_queue);
697
280d45f6
CH
698void blk_mq_stop_hw_queues(struct request_queue *q)
699{
700 struct blk_mq_hw_ctx *hctx;
701 int i;
702
703 queue_for_each_hw_ctx(q, hctx, i)
704 blk_mq_stop_hw_queue(hctx);
705}
706EXPORT_SYMBOL(blk_mq_stop_hw_queues);
707
320ae51f
JA
708void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
709{
710 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf
JA
711
712 preempt_disable();
320ae51f 713 __blk_mq_run_hw_queue(hctx);
e4043dcf 714 preempt_enable();
320ae51f
JA
715}
716EXPORT_SYMBOL(blk_mq_start_hw_queue);
717
2f268556
CH
718void blk_mq_start_hw_queues(struct request_queue *q)
719{
720 struct blk_mq_hw_ctx *hctx;
721 int i;
722
723 queue_for_each_hw_ctx(q, hctx, i)
724 blk_mq_start_hw_queue(hctx);
725}
726EXPORT_SYMBOL(blk_mq_start_hw_queues);
727
728
1b4a3258 729void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
730{
731 struct blk_mq_hw_ctx *hctx;
732 int i;
733
734 queue_for_each_hw_ctx(q, hctx, i) {
735 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
736 continue;
737
738 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 739 preempt_disable();
1b4a3258 740 blk_mq_run_hw_queue(hctx, async);
e4043dcf 741 preempt_enable();
320ae51f
JA
742 }
743}
744EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
745
70f4db63 746static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
747{
748 struct blk_mq_hw_ctx *hctx;
749
70f4db63 750 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 751
320ae51f
JA
752 __blk_mq_run_hw_queue(hctx);
753}
754
70f4db63
CH
755static void blk_mq_delay_work_fn(struct work_struct *work)
756{
757 struct blk_mq_hw_ctx *hctx;
758
759 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
760
761 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
762 __blk_mq_run_hw_queue(hctx);
763}
764
765void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
766{
767 unsigned long tmo = msecs_to_jiffies(msecs);
768
769 if (hctx->queue->nr_hw_queues == 1)
770 kblockd_schedule_delayed_work(&hctx->delay_work, tmo);
771 else {
772 unsigned int cpu;
773
774 /*
775 * It'd be great if the workqueue API had a way to pass
776 * in a mask and had some smarts for more clever placement
777 * than the first CPU. Or we could round-robin here. For now,
778 * just queue on the first CPU.
779 */
780 cpu = cpumask_first(hctx->cpumask);
781 kblockd_schedule_delayed_work_on(cpu, &hctx->delay_work, tmo);
782 }
783}
784EXPORT_SYMBOL(blk_mq_delay_queue);
785
320ae51f 786static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 787 struct request *rq, bool at_head)
320ae51f
JA
788{
789 struct blk_mq_ctx *ctx = rq->mq_ctx;
790
01b983c9
JA
791 trace_block_rq_insert(hctx->queue, rq);
792
72a0a36e
CH
793 if (at_head)
794 list_add(&rq->queuelist, &ctx->rq_list);
795 else
796 list_add_tail(&rq->queuelist, &ctx->rq_list);
320ae51f
JA
797 blk_mq_hctx_mark_pending(hctx, ctx);
798
799 /*
800 * We do this early, to ensure we are on the right CPU.
801 */
802 blk_mq_add_timer(rq);
803}
804
eeabc850
CH
805void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
806 bool async)
320ae51f 807{
eeabc850 808 struct request_queue *q = rq->q;
320ae51f 809 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
810 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
811
812 current_ctx = blk_mq_get_ctx(q);
813 if (!cpu_online(ctx->cpu))
814 rq->mq_ctx = ctx = current_ctx;
320ae51f 815
320ae51f
JA
816 hctx = q->mq_ops->map_queue(q, ctx->cpu);
817
eeabc850
CH
818 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
819 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
320ae51f
JA
820 blk_insert_flush(rq);
821 } else {
320ae51f 822 spin_lock(&ctx->lock);
72a0a36e 823 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f 824 spin_unlock(&ctx->lock);
320ae51f
JA
825 }
826
320ae51f
JA
827 if (run_queue)
828 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
829
830 blk_mq_put_ctx(current_ctx);
320ae51f
JA
831}
832
833static void blk_mq_insert_requests(struct request_queue *q,
834 struct blk_mq_ctx *ctx,
835 struct list_head *list,
836 int depth,
837 bool from_schedule)
838
839{
840 struct blk_mq_hw_ctx *hctx;
841 struct blk_mq_ctx *current_ctx;
842
843 trace_block_unplug(q, depth, !from_schedule);
844
845 current_ctx = blk_mq_get_ctx(q);
846
847 if (!cpu_online(ctx->cpu))
848 ctx = current_ctx;
849 hctx = q->mq_ops->map_queue(q, ctx->cpu);
850
851 /*
852 * preemption doesn't flush plug list, so it's possible ctx->cpu is
853 * offline now
854 */
855 spin_lock(&ctx->lock);
856 while (!list_empty(list)) {
857 struct request *rq;
858
859 rq = list_first_entry(list, struct request, queuelist);
860 list_del_init(&rq->queuelist);
861 rq->mq_ctx = ctx;
72a0a36e 862 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
863 }
864 spin_unlock(&ctx->lock);
865
320ae51f 866 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 867 blk_mq_put_ctx(current_ctx);
320ae51f
JA
868}
869
870static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
871{
872 struct request *rqa = container_of(a, struct request, queuelist);
873 struct request *rqb = container_of(b, struct request, queuelist);
874
875 return !(rqa->mq_ctx < rqb->mq_ctx ||
876 (rqa->mq_ctx == rqb->mq_ctx &&
877 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
878}
879
880void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
881{
882 struct blk_mq_ctx *this_ctx;
883 struct request_queue *this_q;
884 struct request *rq;
885 LIST_HEAD(list);
886 LIST_HEAD(ctx_list);
887 unsigned int depth;
888
889 list_splice_init(&plug->mq_list, &list);
890
891 list_sort(NULL, &list, plug_ctx_cmp);
892
893 this_q = NULL;
894 this_ctx = NULL;
895 depth = 0;
896
897 while (!list_empty(&list)) {
898 rq = list_entry_rq(list.next);
899 list_del_init(&rq->queuelist);
900 BUG_ON(!rq->q);
901 if (rq->mq_ctx != this_ctx) {
902 if (this_ctx) {
903 blk_mq_insert_requests(this_q, this_ctx,
904 &ctx_list, depth,
905 from_schedule);
906 }
907
908 this_ctx = rq->mq_ctx;
909 this_q = rq->q;
910 depth = 0;
911 }
912
913 depth++;
914 list_add_tail(&rq->queuelist, &ctx_list);
915 }
916
917 /*
918 * If 'this_ctx' is set, we know we have entries to complete
919 * on 'ctx_list'. Do those.
920 */
921 if (this_ctx) {
922 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
923 from_schedule);
924 }
925}
926
927static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
928{
929 init_request_from_bio(rq, bio);
930 blk_account_io_start(rq, 1);
931}
932
933static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
934{
935 struct blk_mq_hw_ctx *hctx;
936 struct blk_mq_ctx *ctx;
937 const int is_sync = rw_is_sync(bio->bi_rw);
938 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
939 int rw = bio_data_dir(bio);
940 struct request *rq;
941 unsigned int use_plug, request_count = 0;
942
943 /*
944 * If we have multiple hardware queues, just go directly to
945 * one of those for sync IO.
946 */
947 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
948
949 blk_queue_bounce(q, &bio);
950
14ec77f3
NB
951 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
952 bio_endio(bio, -EIO);
953 return;
954 }
955
320ae51f
JA
956 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
957 return;
958
959 if (blk_mq_queue_enter(q)) {
960 bio_endio(bio, -EIO);
961 return;
962 }
963
964 ctx = blk_mq_get_ctx(q);
965 hctx = q->mq_ops->map_queue(q, ctx->cpu);
966
27fbf4e8
SL
967 if (is_sync)
968 rw |= REQ_SYNC;
320ae51f 969 trace_block_getrq(q, bio, rw);
18741986 970 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
320ae51f 971 if (likely(rq))
18741986 972 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f
JA
973 else {
974 blk_mq_put_ctx(ctx);
975 trace_block_sleeprq(q, bio, rw);
18741986
CH
976 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
977 false);
320ae51f
JA
978 ctx = rq->mq_ctx;
979 hctx = q->mq_ops->map_queue(q, ctx->cpu);
980 }
981
982 hctx->queued++;
983
984 if (unlikely(is_flush_fua)) {
985 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
986 blk_insert_flush(rq);
987 goto run_queue;
988 }
989
990 /*
991 * A task plug currently exists. Since this is completely lockless,
992 * utilize that to temporarily store requests until the task is
993 * either done or scheduled away.
994 */
995 if (use_plug) {
996 struct blk_plug *plug = current->plug;
997
998 if (plug) {
999 blk_mq_bio_to_request(rq, bio);
92f399c7 1000 if (list_empty(&plug->mq_list))
320ae51f
JA
1001 trace_block_plug(q);
1002 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1003 blk_flush_plug_list(plug, false);
1004 trace_block_plug(q);
1005 }
1006 list_add_tail(&rq->queuelist, &plug->mq_list);
1007 blk_mq_put_ctx(ctx);
1008 return;
1009 }
1010 }
1011
1012 spin_lock(&ctx->lock);
1013
1014 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1015 blk_mq_attempt_merge(q, ctx, bio))
1016 __blk_mq_free_request(hctx, ctx, rq);
1017 else {
1018 blk_mq_bio_to_request(rq, bio);
72a0a36e 1019 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1020 }
1021
1022 spin_unlock(&ctx->lock);
320ae51f
JA
1023
1024 /*
1025 * For a SYNC request, send it to the hardware immediately. For an
1026 * ASYNC request, just ensure that we run it later on. The latter
1027 * allows for merging opportunities and more efficient dispatching.
1028 */
1029run_queue:
1030 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
e4043dcf 1031 blk_mq_put_ctx(ctx);
320ae51f
JA
1032}
1033
1034/*
1035 * Default mapping to a software queue, since we use one per CPU.
1036 */
1037struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1038{
1039 return q->queue_hw_ctx[q->mq_map[cpu]];
1040}
1041EXPORT_SYMBOL(blk_mq_map_queue);
1042
24d2f903 1043struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_tag_set *set,
320ae51f
JA
1044 unsigned int hctx_index)
1045{
1046 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
24d2f903 1047 GFP_KERNEL | __GFP_ZERO, set->numa_node);
320ae51f
JA
1048}
1049EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1050
1051void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1052 unsigned int hctx_index)
1053{
1054 kfree(hctx);
1055}
1056EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1057
1058static void blk_mq_hctx_notify(void *data, unsigned long action,
1059 unsigned int cpu)
1060{
1061 struct blk_mq_hw_ctx *hctx = data;
bccb5f7c 1062 struct request_queue *q = hctx->queue;
320ae51f
JA
1063 struct blk_mq_ctx *ctx;
1064 LIST_HEAD(tmp);
1065
1066 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1067 return;
1068
1069 /*
1070 * Move ctx entries to new CPU, if this one is going away.
1071 */
bccb5f7c 1072 ctx = __blk_mq_get_ctx(q, cpu);
320ae51f
JA
1073
1074 spin_lock(&ctx->lock);
1075 if (!list_empty(&ctx->rq_list)) {
1076 list_splice_init(&ctx->rq_list, &tmp);
1077 clear_bit(ctx->index_hw, hctx->ctx_map);
1078 }
1079 spin_unlock(&ctx->lock);
1080
1081 if (list_empty(&tmp))
1082 return;
1083
bccb5f7c 1084 ctx = blk_mq_get_ctx(q);
320ae51f
JA
1085 spin_lock(&ctx->lock);
1086
1087 while (!list_empty(&tmp)) {
1088 struct request *rq;
1089
1090 rq = list_first_entry(&tmp, struct request, queuelist);
1091 rq->mq_ctx = ctx;
1092 list_move_tail(&rq->queuelist, &ctx->rq_list);
1093 }
1094
bccb5f7c 1095 hctx = q->mq_ops->map_queue(q, ctx->cpu);
320ae51f
JA
1096 blk_mq_hctx_mark_pending(hctx, ctx);
1097
1098 spin_unlock(&ctx->lock);
bccb5f7c
JA
1099
1100 blk_mq_run_hw_queue(hctx, true);
e4043dcf 1101 blk_mq_put_ctx(ctx);
320ae51f
JA
1102}
1103
24d2f903
CH
1104static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1105 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1106{
e9b267d9 1107 struct page *page;
320ae51f 1108
24d2f903 1109 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1110 int i;
320ae51f 1111
24d2f903
CH
1112 for (i = 0; i < tags->nr_tags; i++) {
1113 if (!tags->rqs[i])
e9b267d9 1114 continue;
24d2f903
CH
1115 set->ops->exit_request(set->driver_data, tags->rqs[i],
1116 hctx_idx, i);
e9b267d9 1117 }
320ae51f 1118 }
320ae51f 1119
24d2f903
CH
1120 while (!list_empty(&tags->page_list)) {
1121 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1122 list_del_init(&page->lru);
320ae51f
JA
1123 __free_pages(page, page->private);
1124 }
1125
24d2f903 1126 kfree(tags->rqs);
320ae51f 1127
24d2f903 1128 blk_mq_free_tags(tags);
320ae51f
JA
1129}
1130
1131static size_t order_to_size(unsigned int order)
1132{
1133 size_t ret = PAGE_SIZE;
1134
1135 while (order--)
1136 ret *= 2;
1137
1138 return ret;
1139}
1140
24d2f903
CH
1141static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1142 unsigned int hctx_idx)
320ae51f 1143{
24d2f903 1144 struct blk_mq_tags *tags;
320ae51f
JA
1145 unsigned int i, j, entries_per_page, max_order = 4;
1146 size_t rq_size, left;
1147
24d2f903
CH
1148 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1149 set->numa_node);
1150 if (!tags)
1151 return NULL;
320ae51f 1152
24d2f903
CH
1153 INIT_LIST_HEAD(&tags->page_list);
1154
1155 tags->rqs = kmalloc_node(set->queue_depth * sizeof(struct request *),
1156 GFP_KERNEL, set->numa_node);
1157 if (!tags->rqs) {
1158 blk_mq_free_tags(tags);
1159 return NULL;
1160 }
320ae51f
JA
1161
1162 /*
1163 * rq_size is the size of the request plus driver payload, rounded
1164 * to the cacheline size
1165 */
24d2f903 1166 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1167 cache_line_size());
24d2f903 1168 left = rq_size * set->queue_depth;
320ae51f 1169
24d2f903 1170 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1171 int this_order = max_order;
1172 struct page *page;
1173 int to_do;
1174 void *p;
1175
1176 while (left < order_to_size(this_order - 1) && this_order)
1177 this_order--;
1178
1179 do {
24d2f903
CH
1180 page = alloc_pages_node(set->numa_node, GFP_KERNEL,
1181 this_order);
320ae51f
JA
1182 if (page)
1183 break;
1184 if (!this_order--)
1185 break;
1186 if (order_to_size(this_order) < rq_size)
1187 break;
1188 } while (1);
1189
1190 if (!page)
24d2f903 1191 goto fail;
320ae51f
JA
1192
1193 page->private = this_order;
24d2f903 1194 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1195
1196 p = page_address(page);
1197 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1198 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1199 left -= to_do * rq_size;
1200 for (j = 0; j < to_do; j++) {
24d2f903
CH
1201 tags->rqs[i] = p;
1202 if (set->ops->init_request) {
1203 if (set->ops->init_request(set->driver_data,
1204 tags->rqs[i], hctx_idx, i,
1205 set->numa_node))
1206 goto fail;
e9b267d9
CH
1207 }
1208
320ae51f
JA
1209 p += rq_size;
1210 i++;
1211 }
1212 }
1213
24d2f903 1214 return tags;
320ae51f 1215
24d2f903
CH
1216fail:
1217 pr_warn("%s: failed to allocate requests\n", __func__);
1218 blk_mq_free_rq_map(set, tags, hctx_idx);
1219 return NULL;
320ae51f
JA
1220}
1221
1222static int blk_mq_init_hw_queues(struct request_queue *q,
24d2f903 1223 struct blk_mq_tag_set *set)
320ae51f
JA
1224{
1225 struct blk_mq_hw_ctx *hctx;
1226 unsigned int i, j;
1227
1228 /*
1229 * Initialize hardware queues
1230 */
1231 queue_for_each_hw_ctx(q, hctx, i) {
1232 unsigned int num_maps;
1233 int node;
1234
1235 node = hctx->numa_node;
1236 if (node == NUMA_NO_NODE)
24d2f903 1237 node = hctx->numa_node = set->numa_node;
320ae51f 1238
70f4db63
CH
1239 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1240 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
320ae51f
JA
1241 spin_lock_init(&hctx->lock);
1242 INIT_LIST_HEAD(&hctx->dispatch);
1243 hctx->queue = q;
1244 hctx->queue_num = i;
24d2f903
CH
1245 hctx->flags = set->flags;
1246 hctx->cmd_size = set->cmd_size;
320ae51f
JA
1247
1248 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1249 blk_mq_hctx_notify, hctx);
1250 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1251
24d2f903 1252 hctx->tags = set->tags[i];
320ae51f
JA
1253
1254 /*
1255 * Allocate space for all possible cpus to avoid allocation in
1256 * runtime
1257 */
1258 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1259 GFP_KERNEL, node);
1260 if (!hctx->ctxs)
1261 break;
1262
1263 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1264 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1265 GFP_KERNEL, node);
1266 if (!hctx->ctx_map)
1267 break;
1268
1269 hctx->nr_ctx_map = num_maps;
1270 hctx->nr_ctx = 0;
1271
24d2f903
CH
1272 if (set->ops->init_hctx &&
1273 set->ops->init_hctx(hctx, set->driver_data, i))
320ae51f
JA
1274 break;
1275 }
1276
1277 if (i == q->nr_hw_queues)
1278 return 0;
1279
1280 /*
1281 * Init failed
1282 */
1283 queue_for_each_hw_ctx(q, hctx, j) {
1284 if (i == j)
1285 break;
1286
24d2f903
CH
1287 if (set->ops->exit_hctx)
1288 set->ops->exit_hctx(hctx, j);
320ae51f
JA
1289
1290 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1291 kfree(hctx->ctxs);
11471e0d 1292 kfree(hctx->ctx_map);
320ae51f
JA
1293 }
1294
1295 return 1;
1296}
1297
1298static void blk_mq_init_cpu_queues(struct request_queue *q,
1299 unsigned int nr_hw_queues)
1300{
1301 unsigned int i;
1302
1303 for_each_possible_cpu(i) {
1304 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1305 struct blk_mq_hw_ctx *hctx;
1306
1307 memset(__ctx, 0, sizeof(*__ctx));
1308 __ctx->cpu = i;
1309 spin_lock_init(&__ctx->lock);
1310 INIT_LIST_HEAD(&__ctx->rq_list);
1311 __ctx->queue = q;
1312
1313 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1314 if (!cpu_online(i))
1315 continue;
1316
e4043dcf
JA
1317 hctx = q->mq_ops->map_queue(q, i);
1318 cpumask_set_cpu(i, hctx->cpumask);
1319 hctx->nr_ctx++;
1320
320ae51f
JA
1321 /*
1322 * Set local node, IFF we have more than one hw queue. If
1323 * not, we remain on the home node of the device
1324 */
1325 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1326 hctx->numa_node = cpu_to_node(i);
1327 }
1328}
1329
1330static void blk_mq_map_swqueue(struct request_queue *q)
1331{
1332 unsigned int i;
1333 struct blk_mq_hw_ctx *hctx;
1334 struct blk_mq_ctx *ctx;
1335
1336 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1337 cpumask_clear(hctx->cpumask);
320ae51f
JA
1338 hctx->nr_ctx = 0;
1339 }
1340
1341 /*
1342 * Map software to hardware queues
1343 */
1344 queue_for_each_ctx(q, ctx, i) {
1345 /* If the cpu isn't online, the cpu is mapped to first hctx */
e4043dcf
JA
1346 if (!cpu_online(i))
1347 continue;
1348
320ae51f 1349 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1350 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1351 ctx->index_hw = hctx->nr_ctx;
1352 hctx->ctxs[hctx->nr_ctx++] = ctx;
1353 }
1354}
1355
24d2f903 1356struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
320ae51f
JA
1357{
1358 struct blk_mq_hw_ctx **hctxs;
1359 struct blk_mq_ctx *ctx;
1360 struct request_queue *q;
1361 int i;
1362
320ae51f
JA
1363 ctx = alloc_percpu(struct blk_mq_ctx);
1364 if (!ctx)
1365 return ERR_PTR(-ENOMEM);
1366
24d2f903
CH
1367 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1368 set->numa_node);
320ae51f
JA
1369
1370 if (!hctxs)
1371 goto err_percpu;
1372
24d2f903
CH
1373 for (i = 0; i < set->nr_hw_queues; i++) {
1374 hctxs[i] = set->ops->alloc_hctx(set, i);
320ae51f
JA
1375 if (!hctxs[i])
1376 goto err_hctxs;
1377
e4043dcf
JA
1378 if (!zalloc_cpumask_var(&hctxs[i]->cpumask, GFP_KERNEL))
1379 goto err_hctxs;
1380
320ae51f
JA
1381 hctxs[i]->numa_node = NUMA_NO_NODE;
1382 hctxs[i]->queue_num = i;
1383 }
1384
24d2f903 1385 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
320ae51f
JA
1386 if (!q)
1387 goto err_hctxs;
1388
24d2f903 1389 q->mq_map = blk_mq_make_queue_map(set);
320ae51f
JA
1390 if (!q->mq_map)
1391 goto err_map;
1392
1393 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1394 blk_queue_rq_timeout(q, 30000);
1395
1396 q->nr_queues = nr_cpu_ids;
24d2f903 1397 q->nr_hw_queues = set->nr_hw_queues;
320ae51f
JA
1398
1399 q->queue_ctx = ctx;
1400 q->queue_hw_ctx = hctxs;
1401
24d2f903 1402 q->mq_ops = set->ops;
94eddfbe 1403 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1404
1be036e9
CH
1405 q->sg_reserved_size = INT_MAX;
1406
320ae51f 1407 blk_queue_make_request(q, blk_mq_make_request);
24d2f903
CH
1408 blk_queue_rq_timed_out(q, set->ops->timeout);
1409 if (set->timeout)
1410 blk_queue_rq_timeout(q, set->timeout);
320ae51f 1411
24d2f903
CH
1412 if (set->ops->complete)
1413 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 1414
320ae51f 1415 blk_mq_init_flush(q);
24d2f903 1416 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 1417
24d2f903
CH
1418 q->flush_rq = kzalloc(round_up(sizeof(struct request) +
1419 set->cmd_size, cache_line_size()),
1420 GFP_KERNEL);
18741986 1421 if (!q->flush_rq)
320ae51f
JA
1422 goto err_hw;
1423
24d2f903 1424 if (blk_mq_init_hw_queues(q, set))
18741986
CH
1425 goto err_flush_rq;
1426
320ae51f
JA
1427 blk_mq_map_swqueue(q);
1428
1429 mutex_lock(&all_q_mutex);
1430 list_add_tail(&q->all_q_node, &all_q_list);
1431 mutex_unlock(&all_q_mutex);
1432
1433 return q;
18741986
CH
1434
1435err_flush_rq:
1436 kfree(q->flush_rq);
320ae51f
JA
1437err_hw:
1438 kfree(q->mq_map);
1439err_map:
1440 blk_cleanup_queue(q);
1441err_hctxs:
24d2f903 1442 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
1443 if (!hctxs[i])
1444 break;
e4043dcf 1445 free_cpumask_var(hctxs[i]->cpumask);
24d2f903 1446 set->ops->free_hctx(hctxs[i], i);
320ae51f
JA
1447 }
1448 kfree(hctxs);
1449err_percpu:
1450 free_percpu(ctx);
1451 return ERR_PTR(-ENOMEM);
1452}
1453EXPORT_SYMBOL(blk_mq_init_queue);
1454
1455void blk_mq_free_queue(struct request_queue *q)
1456{
1457 struct blk_mq_hw_ctx *hctx;
1458 int i;
1459
1460 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1461 kfree(hctx->ctx_map);
1462 kfree(hctx->ctxs);
320ae51f
JA
1463 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1464 if (q->mq_ops->exit_hctx)
1465 q->mq_ops->exit_hctx(hctx, i);
e4043dcf 1466 free_cpumask_var(hctx->cpumask);
320ae51f
JA
1467 q->mq_ops->free_hctx(hctx, i);
1468 }
1469
1470 free_percpu(q->queue_ctx);
1471 kfree(q->queue_hw_ctx);
1472 kfree(q->mq_map);
1473
1474 q->queue_ctx = NULL;
1475 q->queue_hw_ctx = NULL;
1476 q->mq_map = NULL;
1477
1478 mutex_lock(&all_q_mutex);
1479 list_del_init(&q->all_q_node);
1480 mutex_unlock(&all_q_mutex);
1481}
320ae51f
JA
1482
1483/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1484static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1485{
1486 blk_mq_freeze_queue(q);
1487
1488 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1489
1490 /*
1491 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1492 * we should change hctx numa_node according to new topology (this
1493 * involves free and re-allocate memory, worthy doing?)
1494 */
1495
1496 blk_mq_map_swqueue(q);
1497
1498 blk_mq_unfreeze_queue(q);
1499}
1500
f618ef7c
PG
1501static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1502 unsigned long action, void *hcpu)
320ae51f
JA
1503{
1504 struct request_queue *q;
1505
1506 /*
1507 * Before new mapping is established, hotadded cpu might already start
1508 * handling requests. This doesn't break anything as we map offline
1509 * CPUs to first hardware queue. We will re-init queue below to get
1510 * optimal settings.
1511 */
1512 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1513 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1514 return NOTIFY_OK;
1515
1516 mutex_lock(&all_q_mutex);
1517 list_for_each_entry(q, &all_q_list, all_q_node)
1518 blk_mq_queue_reinit(q);
1519 mutex_unlock(&all_q_mutex);
1520 return NOTIFY_OK;
1521}
1522
24d2f903
CH
1523int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
1524{
1525 int i;
1526
1527 if (!set->nr_hw_queues)
1528 return -EINVAL;
1529 if (!set->queue_depth || set->queue_depth > BLK_MQ_MAX_DEPTH)
1530 return -EINVAL;
1531 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
1532 return -EINVAL;
1533
1534 if (!set->nr_hw_queues ||
1535 !set->ops->queue_rq || !set->ops->map_queue ||
1536 !set->ops->alloc_hctx || !set->ops->free_hctx)
1537 return -EINVAL;
1538
1539
48479005
ML
1540 set->tags = kmalloc_node(set->nr_hw_queues *
1541 sizeof(struct blk_mq_tags *),
24d2f903
CH
1542 GFP_KERNEL, set->numa_node);
1543 if (!set->tags)
1544 goto out;
1545
1546 for (i = 0; i < set->nr_hw_queues; i++) {
1547 set->tags[i] = blk_mq_init_rq_map(set, i);
1548 if (!set->tags[i])
1549 goto out_unwind;
1550 }
1551
1552 return 0;
1553
1554out_unwind:
1555 while (--i >= 0)
1556 blk_mq_free_rq_map(set, set->tags[i], i);
1557out:
1558 return -ENOMEM;
1559}
1560EXPORT_SYMBOL(blk_mq_alloc_tag_set);
1561
1562void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
1563{
1564 int i;
1565
1566 for (i = 0; i < set->nr_hw_queues; i++)
1567 blk_mq_free_rq_map(set, set->tags[i], i);
1568}
1569EXPORT_SYMBOL(blk_mq_free_tag_set);
1570
676141e4
JA
1571void blk_mq_disable_hotplug(void)
1572{
1573 mutex_lock(&all_q_mutex);
1574}
1575
1576void blk_mq_enable_hotplug(void)
1577{
1578 mutex_unlock(&all_q_mutex);
1579}
1580
320ae51f
JA
1581static int __init blk_mq_init(void)
1582{
320ae51f
JA
1583 blk_mq_cpu_init();
1584
1585 /* Must be called after percpu_counter_hotcpu_callback() */
1586 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1587
1588 return 0;
1589}
1590subsys_initcall(blk_mq_init);