drm/amdgpu/powerplay: fix AVFS handling with custom powerplay table
[linux-2.6-block.git] / block / blk-mq.c
CommitLineData
3dcf60bc 1// SPDX-License-Identifier: GPL-2.0
75bb4625
JA
2/*
3 * Block multiqueue core code
4 *
5 * Copyright (C) 2013-2014 Jens Axboe
6 * Copyright (C) 2013-2014 Christoph Hellwig
7 */
320ae51f
JA
8#include <linux/kernel.h>
9#include <linux/module.h>
10#include <linux/backing-dev.h>
11#include <linux/bio.h>
12#include <linux/blkdev.h>
f75782e4 13#include <linux/kmemleak.h>
320ae51f
JA
14#include <linux/mm.h>
15#include <linux/init.h>
16#include <linux/slab.h>
17#include <linux/workqueue.h>
18#include <linux/smp.h>
19#include <linux/llist.h>
20#include <linux/list_sort.h>
21#include <linux/cpu.h>
22#include <linux/cache.h>
23#include <linux/sched/sysctl.h>
105ab3d8 24#include <linux/sched/topology.h>
174cd4b1 25#include <linux/sched/signal.h>
320ae51f 26#include <linux/delay.h>
aedcd72f 27#include <linux/crash_dump.h>
88c7b2b7 28#include <linux/prefetch.h>
320ae51f
JA
29
30#include <trace/events/block.h>
31
32#include <linux/blk-mq.h>
54d4e6ab 33#include <linux/t10-pi.h>
320ae51f
JA
34#include "blk.h"
35#include "blk-mq.h"
9c1051aa 36#include "blk-mq-debugfs.h"
320ae51f 37#include "blk-mq-tag.h"
986d413b 38#include "blk-pm.h"
cf43e6be 39#include "blk-stat.h"
bd166ef1 40#include "blk-mq-sched.h"
c1c80384 41#include "blk-rq-qos.h"
320ae51f 42
34dbad5d
OS
43static void blk_mq_poll_stats_start(struct request_queue *q);
44static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
45
720b8ccc
SB
46static int blk_mq_poll_stats_bkt(const struct request *rq)
47{
3d244306 48 int ddir, sectors, bucket;
720b8ccc 49
99c749a4 50 ddir = rq_data_dir(rq);
3d244306 51 sectors = blk_rq_stats_sectors(rq);
720b8ccc 52
3d244306 53 bucket = ddir + 2 * ilog2(sectors);
720b8ccc
SB
54
55 if (bucket < 0)
56 return -1;
57 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
58 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
59
60 return bucket;
61}
62
320ae51f 63/*
85fae294
YY
64 * Check if any of the ctx, dispatch list or elevator
65 * have pending work in this hardware queue.
320ae51f 66 */
79f720a7 67static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
320ae51f 68{
79f720a7
JA
69 return !list_empty_careful(&hctx->dispatch) ||
70 sbitmap_any_bit_set(&hctx->ctx_map) ||
bd166ef1 71 blk_mq_sched_has_work(hctx);
1429d7c9
JA
72}
73
320ae51f
JA
74/*
75 * Mark this ctx as having pending work in this hardware queue
76 */
77static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
78 struct blk_mq_ctx *ctx)
79{
f31967f0
JA
80 const int bit = ctx->index_hw[hctx->type];
81
82 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
83 sbitmap_set_bit(&hctx->ctx_map, bit);
1429d7c9
JA
84}
85
86static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
87 struct blk_mq_ctx *ctx)
88{
f31967f0
JA
89 const int bit = ctx->index_hw[hctx->type];
90
91 sbitmap_clear_bit(&hctx->ctx_map, bit);
320ae51f
JA
92}
93
f299b7c7
JA
94struct mq_inflight {
95 struct hd_struct *part;
96 unsigned int *inflight;
97};
98
7baa8572 99static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
f299b7c7
JA
100 struct request *rq, void *priv,
101 bool reserved)
102{
103 struct mq_inflight *mi = priv;
104
6131837b 105 /*
e016b782 106 * index[0] counts the specific partition that was asked for.
6131837b
OS
107 */
108 if (rq->part == mi->part)
109 mi->inflight[0]++;
7baa8572
JA
110
111 return true;
f299b7c7
JA
112}
113
e016b782 114unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
f299b7c7 115{
e016b782 116 unsigned inflight[2];
f299b7c7
JA
117 struct mq_inflight mi = { .part = part, .inflight = inflight, };
118
b8d62b3a 119 inflight[0] = inflight[1] = 0;
f299b7c7 120 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
e016b782
MP
121
122 return inflight[0];
f299b7c7
JA
123}
124
7baa8572 125static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
bf0ddaba
OS
126 struct request *rq, void *priv,
127 bool reserved)
128{
129 struct mq_inflight *mi = priv;
130
131 if (rq->part == mi->part)
132 mi->inflight[rq_data_dir(rq)]++;
7baa8572
JA
133
134 return true;
bf0ddaba
OS
135}
136
137void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
138 unsigned int inflight[2])
139{
140 struct mq_inflight mi = { .part = part, .inflight = inflight, };
141
142 inflight[0] = inflight[1] = 0;
143 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
144}
145
1671d522 146void blk_freeze_queue_start(struct request_queue *q)
43a5e4e2 147{
7996a8b5
BL
148 mutex_lock(&q->mq_freeze_lock);
149 if (++q->mq_freeze_depth == 1) {
3ef28e83 150 percpu_ref_kill(&q->q_usage_counter);
7996a8b5 151 mutex_unlock(&q->mq_freeze_lock);
344e9ffc 152 if (queue_is_mq(q))
055f6e18 153 blk_mq_run_hw_queues(q, false);
7996a8b5
BL
154 } else {
155 mutex_unlock(&q->mq_freeze_lock);
cddd5d17 156 }
f3af020b 157}
1671d522 158EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
f3af020b 159
6bae363e 160void blk_mq_freeze_queue_wait(struct request_queue *q)
f3af020b 161{
3ef28e83 162 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
43a5e4e2 163}
6bae363e 164EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
43a5e4e2 165
f91328c4
KB
166int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
167 unsigned long timeout)
168{
169 return wait_event_timeout(q->mq_freeze_wq,
170 percpu_ref_is_zero(&q->q_usage_counter),
171 timeout);
172}
173EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
43a5e4e2 174
f3af020b
TH
175/*
176 * Guarantee no request is in use, so we can change any data structure of
177 * the queue afterward.
178 */
3ef28e83 179void blk_freeze_queue(struct request_queue *q)
f3af020b 180{
3ef28e83
DW
181 /*
182 * In the !blk_mq case we are only calling this to kill the
183 * q_usage_counter, otherwise this increases the freeze depth
184 * and waits for it to return to zero. For this reason there is
185 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
186 * exported to drivers as the only user for unfreeze is blk_mq.
187 */
1671d522 188 blk_freeze_queue_start(q);
f3af020b
TH
189 blk_mq_freeze_queue_wait(q);
190}
3ef28e83
DW
191
192void blk_mq_freeze_queue(struct request_queue *q)
193{
194 /*
195 * ...just an alias to keep freeze and unfreeze actions balanced
196 * in the blk_mq_* namespace
197 */
198 blk_freeze_queue(q);
199}
c761d96b 200EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
f3af020b 201
b4c6a028 202void blk_mq_unfreeze_queue(struct request_queue *q)
320ae51f 203{
7996a8b5
BL
204 mutex_lock(&q->mq_freeze_lock);
205 q->mq_freeze_depth--;
206 WARN_ON_ONCE(q->mq_freeze_depth < 0);
207 if (!q->mq_freeze_depth) {
bdd63160 208 percpu_ref_resurrect(&q->q_usage_counter);
320ae51f 209 wake_up_all(&q->mq_freeze_wq);
add703fd 210 }
7996a8b5 211 mutex_unlock(&q->mq_freeze_lock);
320ae51f 212}
b4c6a028 213EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
320ae51f 214
852ec809
BVA
215/*
216 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
217 * mpt3sas driver such that this function can be removed.
218 */
219void blk_mq_quiesce_queue_nowait(struct request_queue *q)
220{
8814ce8a 221 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
852ec809
BVA
222}
223EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
224
6a83e74d 225/**
69e07c4a 226 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
6a83e74d
BVA
227 * @q: request queue.
228 *
229 * Note: this function does not prevent that the struct request end_io()
69e07c4a
ML
230 * callback function is invoked. Once this function is returned, we make
231 * sure no dispatch can happen until the queue is unquiesced via
232 * blk_mq_unquiesce_queue().
6a83e74d
BVA
233 */
234void blk_mq_quiesce_queue(struct request_queue *q)
235{
236 struct blk_mq_hw_ctx *hctx;
237 unsigned int i;
238 bool rcu = false;
239
1d9e9bc6 240 blk_mq_quiesce_queue_nowait(q);
f4560ffe 241
6a83e74d
BVA
242 queue_for_each_hw_ctx(q, hctx, i) {
243 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 244 synchronize_srcu(hctx->srcu);
6a83e74d
BVA
245 else
246 rcu = true;
247 }
248 if (rcu)
249 synchronize_rcu();
250}
251EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
252
e4e73913
ML
253/*
254 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
255 * @q: request queue.
256 *
257 * This function recovers queue into the state before quiescing
258 * which is done by blk_mq_quiesce_queue.
259 */
260void blk_mq_unquiesce_queue(struct request_queue *q)
261{
8814ce8a 262 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
f4560ffe 263
1d9e9bc6
ML
264 /* dispatch requests which are inserted during quiescing */
265 blk_mq_run_hw_queues(q, true);
e4e73913
ML
266}
267EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
268
aed3ea94
JA
269void blk_mq_wake_waiters(struct request_queue *q)
270{
271 struct blk_mq_hw_ctx *hctx;
272 unsigned int i;
273
274 queue_for_each_hw_ctx(q, hctx, i)
275 if (blk_mq_hw_queue_mapped(hctx))
276 blk_mq_tag_wakeup_all(hctx->tags, true);
277}
278
320ae51f
JA
279bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
280{
281 return blk_mq_has_free_tags(hctx->tags);
282}
283EXPORT_SYMBOL(blk_mq_can_queue);
284
fe1f4526 285/*
9a91b05b
HT
286 * Only need start/end time stamping if we have iostat or
287 * blk stats enabled, or using an IO scheduler.
fe1f4526
JA
288 */
289static inline bool blk_mq_need_time_stamp(struct request *rq)
290{
9a91b05b 291 return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
fe1f4526
JA
292}
293
e4cdf1a1 294static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
6f816b4b 295 unsigned int tag, unsigned int op, u64 alloc_time_ns)
320ae51f 296{
e4cdf1a1
CH
297 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
298 struct request *rq = tags->static_rqs[tag];
bf9ae8c5 299 req_flags_t rq_flags = 0;
c3a148d2 300
e4cdf1a1
CH
301 if (data->flags & BLK_MQ_REQ_INTERNAL) {
302 rq->tag = -1;
303 rq->internal_tag = tag;
304 } else {
d263ed99 305 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
bf9ae8c5 306 rq_flags = RQF_MQ_INFLIGHT;
e4cdf1a1
CH
307 atomic_inc(&data->hctx->nr_active);
308 }
309 rq->tag = tag;
310 rq->internal_tag = -1;
311 data->hctx->tags->rqs[rq->tag] = rq;
312 }
313
af76e555 314 /* csd/requeue_work/fifo_time is initialized before use */
e4cdf1a1
CH
315 rq->q = data->q;
316 rq->mq_ctx = data->ctx;
ea4f995e 317 rq->mq_hctx = data->hctx;
bf9ae8c5 318 rq->rq_flags = rq_flags;
ef295ecf 319 rq->cmd_flags = op;
1b6d65a0
BVA
320 if (data->flags & BLK_MQ_REQ_PREEMPT)
321 rq->rq_flags |= RQF_PREEMPT;
e4cdf1a1 322 if (blk_queue_io_stat(data->q))
e8064021 323 rq->rq_flags |= RQF_IO_STAT;
7c3fb70f 324 INIT_LIST_HEAD(&rq->queuelist);
af76e555
CH
325 INIT_HLIST_NODE(&rq->hash);
326 RB_CLEAR_NODE(&rq->rb_node);
af76e555
CH
327 rq->rq_disk = NULL;
328 rq->part = NULL;
6f816b4b
TH
329#ifdef CONFIG_BLK_RQ_ALLOC_TIME
330 rq->alloc_time_ns = alloc_time_ns;
331#endif
fe1f4526
JA
332 if (blk_mq_need_time_stamp(rq))
333 rq->start_time_ns = ktime_get_ns();
334 else
335 rq->start_time_ns = 0;
544ccc8d 336 rq->io_start_time_ns = 0;
3d244306 337 rq->stats_sectors = 0;
af76e555
CH
338 rq->nr_phys_segments = 0;
339#if defined(CONFIG_BLK_DEV_INTEGRITY)
340 rq->nr_integrity_segments = 0;
341#endif
af76e555 342 /* tag was already set */
af76e555 343 rq->extra_len = 0;
079076b3 344 WRITE_ONCE(rq->deadline, 0);
af76e555 345
f6be4fb4
JA
346 rq->timeout = 0;
347
af76e555
CH
348 rq->end_io = NULL;
349 rq->end_io_data = NULL;
af76e555 350
e4cdf1a1 351 data->ctx->rq_dispatched[op_is_sync(op)]++;
12f5b931 352 refcount_set(&rq->ref, 1);
e4cdf1a1 353 return rq;
5dee8577
CH
354}
355
d2c0d383 356static struct request *blk_mq_get_request(struct request_queue *q,
f9afca4d
JA
357 struct bio *bio,
358 struct blk_mq_alloc_data *data)
d2c0d383
CH
359{
360 struct elevator_queue *e = q->elevator;
361 struct request *rq;
e4cdf1a1 362 unsigned int tag;
c05f4220 363 bool clear_ctx_on_error = false;
6f816b4b 364 u64 alloc_time_ns = 0;
d2c0d383
CH
365
366 blk_queue_enter_live(q);
6f816b4b
TH
367
368 /* alloc_time includes depth and tag waits */
369 if (blk_queue_rq_alloc_time(q))
370 alloc_time_ns = ktime_get_ns();
371
d2c0d383 372 data->q = q;
21e768b4
BVA
373 if (likely(!data->ctx)) {
374 data->ctx = blk_mq_get_ctx(q);
c05f4220 375 clear_ctx_on_error = true;
21e768b4 376 }
d2c0d383 377 if (likely(!data->hctx))
f9afca4d 378 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
8ccdf4a3 379 data->ctx);
f9afca4d 380 if (data->cmd_flags & REQ_NOWAIT)
03a07c92 381 data->flags |= BLK_MQ_REQ_NOWAIT;
d2c0d383
CH
382
383 if (e) {
384 data->flags |= BLK_MQ_REQ_INTERNAL;
385
386 /*
387 * Flush requests are special and go directly to the
17a51199
JA
388 * dispatch list. Don't include reserved tags in the
389 * limiting, as it isn't useful.
d2c0d383 390 */
f9afca4d
JA
391 if (!op_is_flush(data->cmd_flags) &&
392 e->type->ops.limit_depth &&
17a51199 393 !(data->flags & BLK_MQ_REQ_RESERVED))
f9afca4d 394 e->type->ops.limit_depth(data->cmd_flags, data);
d263ed99
JW
395 } else {
396 blk_mq_tag_busy(data->hctx);
d2c0d383
CH
397 }
398
e4cdf1a1
CH
399 tag = blk_mq_get_tag(data);
400 if (tag == BLK_MQ_TAG_FAIL) {
c05f4220 401 if (clear_ctx_on_error)
1ad43c00 402 data->ctx = NULL;
037cebb8
CH
403 blk_queue_exit(q);
404 return NULL;
d2c0d383
CH
405 }
406
6f816b4b 407 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags, alloc_time_ns);
f9afca4d 408 if (!op_is_flush(data->cmd_flags)) {
037cebb8 409 rq->elv.icq = NULL;
f9cd4bfe 410 if (e && e->type->ops.prepare_request) {
e2b3fa5a
DLM
411 if (e->type->icq_cache)
412 blk_mq_sched_assign_ioc(rq);
44e8c2bf 413
f9cd4bfe 414 e->type->ops.prepare_request(rq, bio);
5bbf4e5a 415 rq->rq_flags |= RQF_ELVPRIV;
44e8c2bf 416 }
037cebb8
CH
417 }
418 data->hctx->queued++;
419 return rq;
d2c0d383
CH
420}
421
cd6ce148 422struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
9a95e4ef 423 blk_mq_req_flags_t flags)
320ae51f 424{
f9afca4d 425 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
bd166ef1 426 struct request *rq;
a492f075 427 int ret;
320ae51f 428
3a0a5299 429 ret = blk_queue_enter(q, flags);
a492f075
JL
430 if (ret)
431 return ERR_PTR(ret);
320ae51f 432
f9afca4d 433 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 434 blk_queue_exit(q);
841bac2c 435
bd166ef1 436 if (!rq)
a492f075 437 return ERR_PTR(-EWOULDBLOCK);
0c4de0f3
CH
438
439 rq->__data_len = 0;
440 rq->__sector = (sector_t) -1;
441 rq->bio = rq->biotail = NULL;
320ae51f
JA
442 return rq;
443}
4bb659b1 444EXPORT_SYMBOL(blk_mq_alloc_request);
320ae51f 445
cd6ce148 446struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
9a95e4ef 447 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
1f5bd336 448{
f9afca4d 449 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
1f5bd336 450 struct request *rq;
6d2809d5 451 unsigned int cpu;
1f5bd336
ML
452 int ret;
453
454 /*
455 * If the tag allocator sleeps we could get an allocation for a
456 * different hardware context. No need to complicate the low level
457 * allocator for this for the rare use case of a command tied to
458 * a specific queue.
459 */
460 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
461 return ERR_PTR(-EINVAL);
462
463 if (hctx_idx >= q->nr_hw_queues)
464 return ERR_PTR(-EIO);
465
3a0a5299 466 ret = blk_queue_enter(q, flags);
1f5bd336
ML
467 if (ret)
468 return ERR_PTR(ret);
469
c8712c6a
CH
470 /*
471 * Check if the hardware context is actually mapped to anything.
472 * If not tell the caller that it should skip this queue.
473 */
6d2809d5
OS
474 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
475 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
476 blk_queue_exit(q);
477 return ERR_PTR(-EXDEV);
c8712c6a 478 }
20e4d813 479 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
6d2809d5 480 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
1f5bd336 481
f9afca4d 482 rq = blk_mq_get_request(q, NULL, &alloc_data);
3280d66a 483 blk_queue_exit(q);
c8712c6a 484
6d2809d5
OS
485 if (!rq)
486 return ERR_PTR(-EWOULDBLOCK);
487
488 return rq;
1f5bd336
ML
489}
490EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
491
12f5b931
KB
492static void __blk_mq_free_request(struct request *rq)
493{
494 struct request_queue *q = rq->q;
495 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 496 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
12f5b931
KB
497 const int sched_tag = rq->internal_tag;
498
986d413b 499 blk_pm_mark_last_busy(rq);
ea4f995e 500 rq->mq_hctx = NULL;
12f5b931
KB
501 if (rq->tag != -1)
502 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
503 if (sched_tag != -1)
504 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
505 blk_mq_sched_restart(hctx);
506 blk_queue_exit(q);
507}
508
6af54051 509void blk_mq_free_request(struct request *rq)
320ae51f 510{
320ae51f 511 struct request_queue *q = rq->q;
6af54051
CH
512 struct elevator_queue *e = q->elevator;
513 struct blk_mq_ctx *ctx = rq->mq_ctx;
ea4f995e 514 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
6af54051 515
5bbf4e5a 516 if (rq->rq_flags & RQF_ELVPRIV) {
f9cd4bfe
JA
517 if (e && e->type->ops.finish_request)
518 e->type->ops.finish_request(rq);
6af54051
CH
519 if (rq->elv.icq) {
520 put_io_context(rq->elv.icq->ioc);
521 rq->elv.icq = NULL;
522 }
523 }
320ae51f 524
6af54051 525 ctx->rq_completed[rq_is_sync(rq)]++;
e8064021 526 if (rq->rq_flags & RQF_MQ_INFLIGHT)
0d2602ca 527 atomic_dec(&hctx->nr_active);
87760e5e 528
7beb2f84
JA
529 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
530 laptop_io_completion(q->backing_dev_info);
531
a7905043 532 rq_qos_done(q, rq);
0d2602ca 533
12f5b931
KB
534 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
535 if (refcount_dec_and_test(&rq->ref))
536 __blk_mq_free_request(rq);
320ae51f 537}
1a3b595a 538EXPORT_SYMBOL_GPL(blk_mq_free_request);
320ae51f 539
2a842aca 540inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
320ae51f 541{
fe1f4526
JA
542 u64 now = 0;
543
544 if (blk_mq_need_time_stamp(rq))
545 now = ktime_get_ns();
522a7775 546
4bc6339a
OS
547 if (rq->rq_flags & RQF_STATS) {
548 blk_mq_poll_stats_start(rq->q);
522a7775 549 blk_stat_add(rq, now);
4bc6339a
OS
550 }
551
ed88660a
OS
552 if (rq->internal_tag != -1)
553 blk_mq_sched_completed_request(rq, now);
554
522a7775 555 blk_account_io_done(rq, now);
0d11e6ac 556
91b63639 557 if (rq->end_io) {
a7905043 558 rq_qos_done(rq->q, rq);
320ae51f 559 rq->end_io(rq, error);
91b63639 560 } else {
320ae51f 561 blk_mq_free_request(rq);
91b63639 562 }
320ae51f 563}
c8a446ad 564EXPORT_SYMBOL(__blk_mq_end_request);
63151a44 565
2a842aca 566void blk_mq_end_request(struct request *rq, blk_status_t error)
63151a44
CH
567{
568 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
569 BUG();
c8a446ad 570 __blk_mq_end_request(rq, error);
63151a44 571}
c8a446ad 572EXPORT_SYMBOL(blk_mq_end_request);
320ae51f 573
30a91cb4 574static void __blk_mq_complete_request_remote(void *data)
320ae51f 575{
3d6efbf6 576 struct request *rq = data;
c7bb9ad1 577 struct request_queue *q = rq->q;
320ae51f 578
c7bb9ad1 579 q->mq_ops->complete(rq);
320ae51f 580}
320ae51f 581
453f8341 582static void __blk_mq_complete_request(struct request *rq)
320ae51f
JA
583{
584 struct blk_mq_ctx *ctx = rq->mq_ctx;
c7bb9ad1 585 struct request_queue *q = rq->q;
38535201 586 bool shared = false;
320ae51f
JA
587 int cpu;
588
af78ff7c 589 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
36e76539
ML
590 /*
591 * Most of single queue controllers, there is only one irq vector
592 * for handling IO completion, and the only irq's affinity is set
593 * as all possible CPUs. On most of ARCHs, this affinity means the
594 * irq is handled on one specific CPU.
595 *
596 * So complete IO reqeust in softirq context in case of single queue
597 * for not degrading IO performance by irqsoff latency.
598 */
c7bb9ad1 599 if (q->nr_hw_queues == 1) {
36e76539
ML
600 __blk_complete_request(rq);
601 return;
602 }
603
4ab32bf3
JA
604 /*
605 * For a polled request, always complete locallly, it's pointless
606 * to redirect the completion.
607 */
608 if ((rq->cmd_flags & REQ_HIPRI) ||
609 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
c7bb9ad1 610 q->mq_ops->complete(rq);
30a91cb4
CH
611 return;
612 }
320ae51f
JA
613
614 cpu = get_cpu();
c7bb9ad1 615 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
38535201
CH
616 shared = cpus_share_cache(cpu, ctx->cpu);
617
618 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
30a91cb4 619 rq->csd.func = __blk_mq_complete_request_remote;
3d6efbf6
CH
620 rq->csd.info = rq;
621 rq->csd.flags = 0;
c46fff2a 622 smp_call_function_single_async(ctx->cpu, &rq->csd);
3d6efbf6 623 } else {
c7bb9ad1 624 q->mq_ops->complete(rq);
3d6efbf6 625 }
320ae51f
JA
626 put_cpu();
627}
30a91cb4 628
04ced159 629static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
b7435db8 630 __releases(hctx->srcu)
04ced159
JA
631{
632 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
633 rcu_read_unlock();
634 else
05707b64 635 srcu_read_unlock(hctx->srcu, srcu_idx);
04ced159
JA
636}
637
638static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
b7435db8 639 __acquires(hctx->srcu)
04ced159 640{
08b5a6e2
JA
641 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
642 /* shut up gcc false positive */
643 *srcu_idx = 0;
04ced159 644 rcu_read_lock();
08b5a6e2 645 } else
05707b64 646 *srcu_idx = srcu_read_lock(hctx->srcu);
04ced159
JA
647}
648
30a91cb4
CH
649/**
650 * blk_mq_complete_request - end I/O on a request
651 * @rq: the request being processed
652 *
653 * Description:
654 * Ends all I/O on a request. It does not handle partial completions.
655 * The actual completion happens out-of-order, through a IPI handler.
656 **/
16c15eb1 657bool blk_mq_complete_request(struct request *rq)
30a91cb4 658{
12f5b931 659 if (unlikely(blk_should_fake_timeout(rq->q)))
16c15eb1 660 return false;
12f5b931 661 __blk_mq_complete_request(rq);
16c15eb1 662 return true;
30a91cb4
CH
663}
664EXPORT_SYMBOL(blk_mq_complete_request);
320ae51f 665
973c0191
KB
666int blk_mq_request_started(struct request *rq)
667{
5a61c363 668 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
973c0191
KB
669}
670EXPORT_SYMBOL_GPL(blk_mq_request_started);
671
aa306ab7
ML
672int blk_mq_request_completed(struct request *rq)
673{
674 return blk_mq_rq_state(rq) == MQ_RQ_COMPLETE;
675}
676EXPORT_SYMBOL_GPL(blk_mq_request_completed);
677
e2490073 678void blk_mq_start_request(struct request *rq)
320ae51f
JA
679{
680 struct request_queue *q = rq->q;
681
682 trace_block_rq_issue(q, rq);
683
cf43e6be 684 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
544ccc8d 685 rq->io_start_time_ns = ktime_get_ns();
3d244306 686 rq->stats_sectors = blk_rq_sectors(rq);
cf43e6be 687 rq->rq_flags |= RQF_STATS;
a7905043 688 rq_qos_issue(q, rq);
cf43e6be
JA
689 }
690
1d9bd516 691 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
538b7534 692
1d9bd516 693 blk_add_timer(rq);
12f5b931 694 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
49f5baa5
CH
695
696 if (q->dma_drain_size && blk_rq_bytes(rq)) {
697 /*
698 * Make sure space for the drain appears. We know we can do
699 * this because max_hw_segments has been adjusted to be one
700 * fewer than the device can handle.
701 */
702 rq->nr_phys_segments++;
703 }
54d4e6ab
MG
704
705#ifdef CONFIG_BLK_DEV_INTEGRITY
706 if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
707 q->integrity.profile->prepare_fn(rq);
708#endif
320ae51f 709}
e2490073 710EXPORT_SYMBOL(blk_mq_start_request);
320ae51f 711
ed0791b2 712static void __blk_mq_requeue_request(struct request *rq)
320ae51f
JA
713{
714 struct request_queue *q = rq->q;
715
923218f6
ML
716 blk_mq_put_driver_tag(rq);
717
320ae51f 718 trace_block_rq_requeue(q, rq);
a7905043 719 rq_qos_requeue(q, rq);
49f5baa5 720
12f5b931
KB
721 if (blk_mq_request_started(rq)) {
722 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
da661267 723 rq->rq_flags &= ~RQF_TIMED_OUT;
e2490073
CH
724 if (q->dma_drain_size && blk_rq_bytes(rq))
725 rq->nr_phys_segments--;
726 }
320ae51f
JA
727}
728
2b053aca 729void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
ed0791b2 730{
ed0791b2 731 __blk_mq_requeue_request(rq);
ed0791b2 732
105976f5
ML
733 /* this request will be re-inserted to io scheduler queue */
734 blk_mq_sched_requeue_request(rq);
735
7d692330 736 BUG_ON(!list_empty(&rq->queuelist));
2b053aca 737 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
ed0791b2
CH
738}
739EXPORT_SYMBOL(blk_mq_requeue_request);
740
6fca6a61
CH
741static void blk_mq_requeue_work(struct work_struct *work)
742{
743 struct request_queue *q =
2849450a 744 container_of(work, struct request_queue, requeue_work.work);
6fca6a61
CH
745 LIST_HEAD(rq_list);
746 struct request *rq, *next;
6fca6a61 747
18e9781d 748 spin_lock_irq(&q->requeue_lock);
6fca6a61 749 list_splice_init(&q->requeue_list, &rq_list);
18e9781d 750 spin_unlock_irq(&q->requeue_lock);
6fca6a61
CH
751
752 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
aef1897c 753 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
6fca6a61
CH
754 continue;
755
e8064021 756 rq->rq_flags &= ~RQF_SOFTBARRIER;
6fca6a61 757 list_del_init(&rq->queuelist);
aef1897c
JW
758 /*
759 * If RQF_DONTPREP, rq has contained some driver specific
760 * data, so insert it to hctx dispatch list to avoid any
761 * merge.
762 */
763 if (rq->rq_flags & RQF_DONTPREP)
764 blk_mq_request_bypass_insert(rq, false);
765 else
766 blk_mq_sched_insert_request(rq, true, false, false);
6fca6a61
CH
767 }
768
769 while (!list_empty(&rq_list)) {
770 rq = list_entry(rq_list.next, struct request, queuelist);
771 list_del_init(&rq->queuelist);
9e97d295 772 blk_mq_sched_insert_request(rq, false, false, false);
6fca6a61
CH
773 }
774
52d7f1b5 775 blk_mq_run_hw_queues(q, false);
6fca6a61
CH
776}
777
2b053aca
BVA
778void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
779 bool kick_requeue_list)
6fca6a61
CH
780{
781 struct request_queue *q = rq->q;
782 unsigned long flags;
783
784 /*
785 * We abuse this flag that is otherwise used by the I/O scheduler to
ff821d27 786 * request head insertion from the workqueue.
6fca6a61 787 */
e8064021 788 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
6fca6a61
CH
789
790 spin_lock_irqsave(&q->requeue_lock, flags);
791 if (at_head) {
e8064021 792 rq->rq_flags |= RQF_SOFTBARRIER;
6fca6a61
CH
793 list_add(&rq->queuelist, &q->requeue_list);
794 } else {
795 list_add_tail(&rq->queuelist, &q->requeue_list);
796 }
797 spin_unlock_irqrestore(&q->requeue_lock, flags);
2b053aca
BVA
798
799 if (kick_requeue_list)
800 blk_mq_kick_requeue_list(q);
6fca6a61 801}
6fca6a61
CH
802
803void blk_mq_kick_requeue_list(struct request_queue *q)
804{
ae943d20 805 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
6fca6a61
CH
806}
807EXPORT_SYMBOL(blk_mq_kick_requeue_list);
808
2849450a
MS
809void blk_mq_delay_kick_requeue_list(struct request_queue *q,
810 unsigned long msecs)
811{
d4acf365
BVA
812 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
813 msecs_to_jiffies(msecs));
2849450a
MS
814}
815EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
816
0e62f51f
JA
817struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
818{
88c7b2b7
JA
819 if (tag < tags->nr_tags) {
820 prefetch(tags->rqs[tag]);
4ee86bab 821 return tags->rqs[tag];
88c7b2b7 822 }
4ee86bab
HR
823
824 return NULL;
24d2f903
CH
825}
826EXPORT_SYMBOL(blk_mq_tag_to_rq);
827
3c94d83c
JA
828static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
829 void *priv, bool reserved)
ae879912
JA
830{
831 /*
3c94d83c
JA
832 * If we find a request that is inflight and the queue matches,
833 * we know the queue is busy. Return false to stop the iteration.
ae879912 834 */
3c94d83c 835 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
ae879912
JA
836 bool *busy = priv;
837
838 *busy = true;
839 return false;
840 }
841
842 return true;
843}
844
3c94d83c 845bool blk_mq_queue_inflight(struct request_queue *q)
ae879912
JA
846{
847 bool busy = false;
848
3c94d83c 849 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
ae879912
JA
850 return busy;
851}
3c94d83c 852EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
ae879912 853
358f70da 854static void blk_mq_rq_timed_out(struct request *req, bool reserved)
320ae51f 855{
da661267 856 req->rq_flags |= RQF_TIMED_OUT;
d1210d5a
CH
857 if (req->q->mq_ops->timeout) {
858 enum blk_eh_timer_return ret;
859
860 ret = req->q->mq_ops->timeout(req, reserved);
861 if (ret == BLK_EH_DONE)
862 return;
863 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
46f92d42 864 }
d1210d5a
CH
865
866 blk_add_timer(req);
87ee7b11 867}
5b3f25fc 868
12f5b931 869static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
81481eb4 870{
12f5b931 871 unsigned long deadline;
87ee7b11 872
12f5b931
KB
873 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
874 return false;
da661267
CH
875 if (rq->rq_flags & RQF_TIMED_OUT)
876 return false;
a7af0af3 877
079076b3 878 deadline = READ_ONCE(rq->deadline);
12f5b931
KB
879 if (time_after_eq(jiffies, deadline))
880 return true;
a7af0af3 881
12f5b931
KB
882 if (*next == 0)
883 *next = deadline;
884 else if (time_after(*next, deadline))
885 *next = deadline;
886 return false;
87ee7b11
JA
887}
888
7baa8572 889static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
1d9bd516
TH
890 struct request *rq, void *priv, bool reserved)
891{
12f5b931
KB
892 unsigned long *next = priv;
893
894 /*
895 * Just do a quick check if it is expired before locking the request in
896 * so we're not unnecessarilly synchronizing across CPUs.
897 */
898 if (!blk_mq_req_expired(rq, next))
7baa8572 899 return true;
12f5b931
KB
900
901 /*
902 * We have reason to believe the request may be expired. Take a
903 * reference on the request to lock this request lifetime into its
904 * currently allocated context to prevent it from being reallocated in
905 * the event the completion by-passes this timeout handler.
906 *
907 * If the reference was already released, then the driver beat the
908 * timeout handler to posting a natural completion.
909 */
910 if (!refcount_inc_not_zero(&rq->ref))
7baa8572 911 return true;
12f5b931 912
1d9bd516 913 /*
12f5b931
KB
914 * The request is now locked and cannot be reallocated underneath the
915 * timeout handler's processing. Re-verify this exact request is truly
916 * expired; if it is not expired, then the request was completed and
917 * reallocated as a new request.
1d9bd516 918 */
12f5b931 919 if (blk_mq_req_expired(rq, next))
1d9bd516 920 blk_mq_rq_timed_out(rq, reserved);
8d699663
YY
921
922 if (is_flush_rq(rq, hctx))
923 rq->end_io(rq, 0);
924 else if (refcount_dec_and_test(&rq->ref))
12f5b931 925 __blk_mq_free_request(rq);
7baa8572
JA
926
927 return true;
1d9bd516
TH
928}
929
287922eb 930static void blk_mq_timeout_work(struct work_struct *work)
320ae51f 931{
287922eb
CH
932 struct request_queue *q =
933 container_of(work, struct request_queue, timeout_work);
12f5b931 934 unsigned long next = 0;
1d9bd516 935 struct blk_mq_hw_ctx *hctx;
81481eb4 936 int i;
320ae51f 937
71f79fb3
GKB
938 /* A deadlock might occur if a request is stuck requiring a
939 * timeout at the same time a queue freeze is waiting
940 * completion, since the timeout code would not be able to
941 * acquire the queue reference here.
942 *
943 * That's why we don't use blk_queue_enter here; instead, we use
944 * percpu_ref_tryget directly, because we need to be able to
945 * obtain a reference even in the short window between the queue
946 * starting to freeze, by dropping the first reference in
1671d522 947 * blk_freeze_queue_start, and the moment the last request is
71f79fb3
GKB
948 * consumed, marked by the instant q_usage_counter reaches
949 * zero.
950 */
951 if (!percpu_ref_tryget(&q->q_usage_counter))
287922eb
CH
952 return;
953
12f5b931 954 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
320ae51f 955
12f5b931
KB
956 if (next != 0) {
957 mod_timer(&q->timeout, next);
0d2602ca 958 } else {
fcd36c36
BVA
959 /*
960 * Request timeouts are handled as a forward rolling timer. If
961 * we end up here it means that no requests are pending and
962 * also that no request has been pending for a while. Mark
963 * each hctx as idle.
964 */
f054b56c
ML
965 queue_for_each_hw_ctx(q, hctx, i) {
966 /* the hctx may be unmapped, so check it here */
967 if (blk_mq_hw_queue_mapped(hctx))
968 blk_mq_tag_idle(hctx);
969 }
0d2602ca 970 }
287922eb 971 blk_queue_exit(q);
320ae51f
JA
972}
973
88459642
OS
974struct flush_busy_ctx_data {
975 struct blk_mq_hw_ctx *hctx;
976 struct list_head *list;
977};
978
979static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
980{
981 struct flush_busy_ctx_data *flush_data = data;
982 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
983 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 984 enum hctx_type type = hctx->type;
88459642 985
88459642 986 spin_lock(&ctx->lock);
c16d6b5a 987 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
e9a99a63 988 sbitmap_clear_bit(sb, bitnr);
88459642
OS
989 spin_unlock(&ctx->lock);
990 return true;
991}
992
1429d7c9
JA
993/*
994 * Process software queues that have been marked busy, splicing them
995 * to the for-dispatch
996 */
2c3ad667 997void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1429d7c9 998{
88459642
OS
999 struct flush_busy_ctx_data data = {
1000 .hctx = hctx,
1001 .list = list,
1002 };
1429d7c9 1003
88459642 1004 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1429d7c9 1005}
2c3ad667 1006EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1429d7c9 1007
b347689f
ML
1008struct dispatch_rq_data {
1009 struct blk_mq_hw_ctx *hctx;
1010 struct request *rq;
1011};
1012
1013static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1014 void *data)
1015{
1016 struct dispatch_rq_data *dispatch_data = data;
1017 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1018 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
c16d6b5a 1019 enum hctx_type type = hctx->type;
b347689f
ML
1020
1021 spin_lock(&ctx->lock);
c16d6b5a
ML
1022 if (!list_empty(&ctx->rq_lists[type])) {
1023 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
b347689f 1024 list_del_init(&dispatch_data->rq->queuelist);
c16d6b5a 1025 if (list_empty(&ctx->rq_lists[type]))
b347689f
ML
1026 sbitmap_clear_bit(sb, bitnr);
1027 }
1028 spin_unlock(&ctx->lock);
1029
1030 return !dispatch_data->rq;
1031}
1032
1033struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1034 struct blk_mq_ctx *start)
1035{
f31967f0 1036 unsigned off = start ? start->index_hw[hctx->type] : 0;
b347689f
ML
1037 struct dispatch_rq_data data = {
1038 .hctx = hctx,
1039 .rq = NULL,
1040 };
1041
1042 __sbitmap_for_each_set(&hctx->ctx_map, off,
1043 dispatch_rq_from_ctx, &data);
1044
1045 return data.rq;
1046}
1047
703fd1c0
JA
1048static inline unsigned int queued_to_index(unsigned int queued)
1049{
1050 if (!queued)
1051 return 0;
1429d7c9 1052
703fd1c0 1053 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1429d7c9
JA
1054}
1055
8ab6bb9e 1056bool blk_mq_get_driver_tag(struct request *rq)
bd166ef1
JA
1057{
1058 struct blk_mq_alloc_data data = {
1059 .q = rq->q,
ea4f995e 1060 .hctx = rq->mq_hctx,
8ab6bb9e 1061 .flags = BLK_MQ_REQ_NOWAIT,
f9afca4d 1062 .cmd_flags = rq->cmd_flags,
bd166ef1 1063 };
d263ed99 1064 bool shared;
5feeacdd 1065
81380ca1
OS
1066 if (rq->tag != -1)
1067 goto done;
bd166ef1 1068
415b806d
SG
1069 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1070 data.flags |= BLK_MQ_REQ_RESERVED;
1071
d263ed99 1072 shared = blk_mq_tag_busy(data.hctx);
bd166ef1
JA
1073 rq->tag = blk_mq_get_tag(&data);
1074 if (rq->tag >= 0) {
d263ed99 1075 if (shared) {
200e86b3
JA
1076 rq->rq_flags |= RQF_MQ_INFLIGHT;
1077 atomic_inc(&data.hctx->nr_active);
1078 }
bd166ef1 1079 data.hctx->tags->rqs[rq->tag] = rq;
bd166ef1
JA
1080 }
1081
81380ca1 1082done:
81380ca1 1083 return rq->tag != -1;
bd166ef1
JA
1084}
1085
eb619fdb
JA
1086static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1087 int flags, void *key)
da55f2cc
OS
1088{
1089 struct blk_mq_hw_ctx *hctx;
1090
1091 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1092
5815839b 1093 spin_lock(&hctx->dispatch_wait_lock);
e8618575
JA
1094 if (!list_empty(&wait->entry)) {
1095 struct sbitmap_queue *sbq;
1096
1097 list_del_init(&wait->entry);
1098 sbq = &hctx->tags->bitmap_tags;
1099 atomic_dec(&sbq->ws_active);
1100 }
5815839b
ML
1101 spin_unlock(&hctx->dispatch_wait_lock);
1102
da55f2cc
OS
1103 blk_mq_run_hw_queue(hctx, true);
1104 return 1;
1105}
1106
f906a6a0
JA
1107/*
1108 * Mark us waiting for a tag. For shared tags, this involves hooking us into
ee3e4de5
BVA
1109 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1110 * restart. For both cases, take care to check the condition again after
f906a6a0
JA
1111 * marking us as waiting.
1112 */
2278d69f 1113static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
f906a6a0 1114 struct request *rq)
da55f2cc 1115{
e8618575 1116 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
5815839b 1117 struct wait_queue_head *wq;
f906a6a0
JA
1118 wait_queue_entry_t *wait;
1119 bool ret;
da55f2cc 1120
2278d69f 1121 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
684b7324 1122 blk_mq_sched_mark_restart_hctx(hctx);
f906a6a0 1123
c27d53fb
BVA
1124 /*
1125 * It's possible that a tag was freed in the window between the
1126 * allocation failure and adding the hardware queue to the wait
1127 * queue.
1128 *
1129 * Don't clear RESTART here, someone else could have set it.
1130 * At most this will cost an extra queue run.
1131 */
8ab6bb9e 1132 return blk_mq_get_driver_tag(rq);
eb619fdb 1133 }
eb619fdb 1134
2278d69f 1135 wait = &hctx->dispatch_wait;
c27d53fb
BVA
1136 if (!list_empty_careful(&wait->entry))
1137 return false;
1138
e8618575 1139 wq = &bt_wait_ptr(sbq, hctx)->wait;
5815839b
ML
1140
1141 spin_lock_irq(&wq->lock);
1142 spin_lock(&hctx->dispatch_wait_lock);
c27d53fb 1143 if (!list_empty(&wait->entry)) {
5815839b
ML
1144 spin_unlock(&hctx->dispatch_wait_lock);
1145 spin_unlock_irq(&wq->lock);
c27d53fb 1146 return false;
eb619fdb
JA
1147 }
1148
e8618575 1149 atomic_inc(&sbq->ws_active);
5815839b
ML
1150 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1151 __add_wait_queue(wq, wait);
c27d53fb 1152
da55f2cc 1153 /*
eb619fdb
JA
1154 * It's possible that a tag was freed in the window between the
1155 * allocation failure and adding the hardware queue to the wait
1156 * queue.
da55f2cc 1157 */
8ab6bb9e 1158 ret = blk_mq_get_driver_tag(rq);
c27d53fb 1159 if (!ret) {
5815839b
ML
1160 spin_unlock(&hctx->dispatch_wait_lock);
1161 spin_unlock_irq(&wq->lock);
c27d53fb 1162 return false;
eb619fdb 1163 }
c27d53fb
BVA
1164
1165 /*
1166 * We got a tag, remove ourselves from the wait queue to ensure
1167 * someone else gets the wakeup.
1168 */
c27d53fb 1169 list_del_init(&wait->entry);
e8618575 1170 atomic_dec(&sbq->ws_active);
5815839b
ML
1171 spin_unlock(&hctx->dispatch_wait_lock);
1172 spin_unlock_irq(&wq->lock);
c27d53fb
BVA
1173
1174 return true;
da55f2cc
OS
1175}
1176
6e768717
ML
1177#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1178#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1179/*
1180 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1181 * - EWMA is one simple way to compute running average value
1182 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1183 * - take 4 as factor for avoiding to get too small(0) result, and this
1184 * factor doesn't matter because EWMA decreases exponentially
1185 */
1186static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1187{
1188 unsigned int ewma;
1189
1190 if (hctx->queue->elevator)
1191 return;
1192
1193 ewma = hctx->dispatch_busy;
1194
1195 if (!ewma && !busy)
1196 return;
1197
1198 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1199 if (busy)
1200 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1201 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1202
1203 hctx->dispatch_busy = ewma;
1204}
1205
86ff7c2a
ML
1206#define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1207
1f57f8d4
JA
1208/*
1209 * Returns true if we did some work AND can potentially do more.
1210 */
de148297 1211bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
eb619fdb 1212 bool got_budget)
320ae51f 1213{
81380ca1 1214 struct blk_mq_hw_ctx *hctx;
6d6f167c 1215 struct request *rq, *nxt;
eb619fdb 1216 bool no_tag = false;
fc17b653 1217 int errors, queued;
86ff7c2a 1218 blk_status_t ret = BLK_STS_OK;
320ae51f 1219
81380ca1
OS
1220 if (list_empty(list))
1221 return false;
1222
de148297
ML
1223 WARN_ON(!list_is_singular(list) && got_budget);
1224
320ae51f
JA
1225 /*
1226 * Now process all the entries, sending them to the driver.
1227 */
93efe981 1228 errors = queued = 0;
81380ca1 1229 do {
74c45052 1230 struct blk_mq_queue_data bd;
320ae51f 1231
f04c3df3 1232 rq = list_first_entry(list, struct request, queuelist);
0bca799b 1233
ea4f995e 1234 hctx = rq->mq_hctx;
0bca799b
ML
1235 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1236 break;
1237
8ab6bb9e 1238 if (!blk_mq_get_driver_tag(rq)) {
3c782d67 1239 /*
da55f2cc 1240 * The initial allocation attempt failed, so we need to
eb619fdb
JA
1241 * rerun the hardware queue when a tag is freed. The
1242 * waitqueue takes care of that. If the queue is run
1243 * before we add this entry back on the dispatch list,
1244 * we'll re-run it below.
3c782d67 1245 */
2278d69f 1246 if (!blk_mq_mark_tag_wait(hctx, rq)) {
0bca799b 1247 blk_mq_put_dispatch_budget(hctx);
f906a6a0
JA
1248 /*
1249 * For non-shared tags, the RESTART check
1250 * will suffice.
1251 */
1252 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1253 no_tag = true;
de148297
ML
1254 break;
1255 }
1256 }
1257
320ae51f 1258 list_del_init(&rq->queuelist);
320ae51f 1259
74c45052 1260 bd.rq = rq;
113285b4
JA
1261
1262 /*
1263 * Flag last if we have no more requests, or if we have more
1264 * but can't assign a driver tag to it.
1265 */
1266 if (list_empty(list))
1267 bd.last = true;
1268 else {
113285b4 1269 nxt = list_first_entry(list, struct request, queuelist);
8ab6bb9e 1270 bd.last = !blk_mq_get_driver_tag(nxt);
113285b4 1271 }
74c45052
JA
1272
1273 ret = q->mq_ops->queue_rq(hctx, &bd);
86ff7c2a 1274 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
6d6f167c
JW
1275 /*
1276 * If an I/O scheduler has been configured and we got a
ff821d27
JA
1277 * driver tag for the next request already, free it
1278 * again.
6d6f167c
JW
1279 */
1280 if (!list_empty(list)) {
1281 nxt = list_first_entry(list, struct request, queuelist);
1282 blk_mq_put_driver_tag(nxt);
1283 }
f04c3df3 1284 list_add(&rq->queuelist, list);
ed0791b2 1285 __blk_mq_requeue_request(rq);
320ae51f 1286 break;
fc17b653
CH
1287 }
1288
1289 if (unlikely(ret != BLK_STS_OK)) {
93efe981 1290 errors++;
2a842aca 1291 blk_mq_end_request(rq, BLK_STS_IOERR);
fc17b653 1292 continue;
320ae51f
JA
1293 }
1294
fc17b653 1295 queued++;
81380ca1 1296 } while (!list_empty(list));
320ae51f 1297
703fd1c0 1298 hctx->dispatched[queued_to_index(queued)]++;
320ae51f
JA
1299
1300 /*
1301 * Any items that need requeuing? Stuff them into hctx->dispatch,
1302 * that is where we will continue on next queue run.
1303 */
f04c3df3 1304 if (!list_empty(list)) {
86ff7c2a
ML
1305 bool needs_restart;
1306
d666ba98
JA
1307 /*
1308 * If we didn't flush the entire list, we could have told
1309 * the driver there was more coming, but that turned out to
1310 * be a lie.
1311 */
1312 if (q->mq_ops->commit_rqs)
1313 q->mq_ops->commit_rqs(hctx);
1314
320ae51f 1315 spin_lock(&hctx->lock);
c13660a0 1316 list_splice_init(list, &hctx->dispatch);
320ae51f 1317 spin_unlock(&hctx->lock);
f04c3df3 1318
9ba52e58 1319 /*
710c785f
BVA
1320 * If SCHED_RESTART was set by the caller of this function and
1321 * it is no longer set that means that it was cleared by another
1322 * thread and hence that a queue rerun is needed.
9ba52e58 1323 *
eb619fdb
JA
1324 * If 'no_tag' is set, that means that we failed getting
1325 * a driver tag with an I/O scheduler attached. If our dispatch
1326 * waitqueue is no longer active, ensure that we run the queue
1327 * AFTER adding our entries back to the list.
bd166ef1 1328 *
710c785f
BVA
1329 * If no I/O scheduler has been configured it is possible that
1330 * the hardware queue got stopped and restarted before requests
1331 * were pushed back onto the dispatch list. Rerun the queue to
1332 * avoid starvation. Notes:
1333 * - blk_mq_run_hw_queue() checks whether or not a queue has
1334 * been stopped before rerunning a queue.
1335 * - Some but not all block drivers stop a queue before
fc17b653 1336 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
710c785f 1337 * and dm-rq.
86ff7c2a
ML
1338 *
1339 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1340 * bit is set, run queue after a delay to avoid IO stalls
1341 * that could otherwise occur if the queue is idle.
bd166ef1 1342 */
86ff7c2a
ML
1343 needs_restart = blk_mq_sched_needs_restart(hctx);
1344 if (!needs_restart ||
eb619fdb 1345 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
bd166ef1 1346 blk_mq_run_hw_queue(hctx, true);
86ff7c2a
ML
1347 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1348 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1f57f8d4 1349
6e768717 1350 blk_mq_update_dispatch_busy(hctx, true);
1f57f8d4 1351 return false;
6e768717
ML
1352 } else
1353 blk_mq_update_dispatch_busy(hctx, false);
f04c3df3 1354
1f57f8d4
JA
1355 /*
1356 * If the host/device is unable to accept more work, inform the
1357 * caller of that.
1358 */
1359 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1360 return false;
1361
93efe981 1362 return (queued + errors) != 0;
f04c3df3
JA
1363}
1364
6a83e74d
BVA
1365static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1366{
1367 int srcu_idx;
1368
b7a71e66
JA
1369 /*
1370 * We should be running this queue from one of the CPUs that
1371 * are mapped to it.
7df938fb
ML
1372 *
1373 * There are at least two related races now between setting
1374 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1375 * __blk_mq_run_hw_queue():
1376 *
1377 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1378 * but later it becomes online, then this warning is harmless
1379 * at all
1380 *
1381 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1382 * but later it becomes offline, then the warning can't be
1383 * triggered, and we depend on blk-mq timeout handler to
1384 * handle dispatched requests to this hctx
b7a71e66 1385 */
7df938fb
ML
1386 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1387 cpu_online(hctx->next_cpu)) {
1388 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1389 raw_smp_processor_id(),
1390 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1391 dump_stack();
1392 }
6a83e74d 1393
b7a71e66
JA
1394 /*
1395 * We can't run the queue inline with ints disabled. Ensure that
1396 * we catch bad users of this early.
1397 */
1398 WARN_ON_ONCE(in_interrupt());
1399
04ced159 1400 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
bf4907c0 1401
04ced159
JA
1402 hctx_lock(hctx, &srcu_idx);
1403 blk_mq_sched_dispatch_requests(hctx);
1404 hctx_unlock(hctx, srcu_idx);
6a83e74d
BVA
1405}
1406
f82ddf19
ML
1407static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1408{
1409 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1410
1411 if (cpu >= nr_cpu_ids)
1412 cpu = cpumask_first(hctx->cpumask);
1413 return cpu;
1414}
1415
506e931f
JA
1416/*
1417 * It'd be great if the workqueue API had a way to pass
1418 * in a mask and had some smarts for more clever placement.
1419 * For now we just round-robin here, switching for every
1420 * BLK_MQ_CPU_WORK_BATCH queued items.
1421 */
1422static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1423{
7bed4595 1424 bool tried = false;
476f8c98 1425 int next_cpu = hctx->next_cpu;
7bed4595 1426
b657d7e6
CH
1427 if (hctx->queue->nr_hw_queues == 1)
1428 return WORK_CPU_UNBOUND;
506e931f
JA
1429
1430 if (--hctx->next_cpu_batch <= 0) {
7bed4595 1431select_cpu:
476f8c98 1432 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
20e4d813 1433 cpu_online_mask);
506e931f 1434 if (next_cpu >= nr_cpu_ids)
f82ddf19 1435 next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
1436 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1437 }
1438
7bed4595
ML
1439 /*
1440 * Do unbound schedule if we can't find a online CPU for this hctx,
1441 * and it should only happen in the path of handling CPU DEAD.
1442 */
476f8c98 1443 if (!cpu_online(next_cpu)) {
7bed4595
ML
1444 if (!tried) {
1445 tried = true;
1446 goto select_cpu;
1447 }
1448
1449 /*
1450 * Make sure to re-select CPU next time once after CPUs
1451 * in hctx->cpumask become online again.
1452 */
476f8c98 1453 hctx->next_cpu = next_cpu;
7bed4595
ML
1454 hctx->next_cpu_batch = 1;
1455 return WORK_CPU_UNBOUND;
1456 }
476f8c98
ML
1457
1458 hctx->next_cpu = next_cpu;
1459 return next_cpu;
506e931f
JA
1460}
1461
7587a5ae
BVA
1462static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1463 unsigned long msecs)
320ae51f 1464{
5435c023 1465 if (unlikely(blk_mq_hctx_stopped(hctx)))
320ae51f
JA
1466 return;
1467
1b792f2f 1468 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
2a90d4aa
PB
1469 int cpu = get_cpu();
1470 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
398205b8 1471 __blk_mq_run_hw_queue(hctx);
2a90d4aa 1472 put_cpu();
398205b8
PB
1473 return;
1474 }
e4043dcf 1475
2a90d4aa 1476 put_cpu();
e4043dcf 1477 }
398205b8 1478
ae943d20
BVA
1479 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1480 msecs_to_jiffies(msecs));
7587a5ae
BVA
1481}
1482
1483void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1484{
1485 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1486}
1487EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1488
79f720a7 1489bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
7587a5ae 1490{
24f5a90f
ML
1491 int srcu_idx;
1492 bool need_run;
1493
1494 /*
1495 * When queue is quiesced, we may be switching io scheduler, or
1496 * updating nr_hw_queues, or other things, and we can't run queue
1497 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1498 *
1499 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1500 * quiesced.
1501 */
04ced159
JA
1502 hctx_lock(hctx, &srcu_idx);
1503 need_run = !blk_queue_quiesced(hctx->queue) &&
1504 blk_mq_hctx_has_pending(hctx);
1505 hctx_unlock(hctx, srcu_idx);
24f5a90f
ML
1506
1507 if (need_run) {
79f720a7
JA
1508 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1509 return true;
1510 }
1511
1512 return false;
320ae51f 1513}
5b727272 1514EXPORT_SYMBOL(blk_mq_run_hw_queue);
320ae51f 1515
b94ec296 1516void blk_mq_run_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1517{
1518 struct blk_mq_hw_ctx *hctx;
1519 int i;
1520
1521 queue_for_each_hw_ctx(q, hctx, i) {
79f720a7 1522 if (blk_mq_hctx_stopped(hctx))
320ae51f
JA
1523 continue;
1524
b94ec296 1525 blk_mq_run_hw_queue(hctx, async);
320ae51f
JA
1526 }
1527}
b94ec296 1528EXPORT_SYMBOL(blk_mq_run_hw_queues);
320ae51f 1529
fd001443
BVA
1530/**
1531 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1532 * @q: request queue.
1533 *
1534 * The caller is responsible for serializing this function against
1535 * blk_mq_{start,stop}_hw_queue().
1536 */
1537bool blk_mq_queue_stopped(struct request_queue *q)
1538{
1539 struct blk_mq_hw_ctx *hctx;
1540 int i;
1541
1542 queue_for_each_hw_ctx(q, hctx, i)
1543 if (blk_mq_hctx_stopped(hctx))
1544 return true;
1545
1546 return false;
1547}
1548EXPORT_SYMBOL(blk_mq_queue_stopped);
1549
39a70c76
ML
1550/*
1551 * This function is often used for pausing .queue_rq() by driver when
1552 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1553 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1554 *
1555 * We do not guarantee that dispatch can be drained or blocked
1556 * after blk_mq_stop_hw_queue() returns. Please use
1557 * blk_mq_quiesce_queue() for that requirement.
1558 */
2719aa21
JA
1559void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1560{
641a9ed6 1561 cancel_delayed_work(&hctx->run_work);
280d45f6 1562
641a9ed6 1563 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2719aa21 1564}
641a9ed6 1565EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2719aa21 1566
39a70c76
ML
1567/*
1568 * This function is often used for pausing .queue_rq() by driver when
1569 * there isn't enough resource or some conditions aren't satisfied, and
4d606219 1570 * BLK_STS_RESOURCE is usually returned.
39a70c76
ML
1571 *
1572 * We do not guarantee that dispatch can be drained or blocked
1573 * after blk_mq_stop_hw_queues() returns. Please use
1574 * blk_mq_quiesce_queue() for that requirement.
1575 */
2719aa21
JA
1576void blk_mq_stop_hw_queues(struct request_queue *q)
1577{
641a9ed6
ML
1578 struct blk_mq_hw_ctx *hctx;
1579 int i;
1580
1581 queue_for_each_hw_ctx(q, hctx, i)
1582 blk_mq_stop_hw_queue(hctx);
280d45f6
CH
1583}
1584EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1585
320ae51f
JA
1586void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1587{
1588 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
e4043dcf 1589
0ffbce80 1590 blk_mq_run_hw_queue(hctx, false);
320ae51f
JA
1591}
1592EXPORT_SYMBOL(blk_mq_start_hw_queue);
1593
2f268556
CH
1594void blk_mq_start_hw_queues(struct request_queue *q)
1595{
1596 struct blk_mq_hw_ctx *hctx;
1597 int i;
1598
1599 queue_for_each_hw_ctx(q, hctx, i)
1600 blk_mq_start_hw_queue(hctx);
1601}
1602EXPORT_SYMBOL(blk_mq_start_hw_queues);
1603
ae911c5e
JA
1604void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1605{
1606 if (!blk_mq_hctx_stopped(hctx))
1607 return;
1608
1609 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1610 blk_mq_run_hw_queue(hctx, async);
1611}
1612EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1613
1b4a3258 1614void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
320ae51f
JA
1615{
1616 struct blk_mq_hw_ctx *hctx;
1617 int i;
1618
ae911c5e
JA
1619 queue_for_each_hw_ctx(q, hctx, i)
1620 blk_mq_start_stopped_hw_queue(hctx, async);
320ae51f
JA
1621}
1622EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1623
70f4db63 1624static void blk_mq_run_work_fn(struct work_struct *work)
320ae51f
JA
1625{
1626 struct blk_mq_hw_ctx *hctx;
1627
9f993737 1628 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
320ae51f 1629
21c6e939 1630 /*
15fe8a90 1631 * If we are stopped, don't run the queue.
21c6e939 1632 */
15fe8a90 1633 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
0196d6b4 1634 return;
7587a5ae
BVA
1635
1636 __blk_mq_run_hw_queue(hctx);
1637}
1638
cfd0c552 1639static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
cfd0c552
ML
1640 struct request *rq,
1641 bool at_head)
320ae51f 1642{
e57690fe 1643 struct blk_mq_ctx *ctx = rq->mq_ctx;
c16d6b5a 1644 enum hctx_type type = hctx->type;
e57690fe 1645
7b607814
BVA
1646 lockdep_assert_held(&ctx->lock);
1647
01b983c9
JA
1648 trace_block_rq_insert(hctx->queue, rq);
1649
72a0a36e 1650 if (at_head)
c16d6b5a 1651 list_add(&rq->queuelist, &ctx->rq_lists[type]);
72a0a36e 1652 else
c16d6b5a 1653 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
cfd0c552 1654}
4bb659b1 1655
2c3ad667
JA
1656void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1657 bool at_head)
cfd0c552
ML
1658{
1659 struct blk_mq_ctx *ctx = rq->mq_ctx;
1660
7b607814
BVA
1661 lockdep_assert_held(&ctx->lock);
1662
e57690fe 1663 __blk_mq_insert_req_list(hctx, rq, at_head);
320ae51f 1664 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f
JA
1665}
1666
157f377b
JA
1667/*
1668 * Should only be used carefully, when the caller knows we want to
1669 * bypass a potential IO scheduler on the target device.
1670 */
b0850297 1671void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
157f377b 1672{
ea4f995e 1673 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
157f377b
JA
1674
1675 spin_lock(&hctx->lock);
1676 list_add_tail(&rq->queuelist, &hctx->dispatch);
1677 spin_unlock(&hctx->lock);
1678
b0850297
ML
1679 if (run_queue)
1680 blk_mq_run_hw_queue(hctx, false);
157f377b
JA
1681}
1682
bd166ef1
JA
1683void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1684 struct list_head *list)
320ae51f
JA
1685
1686{
3f0cedc7 1687 struct request *rq;
c16d6b5a 1688 enum hctx_type type = hctx->type;
3f0cedc7 1689
320ae51f
JA
1690 /*
1691 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1692 * offline now
1693 */
3f0cedc7 1694 list_for_each_entry(rq, list, queuelist) {
e57690fe 1695 BUG_ON(rq->mq_ctx != ctx);
3f0cedc7 1696 trace_block_rq_insert(hctx->queue, rq);
320ae51f 1697 }
3f0cedc7
ML
1698
1699 spin_lock(&ctx->lock);
c16d6b5a 1700 list_splice_tail_init(list, &ctx->rq_lists[type]);
cfd0c552 1701 blk_mq_hctx_mark_pending(hctx, ctx);
320ae51f 1702 spin_unlock(&ctx->lock);
320ae51f
JA
1703}
1704
3110fc79 1705static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
320ae51f
JA
1706{
1707 struct request *rqa = container_of(a, struct request, queuelist);
1708 struct request *rqb = container_of(b, struct request, queuelist);
1709
3110fc79
JA
1710 if (rqa->mq_ctx < rqb->mq_ctx)
1711 return -1;
1712 else if (rqa->mq_ctx > rqb->mq_ctx)
1713 return 1;
1714 else if (rqa->mq_hctx < rqb->mq_hctx)
1715 return -1;
1716 else if (rqa->mq_hctx > rqb->mq_hctx)
1717 return 1;
1718
1719 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
320ae51f
JA
1720}
1721
1722void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1723{
67cae4c9 1724 struct blk_mq_hw_ctx *this_hctx;
320ae51f
JA
1725 struct blk_mq_ctx *this_ctx;
1726 struct request_queue *this_q;
1727 struct request *rq;
1728 LIST_HEAD(list);
67cae4c9 1729 LIST_HEAD(rq_list);
320ae51f
JA
1730 unsigned int depth;
1731
1732 list_splice_init(&plug->mq_list, &list);
1733
ce5b009c
JA
1734 if (plug->rq_count > 2 && plug->multiple_queues)
1735 list_sort(NULL, &list, plug_rq_cmp);
320ae51f 1736
bcc816df
DZ
1737 plug->rq_count = 0;
1738
320ae51f 1739 this_q = NULL;
67cae4c9 1740 this_hctx = NULL;
320ae51f
JA
1741 this_ctx = NULL;
1742 depth = 0;
1743
1744 while (!list_empty(&list)) {
1745 rq = list_entry_rq(list.next);
1746 list_del_init(&rq->queuelist);
1747 BUG_ON(!rq->q);
67cae4c9
JA
1748 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1749 if (this_hctx) {
587562d0 1750 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9
JA
1751 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1752 &rq_list,
bd166ef1 1753 from_schedule);
320ae51f
JA
1754 }
1755
320ae51f 1756 this_q = rq->q;
67cae4c9
JA
1757 this_ctx = rq->mq_ctx;
1758 this_hctx = rq->mq_hctx;
320ae51f
JA
1759 depth = 0;
1760 }
1761
1762 depth++;
67cae4c9 1763 list_add_tail(&rq->queuelist, &rq_list);
320ae51f
JA
1764 }
1765
1766 /*
67cae4c9
JA
1767 * If 'this_hctx' is set, we know we have entries to complete
1768 * on 'rq_list'. Do those.
320ae51f 1769 */
67cae4c9 1770 if (this_hctx) {
587562d0 1771 trace_block_unplug(this_q, depth, !from_schedule);
67cae4c9 1772 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
bd166ef1 1773 from_schedule);
320ae51f
JA
1774 }
1775}
1776
14ccb66b
CH
1777static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1778 unsigned int nr_segs)
320ae51f 1779{
f924cdde
CH
1780 if (bio->bi_opf & REQ_RAHEAD)
1781 rq->cmd_flags |= REQ_FAILFAST_MASK;
1782
1783 rq->__sector = bio->bi_iter.bi_sector;
1784 rq->write_hint = bio->bi_write_hint;
14ccb66b 1785 blk_rq_bio_prep(rq, bio, nr_segs);
4b570521 1786
6e85eaf3 1787 blk_account_io_start(rq, true);
320ae51f
JA
1788}
1789
0f95549c
MS
1790static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1791 struct request *rq,
be94f058 1792 blk_qc_t *cookie, bool last)
f984df1f 1793{
f984df1f 1794 struct request_queue *q = rq->q;
f984df1f
SL
1795 struct blk_mq_queue_data bd = {
1796 .rq = rq,
be94f058 1797 .last = last,
f984df1f 1798 };
bd166ef1 1799 blk_qc_t new_cookie;
f06345ad 1800 blk_status_t ret;
0f95549c
MS
1801
1802 new_cookie = request_to_qc_t(hctx, rq);
1803
1804 /*
1805 * For OK queue, we are done. For error, caller may kill it.
1806 * Any other error (busy), just add it to our list as we
1807 * previously would have done.
1808 */
1809 ret = q->mq_ops->queue_rq(hctx, &bd);
1810 switch (ret) {
1811 case BLK_STS_OK:
6ce3dd6e 1812 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1813 *cookie = new_cookie;
1814 break;
1815 case BLK_STS_RESOURCE:
86ff7c2a 1816 case BLK_STS_DEV_RESOURCE:
6ce3dd6e 1817 blk_mq_update_dispatch_busy(hctx, true);
0f95549c
MS
1818 __blk_mq_requeue_request(rq);
1819 break;
1820 default:
6ce3dd6e 1821 blk_mq_update_dispatch_busy(hctx, false);
0f95549c
MS
1822 *cookie = BLK_QC_T_NONE;
1823 break;
1824 }
1825
1826 return ret;
1827}
1828
fd9c40f6 1829static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
0f95549c 1830 struct request *rq,
396eaf21 1831 blk_qc_t *cookie,
fd9c40f6 1832 bool bypass_insert, bool last)
0f95549c
MS
1833{
1834 struct request_queue *q = rq->q;
d964f04a
ML
1835 bool run_queue = true;
1836
23d4ee19 1837 /*
fd9c40f6 1838 * RCU or SRCU read lock is needed before checking quiesced flag.
23d4ee19 1839 *
fd9c40f6
BVA
1840 * When queue is stopped or quiesced, ignore 'bypass_insert' from
1841 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
1842 * and avoid driver to try to dispatch again.
23d4ee19 1843 */
fd9c40f6 1844 if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
d964f04a 1845 run_queue = false;
fd9c40f6
BVA
1846 bypass_insert = false;
1847 goto insert;
d964f04a 1848 }
f984df1f 1849
fd9c40f6
BVA
1850 if (q->elevator && !bypass_insert)
1851 goto insert;
2253efc8 1852
0bca799b 1853 if (!blk_mq_get_dispatch_budget(hctx))
fd9c40f6 1854 goto insert;
bd166ef1 1855
8ab6bb9e 1856 if (!blk_mq_get_driver_tag(rq)) {
0bca799b 1857 blk_mq_put_dispatch_budget(hctx);
fd9c40f6 1858 goto insert;
88022d72 1859 }
de148297 1860
fd9c40f6
BVA
1861 return __blk_mq_issue_directly(hctx, rq, cookie, last);
1862insert:
1863 if (bypass_insert)
1864 return BLK_STS_RESOURCE;
1865
1866 blk_mq_request_bypass_insert(rq, run_queue);
1867 return BLK_STS_OK;
1868}
1869
1870static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1871 struct request *rq, blk_qc_t *cookie)
1872{
1873 blk_status_t ret;
1874 int srcu_idx;
1875
1876 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1877
1878 hctx_lock(hctx, &srcu_idx);
1879
1880 ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
1881 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1882 blk_mq_request_bypass_insert(rq, true);
1883 else if (ret != BLK_STS_OK)
1884 blk_mq_end_request(rq, ret);
1885
1886 hctx_unlock(hctx, srcu_idx);
1887}
1888
1889blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
1890{
1891 blk_status_t ret;
1892 int srcu_idx;
1893 blk_qc_t unused_cookie;
1894 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1895
1896 hctx_lock(hctx, &srcu_idx);
1897 ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
04ced159 1898 hctx_unlock(hctx, srcu_idx);
7f556a44
JW
1899
1900 return ret;
5eb6126e
CH
1901}
1902
6ce3dd6e
ML
1903void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1904 struct list_head *list)
1905{
1906 while (!list_empty(list)) {
fd9c40f6 1907 blk_status_t ret;
6ce3dd6e
ML
1908 struct request *rq = list_first_entry(list, struct request,
1909 queuelist);
1910
1911 list_del_init(&rq->queuelist);
fd9c40f6
BVA
1912 ret = blk_mq_request_issue_directly(rq, list_empty(list));
1913 if (ret != BLK_STS_OK) {
1914 if (ret == BLK_STS_RESOURCE ||
1915 ret == BLK_STS_DEV_RESOURCE) {
1916 blk_mq_request_bypass_insert(rq,
c616cbee 1917 list_empty(list));
fd9c40f6
BVA
1918 break;
1919 }
1920 blk_mq_end_request(rq, ret);
1921 }
6ce3dd6e 1922 }
d666ba98
JA
1923
1924 /*
1925 * If we didn't flush the entire list, we could have told
1926 * the driver there was more coming, but that turned out to
1927 * be a lie.
1928 */
fd9c40f6 1929 if (!list_empty(list) && hctx->queue->mq_ops->commit_rqs)
d666ba98 1930 hctx->queue->mq_ops->commit_rqs(hctx);
6ce3dd6e
ML
1931}
1932
ce5b009c
JA
1933static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1934{
1935 list_add_tail(&rq->queuelist, &plug->mq_list);
1936 plug->rq_count++;
1937 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1938 struct request *tmp;
1939
1940 tmp = list_first_entry(&plug->mq_list, struct request,
1941 queuelist);
1942 if (tmp->q != rq->q)
1943 plug->multiple_queues = true;
1944 }
1945}
1946
dece1635 1947static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
07068d5b 1948{
ef295ecf 1949 const int is_sync = op_is_sync(bio->bi_opf);
f73f44eb 1950 const int is_flush_fua = op_is_flush(bio->bi_opf);
7809167d 1951 struct blk_mq_alloc_data data = { .flags = 0};
07068d5b 1952 struct request *rq;
f984df1f 1953 struct blk_plug *plug;
5b3f341f 1954 struct request *same_queue_rq = NULL;
14ccb66b 1955 unsigned int nr_segs;
7b371636 1956 blk_qc_t cookie;
07068d5b
JA
1957
1958 blk_queue_bounce(q, &bio);
14ccb66b 1959 __blk_queue_split(q, &bio, &nr_segs);
f36ea50c 1960
e23947bd 1961 if (!bio_integrity_prep(bio))
dece1635 1962 return BLK_QC_T_NONE;
07068d5b 1963
87c279e6 1964 if (!is_flush_fua && !blk_queue_nomerges(q) &&
14ccb66b 1965 blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
87c279e6 1966 return BLK_QC_T_NONE;
f984df1f 1967
14ccb66b 1968 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
bd166ef1
JA
1969 return BLK_QC_T_NONE;
1970
d5337560 1971 rq_qos_throttle(q, bio);
87760e5e 1972
7809167d 1973 data.cmd_flags = bio->bi_opf;
f9afca4d 1974 rq = blk_mq_get_request(q, bio, &data);
87760e5e 1975 if (unlikely(!rq)) {
c1c80384 1976 rq_qos_cleanup(q, bio);
7b6620d7 1977 if (bio->bi_opf & REQ_NOWAIT)
03a07c92 1978 bio_wouldblock_error(bio);
7b6620d7 1979 return BLK_QC_T_NONE;
87760e5e
JA
1980 }
1981
d6f1dda2
XW
1982 trace_block_getrq(q, bio, bio->bi_opf);
1983
c1c80384 1984 rq_qos_track(q, rq, bio);
07068d5b 1985
fd2d3326 1986 cookie = request_to_qc_t(data.hctx, rq);
07068d5b 1987
970d168d
BVA
1988 blk_mq_bio_to_request(rq, bio, nr_segs);
1989
b49773e7 1990 plug = blk_mq_plug(q, bio);
07068d5b 1991 if (unlikely(is_flush_fua)) {
923218f6
ML
1992 /* bypass scheduler for flush rq */
1993 blk_insert_flush(rq);
1994 blk_mq_run_hw_queue(data.hctx, true);
3154df26
ML
1995 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
1996 !blk_queue_nonrot(q))) {
b2c5d16b
JA
1997 /*
1998 * Use plugging if we have a ->commit_rqs() hook as well, as
1999 * we know the driver uses bd->last in a smart fashion.
3154df26
ML
2000 *
2001 * Use normal plugging if this disk is slow HDD, as sequential
2002 * IO may benefit a lot from plug merging.
b2c5d16b 2003 */
5f0ed774 2004 unsigned int request_count = plug->rq_count;
600271d9
SL
2005 struct request *last = NULL;
2006
676d0607 2007 if (!request_count)
e6c4438b 2008 trace_block_plug(q);
600271d9
SL
2009 else
2010 last = list_entry_rq(plug->mq_list.prev);
b094f89c 2011
600271d9
SL
2012 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2013 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
e6c4438b
JM
2014 blk_flush_plug_list(plug, false);
2015 trace_block_plug(q);
320ae51f 2016 }
b094f89c 2017
ce5b009c 2018 blk_add_rq_to_plug(plug, rq);
a12de1d4
ML
2019 } else if (q->elevator) {
2020 blk_mq_sched_insert_request(rq, false, true, true);
2299722c 2021 } else if (plug && !blk_queue_nomerges(q)) {
07068d5b 2022 /*
6a83e74d 2023 * We do limited plugging. If the bio can be merged, do that.
f984df1f
SL
2024 * Otherwise the existing request in the plug list will be
2025 * issued. So the plug list will have one request at most
2299722c
CH
2026 * The plug list might get flushed before this. If that happens,
2027 * the plug list is empty, and same_queue_rq is invalid.
07068d5b 2028 */
2299722c
CH
2029 if (list_empty(&plug->mq_list))
2030 same_queue_rq = NULL;
4711b573 2031 if (same_queue_rq) {
2299722c 2032 list_del_init(&same_queue_rq->queuelist);
4711b573
JA
2033 plug->rq_count--;
2034 }
ce5b009c 2035 blk_add_rq_to_plug(plug, rq);
ff3b74b8 2036 trace_block_plug(q);
2299722c 2037
dad7a3be 2038 if (same_queue_rq) {
ea4f995e 2039 data.hctx = same_queue_rq->mq_hctx;
ff3b74b8 2040 trace_block_unplug(q, 1, true);
2299722c 2041 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
fd9c40f6 2042 &cookie);
dad7a3be 2043 }
a12de1d4
ML
2044 } else if ((q->nr_hw_queues > 1 && is_sync) ||
2045 !data.hctx->dispatch_busy) {
fd9c40f6 2046 blk_mq_try_issue_directly(data.hctx, rq, &cookie);
ab42f35d 2047 } else {
8fa9f556 2048 blk_mq_sched_insert_request(rq, false, true, true);
ab42f35d 2049 }
320ae51f 2050
7b371636 2051 return cookie;
320ae51f
JA
2052}
2053
cc71a6f4
JA
2054void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2055 unsigned int hctx_idx)
95363efd 2056{
e9b267d9 2057 struct page *page;
320ae51f 2058
24d2f903 2059 if (tags->rqs && set->ops->exit_request) {
e9b267d9 2060 int i;
320ae51f 2061
24d2f903 2062 for (i = 0; i < tags->nr_tags; i++) {
2af8cbe3
JA
2063 struct request *rq = tags->static_rqs[i];
2064
2065 if (!rq)
e9b267d9 2066 continue;
d6296d39 2067 set->ops->exit_request(set, rq, hctx_idx);
2af8cbe3 2068 tags->static_rqs[i] = NULL;
e9b267d9 2069 }
320ae51f 2070 }
320ae51f 2071
24d2f903
CH
2072 while (!list_empty(&tags->page_list)) {
2073 page = list_first_entry(&tags->page_list, struct page, lru);
6753471c 2074 list_del_init(&page->lru);
f75782e4
CM
2075 /*
2076 * Remove kmemleak object previously allocated in
273938bf 2077 * blk_mq_alloc_rqs().
f75782e4
CM
2078 */
2079 kmemleak_free(page_address(page));
320ae51f
JA
2080 __free_pages(page, page->private);
2081 }
cc71a6f4 2082}
320ae51f 2083
cc71a6f4
JA
2084void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2085{
24d2f903 2086 kfree(tags->rqs);
cc71a6f4 2087 tags->rqs = NULL;
2af8cbe3
JA
2088 kfree(tags->static_rqs);
2089 tags->static_rqs = NULL;
320ae51f 2090
24d2f903 2091 blk_mq_free_tags(tags);
320ae51f
JA
2092}
2093
cc71a6f4
JA
2094struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2095 unsigned int hctx_idx,
2096 unsigned int nr_tags,
2097 unsigned int reserved_tags)
320ae51f 2098{
24d2f903 2099 struct blk_mq_tags *tags;
59f082e4 2100 int node;
320ae51f 2101
7d76f856 2102 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2103 if (node == NUMA_NO_NODE)
2104 node = set->numa_node;
2105
2106 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
24391c0d 2107 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
24d2f903
CH
2108 if (!tags)
2109 return NULL;
320ae51f 2110
590b5b7d 2111 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
36e1f3d1 2112 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
59f082e4 2113 node);
24d2f903
CH
2114 if (!tags->rqs) {
2115 blk_mq_free_tags(tags);
2116 return NULL;
2117 }
320ae51f 2118
590b5b7d
KC
2119 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2120 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2121 node);
2af8cbe3
JA
2122 if (!tags->static_rqs) {
2123 kfree(tags->rqs);
2124 blk_mq_free_tags(tags);
2125 return NULL;
2126 }
2127
cc71a6f4
JA
2128 return tags;
2129}
2130
2131static size_t order_to_size(unsigned int order)
2132{
2133 return (size_t)PAGE_SIZE << order;
2134}
2135
1d9bd516
TH
2136static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2137 unsigned int hctx_idx, int node)
2138{
2139 int ret;
2140
2141 if (set->ops->init_request) {
2142 ret = set->ops->init_request(set, rq, hctx_idx, node);
2143 if (ret)
2144 return ret;
2145 }
2146
12f5b931 2147 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1d9bd516
TH
2148 return 0;
2149}
2150
cc71a6f4
JA
2151int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2152 unsigned int hctx_idx, unsigned int depth)
2153{
2154 unsigned int i, j, entries_per_page, max_order = 4;
2155 size_t rq_size, left;
59f082e4
SL
2156 int node;
2157
7d76f856 2158 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
59f082e4
SL
2159 if (node == NUMA_NO_NODE)
2160 node = set->numa_node;
cc71a6f4
JA
2161
2162 INIT_LIST_HEAD(&tags->page_list);
2163
320ae51f
JA
2164 /*
2165 * rq_size is the size of the request plus driver payload, rounded
2166 * to the cacheline size
2167 */
24d2f903 2168 rq_size = round_up(sizeof(struct request) + set->cmd_size,
320ae51f 2169 cache_line_size());
cc71a6f4 2170 left = rq_size * depth;
320ae51f 2171
cc71a6f4 2172 for (i = 0; i < depth; ) {
320ae51f
JA
2173 int this_order = max_order;
2174 struct page *page;
2175 int to_do;
2176 void *p;
2177
b3a834b1 2178 while (this_order && left < order_to_size(this_order - 1))
320ae51f
JA
2179 this_order--;
2180
2181 do {
59f082e4 2182 page = alloc_pages_node(node,
36e1f3d1 2183 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
a5164405 2184 this_order);
320ae51f
JA
2185 if (page)
2186 break;
2187 if (!this_order--)
2188 break;
2189 if (order_to_size(this_order) < rq_size)
2190 break;
2191 } while (1);
2192
2193 if (!page)
24d2f903 2194 goto fail;
320ae51f
JA
2195
2196 page->private = this_order;
24d2f903 2197 list_add_tail(&page->lru, &tags->page_list);
320ae51f
JA
2198
2199 p = page_address(page);
f75782e4
CM
2200 /*
2201 * Allow kmemleak to scan these pages as they contain pointers
2202 * to additional allocations like via ops->init_request().
2203 */
36e1f3d1 2204 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
320ae51f 2205 entries_per_page = order_to_size(this_order) / rq_size;
cc71a6f4 2206 to_do = min(entries_per_page, depth - i);
320ae51f
JA
2207 left -= to_do * rq_size;
2208 for (j = 0; j < to_do; j++) {
2af8cbe3
JA
2209 struct request *rq = p;
2210
2211 tags->static_rqs[i] = rq;
1d9bd516
TH
2212 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2213 tags->static_rqs[i] = NULL;
2214 goto fail;
e9b267d9
CH
2215 }
2216
320ae51f
JA
2217 p += rq_size;
2218 i++;
2219 }
2220 }
cc71a6f4 2221 return 0;
320ae51f 2222
24d2f903 2223fail:
cc71a6f4
JA
2224 blk_mq_free_rqs(set, tags, hctx_idx);
2225 return -ENOMEM;
320ae51f
JA
2226}
2227
e57690fe
JA
2228/*
2229 * 'cpu' is going away. splice any existing rq_list entries from this
2230 * software queue to the hw queue dispatch list, and ensure that it
2231 * gets run.
2232 */
9467f859 2233static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
484b4061 2234{
9467f859 2235 struct blk_mq_hw_ctx *hctx;
484b4061
JA
2236 struct blk_mq_ctx *ctx;
2237 LIST_HEAD(tmp);
c16d6b5a 2238 enum hctx_type type;
484b4061 2239
9467f859 2240 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
e57690fe 2241 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
c16d6b5a 2242 type = hctx->type;
484b4061
JA
2243
2244 spin_lock(&ctx->lock);
c16d6b5a
ML
2245 if (!list_empty(&ctx->rq_lists[type])) {
2246 list_splice_init(&ctx->rq_lists[type], &tmp);
484b4061
JA
2247 blk_mq_hctx_clear_pending(hctx, ctx);
2248 }
2249 spin_unlock(&ctx->lock);
2250
2251 if (list_empty(&tmp))
9467f859 2252 return 0;
484b4061 2253
e57690fe
JA
2254 spin_lock(&hctx->lock);
2255 list_splice_tail_init(&tmp, &hctx->dispatch);
2256 spin_unlock(&hctx->lock);
484b4061
JA
2257
2258 blk_mq_run_hw_queue(hctx, true);
9467f859 2259 return 0;
484b4061
JA
2260}
2261
9467f859 2262static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
484b4061 2263{
9467f859
TG
2264 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2265 &hctx->cpuhp_dead);
484b4061
JA
2266}
2267
c3b4afca 2268/* hctx->ctxs will be freed in queue's release handler */
08e98fc6
ML
2269static void blk_mq_exit_hctx(struct request_queue *q,
2270 struct blk_mq_tag_set *set,
2271 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2272{
8ab0b7dc
ML
2273 if (blk_mq_hw_queue_mapped(hctx))
2274 blk_mq_tag_idle(hctx);
08e98fc6 2275
f70ced09 2276 if (set->ops->exit_request)
d6296d39 2277 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
f70ced09 2278
08e98fc6
ML
2279 if (set->ops->exit_hctx)
2280 set->ops->exit_hctx(hctx, hctx_idx);
2281
9467f859 2282 blk_mq_remove_cpuhp(hctx);
2f8f1336
ML
2283
2284 spin_lock(&q->unused_hctx_lock);
2285 list_add(&hctx->hctx_list, &q->unused_hctx_list);
2286 spin_unlock(&q->unused_hctx_lock);
08e98fc6
ML
2287}
2288
624dbe47
ML
2289static void blk_mq_exit_hw_queues(struct request_queue *q,
2290 struct blk_mq_tag_set *set, int nr_queue)
2291{
2292 struct blk_mq_hw_ctx *hctx;
2293 unsigned int i;
2294
2295 queue_for_each_hw_ctx(q, hctx, i) {
2296 if (i == nr_queue)
2297 break;
477e19de 2298 blk_mq_debugfs_unregister_hctx(hctx);
08e98fc6 2299 blk_mq_exit_hctx(q, set, hctx, i);
624dbe47 2300 }
624dbe47
ML
2301}
2302
7c6c5b7c
ML
2303static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2304{
2305 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2306
2307 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2308 __alignof__(struct blk_mq_hw_ctx)) !=
2309 sizeof(struct blk_mq_hw_ctx));
2310
2311 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2312 hw_ctx_size += sizeof(struct srcu_struct);
2313
2314 return hw_ctx_size;
2315}
2316
08e98fc6
ML
2317static int blk_mq_init_hctx(struct request_queue *q,
2318 struct blk_mq_tag_set *set,
2319 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
320ae51f 2320{
7c6c5b7c
ML
2321 hctx->queue_num = hctx_idx;
2322
2323 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2324
2325 hctx->tags = set->tags[hctx_idx];
2326
2327 if (set->ops->init_hctx &&
2328 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2329 goto unregister_cpu_notifier;
08e98fc6 2330
7c6c5b7c
ML
2331 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2332 hctx->numa_node))
2333 goto exit_hctx;
2334 return 0;
2335
2336 exit_hctx:
2337 if (set->ops->exit_hctx)
2338 set->ops->exit_hctx(hctx, hctx_idx);
2339 unregister_cpu_notifier:
2340 blk_mq_remove_cpuhp(hctx);
2341 return -1;
2342}
2343
2344static struct blk_mq_hw_ctx *
2345blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2346 int node)
2347{
2348 struct blk_mq_hw_ctx *hctx;
2349 gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2350
2351 hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2352 if (!hctx)
2353 goto fail_alloc_hctx;
2354
2355 if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2356 goto free_hctx;
2357
2358 atomic_set(&hctx->nr_active, 0);
08e98fc6 2359 if (node == NUMA_NO_NODE)
7c6c5b7c
ML
2360 node = set->numa_node;
2361 hctx->numa_node = node;
08e98fc6 2362
9f993737 2363 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
08e98fc6
ML
2364 spin_lock_init(&hctx->lock);
2365 INIT_LIST_HEAD(&hctx->dispatch);
2366 hctx->queue = q;
2404e607 2367 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
08e98fc6 2368
2f8f1336
ML
2369 INIT_LIST_HEAD(&hctx->hctx_list);
2370
320ae51f 2371 /*
08e98fc6
ML
2372 * Allocate space for all possible cpus to avoid allocation at
2373 * runtime
320ae51f 2374 */
d904bfa7 2375 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
7c6c5b7c 2376 gfp, node);
08e98fc6 2377 if (!hctx->ctxs)
7c6c5b7c 2378 goto free_cpumask;
320ae51f 2379
5b202853 2380 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
7c6c5b7c 2381 gfp, node))
08e98fc6 2382 goto free_ctxs;
08e98fc6 2383 hctx->nr_ctx = 0;
320ae51f 2384
5815839b 2385 spin_lock_init(&hctx->dispatch_wait_lock);
eb619fdb
JA
2386 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2387 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2388
5b202853 2389 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
7c6c5b7c 2390 gfp);
f70ced09 2391 if (!hctx->fq)
7c6c5b7c 2392 goto free_bitmap;
320ae51f 2393
6a83e74d 2394 if (hctx->flags & BLK_MQ_F_BLOCKING)
05707b64 2395 init_srcu_struct(hctx->srcu);
7c6c5b7c 2396 blk_mq_hctx_kobj_init(hctx);
6a83e74d 2397
7c6c5b7c 2398 return hctx;
320ae51f 2399
08e98fc6 2400 free_bitmap:
88459642 2401 sbitmap_free(&hctx->ctx_map);
08e98fc6
ML
2402 free_ctxs:
2403 kfree(hctx->ctxs);
7c6c5b7c
ML
2404 free_cpumask:
2405 free_cpumask_var(hctx->cpumask);
2406 free_hctx:
2407 kfree(hctx);
2408 fail_alloc_hctx:
2409 return NULL;
08e98fc6 2410}
320ae51f 2411
320ae51f
JA
2412static void blk_mq_init_cpu_queues(struct request_queue *q,
2413 unsigned int nr_hw_queues)
2414{
b3c661b1
JA
2415 struct blk_mq_tag_set *set = q->tag_set;
2416 unsigned int i, j;
320ae51f
JA
2417
2418 for_each_possible_cpu(i) {
2419 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2420 struct blk_mq_hw_ctx *hctx;
c16d6b5a 2421 int k;
320ae51f 2422
320ae51f
JA
2423 __ctx->cpu = i;
2424 spin_lock_init(&__ctx->lock);
c16d6b5a
ML
2425 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2426 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2427
320ae51f
JA
2428 __ctx->queue = q;
2429
320ae51f
JA
2430 /*
2431 * Set local node, IFF we have more than one hw queue. If
2432 * not, we remain on the home node of the device
2433 */
b3c661b1
JA
2434 for (j = 0; j < set->nr_maps; j++) {
2435 hctx = blk_mq_map_queue_type(q, j, i);
2436 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2437 hctx->numa_node = local_memory_node(cpu_to_node(i));
2438 }
320ae51f
JA
2439 }
2440}
2441
cc71a6f4
JA
2442static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2443{
2444 int ret = 0;
2445
2446 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2447 set->queue_depth, set->reserved_tags);
2448 if (!set->tags[hctx_idx])
2449 return false;
2450
2451 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2452 set->queue_depth);
2453 if (!ret)
2454 return true;
2455
2456 blk_mq_free_rq_map(set->tags[hctx_idx]);
2457 set->tags[hctx_idx] = NULL;
2458 return false;
2459}
2460
2461static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2462 unsigned int hctx_idx)
2463{
4e6db0f2 2464 if (set->tags && set->tags[hctx_idx]) {
bd166ef1
JA
2465 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2466 blk_mq_free_rq_map(set->tags[hctx_idx]);
2467 set->tags[hctx_idx] = NULL;
2468 }
cc71a6f4
JA
2469}
2470
4b855ad3 2471static void blk_mq_map_swqueue(struct request_queue *q)
320ae51f 2472{
b3c661b1 2473 unsigned int i, j, hctx_idx;
320ae51f
JA
2474 struct blk_mq_hw_ctx *hctx;
2475 struct blk_mq_ctx *ctx;
2a34c087 2476 struct blk_mq_tag_set *set = q->tag_set;
320ae51f
JA
2477
2478 queue_for_each_hw_ctx(q, hctx, i) {
e4043dcf 2479 cpumask_clear(hctx->cpumask);
320ae51f 2480 hctx->nr_ctx = 0;
d416c92c 2481 hctx->dispatch_from = NULL;
320ae51f
JA
2482 }
2483
2484 /*
4b855ad3 2485 * Map software to hardware queues.
4412efec
ML
2486 *
2487 * If the cpu isn't present, the cpu is mapped to first hctx.
320ae51f 2488 */
20e4d813 2489 for_each_possible_cpu(i) {
7d76f856 2490 hctx_idx = set->map[HCTX_TYPE_DEFAULT].mq_map[i];
4412efec
ML
2491 /* unmapped hw queue can be remapped after CPU topo changed */
2492 if (!set->tags[hctx_idx] &&
2493 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2494 /*
2495 * If tags initialization fail for some hctx,
2496 * that hctx won't be brought online. In this
2497 * case, remap the current ctx to hctx[0] which
2498 * is guaranteed to always have tags allocated
2499 */
7d76f856 2500 set->map[HCTX_TYPE_DEFAULT].mq_map[i] = 0;
4412efec
ML
2501 }
2502
897bb0c7 2503 ctx = per_cpu_ptr(q->queue_ctx, i);
b3c661b1 2504 for (j = 0; j < set->nr_maps; j++) {
bb94aea1
JW
2505 if (!set->map[j].nr_queues) {
2506 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2507 HCTX_TYPE_DEFAULT, i);
e5edd5f2 2508 continue;
bb94aea1 2509 }
e5edd5f2 2510
b3c661b1 2511 hctx = blk_mq_map_queue_type(q, j, i);
8ccdf4a3 2512 ctx->hctxs[j] = hctx;
b3c661b1
JA
2513 /*
2514 * If the CPU is already set in the mask, then we've
2515 * mapped this one already. This can happen if
2516 * devices share queues across queue maps.
2517 */
2518 if (cpumask_test_cpu(i, hctx->cpumask))
2519 continue;
2520
2521 cpumask_set_cpu(i, hctx->cpumask);
2522 hctx->type = j;
2523 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2524 hctx->ctxs[hctx->nr_ctx++] = ctx;
2525
2526 /*
2527 * If the nr_ctx type overflows, we have exceeded the
2528 * amount of sw queues we can support.
2529 */
2530 BUG_ON(!hctx->nr_ctx);
2531 }
bb94aea1
JW
2532
2533 for (; j < HCTX_MAX_TYPES; j++)
2534 ctx->hctxs[j] = blk_mq_map_queue_type(q,
2535 HCTX_TYPE_DEFAULT, i);
320ae51f 2536 }
506e931f
JA
2537
2538 queue_for_each_hw_ctx(q, hctx, i) {
4412efec
ML
2539 /*
2540 * If no software queues are mapped to this hardware queue,
2541 * disable it and free the request entries.
2542 */
2543 if (!hctx->nr_ctx) {
2544 /* Never unmap queue 0. We need it as a
2545 * fallback in case of a new remap fails
2546 * allocation
2547 */
2548 if (i && set->tags[i])
2549 blk_mq_free_map_and_requests(set, i);
2550
2551 hctx->tags = NULL;
2552 continue;
2553 }
484b4061 2554
2a34c087
ML
2555 hctx->tags = set->tags[i];
2556 WARN_ON(!hctx->tags);
2557
889fa31f
CY
2558 /*
2559 * Set the map size to the number of mapped software queues.
2560 * This is more accurate and more efficient than looping
2561 * over all possibly mapped software queues.
2562 */
88459642 2563 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
889fa31f 2564
484b4061
JA
2565 /*
2566 * Initialize batch roundrobin counts
2567 */
f82ddf19 2568 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
506e931f
JA
2569 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2570 }
320ae51f
JA
2571}
2572
8e8320c9
JA
2573/*
2574 * Caller needs to ensure that we're either frozen/quiesced, or that
2575 * the queue isn't live yet.
2576 */
2404e607 2577static void queue_set_hctx_shared(struct request_queue *q, bool shared)
0d2602ca
JA
2578{
2579 struct blk_mq_hw_ctx *hctx;
0d2602ca
JA
2580 int i;
2581
2404e607 2582 queue_for_each_hw_ctx(q, hctx, i) {
97889f9a 2583 if (shared)
2404e607 2584 hctx->flags |= BLK_MQ_F_TAG_SHARED;
97889f9a 2585 else
2404e607
JM
2586 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2587 }
2588}
2589
8e8320c9
JA
2590static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2591 bool shared)
2404e607
JM
2592{
2593 struct request_queue *q;
0d2602ca 2594
705cda97
BVA
2595 lockdep_assert_held(&set->tag_list_lock);
2596
0d2602ca
JA
2597 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2598 blk_mq_freeze_queue(q);
2404e607 2599 queue_set_hctx_shared(q, shared);
0d2602ca
JA
2600 blk_mq_unfreeze_queue(q);
2601 }
2602}
2603
2604static void blk_mq_del_queue_tag_set(struct request_queue *q)
2605{
2606 struct blk_mq_tag_set *set = q->tag_set;
2607
0d2602ca 2608 mutex_lock(&set->tag_list_lock);
705cda97 2609 list_del_rcu(&q->tag_set_list);
2404e607
JM
2610 if (list_is_singular(&set->tag_list)) {
2611 /* just transitioned to unshared */
2612 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2613 /* update existing queue */
2614 blk_mq_update_tag_set_depth(set, false);
2615 }
0d2602ca 2616 mutex_unlock(&set->tag_list_lock);
a347c7ad 2617 INIT_LIST_HEAD(&q->tag_set_list);
0d2602ca
JA
2618}
2619
2620static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2621 struct request_queue *q)
2622{
0d2602ca 2623 mutex_lock(&set->tag_list_lock);
2404e607 2624
ff821d27
JA
2625 /*
2626 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2627 */
2628 if (!list_empty(&set->tag_list) &&
2629 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2404e607
JM
2630 set->flags |= BLK_MQ_F_TAG_SHARED;
2631 /* update existing queue */
2632 blk_mq_update_tag_set_depth(set, true);
2633 }
2634 if (set->flags & BLK_MQ_F_TAG_SHARED)
2635 queue_set_hctx_shared(q, true);
705cda97 2636 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2404e607 2637
0d2602ca
JA
2638 mutex_unlock(&set->tag_list_lock);
2639}
2640
1db4909e
ML
2641/* All allocations will be freed in release handler of q->mq_kobj */
2642static int blk_mq_alloc_ctxs(struct request_queue *q)
2643{
2644 struct blk_mq_ctxs *ctxs;
2645 int cpu;
2646
2647 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2648 if (!ctxs)
2649 return -ENOMEM;
2650
2651 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2652 if (!ctxs->queue_ctx)
2653 goto fail;
2654
2655 for_each_possible_cpu(cpu) {
2656 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2657 ctx->ctxs = ctxs;
2658 }
2659
2660 q->mq_kobj = &ctxs->kobj;
2661 q->queue_ctx = ctxs->queue_ctx;
2662
2663 return 0;
2664 fail:
2665 kfree(ctxs);
2666 return -ENOMEM;
2667}
2668
e09aae7e
ML
2669/*
2670 * It is the actual release handler for mq, but we do it from
2671 * request queue's release handler for avoiding use-after-free
2672 * and headache because q->mq_kobj shouldn't have been introduced,
2673 * but we can't group ctx/kctx kobj without it.
2674 */
2675void blk_mq_release(struct request_queue *q)
2676{
2f8f1336
ML
2677 struct blk_mq_hw_ctx *hctx, *next;
2678 int i;
e09aae7e 2679
2f8f1336
ML
2680 queue_for_each_hw_ctx(q, hctx, i)
2681 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
2682
2683 /* all hctx are in .unused_hctx_list now */
2684 list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2685 list_del_init(&hctx->hctx_list);
6c8b232e 2686 kobject_put(&hctx->kobj);
c3b4afca 2687 }
e09aae7e
ML
2688
2689 kfree(q->queue_hw_ctx);
2690
7ea5fe31
ML
2691 /*
2692 * release .mq_kobj and sw queue's kobject now because
2693 * both share lifetime with request queue.
2694 */
2695 blk_mq_sysfs_deinit(q);
e09aae7e
ML
2696}
2697
24d2f903 2698struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
b62c21b7
MS
2699{
2700 struct request_queue *uninit_q, *q;
2701
6d469642 2702 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
b62c21b7
MS
2703 if (!uninit_q)
2704 return ERR_PTR(-ENOMEM);
2705
737eb78e
DLM
2706 /*
2707 * Initialize the queue without an elevator. device_add_disk() will do
2708 * the initialization.
2709 */
2710 q = blk_mq_init_allocated_queue(set, uninit_q, false);
b62c21b7
MS
2711 if (IS_ERR(q))
2712 blk_cleanup_queue(uninit_q);
2713
2714 return q;
2715}
2716EXPORT_SYMBOL(blk_mq_init_queue);
2717
9316a9ed
JA
2718/*
2719 * Helper for setting up a queue with mq ops, given queue depth, and
2720 * the passed in mq ops flags.
2721 */
2722struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2723 const struct blk_mq_ops *ops,
2724 unsigned int queue_depth,
2725 unsigned int set_flags)
2726{
2727 struct request_queue *q;
2728 int ret;
2729
2730 memset(set, 0, sizeof(*set));
2731 set->ops = ops;
2732 set->nr_hw_queues = 1;
b3c661b1 2733 set->nr_maps = 1;
9316a9ed
JA
2734 set->queue_depth = queue_depth;
2735 set->numa_node = NUMA_NO_NODE;
2736 set->flags = set_flags;
2737
2738 ret = blk_mq_alloc_tag_set(set);
2739 if (ret)
2740 return ERR_PTR(ret);
2741
2742 q = blk_mq_init_queue(set);
2743 if (IS_ERR(q)) {
2744 blk_mq_free_tag_set(set);
2745 return q;
2746 }
2747
2748 return q;
2749}
2750EXPORT_SYMBOL(blk_mq_init_sq_queue);
2751
34d11ffa
JW
2752static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2753 struct blk_mq_tag_set *set, struct request_queue *q,
2754 int hctx_idx, int node)
2755{
2f8f1336 2756 struct blk_mq_hw_ctx *hctx = NULL, *tmp;
34d11ffa 2757
2f8f1336
ML
2758 /* reuse dead hctx first */
2759 spin_lock(&q->unused_hctx_lock);
2760 list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
2761 if (tmp->numa_node == node) {
2762 hctx = tmp;
2763 break;
2764 }
2765 }
2766 if (hctx)
2767 list_del_init(&hctx->hctx_list);
2768 spin_unlock(&q->unused_hctx_lock);
2769
2770 if (!hctx)
2771 hctx = blk_mq_alloc_hctx(q, set, node);
34d11ffa 2772 if (!hctx)
7c6c5b7c 2773 goto fail;
34d11ffa 2774
7c6c5b7c
ML
2775 if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
2776 goto free_hctx;
34d11ffa
JW
2777
2778 return hctx;
7c6c5b7c
ML
2779
2780 free_hctx:
2781 kobject_put(&hctx->kobj);
2782 fail:
2783 return NULL;
34d11ffa
JW
2784}
2785
868f2f0b
KB
2786static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2787 struct request_queue *q)
320ae51f 2788{
e01ad46d 2789 int i, j, end;
868f2f0b 2790 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
f14bbe77 2791
fb350e0a
ML
2792 /* protect against switching io scheduler */
2793 mutex_lock(&q->sysfs_lock);
24d2f903 2794 for (i = 0; i < set->nr_hw_queues; i++) {
868f2f0b 2795 int node;
34d11ffa 2796 struct blk_mq_hw_ctx *hctx;
868f2f0b 2797
7d76f856 2798 node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
34d11ffa
JW
2799 /*
2800 * If the hw queue has been mapped to another numa node,
2801 * we need to realloc the hctx. If allocation fails, fallback
2802 * to use the previous one.
2803 */
2804 if (hctxs[i] && (hctxs[i]->numa_node == node))
2805 continue;
868f2f0b 2806
34d11ffa
JW
2807 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2808 if (hctx) {
2f8f1336 2809 if (hctxs[i])
34d11ffa 2810 blk_mq_exit_hctx(q, set, hctxs[i], i);
34d11ffa
JW
2811 hctxs[i] = hctx;
2812 } else {
2813 if (hctxs[i])
2814 pr_warn("Allocate new hctx on node %d fails,\
2815 fallback to previous one on node %d\n",
2816 node, hctxs[i]->numa_node);
2817 else
2818 break;
868f2f0b 2819 }
320ae51f 2820 }
e01ad46d
JW
2821 /*
2822 * Increasing nr_hw_queues fails. Free the newly allocated
2823 * hctxs and keep the previous q->nr_hw_queues.
2824 */
2825 if (i != set->nr_hw_queues) {
2826 j = q->nr_hw_queues;
2827 end = i;
2828 } else {
2829 j = i;
2830 end = q->nr_hw_queues;
2831 q->nr_hw_queues = set->nr_hw_queues;
2832 }
34d11ffa 2833
e01ad46d 2834 for (; j < end; j++) {
868f2f0b
KB
2835 struct blk_mq_hw_ctx *hctx = hctxs[j];
2836
2837 if (hctx) {
cc71a6f4
JA
2838 if (hctx->tags)
2839 blk_mq_free_map_and_requests(set, j);
868f2f0b 2840 blk_mq_exit_hctx(q, set, hctx, j);
868f2f0b 2841 hctxs[j] = NULL;
868f2f0b
KB
2842 }
2843 }
fb350e0a 2844 mutex_unlock(&q->sysfs_lock);
868f2f0b
KB
2845}
2846
392546ae
JA
2847/*
2848 * Maximum number of hardware queues we support. For single sets, we'll never
2849 * have more than the CPUs (software queues). For multiple sets, the tag_set
2850 * user may have set ->nr_hw_queues larger.
2851 */
2852static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2853{
2854 if (set->nr_maps == 1)
2855 return nr_cpu_ids;
2856
2857 return max(set->nr_hw_queues, nr_cpu_ids);
2858}
2859
868f2f0b 2860struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
737eb78e
DLM
2861 struct request_queue *q,
2862 bool elevator_init)
868f2f0b 2863{
66841672
ML
2864 /* mark the queue as mq asap */
2865 q->mq_ops = set->ops;
2866
34dbad5d 2867 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
720b8ccc
SB
2868 blk_mq_poll_stats_bkt,
2869 BLK_MQ_POLL_STATS_BKTS, q);
34dbad5d
OS
2870 if (!q->poll_cb)
2871 goto err_exit;
2872
1db4909e 2873 if (blk_mq_alloc_ctxs(q))
41de54c6 2874 goto err_poll;
868f2f0b 2875
737f98cf
ML
2876 /* init q->mq_kobj and sw queues' kobjects */
2877 blk_mq_sysfs_init(q);
2878
392546ae
JA
2879 q->nr_queues = nr_hw_queues(set);
2880 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
868f2f0b
KB
2881 GFP_KERNEL, set->numa_node);
2882 if (!q->queue_hw_ctx)
1db4909e 2883 goto err_sys_init;
868f2f0b 2884
2f8f1336
ML
2885 INIT_LIST_HEAD(&q->unused_hctx_list);
2886 spin_lock_init(&q->unused_hctx_lock);
2887
868f2f0b
KB
2888 blk_mq_realloc_hw_ctxs(set, q);
2889 if (!q->nr_hw_queues)
2890 goto err_hctxs;
320ae51f 2891
287922eb 2892 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
e56f698b 2893 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
320ae51f 2894
a8908939 2895 q->tag_set = set;
320ae51f 2896
94eddfbe 2897 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
cd19181b
ML
2898 if (set->nr_maps > HCTX_TYPE_POLL &&
2899 set->map[HCTX_TYPE_POLL].nr_queues)
6544d229 2900 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
320ae51f 2901
1be036e9
CH
2902 q->sg_reserved_size = INT_MAX;
2903
2849450a 2904 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
6fca6a61
CH
2905 INIT_LIST_HEAD(&q->requeue_list);
2906 spin_lock_init(&q->requeue_lock);
2907
254d259d 2908 blk_queue_make_request(q, blk_mq_make_request);
07068d5b 2909
eba71768
JA
2910 /*
2911 * Do this after blk_queue_make_request() overrides it...
2912 */
2913 q->nr_requests = set->queue_depth;
2914
64f1c21e
JA
2915 /*
2916 * Default to classic polling
2917 */
29ece8b4 2918 q->poll_nsec = BLK_MQ_POLL_CLASSIC;
64f1c21e 2919
24d2f903 2920 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
0d2602ca 2921 blk_mq_add_queue_tag_set(set, q);
4b855ad3 2922 blk_mq_map_swqueue(q);
4593fdbe 2923
737eb78e
DLM
2924 if (elevator_init)
2925 elevator_init_mq(q);
d3484991 2926
320ae51f 2927 return q;
18741986 2928
320ae51f 2929err_hctxs:
868f2f0b 2930 kfree(q->queue_hw_ctx);
73d9c8d4 2931 q->nr_hw_queues = 0;
1db4909e
ML
2932err_sys_init:
2933 blk_mq_sysfs_deinit(q);
41de54c6
JS
2934err_poll:
2935 blk_stat_free_callback(q->poll_cb);
2936 q->poll_cb = NULL;
c7de5726
ML
2937err_exit:
2938 q->mq_ops = NULL;
320ae51f
JA
2939 return ERR_PTR(-ENOMEM);
2940}
b62c21b7 2941EXPORT_SYMBOL(blk_mq_init_allocated_queue);
320ae51f 2942
c7e2d94b
ML
2943/* tags can _not_ be used after returning from blk_mq_exit_queue */
2944void blk_mq_exit_queue(struct request_queue *q)
320ae51f 2945{
624dbe47 2946 struct blk_mq_tag_set *set = q->tag_set;
320ae51f 2947
0d2602ca 2948 blk_mq_del_queue_tag_set(q);
624dbe47 2949 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
320ae51f 2950}
320ae51f 2951
a5164405
JA
2952static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2953{
2954 int i;
2955
cc71a6f4
JA
2956 for (i = 0; i < set->nr_hw_queues; i++)
2957 if (!__blk_mq_alloc_rq_map(set, i))
a5164405 2958 goto out_unwind;
a5164405
JA
2959
2960 return 0;
2961
2962out_unwind:
2963 while (--i >= 0)
cc71a6f4 2964 blk_mq_free_rq_map(set->tags[i]);
a5164405 2965
a5164405
JA
2966 return -ENOMEM;
2967}
2968
2969/*
2970 * Allocate the request maps associated with this tag_set. Note that this
2971 * may reduce the depth asked for, if memory is tight. set->queue_depth
2972 * will be updated to reflect the allocated depth.
2973 */
2974static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2975{
2976 unsigned int depth;
2977 int err;
2978
2979 depth = set->queue_depth;
2980 do {
2981 err = __blk_mq_alloc_rq_maps(set);
2982 if (!err)
2983 break;
2984
2985 set->queue_depth >>= 1;
2986 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2987 err = -ENOMEM;
2988 break;
2989 }
2990 } while (set->queue_depth);
2991
2992 if (!set->queue_depth || err) {
2993 pr_err("blk-mq: failed to allocate request map\n");
2994 return -ENOMEM;
2995 }
2996
2997 if (depth != set->queue_depth)
2998 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2999 depth, set->queue_depth);
3000
3001 return 0;
3002}
3003
ebe8bddb
OS
3004static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3005{
59388702 3006 if (set->ops->map_queues && !is_kdump_kernel()) {
b3c661b1
JA
3007 int i;
3008
7d4901a9
ML
3009 /*
3010 * transport .map_queues is usually done in the following
3011 * way:
3012 *
3013 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3014 * mask = get_cpu_mask(queue)
3015 * for_each_cpu(cpu, mask)
b3c661b1 3016 * set->map[x].mq_map[cpu] = queue;
7d4901a9
ML
3017 * }
3018 *
3019 * When we need to remap, the table has to be cleared for
3020 * killing stale mapping since one CPU may not be mapped
3021 * to any hw queue.
3022 */
b3c661b1
JA
3023 for (i = 0; i < set->nr_maps; i++)
3024 blk_mq_clear_mq_map(&set->map[i]);
7d4901a9 3025
ebe8bddb 3026 return set->ops->map_queues(set);
b3c661b1
JA
3027 } else {
3028 BUG_ON(set->nr_maps > 1);
7d76f856 3029 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
b3c661b1 3030 }
ebe8bddb
OS
3031}
3032
a4391c64
JA
3033/*
3034 * Alloc a tag set to be associated with one or more request queues.
3035 * May fail with EINVAL for various error conditions. May adjust the
c018c84f 3036 * requested depth down, if it's too large. In that case, the set
a4391c64
JA
3037 * value will be stored in set->queue_depth.
3038 */
24d2f903
CH
3039int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3040{
b3c661b1 3041 int i, ret;
da695ba2 3042
205fb5f5
BVA
3043 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3044
24d2f903
CH
3045 if (!set->nr_hw_queues)
3046 return -EINVAL;
a4391c64 3047 if (!set->queue_depth)
24d2f903
CH
3048 return -EINVAL;
3049 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3050 return -EINVAL;
3051
7d7e0f90 3052 if (!set->ops->queue_rq)
24d2f903
CH
3053 return -EINVAL;
3054
de148297
ML
3055 if (!set->ops->get_budget ^ !set->ops->put_budget)
3056 return -EINVAL;
3057
a4391c64
JA
3058 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3059 pr_info("blk-mq: reduced tag depth to %u\n",
3060 BLK_MQ_MAX_DEPTH);
3061 set->queue_depth = BLK_MQ_MAX_DEPTH;
3062 }
24d2f903 3063
b3c661b1
JA
3064 if (!set->nr_maps)
3065 set->nr_maps = 1;
3066 else if (set->nr_maps > HCTX_MAX_TYPES)
3067 return -EINVAL;
3068
6637fadf
SL
3069 /*
3070 * If a crashdump is active, then we are potentially in a very
3071 * memory constrained environment. Limit us to 1 queue and
3072 * 64 tags to prevent using too much memory.
3073 */
3074 if (is_kdump_kernel()) {
3075 set->nr_hw_queues = 1;
59388702 3076 set->nr_maps = 1;
6637fadf
SL
3077 set->queue_depth = min(64U, set->queue_depth);
3078 }
868f2f0b 3079 /*
392546ae
JA
3080 * There is no use for more h/w queues than cpus if we just have
3081 * a single map
868f2f0b 3082 */
392546ae 3083 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
868f2f0b 3084 set->nr_hw_queues = nr_cpu_ids;
6637fadf 3085
392546ae 3086 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
24d2f903
CH
3087 GFP_KERNEL, set->numa_node);
3088 if (!set->tags)
a5164405 3089 return -ENOMEM;
24d2f903 3090
da695ba2 3091 ret = -ENOMEM;
b3c661b1
JA
3092 for (i = 0; i < set->nr_maps; i++) {
3093 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
07b35eb5 3094 sizeof(set->map[i].mq_map[0]),
b3c661b1
JA
3095 GFP_KERNEL, set->numa_node);
3096 if (!set->map[i].mq_map)
3097 goto out_free_mq_map;
59388702 3098 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
b3c661b1 3099 }
bdd17e75 3100
ebe8bddb 3101 ret = blk_mq_update_queue_map(set);
da695ba2
CH
3102 if (ret)
3103 goto out_free_mq_map;
3104
3105 ret = blk_mq_alloc_rq_maps(set);
3106 if (ret)
bdd17e75 3107 goto out_free_mq_map;
24d2f903 3108
0d2602ca
JA
3109 mutex_init(&set->tag_list_lock);
3110 INIT_LIST_HEAD(&set->tag_list);
3111
24d2f903 3112 return 0;
bdd17e75
CH
3113
3114out_free_mq_map:
b3c661b1
JA
3115 for (i = 0; i < set->nr_maps; i++) {
3116 kfree(set->map[i].mq_map);
3117 set->map[i].mq_map = NULL;
3118 }
5676e7b6
RE
3119 kfree(set->tags);
3120 set->tags = NULL;
da695ba2 3121 return ret;
24d2f903
CH
3122}
3123EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3124
3125void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3126{
b3c661b1 3127 int i, j;
24d2f903 3128
392546ae 3129 for (i = 0; i < nr_hw_queues(set); i++)
cc71a6f4 3130 blk_mq_free_map_and_requests(set, i);
484b4061 3131
b3c661b1
JA
3132 for (j = 0; j < set->nr_maps; j++) {
3133 kfree(set->map[j].mq_map);
3134 set->map[j].mq_map = NULL;
3135 }
bdd17e75 3136
981bd189 3137 kfree(set->tags);
5676e7b6 3138 set->tags = NULL;
24d2f903
CH
3139}
3140EXPORT_SYMBOL(blk_mq_free_tag_set);
3141
e3a2b3f9
JA
3142int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3143{
3144 struct blk_mq_tag_set *set = q->tag_set;
3145 struct blk_mq_hw_ctx *hctx;
3146 int i, ret;
3147
bd166ef1 3148 if (!set)
e3a2b3f9
JA
3149 return -EINVAL;
3150
e5fa8140
AZ
3151 if (q->nr_requests == nr)
3152 return 0;
3153
70f36b60 3154 blk_mq_freeze_queue(q);
24f5a90f 3155 blk_mq_quiesce_queue(q);
70f36b60 3156
e3a2b3f9
JA
3157 ret = 0;
3158 queue_for_each_hw_ctx(q, hctx, i) {
e9137d4b
KB
3159 if (!hctx->tags)
3160 continue;
bd166ef1
JA
3161 /*
3162 * If we're using an MQ scheduler, just update the scheduler
3163 * queue depth. This is similar to what the old code would do.
3164 */
70f36b60 3165 if (!hctx->sched_tags) {
c2e82a23 3166 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
70f36b60
JA
3167 false);
3168 } else {
3169 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3170 nr, true);
3171 }
e3a2b3f9
JA
3172 if (ret)
3173 break;
77f1e0a5
JA
3174 if (q->elevator && q->elevator->type->ops.depth_updated)
3175 q->elevator->type->ops.depth_updated(hctx);
e3a2b3f9
JA
3176 }
3177
3178 if (!ret)
3179 q->nr_requests = nr;
3180
24f5a90f 3181 blk_mq_unquiesce_queue(q);
70f36b60 3182 blk_mq_unfreeze_queue(q);
70f36b60 3183
e3a2b3f9
JA
3184 return ret;
3185}
3186
d48ece20
JW
3187/*
3188 * request_queue and elevator_type pair.
3189 * It is just used by __blk_mq_update_nr_hw_queues to cache
3190 * the elevator_type associated with a request_queue.
3191 */
3192struct blk_mq_qe_pair {
3193 struct list_head node;
3194 struct request_queue *q;
3195 struct elevator_type *type;
3196};
3197
3198/*
3199 * Cache the elevator_type in qe pair list and switch the
3200 * io scheduler to 'none'
3201 */
3202static bool blk_mq_elv_switch_none(struct list_head *head,
3203 struct request_queue *q)
3204{
3205 struct blk_mq_qe_pair *qe;
3206
3207 if (!q->elevator)
3208 return true;
3209
3210 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3211 if (!qe)
3212 return false;
3213
3214 INIT_LIST_HEAD(&qe->node);
3215 qe->q = q;
3216 qe->type = q->elevator->type;
3217 list_add(&qe->node, head);
3218
3219 mutex_lock(&q->sysfs_lock);
3220 /*
3221 * After elevator_switch_mq, the previous elevator_queue will be
3222 * released by elevator_release. The reference of the io scheduler
3223 * module get by elevator_get will also be put. So we need to get
3224 * a reference of the io scheduler module here to prevent it to be
3225 * removed.
3226 */
3227 __module_get(qe->type->elevator_owner);
3228 elevator_switch_mq(q, NULL);
3229 mutex_unlock(&q->sysfs_lock);
3230
3231 return true;
3232}
3233
3234static void blk_mq_elv_switch_back(struct list_head *head,
3235 struct request_queue *q)
3236{
3237 struct blk_mq_qe_pair *qe;
3238 struct elevator_type *t = NULL;
3239
3240 list_for_each_entry(qe, head, node)
3241 if (qe->q == q) {
3242 t = qe->type;
3243 break;
3244 }
3245
3246 if (!t)
3247 return;
3248
3249 list_del(&qe->node);
3250 kfree(qe);
3251
3252 mutex_lock(&q->sysfs_lock);
3253 elevator_switch_mq(q, t);
3254 mutex_unlock(&q->sysfs_lock);
3255}
3256
e4dc2b32
KB
3257static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3258 int nr_hw_queues)
868f2f0b
KB
3259{
3260 struct request_queue *q;
d48ece20 3261 LIST_HEAD(head);
e01ad46d 3262 int prev_nr_hw_queues;
868f2f0b 3263
705cda97
BVA
3264 lockdep_assert_held(&set->tag_list_lock);
3265
392546ae 3266 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
868f2f0b
KB
3267 nr_hw_queues = nr_cpu_ids;
3268 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3269 return;
3270
3271 list_for_each_entry(q, &set->tag_list, tag_set_list)
3272 blk_mq_freeze_queue(q);
f5bbbbe4
JW
3273 /*
3274 * Sync with blk_mq_queue_tag_busy_iter.
3275 */
3276 synchronize_rcu();
d48ece20
JW
3277 /*
3278 * Switch IO scheduler to 'none', cleaning up the data associated
3279 * with the previous scheduler. We will switch back once we are done
3280 * updating the new sw to hw queue mappings.
3281 */
3282 list_for_each_entry(q, &set->tag_list, tag_set_list)
3283 if (!blk_mq_elv_switch_none(&head, q))
3284 goto switch_back;
868f2f0b 3285
477e19de
JW
3286 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3287 blk_mq_debugfs_unregister_hctxs(q);
3288 blk_mq_sysfs_unregister(q);
3289 }
3290
e01ad46d 3291 prev_nr_hw_queues = set->nr_hw_queues;
868f2f0b 3292 set->nr_hw_queues = nr_hw_queues;
ebe8bddb 3293 blk_mq_update_queue_map(set);
e01ad46d 3294fallback:
868f2f0b
KB
3295 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3296 blk_mq_realloc_hw_ctxs(set, q);
e01ad46d
JW
3297 if (q->nr_hw_queues != set->nr_hw_queues) {
3298 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3299 nr_hw_queues, prev_nr_hw_queues);
3300 set->nr_hw_queues = prev_nr_hw_queues;
7d76f856 3301 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
e01ad46d
JW
3302 goto fallback;
3303 }
477e19de
JW
3304 blk_mq_map_swqueue(q);
3305 }
3306
3307 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3308 blk_mq_sysfs_register(q);
3309 blk_mq_debugfs_register_hctxs(q);
868f2f0b
KB
3310 }
3311
d48ece20
JW
3312switch_back:
3313 list_for_each_entry(q, &set->tag_list, tag_set_list)
3314 blk_mq_elv_switch_back(&head, q);
3315
868f2f0b
KB
3316 list_for_each_entry(q, &set->tag_list, tag_set_list)
3317 blk_mq_unfreeze_queue(q);
3318}
e4dc2b32
KB
3319
3320void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3321{
3322 mutex_lock(&set->tag_list_lock);
3323 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3324 mutex_unlock(&set->tag_list_lock);
3325}
868f2f0b
KB
3326EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3327
34dbad5d
OS
3328/* Enable polling stats and return whether they were already enabled. */
3329static bool blk_poll_stats_enable(struct request_queue *q)
3330{
3331 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
7dfdbc73 3332 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
34dbad5d
OS
3333 return true;
3334 blk_stat_add_callback(q, q->poll_cb);
3335 return false;
3336}
3337
3338static void blk_mq_poll_stats_start(struct request_queue *q)
3339{
3340 /*
3341 * We don't arm the callback if polling stats are not enabled or the
3342 * callback is already active.
3343 */
3344 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3345 blk_stat_is_active(q->poll_cb))
3346 return;
3347
3348 blk_stat_activate_msecs(q->poll_cb, 100);
3349}
3350
3351static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3352{
3353 struct request_queue *q = cb->data;
720b8ccc 3354 int bucket;
34dbad5d 3355
720b8ccc
SB
3356 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3357 if (cb->stat[bucket].nr_samples)
3358 q->poll_stat[bucket] = cb->stat[bucket];
3359 }
34dbad5d
OS
3360}
3361
64f1c21e
JA
3362static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3363 struct blk_mq_hw_ctx *hctx,
3364 struct request *rq)
3365{
64f1c21e 3366 unsigned long ret = 0;
720b8ccc 3367 int bucket;
64f1c21e
JA
3368
3369 /*
3370 * If stats collection isn't on, don't sleep but turn it on for
3371 * future users
3372 */
34dbad5d 3373 if (!blk_poll_stats_enable(q))
64f1c21e
JA
3374 return 0;
3375
64f1c21e
JA
3376 /*
3377 * As an optimistic guess, use half of the mean service time
3378 * for this type of request. We can (and should) make this smarter.
3379 * For instance, if the completion latencies are tight, we can
3380 * get closer than just half the mean. This is especially
3381 * important on devices where the completion latencies are longer
720b8ccc
SB
3382 * than ~10 usec. We do use the stats for the relevant IO size
3383 * if available which does lead to better estimates.
64f1c21e 3384 */
720b8ccc
SB
3385 bucket = blk_mq_poll_stats_bkt(rq);
3386 if (bucket < 0)
3387 return ret;
3388
3389 if (q->poll_stat[bucket].nr_samples)
3390 ret = (q->poll_stat[bucket].mean + 1) / 2;
64f1c21e
JA
3391
3392 return ret;
3393}
3394
06426adf 3395static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
64f1c21e 3396 struct blk_mq_hw_ctx *hctx,
06426adf
JA
3397 struct request *rq)
3398{
3399 struct hrtimer_sleeper hs;
3400 enum hrtimer_mode mode;
64f1c21e 3401 unsigned int nsecs;
06426adf
JA
3402 ktime_t kt;
3403
76a86f9d 3404 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
64f1c21e
JA
3405 return false;
3406
3407 /*
1052b8ac 3408 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
64f1c21e 3409 *
64f1c21e
JA
3410 * 0: use half of prev avg
3411 * >0: use this specific value
3412 */
1052b8ac 3413 if (q->poll_nsec > 0)
64f1c21e
JA
3414 nsecs = q->poll_nsec;
3415 else
3416 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3417
3418 if (!nsecs)
06426adf
JA
3419 return false;
3420
76a86f9d 3421 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
06426adf
JA
3422
3423 /*
3424 * This will be replaced with the stats tracking code, using
3425 * 'avg_completion_time / 2' as the pre-sleep target.
3426 */
8b0e1953 3427 kt = nsecs;
06426adf
JA
3428
3429 mode = HRTIMER_MODE_REL;
dbc1625f 3430 hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
06426adf
JA
3431 hrtimer_set_expires(&hs.timer, kt);
3432
06426adf 3433 do {
5a61c363 3434 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
06426adf
JA
3435 break;
3436 set_current_state(TASK_UNINTERRUPTIBLE);
9dd8813e 3437 hrtimer_sleeper_start_expires(&hs, mode);
06426adf
JA
3438 if (hs.task)
3439 io_schedule();
3440 hrtimer_cancel(&hs.timer);
3441 mode = HRTIMER_MODE_ABS;
3442 } while (hs.task && !signal_pending(current));
3443
3444 __set_current_state(TASK_RUNNING);
3445 destroy_hrtimer_on_stack(&hs.timer);
3446 return true;
3447}
3448
1052b8ac
JA
3449static bool blk_mq_poll_hybrid(struct request_queue *q,
3450 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
bbd7bb70 3451{
1052b8ac
JA
3452 struct request *rq;
3453
29ece8b4 3454 if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
1052b8ac
JA
3455 return false;
3456
3457 if (!blk_qc_t_is_internal(cookie))
3458 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3459 else {
3460 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3461 /*
3462 * With scheduling, if the request has completed, we'll
3463 * get a NULL return here, as we clear the sched tag when
3464 * that happens. The request still remains valid, like always,
3465 * so we should be safe with just the NULL check.
3466 */
3467 if (!rq)
3468 return false;
3469 }
3470
3471 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3472}
3473
529262d5
CH
3474/**
3475 * blk_poll - poll for IO completions
3476 * @q: the queue
3477 * @cookie: cookie passed back at IO submission time
3478 * @spin: whether to spin for completions
3479 *
3480 * Description:
3481 * Poll for completions on the passed in queue. Returns number of
3482 * completed entries found. If @spin is true, then blk_poll will continue
3483 * looping until at least one completion is found, unless the task is
3484 * otherwise marked running (or we need to reschedule).
3485 */
3486int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
1052b8ac
JA
3487{
3488 struct blk_mq_hw_ctx *hctx;
bbd7bb70
JA
3489 long state;
3490
529262d5
CH
3491 if (!blk_qc_t_valid(cookie) ||
3492 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1052b8ac
JA
3493 return 0;
3494
529262d5
CH
3495 if (current->plug)
3496 blk_flush_plug_list(current->plug, false);
3497
1052b8ac
JA
3498 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3499
06426adf
JA
3500 /*
3501 * If we sleep, have the caller restart the poll loop to reset
3502 * the state. Like for the other success return cases, the
3503 * caller is responsible for checking if the IO completed. If
3504 * the IO isn't complete, we'll get called again and will go
3505 * straight to the busy poll loop.
3506 */
1052b8ac 3507 if (blk_mq_poll_hybrid(q, hctx, cookie))
85f4d4b6 3508 return 1;
06426adf 3509
bbd7bb70
JA
3510 hctx->poll_considered++;
3511
3512 state = current->state;
aa61bec3 3513 do {
bbd7bb70
JA
3514 int ret;
3515
3516 hctx->poll_invoked++;
3517
9743139c 3518 ret = q->mq_ops->poll(hctx);
bbd7bb70
JA
3519 if (ret > 0) {
3520 hctx->poll_success++;
849a3700 3521 __set_current_state(TASK_RUNNING);
85f4d4b6 3522 return ret;
bbd7bb70
JA
3523 }
3524
3525 if (signal_pending_state(state, current))
849a3700 3526 __set_current_state(TASK_RUNNING);
bbd7bb70
JA
3527
3528 if (current->state == TASK_RUNNING)
85f4d4b6 3529 return 1;
0a1b8b87 3530 if (ret < 0 || !spin)
bbd7bb70
JA
3531 break;
3532 cpu_relax();
aa61bec3 3533 } while (!need_resched());
bbd7bb70 3534
67b4110f 3535 __set_current_state(TASK_RUNNING);
85f4d4b6 3536 return 0;
bbd7bb70 3537}
529262d5 3538EXPORT_SYMBOL_GPL(blk_poll);
bbd7bb70 3539
9cf2bab6
JA
3540unsigned int blk_mq_rq_cpu(struct request *rq)
3541{
3542 return rq->mq_ctx->cpu;
3543}
3544EXPORT_SYMBOL(blk_mq_rq_cpu);
3545
320ae51f
JA
3546static int __init blk_mq_init(void)
3547{
9467f859
TG
3548 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3549 blk_mq_hctx_notify_dead);
320ae51f
JA
3550 return 0;
3551}
3552subsys_initcall(blk_mq_init);