block: generic request_queue reference counting
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
75bb4625
JA
1/*
2 * Block multiqueue core code
3 *
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
320ae51f
JA
7#include <linux/kernel.h>
8#include <linux/module.h>
9#include <linux/backing-dev.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
f75782e4 12#include <linux/kmemleak.h>
320ae51f
JA
13#include <linux/mm.h>
14#include <linux/init.h>
15#include <linux/slab.h>
16#include <linux/workqueue.h>
17#include <linux/smp.h>
18#include <linux/llist.h>
19#include <linux/list_sort.h>
20#include <linux/cpu.h>
21#include <linux/cache.h>
22#include <linux/sched/sysctl.h>
23#include <linux/delay.h>
aedcd72f 24#include <linux/crash_dump.h>
320ae51f
JA
25
26#include <trace/events/block.h>
27
28#include <linux/blk-mq.h>
29#include "blk.h"
30#include "blk-mq.h"
31#include "blk-mq-tag.h"
32
33static DEFINE_MUTEX(all_q_mutex);
34static LIST_HEAD(all_q_list);
35
36static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
37
320ae51f
JA
38/*
39 * Check if any of the ctx's have pending work in this hardware queue
40 */
41static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42{
43 unsigned int i;
44
569fd0ce 45 for (i = 0; i < hctx->ctx_map.size; i++)
1429d7c9 46 if (hctx->ctx_map.map[i].word)
320ae51f
JA
47 return true;
48
49 return false;
50}
51
1429d7c9
JA
52static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
54{
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
56}
57
58#define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
60
320ae51f
JA
61/*
62 * Mark this ctx as having pending work in this hardware queue
63 */
64static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
66{
1429d7c9
JA
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
71}
72
73static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
75{
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
320ae51f
JA
79}
80
b4c6a028 81void blk_mq_freeze_queue_start(struct request_queue *q)
43a5e4e2 82{
4ecd4fef 83 int freeze_depth;
cddd5d17 84
4ecd4fef
CH
85 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
86 if (freeze_depth == 1) {
3ef28e83 87 percpu_ref_kill(&q->q_usage_counter);
b94ec296 88 blk_mq_run_hw_queues(q, false);
cddd5d17 89 }
f3af020b 90}
b4c6a028 91EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
f3af020b
TH
92
93static void blk_mq_freeze_queue_wait(struct request_queue *q)
94{
3ef28e83 95 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2
ML
96}
97
f3af020b
TH
98/*
99 * Guarantee no request is in use, so we can change any data structure of
100 * the queue afterward.
101 */
3ef28e83 102void blk_freeze_queue(struct request_queue *q)
f3af020b 103{
3ef28e83
DW
104 /*
105 * In the !blk_mq case we are only calling this to kill the
106 * q_usage_counter, otherwise this increases the freeze depth
107 * and waits for it to return to zero. For this reason there is
108 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
109 * exported to drivers as the only user for unfreeze is blk_mq.
110 */
f3af020b
TH
111 blk_mq_freeze_queue_start(q);
112 blk_mq_freeze_queue_wait(q);
113}
3ef28e83
DW
114
115void blk_mq_freeze_queue(struct request_queue *q)
116{
117 /*
118 * ...just an alias to keep freeze and unfreeze actions balanced
119 * in the blk_mq_* namespace
120 */
121 blk_freeze_queue(q);
122}
c761d96b 123EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 124
b4c6a028 125void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 126{
4ecd4fef 127 int freeze_depth;
320ae51f 128
4ecd4fef
CH
129 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
130 WARN_ON_ONCE(freeze_depth < 0);
131 if (!freeze_depth) {
3ef28e83 132 percpu_ref_reinit(&q->q_usage_counter);
320ae51f 133 wake_up_all(&q->mq_freeze_wq);
add703fd 134 }
320ae51f 135}
b4c6a028 136EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 137
aed3ea94
JA
138void blk_mq_wake_waiters(struct request_queue *q)
139{
140 struct blk_mq_hw_ctx *hctx;
141 unsigned int i;
142
143 queue_for_each_hw_ctx(q, hctx, i)
144 if (blk_mq_hw_queue_mapped(hctx))
145 blk_mq_tag_wakeup_all(hctx->tags, true);
3fd5940c
KB
146
147 /*
148 * If we are called because the queue has now been marked as
149 * dying, we need to ensure that processes currently waiting on
150 * the queue are notified as well.
151 */
152 wake_up_all(&q->mq_freeze_wq);
aed3ea94
JA
153}
154
320ae51f
JA
155bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
156{
157 return blk_mq_has_free_tags(hctx->tags);
158}
159EXPORT_SYMBOL(blk_mq_can_queue);
160
94eddfbe
JA
161static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
162 struct request *rq, unsigned int rw_flags)
320ae51f 163{
94eddfbe
JA
164 if (blk_queue_io_stat(q))
165 rw_flags |= REQ_IO_STAT;
166
af76e555
CH
167 INIT_LIST_HEAD(&rq->queuelist);
168 /* csd/requeue_work/fifo_time is initialized before use */
169 rq->q = q;
320ae51f 170 rq->mq_ctx = ctx;
0d2602ca 171 rq->cmd_flags |= rw_flags;
af76e555
CH
172 /* do not touch atomic flags, it needs atomic ops against the timer */
173 rq->cpu = -1;
af76e555
CH
174 INIT_HLIST_NODE(&rq->hash);
175 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
176 rq->rq_disk = NULL;
177 rq->part = NULL;
3ee32372 178 rq->start_time = jiffies;
af76e555
CH
179#ifdef CONFIG_BLK_CGROUP
180 rq->rl = NULL;
0fec08b4 181 set_start_time_ns(rq);
af76e555
CH
182 rq->io_start_time_ns = 0;
183#endif
184 rq->nr_phys_segments = 0;
185#if defined(CONFIG_BLK_DEV_INTEGRITY)
186 rq->nr_integrity_segments = 0;
187#endif
af76e555
CH
188 rq->special = NULL;
189 /* tag was already set */
190 rq->errors = 0;
af76e555 191
6f4a1626
TB
192 rq->cmd = rq->__cmd;
193
af76e555
CH
194 rq->extra_len = 0;
195 rq->sense_len = 0;
196 rq->resid_len = 0;
197 rq->sense = NULL;
198
af76e555 199 INIT_LIST_HEAD(&rq->timeout_list);
f6be4fb4
JA
200 rq->timeout = 0;
201
af76e555
CH
202 rq->end_io = NULL;
203 rq->end_io_data = NULL;
204 rq->next_rq = NULL;
205
320ae51f
JA
206 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
207}
208
5dee8577 209static struct request *
cb96a42c 210__blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
5dee8577
CH
211{
212 struct request *rq;
213 unsigned int tag;
214
cb96a42c 215 tag = blk_mq_get_tag(data);
5dee8577 216 if (tag != BLK_MQ_TAG_FAIL) {
cb96a42c 217 rq = data->hctx->tags->rqs[tag];
5dee8577 218
cb96a42c 219 if (blk_mq_tag_busy(data->hctx)) {
5dee8577 220 rq->cmd_flags = REQ_MQ_INFLIGHT;
cb96a42c 221 atomic_inc(&data->hctx->nr_active);
5dee8577
CH
222 }
223
224 rq->tag = tag;
cb96a42c 225 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
5dee8577
CH
226 return rq;
227 }
228
229 return NULL;
230}
231
4ce01dd1
CH
232struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
233 bool reserved)
320ae51f 234{
d852564f
CH
235 struct blk_mq_ctx *ctx;
236 struct blk_mq_hw_ctx *hctx;
320ae51f 237 struct request *rq;
cb96a42c 238 struct blk_mq_alloc_data alloc_data;
a492f075 239 int ret;
320ae51f 240
3ef28e83 241 ret = blk_queue_enter(q, gfp);
a492f075
JL
242 if (ret)
243 return ERR_PTR(ret);
320ae51f 244
d852564f
CH
245 ctx = blk_mq_get_ctx(q);
246 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
247 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
248 reserved, ctx, hctx);
d852564f 249
cb96a42c 250 rq = __blk_mq_alloc_request(&alloc_data, rw);
d852564f
CH
251 if (!rq && (gfp & __GFP_WAIT)) {
252 __blk_mq_run_hw_queue(hctx);
253 blk_mq_put_ctx(ctx);
254
255 ctx = blk_mq_get_ctx(q);
256 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
257 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
258 hctx);
259 rq = __blk_mq_alloc_request(&alloc_data, rw);
260 ctx = alloc_data.ctx;
d852564f
CH
261 }
262 blk_mq_put_ctx(ctx);
c76541a9 263 if (!rq) {
3ef28e83 264 blk_queue_exit(q);
a492f075 265 return ERR_PTR(-EWOULDBLOCK);
c76541a9 266 }
320ae51f
JA
267 return rq;
268}
4bb659b1 269EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 270
320ae51f
JA
271static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
272 struct blk_mq_ctx *ctx, struct request *rq)
273{
274 const int tag = rq->tag;
275 struct request_queue *q = rq->q;
276
0d2602ca
JA
277 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
278 atomic_dec(&hctx->nr_active);
683d0e12 279 rq->cmd_flags = 0;
0d2602ca 280
af76e555 281 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
0d2602ca 282 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
3ef28e83 283 blk_queue_exit(q);
320ae51f
JA
284}
285
7c7f2f2b 286void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
320ae51f
JA
287{
288 struct blk_mq_ctx *ctx = rq->mq_ctx;
320ae51f
JA
289
290 ctx->rq_completed[rq_is_sync(rq)]++;
320ae51f 291 __blk_mq_free_request(hctx, ctx, rq);
7c7f2f2b
JA
292
293}
294EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
295
296void blk_mq_free_request(struct request *rq)
297{
298 struct blk_mq_hw_ctx *hctx;
299 struct request_queue *q = rq->q;
300
301 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
302 blk_mq_free_hctx_request(hctx, rq);
320ae51f 303}
1a3b595a 304EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 305
c8a446ad 306inline void __blk_mq_end_request(struct request *rq, int error)
320ae51f 307{
0d11e6ac
ML
308 blk_account_io_done(rq);
309
91b63639 310 if (rq->end_io) {
320ae51f 311 rq->end_io(rq, error);
91b63639
CH
312 } else {
313 if (unlikely(blk_bidi_rq(rq)))
314 blk_mq_free_request(rq->next_rq);
320ae51f 315 blk_mq_free_request(rq);
91b63639 316 }
320ae51f 317}
c8a446ad 318EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 319
c8a446ad 320void blk_mq_end_request(struct request *rq, int error)
63151a44
CH
321{
322 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
323 BUG();
c8a446ad 324 __blk_mq_end_request(rq, error);
63151a44 325}
c8a446ad 326EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 327
30a91cb4 328static void __blk_mq_complete_request_remote(void *data)
320ae51f 329{
3d6efbf6 330 struct request *rq = data;
320ae51f 331
30a91cb4 332 rq->q->softirq_done_fn(rq);
320ae51f 333}
320ae51f 334
ed851860 335static void blk_mq_ipi_complete_request(struct request *rq)
320ae51f
JA
336{
337 struct blk_mq_ctx *ctx = rq->mq_ctx;
38535201 338 bool shared = false;
320ae51f
JA
339 int cpu;
340
38535201 341 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
30a91cb4
CH
342 rq->q->softirq_done_fn(rq);
343 return;
344 }
320ae51f
JA
345
346 cpu = get_cpu();
38535201
CH
347 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
348 shared = cpus_share_cache(cpu, ctx->cpu);
349
350 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 351 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
352 rq->csd.info = rq;
353 rq->csd.flags = 0;
c46fff2a 354 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 355 } else {
30a91cb4 356 rq->q->softirq_done_fn(rq);
3d6efbf6 357 }
320ae51f
JA
358 put_cpu();
359}
30a91cb4 360
ed851860
JA
361void __blk_mq_complete_request(struct request *rq)
362{
363 struct request_queue *q = rq->q;
364
365 if (!q->softirq_done_fn)
c8a446ad 366 blk_mq_end_request(rq, rq->errors);
ed851860
JA
367 else
368 blk_mq_ipi_complete_request(rq);
369}
370
30a91cb4
CH
371/**
372 * blk_mq_complete_request - end I/O on a request
373 * @rq: the request being processed
374 *
375 * Description:
376 * Ends all I/O on a request. It does not handle partial completions.
377 * The actual completion happens out-of-order, through a IPI handler.
378 **/
f4829a9b 379void blk_mq_complete_request(struct request *rq, int error)
30a91cb4 380{
95f09684
JA
381 struct request_queue *q = rq->q;
382
383 if (unlikely(blk_should_fake_timeout(q)))
30a91cb4 384 return;
f4829a9b
CH
385 if (!blk_mark_rq_complete(rq)) {
386 rq->errors = error;
ed851860 387 __blk_mq_complete_request(rq);
f4829a9b 388 }
30a91cb4
CH
389}
390EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 391
973c0191
KB
392int blk_mq_request_started(struct request *rq)
393{
394 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
395}
396EXPORT_SYMBOL_GPL(blk_mq_request_started);
397
e2490073 398void blk_mq_start_request(struct request *rq)
320ae51f
JA
399{
400 struct request_queue *q = rq->q;
401
402 trace_block_rq_issue(q, rq);
403
742ee69b 404 rq->resid_len = blk_rq_bytes(rq);
91b63639
CH
405 if (unlikely(blk_bidi_rq(rq)))
406 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
742ee69b 407
2b8393b4 408 blk_add_timer(rq);
87ee7b11 409
538b7534
JA
410 /*
411 * Ensure that ->deadline is visible before set the started
412 * flag and clear the completed flag.
413 */
414 smp_mb__before_atomic();
415
87ee7b11
JA
416 /*
417 * Mark us as started and clear complete. Complete might have been
418 * set if requeue raced with timeout, which then marked it as
419 * complete. So be sure to clear complete again when we start
420 * the request, otherwise we'll ignore the completion event.
421 */
4b570521
JA
422 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
423 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
424 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
425 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
49f5baa5
CH
426
427 if (q->dma_drain_size && blk_rq_bytes(rq)) {
428 /*
429 * Make sure space for the drain appears. We know we can do
430 * this because max_hw_segments has been adjusted to be one
431 * fewer than the device can handle.
432 */
433 rq->nr_phys_segments++;
434 }
320ae51f 435}
e2490073 436EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 437
ed0791b2 438static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
439{
440 struct request_queue *q = rq->q;
441
442 trace_block_rq_requeue(q, rq);
49f5baa5 443
e2490073
CH
444 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
445 if (q->dma_drain_size && blk_rq_bytes(rq))
446 rq->nr_phys_segments--;
447 }
320ae51f
JA
448}
449
ed0791b2
CH
450void blk_mq_requeue_request(struct request *rq)
451{
ed0791b2 452 __blk_mq_requeue_request(rq);
ed0791b2 453
ed0791b2 454 BUG_ON(blk_queued_rq(rq));
6fca6a61 455 blk_mq_add_to_requeue_list(rq, true);
ed0791b2
CH
456}
457EXPORT_SYMBOL(blk_mq_requeue_request);
458
6fca6a61
CH
459static void blk_mq_requeue_work(struct work_struct *work)
460{
461 struct request_queue *q =
462 container_of(work, struct request_queue, requeue_work);
463 LIST_HEAD(rq_list);
464 struct request *rq, *next;
465 unsigned long flags;
466
467 spin_lock_irqsave(&q->requeue_lock, flags);
468 list_splice_init(&q->requeue_list, &rq_list);
469 spin_unlock_irqrestore(&q->requeue_lock, flags);
470
471 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
472 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
473 continue;
474
475 rq->cmd_flags &= ~REQ_SOFTBARRIER;
476 list_del_init(&rq->queuelist);
477 blk_mq_insert_request(rq, true, false, false);
478 }
479
480 while (!list_empty(&rq_list)) {
481 rq = list_entry(rq_list.next, struct request, queuelist);
482 list_del_init(&rq->queuelist);
483 blk_mq_insert_request(rq, false, false, false);
484 }
485
8b957415
JA
486 /*
487 * Use the start variant of queue running here, so that running
488 * the requeue work will kick stopped queues.
489 */
490 blk_mq_start_hw_queues(q);
6fca6a61
CH
491}
492
493void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
494{
495 struct request_queue *q = rq->q;
496 unsigned long flags;
497
498 /*
499 * We abuse this flag that is otherwise used by the I/O scheduler to
500 * request head insertation from the workqueue.
501 */
502 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
503
504 spin_lock_irqsave(&q->requeue_lock, flags);
505 if (at_head) {
506 rq->cmd_flags |= REQ_SOFTBARRIER;
507 list_add(&rq->queuelist, &q->requeue_list);
508 } else {
509 list_add_tail(&rq->queuelist, &q->requeue_list);
510 }
511 spin_unlock_irqrestore(&q->requeue_lock, flags);
512}
513EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
514
c68ed59f
KB
515void blk_mq_cancel_requeue_work(struct request_queue *q)
516{
517 cancel_work_sync(&q->requeue_work);
518}
519EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
520
6fca6a61
CH
521void blk_mq_kick_requeue_list(struct request_queue *q)
522{
523 kblockd_schedule_work(&q->requeue_work);
524}
525EXPORT_SYMBOL(blk_mq_kick_requeue_list);
526
1885b24d
JA
527void blk_mq_abort_requeue_list(struct request_queue *q)
528{
529 unsigned long flags;
530 LIST_HEAD(rq_list);
531
532 spin_lock_irqsave(&q->requeue_lock, flags);
533 list_splice_init(&q->requeue_list, &rq_list);
534 spin_unlock_irqrestore(&q->requeue_lock, flags);
535
536 while (!list_empty(&rq_list)) {
537 struct request *rq;
538
539 rq = list_first_entry(&rq_list, struct request, queuelist);
540 list_del_init(&rq->queuelist);
541 rq->errors = -EIO;
542 blk_mq_end_request(rq, rq->errors);
543 }
544}
545EXPORT_SYMBOL(blk_mq_abort_requeue_list);
546
0e62f51f
JA
547struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
548{
0048b483 549 return tags->rqs[tag];
24d2f903
CH
550}
551EXPORT_SYMBOL(blk_mq_tag_to_rq);
552
320ae51f 553struct blk_mq_timeout_data {
46f92d42
CH
554 unsigned long next;
555 unsigned int next_set;
320ae51f
JA
556};
557
90415837 558void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 559{
46f92d42
CH
560 struct blk_mq_ops *ops = req->q->mq_ops;
561 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
87ee7b11
JA
562
563 /*
564 * We know that complete is set at this point. If STARTED isn't set
565 * anymore, then the request isn't active and the "timeout" should
566 * just be ignored. This can happen due to the bitflag ordering.
567 * Timeout first checks if STARTED is set, and if it is, assumes
568 * the request is active. But if we race with completion, then
569 * we both flags will get cleared. So check here again, and ignore
570 * a timeout event with a request that isn't active.
571 */
46f92d42
CH
572 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
573 return;
87ee7b11 574
46f92d42 575 if (ops->timeout)
0152fb6b 576 ret = ops->timeout(req, reserved);
46f92d42
CH
577
578 switch (ret) {
579 case BLK_EH_HANDLED:
580 __blk_mq_complete_request(req);
581 break;
582 case BLK_EH_RESET_TIMER:
583 blk_add_timer(req);
584 blk_clear_rq_complete(req);
585 break;
586 case BLK_EH_NOT_HANDLED:
587 break;
588 default:
589 printk(KERN_ERR "block: bad eh return: %d\n", ret);
590 break;
591 }
87ee7b11 592}
5b3f25fc 593
81481eb4
CH
594static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
595 struct request *rq, void *priv, bool reserved)
596{
597 struct blk_mq_timeout_data *data = priv;
87ee7b11 598
eb130dbf
KB
599 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
600 /*
601 * If a request wasn't started before the queue was
602 * marked dying, kill it here or it'll go unnoticed.
603 */
f4829a9b
CH
604 if (unlikely(blk_queue_dying(rq->q)))
605 blk_mq_complete_request(rq, -EIO);
46f92d42 606 return;
eb130dbf 607 }
5b3f25fc
KB
608 if (rq->cmd_flags & REQ_NO_TIMEOUT)
609 return;
87ee7b11 610
46f92d42
CH
611 if (time_after_eq(jiffies, rq->deadline)) {
612 if (!blk_mark_rq_complete(rq))
0152fb6b 613 blk_mq_rq_timed_out(rq, reserved);
46f92d42
CH
614 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
615 data->next = rq->deadline;
616 data->next_set = 1;
617 }
87ee7b11
JA
618}
619
81481eb4 620static void blk_mq_rq_timer(unsigned long priv)
320ae51f 621{
81481eb4
CH
622 struct request_queue *q = (struct request_queue *)priv;
623 struct blk_mq_timeout_data data = {
624 .next = 0,
625 .next_set = 0,
626 };
81481eb4 627 int i;
320ae51f 628
0bf6cd5b 629 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
320ae51f 630
81481eb4
CH
631 if (data.next_set) {
632 data.next = blk_rq_timeout(round_jiffies_up(data.next));
633 mod_timer(&q->timeout, data.next);
0d2602ca 634 } else {
0bf6cd5b
CH
635 struct blk_mq_hw_ctx *hctx;
636
f054b56c
ML
637 queue_for_each_hw_ctx(q, hctx, i) {
638 /* the hctx may be unmapped, so check it here */
639 if (blk_mq_hw_queue_mapped(hctx))
640 blk_mq_tag_idle(hctx);
641 }
0d2602ca 642 }
320ae51f
JA
643}
644
645/*
646 * Reverse check our software queue for entries that we could potentially
647 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
648 * too much time checking for merges.
649 */
650static bool blk_mq_attempt_merge(struct request_queue *q,
651 struct blk_mq_ctx *ctx, struct bio *bio)
652{
653 struct request *rq;
654 int checked = 8;
655
656 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
657 int el_ret;
658
659 if (!checked--)
660 break;
661
662 if (!blk_rq_merge_ok(rq, bio))
663 continue;
664
665 el_ret = blk_try_merge(rq, bio);
666 if (el_ret == ELEVATOR_BACK_MERGE) {
667 if (bio_attempt_back_merge(q, rq, bio)) {
668 ctx->rq_merged++;
669 return true;
670 }
671 break;
672 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
673 if (bio_attempt_front_merge(q, rq, bio)) {
674 ctx->rq_merged++;
675 return true;
676 }
677 break;
678 }
679 }
680
681 return false;
682}
683
1429d7c9
JA
684/*
685 * Process software queues that have been marked busy, splicing them
686 * to the for-dispatch
687 */
688static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
689{
690 struct blk_mq_ctx *ctx;
691 int i;
692
569fd0ce 693 for (i = 0; i < hctx->ctx_map.size; i++) {
1429d7c9
JA
694 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
695 unsigned int off, bit;
696
697 if (!bm->word)
698 continue;
699
700 bit = 0;
701 off = i * hctx->ctx_map.bits_per_word;
702 do {
703 bit = find_next_bit(&bm->word, bm->depth, bit);
704 if (bit >= bm->depth)
705 break;
706
707 ctx = hctx->ctxs[bit + off];
708 clear_bit(bit, &bm->word);
709 spin_lock(&ctx->lock);
710 list_splice_tail_init(&ctx->rq_list, list);
711 spin_unlock(&ctx->lock);
712
713 bit++;
714 } while (1);
715 }
716}
717
320ae51f
JA
718/*
719 * Run this hardware queue, pulling any software queues mapped to it in.
720 * Note that this function currently has various problems around ordering
721 * of IO. In particular, we'd like FIFO behaviour on handling existing
722 * items on the hctx->dispatch list. Ignore that for now.
723 */
724static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
725{
726 struct request_queue *q = hctx->queue;
320ae51f
JA
727 struct request *rq;
728 LIST_HEAD(rq_list);
74c45052
JA
729 LIST_HEAD(driver_list);
730 struct list_head *dptr;
1429d7c9 731 int queued;
320ae51f 732
fd1270d5 733 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
e4043dcf 734
5d12f905 735 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
320ae51f
JA
736 return;
737
738 hctx->run++;
739
740 /*
741 * Touch any software queue that has pending entries.
742 */
1429d7c9 743 flush_busy_ctxs(hctx, &rq_list);
320ae51f
JA
744
745 /*
746 * If we have previous entries on our dispatch list, grab them
747 * and stuff them at the front for more fair dispatch.
748 */
749 if (!list_empty_careful(&hctx->dispatch)) {
750 spin_lock(&hctx->lock);
751 if (!list_empty(&hctx->dispatch))
752 list_splice_init(&hctx->dispatch, &rq_list);
753 spin_unlock(&hctx->lock);
754 }
755
74c45052
JA
756 /*
757 * Start off with dptr being NULL, so we start the first request
758 * immediately, even if we have more pending.
759 */
760 dptr = NULL;
761
320ae51f
JA
762 /*
763 * Now process all the entries, sending them to the driver.
764 */
1429d7c9 765 queued = 0;
320ae51f 766 while (!list_empty(&rq_list)) {
74c45052 767 struct blk_mq_queue_data bd;
320ae51f
JA
768 int ret;
769
770 rq = list_first_entry(&rq_list, struct request, queuelist);
771 list_del_init(&rq->queuelist);
320ae51f 772
74c45052
JA
773 bd.rq = rq;
774 bd.list = dptr;
775 bd.last = list_empty(&rq_list);
776
777 ret = q->mq_ops->queue_rq(hctx, &bd);
320ae51f
JA
778 switch (ret) {
779 case BLK_MQ_RQ_QUEUE_OK:
780 queued++;
781 continue;
782 case BLK_MQ_RQ_QUEUE_BUSY:
320ae51f 783 list_add(&rq->queuelist, &rq_list);
ed0791b2 784 __blk_mq_requeue_request(rq);
320ae51f
JA
785 break;
786 default:
787 pr_err("blk-mq: bad return on queue: %d\n", ret);
320ae51f 788 case BLK_MQ_RQ_QUEUE_ERROR:
1e93b8c2 789 rq->errors = -EIO;
c8a446ad 790 blk_mq_end_request(rq, rq->errors);
320ae51f
JA
791 break;
792 }
793
794 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
795 break;
74c45052
JA
796
797 /*
798 * We've done the first request. If we have more than 1
799 * left in the list, set dptr to defer issue.
800 */
801 if (!dptr && rq_list.next != rq_list.prev)
802 dptr = &driver_list;
320ae51f
JA
803 }
804
805 if (!queued)
806 hctx->dispatched[0]++;
807 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
808 hctx->dispatched[ilog2(queued) + 1]++;
809
810 /*
811 * Any items that need requeuing? Stuff them into hctx->dispatch,
812 * that is where we will continue on next queue run.
813 */
814 if (!list_empty(&rq_list)) {
815 spin_lock(&hctx->lock);
816 list_splice(&rq_list, &hctx->dispatch);
817 spin_unlock(&hctx->lock);
9ba52e58
SL
818 /*
819 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
820 * it's possible the queue is stopped and restarted again
821 * before this. Queue restart will dispatch requests. And since
822 * requests in rq_list aren't added into hctx->dispatch yet,
823 * the requests in rq_list might get lost.
824 *
825 * blk_mq_run_hw_queue() already checks the STOPPED bit
826 **/
827 blk_mq_run_hw_queue(hctx, true);
320ae51f
JA
828 }
829}
830
506e931f
JA
831/*
832 * It'd be great if the workqueue API had a way to pass
833 * in a mask and had some smarts for more clever placement.
834 * For now we just round-robin here, switching for every
835 * BLK_MQ_CPU_WORK_BATCH queued items.
836 */
837static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
838{
b657d7e6
CH
839 if (hctx->queue->nr_hw_queues == 1)
840 return WORK_CPU_UNBOUND;
506e931f
JA
841
842 if (--hctx->next_cpu_batch <= 0) {
b657d7e6 843 int cpu = hctx->next_cpu, next_cpu;
506e931f
JA
844
845 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
846 if (next_cpu >= nr_cpu_ids)
847 next_cpu = cpumask_first(hctx->cpumask);
848
849 hctx->next_cpu = next_cpu;
850 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
b657d7e6
CH
851
852 return cpu;
506e931f
JA
853 }
854
b657d7e6 855 return hctx->next_cpu;
506e931f
JA
856}
857
320ae51f
JA
858void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
859{
19c66e59
ML
860 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
861 !blk_mq_hw_queue_mapped(hctx)))
320ae51f
JA
862 return;
863
398205b8 864 if (!async) {
2a90d4aa
PB
865 int cpu = get_cpu();
866 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 867 __blk_mq_run_hw_queue(hctx);
2a90d4aa 868 put_cpu();
398205b8
PB
869 return;
870 }
e4043dcf 871
2a90d4aa 872 put_cpu();
e4043dcf 873 }
398205b8 874
b657d7e6
CH
875 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
876 &hctx->run_work, 0);
320ae51f
JA
877}
878
b94ec296 879void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
880{
881 struct blk_mq_hw_ctx *hctx;
882 int i;
883
884 queue_for_each_hw_ctx(q, hctx, i) {
885 if ((!blk_mq_hctx_has_pending(hctx) &&
886 list_empty_careful(&hctx->dispatch)) ||
5d12f905 887 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
320ae51f
JA
888 continue;
889
b94ec296 890 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
891 }
892}
b94ec296 893EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f
JA
894
895void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
896{
70f4db63
CH
897 cancel_delayed_work(&hctx->run_work);
898 cancel_delayed_work(&hctx->delay_work);
320ae51f
JA
899 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
900}
901EXPORT_SYMBOL(blk_mq_stop_hw_queue);
902
280d45f6
CH
903void blk_mq_stop_hw_queues(struct request_queue *q)
904{
905 struct blk_mq_hw_ctx *hctx;
906 int i;
907
908 queue_for_each_hw_ctx(q, hctx, i)
909 blk_mq_stop_hw_queue(hctx);
910}
911EXPORT_SYMBOL(blk_mq_stop_hw_queues);
912
320ae51f
JA
913void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
914{
915 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 916
0ffbce80 917 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
918}
919EXPORT_SYMBOL(blk_mq_start_hw_queue);
920
2f268556
CH
921void blk_mq_start_hw_queues(struct request_queue *q)
922{
923 struct blk_mq_hw_ctx *hctx;
924 int i;
925
926 queue_for_each_hw_ctx(q, hctx, i)
927 blk_mq_start_hw_queue(hctx);
928}
929EXPORT_SYMBOL(blk_mq_start_hw_queues);
930
1b4a3258 931void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
932{
933 struct blk_mq_hw_ctx *hctx;
934 int i;
935
936 queue_for_each_hw_ctx(q, hctx, i) {
937 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
938 continue;
939
940 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1b4a3258 941 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
942 }
943}
944EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
945
70f4db63 946static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
947{
948 struct blk_mq_hw_ctx *hctx;
949
70f4db63 950 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
e4043dcf 951
320ae51f
JA
952 __blk_mq_run_hw_queue(hctx);
953}
954
70f4db63
CH
955static void blk_mq_delay_work_fn(struct work_struct *work)
956{
957 struct blk_mq_hw_ctx *hctx;
958
959 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
960
961 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
962 __blk_mq_run_hw_queue(hctx);
963}
964
965void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
966{
19c66e59
ML
967 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
968 return;
70f4db63 969
b657d7e6
CH
970 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
971 &hctx->delay_work, msecs_to_jiffies(msecs));
70f4db63
CH
972}
973EXPORT_SYMBOL(blk_mq_delay_queue);
974
320ae51f 975static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 976 struct request *rq, bool at_head)
320ae51f
JA
977{
978 struct blk_mq_ctx *ctx = rq->mq_ctx;
979
01b983c9
JA
980 trace_block_rq_insert(hctx->queue, rq);
981
72a0a36e
CH
982 if (at_head)
983 list_add(&rq->queuelist, &ctx->rq_list);
984 else
985 list_add_tail(&rq->queuelist, &ctx->rq_list);
4bb659b1 986
320ae51f 987 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
988}
989
eeabc850
CH
990void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
991 bool async)
320ae51f 992{
eeabc850 993 struct request_queue *q = rq->q;
320ae51f 994 struct blk_mq_hw_ctx *hctx;
eeabc850
CH
995 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
996
997 current_ctx = blk_mq_get_ctx(q);
998 if (!cpu_online(ctx->cpu))
999 rq->mq_ctx = ctx = current_ctx;
320ae51f 1000
320ae51f
JA
1001 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1002
a57a178a
CH
1003 spin_lock(&ctx->lock);
1004 __blk_mq_insert_request(hctx, rq, at_head);
1005 spin_unlock(&ctx->lock);
320ae51f 1006
320ae51f
JA
1007 if (run_queue)
1008 blk_mq_run_hw_queue(hctx, async);
e4043dcf
JA
1009
1010 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1011}
1012
1013static void blk_mq_insert_requests(struct request_queue *q,
1014 struct blk_mq_ctx *ctx,
1015 struct list_head *list,
1016 int depth,
1017 bool from_schedule)
1018
1019{
1020 struct blk_mq_hw_ctx *hctx;
1021 struct blk_mq_ctx *current_ctx;
1022
1023 trace_block_unplug(q, depth, !from_schedule);
1024
1025 current_ctx = blk_mq_get_ctx(q);
1026
1027 if (!cpu_online(ctx->cpu))
1028 ctx = current_ctx;
1029 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1030
1031 /*
1032 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1033 * offline now
1034 */
1035 spin_lock(&ctx->lock);
1036 while (!list_empty(list)) {
1037 struct request *rq;
1038
1039 rq = list_first_entry(list, struct request, queuelist);
1040 list_del_init(&rq->queuelist);
1041 rq->mq_ctx = ctx;
72a0a36e 1042 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
1043 }
1044 spin_unlock(&ctx->lock);
1045
320ae51f 1046 blk_mq_run_hw_queue(hctx, from_schedule);
e4043dcf 1047 blk_mq_put_ctx(current_ctx);
320ae51f
JA
1048}
1049
1050static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1051{
1052 struct request *rqa = container_of(a, struct request, queuelist);
1053 struct request *rqb = container_of(b, struct request, queuelist);
1054
1055 return !(rqa->mq_ctx < rqb->mq_ctx ||
1056 (rqa->mq_ctx == rqb->mq_ctx &&
1057 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1058}
1059
1060void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1061{
1062 struct blk_mq_ctx *this_ctx;
1063 struct request_queue *this_q;
1064 struct request *rq;
1065 LIST_HEAD(list);
1066 LIST_HEAD(ctx_list);
1067 unsigned int depth;
1068
1069 list_splice_init(&plug->mq_list, &list);
1070
1071 list_sort(NULL, &list, plug_ctx_cmp);
1072
1073 this_q = NULL;
1074 this_ctx = NULL;
1075 depth = 0;
1076
1077 while (!list_empty(&list)) {
1078 rq = list_entry_rq(list.next);
1079 list_del_init(&rq->queuelist);
1080 BUG_ON(!rq->q);
1081 if (rq->mq_ctx != this_ctx) {
1082 if (this_ctx) {
1083 blk_mq_insert_requests(this_q, this_ctx,
1084 &ctx_list, depth,
1085 from_schedule);
1086 }
1087
1088 this_ctx = rq->mq_ctx;
1089 this_q = rq->q;
1090 depth = 0;
1091 }
1092
1093 depth++;
1094 list_add_tail(&rq->queuelist, &ctx_list);
1095 }
1096
1097 /*
1098 * If 'this_ctx' is set, we know we have entries to complete
1099 * on 'ctx_list'. Do those.
1100 */
1101 if (this_ctx) {
1102 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1103 from_schedule);
1104 }
1105}
1106
1107static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1108{
1109 init_request_from_bio(rq, bio);
4b570521 1110
3ee32372 1111 if (blk_do_io_stat(rq))
4b570521 1112 blk_account_io_start(rq, 1);
320ae51f
JA
1113}
1114
274a5843
JA
1115static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1116{
1117 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1118 !blk_queue_nomerges(hctx->queue);
1119}
1120
07068d5b
JA
1121static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1122 struct blk_mq_ctx *ctx,
1123 struct request *rq, struct bio *bio)
320ae51f 1124{
274a5843 1125 if (!hctx_allow_merges(hctx)) {
07068d5b
JA
1126 blk_mq_bio_to_request(rq, bio);
1127 spin_lock(&ctx->lock);
1128insert_rq:
1129 __blk_mq_insert_request(hctx, rq, false);
1130 spin_unlock(&ctx->lock);
1131 return false;
1132 } else {
274a5843
JA
1133 struct request_queue *q = hctx->queue;
1134
07068d5b
JA
1135 spin_lock(&ctx->lock);
1136 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1137 blk_mq_bio_to_request(rq, bio);
1138 goto insert_rq;
1139 }
320ae51f 1140
07068d5b
JA
1141 spin_unlock(&ctx->lock);
1142 __blk_mq_free_request(hctx, ctx, rq);
1143 return true;
14ec77f3 1144 }
07068d5b 1145}
14ec77f3 1146
07068d5b
JA
1147struct blk_map_ctx {
1148 struct blk_mq_hw_ctx *hctx;
1149 struct blk_mq_ctx *ctx;
1150};
1151
1152static struct request *blk_mq_map_request(struct request_queue *q,
1153 struct bio *bio,
1154 struct blk_map_ctx *data)
1155{
1156 struct blk_mq_hw_ctx *hctx;
1157 struct blk_mq_ctx *ctx;
1158 struct request *rq;
1159 int rw = bio_data_dir(bio);
cb96a42c 1160 struct blk_mq_alloc_data alloc_data;
320ae51f 1161
3ef28e83 1162 blk_queue_enter_live(q);
320ae51f
JA
1163 ctx = blk_mq_get_ctx(q);
1164 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1165
07068d5b 1166 if (rw_is_sync(bio->bi_rw))
27fbf4e8 1167 rw |= REQ_SYNC;
07068d5b 1168
320ae51f 1169 trace_block_getrq(q, bio, rw);
cb96a42c
ML
1170 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1171 hctx);
1172 rq = __blk_mq_alloc_request(&alloc_data, rw);
5dee8577 1173 if (unlikely(!rq)) {
793597a6 1174 __blk_mq_run_hw_queue(hctx);
320ae51f
JA
1175 blk_mq_put_ctx(ctx);
1176 trace_block_sleeprq(q, bio, rw);
793597a6
CH
1177
1178 ctx = blk_mq_get_ctx(q);
320ae51f 1179 hctx = q->mq_ops->map_queue(q, ctx->cpu);
cb96a42c
ML
1180 blk_mq_set_alloc_data(&alloc_data, q,
1181 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1182 rq = __blk_mq_alloc_request(&alloc_data, rw);
1183 ctx = alloc_data.ctx;
1184 hctx = alloc_data.hctx;
320ae51f
JA
1185 }
1186
1187 hctx->queued++;
07068d5b
JA
1188 data->hctx = hctx;
1189 data->ctx = ctx;
1190 return rq;
1191}
1192
f984df1f
SL
1193static int blk_mq_direct_issue_request(struct request *rq)
1194{
1195 int ret;
1196 struct request_queue *q = rq->q;
1197 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1198 rq->mq_ctx->cpu);
1199 struct blk_mq_queue_data bd = {
1200 .rq = rq,
1201 .list = NULL,
1202 .last = 1
1203 };
1204
1205 /*
1206 * For OK queue, we are done. For error, kill it. Any other
1207 * error (busy), just add it to our list as we previously
1208 * would have done
1209 */
1210 ret = q->mq_ops->queue_rq(hctx, &bd);
1211 if (ret == BLK_MQ_RQ_QUEUE_OK)
1212 return 0;
1213 else {
1214 __blk_mq_requeue_request(rq);
1215
1216 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1217 rq->errors = -EIO;
1218 blk_mq_end_request(rq, rq->errors);
1219 return 0;
1220 }
1221 return -1;
1222 }
1223}
1224
07068d5b
JA
1225/*
1226 * Multiple hardware queue variant. This will not use per-process plugs,
1227 * but will attempt to bypass the hctx queueing if we can go straight to
1228 * hardware for SYNC IO.
1229 */
1230static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1231{
1232 const int is_sync = rw_is_sync(bio->bi_rw);
1233 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1234 struct blk_map_ctx data;
1235 struct request *rq;
f984df1f
SL
1236 unsigned int request_count = 0;
1237 struct blk_plug *plug;
5b3f341f 1238 struct request *same_queue_rq = NULL;
07068d5b
JA
1239
1240 blk_queue_bounce(q, &bio);
1241
1242 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1243 bio_io_error(bio);
07068d5b
JA
1244 return;
1245 }
1246
54efd50b
KO
1247 blk_queue_split(q, &bio, q->bio_split);
1248
f984df1f 1249 if (!is_flush_fua && !blk_queue_nomerges(q) &&
5b3f341f 1250 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
f984df1f
SL
1251 return;
1252
07068d5b
JA
1253 rq = blk_mq_map_request(q, bio, &data);
1254 if (unlikely(!rq))
1255 return;
1256
1257 if (unlikely(is_flush_fua)) {
1258 blk_mq_bio_to_request(rq, bio);
1259 blk_insert_flush(rq);
1260 goto run_queue;
1261 }
1262
f984df1f 1263 plug = current->plug;
e167dfb5
JA
1264 /*
1265 * If the driver supports defer issued based on 'last', then
1266 * queue it up like normal since we can potentially save some
1267 * CPU this way.
1268 */
f984df1f
SL
1269 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1270 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1271 struct request *old_rq = NULL;
07068d5b
JA
1272
1273 blk_mq_bio_to_request(rq, bio);
07068d5b
JA
1274
1275 /*
f984df1f
SL
1276 * we do limited pluging. If bio can be merged, do merge.
1277 * Otherwise the existing request in the plug list will be
1278 * issued. So the plug list will have one request at most
07068d5b 1279 */
f984df1f 1280 if (plug) {
5b3f341f
SL
1281 /*
1282 * The plug list might get flushed before this. If that
1283 * happens, same_queue_rq is invalid and plug list is empty
1284 **/
1285 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1286 old_rq = same_queue_rq;
f984df1f 1287 list_del_init(&old_rq->queuelist);
07068d5b 1288 }
f984df1f
SL
1289 list_add_tail(&rq->queuelist, &plug->mq_list);
1290 } else /* is_sync */
1291 old_rq = rq;
1292 blk_mq_put_ctx(data.ctx);
1293 if (!old_rq)
239ad215 1294 return;
f984df1f
SL
1295 if (!blk_mq_direct_issue_request(old_rq))
1296 return;
1297 blk_mq_insert_request(old_rq, false, true, true);
1298 return;
07068d5b
JA
1299 }
1300
1301 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1302 /*
1303 * For a SYNC request, send it to the hardware immediately. For
1304 * an ASYNC request, just ensure that we run it later on. The
1305 * latter allows for merging opportunities and more efficient
1306 * dispatching.
1307 */
1308run_queue:
1309 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1310 }
07068d5b
JA
1311 blk_mq_put_ctx(data.ctx);
1312}
1313
1314/*
1315 * Single hardware queue variant. This will attempt to use any per-process
1316 * plug for merging and IO deferral.
1317 */
1318static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1319{
1320 const int is_sync = rw_is_sync(bio->bi_rw);
1321 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
e6c4438b
JM
1322 struct blk_plug *plug;
1323 unsigned int request_count = 0;
07068d5b
JA
1324 struct blk_map_ctx data;
1325 struct request *rq;
1326
07068d5b
JA
1327 blk_queue_bounce(q, &bio);
1328
1329 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
4246a0b6 1330 bio_io_error(bio);
07068d5b
JA
1331 return;
1332 }
1333
54efd50b
KO
1334 blk_queue_split(q, &bio, q->bio_split);
1335
e6c4438b 1336 if (!is_flush_fua && !blk_queue_nomerges(q) &&
5b3f341f 1337 blk_attempt_plug_merge(q, bio, &request_count, NULL))
07068d5b
JA
1338 return;
1339
1340 rq = blk_mq_map_request(q, bio, &data);
ff87bcec
JA
1341 if (unlikely(!rq))
1342 return;
320ae51f
JA
1343
1344 if (unlikely(is_flush_fua)) {
1345 blk_mq_bio_to_request(rq, bio);
320ae51f
JA
1346 blk_insert_flush(rq);
1347 goto run_queue;
1348 }
1349
1350 /*
1351 * A task plug currently exists. Since this is completely lockless,
1352 * utilize that to temporarily store requests until the task is
1353 * either done or scheduled away.
1354 */
e6c4438b
JM
1355 plug = current->plug;
1356 if (plug) {
1357 blk_mq_bio_to_request(rq, bio);
1358 if (list_empty(&plug->mq_list))
1359 trace_block_plug(q);
1360 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1361 blk_flush_plug_list(plug, false);
1362 trace_block_plug(q);
320ae51f 1363 }
e6c4438b
JM
1364 list_add_tail(&rq->queuelist, &plug->mq_list);
1365 blk_mq_put_ctx(data.ctx);
1366 return;
320ae51f
JA
1367 }
1368
07068d5b
JA
1369 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1370 /*
1371 * For a SYNC request, send it to the hardware immediately. For
1372 * an ASYNC request, just ensure that we run it later on. The
1373 * latter allows for merging opportunities and more efficient
1374 * dispatching.
1375 */
1376run_queue:
1377 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
320ae51f
JA
1378 }
1379
07068d5b 1380 blk_mq_put_ctx(data.ctx);
320ae51f
JA
1381}
1382
1383/*
1384 * Default mapping to a software queue, since we use one per CPU.
1385 */
1386struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1387{
1388 return q->queue_hw_ctx[q->mq_map[cpu]];
1389}
1390EXPORT_SYMBOL(blk_mq_map_queue);
1391
24d2f903
CH
1392static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1393 struct blk_mq_tags *tags, unsigned int hctx_idx)
95363efd 1394{
e9b267d9 1395 struct page *page;
320ae51f 1396
24d2f903 1397 if (tags->rqs && set->ops->exit_request) {
e9b267d9 1398 int i;
320ae51f 1399
24d2f903
CH
1400 for (i = 0; i < tags->nr_tags; i++) {
1401 if (!tags->rqs[i])
e9b267d9 1402 continue;
24d2f903
CH
1403 set->ops->exit_request(set->driver_data, tags->rqs[i],
1404 hctx_idx, i);
a5164405 1405 tags->rqs[i] = NULL;
e9b267d9 1406 }
320ae51f 1407 }
320ae51f 1408
24d2f903
CH
1409 while (!list_empty(&tags->page_list)) {
1410 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 1411 list_del_init(&page->lru);
f75782e4
CM
1412 /*
1413 * Remove kmemleak object previously allocated in
1414 * blk_mq_init_rq_map().
1415 */
1416 kmemleak_free(page_address(page));
320ae51f
JA
1417 __free_pages(page, page->private);
1418 }
1419
24d2f903 1420 kfree(tags->rqs);
320ae51f 1421
24d2f903 1422 blk_mq_free_tags(tags);
320ae51f
JA
1423}
1424
1425static size_t order_to_size(unsigned int order)
1426{
4ca08500 1427 return (size_t)PAGE_SIZE << order;
320ae51f
JA
1428}
1429
24d2f903
CH
1430static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1431 unsigned int hctx_idx)
320ae51f 1432{
24d2f903 1433 struct blk_mq_tags *tags;
320ae51f
JA
1434 unsigned int i, j, entries_per_page, max_order = 4;
1435 size_t rq_size, left;
1436
24d2f903 1437 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
24391c0d
SL
1438 set->numa_node,
1439 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
1440 if (!tags)
1441 return NULL;
320ae51f 1442
24d2f903
CH
1443 INIT_LIST_HEAD(&tags->page_list);
1444
a5164405
JA
1445 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1446 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1447 set->numa_node);
24d2f903
CH
1448 if (!tags->rqs) {
1449 blk_mq_free_tags(tags);
1450 return NULL;
1451 }
320ae51f
JA
1452
1453 /*
1454 * rq_size is the size of the request plus driver payload, rounded
1455 * to the cacheline size
1456 */
24d2f903 1457 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 1458 cache_line_size());
24d2f903 1459 left = rq_size * set->queue_depth;
320ae51f 1460
24d2f903 1461 for (i = 0; i < set->queue_depth; ) {
320ae51f
JA
1462 int this_order = max_order;
1463 struct page *page;
1464 int to_do;
1465 void *p;
1466
1467 while (left < order_to_size(this_order - 1) && this_order)
1468 this_order--;
1469
1470 do {
a5164405 1471 page = alloc_pages_node(set->numa_node,
ac211175 1472 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 1473 this_order);
320ae51f
JA
1474 if (page)
1475 break;
1476 if (!this_order--)
1477 break;
1478 if (order_to_size(this_order) < rq_size)
1479 break;
1480 } while (1);
1481
1482 if (!page)
24d2f903 1483 goto fail;
320ae51f
JA
1484
1485 page->private = this_order;
24d2f903 1486 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
1487
1488 p = page_address(page);
f75782e4
CM
1489 /*
1490 * Allow kmemleak to scan these pages as they contain pointers
1491 * to additional allocations like via ops->init_request().
1492 */
1493 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_KERNEL);
320ae51f 1494 entries_per_page = order_to_size(this_order) / rq_size;
24d2f903 1495 to_do = min(entries_per_page, set->queue_depth - i);
320ae51f
JA
1496 left -= to_do * rq_size;
1497 for (j = 0; j < to_do; j++) {
24d2f903
CH
1498 tags->rqs[i] = p;
1499 if (set->ops->init_request) {
1500 if (set->ops->init_request(set->driver_data,
1501 tags->rqs[i], hctx_idx, i,
a5164405
JA
1502 set->numa_node)) {
1503 tags->rqs[i] = NULL;
24d2f903 1504 goto fail;
a5164405 1505 }
e9b267d9
CH
1506 }
1507
320ae51f
JA
1508 p += rq_size;
1509 i++;
1510 }
1511 }
24d2f903 1512 return tags;
320ae51f 1513
24d2f903 1514fail:
24d2f903
CH
1515 blk_mq_free_rq_map(set, tags, hctx_idx);
1516 return NULL;
320ae51f
JA
1517}
1518
1429d7c9
JA
1519static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1520{
1521 kfree(bitmap->map);
1522}
1523
1524static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1525{
1526 unsigned int bpw = 8, total, num_maps, i;
1527
1528 bitmap->bits_per_word = bpw;
1529
1530 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1531 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1532 GFP_KERNEL, node);
1533 if (!bitmap->map)
1534 return -ENOMEM;
1535
1429d7c9
JA
1536 total = nr_cpu_ids;
1537 for (i = 0; i < num_maps; i++) {
1538 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1539 total -= bitmap->map[i].depth;
1540 }
1541
1542 return 0;
1543}
1544
484b4061
JA
1545static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1546{
1547 struct request_queue *q = hctx->queue;
1548 struct blk_mq_ctx *ctx;
1549 LIST_HEAD(tmp);
1550
1551 /*
1552 * Move ctx entries to new CPU, if this one is going away.
1553 */
1554 ctx = __blk_mq_get_ctx(q, cpu);
1555
1556 spin_lock(&ctx->lock);
1557 if (!list_empty(&ctx->rq_list)) {
1558 list_splice_init(&ctx->rq_list, &tmp);
1559 blk_mq_hctx_clear_pending(hctx, ctx);
1560 }
1561 spin_unlock(&ctx->lock);
1562
1563 if (list_empty(&tmp))
1564 return NOTIFY_OK;
1565
1566 ctx = blk_mq_get_ctx(q);
1567 spin_lock(&ctx->lock);
1568
1569 while (!list_empty(&tmp)) {
1570 struct request *rq;
1571
1572 rq = list_first_entry(&tmp, struct request, queuelist);
1573 rq->mq_ctx = ctx;
1574 list_move_tail(&rq->queuelist, &ctx->rq_list);
1575 }
1576
1577 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1578 blk_mq_hctx_mark_pending(hctx, ctx);
1579
1580 spin_unlock(&ctx->lock);
1581
1582 blk_mq_run_hw_queue(hctx, true);
1583 blk_mq_put_ctx(ctx);
1584 return NOTIFY_OK;
1585}
1586
484b4061
JA
1587static int blk_mq_hctx_notify(void *data, unsigned long action,
1588 unsigned int cpu)
1589{
1590 struct blk_mq_hw_ctx *hctx = data;
1591
1592 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1593 return blk_mq_hctx_cpu_offline(hctx, cpu);
2a34c087
ML
1594
1595 /*
1596 * In case of CPU online, tags may be reallocated
1597 * in blk_mq_map_swqueue() after mapping is updated.
1598 */
484b4061
JA
1599
1600 return NOTIFY_OK;
1601}
1602
c3b4afca 1603/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
1604static void blk_mq_exit_hctx(struct request_queue *q,
1605 struct blk_mq_tag_set *set,
1606 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1607{
f70ced09
ML
1608 unsigned flush_start_tag = set->queue_depth;
1609
08e98fc6
ML
1610 blk_mq_tag_idle(hctx);
1611
f70ced09
ML
1612 if (set->ops->exit_request)
1613 set->ops->exit_request(set->driver_data,
1614 hctx->fq->flush_rq, hctx_idx,
1615 flush_start_tag + hctx_idx);
1616
08e98fc6
ML
1617 if (set->ops->exit_hctx)
1618 set->ops->exit_hctx(hctx, hctx_idx);
1619
1620 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
f70ced09 1621 blk_free_flush_queue(hctx->fq);
08e98fc6
ML
1622 blk_mq_free_bitmap(&hctx->ctx_map);
1623}
1624
624dbe47
ML
1625static void blk_mq_exit_hw_queues(struct request_queue *q,
1626 struct blk_mq_tag_set *set, int nr_queue)
1627{
1628 struct blk_mq_hw_ctx *hctx;
1629 unsigned int i;
1630
1631 queue_for_each_hw_ctx(q, hctx, i) {
1632 if (i == nr_queue)
1633 break;
08e98fc6 1634 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 1635 }
624dbe47
ML
1636}
1637
1638static void blk_mq_free_hw_queues(struct request_queue *q,
1639 struct blk_mq_tag_set *set)
1640{
1641 struct blk_mq_hw_ctx *hctx;
1642 unsigned int i;
1643
e09aae7e 1644 queue_for_each_hw_ctx(q, hctx, i)
624dbe47 1645 free_cpumask_var(hctx->cpumask);
624dbe47
ML
1646}
1647
08e98fc6
ML
1648static int blk_mq_init_hctx(struct request_queue *q,
1649 struct blk_mq_tag_set *set,
1650 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 1651{
08e98fc6 1652 int node;
f70ced09 1653 unsigned flush_start_tag = set->queue_depth;
08e98fc6
ML
1654
1655 node = hctx->numa_node;
1656 if (node == NUMA_NO_NODE)
1657 node = hctx->numa_node = set->numa_node;
1658
1659 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1660 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1661 spin_lock_init(&hctx->lock);
1662 INIT_LIST_HEAD(&hctx->dispatch);
1663 hctx->queue = q;
1664 hctx->queue_num = hctx_idx;
1665 hctx->flags = set->flags;
08e98fc6
ML
1666
1667 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1668 blk_mq_hctx_notify, hctx);
1669 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1670
1671 hctx->tags = set->tags[hctx_idx];
320ae51f
JA
1672
1673 /*
08e98fc6
ML
1674 * Allocate space for all possible cpus to avoid allocation at
1675 * runtime
320ae51f 1676 */
08e98fc6
ML
1677 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1678 GFP_KERNEL, node);
1679 if (!hctx->ctxs)
1680 goto unregister_cpu_notifier;
320ae51f 1681
08e98fc6
ML
1682 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1683 goto free_ctxs;
320ae51f 1684
08e98fc6 1685 hctx->nr_ctx = 0;
320ae51f 1686
08e98fc6
ML
1687 if (set->ops->init_hctx &&
1688 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1689 goto free_bitmap;
320ae51f 1690
f70ced09
ML
1691 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1692 if (!hctx->fq)
1693 goto exit_hctx;
320ae51f 1694
f70ced09
ML
1695 if (set->ops->init_request &&
1696 set->ops->init_request(set->driver_data,
1697 hctx->fq->flush_rq, hctx_idx,
1698 flush_start_tag + hctx_idx, node))
1699 goto free_fq;
320ae51f 1700
08e98fc6 1701 return 0;
320ae51f 1702
f70ced09
ML
1703 free_fq:
1704 kfree(hctx->fq);
1705 exit_hctx:
1706 if (set->ops->exit_hctx)
1707 set->ops->exit_hctx(hctx, hctx_idx);
08e98fc6
ML
1708 free_bitmap:
1709 blk_mq_free_bitmap(&hctx->ctx_map);
1710 free_ctxs:
1711 kfree(hctx->ctxs);
1712 unregister_cpu_notifier:
1713 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
320ae51f 1714
08e98fc6
ML
1715 return -1;
1716}
320ae51f 1717
08e98fc6
ML
1718static int blk_mq_init_hw_queues(struct request_queue *q,
1719 struct blk_mq_tag_set *set)
1720{
1721 struct blk_mq_hw_ctx *hctx;
1722 unsigned int i;
320ae51f 1723
08e98fc6
ML
1724 /*
1725 * Initialize hardware queues
1726 */
1727 queue_for_each_hw_ctx(q, hctx, i) {
1728 if (blk_mq_init_hctx(q, set, hctx, i))
320ae51f
JA
1729 break;
1730 }
1731
1732 if (i == q->nr_hw_queues)
1733 return 0;
1734
1735 /*
1736 * Init failed
1737 */
624dbe47 1738 blk_mq_exit_hw_queues(q, set, i);
320ae51f
JA
1739
1740 return 1;
1741}
1742
1743static void blk_mq_init_cpu_queues(struct request_queue *q,
1744 unsigned int nr_hw_queues)
1745{
1746 unsigned int i;
1747
1748 for_each_possible_cpu(i) {
1749 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1750 struct blk_mq_hw_ctx *hctx;
1751
1752 memset(__ctx, 0, sizeof(*__ctx));
1753 __ctx->cpu = i;
1754 spin_lock_init(&__ctx->lock);
1755 INIT_LIST_HEAD(&__ctx->rq_list);
1756 __ctx->queue = q;
1757
1758 /* If the cpu isn't online, the cpu is mapped to first hctx */
320ae51f
JA
1759 if (!cpu_online(i))
1760 continue;
1761
e4043dcf 1762 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1763
320ae51f
JA
1764 /*
1765 * Set local node, IFF we have more than one hw queue. If
1766 * not, we remain on the home node of the device
1767 */
1768 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1769 hctx->numa_node = cpu_to_node(i);
1770 }
1771}
1772
5778322e
AM
1773static void blk_mq_map_swqueue(struct request_queue *q,
1774 const struct cpumask *online_mask)
320ae51f
JA
1775{
1776 unsigned int i;
1777 struct blk_mq_hw_ctx *hctx;
1778 struct blk_mq_ctx *ctx;
2a34c087 1779 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 1780
60de074b
AM
1781 /*
1782 * Avoid others reading imcomplete hctx->cpumask through sysfs
1783 */
1784 mutex_lock(&q->sysfs_lock);
1785
320ae51f 1786 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 1787 cpumask_clear(hctx->cpumask);
320ae51f
JA
1788 hctx->nr_ctx = 0;
1789 }
1790
1791 /*
1792 * Map software to hardware queues
1793 */
1794 queue_for_each_ctx(q, ctx, i) {
1795 /* If the cpu isn't online, the cpu is mapped to first hctx */
5778322e 1796 if (!cpumask_test_cpu(i, online_mask))
e4043dcf
JA
1797 continue;
1798
320ae51f 1799 hctx = q->mq_ops->map_queue(q, i);
e4043dcf 1800 cpumask_set_cpu(i, hctx->cpumask);
320ae51f
JA
1801 ctx->index_hw = hctx->nr_ctx;
1802 hctx->ctxs[hctx->nr_ctx++] = ctx;
1803 }
506e931f 1804
60de074b
AM
1805 mutex_unlock(&q->sysfs_lock);
1806
506e931f 1807 queue_for_each_hw_ctx(q, hctx, i) {
889fa31f
CY
1808 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1809
484b4061 1810 /*
a68aafa5
JA
1811 * If no software queues are mapped to this hardware queue,
1812 * disable it and free the request entries.
484b4061
JA
1813 */
1814 if (!hctx->nr_ctx) {
484b4061
JA
1815 if (set->tags[i]) {
1816 blk_mq_free_rq_map(set, set->tags[i], i);
1817 set->tags[i] = NULL;
484b4061 1818 }
2a34c087 1819 hctx->tags = NULL;
484b4061
JA
1820 continue;
1821 }
1822
2a34c087
ML
1823 /* unmapped hw queue can be remapped after CPU topo changed */
1824 if (!set->tags[i])
1825 set->tags[i] = blk_mq_init_rq_map(set, i);
1826 hctx->tags = set->tags[i];
1827 WARN_ON(!hctx->tags);
1828
889fa31f
CY
1829 /*
1830 * Set the map size to the number of mapped software queues.
1831 * This is more accurate and more efficient than looping
1832 * over all possibly mapped software queues.
1833 */
569fd0ce 1834 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
889fa31f 1835
484b4061
JA
1836 /*
1837 * Initialize batch roundrobin counts
1838 */
506e931f
JA
1839 hctx->next_cpu = cpumask_first(hctx->cpumask);
1840 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1841 }
1356aae0
AM
1842
1843 queue_for_each_ctx(q, ctx, i) {
5778322e 1844 if (!cpumask_test_cpu(i, online_mask))
1356aae0
AM
1845 continue;
1846
1847 hctx = q->mq_ops->map_queue(q, i);
1848 cpumask_set_cpu(i, hctx->tags->cpumask);
1849 }
320ae51f
JA
1850}
1851
0d2602ca
JA
1852static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1853{
1854 struct blk_mq_hw_ctx *hctx;
1855 struct request_queue *q;
1856 bool shared;
1857 int i;
1858
1859 if (set->tag_list.next == set->tag_list.prev)
1860 shared = false;
1861 else
1862 shared = true;
1863
1864 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1865 blk_mq_freeze_queue(q);
1866
1867 queue_for_each_hw_ctx(q, hctx, i) {
1868 if (shared)
1869 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1870 else
1871 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1872 }
1873 blk_mq_unfreeze_queue(q);
1874 }
1875}
1876
1877static void blk_mq_del_queue_tag_set(struct request_queue *q)
1878{
1879 struct blk_mq_tag_set *set = q->tag_set;
1880
0d2602ca
JA
1881 mutex_lock(&set->tag_list_lock);
1882 list_del_init(&q->tag_set_list);
1883 blk_mq_update_tag_set_depth(set);
1884 mutex_unlock(&set->tag_list_lock);
0d2602ca
JA
1885}
1886
1887static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1888 struct request_queue *q)
1889{
1890 q->tag_set = set;
1891
1892 mutex_lock(&set->tag_list_lock);
1893 list_add_tail(&q->tag_set_list, &set->tag_list);
1894 blk_mq_update_tag_set_depth(set);
1895 mutex_unlock(&set->tag_list_lock);
1896}
1897
e09aae7e
ML
1898/*
1899 * It is the actual release handler for mq, but we do it from
1900 * request queue's release handler for avoiding use-after-free
1901 * and headache because q->mq_kobj shouldn't have been introduced,
1902 * but we can't group ctx/kctx kobj without it.
1903 */
1904void blk_mq_release(struct request_queue *q)
1905{
1906 struct blk_mq_hw_ctx *hctx;
1907 unsigned int i;
1908
1909 /* hctx kobj stays in hctx */
c3b4afca
ML
1910 queue_for_each_hw_ctx(q, hctx, i) {
1911 if (!hctx)
1912 continue;
1913 kfree(hctx->ctxs);
e09aae7e 1914 kfree(hctx);
c3b4afca 1915 }
e09aae7e 1916
a723bab3
AM
1917 kfree(q->mq_map);
1918 q->mq_map = NULL;
1919
e09aae7e
ML
1920 kfree(q->queue_hw_ctx);
1921
1922 /* ctx kobj stays in queue_ctx */
1923 free_percpu(q->queue_ctx);
1924}
1925
24d2f903 1926struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
1927{
1928 struct request_queue *uninit_q, *q;
1929
1930 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1931 if (!uninit_q)
1932 return ERR_PTR(-ENOMEM);
1933
1934 q = blk_mq_init_allocated_queue(set, uninit_q);
1935 if (IS_ERR(q))
1936 blk_cleanup_queue(uninit_q);
1937
1938 return q;
1939}
1940EXPORT_SYMBOL(blk_mq_init_queue);
1941
1942struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1943 struct request_queue *q)
320ae51f
JA
1944{
1945 struct blk_mq_hw_ctx **hctxs;
e6cdb092 1946 struct blk_mq_ctx __percpu *ctx;
f14bbe77 1947 unsigned int *map;
320ae51f
JA
1948 int i;
1949
320ae51f
JA
1950 ctx = alloc_percpu(struct blk_mq_ctx);
1951 if (!ctx)
1952 return ERR_PTR(-ENOMEM);
1953
24d2f903
CH
1954 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1955 set->numa_node);
320ae51f
JA
1956
1957 if (!hctxs)
1958 goto err_percpu;
1959
f14bbe77
JA
1960 map = blk_mq_make_queue_map(set);
1961 if (!map)
1962 goto err_map;
1963
24d2f903 1964 for (i = 0; i < set->nr_hw_queues; i++) {
f14bbe77
JA
1965 int node = blk_mq_hw_queue_to_node(map, i);
1966
cdef54dd
CH
1967 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1968 GFP_KERNEL, node);
320ae51f
JA
1969 if (!hctxs[i])
1970 goto err_hctxs;
1971
a86073e4
JA
1972 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1973 node))
e4043dcf
JA
1974 goto err_hctxs;
1975
0d2602ca 1976 atomic_set(&hctxs[i]->nr_active, 0);
f14bbe77 1977 hctxs[i]->numa_node = node;
320ae51f
JA
1978 hctxs[i]->queue_num = i;
1979 }
1980
320ae51f 1981 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
e56f698b 1982 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f
JA
1983
1984 q->nr_queues = nr_cpu_ids;
24d2f903 1985 q->nr_hw_queues = set->nr_hw_queues;
f14bbe77 1986 q->mq_map = map;
320ae51f
JA
1987
1988 q->queue_ctx = ctx;
1989 q->queue_hw_ctx = hctxs;
1990
24d2f903 1991 q->mq_ops = set->ops;
94eddfbe 1992 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f 1993
05f1dd53
JA
1994 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1995 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1996
1be036e9
CH
1997 q->sg_reserved_size = INT_MAX;
1998
6fca6a61
CH
1999 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2000 INIT_LIST_HEAD(&q->requeue_list);
2001 spin_lock_init(&q->requeue_lock);
2002
07068d5b
JA
2003 if (q->nr_hw_queues > 1)
2004 blk_queue_make_request(q, blk_mq_make_request);
2005 else
2006 blk_queue_make_request(q, blk_sq_make_request);
2007
eba71768
JA
2008 /*
2009 * Do this after blk_queue_make_request() overrides it...
2010 */
2011 q->nr_requests = set->queue_depth;
2012
24d2f903
CH
2013 if (set->ops->complete)
2014 blk_queue_softirq_done(q, set->ops->complete);
30a91cb4 2015
24d2f903 2016 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
320ae51f 2017
24d2f903 2018 if (blk_mq_init_hw_queues(q, set))
b62c21b7 2019 goto err_hctxs;
18741986 2020
5778322e 2021 get_online_cpus();
320ae51f 2022 mutex_lock(&all_q_mutex);
320ae51f 2023
4593fdbe 2024 list_add_tail(&q->all_q_node, &all_q_list);
0d2602ca 2025 blk_mq_add_queue_tag_set(set, q);
5778322e 2026 blk_mq_map_swqueue(q, cpu_online_mask);
0d2602ca 2027
4593fdbe 2028 mutex_unlock(&all_q_mutex);
5778322e 2029 put_online_cpus();
484b4061 2030
320ae51f 2031 return q;
18741986 2032
320ae51f 2033err_hctxs:
f14bbe77 2034 kfree(map);
24d2f903 2035 for (i = 0; i < set->nr_hw_queues; i++) {
320ae51f
JA
2036 if (!hctxs[i])
2037 break;
e4043dcf 2038 free_cpumask_var(hctxs[i]->cpumask);
cdef54dd 2039 kfree(hctxs[i]);
320ae51f 2040 }
f14bbe77 2041err_map:
320ae51f
JA
2042 kfree(hctxs);
2043err_percpu:
2044 free_percpu(ctx);
2045 return ERR_PTR(-ENOMEM);
2046}
b62c21b7 2047EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f
JA
2048
2049void blk_mq_free_queue(struct request_queue *q)
2050{
624dbe47 2051 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2052
0e626368
AM
2053 mutex_lock(&all_q_mutex);
2054 list_del_init(&q->all_q_node);
2055 mutex_unlock(&all_q_mutex);
2056
0d2602ca
JA
2057 blk_mq_del_queue_tag_set(q);
2058
624dbe47
ML
2059 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2060 blk_mq_free_hw_queues(q, set);
320ae51f 2061}
320ae51f
JA
2062
2063/* Basically redo blk_mq_init_queue with queue frozen */
5778322e
AM
2064static void blk_mq_queue_reinit(struct request_queue *q,
2065 const struct cpumask *online_mask)
320ae51f 2066{
4ecd4fef 2067 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
320ae51f 2068
67aec14c
JA
2069 blk_mq_sysfs_unregister(q);
2070
5778322e 2071 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues, online_mask);
320ae51f
JA
2072
2073 /*
2074 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2075 * we should change hctx numa_node according to new topology (this
2076 * involves free and re-allocate memory, worthy doing?)
2077 */
2078
5778322e 2079 blk_mq_map_swqueue(q, online_mask);
320ae51f 2080
67aec14c 2081 blk_mq_sysfs_register(q);
320ae51f
JA
2082}
2083
f618ef7c
PG
2084static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2085 unsigned long action, void *hcpu)
320ae51f
JA
2086{
2087 struct request_queue *q;
5778322e
AM
2088 int cpu = (unsigned long)hcpu;
2089 /*
2090 * New online cpumask which is going to be set in this hotplug event.
2091 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2092 * one-by-one and dynamically allocating this could result in a failure.
2093 */
2094 static struct cpumask online_new;
320ae51f
JA
2095
2096 /*
5778322e
AM
2097 * Before hotadded cpu starts handling requests, new mappings must
2098 * be established. Otherwise, these requests in hw queue might
2099 * never be dispatched.
2100 *
2101 * For example, there is a single hw queue (hctx) and two CPU queues
2102 * (ctx0 for CPU0, and ctx1 for CPU1).
2103 *
2104 * Now CPU1 is just onlined and a request is inserted into
2105 * ctx1->rq_list and set bit0 in pending bitmap as ctx1->index_hw is
2106 * still zero.
2107 *
2108 * And then while running hw queue, flush_busy_ctxs() finds bit0 is
2109 * set in pending bitmap and tries to retrieve requests in
2110 * hctx->ctxs[0]->rq_list. But htx->ctxs[0] is a pointer to ctx0,
2111 * so the request in ctx1->rq_list is ignored.
320ae51f 2112 */
5778322e
AM
2113 switch (action & ~CPU_TASKS_FROZEN) {
2114 case CPU_DEAD:
2115 case CPU_UP_CANCELED:
2116 cpumask_copy(&online_new, cpu_online_mask);
2117 break;
2118 case CPU_UP_PREPARE:
2119 cpumask_copy(&online_new, cpu_online_mask);
2120 cpumask_set_cpu(cpu, &online_new);
2121 break;
2122 default:
320ae51f 2123 return NOTIFY_OK;
5778322e 2124 }
320ae51f
JA
2125
2126 mutex_lock(&all_q_mutex);
f3af020b
TH
2127
2128 /*
2129 * We need to freeze and reinit all existing queues. Freezing
2130 * involves synchronous wait for an RCU grace period and doing it
2131 * one by one may take a long time. Start freezing all queues in
2132 * one swoop and then wait for the completions so that freezing can
2133 * take place in parallel.
2134 */
2135 list_for_each_entry(q, &all_q_list, all_q_node)
2136 blk_mq_freeze_queue_start(q);
f054b56c 2137 list_for_each_entry(q, &all_q_list, all_q_node) {
f3af020b
TH
2138 blk_mq_freeze_queue_wait(q);
2139
f054b56c
ML
2140 /*
2141 * timeout handler can't touch hw queue during the
2142 * reinitialization
2143 */
2144 del_timer_sync(&q->timeout);
2145 }
2146
320ae51f 2147 list_for_each_entry(q, &all_q_list, all_q_node)
5778322e 2148 blk_mq_queue_reinit(q, &online_new);
f3af020b
TH
2149
2150 list_for_each_entry(q, &all_q_list, all_q_node)
2151 blk_mq_unfreeze_queue(q);
2152
320ae51f
JA
2153 mutex_unlock(&all_q_mutex);
2154 return NOTIFY_OK;
2155}
2156
a5164405
JA
2157static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2158{
2159 int i;
2160
2161 for (i = 0; i < set->nr_hw_queues; i++) {
2162 set->tags[i] = blk_mq_init_rq_map(set, i);
2163 if (!set->tags[i])
2164 goto out_unwind;
2165 }
2166
2167 return 0;
2168
2169out_unwind:
2170 while (--i >= 0)
2171 blk_mq_free_rq_map(set, set->tags[i], i);
2172
a5164405
JA
2173 return -ENOMEM;
2174}
2175
2176/*
2177 * Allocate the request maps associated with this tag_set. Note that this
2178 * may reduce the depth asked for, if memory is tight. set->queue_depth
2179 * will be updated to reflect the allocated depth.
2180 */
2181static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2182{
2183 unsigned int depth;
2184 int err;
2185
2186 depth = set->queue_depth;
2187 do {
2188 err = __blk_mq_alloc_rq_maps(set);
2189 if (!err)
2190 break;
2191
2192 set->queue_depth >>= 1;
2193 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2194 err = -ENOMEM;
2195 break;
2196 }
2197 } while (set->queue_depth);
2198
2199 if (!set->queue_depth || err) {
2200 pr_err("blk-mq: failed to allocate request map\n");
2201 return -ENOMEM;
2202 }
2203
2204 if (depth != set->queue_depth)
2205 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2206 depth, set->queue_depth);
2207
2208 return 0;
2209}
2210
f26cdc85
KB
2211struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2212{
2213 return tags->cpumask;
2214}
2215EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2216
a4391c64
JA
2217/*
2218 * Alloc a tag set to be associated with one or more request queues.
2219 * May fail with EINVAL for various error conditions. May adjust the
2220 * requested depth down, if if it too large. In that case, the set
2221 * value will be stored in set->queue_depth.
2222 */
24d2f903
CH
2223int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2224{
205fb5f5
BVA
2225 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2226
24d2f903
CH
2227 if (!set->nr_hw_queues)
2228 return -EINVAL;
a4391c64 2229 if (!set->queue_depth)
24d2f903
CH
2230 return -EINVAL;
2231 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2232 return -EINVAL;
2233
f9018ac9 2234 if (!set->ops->queue_rq || !set->ops->map_queue)
24d2f903
CH
2235 return -EINVAL;
2236
a4391c64
JA
2237 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2238 pr_info("blk-mq: reduced tag depth to %u\n",
2239 BLK_MQ_MAX_DEPTH);
2240 set->queue_depth = BLK_MQ_MAX_DEPTH;
2241 }
24d2f903 2242
6637fadf
SL
2243 /*
2244 * If a crashdump is active, then we are potentially in a very
2245 * memory constrained environment. Limit us to 1 queue and
2246 * 64 tags to prevent using too much memory.
2247 */
2248 if (is_kdump_kernel()) {
2249 set->nr_hw_queues = 1;
2250 set->queue_depth = min(64U, set->queue_depth);
2251 }
2252
48479005
ML
2253 set->tags = kmalloc_node(set->nr_hw_queues *
2254 sizeof(struct blk_mq_tags *),
24d2f903
CH
2255 GFP_KERNEL, set->numa_node);
2256 if (!set->tags)
a5164405 2257 return -ENOMEM;
24d2f903 2258
a5164405
JA
2259 if (blk_mq_alloc_rq_maps(set))
2260 goto enomem;
24d2f903 2261
0d2602ca
JA
2262 mutex_init(&set->tag_list_lock);
2263 INIT_LIST_HEAD(&set->tag_list);
2264
24d2f903 2265 return 0;
a5164405 2266enomem:
5676e7b6
RE
2267 kfree(set->tags);
2268 set->tags = NULL;
24d2f903
CH
2269 return -ENOMEM;
2270}
2271EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2272
2273void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2274{
2275 int i;
2276
484b4061 2277 for (i = 0; i < set->nr_hw_queues; i++) {
f26cdc85 2278 if (set->tags[i]) {
484b4061 2279 blk_mq_free_rq_map(set, set->tags[i], i);
f26cdc85
KB
2280 free_cpumask_var(set->tags[i]->cpumask);
2281 }
484b4061
JA
2282 }
2283
981bd189 2284 kfree(set->tags);
5676e7b6 2285 set->tags = NULL;
24d2f903
CH
2286}
2287EXPORT_SYMBOL(blk_mq_free_tag_set);
2288
e3a2b3f9
JA
2289int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2290{
2291 struct blk_mq_tag_set *set = q->tag_set;
2292 struct blk_mq_hw_ctx *hctx;
2293 int i, ret;
2294
2295 if (!set || nr > set->queue_depth)
2296 return -EINVAL;
2297
2298 ret = 0;
2299 queue_for_each_hw_ctx(q, hctx, i) {
2300 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2301 if (ret)
2302 break;
2303 }
2304
2305 if (!ret)
2306 q->nr_requests = nr;
2307
2308 return ret;
2309}
2310
676141e4
JA
2311void blk_mq_disable_hotplug(void)
2312{
2313 mutex_lock(&all_q_mutex);
2314}
2315
2316void blk_mq_enable_hotplug(void)
2317{
2318 mutex_unlock(&all_q_mutex);
2319}
2320
320ae51f
JA
2321static int __init blk_mq_init(void)
2322{
320ae51f
JA
2323 blk_mq_cpu_init();
2324
add703fd 2325 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
320ae51f
JA
2326
2327 return 0;
2328}
2329subsys_initcall(blk_mq_init);